
1

Incorporating software failure in risk analysis – Part 1: Software

functional failure mode classification

Christoph A. Thieme1,2*, Ali Mosleh3,2, Ingrid B. Utne1,2, and Jeevith Hegde1

1Norwegian University of Science and Technology (NTNU) Centre for Autonomous Marine Operations and Systems

(AMOS), NTNU, Otto Nielsens Veg 10, 7491 Trondheim, Norway; 2Department of Marine Technology, NTNU, Otto

Nielsens Veg 10, 7491 Trondheim, Norway; 3B. John Garrick Institute for the Risk Sciences, University of California,

Los Angeles, 404 Westwood Plaza, Los Angeles, CA 90095, USA

*Corresponding author E-mail: Christoph.Thieme@ntnu.no

Abstract
Advanced technological systems consist of a combination of hardware and software, and they are often

operated or supervised by a human operator. Failures in software-intensive systems may be difficult to

identify, analyze, and mitigate, owing to system complexity, system interactions, and cascading effects. Risk

analysis of such systems is necessary to ensure safe operation.

The traditional approach to risk analysis focuses on hardware failures and, to some extent, on human and

organizational factors. Software failures are often overlooked, or it is assumed that the system’s software

does not fail. Research and industry efforts are directed toward software reliability and safety. However, the

effect of software failures on the level of risk of advanced technological systems has so far received little

attention. Most analytical methods focus on selected software failures and tend to be inconsistent with respect

to the level of analysis.

There is a need for risk analysis methods that are able to sufficiently take hardware, software, and human

and organizational risk factors into account. Hence, this article presents a foundation that enables software

failure to be included in the general framework of risk analysis. This article is the first of two articles addressing

the challenges of analyzing software failures and including their potential risk contribution to a system or

operation. Hence, the focus is on risks resulting from software failures, and not on software reliability,

because risk and reliability are two different aspects of a system.

Using a functional perspective on software, this article distinguishes between failure mode, failure cause, and

failure effects. Accordingly, 29 failure modes are identified to form a taxonomy and are demonstrated in a

case study. The taxonomy assists in identifying software failure modes, which provide input to the risk

analysis of software-intensive systems, presented in a subsequent article (Part 2 of 2) [1].

Keywords: Software risk; functional failure mode; hazard identification; hazard taxonomy; risk analysis

Acronyms

AROV Autonomous remotely operated vehicle FT Fault tree

CCF Common-cause failure NASA National Aeronautics and Space
Administration

CSRM Context-based software risk
management

OECD Organization for Economic Cooperation and
Development

DFM Dynamic-flowgraph methodology OEV Operational-envelope visualizer

ESD Event-sequence diagram SEooC Safety element out of context

FMEA Failure mode and effects analysis STPA Systems-theoretic process analysis

FPSA Failure propagation and simulation
approach

2

1 Introduction
Risk analysis provides decision support in the design and operation of technological systems. One important

step of risk analysis is the identification of hazardous events; however, this may be challenging for advanced

systems such as autonomous vehicles and vessels. Advanced systems consist of both hardware and

software, and the analysis of software failures is difficult if traditional methods of risk analysis are used [2].

For example, autonomous vehicles and vessels may become an essential part of future transportation

systems [3]. Autonomous cars are presently being tested. In the maritime industry, autonomous ships are

expected to operate within the next five years [4, 5]; however, concerns are being raised with respect to the

safety of autonomous ships and their control systems [6]. The risk contribution from software is often treated

superficially and is assumed to be safe and reliable such as in maritime transportation [7].

For the regulatory authorities and the public to approve and accept the widespread use of autonomous

systems, the level of risk associated with such systems needs to be sufficiently low. Hence, the risks

associated with these systems need to be analyzed for both the hardware and the software. Risk analysis

attempts to answer three questions: “(i) what can go wrong, (ii) how likely is it that it will happen, and (iii) if it

does happen, what are the consequences?” [8]. A risk analysis is the process that answers these questions.

The overall purpose of this article (Part 1) and the subsequent article (Part 2) [1] is to provide a process for

analyzing software and hardware to incorporate into existing risk-analysis methods. Part 1 helps identify

hazards and develops an associated taxonomy. Part 2, the next step of risk analysis, proposes a process for

analyzing the effects of software failures on integrated and interacting software, on hardware components,

or on operators of the system.

Thus, we first describe the identification of potentially hazardous events or possible failure modes, particularly

of software. “A failure mode is the manner in which an item fails” [9] and is specific to the context of operation

[10]. A generated numerical output that is legitimate and correct in general may be wrong and inappropriate

for a specific situation (the context of operation). Some experts agree that software that is used under normal

operational conditions can be analyzed from a functional point of view [11] with respect to risk, but a different

process for risk analysis is necessary because software failures are not like hardware failures. They may

lead to unanticipated effects that are not easily identified [12]. Software might be reliable in the sense that it

executes programmed actions correctly. However, the software might act reliably in a situation where the

action might be considered unsafe [13]. Software behaves deterministically (i.e., software failures will always

manifest under the same circumstances). Failures of external interfaces or the computing hardware may

result in cascading failures affecting the whole system. This should be considered to cover the whole risk

spectrum for a system.

Some risk-analysis approaches have been introduced to cover the risk contribution of software. Examples

are software failure mode and effects analysis (FMEA) [14-20]), dynamic-flowgraph methodology (DFM) [21-

24], or simulations with failure mode injection [25-27]). The current methods make only limited use of available

information and the context of use (i.e., the interaction with other software, hardware, or human operators).

The mechanisms of how a failure in the software develops and affects the system are not treated in detail.

Existing failure mode taxonomies do not adhere consistently to one level of analysis (i.e., the software-system

level, functional level, or code level). This makes analysis and decision making for mitigating measures for

software risks difficult. Hence, a generic and consistent set of failure modes may improve the identification

process with respect to coherence and the reduced time needed for such analyses.

The objective of this article (Part 1 of 2) is to identify and structure generic functional-software failure modes

into one consistent and comprehensive taxonomy that can be further used in the risk analysis of advanced

systems and operations. The generic failure modes can be combined with specific functions of a software

system. The purpose is to provide a comprehensive and systematic basis for the risk analysis of software-

intensive systems such as autonomous vehicles and ships. Failure modes could be used to support the

efforts necessary to fulfill the requirements for safety-related systems, such as the industry standards in IEC

61508 [28], ISO 26262 [29], or EN 50128 [30].

3

The subsequent article (Part 2 of 2) [1] describes the process for incorporating and analyzing the effect of

software failure modes in risk analysis, based on the taxonomy proposed herein. Part 2 relies on the

functional representation of software. The process described in Part 2 [1] can be applied from an early

conceptual stage and be refined with system development. It may be used to support analysis requirements

per industry standards for safety-related systems and the development of software that is not considered part

of a safety system. Therefore, it could aid in the identification of safety requirements and assist in preparing

verification and validation plans. The topic of risk acceptance related to (software) system failure is not

covered, as that depends highly on the system and its application.

The next section offers the necessary background on the methods of risk analysis for software systems and

relevant software failure mode taxonomies. Section 3 defines and describes the concepts of software

functions and the functional decomposition of software. Failure mode taxonomy application to a case study

is presented in Section 4. The last section discusses and concludes the work.

2 Background

2.1 Related Standards

Software has been recognized as a key element of safety-related systems. Hence, international standards

for the development of safety-related systems address software in specific parts: for example, the software

requirements set forth in the generic standard for safety-related systems (IEC 61508-3 [31]). Specific industry

standards for safety-related systems also address software requirements for road vehicles (ISO 26262-6

[32]), the process industry (EN 61511 [33]), and railway applications (EN 50128 [30]). Not all software is

related to safety, but a software failure may result in cascading failures that may affect the level of risk.

Safety of the intended function is a concept that refers to risk resulting from functional insufficiencies (e.g., a

classification algorithm that does not detect an object [34]) and is involved in some processes described

herein and in Part 2 [1].

In the industry standards, some methods are thought to support life-cycle activities. For instance, IEC 61508-

3 [31] recommends the use of fault-tree (FT) analysis, reliability block-diagram analysis, and event-tree

analysis, among other methods. In a number of cases, these methods use the findings from an FMEA as

input, but they are not able to analyze the detailed risk aspects of software.

FMEA is a bottom-up analysis, which considers the failure of individual components and their associated

effect on the overall system. The standard for hardware FMEA, IEC 60812 [35], is commonly used as a basis

for software FMEA, as no formal process for software FMEA is defined [36]. However, several taxonomies

specifically for software FMEA have been described in some detail in Section 2.3.

2.2 Software Failure and Risk

In contrast to hardware systems, software fails mainly due to design and coding error. Software does not

have a time-dependent failure rate. Software failure mechanisms, such as common-cause failure (CCF),

differ from those that cause hardware failures [11].

To describe most software-related failures, generic failure modes may be used so that they can be

implemented in risk analysis [37]. “A failure mode is the manner in which a failure occurs” [9]. A failure mode

may be determined by a function lost, intended behavior not provided, or a state transition that occurred [9,

35, 38]. For software, this may be determined by a function lost as a result of software output, whether omitted

or committed. In this regard, it is analogous to the definition of human failure modes [35].

Ensuring software reliability is a focus of the design and development of most modern systems. However,

reliable software may still lead to hazardous situations and contribute to unacceptable levels of risk [13].

Several incidents show that correctly and reliably working software under some circumstances may lead to

accidents (e.g., on space missions [39, 40] or in marine control systems [41]). The reliability analysis of

software is not context specific and is based on the amount of bugs removed [42]. These methods help to

4

understand failure causes and consequences in the software–hardware system only to a limited extent.

Hence, reliability-assessment methods are not very useful for risk analysis.

Garrett et al. [21] and Guarro et al. [43] developed DFM to assess the dependability and safety of software

systems. DFM is a two-step process: (i) build the model for the software system and (ii) analyze the model

to build FTs. A model using DFM is a directed graph with functional relations (the causality network) and

conditions that trigger functional relations (the conditional network). The software system is seen as a flow of

information that is manipulated by different software functions. Failures are only assessed if they are identified

as relevant beforehand. A timed FT is built into the second step of DFM by assessing which conditions in the

DFM model lead to the undesired top event of the FT.

Al Dabbagh [44] and Al Dabbagh and Lu [45] applied DFM to a networked control system of a communication

network. Special submodels have been developed to model recurring functions in such a network with a

focus on the timing of functions of such a system (e.g., preprocessing times, waiting times, etc.). DFM is

applied to the analysis of failures in relation to the flow of information and its timing. For example, missing

operations or unanticipated function calls are not considered. The analysis does not rely on information from

software documentation, as data-type failures or failures that are related to other interactions between

functions might be overlooked.

The National Aeronautics and Space Administration (NASA) [46, 47] has used DFM in their context-based

software risk assessment methodology (CSRM). In CSRM, critical-mission stages that include a risk-relevant

software contribution are identified. These mission stages are assessed with fault and event trees. Guarro et

al. [47] suggested the use of simple logic models, such as FT analysis, for simple software systems or for a

high level of modeling abstraction, while recommending DFM for more complex software systems that also

have time-dependent behavior.

Aldemir et al. [48, 49] used Markov cell mapping combined with DFM. The method can capture system

behavior dynamically and discover event sequences that otherwise are hard to identify by an analyst. They

acknowledge that design errors might not be revealed by these methods. The Markov methods are based on

analyzing different combinations of states, which requires setting up new models for each analysis. Because

DFM is combined with the Markov cell mapping, the limitations of DFM apply to this combined method as

well.

Li et al. [26] and Li [10] decomposed software into functional units, and failures of these functions are inserted

in FTs and event-sequence diagrams (ESDs) for risk analysis. Only selected failure modes are input directly

into the risk analysis, combining different levels of software analysis and decomposition. The concept of

functional-failure modes is not applied consistently, and certain failure modes that are not relevant to the

functional level may be included.

Wei [50] and Wei et al. [27] presented a framework that includes the risk contribution of software in risk

analysis. The framework comprises four steps: input-failure analyzer, operational-profile builder, software-

propagation analyzer, and probabilistic risk assessment updater. The results of the analysis can be included

in an ESD and FT. The method is only applicable to existing software systems and not suitable for the design

phase. Moreover, the analysis does not make use of all the information that is typically available (e.g.,

software specifications or safety requirements), which would reveal deficiencies with respect to the

requirements.

Zhu [51] and Zhu et al. [25] built on the work of Wei [50] and included software failure in dynamic risk analyses,

which also consider the relative timing of events. Random software failures are injected into a dynamic model,

and the simulation reacts to these failures. Associated faults and event trees are built automatically by the

system. The software behavior and failures are represented in finite-state machines. In their construct, the

simulation model covers only selected failure modes and their influence on dynamic behaviors.

Leveson [52] and Leveson et al. [53] stated that systems-theoretic process analysis (STPA) is a hazards-

identification method that is also suitable for software. In their construct, hazards arise from insufficient control

action: not providing a necessary control action; providing an unsafe control action; providing a potential

5

control action too late, too early, or out of sequence; or providing a safe control action that is too short or too

long. Abdulkhaleq and Wagner [54] and Abdulkhaleq et al. [55] extended the STPA for automated model

checking of critical software applications by identifying potentially hazardous situations arising from a

software model and by verifying that the already-taken control actions are safe.

Rokseth et al. [56] recommended combining FMEA and an adapted version of STPA to improve the

identification, analysis, and verification of hazardous events and failure modes of dynamic positioning (DP)

systems on ships and offshore oil and gas rigs. STPA and FMEA were found to be complementary and a

combination well suited to complex and software-intensive systems such as DP. Positioning systems will be

crucial for autonomous systems such as ships [57, 58].

Gran [59] developed an influence network to assess the quality of software processing, the resulting quality

of the software, and the associated risk. However, this approach does not consider the specific purpose of

the software and the influence on the risk level or hazards that arise from the software. Therefore, it is not

possible to identify and incorporate hazards in risk analysis by this approach.

Hewett and Seker [60] analyzed the risk of embedded software systems with timed-decisions tables. The

approach is like DFM. Decision tables represent software behavior, which is decomposed into functional

modules. From the decision tables, timed FTs are built based on a predefined initiating event through

backward reasoning. Similar to DFM, only failures that are related to a wrong value and the associated

decisions are considered. Hence, it is not possible to identify failures and their contribution to the risk level

that relate to unanticipated interaction of functions or data-type failures, for example.

Sadiq et al. [61] proposed software risk analysis using software FT analysis. The framework is intended for

prioritizing testing and for software improvement but also highlights the need to consider software

requirements, modeling uncertainty, and possible errors in the analysis. However, the method only addresses

the software-system level; it does not identify events that might arise from within the software, such as

interactions with other system components.

Functional-failure identification and propagation methods [62-64] and a failure propagation and simulation

approach (FPSA) [64] have been developed to assess system behavior in cases of one or multiple hardware

or software faults. Several models such as state-space models and function-flow models have been used to

assess propagation. An FPSA module allows simulation to identify time-related failure effects. However,

software and hardware failures need to be identified by the analysts individually, failure-propagation behavior

needs to be defined specifically for each function, and failures need to be injected into the simulation.

A starting point for risk analysis is to identify hazards and hazardous events. Because taxonomies with failure

modes may be used as a basis for hazard identification, we conducted a search to identify existing software

failure mode taxonomies.

2.3 Software Failure Mode Taxonomies

Searches in the Institute of Electrical and Electronics Engineers (IEEE) database Xplore1 and in Scopus2

(using the keyword phrases software failure mode identification, software FMEA, software FMECA, software

failure mode effect analysis, and software failure mode effect criticality analysis) were conducted.

The searches covered only publications from 2000, based on the assumption that these publications also

reflect previous taxonomies. Publications that include relevant taxonomies have been closely investigated

and selected for further analysis. Taxonomies that are the same in several publications have been assessed

only once. Relevant taxonomies were found in publications, published between 2002 and 2014.

Li et al. [26] and Li [10] developed a failure mode taxonomy for software functions. They defined several

types of failure modes, in two categories: functional-failure modes (comprising attribute and functional or

1 http://ieeexplore.ieee.org/ (accessed Feb. 02, 2018).
2 https://www.scopus.com/ (accessed Dec. 08, 2017).

http://ieeexplore.ieee.org/
https://www.scopus.com/

6

function-set failure modes) and external failure modes (comprising timing, input/output, multiple-interaction,

and support failure modes).

Input/output failure modes are those that do not originate from the software function itself [10]. An input failure

will lead to an output failure. Input/output failure modes can be further divided into value-related and timing-

related failure modes [10].

Multiple-interaction failure modes concern communication through a common language to exchange

information [10]. Support failure modes comprise those related to hardware resources and the physical

operating environment and thus do not apply directly to software functions. For the most part, they are not

addressed herein, although they do fall into the category of software failure causes (see Section 2.4).

The Organization for Economic Cooperation and Development (OECD) [37] has presented a taxonomy for

hardware and software failure modes that builds on research by Li and by Li et al. [10, 26, 65], Authen et al.

[66], Authen and Holmberg [67, 68], and Holmberg et al. [69], among others. It addresses different levels of

the system: overall system, division, instrumentation, and control levels.

Ristord and Esmenjaud [16], Huang et al. [70], Stadler and Seidl [17], Park et al. [20], and Prasanna et al.

[19] presented and discussed their own adaptations of software FMEA. Although such prior reported research

offers a basis for the identification of possible failure modes, clear descriptions and distinctions among the

targeted levels of software abstraction (e.g., software system, software functions, and code analysis) for the

taxonomies are absent. Only the taxonomy by OECD [37] attempts such distinctions. However, owing to the

definitions of system, module, and submodule levels, there is some ambiguity as to the failure modes and

their effects and causes with respect to the level of analysis. In addition, that report includes hardware failure

modes for different system levels. However, some of the failure modes presented as software failure modes

actually relate to the hardware system but can be seen as the cause for software failure. Section 4.3

elaborates on some of the ambiguous failure modes, and Section 2.4 and 2.5 specifically define the software

causes and consequences to avoid such ambiguity, respectively.

2.4 Failure Causes

Each failure mode may be attributable to one or more failure causes [71]. A failure cause is “the set of

circumstances that lead to a failure” [35]. The causes of software failure can be found in its specification,

design, or implementation [16], and a NASA document [46] states parameter and data-entry errors and

defects introduced during the removal of other defects as additional causes. Stadler and Seidl [17] mentioned

infinite loops, multi-process thread/deadlock, counter rollover, numerical overflow/underflow or saturation,

and finite precision errors among other potential failure causes.

Ozarin [12, 18, 36, 72] highlighted the need to consider the inherent interaction of software–hardware

interfaces when analyzing software, especially with respect to causes such as bad input data or analog–

digital converter failure. The computing hardware may also be the reason for failures that manifest

themselves as software failures. ISO 26262-11 [73] presents failure modes and models for failure mode

effects for semiconductors (i.e., the computing hardware). Such failures may be related to safety elements

out of Context (SEooC), [38], which are systems that were not specifically developed for a safety function but

are necessary to carry out a safety function, such as the memory-wiper system in a software operating system

or in the hardware [38].

2.5 Failure Mode Propagation

Failure propagation determines how a failure mode in one function will affect the software system [50]. The

failure effect of a failure mode may be defined as the “consequence of a failure within or beyond the boundary

of the failed item” [35]. A software failure may lead to consequences for the software itself and/or for the

system that uses the software. The two main categories of failure propagation are CCF and cascading failures

[37, 38]. “A cascading failure is a failure of an element of an item resulting from a root cause [inside or outside

of the element] and then causing a failure of another element or elements of the same or different item” [38,

73]. A CCF occurs if two or more elements of an item fail directly from a single specific event or root cause,

7

which may be internal or external to all these elements [38]. This contrasts with common mode failures, which

describe several failures that have failed in the same manner [38].

Propagation means that the failure is not discovered or is masked during the execution of the program.

Masking describes the situation in which software produces the right output despite a failure during the

execution. Multilayer traps might conceal a failure through several subfunctions of the software, according to

Wei [50], who derived a set of propagation mechanisms for software failure modes, which should be

considered in risk analysis.

Failures may also propagate by other means, such as from the computing hardware or sensors to the

software system [73]. Such failures are among the causes of failure modes discussed herein but are not the

focus of either this article or Part 2 [1].

3 Functional View of Software
The software system can be decomposed into its functions. IEC 61508 [28] defines a functional unit of a

system as an “entity of hardware or software, or both, capable of accomplishing a specified purpose.” The

purpose of functional decomposition is to enable the identification of relevant failure modes associated with

each software function.

Software can be analyzed and broken down into functions at different levels of detail (Figure 1). Decomposing

the software further would eventually lead to the software code level in an abstracted form, represented by

pseudocode. Such a low level of decomposition is not covered by the taxonomy herein.

Figure 1 Different levels of software functions of a software system.

Beginning from the overall functional description, the software should be decomposed into subfunctions,

which describe what the software should do, not how it is implemented. EN 14514 [74] also provides guidance

for decomposition. Design maturity [74] and the depth of analysis of the software are two factors that

determine the level of decomposition. Information for the decomposition can be extracted from the safety

requirements specification, such as defined by IEEE 830 [75]. This functional view of software can be used

in different software-development life cycles (such as the waterfall model, the V-model, or the Scrum method).

8

Depending on the software-development approach, different activities and requirements are needed [76]. A

functional decomposition may be carried out during software-development phase. The results from this

decomposition should be used.

A generic function and its main elements once the desired level of breakdown and resolution is achieved are

shown in Figure 2, which also shows where the different categories of failure modes can be applied. The

process section is where the functional behavior and computation are executed, turning input into output.

Function failure modes are associated with this input–process–output section.

Figure 2 Simplified view of software function and its components underlying all levels (developed and

extended from Huang et al. [70]).

The description of each function includes the purpose, process, input–output, conditions of execution,

requirements and constraints, failure detection, and correction mechanisms. An example datasheet for

describing a software function is shown in Table 1. Not all the information may be available [11], but collection

of as much as possible is important to determine the relevant failure modes.

9

Table 1 Example of software-function datasheet.

ID Data for function

Function
purpose

Short description of what function is to achieve

Inputs List and description of inputs received by function

Input name Source Data
type

Data
format

Data
range

Data
rate

Buffer

Outputs List and description of outputs that function produces

 Input name Target Data
type

Data
format

Data
range

Data
rate

Buffer

Conditions Trigger conditions

Conditions that trigger other functions

Process Describe behavior through input→output formulas

Consider dependencies and sequence of operations

Requirements Functional Related to function itself (e.g., accuracy)

Nonfunctional Related to speed, security, safety, use of resources, etc.

Constraints Factors that limit way function could be implemented (e.g., regulatory or
hardware constraints; high-order language requirements; signal-
handshake protocols; and application criticality)

Failure
detection and
correction
features

Measures implemented to detect, handle, and warn about software failures
(e.g., control function, input-validity checks, and error-handling system)

A function always has at least one output. This might be a numerical value, a binary value, or a specific

function call. Input is the output of another function or is provided via external interfaces. An output of one

function can also be the input to several other functions, and each function might have several inputs and

several outputs.

Input and output have an associated data type and an acceptable range, which might be limited by the data

type, acceptable values, or the set of meanings assigned to the values. If the output is part of a data array or

structure, data format refers to the order of elements. The data rate (the periodic output and its characteristics)

and buffer (the type used for input or output to collect data or events) only need to be described if applicable.

Both value-related and timing-related failure modes are associated with this part of a software function.

Functions in a software system are executed in a specified order. They might be executed periodically or on

demand, depending on the result of the operation. Each function passes on information or calls another

function. These interactions (represented by arrows in Figures 1 and 2) have associated interaction failure

modes. External interfaces (agents that interact with the software) include other software systems, sensors,

databases, or human operators through a human–machine interface.

In the subsequent article (Part 2) [1], we propose a process to incorporate software in risk analysis. For this

purpose, software-function failure modes are identified, and their effects at the software-system level are

analyzed. The decomposition of software into functions is an essential part of that proposed process [1].

10

4 Proposed Taxonomy

4.1 Procedure

To determine whether failure modes presented in other published studies are relevant for the functional level

of software and the software-function failure mode taxonomy, we asked three questions:

1. Does the presented failure mode fall into our definition of a failure mode?

2. If yes, is it within one of our failure mode categories (interaction, function, value-related, or timing-

related)?

3. If yes, is the failure mode different from failure modes that were previously identified?

If all the questions were answered “yes,” the failure mode is included in the failure mode taxonomy; however,

if it does not fulfill our definition of a failure mode or does not fit into one of the mentioned categories, it is

rejected. It is necessary to define an unambiguous and consistent failure mode taxonomy. Where necessary,

distinctions between similar failure modes are mentioned to give more guidance for their use, and they are

labeled as refined failure modes. To retain the experiences, practices, and findings from others’ research,

our generic failure mode taxonomy includes mainly published failure modes.

Contributions from relevant research were identified by screening past publications (Table 2). They contain

types of failure modes that are relevant with respect to the software-function level. All reviewed taxonomies

cover value-related failure modes. All the screened publications except Prasanna et al. [19] cover timing-

related failure modes, and all except Wei [50] consider interaction failure modes. Function failure modes are

covered by only five of the publications.

Table 2 Publications that form basis for identification of software-function failure mode taxonomy.

 Publication

 Number of failure modes Failure mode coverage

Presented Relevant

Function Interaction
Timing-
related

Value-
related

Ristord and Esmenjaud [16] 12 5 Yes Yes Yes Yes

Li [10] 31 19 Yes Yes Yes Yes

Wei [50] 12 12 No No Yes Yes

Huang et al. [70] 25 22 No Yes Yes Yes

Stadler and Seidl [17] 21 17 Yes Yes Yes Yes

OECD [37] 37 22 Yes Yes Yes Yes

Park et al. [20] 21 14 Yes Yes Yes Yes

Prasanna et al. [19] 11 10 No Yes No Yes

Each of the publications has a different focus and therefore presents a different number of failure modes in

each category, with different levels of detail. Most failure modes are presented in the OECD [37] study.

Several failure modes have been rejected for our proposed taxonomy. For instance, Stadler and Seidl [17]

included memory-address errors in their taxonomy; however, these are not relevant from a functional point

of view, although they are causes of functional failure. Similarly, the failure modes central-processing-unit

failure [26], memory failure [26], deadlock [26], and stop of operating system [16] cause but do not represent

function failures. These are failures of the computing hardware and are considered failure causes for the

software-function failure modes.

11

Interrupt [17] or interrupt-induced failures [37] and raised execution already imply that they are failure causes,

not failure modes, and hence were excluded. The failure mode wrong task scheduling [19] is a very general

description representing several interaction failure modes.

The failure modes software aborts [38], hang/crash [both in 37], program stop with/without clear message

[16], and fail to return/complete [17] were rejected because they represent effects of failure modes at the

software-system level.

4.2 Taxonomy

The resulting taxonomy for software-function failure modes is shown in Table 3. Six identified failure modes

address only the processing part of a function.

 Table 3 Taxonomy for software-function failure modes.

Failure mode Additional description

Omission of function or missing operation Function (or part of it) is not executed.

Incorrect functionality Function is not executing intended actions.

Additional functionality Extra unspecified operation in function is executed by function.

No voting Voting on input is not carried out within function.

Incorrect voting
Voting on input is not carried out according to specification within function, and

therefore voting result is incorrect.

Failure in failure handling Detected failures are not handled appropriately.

 Table 4– Table 6 include a column for refined failure mode, which represents a more detailed case of the

failure mode. This was done to retain the knowledge presented in prior publications while still classifying the

failure modes generically.

 Table 4 summarizes the interaction failure modes between software functions. These failure modes reflect

a failure of interaction between software functions. Seven failure modes were identified for the interaction

between functions. Ten refined failure modes were identified for the interaction between software functions

and external files or databases.

12

 Table 4 Taxonomy for interaction failure modes of software functions.

Failure mode Refined failure mode Additional description

Diverted or incorrect
functional call

Wrong function is called after current function is

finished.

No call of next function
No further functions are called after current function is

finished.

No priority for
concurrent functions

Functional calls for functions that need to be executed

concurrently are given no priority.

Incorrect priority for
concurrent functions

Functions needed to be executed concurrently are

given incorrect priority.

Communication
protocol-dependent
failure modes

Failure modes specific to particular communication

protocol used to interchange information between
parts of software system.

Unexpected interaction
with input–output

(IO) boards

Failure mode related to interaction (possibly spurious)

with input–output board or interface.

Failure of interaction
with external files or
databases

Wrong name Name of file or database is incorrect.

Invalid name/extension
Name entered for file or database contains invalid

symbols.

File/ database does not

exist

File or database name appears to be specified
correctly but file or database does not exist.

 File/ database is open
File or database is open in another program and

cannot be reopened.

 Wrong/invalid file format File format is different from expected file format.

 File head contains error
File-header information contains different information

from that required.

 File ending contains error
File-ending information contains different information

from that required.

 Wrong file length
Length of file is different from required or expected

length.

 File/database is empty

Wrong file/database

contents

Information in file or database is different from
expected or required information.

13

Four timing-related failure modes are summarized in Table 5. Five refined failure modes were identified for

the timing of the provided output, and four were identified for output-rate failures.

 Table 5 Taxonomy for timing-related failure modes of software functions.

Failure mode Refined failure mode Additional description

Output provided Too early

 Too late

 Spurious
Output provided when not requested or not needed.

 Out of sequence

 Not in time No output is provided from function.

Output-rate failure Too fast

 Too slow

 Inconsistent

 Desynchronized

Duration Too long
Length of time output is available.

 Too short

Recurrent functions
scheduled incorrectly

Periodically required output not delivered at expected
time.

 Table 6 summarizes the 11 software-function failure modes related to value, which here refers to the content

assigned to a variable. This may be a numerical value, or it may be a character or symbol in string format.

Four refined failure modes relate to the failure mode incorrect value, five to data arrays or structures, and

three to data validation.

14

 Table 6 Taxonomy for value-related failure modes of software functions.

Failure mode Refined failure mode Additional description

No value

No value is provided.

Incorrect value Too high Value is higher than expected or required
value. This might be 1, maximal allowed, or
higher increment of value.

Too low Value is lower than expected or required

value.

Opposite/ inverse value Value is opposite or inverse of expected
value.

 Value is zero Value is zero instead of expected value.

Value out of range Data-type allowable range

 Application allowable range

Redundant/ frozen value

Same value is produced constantly.

Noisy value/ precision error

Values that are transferred are not precise
enough.

Value with wrong data type

Nonnumerical value Not a number (NaN) Values are transferred that are not
interpretable by software.

Infinite

Negative infinite

Elements in data array or
structure

Too many

Too few

 Data in wrong order

 Data in reversed order

 Enumerated value incorrect Wrong element in data array or structure is
addressed.

Correct value is validated
as incorrect

Incorrect value is validated
as correct

Data are not validated

Validity check is not executed.

4.3 Discussion

A clear distinction between failure mode, failure cause, and failure effect is difficult to achieve. The taxonomy

proposed herein (Tables 4–6) attempts to clearly separate failure effects and causes from the failure modes

for the functional level. Hence, failure modes such as incorrect realization of an attribute or function [26] or

incorrect realization of a function [37] were not included in the proposed taxonomy as they are considered to

be failure causes, originating from the software realization process.

Some failure modes have refined failure modes. For example, interaction with external files or databases is

refined by several subordinate (refined) failure modes. To identify a failure mode as just a wrong interaction

with external files or databases is not useful for further analysis; therefore, it is necessary to specify how it is

interacting wrongly.

Similarly, for timing-related failure modes, output-rate failure is rather vague. Hence, the refined failure modes

too slow, too fast, inconsistent, and desynchronized were retained from published research. Especially in the

category value-related failure modes, several distinctions were made. The failure mode incorrect value would

cover most of the failure modes but is too generic in a number of cases. Therefore, refined failure modes for

incorrect value were introduced. In addition, nonnumerical values were differentiated, as they have a different

15

effect on the software function from that of an incorrect numerical value. This adds more meaning to the

failure modes and allows application-specific failure mode analysis.

The chosen perspective on software is challenging in terms of the identification of a sufficiently low level of

decomposition. The level of detail of software decomposition depends on the maturity of software

development and the purpose of the analysis, such as a detailed risk study. A functional view of the software

allows analysis of the software in an early development stage while it is still independent of the

implementation. Especially during the early stage of development, software documentation is apt to be

immature, and decomposition may only be possible at a higher level. Decomposition down to the code level

is not recommended because even medium-sized software projects have several tens of thousands of lines

of code.

Failures of SEooC may be captured with the presented failure mode taxonomy. To be included in the analysis,

the SEooC needs to be modeled and represented explicitly. Because the presented taxonomy focuses only

on software-intensive systems, it cannot be used to assess hardware SEooC.

5 Case Study
To demonstrate possible applications of the proposed taxonomy, a case study is included in this section.

Hegde [79] and Hegde et al. [77, 78] presented an underwater operational-envelope visualizer (OEV) that

combines safety envelopes and subsea traffic rules for an autonomous remotely operated vehicle (AROV).

According to Hegde et al. [79], an AROV can collide with underwater infrastructures, the seabed, and other

underwater vehicles. The OEV supports the human operator in detecting hazardous situations that can lead

to collision with subsea obstacles [79]. The system is a decision-support system but is not safety critical. The

AROV still has a conventional collision-avoidance system. A collision may lead to loss of the AROV, damage

to the subsea structure, and damage to the environment due to leakage.

The software was developed by Ph.D. students at the Norwegian University of Science and Technology for

demonstration purposes in the research project Next Generation Inspection, Maintenance, and Repair [80].

The underwater OEV was developed in Python to ensure compatibility with other software components.

(Notably, the approach presented herein is programming-language independent.) The developers used a

rapid prototyping approach, whereby the software was tested and improved iteratively several times. The

process described herein (Part 1) and in the subsequent article (Part 2) [1] was applied as a structured

process to identify relevant software failure modes and consequently improve the software in the next

iteration.

AROVs are tethered underwater robots that have a higher level of autonomy in their operation than

conventional remotely operated vehicles but have more human-operator interaction than autonomous

underwater vehicles. The underwater OEV provides decision support with respect to safe operation of the

AROV. It is necessary to ensure that the underwater OEV does not increase the level of risk. The underwater

OEV receives data from a database and provides information for operational decision making. This “Case

Study” section focuses on demonstrating the individual failure modes in an application setting, and the

corresponding processing steps are further discussed in the subsequent article (Part 2) [1].

5.1 Functional Decomposition

The functional hierarchy (Figure 3) identifies five sequential functions of the software in the case study on the

first level of decomposition: initialize underwater OEV, obtain data, determine suggested action, prepare

rendering information, and display information. The software for the underwater OEV has only about 1,000

lines of code. Data collection and control of the AROV are executed by other dedicated software systems,

which are not part of this analysis.

16

Figure 3 Functional decomposition of underwater operational-envelope visualizer (OEV).

Hence, it was decided that a decomposition to the first level is enough. As an example, initialize underwater

OEV was decomposed to the second level. This software was chosen as a demonstrator for two reasons: (i)

all failure modes in the proposed taxonomy can be demonstrated and (ii) access to the software developers

aids the understanding and analysis of possible software failure modes. The functions on the second level

are already close to pseudocode; therefore, decomposing the function further would lead to code instructions.

Function 2, obtain data, serves as a suitable example because it covers a variety of output types and

functional behaviors (Table 7). The function polls the database at a frequency of 2 Hz for data on AROV

position, operational mode, and orientation (in radians, to be converted to degrees by the function) and for

information on identified collision candidates. The database returns the requested values, and the obtain data

function makes them available to subsequent functions.

17

Table 7 Datasheet for Function 2, obtain data. [AROV, autonomous remotely operated vehicle; :f, float; :i, integer; :s, string; MDb, Mission-Oriented Operating Suite

database; N.A., not applicable]

ID: F2 Function 2: Obtain data ID

Function purpose
Send request for updated information on parameters (AROV position, AROV orientation, operational-envelope information, AROV operation mode) and make it

available for subsequent functions.

Inputs

Input name Source Data type Data format Range Rate Buffer ID

AROV orientation from database MDb float :f, :f, :f 0 to 2*π 2 Hz N.A. MDb.O1

AROV operational mode from database MDb integer :i 0 to 2 2 Hz N.A. MDb.O2

AROV position from database MDb float :f, :f, :f 2 Hz N.A. MDb.O3

Information on identified collision candidates MDb string :s, max. 64
elements

00-07, 10-17, 20-27, 30-37,
40-47, 50-57, 60-67, 70-77

2 Hz N.A. MDb.O4

Outputs

Output name Target Data type Data format Range Rate Buffer ID

Request for AROV orientation MDb string 2 Hz N.A. F2.O1

Request for AROV operational mode MDb string 2 Hz N.A. F2.O2

Request for AROV position MDb string 2 Hz N.A. F2.O3

Request for information on identified collision
candidates

MDb string 2 Hz N.A. F2.O4

AROV orientation F4 float :f, :f ,:f N.A. N.A. F2.O5

AROV operational mode F4 integer :i 0 to 2 N.A. N.A. F2.O6

AROV position F4 float :f, :f, :f N.A. N.A. F2.O7

Information on identified collision candidates F3 string :s, max. 64
elements

00-07, 10-17, 20-27, 30-37,
40-47, 50-57, 60-67, 70-77

N.A. N.A. F2.O8

Conditions

Initiated by F1

Initiated by F4.2 after first iteration

Initiate F3

F2.C1

F2.C2

F2.C3

Function behavior

Send request for AROV position, AROV orientation, AROV operational mode, and information on identified collision candidates.

Convert AROV orientation from radians to degrees.

Store values of AROV position, orientation, and operational mode and store information on identified collision candidates in corresponding variables.

F2.B1

F2.B2

F2.B3

Requirements
Functional None

Nonfunctional Poll MDb with 2 Hz F2.NF1

Constraints Successful connection to MDb in F1 F2.Ct1

Failure detection
and correction
features

Request to database for nonexistent data returns error message and does not return value. F2.D1

18

5.2 Application of the failure mode taxonomy

Table 8 presents the identified failure modes with the taxonomy for Function 2. One developer

of the underwater OEV (one co-author) and a risk analyst (the first author) carried out the

analysis. The table does not present all value-related failure modes. More value-related failure

modes could be identified similarly to the ones identified in the table. A detailed list of all failure

modes would add to the length of the table but not more insight on the identification of failure

modes.

The top of Table 8 defines the expected input and output for the example function obtain data.

This sets the context for the failure mode identification. The failure modes are applied based

on the information found in the datasheet in Table 7. The information on the inputs and outputs

is necessary for the analysis of value-related failure modes. Conditions describe the functional

interactions and dependencies with other functions. Functional and non-functional

requirements set the context for the analysis, such as acceptable timing delays or value

inaccuracies.

The top part of Table 8shows that it is not always possible to define expected values. They

might be unknown due to the complexity of the function or the behaviour of the function over

time. In other cases, the expected values are known due to the context. In the case of the

function obtain data, the expected values are assumed to be known. The AROV is traveling in

semi-autonomous mode, Mode 1, from the south to the north without any pitch or roll angle,

corresponding to [0, 0, 0]. An object has been detected to the left of the AROV, corresponding

to the envelope elements [66, 67, 76, 77]. The exact location of the case study is not relevant,

only its accuracy.

The first column in Table 8 is labeled ID for identifier. Each recognized failure mode needs to

have an identifier to be able to trace the failure modes. The second column summarizes the

element that is affected by the failure mode: the variable, the execution timing, part of the

function block, or a functional transfer. In the third column, the failure mode is described and

specified.

19

Table 8 Failure mode identification for obtain data function of underwater operational-envelope
visualizer. [AROV, autonomous remotely operated vehicle; MDb, Mission-Oriented Operating Suite

database]

Expected input

ID Name Expected value

MDb.O1 AROV orientation from database [0,0,0]

MDb.O2 AROV operational mode from database 1

MDb.O3 AROV position from database Correct (not further specified)

MDb.O4 Information on identified collision candidates [66, 67, 76, 77]

Expected output

ID Name Expected value

F2.O1 Request for AROV orientation Correct request

F2.O2 Request for AROV operational mode Correct request

F2.O3 Request for AROV position Correct request

F2.O4 Request for information on identified collision candidates Correct request

F2.O5 AROV orientation [0,0,0]

F2.O6 AROV operational mode 1

F2.O7 AROV position Correct (not further specified)

F2.O8 Information on identified collision candidates [66, 67, 76, 77]

F2.C3 Initiate F3 -

ID
Associated
element

Failure mode

Function failure modes

FM1 F2 Omission of “Obtain data,” which is not executed

FM2 F2.B1 Omission of requesting data, which means that data are not requested

FM3 F2.B2
Omission of converting MDb.O1 to AROV orientation data, which means that orientation is not

executed

FM4 F2.B3 Incorrect functionality of storing values in corresponding variables, making them unavailable

FM5 F2.B2 Additional functionality while converting AROV orientation (e.g., conversion of AROV position)

FM6 F2.D1 Failure in failure handling, not detected that no value has been received

Interaction failure modes

FM7 F2.C3
Incorrect function call, calling Function 4 “Prepare rendering information,” skipping Function 3

“Determine suggested action”

FM8 F2.C3 No function call to F3

FM9 F2.C3
Incorrect priority for functions, call Function F4 “Prepare rendering information,” followed by

Function 3 “Determine suggested action”

FM10 F2.B1 Unable to request information from database (communication protocol-dependent failure)

FM11 F2.B1 Request with wrong variable name to database for AROV position

Timing-related failure modes

FM12 F2.O1 Output provided too early: Request for AROV orientation

FM13 F2.O1 Output provided too late: Request for AROV orientation

FM14 F2.O1 Output provided too late (500 ms): Request for AROV orientation

FM15 F2.O7 Output provided spuriously: AROV operational mode

FM16 F2.O8 Output provided out of sequence: F2.O8 provided before F2.O7

FM17 F2.O8 Output not provided in time: Information on identified collision candidates

FM18
F2.O1–
F2.O4

Output rate too fast: Requests to database sent too fast

20

ID
Associated
element

Failure mode

FM19
F2.O1–
F2.O4

Output rate too slow: Requests to database sent too slow

FM20
F2.O1–
F2.O4

Inconsistent rate for requests

Value-related failure modes

FM21 F2.O7 No value for AROV position

FM22 F2.O7 Incorrect value for AROV position (not further defined)

FM23 F2.O6 Incorrect value, too high for AROV operational mode = 2

FM24 F2.O6 Incorrect value, too low for AROV operational mode = 0

FM25 F2.O5 Incorrect value, too high, AROV orientation [0,0,−15]

FM26 F2.O5 Incorrect value, too high, AROV orientation [0,0,−30]

FM27 F2.O7 Incorrect value, zero for AROV position [0,0,0]

FM28 F2.O8
Value out of application allowable range for information on identified collision candidates

includes value 68

FM29 F2.O6 Value out of data-type range for AROV operational mode = 2,147,483,648

FM30 F2.O8
Frozen value for Information on identified collision candidates (no collision candidates

detected)

FM31 F2.O7 Imprecise value for AROV position (varying more than 1 m)

FM32 F2.O6 Wrong data type for AROV operational mode, string instead of integer

FM33 F2.O8 Too many elements, 65, in information on identified collision candidates

FM34 F2.O5 Too few elements (two instead of three) in AROV orientation

FM35 F2.O7 Data in wrong order in AROV position [z,x,y] instead of [x,y,z]

FM36
F2.O5–
F2.O8

Incorrect value (no value) is validated as correct and is output

The applied failure modes from the presented taxonomy are marked explicitly in italics in Table

8. The case study demonstrates that different levels of detail can be applied to the identified

failure modes, such as FM22, FM23, FM25, and FM26. FM22 indicates that the value is

generally incorrect. With the background information and level of detail available, it is enough

to describe it as incorrect. For FM23, because the expected value is known, a definite value

can be associated. Both FM25 and FM26 are special cases of values that are too high. It is

occasionally necessary to differentiate in incremental steps, as different values imply different

interpretations of the failure mode and may lead to different risk contributions. Similarly, for

timing, different levels of detail can be applied (e.g., FM13 and FM14). With a too-late value of

500 ms, FM14 is a refined version of FM13.

5.3 Discussion

The case study demonstrates how failure modes can be identified for different elements of a

function and how several failure modes can be applied to the functional level of a software

system. The case study is relevant both because the OEV may contribute to the risk level and

because the OEV could benefit from the improvement measures suggested. Not all failure

modes could be applied and demonstrated, because not all failure modes were relevant for

the case study and because there would have been some amount of repetition of similar failure

modes. However, application of the other failure modes would be like the example laid out.

The risk analysts along with software developers should be able to apply the failure modes in

21

a manner that is relevant to the context. This is only possible if the analysts have a common

understanding of the software system and the associated terminology.

It was demonstrated how different levels of detail can be integrated into the identification and

application of failure modes. For a further example, value-related failure modes can be

described very generically as incorrect, or in relation to a specific value, or within a specific

range of values. This implies that the taxonomy is applicable during different project phases

such as at the preliminary-design or detailed-design stage.

The programming language chosen in the case study, Python, may be seen critical. Python is

not a recommended programming language for safety critical systems [81]. However, the

underwater OEV does not perform a safety-related function as defined in IEC 61508-4 [82]. It

is a supporting tool for visualization of the state of the systems. However, a software failure in

the OEV may lead to accidents that may result in severe losses and environmental

consequences, as is demonstrated through the case study herein (Part 1) and in the

subsequent article (Part 2) [1].

One shortcoming of the case study is that the underwater OEV was not developed according

to a software-development standard. Hence, the amount of information documented was

limited. However, the main developer of the program is one of the authors of this article and

who provided additional information when necessary.

6 Conclusion
This article presents a functional-failure mode taxonomy for software functions of a software

system. Although no clear definition of the functional-software level and the associated

description of generic failure modes for that level exist yet, we have defined and clarified herein

the concept of software functions and the associated software-system failure modes for risk

analysis purposes. The taxonomy was synthesized from prior published research and suits the

functional view that we have taken.

A functional view makes the analysis scalable and modular, and it is appropriate for risk

analysis. The system can be broken down into the desired level of detail and based on the

availability of information at a given phase in the software life cycle. This implies that the

analysis is transparent to the level of decomposition. Lower functional levels of the software,

treated as “black boxes,” are not analyzed further. Because the immediate effect on software

output might not be derived directly from the functional-failure modes, failure-effect

propagation is needed.

Having a generic failure mode taxonomy that can be applied to software functions through the

provided guidance may facilitate the identification process. It may contribute to an improved

identification of software-function failure modes and contribute to a systematic and thorough

software failure mode identification process. In addition, the proposed taxonomy may add to

traceability and hence efficiency, given the comparable structure and wording since different

analysts and developers have a comparable basis. Therefore, it is believed that the generic

failure modes and the functional analysis presented herein may lead to improved software risk

analysis.

Because a functional analysis can be carried out at an early development stage, the failure

modes can be identified and used from early on. For example, this could help support activities

related to the development of safety-related systems according to IEC 61508 or its industry-

22

specific standards. Although the failure mode taxonomy was developed for the context of

analysis processing [1], it may be used in and to improve software FMEA or design FMEA.

The application of failure mode taxonomy was tested on an actual software program. Although

the process is time consuming. It may nonetheless be more efficient, as the analysts receive

guidance through the generic failure modes. A computer-aided tool could be used for the

identification process to reduce the associated workload and documentation.

The subsequent article (Part 2) [1] presents a process for incorporating software in risk

analysis. This process uses the failure mode taxonomy and analysis of the effect of the

software failure modes on the external interfaces. These identified effects may be included in

risk analysis.

The proposed taxonomy only considers the functional level of software. In the future, it might

be useful to identify failure modes on levels such as the software-system level or the code level

and clearly define these, building on and extending previous work. Considerations such as

those presented in 26262-11 [73] should also be included. As discussed in Section 2.4, there

may be several causes for a software failure. Identifying potential causes is subject to further

work.

Acknowledgments
The authors thank four anonymous reviewers whose comments helped to improve this article.

C. A. Thieme and I. B. Utne appreciate the support of the Research Council of Norway through

the Centres of Excellence funding scheme, Project number 223254 – NTNU AMOS.

J. Hegde was supported by the Research Council of Norway, Statoil, and TechnipFMC through

the research project Next Generation Subsea Inspection, Maintenance and Repair Operations,

234108/E30 and associated with NTNU AMOS 223254.

C. A. Thieme acknowledges the financial support from Norges tekniske høgskoles fond, who

supported this research with a scholarship for a research exchange with the B. John Garrick

Institute for the Risk Sciences at the University of California, Los Angeles.

The authors would like to thank Enago for the English language review.

References
[1] Thieme CA, Mosleh A, Utne IB, Hegde J. Incorporating Software Failure in Risk Analysis – Part 2:
Risk Modeling Process and Case Study. Submitted for review to Reliability Engineering and System
Safety. submitted: pp. 1-33.
[2] Mosleh A. Pra: A Perspective on Strengths, Current Limitations, and Possible Improvements. Nuclear
Engineering and Technology. 2014;46: pp. 1-10.
[3] Marr B. The Future of the Transport Industry - Iot, Big Data, Ai and Autonomous Vehicles. 2017;
https://www.forbes.com/sites/bernardmarr/2017/11/06/the-future-of-the-transport-industry-iot-big-data-
ai-and-autonomous-vehicles/#2b854d791137; Accessed: 21.02.2018
[4] Kongsberg Maritime. Yara and Kongsberg Enter into Partnership to Build World's First Autonomous
and Zero Emissions Ship. 2017;
https://www.km.kongsberg.com/ks/web/nokbg0238.nsf/AllWeb/98A8C576AEFC85AFC125811A0037F
6C4?OpenDocument; Accessed: 27.07.2017
[5] Kongsberg Maritime. Automated Ships Ltd and Kongsberg to Build First Unmanned and Fully
Autonomous Ship for Offshore Operations. 2016;
https://www.km.kongsberg.com/ks/web/nokbg0238.nsf/AllWeb/65865972888D25FAC125805E00281D
50?OpenDocument; Accessed: 24.04.2018

https://www.forbes.com/sites/bernardmarr/2017/11/06/the-future-of-the-transport-industry-iot-big-data-ai-and-autonomous-vehicles/#2b854d791137
https://www.forbes.com/sites/bernardmarr/2017/11/06/the-future-of-the-transport-industry-iot-big-data-ai-and-autonomous-vehicles/#2b854d791137
https://www.km.kongsberg.com/ks/web/nokbg0238.nsf/AllWeb/98A8C576AEFC85AFC125811A0037F6C4?OpenDocument
https://www.km.kongsberg.com/ks/web/nokbg0238.nsf/AllWeb/98A8C576AEFC85AFC125811A0037F6C4?OpenDocument
https://www.km.kongsberg.com/ks/web/nokbg0238.nsf/AllWeb/65865972888D25FAC125805E00281D50?OpenDocument
https://www.km.kongsberg.com/ks/web/nokbg0238.nsf/AllWeb/65865972888D25FAC125805E00281D50?OpenDocument

23

[6] Nautilus Federation. Report of a Survey on What Maritime Professionals Think About Autonomous
Shipping. Regulatory scoping exercise for the use of maritime autonomous surface ships (MASS).
London, UK: International Maritime Organization, Maritime Safety Committee; 2018. pp. 4-17.
[7] Thieme CA, Utne IB, Haugen S. Assessing Ship Risk Model Applicability to Marine Autonomous
Surface Ships. Ocean Engineering. 2018;165: pp. 140 - 154.
[8] Kaplan S, Garrick BJ. On the Quantitative Definition of Risk. Risk Analysis. 1981;1: pp. 11-27.
[9] ISO/IEC. Iso/Iec Guide 51: Safety Aspects - Guidelines for Their Inclusion in Standards. Geneva,
Switzerland: International Organization for Standardization , International Electrotechnical Commission;
2014. pp. 1-22.
[10] Li B. Integrating Software into Pra (Probabilistic Risk Assessment) [Monograph]. College Park, MD:
University of Maryland; 2004.
[11] Chu T-L, Martinez-Guridi G, Yue M, Samanta P, Vinod G, Lehner J. Workshop on Philosophical
Basis for Incorporating Software Failures in a Probabilistic Risk Assessment. Digital System Software
PRA. Brookhaven National Laboratory; 2009. pp. 1-1-2-21.
[12] Ozarin NW. The Role of Software Failure Modes and Effects Analysis for Interfaces in Safety- and
Mission-Critical Systems. IEEE International Systems Conference Proceedings, SysCon 2008.
Montreal, QC, Canada: IEEE; 2008. pp. 200-207.
[13] Garrett CJ, Apostolakis G. Context in the Risk Assessment of Digital Systems. Risk Analysis.
1999;19: pp. 23-32.
[14] Reifer DJ. Software Failure Modes and Effects Analysis. IEEE Transactions on Reliability. 1979;R-
28: pp. 247-249.
[15] Goddard PL. Software Fmea Techniques. Proceedings of the Annual Reliability and Maintainability
Symposium. 2000: pp. 118-123.
[16] Ristord L, Esmenjaud C. Fmea Performed on the Spinline3 Operational System Software as Part
of the Tihange 1 Nis Refurbishment Safety Case. Cnra/Csni Workshop on Licensing and Operating
Experience of Computer-Based I&C Systems. Hluboka nad Vltavou, Czech Republic: NEA/CSN/OECD;
2002. pp. 37-50.
[17] Stadler JJ, Seidl NJ. Software Failure Modes and Effects Analysis. 59th Annual Reliability and
Maintainability Symposium, RAMS 2013. Orlando, FL, United States: Institute of Electrical and
Electronics Engineers Inc.; 2013. pp. 1-5.
[18] Ozarin NW. Bridging Software and Hardware Fmea in Complex Systems. 2013 Proceedings
Annual Reliability and Maintainability Symposium (RAMS). 2013. pp. 1-6.
[19] Prasanna KN, Gokhale SA, Agarwal R, Chetwani RR, Ravindra M, Bharadwaj KM. Application of
Software Failure Mode and Effect Analysis for on-Board Software. 2014 International Conference on
Advances in Computing, Communications and Informatics (ICACCI). 2014. pp. 684-688.
[20] Park GY, Kim DH, Lee DY. Software Fmea Analysis for Safety-Related Application Software. Annals
of Nuclear Energy. 2014;70: pp. 96-102.
[21] Garrett CJ, Guarro SB, Apostolakis GE. The Dynamic Flowgraph Methodology for Assessing the
Dependability of Embedded Software Systems. IEEE Transactions on Systems, Man, and Cybernetics.
1995;25: pp. 824-840.
[22] Yau MK, Dixon S, Guarro SB. Applications of the Dynamic Flowgraph Methodology to Dynamic
Modeling and Analysis. 11th International Probabilistic Safety Assessment and Management
Conference and the Annual European Safety and Reliability Conference, PSAM11, ESREL2012.
Helsinki, Finland: Probablistic Safety Assessment and Management (IAPSAM); 2012. pp. 606-615.
[23] Karanta I. Implementing Dynamic Flowgraph Methodology Models with Logic Programs.
Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. 2013;227:
pp. 302-314.
[24] Guarro SB, Yau MK, Ozguner U, Aldemir T, Kurt A, Hejase M, et al. Formal Framework and Models
for Validation and Verification of Software-Intensive Aerospace Systems. AIAA Information Systems-
Infotech At Aerospace Conference. Grapevine, TX, USA: American Institute of Aeronautics and
Astronautics Inc, AIAA; 2017.
[25] Zhu D, Mosleh A, Smidts C. A Framework to Integrate Software Behavior into Dynamic Probabilistic
Risk Assessment. Reliability Engineering & System Safety. 2007;92: pp. 1733-1755.
[26] Li B, Li M, Ghose S, Smidts C. Integrating Software into Pra. Issre 2003: 14th International
Symposium on Software Reliability Engineering, Proceedings. 2003. pp. 457-467.
[27] Wei YY, Rodriguez M, Smidts CS. Probabilistic Risk Assessment Framework for Software
Propagation Analysis of Failures. Proceedings of the Institution of Mechanical Engineers, Part O:
Journal of Risk and Reliability. 2010;224: pp. 113-135.
[28] IEC. Iec 61508: Functional Safety of Electrical/Electronic/ Programmable Electronic Safety Related
Systems. Geneva, Switzerland: International Electrotechnical Commission; 2010.

24

[29] ISO. Iso 26262: Road Vehicles - Functional Safety. Geneva, Switzerland: International
Organization for Standardization; 2018.
[30] EN. En 50128: Railway Applications - Communication, Signalling, and Processing Systems.
Software for railway control and protection systems. Brussels, Belgium: European Committee for
Electrotechnical Standardization; 2011.
[31] IEC. Iec 61508-3: Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
Related Systems. Part 3: Software requirements. Geneva, Switzerland: International Electrotechnical
Commission; 2010.
[32] ISO. Iso 26262-6: Road Vehicles-Functional Safety. Part 6: Product development at the software
level. Geneva, Switzerland: International Organization for Standardization; 2018.
[33] EN. En 61511-1: Functional Safety - Safety Instrumented Systems for the Process Industry Sector.
Part 1: Framework definitions, system, hardware and application programming requirements. Brussels,
Belgium: European Committee for Electrotechnical Standardization; 2017.
[34] ISO. Iso 21448: Road Vehicles - Safety of the Intended Functionality. Geneva, Switzerland:
International Organization for Standardization; 2019.
[35] IEC EN. En Iec 60812: Analysis Techniques for System Reliability – Procedure for Failure Mode
and Effects Analysis (Fmea). Brussels, Belgium: International Electrotechnical Commission, European
Committee for Electrotechnical Standardization; 2018.
[36] Ozarin NW. Developing Rules for Failure Modes and Effects Analysis of Computer Software. SAE
Advances in Aviation Safety Conference - 2003 Aerospace Congress and Exhibition. Montreal, QC,
Canada: SAE International; 2003.
[37] OECD. Failure Modes Taxonomy for Reliability Assessment of Digital I&C Systems for Pra. Paris,
France: Organisation for Economic Co-operation and Development, Nuclear Energy Agency; 2014. pp.
1-135.
[38] ISO. Iso 26262-1: Road Vehicles - Functional Safety. Part 1: Vocabulary. Geneva, Switzerland:
International Organization for Standardization; 2018.
[39] Albee A, Battel S, Brace R, Burdick G, Burr P, Casani J, et al. Report on the Loss of the Mars Polar
Lander and Deep Space 2 Missions. Pasadena, CA, USA: JPL Special Review Board; 2000.
[40] Tolker-Nielsen T. Exomars 2016 - Schiaparelli Anomaly Inquiry. Paris, France2017.
[41] Marine Accident Investigation Branch. Sbs Typhoon Contact in Aberdeen Harbour, 26 February
2011. 2011.
[42] IEEE. Ieee Std 1633-2016: Ieee Recommended Practice on Software Reliability. New York, NY,
USA: Institute of Electrical and Electronics Engineers Reliability Society; 2016. pp. 1-261.
[43] Guarro SB, Yau MK, Motamed M. Development of Tools for Safety Analysis of Control Software in
Advanced Reactors. Washington DC: ASCA Inc.; 1996. pp. 1-115.
[44] Al-Dabbagh AW. Dynamic Flowgraph Methodology for Reliability Modelling of Networked Control
Systems. Oshawa, ON, Canada: University of Ontario Institute of Technology; 2009.
[45] Al-Dabbagh AW, Lu L. Reliability Modeling of Networked Control Systems Using Dynamic
Flowgraph Methodology. Reliability Engineering & System Safety. 2010;95: pp. 1202-1209.
[46] Stamatelatos M, Dezfuli H, Apostolakis G, Everline CJ, Guarro SB, Mathias D, et al. Probabilistic
Risk Assessment Procedures Guide for Nasa Managers and Practitioners. Washington D.C.: National
Aeronautics and Space Administration; 2011. pp. 1-431.
[47] Guarro SB, Yau MK, Dixon S. Context-Based Software Risk Model (Csrm) Application Guide. 1st
Ed. ed. Washington, D.C. 20546: ASCA Inc.; 2013. pp. 1-73.
[48] Aldemir T, Guarro SB, Kirschenbaum J, Mandellil D, Mangan LA, Bucci P, et al. A Benchmark
Implementation of Two Dynamic Methodologies for the Reliability Modeling of Digital Instrumentation
and Control Systems. Washington, DC, USA: Office of Nuclear Regulatory Research; 2009.
[49] Aldemir T, Guarro SB, Mandelli D, Kirschenbaum J, Mangan LA, Bucci P, et al. Probabilistic Risk
Assessment Modeling of Digital Instrumentation and Control Systems Using Two Dynamic
Methodologies. Reliability Engineering & System Safety. 2010;95: pp. 1011-1039.
[50] Wei YY. A Study of Software Input Failure Propagation Mechanisms. College Park, MD: University
of Maryland; 2006.
[51] Zhu D. Integrating Software Behavior into Dynamic Probabilistic Risk Assessment. Collage Park,
MD: University of Maryland; 2005.
[52] Leveson NG. A New Accident Model for Engineering Safer Systems. Safety Science. 2004;42: pp.
237-270.
[53] Leveson NG, Fleming CH, Spencer M, Thomas J, Wilkinson C. Safety Assessment of Complex,
Software-Intensive Systems. SAE International Journal of Aerospace. 2012;5: pp. 233-244.

25

[54] Abdulkhaleq A, Wagner S. Integrated Safety Analysis Using Systems-Theoretic Process Analysis
and Software Model Checking. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 2015. pp. 121-134.
[55] Abdulkhaleq A, Wagner S, Leveson N. A Comprehensive Safety Engineering Approach for
Software-Intensive Systems Based on Stpa. Procedia Engineering. 2015. pp. 2-11.
[56] Rokseth B, Utne IB, Vinnem JE. A Systems Approach to Risk Analysis of Maritime Operations.
Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. 2017:
pp. 53-68.
[57] AAWA. Remote and Autonomous Ships - the Next Steps. In: Laurinen M, editor. Advanced
Autonomous Waterborne Applications. London, UK 2016. pp. 56-73.
[58] Bureau Veritas. Guidelines for Autonomous Shipping. Paris, France2017. pp. 5-25.
[59] Gran BA. The Use of Bayesian Belief Networks for Combining Disparate Sources of Information in
the Safety Assessment of Software Based Systems. Trondheim, Norway: NTNU - Norwegian University
of Science and Technology; 2002.
[60] Hewett R, Seker R. A Risk Assessment Model of Embedded Software Systems. 2005 29th Annual
IEEE/NASA Software Engineering Workshop, SEW'05. Greenbelt, MD, USA: Institute of Electrical and
Electronics Engineers Computer Society; 2005. pp. 142-149.
[61] Sadiq M, Ahmad MW, Rahmani MKI, Jung S. Software Risk Assessment and Evaluation Process
(Sraep) Using Model Based Approach. ICNIT 2010 - 2010 International Conference on Networking and
Information Technology 2010. pp. 171-177.
[62] Jensen D, Tumer IY, Kurtoglu T. Modeling the Propagation of Failures in Software Driven Hardware
Systems to
Enable Risk-Informed Design. 2008 ASME International Mechanical Engineering Congress and
Exposition. Boston, Massachusetts, USA: ASME; 2008.
[63] Tumer I, Smidts C. Integrated Design-Stage Failure Analysis of Software-Driven Hardware
Systems. IEEE Transactions on Computers. 2011;60: pp. 1072-1084.
[64] Mutha C, Jensen D, Tumer I, Smidts C. An Integrated Multidomain Functional Failure and
Propagation Analysis Approach for Safe System Design. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing. 2013;27: pp. 317-347.
[65] Li B, Li M, Smidts C. Integrating Software into Pra: A Test-Based Approach. Risk Analysis. 2005;25:
pp. 1061-1077.
[66] Authen S, Björkman K, Holmberg J-E, Larsson J. Guidelines for Reliability Analysis of Digital
Systems in Psa Context — Phase 1 Status Report. Roskilde, Denmark: Nordik Nuclear Safety Research
(NKS); 2010. pp. 1-23.
[67] Authen S, Holmberg J-E. Reliability Analysis of Digital Systems in a Probabilistic Risk Analysis for
Nuclear Power Plants. Nuclear Engineering and Technology. 2012;44: pp. 471-482.
[68] Authen S, Holmberg J-E. Guidelines for Reliability Analysis of Digital Systems in Psa Context —
Phase 3 Status Report. Roskilde Denmark: Nordic nuclear safety research (NKS); 2013. pp. 3-37.
[69] Holmberg J-E, Authen S, Amri A. Development of Best Practice Guidelines on Failure Modes
Taxonomy for Reliability Assessment of Digital Ic Systems for Psa. 11th International Probabilistic
Safety Assessment and Management Conference and the Annual European Safety and Reliability
Conference, PSAM11 ESREL 2012. Helsinki, Finland: Probablistic Safety Assessment and
Management (IAPSAM); 2012. pp. 1887-1894.
[70] Huang B, Zhang H, Lu M. Software Fmea Approach Based on Failure Modes Database. 8th
International Conference on Reliability, Maintainability and Safety. 2009. pp. 749-753.
[71] Ozarin NW, Siracusa M. A Process for Failure Modes and Effects Analysis of Computer Software.
Proceedings of the Annual Reliability and Maintainability Symposium. 2003. pp. 365-370.
[72] Ozarin NW. Applying Software Failure Modes and Effects Analysis to Interfaces. Annual Reliability
and Maintainability Symposium 2009. pp. 533-538.
[73] ISO. Iso 26262-11: Road Vehicles - Functional Safety. Part 11: Guidelines on application of ISO
26262 to semiconductors. Geneva, Switzerland: International Organization for Standardization; 2018.
[74] EN. En14514: Space Engineering Standards - Functional Analysis. Brussels, Belgium: European
Committee for Standardization; 2004.
[75] IEEE. Ieee 830: Recommended Practice for Software Requirements Specification. New York, NY,
USA: Institute of Electrical and Electronics Engineers; 2009.
[76] Myklebust T, Stålhane T, Hanssen GK. Important Considerations When Applying Other Models
Than the Waterfall/V-Model When Developing Software According to Iec 61508 or En 50128. ISSC
symposium. San Diego2015.

26

[77] Hegde J. Tools and Methods to Manage Risk in Autonomous Subsea Inspection, Maintenance and
Repair Operations. Trondheim, Norway: Norwegian University of Science and Technology (NTNU);
2018.
[78] Hegde J, Henriksen EH, Utne IB, Schjølberg I. Development of Safety Envelopes and Subsea
Traffic Rules for Autonomous Remotely Operated Vehicles. Journal of Loss Prevention in the Process
Industries. 2019: pp.
[79] Hegde J, Utne IB, Schjølberg I. Development of Collision Risk Indicators for Autonomous Subsea
Inspection Maintenance and Repair. Journal of Loss Prevention in the Process Industries. 2016;44: pp.
440-452.
[80] Next Gen IMR. Next Generation Inspection, Maintenance, and Repair. 2018;
https://www.ntnu.edu/oceans/nextgenimr; Accessed: 05.04.2019
[81] IEC. Iec 61508-7: Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
Related Systems. Part 7: Overview of techniques and measures. Geneva, Switzerland: International
Electrotechnical Commission; 2010.
[82] IEC. Iec 61508-4: Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
Related Systems. Part 4: Definitions and Abbreviations. Geneva, Switzerland: International
Electrotechnical Commission; 2010.

https://www.ntnu.edu/oceans/nextgenimr

