
1 

Incorporating software failure in risk analysis – Part 1: Software 

functional failure mode classification 

Christoph A. Thieme1,2*, Ali Mosleh3,2, Ingrid B. Utne1,2, and Jeevith Hegde1 

1Norwegian University of Science and Technology (NTNU) Centre for Autonomous Marine Operations and Systems 

(AMOS), NTNU, Otto Nielsens Veg 10, 7491 Trondheim, Norway; 2Department of Marine Technology, NTNU, Otto 

Nielsens Veg 10, 7491 Trondheim, Norway; 3B. John Garrick Institute for the Risk Sciences, University of California, 

Los Angeles, 404 Westwood Plaza, Los Angeles, CA 90095, USA 

*Corresponding author E-mail: Christoph.Thieme@ntnu.no 

Abstract 
Advanced technological systems consist of a combination of hardware and software, and they are often 

operated or supervised by a human operator. Failures in software-intensive systems may be difficult to 

identify, analyze, and mitigate, owing to system complexity, system interactions, and cascading effects. Risk 

analysis of such systems is necessary to ensure safe operation. 

The traditional approach to risk analysis focuses on hardware failures and, to some extent, on human and 

organizational factors. Software failures are often overlooked, or it is assumed that the system’s software 

does not fail. Research and industry efforts are directed toward software reliability and safety. However, the 

effect of software failures on the level of risk of advanced technological systems has so far received little 

attention. Most analytical methods focus on selected software failures and tend to be inconsistent with respect 

to the level of analysis.  

There is a need for risk analysis methods that are able to sufficiently take hardware, software, and human 

and organizational risk factors into account. Hence, this article presents a foundation that enables software 

failure to be included in the general framework of risk analysis. This article is the first of two articles addressing 

the challenges of analyzing software failures and including their potential risk contribution to a system or 

operation. Hence, the focus is on risks resulting from software failures, and not on software reliability, 

because risk and reliability are two different aspects of a system. 

Using a functional perspective on software, this article distinguishes between failure mode, failure cause, and 

failure effects. Accordingly, 29 failure modes are identified to form a taxonomy and are demonstrated in a 

case study. The taxonomy assists in identifying software failure modes, which provide input to the risk 

analysis of software-intensive systems, presented in a subsequent article (Part 2 of 2) [1]. 
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1 Introduction 
Risk analysis provides decision support in the design and operation of technological systems. One important 

step of risk analysis is the identification of hazardous events; however, this may be challenging for advanced 

systems such as autonomous vehicles and vessels. Advanced systems consist of both hardware and 

software, and the analysis of software failures is difficult if traditional methods of risk analysis are used [2]. 

For example, autonomous vehicles and vessels may become an essential part of future transportation 

systems [3]. Autonomous cars are presently being tested. In the maritime industry, autonomous ships are 

expected to operate within the next five years [4, 5]; however, concerns are being raised with respect to the 

safety of autonomous ships and their control systems [6]. The risk contribution from software is often treated 

superficially and is assumed to be safe and reliable such as in maritime transportation [7]. 

For the regulatory authorities and the public to approve and accept the widespread use of autonomous 

systems, the level of risk associated with such systems needs to be sufficiently low. Hence, the risks 

associated with these systems need to be analyzed for both the hardware and the software. Risk analysis 

attempts to answer three questions: “(i) what can go wrong, (ii) how likely is it that it will happen, and (iii) if it 

does happen, what are the consequences?” [8]. A risk analysis is the process that answers these questions. 

The overall purpose of this article (Part 1) and the subsequent article (Part 2) [1] is to provide a process for 

analyzing software and hardware to incorporate into existing risk-analysis methods. Part 1 helps identify 

hazards and develops an associated taxonomy. Part 2, the next step of risk analysis, proposes a process for 

analyzing the effects of software failures on integrated and interacting software, on hardware components, 

or on operators of the system. 

Thus, we first describe the identification of potentially hazardous events or possible failure modes, particularly 

of software. “A failure mode is the manner in which an item fails” [9] and is specific to the context of operation 

[10]. A generated numerical output that is legitimate and correct in general may be wrong and inappropriate 

for a specific situation (the context of operation). Some experts agree that software that is used under normal 

operational conditions can be analyzed from a functional point of view [11] with respect to risk, but a different 

process for risk analysis is necessary because software failures are not like hardware failures. They may 

lead to unanticipated effects that are not easily identified [12]. Software might be reliable in the sense that it 

executes programmed actions correctly. However, the software might act reliably in a situation where the 

action might be considered unsafe [13]. Software behaves deterministically (i.e., software failures will always 

manifest under the same circumstances). Failures of external interfaces or the computing hardware may 

result in cascading failures affecting the whole system. This should be considered to cover the whole risk 

spectrum for a system. 

Some risk-analysis approaches have been introduced to cover the risk contribution of software. Examples 

are software failure mode and effects analysis (FMEA) [14-20]), dynamic-flowgraph methodology (DFM) [21-

24], or simulations with failure mode injection [25-27]). The current methods make only limited use of available 

information and the context of use (i.e., the interaction with other software, hardware, or human operators). 

The mechanisms of how a failure in the software develops and affects the system are not treated in detail. 

Existing failure mode taxonomies do not adhere consistently to one level of analysis (i.e., the software-system 

level, functional level, or code level). This makes analysis and decision making for mitigating measures for 

software risks difficult. Hence, a generic and consistent set of failure modes may improve the identification 

process with respect to coherence and the reduced time needed for such analyses. 

The objective of this article (Part 1 of 2) is to identify and structure generic functional-software failure modes 

into one consistent and comprehensive taxonomy that can be further used in the risk analysis of advanced 

systems and operations. The generic failure modes can be combined with specific functions of a software 

system. The purpose is to provide a comprehensive and systematic basis for the risk analysis of software-

intensive systems such as autonomous vehicles and ships. Failure modes could be used to support the 

efforts necessary to fulfill the requirements for safety-related systems, such as the industry standards in IEC 

61508 [28], ISO 26262 [29], or EN 50128 [30]. 
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The subsequent article (Part 2 of 2) [1] describes the process for incorporating and analyzing the effect of 

software failure modes in risk analysis, based on the taxonomy proposed herein. Part 2 relies on the 

functional representation of software. The process described in Part 2 [1] can be applied from an early 

conceptual stage and be refined with system development. It may be used to support analysis requirements 

per industry standards for safety-related systems and the development of software that is not considered part 

of a safety system. Therefore, it could aid in the identification of safety requirements and assist in preparing 

verification and validation plans. The topic of risk acceptance related to (software) system failure is not 

covered, as that depends highly on the system and its application. 

The next section offers the necessary background on the methods of risk analysis for software systems and 

relevant software failure mode taxonomies. Section 3 defines and describes the concepts of software 

functions and the functional decomposition of software. Failure mode taxonomy application to a case study 

is presented in Section 4. The last section discusses and concludes the work. 

2 Background 

2.1 Related Standards 

Software has been recognized as a key element of safety-related systems. Hence, international standards 

for the development of safety-related systems address software in specific parts: for example, the software 

requirements set forth in the generic standard for safety-related systems (IEC 61508-3 [31]). Specific industry 

standards for safety-related systems also address software requirements for road vehicles (ISO 26262-6 

[32]), the process industry (EN 61511 [33]), and railway applications (EN 50128 [30]). Not all software is 

related to safety, but a software failure may result in cascading failures that may affect the level of risk. 

Safety of the intended function is a concept that refers to risk resulting from functional insufficiencies (e.g., a 

classification algorithm that does not detect an object [34]) and is involved in some processes described 

herein and in Part 2 [1]. 

In the industry standards, some methods are thought to support life-cycle activities. For instance, IEC 61508-

3 [31] recommends the use of fault-tree (FT) analysis, reliability block-diagram analysis, and event-tree 

analysis, among other methods. In a number of cases, these methods use the findings from an FMEA as 

input, but they are not able to analyze the detailed risk aspects of software. 

FMEA is a bottom-up analysis, which considers the failure of individual components and their associated 

effect on the overall system. The standard for hardware FMEA, IEC 60812 [35], is commonly used as a basis 

for software FMEA, as no formal process for software FMEA is defined [36]. However, several taxonomies 

specifically for software FMEA have been described in some detail in Section 2.3. 

2.2 Software Failure and Risk 

In contrast to hardware systems, software fails mainly due to design and coding error. Software does not 

have a time-dependent failure rate. Software failure mechanisms, such as common-cause failure (CCF), 

differ from those that cause hardware failures [11].  

To describe most software-related failures, generic failure modes may be used so that they can be 

implemented in risk analysis [37]. “A failure mode is the manner in which a failure occurs” [9]. A failure mode 

may be determined by a function lost, intended behavior not provided, or a state transition that occurred [9, 

35, 38]. For software, this may be determined by a function lost as a result of software output, whether omitted 

or committed. In this regard, it is analogous to the definition of human failure modes [35]. 

Ensuring software reliability is a focus of the design and development of most modern systems. However, 

reliable software may still lead to hazardous situations and contribute to unacceptable levels of risk [13]. 

Several incidents show that correctly and reliably working software under some circumstances may lead to 

accidents (e.g., on space missions [39, 40] or in marine control systems [41]). The reliability analysis of 

software is not context specific and is based on the amount of bugs removed [42]. These methods help to 
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understand failure causes and consequences in the software–hardware system only to a limited extent. 

Hence, reliability-assessment methods are not very useful for risk analysis. 

Garrett et al. [21] and Guarro et al. [43] developed DFM to assess the dependability and safety of software 

systems. DFM is a two-step process: (i) build the model for the software system and (ii) analyze the model 

to build FTs. A model using DFM is a directed graph with functional relations (the causality network) and 

conditions that trigger functional relations (the conditional network). The software system is seen as a flow of 

information that is manipulated by different software functions. Failures are only assessed if they are identified 

as relevant beforehand. A timed FT is built into the second step of DFM by assessing which conditions in the 

DFM model lead to the undesired top event of the FT. 

Al Dabbagh [44] and Al Dabbagh and Lu [45] applied DFM to a networked control system of a communication 

network. Special submodels have been developed to model recurring functions in such a network with a 

focus on the timing of functions of such a system (e.g., preprocessing times, waiting times, etc.). DFM is 

applied to the analysis of failures in relation to the flow of information and its timing. For example, missing 

operations or unanticipated function calls are not considered. The analysis does not rely on information from 

software documentation, as data-type failures or failures that are related to other interactions between 

functions might be overlooked. 

The National Aeronautics and Space Administration (NASA) [46, 47] has used DFM in their context-based 

software risk assessment methodology (CSRM). In CSRM, critical-mission stages that include a risk-relevant 

software contribution are identified. These mission stages are assessed with fault and event trees. Guarro et 

al. [47] suggested the use of simple logic models, such as FT analysis, for simple software systems or for a 

high level of modeling abstraction, while recommending DFM for more complex software systems that also 

have time-dependent behavior. 

Aldemir et al. [48, 49] used Markov cell mapping combined with DFM. The method can capture system 

behavior dynamically and discover event sequences that otherwise are hard to identify by an analyst. They 

acknowledge that design errors might not be revealed by these methods. The Markov methods are based on 

analyzing different combinations of states, which requires setting up new models for each analysis. Because 

DFM is combined with the Markov cell mapping, the limitations of DFM apply to this combined method as 

well. 

Li et al. [26] and Li [10] decomposed software into functional units, and failures of these functions are inserted 

in FTs and event-sequence diagrams (ESDs) for risk analysis. Only selected failure modes are input directly 

into the risk analysis, combining different levels of software analysis and decomposition. The concept of 

functional-failure modes is not applied consistently, and certain failure modes that are not relevant to the 

functional level may be included. 

Wei [50] and Wei et al. [27] presented a framework that includes the risk contribution of software in risk 

analysis. The framework comprises four steps: input-failure analyzer, operational-profile builder, software-

propagation analyzer, and probabilistic risk assessment updater. The results of the analysis can be included 

in an ESD and FT. The method is only applicable to existing software systems and not suitable for the design 

phase. Moreover, the analysis does not make use of all the information that is typically available (e.g., 

software specifications or safety requirements), which would reveal deficiencies with respect to the 

requirements.  

Zhu [51] and Zhu et al. [25] built on the work of Wei [50] and included software failure in dynamic risk analyses, 

which also consider the relative timing of events. Random software failures are injected into a dynamic model, 

and the simulation reacts to these failures. Associated faults and event trees are built automatically by the 

system. The software behavior and failures are represented in finite-state machines. In their construct, the 

simulation model covers only selected failure modes and their influence on dynamic behaviors. 

Leveson [52] and Leveson et al. [53] stated that systems-theoretic process analysis (STPA) is a hazards-

identification method that is also suitable for software. In their construct, hazards arise from insufficient control 

action: not providing a necessary control action; providing an unsafe control action; providing a potential 
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control action too late, too early, or out of sequence; or providing a safe control action that is too short or too 

long. Abdulkhaleq and Wagner [54] and Abdulkhaleq et al. [55] extended the STPA for automated model 

checking of critical software applications by identifying potentially hazardous situations arising from a 

software model and by verifying that the already-taken control actions are safe.  

Rokseth et al. [56] recommended combining FMEA and an adapted version of STPA to improve the 

identification, analysis, and verification of hazardous events and failure modes of dynamic positioning (DP) 

systems on ships and offshore oil and gas rigs. STPA and FMEA were found to be complementary and a 

combination well suited to complex and software-intensive systems such as DP. Positioning systems will be 

crucial for autonomous systems such as ships [57, 58]. 

Gran [59] developed an influence network to assess the quality of software processing, the resulting quality 

of the software, and the associated risk. However, this approach does not consider the specific purpose of 

the software and the influence on the risk level or hazards that arise from the software. Therefore, it is not 

possible to identify and incorporate hazards in risk analysis by this approach. 

Hewett and Seker [60] analyzed the risk of embedded software systems with timed-decisions tables. The 

approach is like DFM. Decision tables represent software behavior, which is decomposed into functional 

modules. From the decision tables, timed FTs are built based on a predefined initiating event through 

backward reasoning. Similar to DFM, only failures that are related to a wrong value and the associated 

decisions are considered. Hence, it is not possible to identify failures and their contribution to the risk level 

that relate to unanticipated interaction of functions or data-type failures, for example. 

Sadiq et al. [61] proposed software risk analysis using software FT analysis. The framework is intended for 

prioritizing testing and for software improvement but also highlights the need to consider software 

requirements, modeling uncertainty, and possible errors in the analysis. However, the method only addresses 

the software-system level; it does not identify events that might arise from within the software, such as 

interactions with other system components. 

Functional-failure identification and propagation methods [62-64] and a failure propagation and simulation 

approach (FPSA) [64] have been developed to assess system behavior in cases of one or multiple hardware 

or software faults. Several models such as state-space models and function-flow models have been used to 

assess propagation. An FPSA module allows simulation to identify time-related failure effects. However, 

software and hardware failures need to be identified by the analysts individually, failure-propagation behavior 

needs to be defined specifically for each function, and failures need to be injected into the simulation. 

A starting point for risk analysis is to identify hazards and hazardous events. Because taxonomies with failure 

modes may be used as a basis for hazard identification, we conducted a search to identify existing software 

failure mode taxonomies. 

2.3 Software Failure Mode Taxonomies 

Searches in the Institute of Electrical and Electronics Engineers (IEEE) database Xplore1 and in Scopus2 

(using the keyword phrases software failure mode identification, software FMEA, software FMECA, software 

failure mode effect analysis, and software failure mode effect criticality analysis) were conducted. 

The searches covered only publications from 2000, based on the assumption that these publications also 

reflect previous taxonomies. Publications that include relevant taxonomies have been closely investigated 

and selected for further analysis. Taxonomies that are the same in several publications have been assessed 

only once. Relevant taxonomies were found in publications, published between 2002 and 2014. 

Li et al. [26] and Li [10] developed a failure mode taxonomy for software functions. They defined several 

types of failure modes, in two categories: functional-failure modes (comprising attribute and functional or 

                                                
1 http://ieeexplore.ieee.org/ (accessed Feb. 02, 2018). 
2 https://www.scopus.com/ (accessed Dec. 08, 2017). 

http://ieeexplore.ieee.org/
https://www.scopus.com/
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function-set failure modes) and external failure modes (comprising timing, input/output, multiple-interaction, 

and support failure modes). 

Input/output failure modes are those that do not originate from the software function itself [10]. An input failure 

will lead to an output failure. Input/output failure modes can be further divided into value-related and timing-

related failure modes [10].  

Multiple-interaction failure modes concern communication through a common language to exchange 

information [10]. Support failure modes comprise those related to hardware resources and the physical 

operating environment and thus do not apply directly to software functions. For the most part, they are not 

addressed herein, although they do fall into the category of software failure causes (see Section 2.4). 

The Organization for Economic Cooperation and Development (OECD) [37] has presented a taxonomy for 

hardware and software failure modes that builds on research by Li and by Li et al. [10, 26, 65], Authen et al. 

[66], Authen and Holmberg [67, 68], and Holmberg et al. [69], among others. It addresses different levels of 

the system: overall system, division, instrumentation, and control levels. 

Ristord and Esmenjaud [16], Huang et al. [70], Stadler and Seidl [17], Park et al. [20], and Prasanna et al. 

[19] presented and discussed their own adaptations of software FMEA. Although such prior reported research 

offers a basis for the identification of possible failure modes, clear descriptions and distinctions among the 

targeted levels of software abstraction (e.g., software system, software functions, and code analysis) for the 

taxonomies are absent. Only the taxonomy by OECD [37] attempts such distinctions. However, owing to the 

definitions of system, module, and submodule levels, there is some ambiguity as to the failure modes and 

their effects and causes with respect to the level of analysis. In addition, that report includes hardware failure 

modes for different system levels. However, some of the failure modes presented as software failure modes 

actually relate to the hardware system but can be seen as the cause for software failure. Section 4.3 

elaborates on some of the ambiguous failure modes, and Section 2.4 and 2.5 specifically define the software 

causes and consequences to avoid such ambiguity, respectively. 

2.4 Failure Causes 

Each failure mode may be attributable to one or more failure causes [71]. A failure cause is “the set of 

circumstances that lead to a failure” [35]. The causes of software failure can be found in its specification, 

design, or implementation [16], and a NASA document [46] states parameter and data-entry errors and 

defects introduced during the removal of other defects as additional causes. Stadler and Seidl [17] mentioned 

infinite loops, multi-process thread/deadlock, counter rollover, numerical overflow/underflow or saturation, 

and finite precision errors among other potential failure causes.  

Ozarin [12, 18, 36, 72] highlighted the need to consider the inherent interaction of software–hardware 

interfaces when analyzing software, especially with respect to causes such as bad input data or analog–

digital converter failure. The computing hardware may also be the reason for failures that manifest 

themselves as software failures. ISO 26262-11 [73] presents failure modes and models for failure mode 

effects for semiconductors (i.e., the computing hardware). Such failures may be related to safety elements 

out of Context (SEooC), [38], which are systems that were not specifically developed for a safety function but 

are necessary to carry out a safety function, such as the memory-wiper system in a software operating system 

or in the hardware [38]. 

2.5 Failure Mode Propagation 

Failure propagation determines how a failure mode in one function will affect the software system [50]. The 

failure effect of a failure mode may be defined as the “consequence of a failure within or beyond the boundary 

of the failed item” [35]. A software failure may lead to consequences for the software itself and/or for the 

system that uses the software. The two main categories of failure propagation are CCF and cascading failures 

[37, 38]. “A cascading failure is a failure of an element of an item resulting from a root cause [inside or outside 

of the element] and then causing a failure of another element or elements of the same or different item” [38, 

73]. A CCF occurs if two or more elements of an item fail directly from a single specific event or root cause, 
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which may be internal or external to all these elements [38]. This contrasts with common mode failures, which 

describe several failures that have failed in the same manner [38]. 

Propagation means that the failure is not discovered or is masked during the execution of the program. 

Masking describes the situation in which software produces the right output despite a failure during the 

execution. Multilayer traps might conceal a failure through several subfunctions of the software, according to 

Wei [50], who derived a set of propagation mechanisms for software failure modes, which should be 

considered in risk analysis.  

Failures may also propagate by other means, such as from the computing hardware or sensors to the 

software system [73]. Such failures are among the causes of failure modes discussed herein but are not the 

focus of either this article or Part 2 [1]. 

3 Functional View of Software 
The software system can be decomposed into its functions. IEC 61508 [28] defines a functional unit of a 

system as an “entity of hardware or software, or both, capable of accomplishing a specified purpose.” The 

purpose of functional decomposition is to enable the identification of relevant failure modes associated with 

each software function.  

Software can be analyzed and broken down into functions at different levels of detail (Figure 1). Decomposing 

the software further would eventually lead to the software code level in an abstracted form, represented by 

pseudocode. Such a low level of decomposition is not covered by the taxonomy herein. 

 

 

Figure 1 Different levels of software functions of a software system. 

 

Beginning from the overall functional description, the software should be decomposed into subfunctions, 

which describe what the software should do, not how it is implemented. EN 14514 [74] also provides guidance 

for decomposition. Design maturity [74] and the depth of analysis of the software are two factors that 

determine the level of decomposition. Information for the decomposition can be extracted from the safety 

requirements specification, such as defined by IEEE 830 [75]. This functional view of software can be used 

in different software-development life cycles (such as the waterfall model, the V-model, or the Scrum method). 
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Depending on the software-development approach, different activities and requirements are needed [76]. A 

functional decomposition may be carried out during software-development phase. The results from this 

decomposition should be used. 

A generic function and its main elements once the desired level of breakdown and resolution is achieved are 

shown in Figure 2, which also shows where the different categories of failure modes can be applied. The 

process section is where the functional behavior and computation are executed, turning input into output. 

Function failure modes are associated with this input–process–output section. 

 

Figure 2 Simplified view of software function and its components underlying all levels (developed and 

extended from Huang et al. [70]). 

 

The description of each function includes the purpose, process, input–output, conditions of execution, 

requirements and constraints, failure detection, and correction mechanisms. An example datasheet for 

describing a software function is shown in Table 1. Not all the information may be available [11], but collection 

of as much as possible is important to determine the relevant failure modes. 
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Table 1 Example of software-function datasheet. 

ID Data for function  

Function 
purpose 

Short description of what function is to achieve  

Inputs List and description of inputs received by function 

Input name Source Data 
type 

Data 
format 

Data 
range 

Data 
rate 

Buffer   

Outputs List and description of outputs that function produces 

 Input name Target Data 
type 

Data 
format 

Data 
range 

Data 
rate 

Buffer   

Conditions Trigger conditions 

Conditions that trigger other functions 
 

Process Describe behavior through input→output formulas 

Consider dependencies and sequence of operations 
 

Requirements Functional Related to function itself (e.g., accuracy)  

Nonfunctional Related to speed, security, safety, use of resources, etc.   

Constraints Factors that limit way function could be implemented (e.g., regulatory or 
hardware constraints; high-order language requirements; signal-
handshake protocols; and application criticality) 

 

Failure 
detection and 
correction 
features 

Measures implemented to detect, handle, and warn about software failures 
(e.g., control function, input-validity checks, and error-handling system) 

 

 

A function always has at least one output. This might be a numerical value, a binary value, or a specific 

function call. Input is the output of another function or is provided via external interfaces. An output of one 

function can also be the input to several other functions, and each function might have several inputs and 

several outputs. 

Input and output have an associated data type and an acceptable range, which might be limited by the data 

type, acceptable values, or the set of meanings assigned to the values. If the output is part of a data array or 

structure, data format refers to the order of elements. The data rate (the periodic output and its characteristics) 

and buffer (the type used for input or output to collect data or events) only need to be described if applicable. 

Both value-related and timing-related failure modes are associated with this part of a software function. 

Functions in a software system are executed in a specified order. They might be executed periodically or on 

demand, depending on the result of the operation. Each function passes on information or calls another 

function. These interactions (represented by arrows in Figures 1 and 2) have associated interaction failure 

modes. External interfaces (agents that interact with the software) include other software systems, sensors, 

databases, or human operators through a human–machine interface. 

In the subsequent article (Part 2) [1], we propose a process to incorporate software in risk analysis. For this 

purpose, software-function failure modes are identified, and their effects at the software-system level are 

analyzed. The decomposition of software into functions is an essential part of that proposed process [1]. 
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4 Proposed Taxonomy 

4.1 Procedure 

To determine whether failure modes presented in other published studies are relevant for the functional level 

of software and the software-function failure mode taxonomy, we asked three questions: 

1. Does the presented failure mode fall into our definition of a failure mode? 

2. If yes, is it within one of our failure mode categories (interaction, function, value-related, or timing-

related)? 

3. If yes, is the failure mode different from failure modes that were previously identified? 

If all the questions were answered “yes,” the failure mode is included in the failure mode taxonomy; however, 

if it does not fulfill our definition of a failure mode or does not fit into one of the mentioned categories, it is 

rejected. It is necessary to define an unambiguous and consistent failure mode taxonomy. Where necessary, 

distinctions between similar failure modes are mentioned to give more guidance for their use, and they are 

labeled as refined failure modes. To retain the experiences, practices, and findings from others’ research, 

our generic failure mode taxonomy includes mainly published failure modes. 

Contributions from relevant research were identified by screening past publications (Table 2). They contain 

types of failure modes that are relevant with respect to the software-function level. All reviewed taxonomies 

cover value-related failure modes. All the screened publications except Prasanna et al. [19] cover timing-

related failure modes, and all except Wei [50] consider interaction failure modes. Function failure modes are 

covered by only five of the publications. 

 

Table 2 Publications that form basis for identification of software-function failure mode taxonomy. 

  Publication 

  Number of failure modes  Failure mode coverage 

Presented Relevant 
 

Function Interaction 
Timing- 
related 

Value-
related 

Ristord and Esmenjaud [16] 12 5  Yes Yes Yes Yes 

Li [10] 31 19  Yes Yes Yes Yes 

Wei [50] 12 12  No No Yes Yes 

Huang et al. [70] 25 22  No Yes Yes Yes 

Stadler and Seidl [17] 21 17  Yes Yes Yes Yes 

OECD [37] 37 22  Yes Yes Yes Yes 

Park et al. [20] 21 14  Yes Yes Yes Yes 

Prasanna et al. [19] 11 10  No Yes No Yes 

 

Each of the publications has a different focus and therefore presents a different number of failure modes in 

each category, with different levels of detail. Most failure modes are presented in the OECD [37] study. 

Several failure modes have been rejected for our proposed taxonomy. For instance, Stadler and Seidl [17] 

included memory-address errors in their taxonomy; however, these are not relevant from a functional point 

of view, although they are causes of functional failure. Similarly, the failure modes central-processing-unit 

failure [26], memory failure [26], deadlock [26], and stop of operating system [16] cause but do not represent 

function failures. These are failures of the computing hardware and are considered failure causes for the 

software-function failure modes. 
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Interrupt [17] or interrupt-induced failures [37] and raised execution already imply that they are failure causes, 

not failure modes, and hence were excluded. The failure mode wrong task scheduling [19] is a very general 

description representing several interaction failure modes. 

The failure modes software aborts [38], hang/crash [both in 37], program stop with/without clear message 

[16], and fail to return/complete [17] were rejected because they represent effects of failure modes at the 

software-system level.  

4.2 Taxonomy 

The resulting taxonomy for software-function failure modes is shown in Table 3. Six identified failure modes 

address only the processing part of a function. 

 

  Table 3 Taxonomy for software-function failure modes. 

Failure mode Additional description 

Omission of function or missing operation Function (or part of it) is not executed. 

Incorrect functionality Function is not executing intended actions. 

Additional functionality Extra unspecified operation in function is executed by function. 

No voting Voting on input is not carried out within function. 

Incorrect voting 
Voting on input is not carried out according to specification within function, and 

therefore voting result is incorrect. 

Failure in failure handling Detected failures are not handled appropriately. 

 

 Table 4– Table 6 include a column for refined failure mode, which represents a more detailed case of the 

failure mode. This was done to retain the knowledge presented in prior publications while still classifying the 

failure modes generically. 

 Table 4 summarizes the interaction failure modes between software functions. These failure modes reflect 

a failure of interaction between software functions. Seven failure modes were identified for the interaction 

between functions. Ten refined failure modes were identified for the interaction between software functions 

and external files or databases.  
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 Table 4 Taxonomy for interaction failure modes of software functions. 

Failure mode Refined failure mode Additional description 

Diverted or incorrect 
functional call 

 
Wrong function is called after current function is 

finished. 

No call of next function  
No further functions are called after current function is 

finished. 

No priority for 
concurrent functions 

 
Functional calls for functions that need to be executed 

concurrently are given no priority. 

Incorrect priority for 
concurrent functions 

 
Functions needed to be executed concurrently are 

given incorrect priority. 

Communication 
protocol-dependent 
failure modes 

 
Failure modes specific to particular communication 

protocol used to interchange information between 
parts of software system. 

Unexpected interaction 
with input–output 

(IO) boards 

 
Failure mode related to interaction (possibly spurious) 

with input–output board or interface. 

Failure of interaction 
with external files or 
databases 

Wrong name Name of file or database is incorrect. 

Invalid name/extension 
Name entered for file or database contains invalid 

symbols. 

File/ database does not 

exist 

File or database name appears to be specified 
correctly but file or database does not exist. 

 File/ database is open 
File or database is open in another program and 

cannot be reopened. 

 Wrong/invalid file format File format is different from expected file format. 

 File head contains error 
File-header information contains different information 

from that required. 

 File ending contains error 
File-ending information contains different information 

from that required. 

 Wrong file length 
Length of file is different from required or expected 

length. 

 File/database is empty  

 
Wrong file/database 

contents 

Information in file or database is different from 
expected or required information. 
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Four timing-related failure modes are summarized in Table 5. Five refined failure modes were identified for 

the timing of the provided output, and four were identified for output-rate failures. 

 Table 5 Taxonomy for timing-related failure modes of software functions.  

Failure mode Refined failure mode Additional description 

Output provided Too early  

 Too late  

 Spurious 
Output provided when not requested or not needed. 

 Out of sequence 

 Not in time No output is provided from function. 

Output-rate failure Too fast  

 Too slow  

 Inconsistent  

 Desynchronized  

Duration Too long 
Length of time output is available. 

 Too short 

Recurrent functions 
scheduled incorrectly 

 
Periodically required output not delivered at expected 
time. 

 

 Table 6 summarizes the 11 software-function failure modes related to value, which here refers to the content 

assigned to a variable. This may be a numerical value, or it may be a character or symbol in string format. 

Four refined failure modes relate to the failure mode incorrect value, five to data arrays or structures, and 

three to data validation. 
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 Table 6 Taxonomy for value-related failure modes of software functions. 

Failure mode Refined failure mode Additional description 

No value 
 

No value is provided. 

Incorrect value Too high Value is higher than expected or required 
value. This might be 1, maximal allowed, or 
higher increment of value. 

 
Too low Value is lower than expected or required 

value. 
 

Opposite/ inverse value Value is opposite or inverse of expected 
value. 

 Value is zero Value is zero instead of expected value. 

Value out of range Data-type allowable range  

 Application allowable range  

Redundant/ frozen value 
 

Same value is produced constantly. 

Noisy value/ precision error 
 

Values that are transferred are not precise 
enough. 

Value with wrong data type   

Nonnumerical value Not a number (NaN) Values are transferred that are not 
interpretable by software.  

Infinite 
 

Negative infinite 

Elements in data array or 
structure  

Too many  

 
Too few  

 Data in wrong order  

 Data in reversed order  

 Enumerated value incorrect Wrong element in data array or structure is 
addressed. 

Correct value is validated 
as incorrect 

 
 

Incorrect value is validated 
as correct 

 
 

Data are not validated 
 

Validity check is not executed. 

 

4.3 Discussion 

A clear distinction between failure mode, failure cause, and failure effect is difficult to achieve. The taxonomy 

proposed herein (Tables 4–6) attempts to clearly separate failure effects and causes from the failure modes 

for the functional level. Hence, failure modes such as incorrect realization of an attribute or function [26] or 

incorrect realization of a function [37] were not included in the proposed taxonomy as they are considered to 

be failure causes, originating from the software realization process. 

Some failure modes have refined failure modes. For example, interaction with external files or databases is 

refined by several subordinate (refined) failure modes. To identify a failure mode as just a wrong interaction 

with external files or databases is not useful for further analysis; therefore, it is necessary to specify how it is 

interacting wrongly. 

Similarly, for timing-related failure modes, output-rate failure is rather vague. Hence, the refined failure modes 

too slow, too fast, inconsistent, and desynchronized were retained from published research. Especially in the 

category value-related failure modes, several distinctions were made. The failure mode incorrect value would 

cover most of the failure modes but is too generic in a number of cases. Therefore, refined failure modes for 

incorrect value were introduced. In addition, nonnumerical values were differentiated, as they have a different 
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effect on the software function from that of an incorrect numerical value. This adds more meaning to the 

failure modes and allows application-specific failure mode analysis. 

The chosen perspective on software is challenging in terms of the identification of a sufficiently low level of 

decomposition. The level of detail of software decomposition depends on the maturity of software 

development and the purpose of the analysis, such as a detailed risk study. A functional view of the software 

allows analysis of the software in an early development stage while it is still independent of the 

implementation. Especially during the early stage of development, software documentation is apt to be 

immature, and decomposition may only be possible at a higher level. Decomposition down to the code level 

is not recommended because even medium-sized software projects have several tens of thousands of lines 

of code. 

Failures of SEooC may be captured with the presented failure mode taxonomy. To be included in the analysis, 

the SEooC needs to be modeled and represented explicitly. Because the presented taxonomy focuses only 

on software-intensive systems, it cannot be used to assess hardware SEooC. 

5 Case Study 
To demonstrate possible applications of the proposed taxonomy, a case study is included in this section. 

Hegde [79] and Hegde et al. [77, 78] presented an underwater operational-envelope visualizer (OEV) that 

combines safety envelopes and subsea traffic rules for an autonomous remotely operated vehicle (AROV). 

According to Hegde et al. [79], an AROV can collide with underwater infrastructures, the seabed, and other 

underwater vehicles. The OEV supports the human operator in detecting hazardous situations that can lead 

to collision with subsea obstacles [79]. The system is a decision-support system but is not safety critical. The 

AROV still has a conventional collision-avoidance system. A collision may lead to loss of the AROV, damage 

to the subsea structure, and damage to the environment due to leakage. 

The software was developed by Ph.D. students at the Norwegian University of Science and Technology for 

demonstration purposes in the research project Next Generation Inspection, Maintenance, and Repair [80]. 

The underwater OEV was developed in Python to ensure compatibility with other software components. 

(Notably, the approach presented herein is programming-language independent.) The developers used a 

rapid prototyping approach, whereby the software was tested and improved iteratively several times. The 

process described herein (Part 1) and in the subsequent article (Part 2) [1] was applied as a structured 

process to identify relevant software failure modes and consequently improve the software in the next 

iteration.  

AROVs are tethered underwater robots that have a higher level of autonomy in their operation than 

conventional remotely operated vehicles but have more human-operator interaction than autonomous 

underwater vehicles. The underwater OEV provides decision support with respect to safe operation of the 

AROV. It is necessary to ensure that the underwater OEV does not increase the level of risk. The underwater 

OEV receives data from a database and provides information for operational decision making. This “Case 

Study” section focuses on demonstrating the individual failure modes in an application setting, and the 

corresponding processing steps are further discussed in the subsequent article (Part 2) [1]. 

5.1 Functional Decomposition 

The functional hierarchy (Figure 3) identifies five sequential functions of the software in the case study on the 

first level of decomposition: initialize underwater OEV, obtain data, determine suggested action, prepare 

rendering information, and display information. The software for the underwater OEV has only about 1,000 

lines of code. Data collection and control of the AROV are executed by other dedicated software systems, 

which are not part of this analysis. 
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Figure 3 Functional decomposition of underwater operational-envelope visualizer (OEV). 

 

Hence, it was decided that a decomposition to the first level is enough. As an example, initialize underwater 

OEV was decomposed to the second level. This software was chosen as a demonstrator for two reasons: (i) 

all failure modes in the proposed taxonomy can be demonstrated and (ii) access to the software developers 

aids the understanding and analysis of possible software failure modes. The functions on the second level 

are already close to pseudocode; therefore, decomposing the function further would lead to code instructions. 

Function 2, obtain data, serves as a suitable example because it covers a variety of output types and 

functional behaviors (Table 7). The function polls the database at a frequency of 2 Hz for data on AROV 

position, operational mode, and orientation (in radians, to be converted to degrees by the function) and for 

information on identified collision candidates. The database returns the requested values, and the obtain data 

function makes them available to subsequent functions. 
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Table 7 Datasheet for Function 2, obtain data. [AROV, autonomous remotely operated vehicle; :f, float; :i, integer; :s, string; MDb, Mission-Oriented Operating Suite 

database; N.A., not applicable] 

ID: F2 Function 2: Obtain data ID 

Function purpose 
Send request for updated information on parameters (AROV position, AROV orientation, operational-envelope information, AROV operation mode) and make it 

available for subsequent functions. 
 

Inputs 

Input name Source Data type Data format Range Rate Buffer ID 

AROV orientation from database MDb float :f, :f, :f 0 to 2*π 2 Hz N.A. MDb.O1 

AROV operational mode from database MDb integer :i 0 to 2 2 Hz N.A. MDb.O2 

AROV position from database MDb float :f, :f, :f  2 Hz N.A. MDb.O3 

Information on identified collision candidates MDb string :s, max. 64 
elements 

00-07, 10-17, 20-27, 30-37, 
40-47, 50-57, 60-67, 70-77 

2 Hz N.A. MDb.O4 

Outputs 

Output name Target Data type Data format Range Rate Buffer  ID 

Request for AROV orientation MDb string   2 Hz N.A. F2.O1 

Request for AROV operational mode MDb string   2 Hz N.A. F2.O2 

Request for AROV position MDb string   2 Hz N.A. F2.O3 

Request for information on identified collision 
candidates 

MDb string   2 Hz N.A. F2.O4 

AROV orientation F4 float :f, :f ,:f  N.A. N.A. F2.O5 

AROV operational mode F4 integer :i 0 to 2 N.A. N.A. F2.O6 

AROV position F4 float :f, :f, :f  N.A. N.A. F2.O7 

Information on identified collision candidates F3 string :s, max. 64 
elements 

00-07, 10-17, 20-27, 30-37, 
40-47, 50-57, 60-67, 70-77 

N.A. N.A. F2.O8 

Conditions 

Initiated by F1 

Initiated by F4.2 after first iteration 

Initiate F3 

F2.C1 

F2.C2 

F2.C3 

Function behavior 

Send request for AROV position, AROV orientation, AROV operational mode, and information on identified collision candidates. 

Convert AROV orientation from radians to degrees. 

Store values of AROV position, orientation, and operational mode and store information on identified collision candidates in corresponding variables. 

F2.B1 

F2.B2 

F2.B3 

 

Requirements 
Functional None 

Nonfunctional Poll MDb with 2 Hz F2.NF1 

Constraints Successful connection to MDb in F1 F2.Ct1 

Failure detection 
and correction 
features 

Request to database for nonexistent data returns error message and does not return value. F2.D1 
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5.2 Application of the failure mode taxonomy 

Table 8 presents the identified failure modes with the taxonomy for Function 2. One developer 

of the underwater OEV (one co-author) and a risk analyst (the first author) carried out the 

analysis. The table does not present all value-related failure modes. More value-related failure 

modes could be identified similarly to the ones identified in the table. A detailed list of all failure 

modes would add to the length of the table but not more insight on the identification of failure 

modes. 

The top of Table 8 defines the expected input and output for the example function obtain data. 

This sets the context for the failure mode identification. The failure modes are applied based 

on the information found in the datasheet in Table 7. The information on the inputs and outputs 

is necessary for the analysis of value-related failure modes. Conditions describe the functional 

interactions and dependencies with other functions. Functional and non-functional 

requirements set the context for the analysis, such as acceptable timing delays or value 

inaccuracies. 

The top part of Table 8shows that it is not always possible to define expected values. They 

might be unknown due to the complexity of the function or the behaviour of the function over 

time. In other cases, the expected values are known due to the context. In the case of the 

function obtain data, the expected values are assumed to be known. The AROV is traveling in 

semi-autonomous mode, Mode 1, from the south to the north without any pitch or roll angle, 

corresponding to [0, 0, 0]. An object has been detected to the left of the AROV, corresponding 

to the envelope elements [66, 67, 76, 77]. The exact location of the case study is not relevant, 

only its accuracy. 

The first column in Table 8 is labeled ID for identifier. Each recognized failure mode needs to 

have an identifier to be able to trace the failure modes. The second column summarizes the 

element that is affected by the failure mode: the variable, the execution timing, part of the 

function block, or a functional transfer. In the third column, the failure mode is described and 

specified. 
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Table 8 Failure mode identification for obtain data function of underwater operational-envelope 
visualizer. [AROV, autonomous remotely operated vehicle; MDb, Mission-Oriented Operating Suite 

database] 

Expected input 

ID Name Expected value 

MDb.O1 AROV orientation from database [0,0,0] 

MDb.O2 AROV operational mode from database 1 

MDb.O3 AROV position from database Correct (not further specified) 

MDb.O4 Information on identified collision candidates [66, 67, 76, 77]  

Expected output 

ID Name Expected value 

F2.O1 Request for AROV orientation Correct request 

F2.O2 Request for AROV operational mode Correct request 

F2.O3 Request for AROV position Correct request 

F2.O4 Request for information on identified collision candidates Correct request 

F2.O5 AROV orientation [0,0,0] 

F2.O6 AROV operational mode 1 

F2.O7 AROV position Correct (not further specified) 

F2.O8 Information on identified collision candidates [66, 67, 76, 77]  

F2.C3 Initiate F3 - 

ID 
Associated 
element 

Failure mode 

Function failure modes 

FM1 F2 Omission of “Obtain data,” which is not executed 

FM2 F2.B1 Omission of requesting data, which means that data are not requested 

FM3 F2.B2 
Omission of converting MDb.O1 to AROV orientation data, which means that orientation is not 

executed 

FM4 F2.B3 Incorrect functionality of storing values in corresponding variables, making them unavailable 

FM5 F2.B2 Additional functionality while converting AROV orientation (e.g., conversion of AROV position) 

FM6 F2.D1 Failure in failure handling, not detected that no value has been received 

Interaction failure modes 

FM7 F2.C3 
Incorrect function call, calling Function 4 “Prepare rendering information,” skipping Function 3 

“Determine suggested action” 

FM8 F2.C3 No function call to F3 

FM9 F2.C3 
Incorrect priority for functions, call Function F4 “Prepare rendering information,” followed by 

Function 3 “Determine suggested action” 

FM10 F2.B1 Unable to request information from database (communication protocol-dependent failure) 

FM11 F2.B1 Request with wrong variable name to database for AROV position 

Timing-related failure modes 

FM12 F2.O1 Output provided too early: Request for AROV orientation 

FM13 F2.O1 Output provided too late: Request for AROV orientation 

FM14 F2.O1 Output provided too late (500 ms): Request for AROV orientation 

FM15 F2.O7 Output provided spuriously: AROV operational mode 

FM16 F2.O8 Output provided out of sequence: F2.O8 provided before F2.O7 

FM17 F2.O8 Output not provided in time: Information on identified collision candidates 

FM18 
F2.O1–
F2.O4 

Output rate too fast: Requests to database sent too fast 
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ID 
Associated 
element 

Failure mode 

FM19 
F2.O1–
F2.O4 

Output rate too slow: Requests to database sent too slow 

FM20 
F2.O1–
F2.O4 

Inconsistent rate for requests  

Value-related failure modes 

FM21 F2.O7 No value for AROV position 

FM22 F2.O7 Incorrect value for AROV position (not further defined) 

FM23 F2.O6 Incorrect value, too high for AROV operational mode = 2 

FM24 F2.O6 Incorrect value, too low for AROV operational mode = 0 

FM25 F2.O5 Incorrect value, too high, AROV orientation [0,0,−15] 

FM26 F2.O5 Incorrect value, too high, AROV orientation [0,0,−30] 

FM27 F2.O7 Incorrect value, zero for AROV position [0,0,0] 

FM28 F2.O8 
Value out of application allowable range for information on identified collision candidates 

includes value 68 

FM29 F2.O6 Value out of data-type range for AROV operational mode = 2,147,483,648 

FM30 F2.O8 
Frozen value for Information on identified collision candidates (no collision candidates 

detected) 

FM31 F2.O7 Imprecise value for AROV position (varying more than 1 m) 

FM32 F2.O6 Wrong data type for AROV operational mode, string instead of integer 

FM33 F2.O8 Too many elements, 65, in information on identified collision candidates 

FM34 F2.O5 Too few elements (two instead of three) in AROV orientation 

FM35 F2.O7 Data in wrong order in AROV position [z,x,y] instead of [x,y,z] 

FM36 
F2.O5–
F2.O8 

Incorrect value (no value) is validated as correct and is output 

 

The applied failure modes from the presented taxonomy are marked explicitly in italics in Table 

8. The case study demonstrates that different levels of detail can be applied to the identified 

failure modes, such as FM22, FM23, FM25, and FM26. FM22 indicates that the value is 

generally incorrect. With the background information and level of detail available, it is enough 

to describe it as incorrect. For FM23, because the expected value is known, a definite value 

can be associated. Both FM25 and FM26 are special cases of values that are too high. It is 

occasionally necessary to differentiate in incremental steps, as different values imply different 

interpretations of the failure mode and may lead to different risk contributions. Similarly, for 

timing, different levels of detail can be applied (e.g., FM13 and FM14). With a too-late value of 

500 ms, FM14 is a refined version of FM13. 

5.3 Discussion 

The case study demonstrates how failure modes can be identified for different elements of a 

function and how several failure modes can be applied to the functional level of a software 

system. The case study is relevant both because the OEV may contribute to the risk level and 

because the OEV could benefit from the improvement measures suggested. Not all failure 

modes could be applied and demonstrated, because not all failure modes were relevant for 

the case study and because there would have been some amount of repetition of similar failure 

modes. However, application of the other failure modes would be like the example laid out. 

The risk analysts along with software developers should be able to apply the failure modes in 
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a manner that is relevant to the context. This is only possible if the analysts have a common 

understanding of the software system and the associated terminology. 

It was demonstrated how different levels of detail can be integrated into the identification and 

application of failure modes. For a further example, value-related failure modes can be 

described very generically as incorrect, or in relation to a specific value, or within a specific 

range of values. This implies that the taxonomy is applicable during different project phases 

such as at the preliminary-design or detailed-design stage. 

The programming language chosen in the case study, Python, may be seen critical. Python is 

not a recommended programming language for safety critical systems [81]. However, the 

underwater OEV does not perform a safety-related function as defined in IEC 61508-4 [82]. It 

is a supporting tool for visualization of the state of the systems. However, a software failure in 

the OEV may lead to accidents that may result in severe losses and environmental 

consequences, as is demonstrated through the case study herein (Part 1) and in the 

subsequent article (Part 2) [1]. 

One shortcoming of the case study is that the underwater OEV was not developed according 

to a software-development standard. Hence, the amount of information documented was 

limited. However, the main developer of the program is one of the authors of this article and 

who provided additional information when necessary. 

6 Conclusion 
This article presents a functional-failure mode taxonomy for software functions of a software 

system. Although no clear definition of the functional-software level and the associated 

description of generic failure modes for that level exist yet, we have defined and clarified herein 

the concept of software functions and the associated software-system failure modes for risk 

analysis purposes. The taxonomy was synthesized from prior published research and suits the 

functional view that we have taken. 

A functional view makes the analysis scalable and modular, and it is appropriate for risk 

analysis. The system can be broken down into the desired level of detail and based on the 

availability of information at a given phase in the software life cycle. This implies that the 

analysis is transparent to the level of decomposition. Lower functional levels of the software, 

treated as “black boxes,” are not analyzed further. Because the immediate effect on software 

output might not be derived directly from the functional-failure modes, failure-effect 

propagation is needed. 

Having a generic failure mode taxonomy that can be applied to software functions through the 

provided guidance may facilitate the identification process. It may contribute to an improved 

identification of software-function failure modes and contribute to a systematic and thorough 

software failure mode identification process. In addition, the proposed taxonomy may add to 

traceability and hence efficiency, given the comparable structure and wording since different 

analysts and developers have a comparable basis. Therefore, it is believed that the generic 

failure modes and the functional analysis presented herein may lead to improved software risk 

analysis. 

Because a functional analysis can be carried out at an early development stage, the failure 

modes can be identified and used from early on. For example, this could help support activities 

related to the development of safety-related systems according to IEC 61508 or its industry-
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specific standards. Although the failure mode taxonomy was developed for the context of 

analysis processing [1], it may be used in and to improve software FMEA or design FMEA.  

The application of failure mode taxonomy was tested on an actual software program. Although 

the process is time consuming. It may nonetheless be more efficient, as the analysts receive 

guidance through the generic failure modes. A computer-aided tool could be used for the 

identification process to reduce the associated workload and documentation. 

The subsequent article (Part 2) [1] presents a process for incorporating software in risk 

analysis. This process uses the failure mode taxonomy and analysis of the effect of the 

software failure modes on the external interfaces. These identified effects may be included in 

risk analysis. 

The proposed taxonomy only considers the functional level of software. In the future, it might 

be useful to identify failure modes on levels such as the software-system level or the code level 

and clearly define these, building on and extending previous work. Considerations such as 

those presented in 26262-11 [73] should also be included. As discussed in Section 2.4, there 

may be several causes for a software failure. Identifying potential causes is subject to further 

work.  
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