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Abstract. Let C(k, p) denote the smallest real number such that the estimate
|ak| ≤ C(k, p)‖f‖Hp holds for every f(z) =

∑
n≥0 anz

n in the Hp space of
the unit disc. We compute C(2, p) for 0 < p < 1 and C(3, 2/3), and identify
the functions attaining equality in the estimate.

1. Introduction

For 0 < p <∞, the Hardy space Hp is comprised of the analytic functions f in
the unit disc D = {z ∈ C : |z| < 1} which satisfy

‖f‖pHp = lim
r→1−

∫ 2π

0

|f(reiθ)|p dθ
2π

<∞.

The Hardy space Hp is a Banach space when 1 ≤ p <∞ and a quasi-Banach space
when 0 < p < 1. For an integer k ≥ 1, let C(k, p) denote the smallest real number
such that

|ak| ≤ C(k, p)‖f‖Hp

holds for every f(z) =
∑

n≥0 anz
n in Hp. In other words, C(k, p) is the norm of

the bounded linear functional Lk(f) = ak on Hp.
In the range 1 ≤ p < ∞ it follows readily from the triangle inequality and

Hölder’s inequality that C(k, p) = 1 for every k ≥ 1. Estimates for C(k, p) when
0 < p < 1 were first obtained by Hardy and Littlewood [7], who proved that there
is a constant Cp ≥ 1 such that C(k, p) ≤ Cpk

1/p−1 holds for every k ≥ 1.
In this paper we are interested in computing C(k, p) explicitly in the non-trivial

range 0 < p < 1. For this purpose it is fruitful to express this quantity via the
associated linear extremal problem

(1) C(k, p) = sup

{
Re

f (k)(0)

k!
: ‖f‖Hp = 1

}
.

A normal family argument implies that there are functions f in the unit ball of Hp

attaining the supremum (1). In a recent joint paper with Bondarenko and Seip [2],
we proved that the extremal function for k = 1 in (1) is given by

(2) f(z) =
(
1− p

2

) 1
p

(
1 +

√
p

2− p
z

) 2
p

,
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up to rotations f(z) 7→ e−iθf(eiθz). Consequently, we found that

(3) C(1, p) =

√
2

p

(
1− p

2

) 1
p−

1
2

.

The approach used in [2] is to write f in the unit ball of Hp as f = gh2/p−1, where
g and h are in the unit ball of H2 and h does not vanish in D. If the coefficient
sequences of g and h2/p−1 are (bn)n≥0 and (cn)n≥0, respectively, then

(4) fk(0)

k!
=

k∑
j=0

bjck−j .

For any fixed non-vanishing h in the unit ball of H2, it is now easy to find the
optimal g in the unit ball of H2 to maximize (4) by the Cauchy–Schwarz inequality.
This translates the linear extremal problem (1) in Hp to a non-linear extremal
problem for non-vanishing functions in H2.

By using the Cauchy–Schwarz inequality in this way and treating g and h as
completely independent, we actually double the degree of the non-linear extremal
problem. When k = 1 this does not make the problem much harder, but already
for k = 2 this approach becomes computationally untenable.

For a class of linear extremal problems including (1) on Hp with 1 ≤ p < ∞,
there is a well-developed theory which yields that the extremal functions have a
very specific structure (see e.g. [5, Sec. 8.4]). The proof of this structure result relies
on the fact that Hp is a Banach space and duality arguments. These techniques
do not apply for 0 < p < 1, but we can replace them with a variational argument
which goes back to F. Riesz [12] and obtain the same result also for 0 < p < 1.

This structure result is a special case of a more general result on the structure
of the solutions to the Carathéodory–Fejér problem, which was extended from the
range 1 ≤ p < ∞ to the range 0 < p < 1 by Kabaila [9] (see also [10, pp. 82–83]
— the latter reference actually develops a general theory that covers many related
variational problems on Hp spaces). This extension to 0 < p < 1 explicitly uses the
structure of the solutions for 1 ≤ p <∞, while the variational argument presented
in the present paper actually applies in the range 0 < p < 2 without modification.

The information regarding the structure of the extremals f for the linear extremal
problem (1) thus obtained shows that g and h in the factorization f = gh2/p−1 are
closely related. This greatly simplifies the non-linear extremal problem we have to
solve in order to identify the extremals. Consequently, we are able to completely
settle the case k = 2.

Theorem 1. For 0 < p < 1 we have

C(2, p) =
2

p

(
1− p

2

) 2
p−1

and, up to the rotations f(z) 7→ e−2iθf(eiθz), the extremal function in (1) is

f(z) =
(
1− p

2

) 2
p

(
1 +

√
2p

2− p
z +

p

2− p
z2
) 2

p

.

Comparing (3) and Theorem 1, we see the curious identity C(2, p) = C(1, p)2.
The next result demonstrates that the same relationship does not hold in general.
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Theorem 2. We have

C(3, 2/3) =

√
2
(
1103 + 33

√
33
)

1153
= 1.4973 . . .

and, up to the rotations f(z) 7→ e−3iθf(eiθz), the extremal function in (1) is

f(z) =

(
483− 19

√
33

1153

) 3
2

1 +

√
3 + 1

3

√
33

2
z +

1 +
√
33

8
z2 +

√
15−

√
33

8
z3

3

.

This paper is organized into four additional sections. In Section 2 we recall some
preliminaries about Hardy spaces and obtain the above-mentioned structure result
for 0 < p < 1. The proofs of Theorems 1 and 2 are presented, respectively, in
Sections 3 and 4. Section 5 contains some concluding remarks, conjectures and
discussions of related work.

2. Preliminaries

In the present section, we will use several basic facts pertaining to Hardy spaces.
We refer generally to the monograph [5], which contains most of what which we
require. Our goal is to describe the structure of the extremals for bounded linear
functionals Lk on Hp, when Lk(f) depends only on the first k + 1 coefficients
of the function f(z) =

∑
n≥0 anz

n. In the case 1 ≤ p < ∞, this description is a
consequence of a general theory of linear extremal problems for Hp spaces developed
by Macintyre, Rogosinski, Shapiro and Havinson (see e.g. [8, 11] and [5, Ch. 8]).

To set the stage for a discussion of their approach and ours, we recall that every
f in Hp has non-tangential boundary limits

f(eiθ) = lim
r→1−

f(reiθ)

for almost every eiθ ∈ T = {z ∈ C : |z| = 1}. It also holds that ‖f‖Hp = ‖f‖Lp(T),
so Hp is identified with a subspace of Lp(T), the latter defined in terms of the
normalized Lebesgue arc length measure on T.

Every bounded linear functional L on Hp, for 1 ≤ p <∞, can be represented in
the inner product of L2(T) as

L(f) = 〈f, ϕ〉
for some analytic function ϕ in D which is (at least) integrable on T. Since H2

is a Hilbert space, the analytic function ϕ generating the functional is (up to a
constant) equal to the extremal f for the functional L. This fact leads naturally to
the following.

Since Hp is a Banach space when 1 ≤ p <∞, the Hahn–Banach theorem extends
every bounded linear functional on Hp to a bounded linear functional on Lp(T) with
the same norm. This makes it possible to formulate the dual extremal problem,
which is to find an element ψ of minimal norm in Lp∗

(T), where 1/p + 1/p∗ = 1,
such that L(f) = 〈f, ψ〉. These two problems are closely related, and this can be
exploited obtain a description of the structure of the extremals (and the structure
of the element ψ of minimal norm generating the functional) when the functional
depends only on the first k + 1 coefficients of f .

These techniques are not available to us in the range 0 < p < 1, both since we
cannot use the Hahn–Banach theorem and even if we could, Lp(T) supports no non-
trivial bounded linear functionals. We will therefore replace the duality approach
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outlined above with a variational argument essentially due to F. Riesz [12]. See also
[13, Sec. 2] for a similar argument in a somewhat different context. Note that this
method actually applies in the range 0 < p < 2 without modification. We require
two additional preliminary facts before proceeding.

Every function f in Hp can be written as F = IO, where I is an inner function
and O is an outer function. In particular, O does not vanish in D and |I(eiθ)| = 1
for almost every eiθ ∈ T. This allows us to factor

(5) f = gh2/p−1

where g = IOp/2 and h = Op/2. We note that |g(eiθ)| = |h(eiθ)| = |f(eiθ)|p/2 holds
for almost every eiθ ∈ T, which yields the norm equalities ‖f‖pHp = ‖g‖2H2 = ‖h‖2H2 .

Let H∞ denote the algebra of all bounded analytic functions in D, setting

‖ϕ‖H∞ = sup
z∈D

|ϕ(z)|.

Recall that H∞ is the multiplier algebra of Hp, for 0 < p < ∞, i.e. the algebra of
functions ϕ such that ϕf is in Hp for every f in Hp.

Here is the key variational lemma which will give the structure of the extremals
as discussed above. We will only use the special case where ϕ is a monomial, but
the proof of the lemma in this special case is identical to the proof for the general
case.

Lemma 3. Fix 0 < p < 2. Suppose that L is a bounded linear functional on Hp

and that f is an extremal for ReL(f) with ‖f‖Hp = 1. If f = gh2/p−1 such that
‖g‖H2 = ‖h‖H2 = 1 and h does not vanish in D, then it holds that

L(ϕf) = L(f)〈ϕ, |h|2〉

for every ϕ ∈ H∞.

Proof. Set q = 2/p − 1 > 0. By (5) the extremal f in the unit ball of Hp may be
written as ghq where g and h are in the unit ball of H2 and h does not vanish in D.
If ‖ϕ‖H∞ = 0 there is nothing to prove, so we therefore assume that ‖ϕ‖H∞ > 0
and consider 0 ≤ ε < ‖ϕ‖−1

H∞ . A computation reveals that

‖(1 + εϕ)h‖2H2 = 1 + 2εRe 〈ϕ, |h|2〉+ ε2‖ϕh‖2H2 ,

since ‖h‖H2 = 1. Hence

hε(z) = (1 + εϕ(z))h(z)
(
1 + 2εRe 〈ϕ, |h|2〉+ ε2‖ϕh‖2H2

)− 1
2

satisfies ‖hε‖H2 = 1. We then compute

d

dε
hε(z)

∣∣∣∣∣
ε=0

= ϕ(z)h(z)− 1

2
h(z)2Re 〈ϕ, |h|2〉 = h(z)

(
ϕ(z)− Re 〈ϕ, |h|2〉

)
.

If 0 ≤ ε < ‖ϕ‖−1
H∞ , then hqε is analytic in D owing to the fact that 1 + εϕ and

h do not vanish in D. Hence, by Hölder’s inequality and the fact that q > 0 we
find that fε = ghqε is in the unit ball of Hp. Since f is extremal for ReL, clearly
ReL(f) ≥ ReL(fε) for every 0 ≤ ε < ‖ϕ‖−1

∞ . Using that the functional L is
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bounded, we conclude that

0 ≥ ReL

(
d

dε
fε

∣∣∣∣∣
ε=0

)
= qRe

(
L(ϕf)− L(f)Re 〈ϕ, |h|2〉

)
= qRe

(
L(ϕf)− L(f)〈ϕ, |h|2〉

)
.

This inequality also holds when ϕ is replaced by −ϕ and ±iϕ, which implies that
L(ϕf) = L(f)〈ϕ, |h|2〉. �

One final preliminary result is required. The Fejér–Riesz theorem (see [6]) states
that the trigonometric polynomial Q(θ) =

∑
|n|≤k ane

iθn is non-negative if and only
if Q(θ) = |P (eiθ)|2 for a polynomial P of degree at most k.

Lemma 4. Fix 0 < p < 2 and let Lk be a bounded linear functional on Hp such
that Lk(f) depends only on the first k + 1 coefficients of f(z) =

∑
n≥0 anz

n. Any
extremal for Lk is given by a sequence (αj)

k
j=1 with |αj | ≤ 1 and a constant A such

that

(6) f(z) = A
l∏

j=1

z + αj

1 + αjz

k∏
j=1

(1 + αjz)
2/p,

where 0 ≤ l ≤ k and |αj | < 1 for 1 ≤ j ≤ l. In particular, if f is normalised by
‖f‖Hp = 1 and f = gh2/p−1 as in (5), we have that h and g are polynomials that
can be written as

(7) h(z) = A1

k∏
j=1

(1 + αjz) and g(z) = A2

l∏
j=1

(z + αj)

k∏
j=l+1

(1 + αjz)

with suitable constants A1, A2.

Proof. We begin by writing f = gh2/p−1 as in (5). We use Lemma 3 with ϕ(z) = zn

to obtain
Lk(z

nf) = L(f)〈zn, |h|2〉.
Since Lk(z

nf) = 0 for n > k, we conclude that |h|2 is a trigonometric polynomial of
degree at most k. The non-negativity of |h|2 and the Fejér–Riesz theorem implies
that |h(eiθ)|2 = |P (eiθ)|2 for some polynomial P of degree at most k. It is clear
that P = BP̃ , where B is a finite Blaschke product and P̃ is an outer polynomial
of degree at most k. Since an outer function is determined up to a unimodular
constant by its modulus on T, we therefore find that h = eiϑP̃ , which means that

h(z) = A1

k∏
j=1

(1 + αjz),

for |αj | ≤ 1. Our next goal is to establish that g is also a polynomial of degree
at most k. Suppose that h is fixed as above and note that h2/p−1 is in H∞ since
2/p − 1 > 0. The fact that f is extremal for Lk and Hölder’s inequality implies
that g is an H2 function of unit norm attaining the maximum of
(8) g 7→ ReLk(f) = ReLk(gh

2/p−1).

It is clear that (8) defines a bounded linear functional on H2 which depends only
on the first k + 1 coefficients of g. The Cauchy–Schwarz inequality then implies
that g is a polynomial of degree at most k. By (5), we recall that g = Ih for a inner
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function I and a polynomial h. Clearly this is only possible if the inner function I
is a finite Blaschke product of degree 0 ≤ l ≤ k. Hence

g(z) = A2

l∏
j=1

z + βj

1 + βjz

k∏
j=1

(1 + αjz),

for |βj | < 1. Since g is a polynomial, we must have βj = αj for 1 ≤ j ≤ l. �

Let us now return to the bounded linear functional defined by Lk(f) = ak for
f(z) =

∑
n≥0 anz

n in Hp. In the case 1 < p <∞, the strict convexity of Hp yields
easily that the extremal for C(k, p) = 1 is f(z) = zk. Hence h(z) = 1 and g(z) = zk

in (7). In the case p = 1 it is known (see e.g. [5, p. 143]) that every function of the
form (6) is an extremal for C(k, 1) = 1.

For 0 < p < 1, we can factor the extremal as

f = gh2/p−1,

where g and h are polynomials related by (7). Our plan is to consider each of the
cases l = 0, . . . , k in Lemma 4 through the Cauchy product (4). Since we may
assume that ‖f‖Hp = ‖g‖H2 = ‖h‖H2 = 1 for any extremal f , there must be a
constant λ such that the equation

(9) λzkg(z−1) = h2/p−1(z) +O(zk+1).

holds. Namely, otherwise we could modify g to obtain equality in Cauchy–Schwarz
in (4) while keeping ‖g‖H2 = 1 and a fortiori ‖f‖Hp ≤ 1, by Hölder’s inequality. By
the same argument, it follows that any such (not necessarily normalized) solution
of the equation (9) satisfies

(10) Lk(f) =

k∑
j=0

bjck−j = λ

k∑
j=0

|bj |2 = λ‖g‖2H2 .

In practice this approach will yield a non-linear system of k + 1 equations in the
k+1 unknowns which needs to be solved in order to identify the candidate extremal
function. We complete the program by comparing the solutions for l = 0, . . . , k.

Using Lemma 4 and (9) in this way, it is possible to give a (computationally)
simpler proof of (3) compared to the one given in [2, Thm. 4.1].

3. Proof of Theorem 1

For 0 < p < 1 define q = 2/p−1 > 1. For the functional L2(f) = a2 we get from
Lemma 4 that the extremal functions are of the form

f(z) = A

l∏
j=1

z + αj

1 + αjz

2∏
j=1

(1 + αjz)
2/p

= A

l∏
j=1

(z + αj)

2∏
j=l+1

(1 + αjz)

2∏
j=1

(1 + αjz)
q = Ag(z)(h(z))q,

where |αj | ≤ 1 with strict inequality for 1 ≤ j ≤ l. We get three equations from
l = 0, 1, 2. Recall that ‖g‖H2 = ‖h‖H2 , so the normalizing constant is A = ‖h‖−2/p

H2 .
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We begin by computing

(h(z))q = 1 + qβz +

((
q

2

)
β2 + qα

)
z2 +O(z3),

where α = α1α2 and β = α1 + α2. Hence the equation (9) becomes

(11) λz2g(z−1) = 1 + qβz +

((
q

2

)
β2 + qα

)
z2.

Note that if f is a normalized solution of the equation (11), then by (10) we get

(12) a2 = L2(f) = A|λ|‖g‖2H2 = |λ|‖h‖2(1−1/p)
H2 = |λ|

(
1 + |β|2 + |α|2

)1−1/p
.

The case l = 2. Here we have
g(z) = (z + α1)(z + α2) = z2 + βz + α,

so the equation (11) takes the form:

λ = 1 λβ = qβ λα =

(
q

2

)
β2 + qα

Recalling that q > 1 we conclude that α = β = 0. Hence α1 = α2 = 0 and the
normalized candidate extremal function function is f(z) = z2 which has a2 = 1.

The case l = 1. Here we have
g(z) = (z + α1)(1 + α2z) = α2z

2 + (1 + α1α2)z + α1.

By a rotation, we assume that α2 ≥ 0 and hence the equation (11) takes the form:
λα2 = 1(13)

λ(1 + α1α2) = q(α1 + α2)(14)
λα1 =

(
q
2

)
(α1 + α2)

2 + qα1α2(15)

From (13) we get that α2 = λ−1 > 0. Inserting this into (14) yields that

(16) 1

α2
+ α1 = q(α1 + α2).

Since q > 1 we now see that α1 is real. We then multiply (16) with α1 and rearrange
to obtain λα1 − qα1α2 = (q − 1)α2

1, which when inserted into (15) yields
2

q
α2
1 = (α1 + α2)

2.

Taking the square root of this we find that

α2 = α1

(
−1±

√
2

q

)
and 1

α2
= α1

(
−1±

√
2q
)
,

where the second equality was obtained by inserting the first into (16). Note that
for 1 < q ≤ 2 we see from the second equation that we have to choose the negative
sign to ensure that |α1α2| < 1. In the range 2 < q <∞ we also have to choose the
negative sign to ensure that the sign requirement α1 < 0 from first equation also
holds in the second. In particular, we get that α1 < 0 in general. Evidently,

(17) α2
1 =

1(
1 +

√
2/q
)
(1 +

√
2q)

and α2
2 =

1 +
√
2/q

1 +
√
2q

.
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Recalling that λ = α−1
2 , we get from (12) that the normalized candidate extremal

function f satisfies

(18) a2 = L2(f) =
1

α2

(
1 + (α1 + α2)

2 + (α1α2)
2
)1−1/p

.

The case l = 0. Here we have
g(z) = (1 + α1z)(1 + α2z) = α z2 + β z + 1.

If β = 0 we get the extremal (2) for C(1, p) with the argument squared. Assume
therefore that β 6= 0. There are two rotations eiθ and ei(θ+π) such that α ≥ 0. The
equation (11) takes the form:

λα = 1(19)
λβ = qβ(20)
λ =

(
q
2

)
β2 + qα(21)

From (19) we get that λ = α−1 > 0. Since α, λ, q > 0 we get from (21) that β2 is
real, and hence β is real or imaginary. By (20) we see that β cannot be imaginary,
since λ, q > 0. We conclude that β is real. Choosing the appropriate rotation above
we get that β > 0. Combining (19) and (20) yields that α = λ−1 = q−1. Inserting
this into (21) we find that

q =

(
q

2

)
β2 + 1 =⇒ β =

√
2

q
.

We get from (12) that the normalized candidate extremal function satisfies

(22) a2 = L2(f) = q

(
1 +

2

q
+

1

q2

)1−1/p

.

Final part in the proof of Theorem 1. We need to compare the normalized
candidate extremal functions from the equations l = 0, 1, 2. Clearly a2 = 1 from
l = 2 can be discarded at once. Comparing (18) and (22), we claim that

1

α2

(
1 + (α1 + α2)

2 + (α1α2)
2
)1−1/p ≤ q

(
1 +

2

q
+

1

q2

)1−1/p

,

where α1 and α2 are given by (17). We recall that 1 − 1/p < 0, so a stronger
statement is

1 ≤ α2q

(
1 +

2

q
+

1

q2

)1−1/p

=

√
1 +

√
2/q

1 +
√
2q

q

(
1 +

1

q

)1−q

= Φ(q),

where we used that 2/p− 1 = q. Note that Φ(1) = 1. We compute
d

dq
log Φ(q) = − 1

2
√
2q

(
1

q +
√
2q

+
1

1 +
√
2q

)
+

2

1 + q
− log

(
1 +

1

q

)
.

For q ≥ 1 it holds that q +
√
2q ≥ 1 +

√
2q, so

− 1

2
√
2q

(
1

q +
√
2q

+
1

1 +
√
2q

)
≥ − 1√

2q + 2q
≥ − 1√

2 + 2q
≥ −2−

√
2

1 + q
.

The final inequality is easily checked directly. Consequently
d

dq
log Φ(q) ≥

√
2

1 + q
− log

(
1 +

1

q

)
= Ψ(q).
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We get that Φ is increasing on 1 < q < ∞ by proving that Ψ(q) > 0 in the same
range, which can be deduced by checking the non-negativity of Ψ in the endpoints
and at the critical point q = 1+

√
2. Hence we conclude that the case l = 0 provides

the extremal function and that

C(2, p) = q

(
1 +

2

q
+

1

q2

)1−1/p

=
2

p

(
1− p

2

) 2
p−1

.

In the case l = 0 we have that g(z) = h(z) = 1+βz+αz2, so a computation yields
the stated extremal function. �

4. Proof of Theorem 2

By Lemma 4, we get that the candidate extremal functions for the functional
L3(f) = a3 acting on Hp with p = 2/3 are of the form

f(z) = A

l∏
j=1

z + αj

1 + αjz

3∏
j=1

(1 + αjz)
3

= A

l∏
j=1

(z + αj)

3∏
j=l+1

(1 + αjz)

3∏
j=1

(1 + αj)
2 = Ag(z)(h(z))2,

where |αj | ≤ 1 with strict inequality for 1 ≤ j ≤ l. There are four equations,
from l = 0, 1, 2, 3. Recall that ‖g‖H2 = ‖h‖H2 and that the normalizing constant
is A = ‖h‖−3

H2 . We begin by computing

(h(z))2 = 1 + 2βz +
(
β2 + 2γ

)
z2 + 2 (βγ + α) z3 +O(z4)

where α = α1α2α3, β = α1 + α2 + α3 and γ = α1α2 + α1α3 + α2α3. Hence the
equation (9) becomes

(23) λz3g(z−1) = 1 + 2βz +
(
β2 + 2γ

)
z2 + 2 (βγ + α) z3.

Note that if f is a normalized solution to the equation (23), then by (10) we get

(24) a3 = L3(f) = A|λ|‖g‖2H2 = |λ|‖h‖−1
H2 = |λ|

(
1 + |β|2 + |γ|2 + |α|2

)−1/2
.

The case l = 3. Here we get

g(z) = (z + α1)(z + α2)(z + α3) = z3 + βz2 + γz + α,

which means that the equation (23) takes the form:

λ = 1 λβ = 2β λγ = β2 + 2γ λα = 2 (βγ + α)

The only solution is α = β = γ = 0, which implies α1 = α2 = α3 = 0. The
normalized candidate extremal function is f(z) = z3, which has a3 = 1.

The case l = 2. Here we get

g(z) = (z + α1)(z + α2)(1 + α3z)

= α3z
3 + ((α1 + α2)α3 + 1) z2 + (α1α2α3 + α1 + α2) z + α1α2.
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Set ξ = α1α2, η = α1 + α2 and α3 = %. By a rotation, we may assume that % ≥ 0.
The equation (23) takes the form:

λ% = 1(25)
λ(η%+ 1) = 2(η + %)(26)
λ(ξ%+ η) = (η + %)2 + 2(ξ + η%)(27)

λξ = 2
(
(η + %)(ξ + η%) + ξ%

)
(28)

From (25) we get that % > 0. Inserting (25) into (26) and solving for η yields that

(29) η =
1

%
− 2%.

Inserting (25) into (27) and solving for ξ yields that

(30) ξ =
η

%
− 2η%− (η + %)2 =

1

%2
− 2− (1− 2%2)−

(
1

%
− %

)2

= 3%2 − 2,

where we in the penultimate equality used (29). Inserting (25), (29) and (30) into
(28) now yields

3%− 2

%
= 2

((
1

%
− %

)
(%2 − 1) + (3%2 − 2)%

)
= 4%3 − 2

%
.

Since % > 0 we get that % =
√
3/2, which by (29) and (30) implies that η = −

√
3/3

and ξ = 1/4, respectively. Recalling that λ = %−1, α = ξ%, β = η+% and γ = ξ+η%,
we get from (24) that the normalized candidate extremal function f satisfies

(31) a3 = L3(f) =
1

%

(
1 + (η + %)2 + (ξ + η%)2 + (ξ%)2

)−1/2
=

16√
229

= 1.0573 . . .

The case l = 1. Here we get

g(z) = (z + α1)(1 + α2z)(1 + α3z)

= z3α2α3 + z2(α2 + α3 + α1α2α3) + z(1 + α1(α2 + α3)) + α1.

Set % = α1, η = α2 + α3 and ξ = α2α3. There are four rotations eiθ, ei(θ±π/2) and
ei(θ+π) such that ξ is real. The equation (23) then takes the form:

λξ = 1(32)
λ(η + %ξ) = 2(%+ η)(33)
λ(1 + %η) = (%+ η)2 + 2(%η + ξ)(34)

λ% = 2
(
(%+ η)(%η + ξ) + %ξ

)
(35)

From (32) we get that ξ 6= 0 and λ = ξ−1. Inserting this into (33), we obtain

(36) % =
η

ξ
− 2η.

Inserting (32) and (36) into (34), we obtain

1

ξ
+
η2

ξ2
− 2|η|2

ξ
=

(
η

ξ
− η

)2

+ 2

(
|η|2

ξ
− 2η2 + ξ

)
=
η2

ξ2
− 3η2 + 2ξ

⇐⇒ 1

ξ
− 2|η|2

ξ
= 2ξ − 3η2.
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Hence we find that η2 is real. By choosing the appropriate rotation above, we may
assume that η ≥ 0, in which case it holds that

(37) η =

√
1− 2ξ2

2− 3ξ
.

We then insert (32) and (36) into (35), keeping in mind that η ≥ 0, to obtain

(38) η

ξ

(
1

ξ
− 2

)
= 2

(
η

(
1

ξ
− 1

)(
η2
(
1

ξ
− 2

)
+ ξ

)
+ η(1− 2ξ)

)
.

The equation (38) with η as in (37) has five real solutions. Before we compute
them, let us recall that that β = %+ η, γ = %η+ ξ and α = %ξ, so we get from (31)
that in each case the normalized candidate extremal function f satisfies

(39) a3 = L(f) =
1

|ξ|
(
1 + (%+ η)2 + (%η + ξ)2 + (%ξ)2

)−1/2
.

The first two solutions of (38) arise from the case η = 0, which occurs when % = 0
and ξ2 = 1/2. Here we easily find from (39) that

(40) a3 =
2√
3
= 1.1547 . . . .

If η 6= 0, we may multiply (38) by (2 − 3ξ)ξ/η, then insert the value for η2 and
simplify to obtain

10ξ3 − 12ξ2 + 2ξ + 1 = 0.

This equation has the following solutions:

ξ1 = 2
5

(
1−

√
7
3 cosϑ

)
= −0.2049 . . .

ξ2 = 1
5

(
2 +

√
7
3

(
cosϑ−

√
3 sinϑ

))
= 0.6281 . . . for ϑ = 1

3 arctan
(

5
√
111

117

)
ξ3 = 1

5

(
2 +

√
7
3

(
cosϑ+

√
3 sinϑ

))
= 0.7768 . . .

Inserting these and the corresponding % and η into (39) yields, respectively,
(41) a3 = 1.0739 . . . a3 = 1.1958 . . . a3 = 1.1067 . . .

The case l = 0. Here we get
g(z) = (1 + α1z)(1 + α2z)(1 + α3z) = α z3 + γ z2 + β z + 1.

There are three rotations, eiθ, ei(θ+π/3) and ei(θ+2π/3) such that α = α1α2α3 ≥ 0.
The equation (23) takes the form:

λα = 1 λγ = 2β λβ = β2 + 2γ λ = 2 (βγ + α)

The first equation shows that α > 0. We insert it into the others and obtain:
γ = 2αβ(42)
β = αβ2 + 2αγ(43)
1 = 2(αβγ + α2)(44)

Our goal is to show that β (and hence γ) is real. We begin with (43). Inserting the
conjugate of (42), multiplying with β and applying (44) yields

αβ2 =
γ

2α
− 2αγ = γ

(
1

2α
− 2α

)
=⇒ αβ3 =

1− 2α2

2α

(
1

2α
− 2α

)
.
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Hence β3 is real, so we may choose a rotation above to ensure that β is real. Note
now that β = 0 if and only if γ = 0, which leads to the extremal (2) for C(1, 2/3)
with the argument cubed. Hence we assume β 6= 0. Since know that β and γ are
real and non-zero, we insert (42) into (43) to obtain that

β = αβ2 + 4α2β =⇒ β =
1− 4α2

α
=⇒ γ = 2− 8α2,

where we used (42) again for the second implication. Inserting the values for β and
γ into (44) yields the equation 1 = 2(2(1− 4α2)2 +α2). Since α > 0 there are only
two solutions:

α =

√
15±

√
33

8
β = ∓

√
3∓ 1

3

√
33

2
γ =

1∓
√
33

8
.

Recalling that λ = α−1, we get from (24) that the normalized candidate extremal
function f satisfies

(45) a3 = L3(f) =
1

α

(
1 + β2 + γ2 + α2

)−1/2
=

√
2
(
1103∓ 33

√
33
)

1153
.

To maximize this, we choose the negative sign in the expression for α, which yields
that β, γ > 0 and the value a3 = 1.4973 . . . in (45).

Final part in the proof of Theorem 2. We need to compare the candidate
extremal functions from the equations l = 0, 1, 2, 3. Clearly a3 = 1 from l = 3 can
be discarded at once. Comparing (31), (40), (41) and (45) we find that the latter
is the largest. Hence the case l = 0 provides the extremal function so that

C(3, 2/3) =

√
2
(
1103 + 33

√
33
)

1153
.

In the case l = 0 we have g(z) = h(z) = 1+βz+γz2+αz3, so a computation yields
the stated extremal function. �

5. Concluding remarks

5.1. Our first observation is that neither the extremal for C(1, p) from (2) nor the
extremals for C(2, p) and C(3, 2/3) from Theorem 1 and Theorem 2, respectively,
vanish in D. This is of course a consequence of the fact that the extremals in each
case stem from the case l = 0 in Lemma 4.

Conjecture 1. For 0 < p < 1 any extremal f for C(k, p) does not vanish in D.

If we a priori knew that Conjecture 1 held, it would significantly decrease the
effort needed to prove Theorem 1 and Theorem 2, since it would be sufficient to
consider only the case l = 0. Apart from the above-mentioned examples we have
little concrete evidence for the conjecture. However, the following weaker statement
could be a starting point.

Conjecture 2. For 0 < p < 1 the sequence C(k, p) is strictly increasing.

Conjecture 2 is equivalent to the following statement: For 0 < p < 1 any extremal
for C(k, p) does not vanish at the origin. Indeed, if C(k, p) = C(k + 1, p) for some
k ≥ 1 then we can multiply an extremal for C(k, p) with z to obtain an extremal
for C(k + 1, p) vanishing at the origin. Conversely, if an extremal for C(k + 1, p)
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vanishes at the origin, then we find that C(k, p) = C(k + 1, p) by dividing the
extremal by z. Note that this is precisely how the extremals f(z) = zk can be
obtained in the range 1 ≤ p <∞, where it holds that C(k, p) = 1 for every k.

5.2. Let Np denote the subset of Hp consisting of the elements f which do not
vanish in D. Suffridge [13] investigated the extremal problem

C̃(k, p) = sup
f∈Np

{
Re

f (k)(0)

k!
: ‖f‖Hp = 1

}
.

Clearly it holds that C̃(k, p) ≤ C(k, p). By Lemma 4 (see also [5, p. 143]) this is an
equality when p = 1. For 1 < p <∞ this inequality is strict, by the strict convexity
of Hp and the fact that f(z) = zk are not in Np.

Note that Conjecture 1 is equivalent to the claim C̃(k, p) = C(k, p) for 0 < p < 1
and k ≥ 1. In particular, we observe that [2, Thm. 4.1] and Theorem 1 extend the
statements for 0 < p < 1 in [13, Thm. 2] and [13, Thm. 7], respectively.

The approach employed in [13] to study C̃(k, p) is related to the approach of
the present paper to study C(k, p). The difference is that the version of Lemma 4
for Np does not contain a Blaschke product, but instead contains a singular inner
function. It is conjectured on [13, p. 187] that this singular inner function is trivial
when 0 < p < 1. This conjecture is evidently a consequence of Conjecture 1 in view
of Lemma 4.

5.3. Fix 0 ≤ r ≤ 1 and let Hp
r denote the subset of Hp consisting of the elements

f for which |f(0)| = r. For k ≥ 1, consider the extremal problem

Cr(k, p) = sup
f∈Hp

r

{
Re

f (k)(0)

k!
: ‖f‖Hp = 1

}
.

This extremal problem was solved by Beneteau and Korenblum [1] in the range
1 ≤ p < ∞ as follows. They first demonstrate that Cr(k, p) = Cr(1, p) holds
for every k ≥ 1 using F. Wiener’s trick, which relies on the triangle inequality.
Following this, they solve the extremal problem directly in the case k = 1 using
the factorization f = BF similarly to how we used the factorization f = gh2/p−1

above. Inspecting the solution, it is easy to verify that the function r 7→ Cr(k, p) is
decreasing from C0(k, p) = 1 to C1(k, p) = 0.

We make a couple of comments on this extremal problem in the range 0 < p < 1.
Since the triangle inequality here takes the form

‖f + g‖pHp ≤ ‖f‖pHp + ‖g‖pHp ,

we find by F. Wiener’s trick that Cr(k, p) ≤ k1/p−1Cr(1, p). This estimate should be
compared with the Hardy–Littlewood estimate C(k, p) ≤ k1/p−1C(1, p) mentioned
in the introduction. The situation for k = 1 is also different, since by (2) and (3)
we find that the maxima of the function r 7→ Cr(1, p) is in the range 0 < p < 1
attained at r = (1− p/2)1/p.

5.4. The dual space of Hp with 0 < p < 1, is (non-isometrically) identified in [4]
through the embedding∫

D
|f(z)|

(
1
p − 1

)(
1− |z|2

) 1
p−2 dA(z)

π
≤ Cp‖f‖Hp ,
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where dA denotes Lebesgue area measure and Cp ≥ 1. The embedding is, of course,
also due to Hardy and Littlewood [7]. It is conjectured (see e.g. [3, Sec. 2]) that
Cp = 1 for every 0 < p < 1, but this is known to hold only when 1/p is an integer.
Assuming that this conjecture holds, we can obtain the estimate

C(k, p) ≤
(
2
(
1
p − 1

) ∫ 1

0

rk+1
(
1− r2

) 1
p−2

dr

)−1

=
Γ
(
k
2 + 1

p

)
Γ
(
k
2 + 1

)
Γ
(
1
p

) .
For comparison with Theorem 1 and Theorem 2, we record the special cases

C(2, p) ≤ 1

p
and C(3, 2/3) ≤ 16

3π
= 1.6976 . . .
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