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Abstract—The oil and gas industry is focussing more on subsea
separation and processing and the need for compact equipment
such as gas-liquid cylindrical cyclones (GLCC) is increasing.
As compactness of the equipment increases, they become more
sensitive to variations in the input conditions and the dynamics
become faster. Improving the control aspect is one of the solutions
to ensure efficient operation of these devices during all field
conditions. However, the measurements available are limited due
to higher instrument cost or the absence of proper sensors.
Virtual sensors or estimators is an alternative technology which
could solve the problem with lower investment cost. In the case
of gas-liquid cylindrical cyclones, there is no proper sensor to
measure the level inside it. Therefore, this paper focuses on
estimating the level inside a GLCC using two well-know nonlinear
estimation techniques, the EKF and the UKF. The estimates are
given as a state feedback to a level controller.

I. INTRODUCTION

Gas-liquid cylindrical cyclones (GLCC) are considered as
an alternative to conventional gravity-based separators in the
oil and gas industry [1]. A mixture of gas and liquid (from the
reservoir) enters the GLCC through a tangential inlet, which
creates a swirl in the flow. The liquid moves to the side due
to the centrifugal forces induced by the swirling effects, while
the gas accumulates in the center due to density differences.
Gravity also pulls the liquid down while the gas rises. Simple,
compact and low operational costs makes GLCCs attractive
for various applications such as multiphase flow metering, pre-
separation of raw gas from high pressure wells [2] and as a
compact separator in subsea applications.

In cases were GLCC is used as a separator liquid level and
pressure control are required to reduce gas carry under (GCU)
into the liquid stream and liquid carry over (LCO) into the
gas stream. The pressure at the gas outlet is measured and
given as feedback to the pressure control loop. The complex
hydrodynamic nature of flow inside the GLCC makes the level
measurement inaccurate, but the equilibrium liquid level can
be measured [2] and given as a feedback to the level control
loop. However, the fast dynamics of a GLCC renders such a
measurement insufficient.

In [3], a dynamic model with perfect separation controlled
by a PI feedback controllers was presented, and [4] extended
it with a gain-scheduling controller. Later, [5] proposed an
empirical dynamic model with imperfect separation and a
feedforward algorithm. Recently, [6] derived a control-oriented
model of a GLCC with separation dynamics of the inlet gas-

liquid flow and [7] extended the model by considering the
continuous separation of gas and liquid phase.

As mathematical models, in particular state space models,
open up the possibility of using estimators for estimating
parameters and unmeasured states, [8] has used an extended
Kalman filter (EKF) for paramater estimation of a GLCC
assuming full state knowledge, and [9] applied an unscented
Kalman filter (UKF) and linear moving horizon estimator
(MHE) for state and parameter estimation of the GLCC
assuming limited-state knowledge. Both [8] and [9] assumed
that level measurements were available; however as mentioned
earlier, the level is difficult to measure. In this paper, we are
focussing on estimating the level using other available mea-
surements (gas outlet pressure, mass flow rates and densities).
A nonlinear GLCC model developed in [7] is used as a plant
model and a simplified estimator model is derived by a state
transformation. Owing to the nonlinearity in the model we are
using two nonlinear estimators: a EKF and a UKF.

The EKF is a common choice for nonlinear estimator
problems despite being based on first order linearization. The
EKF is an extension of the Kalman filter, with an additional
step of calculating the Jacobian matrices which linearizes the
nonlinear dynamics. Calculation of the Jacobians is difficult
in higher order systems, and a well known drawback is that
the linearization can introduce errors in the system which may
later cause the estimates to diverge.

The UKF is another technique for nonlinear estimator
problems. The UKF is an improvement of the EKF and
creates sample points (sigma points) around the current state
estimate based on the covariance. Each of these sample points
are transformed through the nonlinear dynamics and used to
calculate the new mean and error covariance. The GLCC is
an integrating process, and is highly unstable without the level
and the pressure control. In our analysis we have considered
the level and the pressure as controlled by independent con-
trollers and the estimates are given to these controllers.

II. GLCC MODEL

The GLCC plant model used in this paper is adopted from
[7], where dynamic mass balances are combined with online
steady-state separation calculations of liquid carry over (LCO)
at the gas outlet stream and gas carry under (GCU) at the
liquid outlet stream of the GLCC. As complete separation is
not possible, the inlet gas-liquid flow entering the GLCC is
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Fig. 1. A sketch of a gas-liquid cylindrical cyclone showing gas-liquid
interface [6]

separated as a gas stream containing liquid droplets and a
liquid stream containing gas bubbles. Hence, there are four
mass balances describing the system states of the GLCC: gas
and liquid in the predominantly liquid volume, and gas and
liquid in the predominantly gas volume:

ṁl,l = win,l − wlco − wl,l (1)
ṁl,g = wgcu − wl,g (2)
ṁg,l = wlco − wg,l (3)
ṁg,g = win,g − wgcu − wg,g (4)

where ml,l is the mass of liquid in the liquid volume, ml,g is
the mass of gas in the liquid volume, mg,l is the mass of liquid
in the gas volume, mg,g is the mass of liquid in gas volume,
win,l and win,g are liquid and gas flow components in the
inlet flow win, wl,l and wl,g are liquid and gas components
in liquid outlet stream wl, wg,l and wg,g are liquid and gas
outlet components in the gas outlet stream wg , wgcu is the
GCU mass flow and wlco is the LCO mass flow.

The inlet gas mass fraction βin ∈ [0, 1] is defined as

βin
∆
=

min,g

min,l + wm,g
, (5)

where min,g is the mass of gas in the inlet stream and min,l

is the mass of liquid in the inlet stream. The liquid and gas
mass flows in the model are expressed in terms of gas mass
fraction. The inlet mass flows of liquid and gas are given by

win,g = βinwin (6)
win,l = (1− βin)win . (7)

In this model, LCO and GCU are modelled based on the
separation factors εLCO ∈ [0, 1] and εGCU ∈ [0, 1]

wlco = εLCO(1− βin)win (8)
wgcu = εGCUβinwin . (9)

We can rewrite the mass balance equations as

ṁl,l = (1− εLCO)(1− βin)win − wl,l (10)
ṁl,g = εGCUβinwin − wl,g (11)
ṁg,l = εLCO(1− βin)win − wg,l (12)
ṁg,g = (1− εGCU )βinwin − wg,g . (13)

Though the GLCC model described by (10)–(13) does
not appear complicated, calculations of the separation factors
εLCO and εGCU based on the droplet and bubble trajectories
are highly complex and non-linear. The equations describing
the separation factors are given in [6]. We also consider the
two control valves (Fig. 2) as part of the plant model and the
flow through the valve are modelled as

wl = CdlAvlul
√
ρl(Pl − Plb) (14)

wg = CdgAvgug

√
ρg(Pg − Pgb) . (15)

where Cdl and Cdg are the valve constants of the level and
the pressure control valve, Avl and Avg are the cross-sectional
areas of the level and the pressure control valves, ul and ug
∈ [0, 1] are the level and pressure control signals, and Plb and
Pgb are the back pressures at liquid and gas outlets. The model
assumes that these two back pressures are known. Pl and Pg
are the pressures at the liquid and gas outlets.

III. ESTIMATOR MODELLING

The plant model described by (10)–(13) is complex to be
implemented as an estimator model. Hence we simplify this
model and introduce two variables ml and mg , respresenting
total mass flow in the liquid and gas outlet of the GLCC,
respectively, giving

ml = ml,l +ml,g (16)
mg = mg,l +mg,g . (17)

Then, from (10)–(13), we get

ṁl = [(1−βin)−εLCO(1− βin)+εGCUβin]win − wl (18)
ṁg = [βin − εGCUβin + εLCU (1− βin)]win − wg . (19)

The further derivation is based on the following assumptions:

1) The density of the light liquid volume is assumed to be
approximately equal to that of pure liquid.

2) The amount of liquid droplets in the gas volume is small
and neglected for the calculation of pressure.

3) The liquid level inside the GLCC is assumed to be flat,
but in reality the level is curved and disturbed by the
inlet flow and the gas bubbles. Fig. 1 shows the gas-liquid
interface inside the GLCC.

The height hl of the liquid column in the GLCC is given by

hl =
ml

ρlA
(20)
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where A is the cross sectional area of GLCC and ρl is the
liquid density. The rate of change ḣl is given by

ḣl =
ṁl

ρlA

=
[(1−βin)−εLCO(1−βin)+εGCUβin]win−wl

ρlA
.

(21)

The ideal gas law gives the pressure Pg at the gas outlet stream

PgVg =
mg

Mg
RT , (22)

where Mg is the molar mass of clean gas, R is the ideal gas
constant and T is the temperature. Time differentiation gives

dPg
dt

Vg +
dVg
dt

P =
RT

Mg
ṁg . (23)

Knowing that V = Vl + Vg and V̇ = 0 implies V̇l = −V̇g =
Aḣl. Applying this and inserting (19) and (21) yields

dPg
dt

(V − Vl)−
dVl
dt
Pg =

RT

Mg
ṁg

Ṗg(V − Vl)−
Adhl
dt

Pg =
RT

Mg
ṁg (24)

Ṗg =
1

A(H − hl)

[
RT

Mg
([βin − εGCUβin+

εLCU (1− βin)]win − wg) +
Pg
ρl

[(1− βin)−

εLCO(1− βin) + εGCUβin]win − wl

] (25)

where H is the total height of the GLCC.
For use in the estimator, we simplify the model further.

The inflow win, which is a mixture of gas and liquid, is split
into two outflows wl and wg . By inserting a split factor α
describing the separation ratio of gas and liquid at two outlets
given by

wg = αwin (26)
wl = (1− α)win . (27)

The mass flow rate at the liquid outlet can be expressed as

dml

dt
= αwin − wl . (28)

Assuming that the density ρl remains constant gives

dhl
dt

=
αwin − wl

Aρl
. (29)

The rate of change of accumulated mass of gas is given by

dmg

dt
= (1− α)win − wg . (30)

The gas pressure is given by the ideal gas law (22)

mg =
PgVgMg

RT
. (31)

Inserting (30) into (31) gives

d

dt

(
PgVgMg

RT

)
= (1− α)win − wg

Mg

RT

[
dPg
dt

Vg +
dVg
dt

Pg

]
= (1− α)win − wg

Mg

RT

[
dPg
dt

A(H − hl)−
dVl
dt
Pg

]
= (1− α)win − wg . (32)

Since V̇l = Aḣl, using (29) gives

Mg

RT

[
dPg
dt

A(H−hl)−
Pg
ρl

(αwin−wl)
]

= (1−α)win−wg .
(33)

Rearranging the terms gives,

dPg
dt

=

RT
Mg

((1− α)win − wg) +
Pg

ρl
(αwin − wl)

A(H − hl)
. (34)

To summarise and make the estimator equation distinguish-
able from the plant model, (29) and (34) are appended with
estimator notation and are written as

˙̂
hl =

αwin − wl
Aρl

(35)

˙̂
Pg =

RT
Mg

((1− α)win − wg) +
P̂g

ρl
(αwin − wl)

A(H − ĥl)
. (36)

Comparing equations (21), (25), (35) and (36), the split factor
α is algebraically mapped to the separation factors and the
inlet gas mass fraction as

α = (1− βin)− εLCO(1− βin) + εGCUβin (37)
(1− α) = βin − εGCUβin + εLCU (1− βin) . (38)

The state-space representation of the estimator model is then
given as

ẋ1 =
x3win − wl

Aρl
(39)

ẋ2 =

c

[
RT
Mg

((1− x3)win − wg) + x2

ρl
(x3win − wl)

]
A(H − x1)

(40)

ẋ3 =
−x3

T
, (41)

The variable x1 [m] is the height of liquid column inside the
GLCC, x2 [bar] is the gas outlet pressure and x3 [-] is the
split factor which we model by a Wiener filter with T time
constant The measurement model of the GLCC is given by

z = [0, x2, x3]T . (42)

IV. EKF DESIGN

As the model is nonlinear, we are using the nonlinear
extension of the Kalman filter for estimating the system
states. The two main extensions of the Kalman filters are the
linearized Kalman filter (LKF) and the EKF [10, Ch. 13].

The LKF linearizes the nonlinear system around some
nominal state trajectory that is not updated based on the
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measurements. While the EKF, linearizes the nonlinear system
around the current estimates. In other words, EKF linearizes
the nonlinear system around the current Kalman filter estimate.
Here we are using the EKF, specifically the continuous-time
EKF as the plant and the estimator model are in continuous
time. The general formation of continuous time EKF is pre-
sented below [10, Ch. 13], Consider a estimator model,

ẋ = f(x, u) +W (43)
z = h(x) + V , (44)

where W is the process noise and V is the measurement noise
with distributions N (0, Q) and N (0, R), respectively, and f is
derived from (39)–(41). The first step of the EKF is to initialise
the filter

x̂(0) = E[x(0)]

P (0) = E[(x(0)− x̂(0))(x(0)− x̂(0))T ] .
(45)

The next step of the EKF is to compute the Jacobians for the
process and measurement models at the current state estimate
(at t = 0 the Jacobians are calculated at the initial value)

F =
∂f

∂t

∣∣∣∣
x̂

(46)

H =
∂h

∂t

∣∣∣∣
x̂

. (47)

As the continuous-time EKF combines the prediction and
update steps of the ordinary Kalman filter, the final update
step is given as

˙̂x = f(x̂, u) +K[z − h(x̂)] (48)

Ṗ = FP + PFT −KHP +Q (49)

K = PHTR−1 (50)

The performance of the EKF depends heavily on tuning
of the covariance matrices for the process and measurement
noises. The tuning of Q and R have large impact on plant-
model mismatch.

A trial-and-error-based approach was used for tuning of Q
and R. The covariance matrices were selected to reduce the
estimation errors of the two states x2 and x3 (pressure and split
factor), which have direct measurements from sensors. As the
estimation of x2 and x3 approached the actual value, x1 moves
away from the actual value. This could be because of plant-
model mismatch or due to the EKF method itself. A biased
estimate of x2 and x3 gave a better estimate of x1. As the main
focus of the estimation is to get the level (unmeasured) closer
to the actual value, the other two estimates were penalised.
The covariance matrix used in simulation are listed in Table
I.

V. UKF DESIGN

The UKF is a Gaussian sampling method that chooses
sampling points (or sigma points) based on a deterministic
approach.

For a vector x, with mean x̄ and covariance Px, then
with the unscented transform [11], [12], a set of samples are

TABLE I
TUNING PARAMETERS

QEKF diag([1× 10−8, 2.5× 10−3, 2304])
REKF diag([10, 0.6])
QUKF diag([3.564× 10−5, 2.5× 10−3, 900])
RUKF diag([0.005, 1])

deterministically selected from the probability distribution of
x, i.e., if x is an n×1 vector we choose 2n sigma points X(i)

as

X(i) =

{
x̄+ (

√
nPx)Ti , i = 1, ..., n

x̄− (
√
nPx)Ti , i = n+ 1, ..., 2n,

(51)

where
√
nPx is the matrix square root of nP such that

(
√
nPx)T

√
nPx = nPx (since P is positive definite) and

(
√
nPx)i is the ith row

√
nPx. Consider the nonlinear trans-

formation y = f(x), then each of these sigma points are
transformed through this nonlinear transformation to get a
corresponding set of sample points in Y(i) = f(X(i)). Now,
we can derive the estimates of the mean and covariance of y
as

ȳ =
1

2n

2n∑
i=1

Y(i)

Py =
1

2n

2n∑
i=1

(Y(i) − yu)(Y(i) − yu)T

(52)

The unscented transformation described above is used in
the UKF to estimate the state and the error covariance.
Consider the discrete-time nonlinear system with process and
measurement model,

xk+1 = fd(xk, uk) +Wk (53)
zk = h(xk) + Vk (54)

where Wk ∼ N (0, Qk) and Vk ∼ N (0, Qk) are additive
process and measurement noise, and fd is the discretised
version of (43). The UKF algorithm consist of the following
steps:

• Initialise UKF at k = 0

x̂0 = E[x0], P̂0 = E[(x0 − x̂0)(x0 − x̂0)T ] . (55)

• Choose the samples or sigma points based on the current
state and covariance:

Xk−1 = [x̂k−1 +
√
nPk−1 x̂k−1 −

√
nPk−1] (56)

• The prediction step in the UKF is given by transforming
the set of sigma points individually through the nonlinear
function f :

X
(i)−
k = f(X

(i)−
k−1 , uk) . (57)
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Then recreate the a priori state estimate and its error
covariance

x̂−k =
1

2n

2n∑
i=1

X
(i)−
k

P−
k =

1

2n

2n∑
i=1

(X
(i)−
k − x̂−k )(X

(i)−
k − x̂−k )T +Qk .

(58)

• In the measurement update, we can use the new state
estimate and its error covariance to re-sample new sigma
points as

X−
k = [x̂−k +

√
nP−

k x̂−k −
√
nP−

k ] . (59)

To obtain the measurement update, the next step is to
project the new sigma points through the measurement
function h and evaluate covariance and cross covariance
to compute the Kalman gain:

Z
(i)−
k = h(X

(i)−
k ) (60)

ẑ−k =
1

2n

2n∑
i=1

Z
(i)−
k (61)

(P−
z )k =

1

2n

2n∑
i=1

(Z
(i)−
k −ẑ−k )(Z

(i)−
k −ẑ−k )T +Rk

(62)

(P−
xz)k =

1

2n

2n∑
i=1

(Z
(i)−
k − x̂−k )(Z

(i)−
k − ẑ−k )T (63)

Kk = (P−
xz)k(P−

z )−1
k (64)

• Update the state estimate and the error covariance using
the Kalman gain:

x̂ = x̂−k +Kk(zk − ẑ−k ) (65)

Pk = P−
k −Kk(P−

z )kK
T
k (66)

The algorithm described above is taken from [10, Ch.14].
Another common type of UKF is to select 2n + 1 sigma

points and different weights for the state estimate and the
covariance estimate [13]. The matrix version of UKF is given
by [14], and this also gives derivation of the continuous time
version of the UKF.

Another modification of the UKF is the constrained UKF
[15], which is used if there are constraints on the states.
This can increase the performance in these type of systems.
E.g., “level cannot be negative” or “level cannot be higher
than maximum tank capacity”. In [16], methods for contraint
handling in the EKF are described. One technique is the
projection method, where the unconstrained state estimate x̂
is projected onto the constrained boundary surface. In [15],
this method is applied with a UKF; whenever the sigma points
calculated during the time update is outside the feasible region,
they are projected onto the feasible boundary region. The same
procedure can be applied to sigma points calculated for the
measurement update as well.

In this paper, we have implemented the constrained version
of the UKF, since the unconstrained UKF was estimating
negative values for the level, x1. The constrain was imposed
after transforming sigma points through the nonlinear function.
Specifically, if there are any samples of x1 taking a negative
value after passing through the estimator model, then that
sample is equated to 1 which is the lower constraint,

X
(1)−
k =

{
f(X

(1)−
k−1 , uk) if X(1)−

k > 1

1 otherwise .

The lower limit of the constraint is tuned to reduce the bias in
the estimate and the limit X(1)−

k = 1 is found to a give better
result than the physical limit X(1)−

k = 0. These constrained
sigma points are used later to recreate the a priori state estimate
and its error covariance.

Note that the continuous-time version of the UKF has a
combined prediction and upadte steps. In order to implement
constraints after the prediction step we have chosen the
discrete-time version of the UKF. The nonlinear discrete-time
equivalent (39)–(41) is formulated using an RK4 integrator
with time step equal to that of the simulation. The performance
of the UKF also depends on the covariance matrices for the
process and measurement noises. These were here chosen
based on trial and error as, in Section IV. The final values
used in the simulation is listed in Table I.

VI. SIMULATION

The simulation setup used for this paper is shown in Fig.
2. The plant is the full GLCC model (10)–(13) and two outlet
control valves (14) and (15). The continuous separation model
[7] for the GLCC is used in the simulation, as this is much
closer to the real plant scenario. The pressure Pg and flow
rates wl and wg are directly measured. The separation factor is
derived by measuring the densities at the two outlets (a coriolis
flowmeter could be an option in a real-life experiment).
Separate PI feedback controllers are used to control the liquid
level and the gas pressure. The tuning parameters for the
controllers are the same as in [6]. The noisy measurements
of Pg and α are given to the estimators and the output of the
estimator, ˙̂

hl and ˙̂
Pg , are given to the controllers. The reference

value of the level and the pressure is not changed during the
simulation. Three different inlet flow conditions are applied by
varying the inlet gas mass fraction flow as low, intermediate
and high, as shown in Fig. 3. These input conditions are used
in simulations for both UKF and EKF. The UKF and the
EKF simulations vary only in which estimators were used;
otherwise the same conditions were used in the simulations.
For visualisation purpose the plots of the simulations are
divided into 0–100 s (Figs. 4 and 6) and 100–900 s (Figs.
5 and 7).

Note that there is a bias in the estimated value in the EKF
simulations and that the magnitude of the bias is smaller in the
UKF simulations. The primary reason for this is plant-model
mismatch. The simplified model is not be able to capture the
right increases or decreases in inlet gas mass fraction. The
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PI Controller

Estimator
EKF/UKF

white noise

Fig. 2. Block diagram representation of plant estimator model.

TABLE II
RMS VALUES FOR THE ESTIMATOR

RMS x1 − x̂1 x2 − x̂2
EKF 0.0331 0.0403
UKF 0.0067 0.0099

main aim of the simulations are to get the best estimate of the
unmeasured state x1. Both the EKF and the UKF are tuned in
such a way that x̂1 is closer to x1 at the expense of the estimate
of the other two states. The EKF and the UKF is not that much
effective in filtering out the noise in the separation factor α,
however it is acceptable as we are not using it directly in
the controller. In a real scenario, the pressure controller could
directly use the measurement from the pressure sensor and
the level controller could use the estimated value of hl. The
setpoint for the level controller is 1.5 m, and for the pressure
controller 50 bar. All the parameters used for the simulation
are listed in the Table III. The RMS values calculated for two
estimates (x̂1 and x̂2) used in the controller are given in Table
II. These values clearly indicate that the UKF gives better
performance than the EKF.

Fig. 3. Gas and the liquid inflow values during simulations.

VII. CONCLUSION

In this paper, we have compared two nonlinear Kalman fil-
ters (EKF and UKF) for estimating the unmeasured liquid level
inside the gas-liquid cylindrical cyclone (GLCC). Estimates
were fed to nominal level and pressure controlleres. Direct

Fig. 4. EKF 0–100 s.

Fig. 5. EKF 100–900 s.

measurements of the liquid level are difficult and expensive to
obtain; here the level estimated using other measurements. The
simulation shows promising results, as the estimator model is
a simplified model of the plant model, there is a plant-model
mismatch, and this is reflected as bias in the estimated values.

In all cases, the UKF outperformed the EKF, as expected.
A constrained UKF was used in this paper, where estimates
outside of the feasible region were projected back to the
feasible region. This is not an optimal way of solving the
divergence problem that occurred in the UKF simulations,
further investigation needs to be done on better methods to
handle constraints in the states.
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Fig. 6. UKF 0–100 s.

Fig. 7. UKF 100–900 s.
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