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ABSTRACT Hundreds of text detection methods have been proposed, motivated by their widespread use in
several applications. Despite the huge progress in the area, which includes even the use of sophisticated
learning schemes, ad-hoc post-processing procedures are often employed to improve the text detection
rate, by removing both false positives and negatives. Another issue refers to the lack of the use of the
complementary views provided by different text detection methods. This paper aims to fill these gaps.
We propose the use of a soft computing framework, based on genetic programming (GP), to guide the
definition of suitable post-processing procedures through the combination of basic operators, which may be
applied to improve detection results provided by multiple methods at the same time. Performed experiments
in the widely used ICDAR 2011, ICDAR 2013, and ICDAR 2015 datasets demonstrate that our GP-based
approach leads to F1 effectiveness gains up to 5.1 percentage points, when compared to several baselines.

INDEX TERMS Scene text detection, multi-oriented text, convolutional neural network, data fusion, genetic
programming.

I. INTRODUCTION
Texts are essential elements for effective communication in
our daily life. Texts and words are everywhere, being used
to guide us in specific activities or even to label objects.
In both scenarios, textual elements can play an important role
in the semantic understanding of scenes. Similarly, in several
computer vision tasks, the understanding of textual elements
in a scene may be paramount for machines to be able to
recognize important events in multimedia data. In light of
this, several researchers are striving towards devising appli-
cations that aim at understanding textual elements present in
scenes [1]–[3].

Different from the classic optical character recognition
problem, the task of localizing and recognizing text in real
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scenes introduces some research challenges that are still asso-
ciatedwith open problems. The variability in theway a textual
element can appear in a scene leads to failures in the recog-
nition of texts within images, considering the algorithms and
techniques available in the literature. This variability is given
mainly due to differences in font style, texture, color, size,
contrast, and perspective distortions.

To deal with these challenges, the research community
has been making efforts towards proposing new algorithms
and techniques for localizing and recognizing texts within
scenes effectively by adopting deep learning-based solu-
tions. Those solution demand high computational costs in
terms of energy consumption, memory, and storage foot-
prints. Compared to methods proposed before the deep learn-
ing ‘‘era’’ [4], [5], state-of-the-art solutions are associated
with high effectiveness localization and recognition results.
However, at the same time, those recent methods often need
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more computational resources. In fact, for some scenarios
(e.g., mobile-oriented applications), the high costs, in terms
of memory consumption, of some effective deep learning
solutions may prevent their use in real-word applications.
On the other hand, the ability of devices with constrained
resources (e.g., embedded devices and smartphones) of run-
ning several applications in parallel1 enables the design of
methods that take advantage of complementary views from
different text localization approaches.

In this work, we focus on finding complementary informa-
tion from lighter text localization methods for devising appli-
cations that require lowmemory consumption, without losing
sight the idea of taking advantage of sophisticated methods
towards enabling effective client-server applications, which
allow an off-line processing.

Moreover, despite the use of sophisticated segmentation
and even learning procedures, often ad-hoc post-processing
procedures are used to improve localization results even con-
sidering powerful deep learning-based approaches to design
solutions for the localization task. Common procedures
include the analysis of a set of rectangular and multi-oriented
bounding boxes in order to: (i) remove overlapped bounding
boxes; (ii) keep bounding boxes that contain regions of inter-
est; and (iii) remove all bounding boxes that do not contain
any region of interest. Performing such simple yet effective
procedures often lead to the increase of both the recall and
precision of the final text detection results.

In order to address the aforementioned gaps in the lit-
erature, this paper introduces a novel method to combine
localization results from different text localization methods
aiming to exploit the complementary information of different
methods for text detection. We model the bounding box
fusion problem as an optimization problem, whose solu-
tion takes advantage of a soft computing solution based on
genetic programming (GP), as illustrated in Figure 1. GP is
an artificial intelligence apparatus often successfully used to
find near-optimal solutions by using evolution-like solution
search procedures. In the GP framework, individuals of a
population are possible solutions to a target problem, which
evolve over generations, subject to various genetic opera-
tors such as cross-over and mutation [6]. Figure 2 shows
complementary results from different methods for text local-
ization algorithms such as TextBoxes++, PixelLink, and
Pelee-Text networks [7]–[9]. In the example, our GP-based
fusion approach is used to combine effectively those comple-
mentary views provided by the different algorithms.

The main contributions of this paper are threefold: (i) an
algorithm capable of combining the detection results of two
or more algorithms towards capturing their complementary
views; (ii) an algorithm able to filter out bounding boxes
of a given algorithm towards removing overlapped bounding
boxes and false positive cases; and (iii) a method for filtering
bounding boxes that can be adapted to different operating

1https://developer.android.com/training/multiple-threads (As of April
2020).

FIGURE 1. Overview of the proposed method for fusing bounding boxes
from different text localization methods. Given a training set, we use part
of images for training the text localization methods, and the remaining
images for training the GP-based algorithm, aiming to select the best
individual for fusing bounding boxes. Next, we use the text localization
models for predicting the bounding boxes from the test set and the best
individual, found during the training phase of our GP-based method,
to fuse the predictions of text localization methods.

scenarios and datasets (e.g., (near)-horizontal, vertical, and
multi-oriented texts).

The remaining of this paper is organized as fol-
low: Section II provides an overview of related work;
Section III introduces the proposed GP-based fusion
approach; Section IV presents the adopted experimental
protocol, while Section V presents and discusses achieved
results; finally, Section VI provides our conclusions and
points out possible future research venues.

II. RELATED WORK
The literature available for the text localization problem is
vast and covers a wide range of approaches that exploit
the problem from different views. Existing methods can
be divided into two main categories: bottom-up and top-
down. The first approach tries to localize words by exploiting
character-level patterns and grouping all detected characters
towards forming words. On the other hand, the bottom-up
approaches seek to detect patterns found in text lines that
are more stable than patterns found at character-levels, which
are more sensitive to variations such as font size and style,
and disconnected stroke. This section aims to cover the main
methods from three distinct groups — character-, word-, and
text- line-based methods — towards emphasizing the wide
variability of methods.

A. CHARACTER-BASED METHODS
Character-based methods comprise the approaches which
seek to detect characters present in a scene and, after
applying grouping methods, to detect words or text lines.
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FIGURE 2. Example of fusion of some state-of-the-art methods for text
detection algorithms. The last row shows the results of our proposed
GP-based fusion method taking as input the bounding boxes produced by
those detectors.

Character detection is a challenging task due to variability in
terms of how this element can appear in a scene (e.g., different
size, color, or style). For this reason, classification methods
based on stages are preferable and they are designed to
achieve high recall rates in the first stages by using weakly
classifiers and to increase the precision, in the final stages,
by removing false positives using strong classifiers.

Minetto et al. [10] proposed a text localization method
composed of four main steps: image segmentation, character
filtering, character grouping, and text region filtering. Ini-
tially, it locates candidate characters on images by means of
a segmentation and a character/non-character binary classifi-
cation system. The segmentation approach takes advantages
of morphological operations for local contrast enhance-
ment and thresholding. The classification system relies on

shape descriptors (e.g., Fourier descriptors, Pseudo-Zernike
moments, and Polar descriptor) and an ensemble of SVM
classifiers. The candidate characters, represented by their
bounding boxes, are then grouped according to a geometric
criteria. The resulting groups, i.e., candidate text regions, are
validated by means of another texture-based classification
system, which exploits a multi-cell histogram of oriented
gradients (named T-HOG) [11], and another SVM classifier.

Zhang and Kasturi [12] proposed a solution for the text
detection problem based on character and link energies.
In their text model, each character is a part and two con-
necting parts are connected by a link. In this method, closed
boundaries in the edge map are used to detect text objects.
The energies associated with characters and links are used to
compute the probability that a candidate text model is really
a text object. The character energy is computed based on the
fact that each character stroke forms two edges with high
similarity in terms of length, curvature, and orientation. Link
energy, in turn, depends on the similarity of characters in
terms of color, size, stroke width, and spacing. Text units,
whose energy is greater than a threshold, are considered valid
text objects.

Neumann andMatas [13] proposed an end-to-end real-time
text localization and recognition method, where the real-time
performance is achieved by posing the character detection
problem as an efficient sequential selection from the set of
Extremal Regions (ER), which can be summarized in four
steps. Firstly, different channels are used to be processed
independently: Hue, Saturation, intensity, and gradient mag-
nitude, as well as their complements. In the second step,
a component tree [14] is extracted from each channel. Later,
shape-based features (e.g., aspect ratio, compactness, number
of holes and number of horizontal crossings) are computed
for each ER, and used as input of a classifier, which estimates
the class-conditional probability p(ER|character) of each ER
being a character. Next, the ERs that survive to the first-stage
classification, are submitted to a second-stage classifier that
exploits more computationally expensive features, such as
hole area ratio, convex hull ratio, among others. In the fourth
step, the final set of ERs is used to find all possible text line or
words.

B. WORD-BASED METHODS
These methods aim to detect words based on shared features
among the characters with certain spatial proximity. In this
context, He et al. [15] proposed a method for detecting text
in natural scenes, which directly outputs word-level bounding
boxes without post-processing, except for the NMS method.
In short, the method can be decomposed into three parts:
a convolutional component, a text-specific component, and
a box prediction component. The convolutional and box pre-
diction components are inherited from the SSD detector [16],
while the a text-specific component was specifically designed
for the text localization problem, which comprises two mod-
ules: a text attention module and a hierarchical inception
module. The text attention module aims to automatically
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learn rough spatial regions of text from the convolutional
features with the goal of improving the performance with
regard to three aspects: reduction of false alarms, detection
of ambiguous text, and improvement of the word-level detec-
tion accuracy. The hierarchical inception module is used to
aggregate multi-scale inception features in order to identify
very small-scale text and working reliably on the multi-scale
text.

Liao et al. [7] proposed a text localization and recognition
solution able to predict arbitrary orientation word bounding
boxes. The proposed method consists of a Fully Convolu-
tional Network (FCN) that inherits from the popular VGG-16
architecture and is adapted to detect arbitrary-oriented words.
In short, the main modifications to reach these goals are: the
proposal of default boxes with vertical offsets, which enable
better detection in regions with many textual elements; the
use of default boxes with aspect ratios more adaptable to
detect ‘‘long words;’’ and adaptation in the training stage to
detect quadrilateral bounding boxes, instead of rectangular
bounding boxes.

C. TEXT LINE-BASED METHODS
The main idea behind these approaches consists of detecting
text lines, whose patterns associated with these elements
present a better regularity in comparison with patterns
extracted from individual characters since characters are
more sensitive to several conditions such as blur, low-
resolution, disconnected stroke, among others. He et al. [17]
introduced a method based on Fully Convolutional Net-
work (FCN) for the scene text detection problem. This net-
work seeks to find text center lines of each word, which
are segmented in order to came up to word-level detection.
More precisely, FCN contains three branches with shared
convolutional parameters and a per-scale loss function that
learns features from multiple scales. In each branch, the FCN
detects the center lines of words and after performs a segmen-
tation towards detecting word instance, considering words
with more than two characters.

Zhang et al. introduced an approach based on two fully
Convolution Network (FCN) architectures for predicting a
salience map of text regions in a holistic manner (named
as Text-Block FCN), and also for predicting the centroid of
each character (named Character-Centroid FCN) in order to
eliminate false text line candidates [18]. The Text-Block FCN
network inherits five convolutional layers from the VGG-16
network. These layers are followed by deconvolutional and
up-sampling layers. The goal is to get feature maps from
the intermediate representations, which are fused to generate
a single salient map of text region candidates. Similarly,
the Character-Centroid FCN network also inherits three lay-
ers of the VGG-16 network, which is adjusted during the
training stage to remove non-text line regions considering a
character-level detection.

Finally, He et al. [19] proposed a scene text detection
method by using a FCN [20] with mechanisms for locating
text line boundaries. The first step of this approach consists

of extracting several visual features by using deep CNNs such
as S-VGG, VGG-16, and ResNet-50. Here the CNN’s outputs
were redesigned such that the maximum receptive field was
larger than input image size, to get long texts and then find
more accurate bounding boxes. Next, these visual features
are combined via another CNN able to produce feature maps
of finer-resolution with multi-level features fusion since such
architecture can perform a multi-scale detection, which can
benefit both classification and regression of bounding boxes
locations. Next, a multi-task learning stage is used to classify
segments into text and non-text and to predict an oriented
text boundary. The authors considered a post-processing step,
named as Recalled Non-Maximum Suppression, to avoid
redundancy.

III. PROPOSED METHOD
This section introduces the proposed method for fusing
bounding boxes, which is based on Genetic Programming
(GP) [6]. The fusion is guided by analyzing some proper-
ties of bounding boxes, such as localization and geomet-
ric aspects, that might reveal false localization, redundant
localization or complementary ones. Our fusion approach
was designed to learn in which case we should fuse, keep,
or remove bounding boxes in order to maximize the precision
and recall rates of the final results.

A. BACKGROUND ON GP
Genetic Programming (GP) comprises a set of artificial
intelligence solutions, which was inspired on the theory of
evolution. GP is commonly used in optimization problems,
whose solutions are modeled as individuals of a population
that evolves over generations, subject to genetic operations
(reproduction, mutation, crossover). The objective is to dis-
cover near-optimal solutions (individuals with the best per-
formance) to the target problem, as illustrated in Figure 3.

Algorithm 1 outlines the main GP evolutionary steps.
First, a population of randomly generated individuals is cre-
ated (line 1). In the following, this population is evolved
over generations (lines 3 – 9). The fitness of each individ-
ual is computed (line 4) and then individuals are selected
(line 5) according to their fitness to be sent to the next gen-
erations. After this step, individuals are subjected to genetic
operations in order to define the next population generation
(lines 6–8). At the end of the process, the best performing
individual is returned (line 10).

A common application of GP is related to the evolution of
programs. In this case, the goal is to find a program that best
performs a particular task, based on the combination of basic
fusion operators. We exploit this research venue in this work.

B. GP-FRAMEWORK FOR BOUNDING BOX FUSION
Let B = {b1, b2, . . . bn} be a set of n candidate bounding
boxes, which are expected to be associated with text regions
within images. Set B may be associated, for example, with
the results of one or more text detection algorithms. Let F
be a function that maps B to a set B′ = {b′1, b

′

2, . . . , b
′
m},
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FIGURE 3. Pipeline of GP-based fusion method. After the initialization of the population. Elitism mechanisms select the best individuals (e.g., 20% best)
of the population to the next generation, without any changing, while the reproduction step produces the remaining (e.g., 80%) of the population by
applying mutation and crossover operations upon the entire population.

Algorithm 1 Basic GP Evolution Algorithm
1: procedure GP Evolution
2: Generate an initial population of individuals
3: for N generations do
4: Calculate the fitness of each individual
5: Select the individuals to genetic operations
6: Apply reproduction
7: Apply crossover
8: Apply mutation
9: end for

10: return the best performing individual
11: end procedure

with m bounding boxes, which are expected to be associated
with all text regionswithin images. Our goal is take advantage
of the GP framework to find a solution that implements the
most effective function F , i.e., the one that leads to the most
effective text detection results.

1) INDIVIDUAL REPRESENTATION
In our formulation, a GP individual is a program comprised
of a sequence of binary and unary fusion operators, which in
turn, are formed by a condition and a method (image-based
operator). A binary fusion operator acts upon two overlapping
bounding boxes and aims to remove redundant localization,
which is performed by fusing bounding boxes or by keeping
the best one, according to the condition and method of the
fusion operator.

In this work, we consider four methods to build binary
fusion operators as follow:

1) non-maximum suppression (NMS) [21], which removes
the bounding boxes with the lower confidence;

2) mean, which fuses two bounding boxes based on the
mean value of their (x, y) coordinates;

3) union, which merges a pair of bounding boxes using a
minimum rectangle; and

4) nothing, which returns the bounding boxes without any
transformation.

In turn, a unary fusion operator acts upon an isolated bound-
ing box and aims to remove false positive localization.

For this, we consider two methods to build unary fusion
operators:

1) remove, which removes a bounding box according to
operator’s condition or

2) nothing, which returns the bounding boxes without any
transformation.

The conditions, proposed in this work, were defined in
terms of properties of the bounding boxes aiming to explore
their possible complementary views. Let bi be a bounding box
defined in terms of its upper-left (xmin, ymin) and bottom-right
corners (xmax , ymax). Let Abi and Cbi be the area and the
confidence score of bi, respectively. Let hbi , and wbi be the
height and the width of bi. Let IoUbi,bj be the intersection
over union of bounding boxes bi and bj, and A∩bi,bj be the
area of intersection of bi and bj. The following conditions are
used to build a GP population:(

bi · ymax − bj · ymin
H

> TY
)

and(
bj · ymax − bi · ymin

H
> TY

)
(1)(

bi · xmax − bj · xmin
W

> TX
)

and(
bj · xmax − bi · xmin

W
> TX

)
(2)

(A∩bi,bj > T∩ ·Abi ) or (A∩bi,bj > T∩ ·Abj ) (3)

IoUbi,bj > TIoU (4)
|Abi −Abj |

H ·W
> TA (5)

|Cbi − Cbj | > TC (6)
Abi

H ·W
< TAbi

(7)

Cbi < TCbi (8)
hbi
wbi

> Tar (9)

labelbi == Tl (10)

where TY , TX , T∩, TIoU , TA, TC , TAbi
, TCbi , Tar , and Tl are

thresholds learned during the training phase, and H and W
are the height and the width of an image within which the
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bounding boxes are located. The conditions defined in Equa-
tions 1 and 2 verify the alignment of text bounding boxes.
Equation 4, in turn, checks if the intersection over union of
the two input bounding boxes are enough. Themethods might
be applied conditioned to differences of the input bounding
boxes in terms of their areas (Equation 5) and confidence
scores (Equation 6). Finally, Equations 7, 8, 9, and 10 are
specifically designed to build unary fusion operators, which
analyze an input bounding box in terms of its area, confi-
dence, aspect ratio, and method used (label), respectively.
Figure 4 illustrates a population of individuals composed of a
sequence of fusion operators, which are applied if a condition
satisfies.

FIGURE 4. Example of a population with 10 individuals. In our
formulation, each individual represents a sequence of fusion operators
formed by a condition and a method. Our fusion method learns from data
which sequence of fusion operators, and their configurations, that
maximize the detection results when we fuse bounding boxes from
different detectors.

In this work, we consider the fusion of (near)-horizontal,
vertical, and multi-oriented texts. Different from (near)-
horizontal and vertical texts, the fusion of multi-oriented text
needs to deal with bounding boxes with different angles or
orientations. For this reason, both mean and union methods
used to fuse two bounding boxes were adapted to deal with
multi-oriented texts. The ‘‘mean’’ method might not work
properly for merging two multi-oriented bounding boxes,
as the mean value of their coordinates may produce a bound-
ing box that does not fit well amulti-oriented texts. Therefore,
this fusion operator was not considered in text detection
tasks related to multi-oriented texts. The ‘‘union’’ method,
in turn, is suitable for handling multi-oriented texts. In its
implementation, we used the convex hull algorithm to merge
two oriented bounding boxes, instead of finding theminimum
bounding rectangle as we do for horizontal and vertical texts
(see Figure 5). In both cases, the adaptations lead us to
find a tight-fitting convex boundary that encloses all points
of bounding boxes. Similarly, the conditions presented in
Equations 1 and 2 were adapted to deal with multi-oriented

FIGURE 5. Example of union of horizontal (a) and multi-oriented (b) texts.
The first column and second columns illustrate the final bounding boxes
before and after applying the union operator, respectively.

bounding boxes. Let θbi , be the angle of a bounding box. The
following angle condition is defined to be used as a condition
in GP to multi-oriented text:

|θbi − θbj | ≤ Tθ (11)

where Tθ , is the angle threshold and used as a binary fusion
operator. For unary operators, the condition presented in
Equation 9 does not work correctly with multi-oriented text.

2) GENETIC OPERATORS
We implement two genetic operators: mutation and
crossover. Mutation aims to change an operator by modi-
fying its conditions and methods, randomly. The crossover
selects two individuals as parents and, for each individual,
a crossover position is determined. Next, operators from that
positions are exchanged, leading to new individuals. Finally,
that reproduction refers to the copy of the most effective
individuals from one generation to another.

3) FITNESS FUNCTION
Let S be a set of images for training, G their respective
ground truth defined in terms of the coordinate of bounding
boxes associated with text regions, and B a set of candi-
date bounding boxes from different text detection algorithms.
An individualH aims to find a subset B′ ⊆ B that maximize
the fitness function defined in Equation 12:

F1 =
1
N

N∑
n=1

(
2×

Pn × Rn
Pn + Rn

)
(12)

whereN refers to the total number of examples in the training
set S, while Pn and Rn are the precision and recall computed
for n-th example in S, respectively.

In this work, we use the average F1-score as fitness func-
tion to guide the optimization process to sub-optimum solu-
tions. However, other measures could be used according to
a target application. Algorithm 2 outlines the main steps of
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Algorithm 2 Fitness Computation
Input: Individual H, a set of bounding boxes B =

{b1, b2, . . . bn} to fuse, and a set of ground-truth bound-
ing boxes G = {bG1 , b

G
2 , . . . b

G
|G|}

Output: F1-score

1: function Fitness(H,B,G)
2: B′← ∅
3: for bi ∈ B do
4: for bj ∈ B do
5: B′← B′∪ FusionOperators(H, bi, bj)
6: end for
7: end for
8: return compute_F1Score(B′,G)
9: end function

the fitness function. The function FusionOperators (line 5)
applies an individual H in all possible pairs of bounding
boxes in B toward adding the fused bounding box in B′
or discard them. Finally, the F1-Score (line 8) is used to
measure the effectiveness of the individual H by comparing
the bounding boxes in B′ with bounding boxes available in G.

4) COMPUTATIONAL COMPLEXITY
The GP training procedure takes O(Ng × Ni × F), where
Ng is the number of generations considered in the evolution
process, Ni is the number of individuals in the population,
and F is the cost for evaluating the fitness function [22]. The
costs for computing F depends on the size of individuals
(i.e., the number of operations), the cost associated with
operators, and the number of training samples. Recall that
the training process is performed offline. On average, for the
ICDAR 2011 dataset, a typical GP training takes 960 s. For
the ICDAR 2013 dataset, it takes 120 s, while for the ICDAR
2015 dataset, 17,040 s. The training process for ICDAR 2011,
ICDAR 2013, and ICDAR 2015 datasets considered around
1000, 1000, and 5000 bounding boxes, respectively.

IV. EXPERIMENTAL SETUP
In this section, we present datasets (Section IV-A), along with
their respective protocols (Section IV-B) used to validate our
method. We also present the metrics (Section IV-C) adopted
for measuring the effectiveness of the proposed method.

A. DATASETS
We evaluated the proposed methods in three datasets widely
used for evaluating text localization methods, the ICDAR
2011, ICDAR 2013, and ICDAR 2015.

1) ICDAR 2011
This dataset was introduced in ICDAR 2011 Robust Reading
Competition and it was built for evaluating text localization
and recognition algorithms. The ICDAR’11 dataset provides
images found in Web pages and emails, which typically
contain text born-digital images, i.e., text created digitally.

Usually, these multimedia objects present a low-resolution
and several compression artifacts since they are generated to
be transmitted over the Internet at a minimum cost.

In the official evaluation protocol of this dataset,
the 551 images were divided into two subsets: training and
test sets. The training set contains 410 images and it was used
to estimate the parameters of the proposed method. The test
set comprises of 141 images, which was used only to report
the performance results of the proposed method.

2) ICDAR 2013
This dataset was introduced in ICDAR 2013 – ‘‘Focused
Scene Text challenge competition’’ and it is composed of
scene text images. In scene text images, the textual elements
appear in real scenes, which were captured by a camera in
an indoor or outdoor environment. For this reason, the text
localization and recognition in scenes are usually a challeng-
ing scenario due to mainly the variability in which the text
appear in real scenes, such as font style and sizes, color, tex-
ture, among others. In total, this dataset provides 462 images
whose annotations were built in terms of rectangle word
bounding boxes, totaling 1,943 words. All the text lines are
horizontal or near horizontal.

The official evaluation protocol defined for this dataset
divides the 462 images into two subsets, training and testing
sets, which contain 229 and 233 images, respectively [23].
In this work, the training set was used to estimate the param-
eters of the proposed method, while the test set was used only
to report the performance results of our approach.

3) ICDAR 2015
This dataset was introduced in ICDAR 2015 – ‘‘Incidental
Scene Text challenge competition’’ and it is composed of
scene text images. This dataset provides images that were
captured by Google glasses in an indoor or outdoor envi-
ronment where the user of the camera does not take any
action before captured the image, causing that the image
captured has poor quality and text positioning. In total,
this dataset comprises 1500 images whose annotations were
built in terms of multi-oriented word bounding boxes, total-
ing 6545 words. All the text lines are arbitrary. The offi-
cial evaluation protocol defined for this dataset divides the
1500 images into two subsets, training and testing sets, which
contain 1000 and 500 images, respectively [24]. In this work,
the training set was used to estimate the parameters of the
proposed method, while the test set was used only to report
the performance results of our approach.

B. EVALUATION PROTOCOL
This section describes the evaluation protocol adopted to
validate the GP-based method for fusing the detection results
from different text localization methods. For all datasets
used in this work, we split the training set into two subsets
with equal size, hereafter named as training and validation
sets. The training set was used to train the text localization
methods, and the validation set was used in the GP-based
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fusion function discovery process. To have a more general-
ized method for fusing the bounding boxes detected by the
text localizationmethods, we split the validation set again into
two subsets, also with equal size. The first subset was used to
train the GP-based method, and the second subset was used
to select the best individual considering a set containing the
best individuals (e.g., 100 best), which were tracked during
the training stage of the GP-based method. Finally, we used
the official test set to measure the efficacy of the proposed
methods and the baseline methods. Table 1 summarize the
number of images considered on each subset.

TABLE 1. Number of images used for training the text localization
methods and the GP-based fusion methods, after split the official training
set of datasets considered in this work.

C. EVALUATION METRICS
We evaluated the effectiveness of the proposed methods in
terms of recall, precision, and f-measure. Here, we consider
a correct detection (true positive) if the overlap between
the ground-truth annotation and detected bounding box,
which is measured by computing the intersection over union,
is greater than 50% (similar to standard practice in object
recognition [25]). Otherwise, the detected bounding box is
considered an incorrect detection (false positive). For a fair
comparison with other methods available in the literature,
we use the evaluation tools provided by the ‘‘ICDAR Robust
Reading Competition’’ organizers. All experiments were per-
formed considering a Intel(R) Core(TM) i7-8700 CPU @
3.20GHz with 12 cores, and 64GB of RAM.

V. EXPERIMENTAL RESULTS AND DISCUSSION
This section presents the performance results of our pro-
posed approach for fusing bounding boxes from differ-
ent text localization methods. The experimental protocol
considered two scenarios: a restrictive computing scenario,
which requires low-cost solutions, such as detectors designed
with classical machine learning techniques; and a nonre-
strictive scenario that allows the use of high-cost solu-
tions, such as deep learning approaches. For this, we select
from literature effective text localization methods based on
classical machine learning techniques such as Scene Text
Recognition [13], SnooperText [10], and MSER-SWT Text
Detection [26], [27], hereinafter, referred to non-deep learn-
ing methods. Although these methods were not proposed
recently, they are, in fact, among the most effective text
localization methods based on fundamental feature engineer-
ing techniques. For the experiments related to nonrestrictive
computing scenario, we select two effective and efficient

methods based on Convolutional Neural Network (CNN),
the TextBoxes++ [7], Pelee-Text [9], and PixelLink [8]
methods. We also consider the PSENet [28] network for the
experiments in the ICDAR 2015 dataset.

A. WOULD THE FUSION LEADS TO IMPROVED RESULTS,
IN COMPARISON WITH PERFORMANCE OF INDIVIDUAL
ALGORITHMS FOR TEXT LOCALIZATION?
This section evaluate our GP-based solution toward fusing
bounding boxes from different text localization approaches.
The next sections, we present the performance results for the
three datasets considered in this work.

1) ICDAR 2011: BORN-DIGITAL IMAGES
This section presents the performance results of our fusion
approach for the ICDAR 2011 dataset, which provides
born-digital images with low-quality and with considerable
amount of JPEG artifacts. Table 2 shows the results consid-
ering the fusion of non-deep methods. Our GP solution for
fusing bounding boxes achieved the best results, in terms
of precision, recall, and F1, in comparison with individual
performance of methods for text localization methods. Our
fusion method was able to bring a maximum percentage
increase of 16.5% and 89.4%, in terms of precision and recall,
respectively, in comparison with MSER-SWT method. Con-
sidering the best text detection approach, SceneText method,
the percentage increase was over 6.0% for all metrics.

TABLE 2. Performance results of the GP-based fusion method
considering the non-deep methods and the ICDAR 2011 dataset.

TABLE 3. Performance results of the GP-based fusion method considering
the deep learning-based methods and the ICDAR 2011 dataset.

Our GP solution also presented a better precision, recall
and F1 values, in comparison with the deep learning-based
methods used during the fusion step (see Table 3). We could
observe percentage increases of 68.6% and 5.3% of pre-
cision and recall, in comparison with PixelLink network.
Considering the best CNN architecture available in our base-
line (TextBoxes++), the the percentage increase in terms of
precision reached a value of 4.1%.
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TABLE 4. Performance results of the proposed method considering the
fusion of non-deep and deep learning-based methods in the ICDAR
2011 dataset.

To evaluate the ability of the proposed method to fuse
non-deep and deep learning methods, we designed an experi-
ment in which we gather the detection results of all methods,
deep and non-deep methods, and then we train our GP-fusion
method to find the best fusion operator. Table 4 shows a com-
parison of performance results between our fusion approach
and the results obtained by all methods, deep and non-deep
methods. In this scenario, our fusion approach obtained
the best results for precision and F1 metrics, whose values
were 93.0% and 91.3%, respectively. From this experiment,
we could conclude that our approach was still able to capture
complementary information among the text detectors.

Finally, in both scenarios, using non-deep and deep
learning-based methods, our GP solution was superior than
performance of individual methods, which suggest that the
proposed method for fusing bounding boxes is able to extract
complementary information among different approaches for
text localization. That opens new opportunities for further
investigations related to development of methods for con-
strained processing scenarios. Those methods would improve
the effectiveness of efficient non-deepmethods by combining
their complementary views.

TABLE 5. Performance results of the GP-based fusion method
considering the non-deep methods and the ICDAR 2013 dataset.

2) ICDAR 2013: HORIZONTAL AND VERTICAL SCENE TEXTS
This section presents the performance results of our fusion
approach for the ICDAR 2013 dataset, which provides (near)-
horizontal and vertical scene texts. Tables 5, 6 and 7 show
the effectiveness of our approach in combining bounding
boxes from different text localization methods. The GP-based
fusion achieved a better precision, recall, and F1 values than
individual methods and baseline method, considering the
non-deep methods. In the Tables 5, we could observer per-
centage increases of 76.2% and 27.3%, in terms of precision

and recall, respectively. Considering the best text localization
method in this dataset, our fusion could bring a percentage
increase of 4.9%, in terms of F1 value.

For the deep learning-based methods (Tables 6), our GP
solution also achieved the best results for precision and
F1 metrics. The minimum and maximum percentage increase
in terms of F1 value was 1.6% and 53.9%, respectively.
We also evaluated the fusion among deep and non-deep
methods. Tables 7 presents the performance results after
fusing all methods, from which we could observe that our
approach obtained the best results for precision and F1 met-
rics with values of 90.1 and 85.9, respectively. We also could
observe an improvement for all metrics in comparison with
the fusion results achieved by fusing deep and non-deep
methods, separately. Figure 6 illustrates some examples of
fusion bounding boxes. As we can observe, our proposed
solution was able to properly fuse overlapped bounding box
(Figures 6(a), (g), and (f)) and, at the same time, to remove
false positive detections (Figures 6(a), (c), and (e)).

TABLE 6. Performance results of the GP-based fusion method considering
the deep learning-based methods and the ICDAR 2013 dataset.

TABLE 7. Performance results of the proposed method considering the
fusion of non-deep and deep learning-based methods in the
ICDAR 2013 dataset.

3) ICDAR 2015: MULTI-ORIENTED SCENE TEXTS
This section presents the performance results of our fusion
approach for the ICDAR 2015 dataset, which contains
multi-oriented scene texts. Table 8 shows the performance
results to fuse deep learning-based methods. We could
observe that our GP-based fusion bring improvements for
both recall and F1 metrics, with a percentage increases
of 14.7% and 9.6%, respectively, in comparison with PSENet
network, and a percentage increases of 0.7% and 1.5%, also
in terms of recall and F1, in comparison with the best text
localization method (TextBoxes++).

Figure 7 illustrates examples of fusion bounding boxes,
from which we can confirm the ability of our proposed
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FIGURE 6. Example of detection results achieved by non-deep methods
(first column) and their fusion (second column), considering horizontal
bounding boxes (ICDAR 2011 and ICDAR 2013).

method for learning complementary information from differ-
ent detectors. For instance, the example illustrated in the sec-
ond row shows that Pelee-Text and PSENet networks detected

TABLE 8. Performance results of the GP-based fusion method considering
the deep learning-based methods and the ICDAR 2015 dataset.

block of texts instead of words, which increased the false
positive rates for these methods. On the other hand, PixelLink
network split the word ‘‘MARINA:SQUARE’’ into two words,
which also increased the false positive rate of this network.
However, our fusion method was able to properly fuse the
detection results of these methods, filtering out false positive
detections and accepting correct bounding boxes detected.
Finally, the third example (last row) shows a clear example
of spurious bonding boxes removal.

B. WOULD GENETIC PROGRAMMING BE AN EFFECTIVE
APPROACH FOR BOUNDING BOX FUSION?
This section presents a comparison of performance of our
GP-based solution for fusion and other well-known fusion
rule such as union-based fusion, i.e., OR-rule. This experi-
ment aims to verify if GP-framework could find, in training
phase, an effectiveness criteria for fusing bounding boxes
considering the (near)-horizontal, vertical, andmulti-oriented
texts.

Tables 9, 10 and 11 show the comparison of performance
considering the non-deep and deep learning-based methods,
respectively. We could observe that our approach presented
better results in terms precision ad F1 values for all scenar-
ios. In comparison with Union-based fusion, the proposed
method brings a percentage increase was of 9.7% and 16.3%,
for ICDAR 2011 and ICDAR 2013 datasets, respectively,
in terms of F1 and considering the fusion of non-deep meth-
ods (Table 9). For deep learning-based methods (Table 10),
the percentage reaches 3.5%, 18.4%, and 10.8% for ICDAR
2011, ICDAR 2013, and ICDAR 2015 datasets, respectively,
also in terms of F1. Finally, our approach also presented better
results for precision and F1 metrics considering the fusion of
deep and non-deep methods (Table 11). These results suggest
that our proposed method was able to find criteria that lead a
effective fusion of bounding boxes under different scenarios.

C. WOULD OUR PROPOSED SOLUTION BASED ON GP
LEADS TO IMPROVED RESULTS WHEN ACTING AS
POST-PROCESSING METHOD?
This section presents experimental results of our proposed
method for bounding boxes filtering. For these experi-
ments. In this task, our GP-based solution is expected
to remove or fuse overlapped bounding boxes, to remove
bounding boxes with low-confidence, and mainly to remove
false positive cases. We compare our results with the
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FIGURE 7. The fusion of multi-oriented bounding boxes detected by deep learning-based methods. The first four columns illustrate detection results
achieved by the Pelee-Text, TextBoxes++, PixelLink, and PSNet networks, respectively, and the last column shows the performance results achieved
by our GP-based fusion method.

TABLE 9. Comparison of performance results among our proposed method and union rule-based fusion, considering the non-deep methods.

TABLE 10. Comparison of performance results among our proposed method and union rule-based fusion, considering the deep learning-based methods.

TABLE 11. Comparison of performance results among our proposed method and union rule-based fusion, considering the deep and non-deep methods.

standard method used in the literature to remove overlapped
bounding boxes, the non-maximum suppression (NMS)
method [21]. We do not consider the non-deep methods
in these experiments because such methods already have
a post-processing step in their original pipelines, which
could lead to biases in our conclusions regarding the use of
the proposed method as a post-processing step upon these
approaches.

Figure 8 shows the results for the proposed method consid-
ering all datasets considered in this work. We could observe
that our method was able to improve the precision for all
datasets and text localization methods and datasets, except

for the PixelLink network in the ICDAR 2011 dataset, which
suggest that our proposed method could remove false pos-
itive cases, i.e., bounding boxes whose content does not
have textual elements. On the other hand, our methods did
not lead to improvements in terms of recall, which was
expected since the fusion method does not generate bound-
ing boxes in text regions that was not detected for any text
localization methods. In fact, our GP-based fusion solution
is expected to increase the precision rates and not decrease
the recall rates, as much as possible, towards having better
results in terms of F1metric. In this context, we could observe
that our proposed method led to improvements in terms of
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FIGURE 8. Performance results of the proposed method acting as post-processing method.

FIGURE 9. Comparison of performance of our proposed method trained in the absence of a particular fusion operator type.

F1 for all text localization methods, except for the PixelLink
network.

D. WHAT IS THE MOST IMPORTANT FUSION OPERATOR
TYPE FOR AN EFFECTIVE FUSION?
This section presents the results of experiments designed
to find out the importance of fusion operators proposed in
this work. Figure 9 shows a comparison of performance
of our GP-based fusion method trained in the absence of
a particular fusion operator. We could observe that remove
operator plays an important role during the fusion, followed
by the union operator. We could observe a great drop in the
overall performance of our GP-based fusion when we discard

these operators. The percentage decreases in terms of F1 val-
ues reaches 0.5% and 16.3% when we discard the union and
the remove operator, respectively.

VI. CONCLUSION
In this paper, we proposed a solution that learns how to effec-
tively fuse bounding boxes from text localization methods.
This work modeled the fusion as an optimization process
and takes advantage of a genetic programming framework
towards exploiting complementary views provided by results
from different text detectors. For this, we designed a set of
binary and unary operators capable of merging and removing
bounding boxes according to some conditions designed in this
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work to explore localization and geometric aspects of text
candidate regions. Our GP-based fusion solution was able to
learn a sequence of operators and their parameters that ana-
lyze both pair of bounding boxes and isolated ones. The goal
is to decide which pairs should be merged or kept; or which
bounding boxes should be removed towards maximizing the
precision and recall rates of the final results.

The experimental results demonstrate that the GP-based
fusion approach leads to highly effective results for widely
used benchmarks. These results suggest that our approach is
promising for improving the effectiveness of text detectors
based on the combination of efficient non-deep methods.
That opens the opportunity of developing applications for
devices with constrained processing capabilities (e.g., mobile
devices) based on non-deep approaches. Also, the GP-based
fusion scheme was able to fuse and to improve the detec-
tion scores of highly effective deep learning methods, which
makes it a promising alternative for fusing effective text
detectors in operating scenarios that allow off-line processing
and also for devising data-driven post-processing strategies.

Future work will be concerned with the inclusion of novel
operators to improve the fusion function discovery process.
We also plan to develop fusion approaches for arbitrarily
shaped texts (e.g., curved text collections).
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