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Abstract: Extensive test batteries are often needed to obtain a comprehensive picture of a person’s
functional status. Many test batteries are not suitable for active and healthy adults due to ceiling
effects, or require a lot of space, time, and training. The Community Balance and Mobility Scale
(CBMS) is considered a gold standard for this population, but the test is complex, as well as time- and
resource intensive. There is a strong need for a faster, yet sensitive and robust test of physical function
in seniors. We sought to investigate whether an instrumented Timed Up and Go (iTUG) could predict
the CBMS score in 60 outpatients and healthy community-dwelling seniors, where features of the
iTUG were predictive, and how the prediction of CBMS with the iTUG compared to standard clinical
tests. A partial least squares regression analysis was used to identify latent components explaining
variation in CBMS total score. The model with iTUG features was able to predict the CBMS total score
with an accuracy of 85.2% (84.9–85.5%), while standard clinical tests predicted 82.5% (82.2–82.8%) of
the score. These findings suggest that a fast and easily administered iTUG could be used to predict
CBMS score, providing a valuable tool for research and clinical care.

Keywords: iTUG; physical function; functional assessment; balance; mobility; older adults; partial
least squares

1. Introduction

Physical function can be measured using self-report questionnaires or supervised clinical tests that
quantify the observable ability to perform tasks, such as standing up from a chair, walking, turning,
or standing on a differing base of support (e.g., a single leg stance) [1]. Single tests can rarely capture
multiple aspects of mobility, so a battery of tests is often administered to obtain a comprehensive picture
of functional status. Many test batteries commonly used in geriatric testing and ageing research are not
sensitive to change due to floor and ceiling effects [2,3], or they require considerable assessor training.

The Community Balance and Mobility Scale (CBMS) has recently been identified as a valid, reliable
and comprehensive performance-based assessment for measuring physical function in seniors [2,4].
It contains a range of challenging balance and physical tasks. The test is complex, as well as time- and
resource intensive. This limits its feasibility for use in large-scale public health approaches [5], or in
daily clinical practice. While difficult to administer, the CBMS can be considered a more sensitive and
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appropriately challenging test of gait, balance and mobility as compared to other tests more commonly
used in seniors [2,4,6].

There is a need for quicker, yet sensitive and robust measures to assess balance, strength,
and functional decline in young and older seniors. An alternative to developing new tests is to use
instrumented versions of existing validated measures. In clinical environments and ageing research,
three tests are commonly used: The Short Physical Performance Battery [7], the Timed Up and Go
(TUG) [8] and measure of gait speed [9]. The TUG consists of sit-to-stand transitions, walking,
and turning, in one test, which is deployable and scalable. The test has been validated in most
populations; it can be easily taught to health care professionals, is widely recognised, and quick to
administer. The outcome measure of the TUG is the time taken to complete the whole task, measured
in seconds. The ‘score’ does not discriminate fallers from non-fallers [3], identify frailty, or accurately
predict falls in higher-functioning seniors [10]. Instrumenting the TUG (iTUG), using inertial sensor
signals, allows measurement of spatial and temporal features from different segments of an iTUG
trial, such as sit-to-stand transitions, walking, and turning. Compared to the original TUG, the iTUG
has shown improved performance in assessing seniors at risk of falling, for people with Parkinson’s
disease, disability, or cognitive impairment [10]. Here, we hypothesise that an iTUG performed several
times back-to-back might be a comprehensive, robust, quick and feasible way to assess and extract
advanced balance and mobility scores in seniors.

In order to obtain a quick and meaningful measure of functional decline in young and older seniors,
we aimed to evaluate how well the averaged inertial sensor features from five iTUG repetitions could
predict the CBMS total score within a group of geriatric outpatients and healthy community-dwelling
seniors. Further, we sought to investigate whether the iTUG and single features of the iTUG
could predict the CBMS total score accurately, compared to standard clinical tests used in routine
assessments today.

2. Materials and Methods

2.1. Population

Sixty participants from two different cohorts (40 community-dwelling healthy seniors and
20 geriatric patients from an outpatient clinic) in Stuttgart, Germany, were invited to participate in this
cross-sectional method study. Participants were included if they were (a) aged between 60 and 85 years
and (b) able to walk 30 m independently. Exclusion criteria were any patient-reported cardiovascular,
pulmonary, neurological, or mental diseases. The study was approved by the local medical ethical
committee (Germany, no: 850/2018BO1), and adhered to the Declaration of Helsinki. All participants
gave their written informed consent prior to inclusion.

2.2. Measurements

Demographic data and medical history were obtained from all participants. The following
traditional non-instrumented clinical tests were completed (in order): Late Life Function and
Disability Index (LLFDI) [11]; Montreal Cognitive Assessment (MoCA) [12]; Short Falls Efficacy
Scale-International (FES-I) [13]; Eight-level balance scale (8-LBS) [14]; Community Balance and Mobility
Scale (CBMS) [15]; 7-meter walk test (habitual and fast); 30-second chair-stand test (30-CST) [16]; Short
Physical Performance Battery (SPPB) [7]; and the original TUG [8]. The iTUG measures were collected
during the TUG, see Paragraph 2.4. A complete description of test administration and -outcomes can
be found in Appendix A Table A1.

2.3. Procedures

Participants underwent assessments administered by trained research assistants (physiotherapists
or sport scientists), in a hospital gait lab. The assessment battery consisted of self-reported and
objectively measured tests of physical function, including the iTUG. The test order was randomised,
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with participants starting with either the iTUG or traditional non-instrumented clinical tests. The entire
assessment battery took on average 1.5 h and participants could take breaks between tests when needed.

2.4. TUG and iTUG

The iTUG was performed as five consecutive repetitions of the original TUG, with 30 s break
between each repetition. We used a chair with armrests that was 46 cm high. A cone was placed at a
mark 3 m from the front legs of the chair. Instructions were given in accordance with those from the
original TUG [8].

During the trials the participants wore a Huawei P8 (GRA-L09) smartphone (Huawei Technologies
Co, Ltd., Shenzhen, China) running a custom-made Android application, originally developed within
the FARSEEING project [17]. The embedded accelerometer and gyroscope was an STMicroelectronics
LSM330 (STMicroelectronics, Geneva, Switzerland), accelerometer range: +/−4 g, gyroscope range:
+/−500 degrees per second (◦/s), sampling rate: mean value 102.5 Hz, standard deviation 0.5 Hz,
timestamp 1 nanosecond resolution resampled at 100 Hz. The smartphone was worn on their lower
back in a belt case. The assessor controlled a second smartphone, which was connected via Bluetooth
to the smartphone worn by the participant, to manually time each trial according to the original
guidelines [8]. The sensor signals were recorded in TXT log files on the smartphone’s internal memory.
The smartphone controlled by the assessor acted only as a remote controller to start and stop the
recording. There was no data stream on the wireless connection and hence, no risk of data loss.
The set-up is illustrated in Figure 1.
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Figure 1. Illustration of the test set-up for the Timed Up and Go (iTUG).

Sensor signals were recorded from the triaxial gyroscope and accelerometer embedded within
the smartphone worn by the participants during the iTUG. The procedures have been described
elsewhere [18], but in short, we divided the iTUG into four segments: Sit-to-Walk (StW), Walk (W),
First turn (FT), and Turn-to-Sit (TtS), see Figure 2. Anterior-posterior (AP) acceleration and angular
velocity around the mediolateral (ML) axis were used to identify the Sit-to-Stand (StS) and walk
segments. To identify the turn segments, we used the angular velocity around the vertical (V) axis.
We computed 78 features from the inertial sensor signals (see Appendix A Table A2), including segment
durations, intensity measured as root mean square (RMS), and the smoothness of the signal measured
as normalised jerk scores (NJS). Mean and maximum angular velocities were computed from the turn
segments, as well as number of steps from the walk and turn segments.
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Figure 2. The 3-axis acceleration (upper) and angular velocity (lower) sensor signals recorded during
five repetitions of an iTUG for one subject. The task is segmented into five phases separated by the
green vertical lines.

2.5. Statistical Analysis

Demographics and other characteristics of the study population include age, sex, height, weight,
body mass index (BMI), and number of years of education. Continuous variables are summarised
as mean (SD). In the case of dichotomous variables, the number of participants in each category is
provided. Descriptive variables were included in the partial least squares regression (PLSR) analysis in
both models (Figure 3). Two PLSR analyses were run, one with iTUG features as predictor variables
(predictor model 1) and one with standard clinical tests as predictor variables (predictor model 2).
The response variable was the CBMS scores in both analyses.
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Figure 3. Schematic presentation of the data that were used as predictor and response variables in the
two separate partial least squares regression (PLSR) models presented in this paper. Model 1 included
descriptive data and iTUG features, while model two included descriptive data and standard clinical
tests. The Community Balance and Mobility Scale (CBMS) scores was used as a response variable.

The iTUG was performed with five repetitions to eliminate variance in performance across trials.
The average value for each feature across the five repetitions was used for maximal robustness in the
final model presented.

2.6. Partial Least Squares Regression (PLSR)

To find the variables that most accurately described the variation in CBMS total score, we used
a PLSR analysis. The PLSR attempts to find the fundamental relationship between two datasets;
predictor variables, X, and the response variable, Y. It combines the dimensional reduction properties
known from methods such as principal component analysis (PCA) and factor analysis with regression,
and identifies latent variables in the data that explain as much of the covariance as possible between
the predictor variables and the response variables. Ultimately, the aim is to extract a subset of the
most relevant predictors from a dataset containing many and perhaps collinear (correlated with
each other) variables. The predictor variables chosen in the final model are expressed, with their
corresponding loading scores (i.e., weightings), across the latent components identified in the data.
The higher the loading score, the higher the relevance of that variable for that particular component of
the response variable.

The PLSR model was validated in a 7-step cross-validation procedure, to identify the most
robust components without overfitting the model. We used a Monte Carlo simulation procedure with
100 repeated random iterations. X was an n-times-m matrix and Y an n-times-1 matrix, where n is
the number of participants and m is the number of iTUG features. The X and Y data matrices were
divided into six sets of matrices X’ and Y’ with equal number of rows equal to n/6. In each iteration of
the Monte Carlo procedure, five of the six sets are considered training data and the last set test data.
The data are repartitioned across each iteration, to identify the latent components that best explain the
variation in the response variable. The iTUG features that were significantly (p < 0.05) cross-correlated
with the training data, Xtrain and Ytrain, were selected for the PLSR model. The optimal number
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of components (see Figure 4B were chosen by calculating mean and standard deviation of the root
mean square error of prediction (RMSEP). We compared the RMSEP between components and chose
the number of components, which resulted in the minimum mean and standard deviation of RMSEP.
We then calculated the variable importance in projection (VIP), which is an accumulated measure of
the importance of each variable from each component in the PLSR model. The most common VIP cut-off
for variable selection is a VIP value of >1, but variables with VIP values between 0.83 and 1.21 are also
used in some situations [19], hence we chose to illustrate how the variables selected in our PLSR method
align with all these three cut-offs (Figure 5). Finally, Z-scores were obtained to analyse the statistical
difference in RMSEP between the iTUG model and the model of standard clinical tests. Alpha was set to
0.05. All computations were performed in MATLAB 2019b (MathWorks, Natick, MA, USA).

3. Results

Sixty participants were included in the study (mean age 74.2 years ± 7.6), 32 females (53.3%)).
The characteristics and scores of physical function are presented in Table 1.

Table 1. Participants’ characteristics. Mean and standard deviation (SD) for all variables except
sex distribution.

Community-Dwellers (n = 40) Outpatients (n = 20)

Age, in years 71.8 (7.3) 78.9 (5.9)
Sex (M/F) 17/23 11/9

Years of education 14.6 (3.7) 11.5 (4.3)
Height (cm) 169.5 (9.6) 165.9 (11.1)
Weight (kg) 72 (12.6) 75.5 (16.9)
BMI (kg/m2) 25.0 (3.6) 27.3 (4.3)
MoCA (0–30) 27.1 (4.9) 23.7 (2.2)
CBMS (0–96) 66.7 (18.3) 15.0 (17.2)

LLFDI (0–100) 75.5 (9.9) 51.3 (14.4)
TUG (s) 8.3 (1.2) 13.9 (4.0)

SPPB (0–12) 11.7 (0.9) 9.0 (2.4)
8-LBS (1–8) 5.4 (1.5) 4.3 (1.4)

30-CST (no. of repetitions) 15.3 (2.9) 8.8 (3.3)
Gait speed, habitual (m/s) 1.36 (0.20) 0.88 (0.21)

Gait speed, fast (m/s) 1.83 (0.27) 1.18 (0.30)
Short FES-I (7–28) 8.1 (1.5) 10.7 (4.0)

M, male; F, female; BMI, body mass index; MoCA, Montreal Cognitive Assessment; CBMS, Community
Balance and Mobility Scale; LLFDI, Late Life Function and Disability Index; TUG, Timed Up and Go; SPPB,
Short Physical Performance Battery; 8-LBS, Eight Level Balance Scale; 30-CST, 30-s Chair Stand; FES-I, Falls
Efficacy Scale-International.

3.1. PLSR of iTUG Features versus the CBMS

Using the PLSR model with iTUG-features as predictors, and CBMS total score as the response
variable, we found that the first three components of iTUG features predicted the CBMS total score
with an regression coefficient (R2) of 0.852 (95% CI 0.849–0.855, see Table 2).

Table 2. Loading scores, regression coefficient (R2) and variable importance in projection (VIP) scores
for all variables selected, and R2 of the first three components in the PLSR analysis for iTUG features
and descriptive variables.

Variables Selected by PLSR
Loading
Scores,

Component 1

Loading
Scores,

Component 2

Loading
Scores,

Component 3
VIP R2

iTUG features

Mean velocity first turn [◦/s] 0.215 0.032 −0.091 1.123 0.739
Walk duration [s] −0.222 0.024 0.028 1.123 0.739
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Table 2. Cont.

Variables Selected by PLSR
Loading
Scores,

Component 1

Loading
Scores,

Component 2

Loading
Scores,

Component 3
VIP R2

iTUG features

Mean velocity TtS [◦/s] 0.207 0.094 −0.069 1.124 0.722
Total duration [s] −0.218 0.030 0.015 1.104 0.706

Total number of steps −0.213 −0.039 0.079 1.099 0.706
Peak velocity TtS [◦/s] 0.209 0.045 −0.035 1.092 0.700

Peak velocity first turn [◦/s] 0.207 −0.001 −0.056 1.074 0.674
Average step length [m] 0.204 0.067 −0.054 1.064 0.654
TtS turning duration [s] −0.205 −0.032 0.065 1.055 0.647

Turn duration [s] −0.208 0.000 0.130 1.056 0.643
Gait speed [m/s] 0.207 −0.009 0.009 1.055 0.634

Number of steps in first turn −0.201 −0.020 0.200 1.032 0.601
NAJS first turn −0.182 −0.121 0.205 1.004 0.560

RMS acc. walking V [m/s2] 0.196 −0.112 0.074 0.991 0.548
NAJS TtS −0.173 −0.177 0.130 0.985 0.523

RMS acc. walking AP [m/s2] 0.191 −0.266 0.080 1.014 0.449
RMS angular velocity walking V [◦/s2] 0.185 −0.188 0.012 0.953 0.443

Range angular velocity walking V [◦/s2] 0.181 −0.182 0.042 0.929 0.433
TtS duration [s] −0.173 0.061 0.091 0.887 0.419

Jerk score walking AP [m−1] 0.174 −0.137 −0.048 0.884 0.416
StW duration [s] −0.140 −0.076 −0.203 0.891 0.373

Step regularity V [%] 0.138 0.163 −0.070 0.899 0.366
Jerk score walking V 0.143 0.073 −0.047 0.785 0.338

Descriptives

Age −0.129 −0.401 −0.327 1.404 0.472
Education 0.113 0.496 0.047 1.188 0.352

Component 1 Component 2 Component 3 Total

Mean Explained Variation (R2) 0.771 0.058 0.023 0.852
95% CI 0.769–0.772 0.054–0.061 0.020–0.027 0.849–0.855

ACRONYMS: TtS: Turn to Sit; NAJS: Normalised Angular Jerk Score; RMS: Root Mean Square; V: Vertical.

The RMSEP (see Figure 4) was found to be lowest with 3 and 4 components, where 4 was slightly
lower than 3 (11.79 vs. 11.81), albeit not significantly so (p = 0.9).
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3.2. PLSR of Standard Clinical Tests vs. the CBMS

In the PLSR model, with standard clinical test scores as predictors and CBMS total score as the
response variable, we found that the first two components predicted the CBMS total score with an R2

of 0.825 (95% CI 0.822–0.828, see Table 3).

Table 3. Loading scores, R2 and VIP scores for all variables selected and R2 of the first two components
in the PLSR analysis for standard clinical tests and descriptive variables.

Variables Selected by PLSR Loading Scores,
Component 1

Loading Scores,
Component 2 VIP R2

Clinical

TUG −0.398 0.102 1.133 0.698
Gait speed, fast 0.385 −0.057 1.115 0.676

Gait speed, habitual 0.381 −0.034 1.113 0.672
SPPB 0.371 −0.260 1.010 0.533

30-CST 0.346 −0.320 0.985 0.504
8-LBS 0.257 0.215 0.814 0.335

Short FES-I −0.314 0.451 0.855 0.307

Descriptives

Age −0.250 −0.728 1.065 0.472
Education 0.270 0.331 0.843 0.352

Component 1 Component 2 Total

Mean explained variation (R2) 0.798 0.027 0.825
95% CI 0.796–0.801 0.024–0.029 0.822–0.828

Mean RMSEP with two components was 12.85 (Figure 6). The RMSEP was not significantly
lower with more than two components, and RMSEP of CBMS prediction with the iTUG model was
significantly lower than with standard clinical tests (Figures 4B and 6B, p ≤ 0.0001). Four variables in
the model had VIP values between the cut-offs 1 and 1.2, two were between 0.8 and 1, and one variable
had a VIP below 0.8 (Figure 7).
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4. Discussion

This study aimed to assess whether signal features averaged from five iTUG trials could predict
CBMS scores as a ground truth model in community-dwelling seniors and geriatric outpatients, using
a PLSR analysis. In addition, this study sought to investigate whether the predictive ability of iTUG
was superior to standard clinical tests in predicting CBMS scores.

The PLSR model of iTUG features predicted the CBMS score with a substantial level of predictive
accuracy (mean explained variation of 85.2%) [20]. The iTUG model had a similar predictive ability of
CBMS scores as a battery of clinical tests, and significantly less error of prediction.

CBMS evaluates high-level gait, balance and mobility, required for safe and independent living in
the community [4,6]. Our findings suggest that a five-time repeated iTUG, which requires little floor
space, a smartphone, and about 5 min in the clinic or lab, can accurately predict a person’s score on the
CBMS, which otherwise would require 20–25 min, larger facilities and resources to administer. While
the standard clinical tests were also able to predict the CBMS score with high accuracy, the test battery
took approximately 35 min to administer, and with staff needing specific training to be able to collect
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those data. For iTUG, testing can be completed within five minutes and minimal training is required
to administer the test.

The signal features with highest loading scores on the first component are features that represent
several different segments of the iTUG, including walking, turning and turn-to-sit. We also found
that they represent different units, such as velocity, duration, number of steps, and step length. These
findings indicate that no specific signal features stand out from the others in terms of how much of
the variation in CBMS they describe, but rather that a good prediction of CBMS relies on several
complementary pieces of information. However, six of the ten features with highest R2 scores were
features obtained from the two turning phases of the iTUG, perhaps not coincidental, as the importance
of turning for predicting balance have been recognised in several other studies. For example, an
earlier study on older adults found that those who had poorer scores on the Berg Balance Scale
and the Fullerton Advanced Balance scale, exhibited slower turns in the iTUG [21]. In a study of
high-functioning young seniors, the features ‘Walk duration’ and ‘TtS maximum velocity’ both had
significant discriminative ability on self-reported physical function as measured by the LLFDI [18].
Turning features of the iTUG have also been found to be sensitive for testing people with impaired
motor control due to neurological conditions [22–24], fallers [25], and in persons with mild cognitive
impairment [26], which could also be explained by motor control impairment [26,27].

4.1. Limitations

We acknowledge that this study has some limitations. First, the sample size was relatively small.
It is generally recognised that machine learning-based prediction models trained on small sample-sizes
are vulnerable to biased performance estimates [28]. This study was intended as a pilot study, and a
larger study with additional or larger cohorts is necessary to confirm the findings. In addition,
the model described here has not been validated on an external dataset, where the same procedures
have been applied. Therefore, the presented results need to be interpreted with caution and cannot be
generalised to other populations without further confirmation of this work.

4.2. Implications for Clinical Practice and Future Research

We found that five trials of iTUG, which require very little time, space and training to administer,
could predict the CBMS with a substantial and slightly higher accuracy than a battery of standard
clinical tests. The potential implications of these findings are that the use of instrumented tests would
save time for the individual and clinicians, thus avoiding patient fatigue associated with comprehensive
test batteries [5]. Furthermore, self-administrable iTUGs are on the rise, which would allow seniors to
assess their ability from the comfort of their own home [29]. The adoption of electronic technologies
has been recognised as a key strategy for cutting costs in healthcare [30]. With the iTUG, healthy
seniors as well as patients could use their own smartphone, with their physical function monitored
remotely by clinicians or researchers.

In future work, the iTUG PLSR model should be trained on a larger dataset and validated
externally in new data collected using the same procedures as the training data. The same procedure as
used in the current analysis could also be applied to evaluate how well the iTUG can predict relevant
outcomes for other populations with impaired physical function, such as Parkinson’s disease, multiple
sclerosis, chronic obstructive pulmonary disease, stroke, and others.

5. Conclusions

In this study, we demonstrated that averaged signal features from a smartphone worn during a
5-times repeated iTUG could predict the CBMS score in community-dwellers and outpatients with 85.2%
accuracy, while more elaborate standard clinical tests could predict it with 82.5% accuracy. The results
suggest that an iTUG, which is potentially cost-saving, fast, and easy to administer, may be used to
predict a person’s score on the CBMS in face-to-face and remotely conducted research and clinical care.
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Appendix A

Table A1. Complete list of standard clinical tests with description.

Late Life Function and Disability Index (LLFDI)
The LLFDI [11] consists of two parts, function and disability, with 32 and 16 items, respectively. Both parts of the LLFDI
were administered, but for the purpose of this study, only the functional scores will be used in the analysis. The items are
regarding how much difficulty the participant experiences with carrying out different activities of daily life with a rating
scale of 1–5, ranging from no difficulty to cannot do. The questions span across three dimensions; upper extremity, lower
extremity, and advanced lower extremity. The total score is scaled, resulting in scores ranging from 0–100 (higher score
indicating better performance), allowing comparison to other trials and cohorts.
Short Falls-Efficacy Scale International (Short FES-I)
The Short FES-I (9) is a 10-item questionnaire developed to assess the fear of falling in community-dwelling older adults.
The outcome is a sum score ranging from minimum 7 (no concern about falling) to maximum 28 (severe concern about
falling).
Montreal Cognitive Assessment (MoCA)
MoCA [12] is a screening tool used identify mild cognitive impairment (MCI) that assesses short-term memory,
visuospatial abilities, executive functions, attention, concentration and working memory, language, and orientation to
time and place. The score ranges from 0 to a maximal score of 30, with a higher score indicating better cognitive function.
Eight-Level Balance Scale (8-LBS)
The 8-LBS (11) is a test of static balance in which the participants attempt increasingly difficult positions for 15 s. The test
ends when (if) the participants are not able to hold the position for 15 s. The positions are (1) side-by-side standing,
narrow base, eyes open; (2) side-by-side standing, narrow base, eyes closed; (3) semi-tandem, eyes open; (4) tandem, eyes
open; (5) tandem, eyes closed; (6) one-leg standing, eyes open; (7) one-leg standing, eyes closed; (8) one-leg stand, eyes
closed + cognitive distraction (mentioning of the months of the year in a backwards order). The outcome is the number
(in order) of the most difficult position attempted, ranging from 1 (least difficult) to 8 (most difficult).
Community Balance and Mobility Scale (CBMS)
The CBMS (14) is a test battery of balance and mobility consisting of 13 tasks, of which six are assessed unilaterally. It has
been shown to be a promising performance-based test of physical function in higher-functioning seniors (2, 6). Each task
is rated at the assessor’s discretion, and a score given from 0 (unable) to 5 (coordinated and controlled, without excessive
equilibrium reactions). The scores are summed and the total score ranges from 0 to 96, where a higher score indicates
better performance. The bonus point (95 + 1) is given if the participants can descend a staircase while holding a weighted
basket in front of them, allowed only intermittently to look at the steps.
7-Meter Walk Test (Habitual and Fast)
Participants are timed over 7 m within a 9-meter track, allowing one meter in each end for acceleration/deceleration.
The best time from two trials in both habitual and fast walking conditions were used to calculate respective gait speeds
(m/s).
30-Second Chair-Stand Test (30-CST)
In the 30-CST the assessor counts the number of repetitions of sit-to-stands the participants can perform in 30 s. The test
was developed to overcome the floor-effect associated with the Five times sit-to-stand, and is originally a part of the
Fullerton Functional Fitness Test battery (12).
Short Physical Performance Battery (SPPB)
SPPB is a test of physical functioning of the lower extremities in older adults (13). The test consists of three parts, where
the participants (1) attempts to keep their balance in three different feet-positions for 10 s in each, (2) walk four meters in
habitual pace (performed twice), and (3) perform five repeated sit-to-stands as fast as possible. Each part is scored, and a
combined score from 0–12 is given, where a higher score indicates better performance.
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Table A2. Complete list of extracted iTUG features used in the PLSR analysis.

Total Duration RMS ML gyro StW Peak Velocity TtS Stride Regularity ML

StW Duration RMS V gyro StW NAJS 180◦ Turn Stride Regularity V

180◦ Turn Duration Range AP acc TtS NAJS TtS Gait Symmetry AP

TtS Turning Duration Range ML acc TtS Gait Speed Gait Symmetry ML

TtS Duration Range V acc TtS Average Step Length Gait Symmetry V

Walk Duration RMS AP acc TtS Step Duration Range Acceleration Walking AP

Total Number of Steps RMS ML acc TtS Standard Dev. of Step
Duration Range Acceleration Walking ML

Range AP acc StW RMS V acc TtS Coef. Variation of Step
Duration Range Acceleration Walking V

Range ML acc StW Jerk Score AP TtS Coordination Index RMS Acceleration Walking AP

Range V acc StW Jerk Score ML TtS Jerk Score Walking AP RMS Acceleration Walking ML

RMS AP acc StW Jerk Score V TtS Jerk Score Walking ML RMS Acceleration Walking V

RMS ML acc StW Range AP gyro TtS Jerk Score Walking V Range Angular Velocity Walking AP

RMS V acc StW Range ML gyro TtS Normalised Jerk Score
Walking AP Range Angular Velocity Walking ML

Jerk Score AP StW Range V gyro TtS Harmonic Ration AP Range Angular Velocity Walking V

Jerk Score ML StW RMS AP gyro TtS Harmonic Ration ML RMS Angular Velocity Walking AP

Jerk Score V StW RMS ML gyro TtS Harmonic Ration V RMS Angular Velocity Walking ML

Range AP gyro StW RMS V gyro TtS Step Regularity AP RMS Angular Velocity Walking V

Range ML gyro StW Mean Velocity 180◦ Turn Step Regularity ML Number of Steps in 180◦ Turn

Range V gyro StW Mean Velocity TtS Step Regularity V

RMS AP gyro StW Peak Velocity 180◦ Turn Stride Regularity AP

ACRONYMS: ML: Medio-Lateral; acc: acceleration; V: Vertical; Coef: Coefficient.
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