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ABSTRACT
This paper investigates large, plastic deflections of a square plate due to impact on calm water. Most research in the area has examined
linear elastic structural responses to such impact, but hydrodynamic responses during large, plastic deformations of engineering structures
remain under-explored. A setup for an experimental drop test was designed for this purpose with equal emphasis on the hydrodynamical
and structural mechanical aspects. Dual cameras were used to monitor the deforming plate from above during impact, and its deformation
was tracked using a three-dimensional digital image correlation technique. The complex hydrodynamics of the impact were captured using
a high-speed camera from below. The experimental results for flat impact showed a large air pocket under the deforming plate. The material
properties of the plate were documented through separate tests. Hydroelastic theories were offered to account for large deformations and
validated against the experimental results. Analytical hydroplastic theory shows that the maximum deflection is approximately equal to the
velocity of impact times the square root of the ratio of the added mass to the plastic membrane capacity of the plate. An important source of
error between the theory and the experiments was the effect of deceleration of the drop rig on deflection of the plate. This error was estimated
using direct force integration and Wagner’s theory.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0013858., s

I. INTRODUCTION

Understanding fluid structure interaction during violent wave
impact is important for the appropriate design of ships and ocean
structures. The slamming phenomenon is characterized by large,
local pressures of short duration. This study considers the prob-
lem where a flat plate is dropped onto a flat free surface. This is
an idealized slamming impact to study details of the slamming phe-
nomenon. A large amount of research has considered the slamming
of rigid structures on water. Wagner1 derived a slamming theory
using incompressible potential flow while neglecting air flow. Other
studies have considerably extended the theoretical understanding of
slamming pressures, such as those by Korobkin,2,3 and Zhao and
Faltinsen.4 Early work by Chuang,5 Verhagen,6 and Koeller and Ket-
tleborough7 considered flat impact between a nearly rigid plate and

water and showed experimentally that the traditional theory pro-
posed by Wagner1 is not valid when the plate is parallel to the
calm free surface. In this case, air is trapped between the plate and
the free surface and dramatically alters the flows of air and water.
Other research has revealed different aspects of the flow physics of
a nearly rigid plate during flat impact on water. Mayer and Krechet-
nikov8 studied the cushion of air trapped under the plate and jet-
ting occurring at the plate edges, called ejecta, using both math-
ematical analysis and advanced particle image velocimetry (PIV)
measurements.

The elastic response of a wedge consisting of two Euler beams
exposed to slamming has been studied by many researchers. Lu
et al.9 coupled a nonlinear boundary element method in the
water domain with a finite element discretization of the structure.
Khabakhpasheva and Korobkin10 studied the same problem but
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expressed beam deflection as the sum of normal modes and con-
sidered different simplifications of the problem. Shams et al.11 also
studied an elastic wedge consisting of two Euler beams and consid-
ered both the problem when the wedge entered and exited out of the
water.

Okada and Sumi12 studied impact pressures during a hydro-
elastic drop test of a half-wedge. The pressures and the strains
were measured during the impact. The variation in the deadrise
angle from 4○ to 0○ showed a transition from the Wagner type of
impact with traveling jets to that of a trapped air cushion under
the plate without jet formation. The local pressure under the plate
was sensitive, while the maximum strain on the plate was insensi-
tive to variations in the deadrise angle. A similar observation was
made by Faltinsen et al.,13 who studied elastic deformations in a
plate strip during drop tests on waves with different radii of cur-
vature. The results showed that the maximum strains in the plate
were not sensitive to whether it was dropped on flat water or on a
wave with a curvature radius 10 times longer than the beam length.
Faltinsen14 compared the results from the drop tests in Ref. 13
with a simplified theory where the impact was divided into two
stages. The first stage, called the structural inertial phase, was very
short. In it, the hydrodynamic load was balanced by inertial forces.
At the end of this stage, the spatially averaged structural velocity
was equal to the impact velocity of water. Following the structural
inertial phase was a free vibration phase, where the plate oscil-
lated with its wet natural period. Korobkin15 provided a complete
mathematical model of the problem studied by Faltinsen et al.13

and commented on the validity of impulse response assumption in
Ref. 14.

Yu et al.16,17 recently extended the ideas in Ref. 14 by ana-
lyzing the nonlinear and plastic structural responses of a stiffener
with an associated plate flange. The method they used separates
the response into a structural inertial phase and a free deflection
phase that accounts for structural nonlinearities. The free deflection
phase was divided into a traveling hinge stage (stage 1), a stationary
hinge stage (stage 2), and a pure tension stage (stage 3). The results
of this method compared well to those of nonlinear finite element
simulations.

Faltinsen18 also developed a hydroelastic mathematical model
that combined orthotropic plate theory with a Wagner-type hydro-
dynamic model. The results showed that the importance of hydro-
elasticity depends on the ratio of the duration of application of load
to the natural period of the structure. The duration depends on the
impact velocity as well as the angle between the free surface and the
structure. An important observation regarding the theory in Ref. 18
is that for relevant impact velocities taken from steep and breaking
waves, and the relevant dimensions of stiffened panels used in ocean
structures, it predicts stresses that exceed the yield stress.

Many researchers have studied the hydroelastic problem, but
the phenomenon of large, nonlinear, and plastic deformations has
received very limited attention. This paper examines the large, plas-
tic deformation of a plate during slamming impact with a calm free
surface of water. The requisite drop tests could not be carried out
at full scale for practical and financial reasons, which means that
the structure needed to be scaled down and simplified. To scale the
model tests, it is useful to derive simplified analytical formulas that
clearly identify the main physical parameters of the problem at hand.
For this purpose, the theory by Faltinsen14 is extended to account

for the large and plastic deformations of a plate during flat impact
on calm water. This analytical hydroplastic theory is presented in
Sec. II. The model is subsequently compared with the experimental
results in Sec. XI.

The aim of the model test developed here is to measure large
deformations in a plate hitting a flat free surface with nearly constant
impact velocity. The three-dimensional (3D) digital image correla-
tion (3D-DIC) technique is used to measure the deformation of the
plate. An important feature of the test setup was therefore to allow
for optical measurements of the plate from above. This test setup is
presented in Sec. III.

Many researchers have studied the hydroelastic response of
Euler beams. In this case, the only material properties required are
the elastic modulus and the density of the beam. When large plas-
tic deformations are considered, an accurate relationship between
stress and strain is required, and an accurate material model needs to
be specified. Section IV presents separate uniaxial stress tests of the
material of the plate that are used to establish an accurate descrip-
tion of it. Section V presents the results of the drop tests, and Sec. VI
discusses the accuracy of the 3D-DIC measurements and repetition
error in deflections of the plate. Section VII presents the estimated
impact velocity based on the principle of energy conservation, which
is compared against the measurements in Sec. VIII. Error analysis is
important to assess the accuracy of experiments. The error analysis
of the experimental setup here used both mathematical and experi-
mental methods. An important source of bias was the way in which
the deceleration of the entire rig during impact affected the defor-
mation of the plate. This error is investigated with a separate math-
ematical model in Sec. IX. Section X presents nonlinear finite ele-
ment analysis (FEA) to provide an estimate of the effect of the strain
rate on the maximum deflections of the plate, and Sec. XI presents
comparisons between the calculated and measured deflections of the
plate.

II. HYDROPLASTIC THEORY BASED ON INITIAL
VELOCITY CONDITIONS

Figure 1 shows the problem of a rectangular surface impact-
ing a calm free surface. The surface represents the wetted area of a
structure with a flat, horizontal bottom, with a flexible plate mounted
in the middle (gray area). Hydroplastic theory uses the same overall

FIG. 1. Schematic of the rectangular surface impacting a calm free surface. The
gray lines indicate the theoretical deformation pattern of the plate.
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approach as for the hydroelastic beam studied by Faltinsen.14 Hence,
the impact is divided into a structural inertial phase and a free vibra-
tion phase. During the structural inertial phase, a large load occurred
over a short duration. The stiffness of the structure was negligibly
small, and the load was balanced by the inertia of the plate. The
mathematical analysis in Ref. 14 shows that the spatially averaged
velocity of the plate is approximately equal to the impact velocity at
the end of the structural inertial phase. For the plate studied here,
the mode of deformation is assumed to be shaped as a pyramid. The
displacement field w(x, y) is expressed as

w = w1N̄(x, y) = w1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − ∣x∣Lp , ∣x∣ ≥ ∣y∣

1 − ∣y∣Lp , ∣x∣ < ∣y∣,
(1)

where Lp is half the width of the square plate and N̄(x, y) is the shape
function. The initial velocity of the plate in the free vibration stage is

∫
S
ẇN̄(x, y)dS = ∫

S
VN̄(x, y)dS, (2)

where V is the impact velocity, which is assumed to be constant dur-
ing impact, and S is the surface of the flexible plate. Equation (2)
states that the spatially averaged plate velocity is equal to the impact
velocity. The initial condition for the free vibration stage is

ẇ1(t = 0) = 2V . (3)

Furthermore, the displacement at the beginning of the free
vibration stage is assumed to be zero. The theory derived should
describe the large, plastic deformations of the plate. A practical
theory for this purpose is the rigid plastic theory proposed by
Jones,19 whereby an approximate formula for the deflection of a plate
undergoing large deformations is given as

∫
S
(p − μẅ)ẇdS =

Nm

∑
m=1
∫
lm
(Nw −M)θ̇mdlm, (4)

where w is the deflection of the plate, p is pressure on its surface,
μ is the mass per unit area of the plate, and lm is the length of the
hinge line m. The right-hand side of Eq. (4) sums structural resis-
tance along the number of hinge lines Nm. N is the membrane force
per unit length, M is the bending moment per unit length, and θ̇m
is the relative rate of angular rotation across the hinge. The underly-
ing assumptions in Eq. (4) are as follows: (1) the material is perfectly
plastic, (2) in-plane displacements are much smaller than displace-
ments normal to the plate surface, (3) plastic collapse is time inde-
pendent and does not allow for traveling hinges, and (4) the shape of
the displacement field is equal to the velocity profile of static collapse.
The velocity potential of water on the surface of the plate due to the
motion of the mode is written as φ = ẇ1φ̄(x, y). Figure 1 shows the
boundary value problem for φ̄(x, y). On the free surface, φ̄ = 0, while
on the rigid part of the structure, ∂φ̄/∂z = 0. The gray lines indicate
the shape of the pyramid deflection mode of the flexible plate, where
the boundary condition is ∂φ̄/∂z = N̄(x, y). Pressure acting on the
plate due to its acceleration is p = −ρẅ1φ̄(x, y). The hydrodynamic
force due to the acceleration of the plate in Eq. (4) is

∫
S
pẇdS = −ρẅ1ẇ1 ∫

S
φ̄(x, y)N̄(x, y)dS = −ẅ1ẇ1A. (5)

Here, A is the coefficient of added mass due to unit amplitude
oscillations of the pyramid mode. The mass term in Eq. (4) is

∫
S
μẅẇdS = 2

3
μL2ẅ1ẇ1 =Msẅ1ẇ1. (6)

Assuming that the four edges of the plate are clamped, the right-
hand side of Eq. (4) is, according to Jones,20 equal to

16M0[1 +
1
3
(w1

h
)

2
]ẇ1 for

w1

h
< 1 (7)

and

16M0(
w1

h
+

1
3

h
w1
)ẇ1 for

w1

h
≥ 1, (8)

where M0 = σ0h2/4 is the plastic moment capacity of the plate, σ0
is the effective yield stress of the material composing it, and h is the
thickness of the plate. Furthermore, if the deflection of the plate is
large compared to its thickness, Eq. (8) is equal to 4N0w1ẇ1. Here,
N0 = σ0h is the membrane capacity of the plate. Assuming large
deformations, Eq. (4) can be written as

[A + Ms]ẅ1 + 4N0w1 = 0. (9)

Equation (9) is valid only if ẇ1 > 0 because the theory assumes plastic
behavior of the plate. The solution to Eqs. (9) and (3) is

w1 = w̄1 sin(ωt) t < Tr . (10)

Here, ω2 = 4N0/(A + Ms). The deflection maximum is

w̄1 = V
√

Ms + A
N0

. (11)

Tr is the rise time of the midpoint deflection from zero to its
maximum value. Hence, Tr = π/(2ω) and

Tr =
π
2

√
Ms + A

4N0
. (12)

The plate deflection according to Eqs. (10) and (11) is referred to as
the “analytical hydroplastic solution” throughout this paper.

III. SETUP OF THE DROP TEST
Figure 2 shows the principle of the drop test. A rotating

arm was mounted on a hinge on the left side. The arm was first
rotated counterclockwise and then released before the box fell freely
until it hit the surface of the calm water. The pivot point of the
hinge was defined as the origin for the x̄, ȳ, z̄ coordinate system.
The center of the undeformed plate was the origin for the body-
fixed coordinate system x, y, z. An open box was attached to the
end of the arm; its underside was rectangular, with dimensions of
344 × 500 mm2.

The box was left open to allow for a clear view of the defor-
mation of the plate using two Phantom v2511 high-speed cameras
operating at 37 kHz. All plates were spray-painted with a speckle
pattern to enable 3D-DIC measurements. The plate and the speckle
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FIG. 2. Drop test designed with an open structure to enable a clear view of the plate
during the impact. The motion of the plate was captured from images obtained
using the 3D-DIC technique. The hydrodynamic flow was documented with a high-
speed camera that filmed the plate from below.

pattern are shown in Fig. 3(b). The 3D-DIC technique as imple-
mented in the eCorr software21 was used to track deformations of
the plate. Details of this technique have been described by Fager-
holt.22 To isolate deflections of the plate from the rigid-body motion
of the frame, selected parts of the frame were observed using the DIC
cameras. A set of sticker-markers on the frame allowed for point-
wise 3D-DIC, providing for rigid-body measurements of the frame
during the test.

One high-speed camera was installed on the floor outside the
basin to study the hydrodynamics of the impact. It filmed the impact
from below the plate through a mirror at a frequency of 3 kHz.
The dropped box was equipped with accelerometers to monitor the
motion/rotation of the rigid body. The accelerometers were sampled
at a frequency of 19.2 kHz.

The photograph in Fig. 3(a) shows the steel box at the bot-
tom, and photograph (b) shows the steel frame that held the flexible
plate. The bottom of the yellow box had an opening where the steel
frame containing the flexible plate was installed. The frame consisted
of four equal large steel parts with a rectangular cross section of
49.5 × 50 mm2. These parts were screwed on top of one another to
form a stiff square frame. The area inside the frame was used to fit

FIG. 4. The drawing shows a cross section of the steel frame, steel bar, and
aluminum plate.

the 230 × 230 mm2 aluminum sections. These deformable sections
were clamped between the inside of a steel frame and four thick steel
bars using 12 screws (M12 × 1.75). Figure 4 shows details of the con-
nection between the plate and the frame. The steel bars were tapered
from 15 mm to 5 mm toward the lower edge supporting the alu-
minum box. The plate was assumed to be fixed at the edge of the bar
toward the center of the plate. This means that the plate width (2Lp)
was set to 220 mm in all calculations.

The drop test was designed to study the deformation in steel
plates caused by slamming waves in a simplified manner. Experi-
ence from model tests of large ocean structures shows that the largest
slamming loads on a typical 3× 3 m2 structure during a 100-yr storm
comes from high and steep waves. These waves strike the side of
the structure with a typical velocity of about 15 m/s. To achieve this
velocity, a drop height of more than 10 m is required. This was not
possible here, and the authors decided to perform the experiment at
a smaller scale.

To model the nonlinear structural response of the plate when
undergoing large deformations, Eqs. (10) and (11) suggest that the
membrane capacity of the plate should be scaled correctly. The
impact velocity V in Eq. (11) is a factor

√
λ smaller for the model

than in full scale, where λ is the geometrical scaling ratio. By insert-
ing full scale values in Eq. (11) and dividing it with parameters of the

FIG. 3. (a) Photograph of the box from
below. (b) Photograph of the frame after
a test during the unmounting of the
deformable aluminum section.
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model scale, the scaling of the membrane capacity is

N0p

N0m
= w̄1m

w̄1p

Vp

Vm

√
Ap

Am
= rλ2, (13)

where the structural mass M is neglected as it is much smaller than
the added mass A. The subscript p denotes values of the prototype
(full scale) and m denotes those of the model scale.

This scaling was motivated by the impressive comparisons in
terms of plate deformations and stresses between experiments and
the hydroelastic theory in Ref. 14. The aim was to obtain geometri-
cally scaled plate deformations. The accuracy of the scaling strategy
is discussed further in Sec. XI.

The membrane capacity is the product of the thickness of the
plate and the yield strength. To achieve a correctly scaled plate,
a thin metal with low yield strength was needed. A 0.6-mm-thick
aluminum plate was used here, manufactured from low-strength,
strain-hardened, and cold-rolled sheets of the commercial alloy
EN AW 1050A-H111. The nominal chemical composition of the
material was 0.06% Si, 0.29% Fe, 0.01% Ti, and 99.64% Al.

IV. MATERIAL TEST OF ALUMINUM PLATE
To accurately identify the relationship between stress and

strain, five material uniaxial tensile tests were carried out. Three
test specimens were cut from the plate material in the direction of
rolling, and two specimens were cut in the orthogonal direction.
Two-dimensional digital image correlation (2D-DIC)22,23 was used
to measure displacements. Figure 5 shows the nominal and true
stress–strain curves. The nominal stress σe and strain εe are given
by

σe =
F
A0

, εe =
u
L0

, (14)

FIG. 5. Nominal and true stress–strain curves from uniaxial tensile tests cut from
the material of the plate: aluminum alloy EN AW 1050A-H111.

where F is the pull force, A0 is the initial cross-sectional area in
the gauge region, u is the elongation, and L0 is the initial specimen
length. The true stress σ and the true strain ε were determined using
the following respective equations: σ = σe(1 + εe) and ε = ln(1 + εe).
The results showed that the aluminum was slightly anisotropic in
terms of flow stress, since the magnitudes of the force and stress
levels were slightly lower orthogonally than in line with the rolling
direction.

To facilitate accurate finite element analysis (FEA) of the plate,
it was necessary to establish a suitable material model for this alu-
minum alloy. The characteristics for the sheet metal applied in the
tests featured isotropic plastic properties with strong rate defects.
Hence, the behavior of the plastic material was described using
the modified Johnson–Cook model (∗MAT_107 in LS-DYNA;24

see also Ref. 25 for further details). This model accounts for large
plastic strains and high strain rates. The constitutive equation
reads

σeq = [σ0 +
2

∑
i=1

Qi(1 − exp(−Cip))][1 + ṗ∗]c̄[1 − T∗m]. (15)

Here, σeq is the equivalent von Mises stress and p is the equiv-
alent plastic strain. The yield stress, σ0 = 27 MPa, is the stress
corresponding to 0.2% plastic deformation. The Voce parameters
Q1 = 23.8 MPa, Q2 = 55.8 MPa, C1 = 46.7, and C2 = 4.2 were esti-
mated using the method of least squares. The constant of strain
rate sensitivity c̄ was assumed to be 0.014 (see Refs. 26 and 27).
m = 1 was a material constant controlling temperature-softening in
the material. The dimensionless plastic strain rate was ṗ∗ = ṗ/ṗ0,
and ṗ0 = 5 × 10−4[s−1] was the user-defined reference strain rate.
The homologous temperature was defined as T∗ = (T − Tr)/(Tm
− Tr), where T is the absolute temperature, Tr = 293 K is the

FIG. 6. Membrane force as a function of strain. The prototype material was an
18-mm steel (S355) plate scaled to a model scale of 14.5 according to scaling laws
based on analytical hydroplastic theory. The model material was a 0.6-mm-thick
aluminum plate (EN AW 1050A-H111).
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ambient temperature, and Tm = 893 K is the melting temperature
of the material. The following physical constants were required to
complete the model of the material (see Ref. 28): Young’s modulus
E = 70 GPa, Poisson’s ratio ν = 0.3, material density ρ = 2700 kg/m3,
thermal expansion coefficient α = 2.3 × 10−5, specific heat
Cp = 910 J/kg K, and Taylor–Quinney coefficient χ = 0.9. Figure 5
shows that the calibrated material model compared well with mea-
surements of the uniaxial tension test. This material model was used
in the FEA of the plate described in Sec. X.

Figure 6 shows the axial force in the aluminum plate as a func-
tion of strain in a uniaxial tensile test (black curve). The dashed curve
shows the axial force of steel S355 as specified in Ref. 29 at a scale
of 1:14.5 using Eq. (13). The plot shows that the 0.6-mm-thick alu-
minum plate was a rough model of an 18-mm-thick steel plate of
type S355 when the response of the plate is dominated by membrane
forces.

V. RESULTS OF THE DROP TEST
Table I shows the test program for the drop tests. They were

carried out at different drop heights and angles varying from 0○ to
4○. The drop height refers to the vertical distance between point
A and the free surface in Fig. 1. The angle in Table I is the angle
between the underside of the box and the calm free surface when the
box touched the free surface. The angle is positive in the clockwise
direction.

Figure 7 shows a synthesized video of test 1. The left half shows
images recorded from the top. The color plot shows the deflection
of the plate measured using the 3D-DIC technique. The right half of
the video shows images recorded from the high-speed video filmed
from below.

Figure 8 shows the deformation in the center of the plate as a
function of time during test 1 at a drop height of 443 mm. The angle
between the plate and the calm free surface was 0○. The two main
characteristics of the deformation were as follows: (1) There was a
short period from 0 ms to 5 ms, where the plate deformed rapidly
until the maximum deformation was reached. This period is called
the “rapid deflection” stage of impact. (2) Once the maximum deflec-
tion had been reached, the plate deflected back downward before
it deflected upward again. We call this stage the “bounce back”
stage.

TABLE I. Drop test program.

Test no. Angle (deg) Height (mm)

1 0 443
2 0 443
3 0 443
4 0 118
5 0 222
6 0 778
7 0 778
8 0 778
9 4 444

FIG. 7. Synthesized video showing images from the camera mounted above the
plate and the camera filming the plate from below through the mirror. The colored
plot on the left shows the deflection of the plate extracted using the 3D-DIC tech-
nique, and the image to the right shows details of the flows of air and water beneath
the plate during test 1. Multimedia view: https://doi.org/10.1063/5.0013858

Figure 9 shows high-speed images recorded from underneath
the plate during the rapid deflection stage. The image sequence
started when there was no visible deformation in the plate, and
no visible interaction between the escaping air from the front of
the plate and the water. In the second image (−0.5 ms), the air
flow created ripples on the surface of water. In the time between
images 2 and 4, an air pocket formed. Image 4 (0.8 ms) shows an
air pocket covering large parts of the aluminum plate. It is evident
that deformations of the plate had begun by this time.

It is important to compare the physics of the air entrapment
process with that of the air trapped under a nearly rigid plate. Ver-
hagen6 observed that air flow has a non-negligible influence on
the shape of the free surface when the distance between the body
and the free surface is short. Consequently, the level of water is

FIG. 8. Time history of deformation in the center of the plate as measured by the
3D-DIC for test 1 (drop height of 443 mm).
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FIG. 9. High-speed images recorded at 3 kHz, showing flat
impact at a drop height of 443 mm (test 1). The image
sequence shows the time of initial contact between the
underside of the box and water and through to the stage
of rapid deformation of the plate ending at the maximum.

raised at the edges of the plate, causing a thin air cushion between
the plate and the free surface. In the case of a nearly rigid plate,
this air cushion covered the entire area of the plate before break-
ing down into bubbles. Watanabe et al. 30 experimentally studied
the air entrapment and leakage using a transparent ship model and
described the air entrapment and leakage for a real ship shape in a
seaway.

To study the influence of the stiffness of the plate on air entrap-
ment, separate drop tests were carried out with a much stiffer 1 mm
steel plate. Figure 10(a) shows the air–water mixture under the
plate when dropped from a height of 21 mm. Note that the drop
height was lower than for the 0.6-mm aluminum plate. The dura-
tion between the photographs in Figs. 10(a) and 10(b) was 8 ms,
and the images show a more chaotic air–water mixture than in
the case of the 0.6-mm aluminum plate. In this case, less air was
trapped into different sizes of smaller air pockets during the slam.

This suggests that the entrapment of the air pocket in the exper-
iments was influenced by the stiffness of the plate. Furthermore,
for the 0.6-mm-thick aluminum plate, the membrane capacity was
scaled appropriately, while the elastic bending stiffness was not

FIG. 10. Photographs of the air–water mixture during the drop test with a 1 mm
steel plate. The time between photographs (a) and (b) was 8 ms.
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FIG. 11. (a) Deflection of the center of the plate during the “rapid deflection” stage. (b) Profiles of the deflection along the center line y = 0. The drop height was 443 mm
(test 1).

considered. If the elastic bending stiffness per unit width of an
18-mm-thick steel plate is scaled correctly, the bending stiffness
should be EI/(λ4r) = 2.25 N m, where E = 210 GPa is the elas-
ticity modulus and I = h3/12 is the second moment of the area
of the plate per unit width. The bending stiffness of the tested
0.6-mm-thick aluminum plate was 1.3 N m and 17.5 N m for the
1 mm steel plate. This means that the 0.6-mm aluminum plate
had a lower bending stiffness, while the 1 mm steel plate had a
much larger bending stiffness than a properly scaled 18-mm steel
plate. This stiffness error was considered to affect the formation of
the air pocket. Hydrodynamical aspects of scaling are discussed in
Sec. XI.

Figure 11(a) shows the deflection at the center of the plate as a
function of time during the “rapid deflection” stage, and Fig. 11(b)

shows deformation profiles along the center line (y = 0). The times
of these profiles are indicated in Fig. 11(a).

Figure 12(a) shows the deflection at the center of the plate dur-
ing its “bounce back” stage. The duration of this phenomenon was
∼20 ms. Figures 12(b) and 12(c) show profiles of the deformation
along the center line of the plate (y = 0). Plot (b) shows the defor-
mation down from the maximum deflection, while plot (c) shows
the plate as it was pushed up again. The deformed shape of the plate
during this stage was almost constant in space, which suggests large
deformations near the boundaries. The measurement shows that the
plate deflected to −4 mm near its left edge.

Figure 13 shows high-speed images in the same period. The
plate buckled toward the upper part of the image. The positive
x axis is directed downward in the figure. The buckled part of the

FIG. 12. Measured deflection of the plate during the “bounce back” stage of the impact. Drop height was 443 mm (test 1). (a) Time history of deformation at the center of the
plate. [(b) and (c)] Deformation profiles along the center line y = 0 when (b) pushed down and (c) pushed up.
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FIG. 13. High-speed images of a flat impact from a drop
height of 443 mm (test 1) after extreme deformation, when
the plate is deformed back and buckles along its upper
edge. The positive x axis is directed downward.

plate spanned nearly the entire width of the upper boundary. The last
four images show the straightening of the plate. A similar “bounce
back” behavior has been observed in experiments and numerical
analysis of aluminum plates subjected to air blast loading.28,31 In this
case, the plate is first subjected to a positive pressure phase followed
by a negative pressure phase. These studies have shown that the mag-
nitude of the “bounce back” depends on the timing of the negative
pressure relative to that of the “bounce back” following the max-
imum deflection. Numerical simulations have also shown that the
“bounce back” depends on the axial restraint at the boundary of the
plate. The physical problem of a plate exposed to a blast load is dif-
ferent from that of a plate deforming due to slamming. Hence, more
accurate studies are needed to better understand the “bounce back”
phenomenon.

A test was also performed at a 4○ angle between the plate and
the free surface (test 9). The drop height was 444 mm. Figure 14
shows the synthesized high-speed video for this test.

FIG. 14. Synthesized video showing images from the camera mounted above the
plate and that filming the plate from below through the mirror. The colored plot on
the left shows the deflection of the plate extracted using the 3D-DIC technique,
and the right plot shows details of the flows of air and water beneath the plate
during test 1. Multimedia view: https://doi.org/10.1063/5.0013858
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FIG. 15. High-speed images from below
the plate during test 9.

Figure 15 shows images from drop test 9. The upper-left
plot shows the time history of deflection at the point with the
largest deflection (x = −32.5 mm, y = 2.4 mm). The time his-
tories can be divided into three stages: (1) an initial oscillation
around 2 ms, (2) rapid deformation from ∼3 ms to 8 ms, and (3)
oscillation of the plate backward and out again between 8 ms and
20 ms. The images show a rapidly propagating jet crossing the
plate. The deformation of the plate caused the water jet to focus at
x = −55 mm and y = 0. Figure 16(a) identifies the instants when
the plate was deforming quickly, and Fig. 16(b) shows deforma-
tion profiles along the x axis. The plate had large initial defor-
mations. Contributions to the initial deformations were made by
initial imperfections of the plate and heat from lamps used for
the DIC recordings. This effect is further discussed in Sec. VI.

The plate underwent oscillation after the initial peak of deforma-
tion. The deformation then grew until the maximum deformation
occurred.

VI. ACCURACY OF DIC MEASUREMENTS
The accuracy of the 3D-DIC measurements was checked with

a coordinate measuring machine (CMM). The machine consisted of
an automatic robot arm with a pin that measured the surface geome-
try. Figure 17(a) shows a comparison of the permanent deformations
of the plate along the x axis for test 1 and test 9. For both tests,
the difference between the measurements was ∼0.2 mm at the point
corresponding to maximum deflection.

FIG. 16. (a) Plot shows the time history of deflection of the point corresponding to the maximum deflection during the stage of rapid deformation of the drop with a 4○ angle
between the underside of the box and the free surface. (b) Plot shows profiles of the deflection along the x axis at y = 0.
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FIG. 17. (a) Plot compares permanent deformations after impact, measured using 3D-DIC and a coordinate measuring machine (CMM) (Mitutoyo). (b) Time history of
deflection of the plate center for repeated tests at a drop height of 443 mm.

Figure 17(b) shows the deflection at the center in three tests
from a drop height of 443 mm. Tests 2 and 3 showed initial deflec-
tions of 1.5 mm–2 mm, which was surprising as the initial deflection
of the plate was checked prior to mounting the frame on the drop
rig. This deflection was typically 0.5 mm. The reason for this large
initial deflection was the thermal expansion of the plate due to heat
from the strong lights used for the high-speed cameras. The heat-
ing of the plate by 7○ showed an initial deflection of roughly 1 mm.
This means that the expansion of the plate due to heat caused sig-
nificant initial deformations. During test 1, the lights used to illu-
minate the plate were turned on before the drop to avoid heating
it. Even though the initial deflections due to heating were large,
the maximum deflection deviated by less than 1 mm in tests 1, 2,
and 3.

VII. IMPACT VELOCITY ESTIMATED
FROM CONSERVATION OF ENERGY

The impact velocity was estimated based on energy conserva-
tion during free fall. The drop height h was defined as the vertical
distance between the free surface and the point to the left of the
impacting surface. This point is denoted by A in Fig. 2 and was
located at xA = 2559 mm, yA = −240 mm, zA = 0 mm. As point A
was lifted by a vertical distance h from the free surface, the arm of
the drop rig rotated at angleΨ. As the body underwent pure rotation,
the radial velocity at any point was zero and the tangential velocity
was vr = ωr. ω is the speed of rotation in radians per second. The
kinetic energy for this rotation is

Ek =
1
2
Iyyω2, (16)

where Iyy is the moment of inertia of the entire drop rig relative to
the pivot point, estimated to be 760.7 kg m2. The potential energy at

the beginning of the drop was

Ep = M̄ghG, (17)

where M̄ is the dry mass of the rig, g is the acceleration due to grav-
ity, and hG is the elevation of the center of gravity of the rotating
body. The dry mass of the drop rig (rotating mass) was 136.8 kg, and
the center of gravity was located at xG = 2140 mm, yG = −5 mm,
zG = 0 mm. The elevation h of the center of gravity due to the
rotation of the rigid body Ψ is

hG = rG(sin(Ψ + θ) − sin(θ)). (18)

Here, θ is the angle between the xg axis and the line between the
hinge point and the center of gravity when the bottom of the box was
flush with the surface of water, i.e., Ψ = 0. The relationship between
the rotation of the rig Ψ and the vertical distance between point A
and the free surface is

Ψ = asin(hA
rA

+ sin(θA)) − θA. (19)

The potential energy in Eq. (17) is set to be equal to the kinetic
energy in Eq. (16) to obtain the impact velocity. The impact veloc-
ity had a small horizontal component because the hinge point was
located 240 mm above the free surface. The impact velocity was
defined as the magnitude of the vertical component of velocity at
the center of the plate at the time of impact. The drop heights used
in the model test were 118 mm, 222 mm, 443 mm, and 778 mm.
The corresponding values of impact velocity calculated based on
the conservation of energy were 1.61 m/s, 2.21 m/s, 3.11 m/s, and
4.11 m/s.

The hydroplastic theory derived in Sec. II was applied for a
drop from a height of 443 mm and impact velocity of 3.11 m/s
(test 1). The yield stress used in the hydroplastic calculations was
referred to as the effective yield stress. Its values were between
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FIG. 18. Results from hydroplastic theory using the initial velocity conditions. (a) The plot shows deformation at the center at a drop height of 443 mm. (b) The plot shows
error in linearizing the equation of the plate on the amplitude of deflection and rise time.

20 MPa and 65 MPa depending on the level of strain in the plate
(see Fig. 5). For the calculations here, the average values of the
ultimate tensile strength and yield stress were used as the effec-
tive yield stress: (20 + 65)/2 = 42.5 MPa. The uncertainty in the
calculations was then investigated using the upper (65 MPa) and
lower (20 MPa) values to check their sensitivity. To use hydroplastic
theory, it is necessary to calculate the added mass due to oscilla-
tions of the pyramid-shaped mode. The computer program Wamit32

was used for this purpose, and the added mass was found to be
A = 0.6 kg.

Figure 18(a) shows the time history of the deflection of the mid-
point of the plate, assuming an impact velocity of 3.11 m/s. The
calculated maximum deformation was sensitive to the effective yield
stress. The difference between the nonlinear hydroplastic solution
and the analytical hydroplastic solution is the linearization of the
structural resistance term in the latter. Figure 18(b) shows the error
in the maximum deflection w1 and the rise time of the deflection Tr
due to this linearization, as a function of impact velocity. The range
of drop heights studied here is indicated with a double arrow. The
plot shows that the error in using the analytical hydroplastic the-
ory, i.e., Eq. (10), was less than 2% for the peak deflection and less
than 1% for the rise time of deflection. The deformations of the plate
were clearly dominated by membrane action for the range of drop
heights considered. Jones19,20 claimed that membrane action is dom-
inant when the deflection becomes larger than the thickness of the
plate.

VIII. ACCURACY OF ESTIMATED IMPACT VELOCITY
The theoretical results in Fig. 18(a) used the impact veloc-

ity of 3.11 m/s as input, which was based on the conservation
of energy. The black solid curve in Fig. 19 shows that the mea-
sured impact velocity based on 3D-DIC measurements was 3.04 m/s.
The black dashed curve shows that based on the integration of
accelerometers mounted inside the box. This latter measurement

was aligned with the peak of the DIC measurements. The reduc-
tion in velocity estimated from the accelerometers and 3D-DIC
compared well.

The measured deceleration during impact can be split in two
parts. The first consisted of a very quick retardation from 3 m/s to
2.7 m/s over only 1.2 ms. This suggests an average acceleration of
−200 m/s2. In the second part, this quick deceleration was followed
by a slower deceleration from 2.7 m/s to 2.5 m/s over 5 ms, which

FIG. 19. The plot shows the impact velocity measured using the 3D-DIC method
and accelerometers (left y axis) and the deflection of the plate (right y axis) during
test 1. The plot shows uncertainty in the estimated impact velocity based on energy
conservation and an ∼18% reduction in velocity during impact.
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suggests an average acceleration of −50 m/s2. Figure 19 also shows
no large accelerations of the box during the “bounce back” stage of
the impact. This suggests that the “bounce back” was not induced by
the global acceleration of the rig.

IX. HYDROPLASTIC THEORY BASED ON DIRECT
FORCE INTEGRATION

Hydroplastic theory using the initial velocity condition assumes
that the impact velocity is constant during impact. However, Fig. 19
shows that this was not the case for the model test. It is not straight-
forward to generalize this theory to allow for a time-varying impact
velocity V(t). The problem is now studied by the direct integra-
tion of hydrodynamic forces. To this end, we study the mathemat-
ical problem of a plate impacting a curved free surface. Figure 20
shows the plate as it impacts a free surface with radius of cur-
vature R along the x axis. The curvature is much larger than the
width of box B. The problem could then be treated using the the-
ory of incompressible potential flow. The hydrodynamic model is
like the one used to study the hydroelastic wedge by Faltinsen.18

The velocity of the plate was averaged along each strip. This means
that the velocity potential could be approximated as that under a
rigid, heaving plate. The velocity potential can then be expressed
as

φ = [−V(t) + ẇ(y, t)]
√
c2 − x2J(y, κ). (20)

The factor J(y, κ) was introduced to account for 3D effects in a
simple way. J(y,κ) is the ratio of the added mass for a heaving strip
to the 2D added mass of this strip (see Fig. 20). The function J(y,κ)
is taken from Fig. 9 of Ref. 33. It depends on the location of the strip
and the aspect ratio of the wetted surface κ = 2c/L. Furthermore,
ẇ(y, t) is the average speed of deformation of the wetted strip of the
plate,

ẇ(y, t) = ẇ1(t)
c

c

∫
0

N̄(x, y)dx = ẇ1(t)
c

Iw(y)

≈ ẇ1(t)
c ∑

i
N̄(xi, y)Δx. (21)

FIG. 20. Schematic of the plate impacting a wave with radius of curvature R.

The effect of the deformation on the wetted length c was
neglected. The wetted length can then be determined from Wagner’s
theory. According to Faltinsen and Timokha,34 the wetted length
is

c = 2
√
Rη, ċ = V

√
R
η

for c ≤ B/2,

c = B/2, ċ = 0 for c > B/2,

η(t) = ∫
t

0
V(τ)dτ.

(22)

The pressure on the impacting surface is p = −ρϕ̇. Hence,

p = −ρ{−V̇ + ẅ}
√
c2 − x2J(y, κ)

− ρ{−V + ẇ}cċ(c2 − x2)−1/2
J(y, κ)

− ρ{−V + ẇ}
√
c2 − x2 2ċ

B
dJ(y, κ)

dκ
. (23)

The equation of global rotation of the drop arm is

Iyy
dω
dt
= −∫

S
p(xc + x)dS − ρgLBxcη + gMxG. (24)

The pressure given by Eq. (23) and the kinematic relationship
ω = η̇/xc were inserted in Eq. (24). This leads to the following
equation for the global rotation of the drop rig:

( Iyy
xc

+ ρI1g)η̈ − ρI2gẅ1 = −ρċ(cI3g +
2
B
I5g)η̇ + ρċ(cI4g +

2
B
I6g)ẇ1

− ρgLBxcη + gMxG. (25)

The integrals Iig , i = 1,2, . . ., 6 are listed in Eq. (27). The
deformation of the plate is described by Eq. (4). Large deforma-
tions were assumed, meaning that the right-hand side of Eq. (4) was
equal to 4N0w1ẇ1. The pressure given by Eq. (23) was inserted in
Eq. (4) and leads to the following equation for the deflection of the
plate:

−ρI1η̈ + [Ms + ρI2]ẅ1 = ρċ(cI3 +
2
B
I5)η̇ − ρċ(cI4 +

2
B
I6)ẇ1

− 4N0w1. (26)

The integrals Ii,i = 1,2, . . ., 6 are listed in Eq. (27). The time
derivative of the wetted length c is infinite at t = 0. This means that
the hydrodynamic forces in Eqs. (25) and (26) should be treated
carefully. At t = 0, these expressions can be simplified using (1) for
a small t, η(t) = Vt, which leads to cċ = 2VR; (2) the initial con-
ditions w1 = 0, ẇ1 = 0, η = 0, and η̇ = V ; and (3) the integrals
calculated at t = 0 using J(y,κ) = 1, dJ(y,κ)/dκ = 0, and Iw(y)/c
= N̄(0, y). The right column of Eq. (27) shows the integrals
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calculated at t = 0,

Integrals for t > 0 Integrals for t = 0

I1g = xc ∫
S

√
c2 − x2J(y, κ)dS I1g = 0

I2g = xc
c ∫

S
Iw(y)

√
c2 − x2J(y, κ)dS I2g = 0

I3g = xc ∫
S
(c2 − x2)−1/2J(y, κ)dS I3g = πxcL

I4g = xc
c ∫

S
Iw(y)(c2 − x2)−1/2J(y, κ)dS I4g = πxcLp

I5g = xc ∫
S

√
c2 − x2 dJ(y,κ)

dκ dS I5g = 0

I6g = xc
c ∫

S
Iw(y)

√
c2 − x2 dJ(y,κ)

dκ dS I6g = 0

I1 = ∫
S
N̄(x, y)

√
c2 − x2J(y, κ)dS I1 = 0

I2 = 1
c ∫
S
N̄(x, y)Iw(y)

√
c2 − x2J(y, κ)dS I2 = 0

I3 = ∫
S
N̄(x, y)(c2 − x2)−1/2J(y, κ)dS I3 = πLp

I4 = 1
c ∫
S
N̄(x, y)Iw(y)(c2 − x2)−1/2J(y, κ)dS I4 = 2π

3 Lp

I5 = ∫
S
N̄(x, y)

√
c2 − x2 dJ(y,κ)

dκ dS I5 = 0

I6 = 1
c ∫
S
N̄(x, y)Iw(y)

√
c2 − x2 dJ(y,κ)

dκ dS I6 = 0

(27)

Here, S is the wetted area of the impacting surface. The integrals were
solved using numerical integration. Equations (25) and (26) were
solved using a standard explicit second order Runge–Kutta time-
integration procedure. A convergence test was carried out to ensure
that the time steps were small enough to provide accurate solutions.
As the radius if curvature of the free surface increased to infinity, the
mathematical problem approached the problem of impact on a flat
free surface. Equations (25) and (26) were solved for an increasing
R to study this limit. The deformation at the center w1 showed very
small variations for R > 32B.

Figure 21 shows (1) the solution to the coupled Eqs. (25) and
(26), (2) the solution to Eq. (26) assuming that the impact velocity
was either constant or equal to the measured impact velocity, and (3)
the analytical hydroplastic model in Eqs. (10) and (11) that assumes a
constant impact velocity and a spatially averaged deflection velocity
initially equal to the impact velocity. Figure 21(a) shows estimated
deflections, while (b) shows the velocity of deflections and (c) shows
the impact velocity for the different methods. In the calculations, the
effective yield stress was σ0 = 42.5 MPa, the half-width of the flexible
plate was Lp = 110 mm, the horizontal coordinate of the center of the
plate was xc = 2731 mm, the radius of curvature of the free surface
was R = 32B, and the impact velocity was V(t = 0) = 3.04 m/s.

An estimate of the effect of the deceleration of the rigid body
on the deflection of the plate is the difference between the estimated
maximum deflection using a constant impact velocity and the max-
imum deflection when using the measured impact velocity as input.
The results show that the deceleration led to a reduction in the max-
imum deflection of about 21%. This means that if the drop test were
designed such that the impact velocity was constant during impact,

the expected maximum deformation would have been 21% higher
than that measured.

It is also useful to compare the velocity of deformation
when the plate was fully wetted with the initial velocity condition
ẇ1 = 2 V, which was used in the analytical hydroplastic theory.
The comparison should be made using direct calculations where
the impact velocity was constant during slamming when the plate
had been fully wetted. Figure 21(b) shows that the plate’s velocity
was 6.75 m/s at the time, 11% higher than the velocity at the center
obtained by the initial velocity condition ẇ1 = 2 V. In comparison
with the case of an elastic wedge studied by Faltinsen,18 there was
a deviation between the direct calculations and the solution based
on the initial velocity condition, of 20% (see Fig. 16 of Ref. 18). The
two problems are not directly comparable because of notable differ-
ences between the cases. Here, we considered the impact on a curved
surface, and not a wedge with a small deadrise angle. Furthermore,
this study considers plastic structural response, which means that
the shape of the mode was different.

Note that the added mass used for the analytical hydroplas-
tic method plotted in Fig. 21 was equal to ρI2 = 0.48 kg, less than
the added mass calculated from Wamit, 0.6 kg. The latter value was
used in Figs. 18 and 22. This deviation in the calculated added mass
occurred due to the strip theory assumption of the hydrodynamic
problem.

Figure 21(c) shows the impact velocity. The coupled solutions
to Eqs. (25) and (26) show a quick deceleration until the plate had
been fully wetted. It is interesting to compare this deceleration with
that from the method by Ermanyuk and Ohkusu,35 who studied the
reduction in the velocity of a flat circular disk impacting a calm free
surface. The same principles were applied to the rotating system of
the drop test considered here. The rate of change in angular momen-
tum was balanced by the moment induced by the slamming load.
This can be expressed as

Iyy
dω
dt
= −Fsxc. (28)

Here, the slamming force Fs is expressed as

Fs =
d
dt
(A33V). (29)

The plate was assumed to be rigid, with the corresponding
added mass A33 associated with its vertical motion. The vertical
velocity was constant in space, meaning that the local rotation of the
plate was neglected. The angular velocity ω and the vertical compo-
nent of velocity V at the center of the plate were related as ω = V/xc.
Then, the reduction in velocity at the time of impact was

V+

V−
= Iyy
Iyy + x2

cA33
= 0.866. (30)

The horizontal coordinate of the center of the plate was
xc = 2731 mm. The added mass was half the added mass of a
thin plate in infinite fluid, as defined by Blevins,36 A33 = 15.78 kg.
For impact velocity V− = 3.04, the velocity after impact was
V+ = 2.63 m/s. This was a larger reduction than that indicated by the
coupled solution of Eqs. (25) and (26). One reason for this difference
is that the deflection of the plate was not considered in Eq. (30).
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FIG. 21. Comparison between time histories of (a) deflections at the center, (b) velocity of deflection at the center, and (c) impact velocity during impact. The initial impact
velocity just before impact was 3.04 m/s. The plots quantify the effects of retardation on plate deflections.

FIG. 22. FEA with an initial velocity equal to the impact velocity (3.11 m/s) for flat impact at a drop height of 443 mm. (a) Deflection in the middle of the plate as a function
of time. (b) Deflection profiles for y = 0 at different instants indicated in (a). The material was defined as the modified Johnson–Cook constitutive relationship (∗MAT_107),
including the effect of the strain rate.
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X. EFFECTS OF MATERIAL HARDENING
AND STRAIN RATE

Hydroplastic theory assumes perfectly plastic behavior of the
material, unlike the aluminum test plate that exhibited strain hard-
ening (see Fig. 5). FEA simulations were therefore used to quantify
the effect of strain hardening on the estimated deformations. A finite
element mesh consisting of 60 × 60 square-shaped finite elements
was used. At the start of the simulations, the velocity of the FEM
nodes normal to the surface of the plate was set to be equal to the
impact velocity. The added mass was estimated by the same Wamit
analysis as applied to the hydroplastic theory described earlier. The
only difference was that a piston mode shape was used to define the
distribution of velocity over the plate. The added mass was modeled
as point masses on the nodes of the FEM grid, and the mass was
assumed to be constant during the simulation.

The FEA was carried out using the explicit solver in LS-
DYNA,24 which applies the central difference method to integrate
time. The plate itself was modeled using the default Belytschko–Tsay
shell elements in LS-DYNA.24 This element applies a reduced one-
point integration method to establish stress. To account for through-
thickness variations in stress, nine integration points were defined
along the thickness. The thinning option was further activated,
which is important for membrane deformations.

Figure 22(a) shows the deformation at the center of the plate
as a function of time. The plot indicates six instants. Figure 22(b)
shows the deformation of the line (y = 0) at the same instants. The
plot indicates traveling hinges moving toward the center of the plate
during its deformation. The material was assumed to deform under
adiabatic conditions following the modified Johnson–Cook consti-
tutive relationship (∗MAT_107) using the parameters defined in
Sec. IV.

XI. COMPARISON BETWEEN THE MATHEMATICAL
MODEL, FINITE ELEMENT MODEL,
AND THE EXPERIMENTAL TEST RESULTS

In this section, the results of the hydroplastic and finite
element methods are compared with those of the experiments.
Figure 23 compares center deflections obtained using the analytical
hydroplastic theory with the initial velocity condition, hydroplastic
theory based on direct pressure integration, and FEA using the ini-
tial velocity condition and experiments. The plots show results of
hydroplastic theory (blue curves) for three values of the yield stress,
i.e., 20 MPa, 42.5 MPa, and 65 MPa.

The peak deflection from the coupled analysis using Eqs. (25)
and (26) was slightly smaller than the results of the analytical
hydroplastic theory using the initial velocity condition. The FEA was
simulated with and without the effect of the strain rate.

The plots in Fig. 23 show that the measured deformation veloc-
ity of the center differed significantly from the impact velocity.
Figure 24 shows a comparison of the deformation velocity divided by
the impact velocity, ẇ/V0, as predicted and measured for drop test
1. The measured deformation velocity at the middle of the plate was
more than four times higher than the impact velocity. The plot also
shows the nondimensional, spatially averaged deformation velocity
for (1) the line y = 0 for the center of the plate |x| < 80 mm and
(2) the center square area of 160 × 160 mm2 of the plate. Both these

spatially averaged deflection velocities exceeded the impact veloc-
ity. Figure 24 also shows the deformation velocity of the center of
the plate, estimated using hydroplastic theory and the FEA. The plot
shows a large discrepancy between the theoretical estimates and the
experimental measurements.

We now consider the physical mechanism that caused large
oscillations in the deflection velocity during the rapid deflec-
tion stage of the slam. Abrahamsen and Faltinsen37 established
a mathematical model of an air pocket trapped between a wave
and the upper corner of a sloshing tank. The impact velocity
was assumed to be constant, and the mathematical problem was
hence valid for 3D flow conditions. Here, this model is extended
to account for structural deformations. Water was assumed to
be incompressible. The velocity potential describing the flow of
water was ϕ = Vy + ϕ1(x, y) + C(t)ϕ2(x, y). The velocity poten-
tials ϕ1 and ϕ2 satisfied the boundary value problems described
in detail in Ref. 37. Water flow was connected to the air pocket
through a pressure condition on the interface p = −ρĊ(t). The
air pocket was assumed to be closed, and its compression was
assumed to be adiabatic. The dynamic pressure in the air pocket
was

p(t) = p0{(
Ω0

Ω(t))
γ

− 1}. (31)

Here, Ω is the volume of the air pocket, Ω0 is the initial volume of
the gas pocket, γ is the ratio of specific heat, and p0 is atmospheric
pressure. The air pocket was assumed to cover the entire area of the
plate. Based on the derivations in Sec. II, the equilibrium equation of
the plate is as follows:

Msẅ1 + 4N0w1 =
4
3
L2p. (32)

The equation describing the rate of change in the volume of
the air pocket was modified compared with Ref. 37 to account for
structural deformations. The rate of change of this volume is

Ω̇ = ẇ1 ∫
s1

N̄(x, y)dS − ∫
s2

ϕndS. (33)

The vertical velocity of the interface between the air pocket
and water was approximated to be spatially constant, according to
Faltinsen and Timokha34 (p. 511). The hydrodynamic pressure on
the interface was approximately p(t) = −A33ẅ2/(4a2). Here, A33 was
the added mass coefficient associated with the vertical motion of a
piston, with the size of the air pocket embedded into a rigid plate
with dimensions L × B, and a is the half-width of the square-shaped
air pocket. This simplification also means that the last integral in
Eq. (33) is equal to −4a2ẇ2.

This mathematical problem was solved using a standard explicit
Runge–Kutta time-integration procedure. The input to the analysis
was taken from test 1. The volume of the air pocket was estimated at
the time of maximum deflection using a combination of the high-
speed video and the 3D-DIC measurements. The volume of the
air pocket in drop test 1 was Ω0 = 5.4 × 10−5 m3. The half-width
of the air pocket was a = 53 mm. The added mass A33 = 0.49 kg
was calculated using Wamit.32 The ratio of specific heat of air was
γ = 1.4, atmospheric pressure was 1.01 × 105 Pa, and the effective
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FIG. 23. Comparison of midpoint deflections based on DIC measurements, hydroplastic theories, and FEA for the drops at heights of 118 mm, 222 mm, 443 mm, and
778 mm.

yield stress was 42.5 MPa. The initial conditions for the numerical
integration were w1 = 0, ẇ1 = 0, w2 = 0, ẇ2 = 3.11 m/s, and Ω0 = 5.4
× 10−5 m3 at t = 0.

Figures 25(a) and 25(b) show displacements and velocities of
the plate and the air pocket during the impact, resulting from the
numerical integration of the problem. The time series of the deflec-
tion of the plate exhibited deformations at two distinct timescales.
The first was the slow timescale, which has already been described
well using the analytic hydroplastic theory derived in Sec. II. The
second was a shorter timescale with a period of ∼1.1 ms. Response
at this timescale was visible only in the deflection of the plate,
and not in the motion of the interface between air and water.
This suggests that the timescale of these oscillations can be iden-
tified by setting w2 = 0, if the pressure–volume relationship in
Eq. (31) can be linearized by assuming fluctuations of small vol-
ume; p = p0γ(Ω0 − Ω)/Ω0, as in Ref. 38. Inserting this expression
into Eq. (32), and neglecting the motion of the interface between
water and air in Eq. (33), the following natural frequency can be

derived:

ω2 =
4N0 +

4L2
pp0γIAP
3Ω0

Ms
. (34)

Here, IAP is equal to the first integral in Eq. (33). Inserting the same
input as used in Fig. 25 (test 1), Eq. (34) estimates a natural period of
1.1 ms. Equation (32) is valid only if the velocity of deflection is pos-
itive. Figure 24 shows that the duration of the first half-cycle of the
deflection velocity is approximately half the period calculated from
Eq. (32). This means that the oscillations in the velocity of deflection
experienced during the rapid deformation stage of the impact likely
occurred owing to the free vibrations of the plate on top of the air
pocket. The mass was then associated with the mass of the plate, and
stiffness was associated with the compressibility of the air pocket and
the resistance of the plate.

The aim of the scaled experiment was to obtain geometri-
cally scaled plate deflections for a 0.6-mm aluminum plate and an
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FIG. 24. Deformation velocity divided by the impact velocity for 3D-DIC, hydroplas-
tic theory, and FEA results at a drop height of 443 mm. For the 3D-DIC mea-
surements, three estimates were plotted: (1) ẇ is the speed of deformation of the
center. (2) ẇ is the average speed of deformation of the middle section y = 0 from
x = −80 to x = 80 mm. (3) ẇ is the average speed of deformation of the plate in
the square area from x = y = −80 mm to x = y = 80 mm. For hydroplastic theory
and the FEA, ẇ is the velocity at the center.

18-mm steel plate at a scale of 1:14.5. The scaling is based on Eq. (11)
where the physics of the entrapped air cushion was neglected. Hence,
the coupled air pocket model [Eqs. (31)–(33)] can be used to dis-
cuss the validity of the scaling. The definition of the velocity poten-
tial just prior to Eq. (31) shows that p/(ρV2) was the relevant
nondimensional pressure. Dividing Eq. (31) by ρV2 shows that the

Euler number p0/(ρV2) was a parameter in the problem. Further-
more, a nondimensional version of Eq. (32) yields the nondimen-
sional mass, Ms/(ρL3

p), and nondimensional structural resistance,
Np/(ρLpV2). Only the structural resistance was scaled correctly. The
physics associated with the Euler number has been discussed in
Refs. 34 and 37 in connection with oscillating air pockets trapped
by gravitational waves inside tanks with rigid walls. In this case,
the pressure inside the air pocket does not follow Froude’s scaling
if the Euler numbers are different between the model and the full-
scale problem. However, even if the Euler numbers are different, the
time integral of pressure, i.e., the impulse, still followed Froude’s
scaling. As the Euler number and the nondimensional mass were
different between the model and the full-scale problem studied here,
the mechanism causing rapid oscillations in velocity in Fig. 24 is not
expected to be similar in model and full scale. However, the physics
of the pressure oscillations inside the air pocket causing the veloc-
ity fluctuations of the plate is secondary to the physics described
by Eq. (11), which was the basis for scaling the experiment. Other
physics that is not handled by the scaled experiment is the viscous
effects. However, since viscous flow separation does not occur in the
water, the viscous effects will only be present in the boundary layer
flow at the solid body. Since associated shear stresses are small rela-
tive to pressures, we can neglect the viscous effects in water. Finally,
surface tension effects were not accounted for in the scaled experi-
ment. Surface tension matters for small stable air bubbles in water
and balances the pressure inside the air bubble. However, even for
small air bubbles of order 1 mm in size, the surface tension does
not affect the natural frequency of the air bubble (see, for instance,
Ref. 39, p. 186). Hence, since the air pocket entrapped in the exper-
iment is orders of magnitude larger than this, the physical behavior
of the air pocket is not believed to be influenced by surface tension
effects.

Figure 26 shows the maximum deformation of the plate as a
function of impact velocity. Both the permanent deformation mea-
sured with a dial gauge and the maximum deflection from the DIC
measurements are shown. Figure 26(a) shows a comparison between

FIG. 25. Time histories of (a) deformations and (b) velocities of the plate and air pocket during impact.
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FIG. 26. Comparison of maximum deflections of the plate during flat impact at different impact velocities. (a) Hydroplastic theory and experimental results. (b) FEA using the
model of material with and without the effects of the strain rate.

these sets of experimental data, with the maximum deformations
from analytical hydroplastic theory obtained using three values for
the yield stress: 20 MPa, 45 MPa, and 65 MPa. All experimental
peaks were between the theoretical curves, with a yield stress rang-
ing from 20 MPa to 45 MPa. The results of analytical hydroplastic
theory assumed a yield stress of 65 MPa to show low estimates of the
maximum deformation.

Figure 26(b) shows a comparison in terms of the maximum
deflection between the FEA and the experiments. It shows the results
of the FEA with and without the effects of the strain rate, which
was about 10% at peak deflection. The effect of the strain rate
might be more significant than this in the model test, given that the

FIG. 27. Comparison of the shape of deflection at maximum deflection for different
methods at a drop height of 443 mm.

measured deflection velocity of deformation was higher than that in
the analysis.

The hydroplastic theory shows that the maximum deformation
was linearly dependent on velocity. The results of the FEA showed
a slight deviation from a straight line. One reason for this difference
might have been the strain hardening of the material. It is not clear
whether the experimental measurements showed the same trend.

Figure 27 shows a comparison of the deflection profiles along
the x axis at a drop height of 443 mm at the time corresponding to
the peak deflection. The shape of deflection was triangular according
to hydroplastic theory and was nearly triangular for the results of the
FEA. However, the profile of experimental deflection corresponded
closely to the shape of a cosine mode. Experience from air blast load-
ing on aluminum and steel plates shows that the duration of the
load alters the shape of deflection, from pyramid shaped, for a load
imposed for a short duration,28 to a more cosine-shaped deflection,
for a load imposed for longer time.40 Furthermore, the aluminum
alloy used in the drop tests showed significant strain hardening for
the magnitudes of strain considered. Strain hardening tends to dis-
tribute plasticity on a larger area of the plate.41 This may explain the
difference between the analytical hydroplastic theory and the results
of the FEA in Fig. 27. The aim of the mathematical analysis carried
out here was to design and analyze errors in the drop test. More
elaborate analysis, which fully accounts for the combined aero- and
hydro-structural physics, is necessary for a deeper insight into the
physics of the observed cosine shape of deflection.

XII. CONCLUSIONS
The drop tests described here were designed to study large and

plastic deformations of a square plate, with equal emphasis on its
structural mechanics and hydrodynamics. Dual cameras were used
to monitor the deforming plate from above, and the deformations
were tracked using the 3D-DIC technique developed in Refs. 21
and 22. The complex hydrodynamics of the impact were captured

Phys. Fluids 32, 082103 (2020); doi: 10.1063/5.0013858 32, 082103-19

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

with a high-speed camera from below. The design of the frame hold-
ing the deformable plate was inspired by setups used for explosion
testing, where the plate is clamped between thick frames.28 The new
design leaves the area in front of the plate flush, while its edges are
close to fixed along the four boundaries.

During flat impact, the plate developed large plastic deforma-
tions. In the experiments, the maximum deformations ranged from
16 to 38 times the thickness of the plate. The plate deformed into
a cosine deflection shape. The high-speed video filming the plate
from below during the impact showed the entrapment of a large
air pocket that covered roughly 50% of it during impact. Drop tests
with stiffer plates showed much less air trapped beneath the plate.
This shows that the amount of air trapped depends on the stiffness
of the plate. The types of air pockets studied here have, to the knowl-
edge of the authors, not been described in the literature in the area to
date.

The proposed analytical hydroplastic theory expands the
hydroelastic theory proposed by Faltinsen14 using the rigid plastic
analysis by Jones.19,20 The method solves for the free vibration of a
nonlinear, single-degree equation of freedom with an initial velocity
condition like that in the hydroelastic theory proposed by Faltinsen.
Analytical hydroplastic theory shows that the deflection in ampli-
tude at the center is proportional to the impact velocity. When the
deformation of the plate is dominated by membrane action, the anal-
ysis can be linearized and an analytical solution can be obtained.
Comparisons between the measured and estimated deflections using
analytical hydroplastic theory show that it can adequately capture
the maximum/permanent deflections of the plate. However, shapes
of the theoretical deflection form a pyramid, while the experiments
show a cosine shape of deflection.

Drop tests at a height of 443 mm were repeated three times to
check for repetition error. The maximum deformation was within
±2.5%. The DIC measurements were compared with those from a
coordinate measurement machine (CMM). The errors were along
the order of 1% and might have been due to a difference in tem-
perature between the location of the drop test and that of the CMM
apparatus. The impact velocity of the rig was estimated using the
principle of energy conservation. For drop test 1, the theoretical
estimate of impact velocity was 2% higher than the experimentally
measured value. Furthermore, for this test, the deceleration in the rig
until the maximum deformation of the plate was 15% of the initial
impact velocity.

The effect of deceleration on the deformation of the plate was
investigated through a separate mathematical model. The plate was
assumed to impact a curved free surface. As the curvature increased
to infinity, the problem then became equivalent to that of the impact
on a flat free surface when the air underneath the plate is neglected.
The numerical model directly integrated the equations of equilib-
rium of the plate with the hydrodynamic pressure model based on
Wagner’s theory.1 The analysis showed that the deceleration of the
rig during the impact led to a reduction in the maximum deflection
of 21%. The model was also used to assess the validity of the ini-
tial velocity conditions used in the analytical hydroplastic method.
The numerical model based on direct integration yielded an initial
velocity of 11% higher than that used in the analytical hydroplastic
method.

The aluminum alloy used for the experiments (A1050 H111)
exhibited considerable strain hardening, which means that the

definition of the effective yield stress used as input to the hydroplas-
tic theories was uncertain. The maximum midpoint deflection was
relatively accurately estimated using the average value between
the first and the ultimate tensile yield strengths of the aluminum
plate. The finite element method was used to study the effect of a
more accurate material model on the structural response. The FEA
model provided good agreement with the DIC measurements in
terms of center deflection. The effect of the strain rate on the FEA
amounted to a 10% reduction in the peak deflection for the studied
impacts.

The FEA and the analytical hydroplastic theory assume that
the spatially averaged velocity of deflection is equal to the impact
velocity. However, the experiments here showed that the spatially
averaged deflection velocity is approximately twice that and oscil-
lates during impact. Given that both the FEA and the analytical
hydroplastic theory neglected the influence of the air pocket, the
coupled water–air pocket-structure physics was studied. A simpli-
fied two-degree-of-freedom model representing the deflections of
the plate and the compression of air pocket was established and
solved numerically. The first-half period of the measured deflections
was comparable to half the period estimated from the numerical
model. The result suggests that the oscillations in deflection veloc-
ity during the slam were due to the free vibration of the plate on top
of the air pocket. The mass can then be associated with the mass of
the plate, and stiffness can be associated with the compressibility of
the air pocket and resistance of the plate.

The experiments here show that the plate was pushed down
and then up after the time of maximum deflection. This “bounce
back” behavior is not reproduced by hydroplastic theory, nor is it
present in the FEA presented here. The measurements show that
global accelerations of the drop arm were small during the time of
the “bounce back.” Hence, this bounce back does not seem to be
directly caused by global acceleration. More accurate models are
needed to understand the physics of this phenomenon.
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