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A B S T R A C T   

The integrity of cement in cased boreholes is typically evaluated using well logging. However, well logging 
results are complex and can be ambiguous, and decisions associated with significant risks may be taken based on 
their interpretation. Cement evaluation logs must therefore be interpreted by trained professionals. To aid these 
interpreters, we propose a system for automatically interpreting cement evaluation logs, which they can use as a 
basis for their own interpretation. This system is based on deep convolutional neural networks, which we train in 
a supervised manner using a dataset of around 60 km of interpreted well log data. Thus, the networks learn the 
connections between data and interpretations during training. More specifically, the task of the networks is to 
classify the bond quality (among 6 ordinal classes) and the hydraulic isolation (2 classes) in each 1m depth 
segment of each well based on the surrounding 13 m of well log data. We quantify the networks’ performance by 
comparing over all segments how well the networks’ interpretations of unseen data match the reference in
terpretations. For bond quality, the networks’ interpretation exactly matches the reference 51.6% of the time and 
is off by no more than one class 88.5% of the time. For hydraulic isolation, the interpretations match the 
reference 86.7% of the time. For comparison, a random-guess baseline gives matches of 16.7%, 44.4%, and 50%, 
respectively. We also compare with how well human reinterpretations of the log data match the reference in
terpretations, finding that the networks match the reference somewhat better. This may be linked to the networks 
learning and sharing the biases of the team behind the reference interpretations. An analysis of the results in
dicates that the subjectivity inherent in the interpretation process (and thereby in the reference interpretations 
we used for training and testing) is the main reason why we were not able to achieve an even better match 
between the networks and the reference.   

1. Introduction 

Cementing is a very common operation carried out during the con
struction phase of the majority of oil wells. The idea of cementing op
erations can be traced back to 1859 and 1871, with the first cement 
operation executed in 1883 by Hardison & Stewart Oil Company (Mau 
and Edmundson, 2015; Hill, 1871). Cementing operations have two 
main objectives. The first objective is to provide well integrity by con
trolling flow in the well through hydraulic isolation between different 
zones in the wellbore. Thus, successful cementing prevents fluids from 
geological formations flowing into other geological zones or to the 
surface. The second objective is to provide support for the casing. 

To ensure that a cementing job was successful, we must test the 

cement. Older cementing jobs may also be tested again to ensure that 
they still hold, e.g. as a step in cost-effective plug & abandonment op
erations (Vrålstad et al., 2019). To date, the only method that can 
confirm zonal isolation with certainty is a pressure test. However, 
pressure tests may be economically unfeasible, and field experience 
shows that they in some cases risk causing damage to the cement. 
Therefore, companies typically evaluate cement through well logging, 
where measurement tools are lowered into the casing string to check the 
presence and quality of the cement on its outside. 

Since Grosmangin et al. (1961) and Anderson and Walker (1961) 
published the first effective cement evaluation method, which was based 
on sound waves, further tool development has been somewhat slow. 
Even today’s techniques cannot unambiguously verify the presence of 
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isolating cement. Among the existing methods, however, acoustic log
ging techniques are the most common and efficient according to 
Allouche et al. (2006). These comprise sonic and ultrasonic techniques 
(Grosmangin et al., 1961; Hayman et al., 1991; van Kuijk et al., 2005). 
The data recorded by acoustic tools may be processed to get estimates of 
various parameters that describe the state of well components such as 
the casing and the cement. The well’s potential for hydraulic isolation 
may then be interpreted from these results. 

However, this interpretation is a complex task with associated risks 
(Benge, 2014; Kyi and Wang, 2015), and it must therefore be carried out 
by trained professionals. They use their understanding to integrate the 
various log results and their knowledge about the well to produce an 
evaluation of the cement status. We describe this process further in Sec. 
2.1. 

This task is performed under time pressure, as further well devel
opment may hinge on the evaluation results. As Belozerov et al. (2018) 
also point out, the process of well interpretation is complex, time 
consuming, and quite subjective as well: Although no studies on this 
have yet been published, oil companies are well aware that different 
interpreters can reach different conclusions from the same data. We 
consider this subjectivity further in Sec. 2.2. 

In the work presented here, we created and tested an automatic 
system to generate well log interpretations from log data. Our goal is to 
help interpreters offset the aforementioned problems by using the sys
tem’s automatic interpretations as a baseline for manual interpretation. 
As the system is trained on previous manual interpretations, it may thus 
help keep future interpretations more consistent. The system would also 
speed up the interpretation process if human interpreters only need to 
correct its interpretations where it fails. While humans may always need 
to be part of the loop when important decisions are made based on well 
logs, such a system could also provide quick-look interpretations for less 
important wells. We give an overview of our approach to creating such 
an automatic system in Sec. 2.3. 

2. Background 

2.1. Manual well interpretation 

When interpreting a cement evaluation log, the well integrity 
interpreter looks at a plot of various log results against depth. (Fig. 2 
shows three examples of such plots.). The task is to explain the results by 
partitioning the well into zones, or intervals, answering two main 
questions for each of them: ‘What is the bonding between annular solids 
and the casing in this zone?” and “What is the zone’s potential for hy
draulic isolation?’ The integrity interpreter must have access to the log 
results, either physically on paper or digitally through specialised soft
ware that can read well, plot, and process log data. The interpreter must 
also have access to the well history, which provides context to the well 
log (Benge, 2014). Table 1 shows part of an interpretation resulting from 
such a task. 

Fundamentally, interpreting cement logs is similar to interpreting 
open-hole logs. In both cases, the interpreter must understand the 
physics and processing underlying different measurements, and the 
limits thereof, so that they can weigh different measurements against 
each other (Kyi and Wang, 2015). The interpreter must therefore be 
trained in the art of borehole logging and imaging in order to reduce 
interpretation error. Furthermore, the interpreter must be familiar with 
the decisions that hinge on the interpretation, and the potential risks 
therein. 

Unlike open-hole log interpretation, where nomenclature, rules, and 
documentation is generally agreed upon, integrity interpreters lack a 
general recipe for interpretation. Another challenge of cased-hole 
interpretation relates to the difficulty of correctly interpreting vertical 
features. While interpreting azimuthal heterogeneities in cased holes 
tends to be easier, vertical heterogeneities such as fluid channels raise 
questions such as whether the channels are connected, how long the 
channels are, and whether the integrity of that zone is compromised. 
The interpreter must also consider possible reasons why the vertical 
features exist in the first place. A problem of comparable complexity 
from open-hole logging is the interpretation of drilling-induced fractures 
in images from spiral holes. 

2.1.1. Interpretation of acoustic logs 
Over the past decades, well integrity interpreters have mainly been 

exposed to and familiarised with results from acoustic logging methods. 
These results are extracted from raw acoustic waveforms through time 
or frequency domain-based processing (Pardue et al., 1963; Hayman 
et al., 1991; Allouche et al., 2006). While laboratory tests can evaluate 
the integrity of cement sheaths in detail (Albawi et al., 2014), the lim
itations of current acoustic technologies mean that a much smaller 
amount of information is extracted during logging. This information can 
be ambiguous, and interpreters must therefore often make strong as
sumptions, for example that intervals with solids bonded to the outside 
of the casing can be interpreted as isolated. 

Acoustic logging is based on acoustic waves propagating in the well. 
There are two subtypes: Sonic logging is lower-frequency (10–80 kHz) 
and nondirective, while ultrasonic logging is higher-frequency (0.1–2 
MHz) and directive. Both require tool immersion in a liquid-filled 
environment inside the casing that is free of debris or thin oil films. 
They also require centralisation inside the casing. If any of these re
quirements is not completely fulfilled, the interpreter must take the 
resulting uncertainties into account while interpreting. 

Sonic tools’ monopole transmitters impinge omnidirectional pres
sure pulses onto the casing. There, they excite extensional waves (spe
cifically, in the low-dispersive S0 Lamb mode) travelling up and down 
the cases, as well as wavefields in the annulus and formation (Pardue 
et al., 1963; Tubman et al., 1984, 1986; Sinha and Zeroug, 1999; Wang 
et al., 2016). These wavefields in turn feed back into the wavefield in the 
fluid inside the casing. This is recorded by two hydrophones at distances 
of 3 ft (0.914 m) and 5 ft (1.524 m) from the transmitter. The main 
feature extracted from this wavefield is the cement bond log (CBL) data 
channel. CBL is the signal amplitude in mV of the component of the 
wavefield that arrives first at the closest hydrophone. This component 
has propagated along the casing, as this is the fastest path from trans
mitter to receiver. As the casing wave continuously loses energy into the 
materials on both sides of the casing, and the loss into bonded solids is 
strong, lower CBL values signify solids bonded to the outside of the 
casing. The CBL value can roughly be interpreted by thresholding. If the 
CBL is below around 10 mV, this indicates full azimuthal coverage of 
solids. If the CBL is around a certain high value (depending on casing 
size and normalisation, though typically 50–60 mV), this indicates free 
pipe, i.e. no solids bonded to the casing. As CBL varies with depth, it is 
typically plotted as a curve. The full recorded waveforms for every depth 
can also be plotted as an image, with depth along one dimension and 
waveform samples along the other. This is called a variable density log 
(VDL), and this data channel can be used for further qualitative 

Table 1 
Extract of the official interpretation of the well Volve 15/9-F-9 after a log 
operation in June 2009 (Equinor, 2018).  

Interval 
top 
[mMD] 

Interval 
bottom 
[mMD] 

Cement or formation 
bond quality 

Potential for hydraulic 
isolation 

150 178 Moderate to poor Low 
178 188 Good to moderate Medium 
188 195 Moderate Medium 
195 201 Good to moderate Medium 
201 221 Poor Low 
221 332 Poor Low 
332 341 Moderate to poor Low 
341 440 Moderate to poor Low 
440 451 Moderate Medium  
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interpretation, as we will see in Sec. 2.1.2. Fig. 2 shows examples of CBL 
curves and VDL images for three sections in a well. 

Unlike sonic tools, which can only sample the well in depth, ultra
sonic tools can also sample the well azimuthally. Pulse-echo tools 
impinge ultrasonic pulses onto the casing at normal incidence and re
cord the echo. Pitch-catch tools use a transmitter to impinge pulses on 
the casing at oblique incidence, creating a leaky flexural Lamb wave 
(specifically, in the A0 mode) whose wavefield is recorded by one or 
more receivers. Depending on the type of tool, these recordings can be 
processed into data channels containing estimates of various physical 
quantities as a function of depth and azimuth. For example, pulse-echo 
tools can estimate the inner radius and thickness of the casing and the 
impedance of the material behind it (Zemanek et al., 1969; Froelich 
et al., 1982; Hayman et al., 1991; Graham et al., 1997). Pitch-catch tools 
can provide additional information on the material behind the casing 
through the attenuation of casing Lamb modes, and they may also 
provide information on the third interface beyond the annulus, which 
may be formation rock or an outer casing (van Kuijk et al., 2005; Herold 
et al., 2006; Morris et al., 2007). These depth-by-azimuth maps of 
physical quantities are typically plotted as images, as can be seen in 
Fig. 2. 

There is some redundancy between the sonic and ultrasonic mea
surements. CBL indicates the degree of bonded solids outside the casing, 
while ultrasonic pulse-echo tools can estimate the acoustic impedance of 
the outside material, where high impedances indicate bonded solids. 
The higher the overall impedance surrounding the casing, the lower the 
CBL, and vice versa. This correspondence can be seen clearly in Fig. 2, 
where the impedance shown in the AIBK image channel is clearly 
correlated with the CBL values shown in the CBLF curve channel. 

In general, interpreting well integrity based on acoustic logs entails 
evaluating the quality of the bonding of outside solids to the casing. 
However, the acoustic logs sometimes tell an ambiguous story, from 
which different interpretations can be made. Transforming this story 
into a correct understanding of the well status is a difficult task that may 
require using information drawn from other sources, such as the well 
development, cementing, and logging histories. 

2.1.2. Example of manual interpretation 
As an example of manual interpretation to provide further back

ground for the rest of the paper, we show and interpret logs in three 
relatively straightforward well sections. These logs were recorded in a 
casing with an outer diameter of 95

8in (24.45 cm) and thickness of 0.539 
in (1.37 cm) in the well Volve 15/9-F-11 B, and are freely available from 
Equinor (2018). Fig. 1 shows the wellsketch, and Fig. 2 shows the well 
logs for the three sections. The objective of this log operation was to 
evaluate cement quality in relation to requirements for production 
packer placement, and to identify the top of cement (ToC). 

The log data was recorded using a sonic tool and pulse-echo ultra
sonic tool as described in Sec. 2.1.1, both from the same service com
pany. The data quality is good, apart from some eccentralisation of the 
tools. The theoretical ToC was estimated at 2670 m, adjusted to 2980 m 
to account for losses during cementing. This tells the interpreter that 
there is little chance that solids above 2670 m correspond to cement, and 
that section 2670–2980 m should be interpreted pragmatically. 

Section 2625–2645 m: From the theoretical ToC, there is little to no 
chance of cement in this interval. The tool eccentering in this section is a 
little higher than the recommended maximum of 2% of casing outer 
diameter (Hayman et al., 1991), which for this casing is 0.1925 in 
(4.890 mm). This eccentering can also be seen from the amplitude of the 
reflected pulse (AWBK), which is much higher on the bottom side of the 
casing (image centre). There are few quality control (QC) flags in the 
UFLG channel, which supports that the data quality is sufficient for 
interpretation. The casing inner radius (IRBK) and thickness (THBK) 
channels show only slight ovalisation of the casing and no other 
detectable casing defects. As always, casing collars such as the one at 

2635 m cause localised disturbances in various channels that must be 
disregarded, such as spuriously high acoustic impedances behind the 
casing (AIBK), spikes in CBL, and chevron patterns in VDL. 

The impedance values are quite heterogeneous, varying from 2 to 6 
MRayl. There is a large galaxy pattern at 2626–2631m, which indicates 
that the casing is close to the borehole wall on the bottom side (Hayman 
et al., 1991; Miller and Stanke, 1999). With this information in mind, the 
higher-impedance patterns further down are possible formation foot
prints, either due to casing eccentering or incipient collapse at the time 
of logging. The CBL generally shows high values. The VDL dimming and 
showing formation arrivals below 2637 m reinforce the view that for
mation may be touching the casing here. 

Even taking eccentering-related uncertainties into account, the ul
trasonic and sonic measurements in this section lead to an interpretation 
of free pipe in the upper half, poor bond quality in the lower half, and no 
potential for hydraulic isolation. 

Section 2800–2820 m: From the theoretical ToC, there is a chance 
of cement in this section. The QC situation is similar to the previous 
section, except for a stronger eccentering and casing centralisers being 
visible on the impedance log at 2805, 2811, and 2817 m. 

In this section, the impedance is even more strongly heterogeneous, 
with values varying from 2 to 9 Mrayl. (While the figure plots impedance 

Fig. 1. Wellsketch of Volve 15/9-F-11 B, from Equinor (2018).  
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Fig. 2. Log plot of data channels from three sections from Volve 15/9-F-11 B. The plotted quantities are explained in Sec. 3.2, with the exception of IRMN and IRMX 
(minimum and maximum casing inner radius), ERAV (average casing outer radius), and THMN, THAV, THMX, and THNO (minimum, average, maximum, and 
nominal casing thickness). The G/L/S distr. column estimates the share of gas (red), liquid (blue), microdebonded solids (green) and solids (brown), mainly by 
thresholding impedance as described by Allouche et al. (2006). (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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with a standard upper limit of 7.5 MRayl, we found this range directly 
from the data.) We observe a large vertical channel of low impedance at 
the top of the casing (image sides), which indicates fluid pockets inter
connected for the length of the section. The impedance image also shows 
traces of possible formation footprint as higher-impedance horizontal 
features at 2801 m and 2815 m, though it cannot be concluded that the 
formation provides bonding support. The CBL value is moderate 
throughout the section, while the VDL shows formation arrivals 
throughout the section. 

Even taking eccentering-related uncertainties into account, the sonic 
and ultrasonic measurements lead to an interpretation of moderate bond 
quality and low potential for hydraulic isolation due to the presence of 
the top channel. 

Section 3112–3132 m: From the theoretical ToC, we can expect 
cement to exist in this section. The QC situation is similar to the previous 
sections, except that the eccentering is now largely within the recom
mended maximum. 

Again, the impedance is heterogeneous, varying from 2 to 9 MRayl. 
The impedance is generally high and CBL generally low, which indicates 
good solid coverage, with the exception of a liquid pocket at 3126–3131 
m. This pocket is visible on the ultrasonic, CBL, and VDL logs. The 
impedance also contains a heterogeneous vertical feature which may 
indicate two phases of solid deposition at different times. However, 
there is little to no chance of a liquid channel along the ultrasonic image 
outside the liquid patch. 

The ultrasonic and sonic measurements lead to an interpretation of 
high bond quality and high hydraulic isolation in this section, except for 
the localised liquid pocket at 3126–3131 m, which should be interpreted 
further in the context of the entire log. 

2.2. Subjectivity in interpretation 

In many fields, different experts can look at the same data and come 
to different conclusions. For example, two medical doctors may come up 
with two different medical diagnoses based on the same signs and 
symptoms, or two psychiatrists may make different diagnoses after 
having listened to the same clinical interview. Two components of this 
variability are often considered (Popovi�c and Thomas, 2017): 

Interobserver variability, the tendency of different observers to 
make different judgements when interpreting the same data. 

Intraobserver variability, the tendency of a single observer to make 
different judgements when interpreting the same data multiple times. 

In well log interpretation, this variability can manifest itself in 
several ways. Interpreters may disagree on which label to apply to a well 
interval, for example if one interpreter sees inhomogeneous solids 
around the entire cross-section, whereas another sees a fluid channel 
through cement. They may also disagree on where to place the bound
aries between interpreted intervals, and how fine to make their in
terpretations. For example, when interpreting a long stretch of patchy 
cement, one interpreter may use a single long interval, whereas another 
may use many intervals, one for each patch and one for each stretch 
between patches. 

This variability can be partly offset by having a team of interpreters 
collaborating on interpretation tasks, although this further increases the 
time an interpretation requires. For the dataset used in this article, the 
collaboration approach was to have a first interpreter perform a com
plete interpretation of each log, and then run each interpretation 
through a quality control process where one or more highly experienced 
individuals in a team of interpreters examine and correct it. (However, 
while the members of a team may develop a common understanding of 
how to interpret integrity, this understanding may not be universal, and 
the team’s approach may differ from that of another team.) 

2.3. Automatic interpretation through supervised learning 

From the preceding sections, we see that making an accurate well 

integrity interpretation is a very difficult problem. Another difficult 
problem would be to write a computer program that duplicates the 
decision-making process of a human interpreter. Firstly, it would require 
a complete understanding of that process for every case that that may 
come up when interpreting an integrity log. Secondly, it would require 
translating this process into code. 

Another path towards an automatic interpretation system is machine 
learning, in particular supervised learning, where an algorithm is 
trained on already-interpreted data. A major advantage of supervised 
learning is that we do not need to implement the decision-making pro
cess ourselves. Instead, we show interpreted data to the supervised 
learning algorithm, and it learns by itself the connections between 
certain types of log data and their interpretations. If done correctly, the 
algorithm is then able to make reasonable interpretations of data that it 
did not see during training. 

Research on machine learning on well log data is currently taking off, 
with many papers on the topic published at the SPWLA 60th Annual 
Logging Symposium in 2019 (Bennis and Torres-Verdín, 2019; Bigoni 
et al., 2019; Dai et al., 2019; Gupta et al., 2019; Jain et al., 2019; Li et al., 
2019; Liang et al., 2019; Oruganti et al., 2019; Peyret et al., 2019; Shao 
et al., 2019; Wu et al., 2019). Only one paper on the topic had previously 
been published at the symposium (Akkurt et al., 2018). 

Interesting papers on the topic have also appeared elsewhere. For 
example, Onalo et al. (2018) used neural networks to recreate open-hole 
sonic logs from other open-hole log data for cases where reliable sonic 
logs were not available, Belozerov et al. (2018) used neural networks to 
identify oil reservoirs from well log data, and Gkortsas et al. (2019) used 
support vector machines and neural networks to automatically identify 
an ultrasonic waveform feature that can give additional information on 
the P-wave speed of the annular material in cased boreholes. 

However, using machine learning to replicate manual interpretation 
of cement quality is a quite difficult problem. In particular, it is difficult 
because machine learning typically requires a lot of data, and sufficient 
amounts of interpreted log data is hard to come by outside of oil com
panies. Additionally, the log data can be quite heterogeneous: Different 
log runs can use different tools whose measurements cannot be 
compared directly, and even the same tool can have different values of 
settings such as resolution across different runs. 

The task of interpreting the well status based on well log channels is 
very similar to the general task of image classification. In both tasks, 
periodically sampled data is analysed in order to classify it according to 
what it contains. Classification of photos has been very extensively 
studied over the last decade, with current best approaches based on 
convolutional neural networks (CNNs) (Russakovsky et al., 2015; 
Chollet, 2018). For this reason, the work presented here is also based on 
CNNs. CNNs are also widely used for image classification tasks in other 
fields, such as medicine (Anthimopoulos et al., 2016; Cheng and Malhi, 
2017; Østvik et al., 2019). In our case, however, the task is somewhat 
more difficult, as we do not classify the well status from single images. 
Rather, we must use a heterogeneous collection of image and curve data 
channels for our classification. 

3. Data and methods 

3.1. Datasets 

The dataset underlying this work is the combination of two indi
vidual datasets. The first is the public Volve Data Village dataset from 
Equinor (2018). It contains, among a great deal of other data, inter
preted cement evaluation log data from three wells in the Volve field. 
These were recorded from 2009 to 2016. The second dataset contains 
interpreted cement evaluation log data from 29 wells in another field. 
The data was recorded from 2009 to 2012. 

In total, we have official interpretations from 54 logging operations, 
all from the same team of interpreters. The interpretation process is 
described in Sec. 2.1, and an example extract of a manual interpretation 
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is shown in Table 1. The shortest and longest interpreted intervals in our 
dataset are 1m and 1783 m long respectively, and the median interval is 
33.5 m long. Where log data was available, we associated each inter
preted interval with one or more log data files containing the data that 
was interpreted. Repeat passes were included wherever visual compar
ison of the data showed that their calibration and alignment matched the 
main passes. Thus, our 54 interpretations were associated with 99 data 
files that together contain 62594 m of interpreted log data. 

3.2. Logging tools and data channels 

In our dataset, all log data files contain data from a sonic and/or 
ultrasonic tool, as described in Sec. 2.1.1. The sonic tool used is mainly 
Schlumberger’s Digitizing Sonic Log Tool (DSLT), and the ultrasonic tool 
is mainly Schlumberger’s Ultrasonic Imager Tool (USIT), which uses the 
pulse-echo technique described in Sec. 2.1.1. 

Each tool provides many data channels containing measured or 
processed data. In a log file, each data channel is sampled at a constant 
depth resolution. Curve channels hold only a single value per depth, 
while image channels hold multiple values (representing data over, e.g., 
a set of azimuthal angles or the samples of time signals) per depth. 
Example data for the most important channels are shown in Fig. 2, and 
the channels used as input to our neural networks are: 

CBLF: Sonic curve channel; corrected cement bond log. 
VDL: Sonic image channel; received sonic waveforms. 
ECCE/AZEC: USIT curve channels; eccentering magnitude and 

direction. 
AWBK: USIT image channel; amplitude of returned pulse. 
IRAV: USIT curve channel; average casing inner radius. 
IRBK: USIT image channel; deviation of casing inner radius from 

IRAV. 
T2BK: USIT image channel; deviation of casing thickness from its 

nominal value. 
AIBK: USIT image channel; acoustic impedance of material behind 

the casing. 
UFLG: USIT image channel; QC flags indicating where USIT pro

cessing fails. 
UCAZ/RB: USIT curve channels; rotation of USIT images. 
GR: Gamma ray curve channel; local radioactivity from formation. 
For logs measured using Schlumberger’s Sonic Scanner instead of the 

DSLT, we used its discriminated synthetic CBL (DCBL) curve channel as 
a drop-in replacement for CBLF. 

A problem with a dataset such as ours is that it is very heterogeneous. 
The depth resolution of each channel can vary from log run to log run. 
Some channels are also missing in some log files, typically (but not al
ways) because the tool producing it was not present on the tool string. 
One logging operation also had to be excluded as it only used a slim 
sonic tool whose CBLF values were not properly normalised. 

3.3. Data extraction 

3.3.1. Well log interpretations 
The interpretations in the dataset originally came in the form of ta

bles in log report documents. As these report tables did not all use the 
same set of interpretation parameters, we defined a common table 
format that we could manually copy the report tables into. For example, 
data from report table columns titled ‘Hydraulic isolation’ (with yes/no 
labels), ‘Probability of hydraulic isolation’ (with low/medium/high and 
intermediate labels), and ‘Isolating potential based on cement or for
mation quality’ (with low/medium/high labels) were all gathered under 
a column title ‘Hydraulic isolation’. 

Furthermore, while the report tables’ labelling was somewhat free- 
form, we could translate the labels into six bond quality (BQ) classes 
CBQ ¼ fCBQ

0 ;…;CBQ
5 g and two hydraulic isolation (HI) classes CHI ¼

fCHI
0 ;CHI

1 g, shown by name in the header of Table 2. The BQ classes are 

ordered, i.e., they form an ordinal scale. For HI, original ‘High’ and ‘Yes’ 
labels were translated to ‘Yes’, and others were translated to ‘No or 
uncertain’. (We did not distribute HI more finely as the resulting classes 
would have become very unbalanced due to the scarcity of intermediate 
labels.) We excluded log reports that did not provide interpretations of 
both BQ and HI. 

3.3.2. Well log data 
The well log data files were provided in the archaic yet widely-used 

DLIS file format (API, 1991). As DLIS files would be too slow to 
continuously read from during training, we mirrored the files’ contents 
to an HDF5-based format using the Java library Log I/O, developed by 
Petroware. During training, we can read directly and efficiently from 
these HDF5 files. 

A data channel may be provided at different depth resolutions in 
different log data files. However, our neural networks needs to have its 
input data at a consistent resolution. For that reason, we defined a target 
resolution for each data channel. The data of each channel then has to be 
transformed from its original resolution to the target resolution in as fast 
a manner as possible, so that this transformation will not slow down the 
neural network training. Where the original resolution is higher and an 
integer multiple of the target resolution, we stride through the data 
channels. Elsewhere, we use nearest-neighbour interpolation in depth. 
Unlike other basic interpolation methods, nearest-neighbour interpola
tion naturally handles NaN values, which data channels frequently use 
to represent missing data. 

3.4. Data organisation 

We split all of the interpreted intervals into depth segments of 1m 
length. We then tied each segment to the 13m interval of log data sur
rounding it, as shown in Fig. 3. This ensures that the automatic inter
pretation of each segment is supported by log data also outside the 
segment. This choice for example makes it possible to differentiate be
tween fluid patches and fluid channels when interpreting HI. We chose 
the interval length as 13 m to ensure that each log data interval contains 
at least one casing collar, with casing joints being around 12 m long. 

In total, we have 58781 samples in the dataset, where each sample i 
represents the interpretation labels yBQ

i ; yHI
i of a 1 m segment and data Xi 

from the corresponding 13 m log data interval. We partitioned these 
samples into six folds. To ensure that no two folds contain information 
from the same well section, we ensured that all logs with the same well 
and casing size are placed in the same fold. We optimised this parti
tioning using simulated annealing to ensure that the folds were of 
approximately equal size, with approximately the same distribution of 
classes for both BQ and HI. Table 2 shows the distribution of each fold. 

3.5. Accuracy and metrics 

In well log interpretation, there is no ground truth available. The 
well is far underground and inaccessible, and its true status can only be 
determined through cement core retrieval (Crow et al., 2009), an 
expensive and destructive and therefore very rare operation. Therefore, 
the task of our supervised learning system cannot be to come up with a 
‘true’ interpretation, but rather to reproduce expert interpretations as 
well as possible. The correspondence between two such interpretations 
can be quantified using various accuracy metrics by treating one as a 
reference and the other as a prediction. The resulting accuracies then 
quantify how well the predicted interpretation matches the reference 
interpretation. 

The most basic accuracy metric we use is the precise accuracy, which 
is the proportion of N samples where the predicted BQ or HI label byi 
equals the reference label yi: 
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UPAðy;byÞ¼
1
N

XN� 1

i¼0
1ðbyi¼ yiÞ : (1a) 

Here, 1ðxÞ is an indicator function which equals 1 if its argument x is 
true and 0 otherwise. For BQ classification, we also use the adjacent 
accuracy 

UAAðy;byÞ¼
1
N
XN� 1

i¼0
1
�
byBQ

i � yBQ
i
�
; (1b)  

where byBQ
i � yBQ

i holds true if the predicted label byBQ
i is off by no more 

than one class from the reference label yBQ
i . The adjacent accuracy is 

therefore the proportion of samples for which this holds. The idea of 
adjacent accuracy is that, for example, predictions of ‘Moderate to good’ 
or ‘Poor to moderate’ may still be close enough to a reference label of 
‘Moderate’ to be useful. (For HI, using adjacent accuracy does not make 
sense as there are only two classes; the adjacent accuracy would have 
been 100% in every case.) 

We also report these accuracies in balanced form, using the same 
definitions as the scikit-learn library by Pedregosa et al. (2011). 
Balanced accuracy compensates for the imbalance of classes in the 

dataset, seen in Table 2, by weighting each sample as wi ¼ 1=

"
P

j
1ðyj ¼

yiÞ

#

, i.e. inversely proportional to its class’ prevalence in the dataset: 

BPAðy;byÞ¼
1

PN� 1
i¼0 wi

XN� 1

i¼0
1ðbyi ¼ yiÞwi (1c)  

BAAðy;byÞ¼
1

PN� 1
i¼0 wi

XN� 1

i¼0
1
�
byBQ

i � yBQ
i
�
wi : (1d) 

These metrics ensure that the results of every class has the same 
weight. The unbalanced accuracy metrics in (1a) and (1b) do not, and 
therefore emphasise the more common classes, namely ‘Good’, ‘Poor’, 
and ‘Free pipe’ for BQ and ‘No or uncertain’ for HI. 

In summary, we use four accuracy metrics: Unbalanced precise ac
curacy (UPA), balanced precise accuracy (BPA), unbalanced adjacent 
accuracy (UAA), and balanced adjacent accuracy (BAA). 

To show the distribution of labels in more detail, we also use 
balanced confusion matrices, which show the joint distribution of the 
reference labels yi and the predicted labels byi: 

CMk;lðy;byÞ¼
1

PN� 1
i¼0 1ðyi ¼ CkÞ

XN� 1

i¼0
1ðyi¼Ck;byi ¼ClÞ: (1e) 

The vertical axis indexes the classes Ck for the reference, while the 
horizontal axis indexes the classes Cl for the prediction. Balancing in this 
way, all matrix rows sum up to 100%. 

Now, what kind of accuracy can we expect? As a lowest baseline for 
our classification problems, we have a classifier that simply guesses 
randomly. For BQ, this would give a precise accuracy of 16.7% and an 
adjacent accuracy of 44.4%. For HI, the corresponding precise accuracy 
is 50%. On the high side, we cannot expect accuracies close to 100%; due 
to the subjectivity discussed in Sec. 2.2, this would be unattainable even 
by human interpreters. Instead, there must be an upper accuracy 
threshold, related to the subjectivity inherent in the manual labels on 
which we train and test. 

3.6. Manual reinterpretation 

To shed some light on this subjectivity, we arranged a manual 
reinterpretation of every main log pass in fold 2 of our dataset, with the 
goal of comparing this reinterpretation with the official interpretation in 
our dataset. We gave this task to a well integrity researcher with a 
decade of experience in well logging engineering and research, who is 
not part of the team behind the official interpretations. He carried out 
his interpretations directly on the log data files without first having seen 
the official interpretation. To display and process the log data files in 
order to make his interpretations, he used the WellCAD software by 
Advanced Logic Technology. (Similar software like Techlog by 
Schlumberger and Geolog by Emerson E&P Software could also have 
been used for the same task.) 

3.7. Baseline method setup 

The random baseline described in Sec. 3.5 is not a very interesting 
lower baseline, as any working classifier can beat it. A more interesting 
baseline to compare the neural network results to would be a classifier 
using a very simple approach. For this baseline, we classified the BQ and 
HI parameters in each 1 m well segment i by a simple thresholding of the 
CBLF channel’s median value ~CBLFi inside the segment. We chose CBLF 

Table 2 
Distribution of the samples in each of the six folds among classes of bond quality and hydraulic isolation.   

Fold  

Bond quality (BQ) Hydraulic isolation (HI) 

No. of samples Good Moderate to good Moderate Poor to moderate Poor Free pipe Yes No or uncertain 

0 9309 2270 423 957 983 1877 2799 2830 6479 
1 9922 2428 414 930 1010 1968 3172 2881 7041 
2 9652 2285 436 884 1020 2127 2900 2520 7132 
3 10 104 2226 422 841 807 2572 3236 2787 7317 
4 9954 1922 743 964 872 2462 2991 3124 6830 
5 9676 2085 398 873 954 2110 3256 2789 6887 

Total 58 617 13 216 2836 5449 5646 13 116 18 354 16 931 41 686  

Fig. 3. Each 1 m interpreted well segment is tied to a 13 m log data interval 
surrounding it. Segments that are close together, such as the two shown here, 
will use partly overlapping intervals of log data. 
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as the input as it is a simple channel that provides good overall infor
mation on the well status. 

For an interpretation parameter with K classes C0;…;CK� 1, we define 
an ordered sequence of thresholds T0; …; TK, where T0 ¼ 0 mV, 
TK→∞ mV, and Tk <¼ Tkþ1. If Tk <¼ ~CBLFi < Tkþ1, we assign class 
label Ck to segment i. To find these thresholds with a simple and virtually 
parameter-free method, we employed decision trees, specifically the 
implementation in the scikit-learn library by Pedregosa et al. (2011). We 
balanced the classes and specified the maximum number of leaf nodes as 
K. (K ¼ 6 for BQ, and K ¼ 2 for HI.) 

We found the baseline results using 6-fold cross-validation as shown 
in Fig. 4(a). We held out one fold at a time for testing, and used the 
remaining folds to fit a decision tree. For each test fold, we compared the 
baseline interpretations with the official interpretations as described in 
Sec. 3.5. After finding results for each test fold in this way, we used the 
metrics’ mean value as our overall result. 

3.8. Neural network setup 

All of our data channels are regularly sampled along a depth axis. 
Some data channels are 2D, being regularly sampled in time (the VDL 
channel) or azimuthal angle (the AWBK, IRBK, T2BK, AIBK, and UFLG 
channels) as well. For this type of data, convolutional neural networks 
have been found to be very effective, and our network setup is therefore 
based on these. Our networks are implemented in Keras (Chollet et al., 
2015) with the TensorFlow backend (Abadi et al., 2015). 

As we are using 13 different data channels of different types, it is 
natural to use multiple inputs in the neural network setup. However, 
using one convolutional branch for each channel would be very 
computationally expensive. For that reason, we divide the channels 
across three branches, shown in Fig. 5, according to their dimension
ality, source tool, and depth resolution commonality. 

The USIT branch receives the USIT image channels at a resolution of 
3 in (7.62 cm) and 5�. We upsample channels originally sampled at 10�

by nearest-neighbour interpolation, for the same reasons as described in 
Sec. 3.3.2. The branch also receives the USIT curves, which we array 
broadcast to the same shape as the image data. When provided to the 

network, the 10 different data channels are stacked like color channels 
in an image. The 1D branch receives the CBLF and GR channels at a 
resolution of 6 in (15.24 cm), and the VDL branch receives the VDL 
channel at a resolution of 4 in (10.16 cm) and 5 μs. Because the number 
of time samples in VDL channels varies across files, we trimmed all 
channels to 240 time samples (1.2 μs), the lowest common value. VDL 
channels with fewer samples (provided by uncommon tools) were 
discarded. 

All data channels are normalised individually before input, to a mean 
value of 0 and a standard deviation of 1, to avoid channels with higher 
values being weighted more. Missing data channels and data channel 
values are replaced with zero-values. To augment the data, we exploit 
the periodic azimuthal symmetry of the USIT images by rolling and 
flipping the images in angle. When doing so, we also change the values 
of angular curve channels (AZEC, UCAZ, and RB) accordingly. 

The network setup follows recommendations by Chollet (2018). 
Each branch contains convolutional layers and maxpooling layers, and 
we tuned their size and number based on our accuracy metrics. The 
convolution kernel sizes are 3� 3 for the USIT branch, 7 for the 1D 
branch, and 5� 5 for the VDL branch. The poolings of the maxpooling 
layers are 2� 2 in the USIT branch, 2 in the 1D branch, and 2� 4 in the 
VDL branch. As recommended by Chollet (2017, 2018), we used 
depthwise separable convolution layers. These use a representionally 
efficient convolution approach that separates spatial and channel 
convolution kernels, and gave us better results than conventional con
volutional layers. The three branches are merged after global average 
pooling, whereupon densely connected layers are used for classification. 
The convolutional and dense layers use the ReLU activation function. To 
combat overfitting, the dense layers use a dropout of 0.5, whereas the 
convolutional layers use a spatial dropout of 0.2. We used the RMSprop 
optimiser with a learning rate of 0.001 and a training batch size of 16 
samples. To balance the classes and because training often quickly 
reaches its highest accuracy (see Sec. 4.2), we defined an epoch as 
consisting of 3000 samples drawn equally from every class. 

Conventionally, neural network classifiers for problems with K 
classes use softmax activation and categorical crossentropy loss with an 
output vector of length K. Element k’ of the target vector Y is Yk’6¼k ¼ 0, 
Yk’¼k ¼ 1, where Ck is the manually labelled class for the interval 

Fig. 4. Usage of folds for (a) the baseline case, which uses 6-fold cross-validation, and (b) the neural network case, which uses a form of ensembled cross-validation. 
For each test fold in the latter case, 5 networks were trained using different validation folds. Together, these networks form an ensemble that was tested on the 
test fold. 
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(Chollet, 2018). However, this approach implies that the classes are 
nominal and would ignore the ordinal nature of our BQ classes. Instead, 
we used an approach like that of Cheng et al. (2008), with a ðK �
1Þ-length target vector where Yk’<k ¼ 1 and Yk’�k ¼ 0, using sigmoidal 
activation and binary crossentropy loss. From the first k’ in the output 
vector for which Yk’ < 0:5, we determine the predicted class as Ck’. This 
choice of target vector ensures that the loss function is lower the closer 
the class prediction is to the manually labelled class. We observed that 
this choice increased the BQ accuracy of our network. 

For training and evaluation, we used a form of ensembled cross- 
validation, shown in Fig. 4(b). As we did for the baseline, we hold out 
one fold at a time for testing. Here, however, we also hold out one fold at 
a time for validation in order to select the best-performing network state 
during training, i.e., the epoch with the highest balanced precise accu
racy on the validation fold. Thus, for each test fold, we use the five 
different validation folds to train five BQ and five HI networks. The five 
networks in each group are ensembled to combine their predictions. We 
used the median of the class predictions of the ensemble’s component 

Fig. 5. Setup of the neural networks, from the three input branches to an output whose size is given by the number K of classes.  

Fig. 6. Bond quality confusion matrices for the baseline method, showing the six test folds in reading order. Each matrix is normalised so that each row sums up to 
100%. The numbers above each matrix represents its accuracy metrics UPA/BPA/UAA/BAA. 
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networks as a combination rule, as da Costa (2014) suggests. (With an 
odd number of networks in the ensemble, the median always unam
biguously provides an average class. It is also equivalent to majority 
voting if there is an absolute majority in the ensemble.) We found the 
ensembles’ accuracy metrics on their test folds and used their mean 
values as our overall result. 

4. Results 

We will first discuss the results of the baseline method, the neural 
network method, and the manual reinterpretation individually, before 
we compare them qualitatively for a specific well log in Sec. 4.4. 

4.1. Results of baseline method 

As Fig. 4 shows, we tested the baseline method on each fold indi
vidually, using the remaining folds for training. Figs. 6 and 7 show the 
BQ and HI results, respectively, for each test fold. Fig. 8 shows the 
overall BQ and HI results, found by averaging the results for the indi
vidual folds. 

Table 3 shows the CBLF thresholds that the baseline method found to 
separate between different classes. When using fold 2 as the test fold and 
the rest for training, the BQ decision tree was unable to separate the 
‘Moderate’ class from the ‘Moderate to good’ class. As we can see from 
Table 3 and Fig. 6, the baseline method could not and did not predict the 
label ‘Moderate’ for this test fold. (This minor issue could have been 
circumvented by increasing the maximum number of leaf nodes in the 
BQ decision trees from 6 to 8, but we found that this would have led to 
an overall slight decrease in accuracy.) 

The overall results show that a simple thresholding of the median 
CBLF value within the segment can predict the official manual labels 
surprisingly well, predicting the same BQ class or a class adjacent to it 
80.5% of the time, and the same HI class 81.2% of the time. This easily 
outperforms the corresponding accuracies for a random baseline, which 
are 44.4% and 50%. We can also see in Figs. 6 and 7 that there is a large 
variation between the folds. For example, the baseline method agrees 
very well with the manual ‘Good’ BQ labelling in fold 1, while there is 
little such agreement in folds 0 and 3. 

4.2. Results of neural network method 

The training process for neural networks introduces stochasticity, 
through random initialisation and random choice of training samples. 
To investigate the significance of this stochasticity and to get a 

representative end result, we performed five repetitions of the training 
and testing process shown in Fig. 4(b). In other words, for every com
bination of test fold t and validation fold v shown in the figure, we 
trained five networks r, which gives us five ensembles r for every choice 
of test fold t. In the following, we present mean values and standard 
deviations based on these five repetitions. 

Figs. 9 and 10 show the results for BQ and HI, respectively. We can 
see that there is still a great deal of variation between the folds, just as 
we saw for the baseline method. Fig. 11 shows the overall BQ and HI 
results, found by averaging the results for the individual folds. 

Table 4 compares these overall results, including standard deviations 
over the five repetitions, with those of other methods. We can see that 
the neural networks perform significantly better than the baseline. We 
discuss possible factors that may still limit their performance in Sec. 5. 

We found from the training histories that overfitting, where further 
training does not improve validation accuracy, happens quite early. 
After training, each network’s state was chosen at the epoch where its 
validation accuracy peaked, which occurred after a median of 10 and 4.5 
epochs for BQ and HI, respectively. Our definition of an epoch, 
explained in Sec. 3.8, means that even 10 epochs represents only 30000 
samples, around half of the dataset. 

We also found considerable variation in accuracy between networks 
trained, validated and tested with the same exact setup. To quantify this, 
we find the deviations between the accuracy metrics of individual net
works and the metrics’ average over all repetitions, and then find the 
root mean square of these deviations: If amðv; t; rÞ is mth accuracy metric 
for repetition r of training a network using validation fold v and test fold 
t, and amðv; tÞ ¼ 1

5
P

r
amðv; t; rÞ is the mean over all 5 repetitions, then we 

Fig. 7. Hydraulic isolation confusion matrices for the baseline method, 
showing the six test folds in reading order. Each matrix is normalised so that 
each row sums up to 100%. The numbers above each matrix represents its 
accuracy metrics UPA/BPA. 

Fig. 8. Overall confusion matrices for the baseline method, found by averaging 
the results from all test folds, for bond quality (left) and hydraulic isola
tion (right). 

Table 3 
The CBLF thresholds in mV found by the baseline method to 
separate between the different classes for bond quality and 
hydraulic isolation. 
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calculate a network root mean square deviation as 

σnet
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
6
X

t

1
5
X

v6¼t

1
5
X

r
½amðv; t; rÞ � amðv; tÞ�2

s

: (2) 

The results for all accuracy metrics are shown in Fig. 12. 
Similarly, we can look at the variation in accuracy between ensem

bles tested with the same folds. If amðt; rÞ is the mth accuracy metric for 
repetition r of training an ensemble with test fold t and amðtÞ ¼
1
5
P

r
amðt; rÞ is the mean over all repetitions, then we can calculate an 

ensemble root mean square deviation as 

Fig. 9. Bond quality confusion matrices for the neural networks, plotted as in Fig. 6. Each confusion matrix is an average of the results of five repetitions.  

Fig. 10. Hydraulic isolation confusion matrices for the neural networks, 
plotted as in Fig. 7. Each confusion matrix is an average of the results of five 
repetitions. 

Fig. 11. Overall confusion matrices for the neural networks, found by aver
aging the results from all test folds, for bond quality (left) and hydraulic 
isolation (right). 

Table 4 
Comparison of the overall BQ and HI results of three methods: Expected values 
from random guessing (RND), the baseline method (BL), and neural networks 
(NN). We only report standard deviation for the neural networks, as it is the only 
method involving stochasticity.   

Accuracy metric 
BQ HI 

RND BL NN RND BL NN 

UPA [%] 16.7 44.0 51.6 � 0.8 50 81.2 86.7 � 0.3 
BPA [%] 16.7 43.5 46.7 � 0.7 50 82.9 86.6 � 0.3 
UAA [%] 44.4 80.5 88.5 � 0.2 – – – 
BAA [%] 44.4 81.3 89.1 � 0.4 – – –  
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σens
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
6
X

t

1
5
X

r
½amðt; rÞ � amðtÞ�2

s

: (3) 

The results shown in Fig. 12 indicate that the ensembling roughly 
halves the variation, but even for the ensembles there is still quite a bit of 
variation left from repetition to repetition. We discuss this further in Sec. 
5.1. 

4.3. Results of manual reinterpretation 

Fig. 13 shows the match between the official interpretation and the 
manual reinterpretation of each main log pass in fold 2. For the same 
data, it also shows the match between the official interpretation and the 
mean results of the five neural network ensembles trained for fold 2 as 
described in Sec. 4.2. (As this data represents a subset of fold 2, the latter 
results are similar but not identical to those shown for the same fold in 
Figs. 9 and 10.) 

The results show that the reinterpreter tends to rate BQ and HI lower 

than the interpreters behind the official interpretation do, as the 
confusion matrices have more weight in their upper triangulars than in 
their lower triangulars. From the BQ confusion matrices, we see that the 
reinterpreter has a better agreement with the official interpretation than 
the neural network does on two out of the three most common classes 
(‘Good’ and ‘Poor’, but not ‘Free pipe’), which also leads to a higher 
unbalanced precise accuracy. However, the reinterpreter’s tendency 
towards significantly lower ratings leads to a lower adjacent accuracy 
than the neural network. The HI confusion matrix reinforces this picture. 
While the reinterpreter has a stricter interpretation of HI, disagreeing 
with 75% of the ‘Yes’ labels in the official interpretation, the neural 
networks almost always agree. 

4.4. Qualitative comparison 

The previous result sections present quantitative results. We will now 
take a more qualitative look at the interpretations for a specific well log. 
Fig. 14 shows the Volve 15/9-F-11 B well, which we also used as an 
example in Sec. 2.1.2. Here, the two rightmost columns compare BQ and 
HI interpretations, respectively. Note that this well log is a challenging 
case, with regions of both good and poor match between interpretations. 
The overall match between the official interpretation and the other in
terpretations is generally lower than the average over all well logs. 

Looking at the official interpretation first, we see that it generally 
consists of long interpreted intervals interspersed with shorter intervals. 
These shorter intervals signify fluid patches in well bonded sections or 
short well bonded stretches in sections that otherwise contain chan
neling. An unusual feature in parts of the lower half of this log is that we 
see higher CBLF values at the same depths as impedance readings 
indicating well bonded solids around the entire cross-section. As 
explained in Sec. 2.1.1, we would expect to see low CBLF values together 
with such impedance readings. The official interpretation explains this 
as caused by micro-annuli to which the sonic tool can be overly sensi
tive, and it therefore trusts the ultrasonic tool over the sonic tool where 
they disagree. 

Looking at the manual reinterpretation next, its quantitative match 
with the official interpretation in this well is a BQ UPA/UAA of 39.3%/ 
58.4% (well below the overall reinterpretation results shown in Fig. 13) 
and a HI UPA of 74.5% (somewhat below the overall results in Fig. 13). 
Overall, the reinterpretation generally rates BQ lower than the official 
interpretation. While the HI match is very good from 3045 m and down, 
the match is worse in the 2911–3045 m section. Here, the official 
interpretation gave an isolating rating to several intervals that the 
reinterpreter rated as having ‘Possible’ HI, which, as Sec. 3.3.1 explains, 
is lumped into the ‘No or uncertain’ class. One particularly interesting 
disagreement is found around 2679–2735 m, which the official inter
pretation interprets as isolating solids and the reinterpretation interprets 
as non-isolating due to high azimuthal heterogeneity that may represent 
a fluid channel through the solids. 

The neural network ensemble used here was the most average- 
performing of the five trained ensembles. Its interpretation’s match 
with the official interpretation in this well can be quantified as a BQ 
UPA/UAA of 49.7%/73.1% and a HI UPA of 68.5%, all below overall 
results from Table 4. The BQ match is good down to 2910 m, below 
which the neural networks may be confused by the high CBLF values. 
The HI match is also generally good except for the 2756–2901 m section, 
where the neural networks fail by reporting a section with obvious 
channeling as hydraulically isolating. 

Finally, the baseline interpretation’s match with the official inter
pretation was a BQ UPA/UAA of 34.9%/80.5% and a HI UPA of 67.7%, 
all below the overall results from Table 4 except for BQ UAA. As this well 
is part of fold 2, we can see that the baseline interpretation is missing the 
‘Moderate’ class as explained in Sec. 4.1. The baseline interpretation is 
markedly unstable, having regions where it flips rapidly back and forth 
between two adjacent classes when the CBLF value is hovering around 
one of the thresholds that separate classes. There are also some spikes in 

Fig. 12. Variation in accuracy metrics when training under the same condi
tions, shown as root mean square deviations for individual networks (eq. (2)) 
and ensembles (eq. (3)). 

Fig. 13. BQ (upper) and HI (lower) confusion matrices comparing the official 
interpretation with the manual reinterpretation (left) and the neural network 
interpretation of the same data (right). 
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Fig. 14. Log plot of data from Volve 15/9-F-11 B, plotted as in Fig. 2, but with two extra columns comparing four interpretations of BQ and HI: The official 
interpretation (OF), the neural network interpretation (NN), the reinterpretation (RE), and the baseline interpretation (BL). 

E.M. Viggen et al.                                                                                                                                                                                                                               



Journal of Petroleum Science and Engineering 195 (2020) 107539

14

the interpretations related to the CBLF spikes caused by casing collars. 
In general, both the neural networks and the baseline method give a 

good match with the official interpretation in the upper 3/5 of the log, 
except that both predict hydraulic isolation in a section with extensive 
channeling, which is a simple mistake to catch for a human correcting 
the automatic log. In the lower 2/5, however, both methods struggle to 
capture the official interpretation, probably due to the unusual combi
nation of high CBLF values and good impedance readings. 

5. Discussion 

The accuracy metrics show that both the baseline and neural net
works perform quite well, with the neural networks giving a 3–8% 
improvement over the baseline on every accuracy metric. It is somewhat 
surprising that the baseline still performs as well as it does while only 
being based on the median of the CBLF channel within each segment. 
However, as we discussed in Sec. 2.1.1, the CBLF channel, which is all 
the baseline method has access to, contains much of the same infor
mation as the acoustic impedance channel, which the neural networks 
also have access to. The results thus indicate that a simple thresholding 
of CBLF can be sufficient to make a decent interpretation, even though 
this can be improved significantly by also using information from other 
channels. It may also indicate that CBLF forms the backbone of the 
official interpretations in this dataset, which is consistent with what we 
know about the process behind these interpretations. 

The manual reinterpretation gives an interesting perspective on 
interpretation bias. While there is no objective ground truth available to 
give us an objective reference for interpreters’ biases, we can at least 
compare different interpreters’ relative biases with each other. The 
confusion matrices in Fig. 13 indicate that the official interpreter team 
has a positive bias compared to our reinterpreter, or equivalently, that 
the reinterpreter has a negative bias compared to the official interpreter 
team. The neural networks, however, have been trained on the official 
interpretations and therefore tends to share the same bias. This may be 
the main reason that the neural networks outperform the reinterpreter 
when using the official interpretation as a reference. This also un
derscores that it is important for the training dataset to be thoroughly 
quality controlled interpreted log data, deliberately chosen to represent 
a reference for automatic interpretation. 

Despite the promising results from the neural network, it is impor
tant to analyse which factors hold back its performance. In the following 
sections, we will discuss some factors that may limit the performance of 
our automatic interpretation system, and discuss other possible 
improvements. 

5.1. Data heterogeneity 

Consider a fairly homogeneous dataset, where the variation in the 
data is small compared to the size of the dataset. For such a dataset, we 
would expect to see only small variations between the results of different 
test folds. However, both the baseline method (Figs. 6 and 7) and the 
neural network methods (Figs. 9 and 10) show large variations in the 
results between different folds. This indicates that the dataset is strongly 
heterogeneous. In other words, the variation in our data seems to be 
large compared to the size of our dataset. 

This is supported by other findings. The point of overfitting generally 
came quite early, which indicates that the relationships between data 
and labels that the networks learn from the training set have a limited 
generalisability to unseen data. Additionally, networks trained and 
tested with the exact same setup could end up with quite different ac
curacy on the validation and test sets, as noted in section 4.2. In other 
words, the random nature of network initialisation and training sample 
choice has a strong effect on how well the relationships learned by the 
networks can be generalised to unseen data. 

We see several possible sources of this data heterogeneity, which we 
cover in the following subsections. 

5.1.1. Data size 
Perhaps the dataset is simply not large enough compared to the 

variation in the data? For example, some well or measurement condi
tions may be rare enough in our dataset that the networks are unable to 
discern meaningful relationships between data and labels from the 
available interpreted data. 

The question is thus whether accuracy would increase with more 
data. While we have already used all the data we have available, we can 
turn the question on its head and investigate whether accuracy would 
decrease with less data. To do this, we reduced the size of the dataset by 
removing entire log operations from the folds while retaining the class 
balance as well as possible. The networks were then trained and vali
dated on the reduced folds and tested on the full folds. 

The overall BQ results shown in Fig. 15 for different reductions 
shows that even using as little as 38% of the dataset does not have a very 
strong impact on the accuracy. Thus, while having more data may 
reduce the variations between folds, the current performance does not 
seem to be primarily limited by the size of the dataset. 

5.1.2. Subjective labelling in the dataset 
In Sec. 2.2 we considered subjectivity in interpretation tasks, and 

more specifically inter- and intraobserver variability. The manual rein
terpretation described in Secs. 3.6 and 4.3 and discussed at the begin
ning of the current section shows that the interobserver variability can 
be very strong in well log interpretation. We consider it likely that the 
official interpretations are also affected by interobserver (and possibly 
intraobserver) variability. In other words, our dataset may contain very 
similar input data samples that have been interpreted differently. In a 
case of two instances of similar data with different interpretations, a 
network trained on the first interpretation would have a difficult time 
predicting the second interpretation and vice versa. Additionally, a 
network trained on both would get mixed messages during training. 

To investigate whether this effect limited our performance, we 
looked more closely at who performed the interpretations in our dataset. 
While the interpretations were to some degree produced as a team effort, 
the reports containing them also specify who the first interpreter was. 
He or she performed the initial interpretation, before it underwent 
quality control by other interpreters. 

To investigate the effect of interobserver variability, under the 
assumption that this is not completely eliminated by the quality control 
process, we tried to reduce this variability by selecting a subset of our 
dataset with the most commonly used first interpreter. (This subset 

Fig. 15. Accuracy against the percentage of the dataset used, for the four 
different bond quality accuracy metrics. The points along the lines represent a 
simple reduction of the dataset, while the free points represent a subset of the 
dataset sharing the same first interpreter. 
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represents 45.1% of the total dataset.) We divided this subset into six 
folds and trained and tested neural network ensembles for BQ on the 
folds in the same way as before. 

Fig. 15 shows significantly better results when all interpretations 
share the same first interpreter. We see particular improvement in the 
balanced accuracies, which weight the rarer intermediate categories 
‘Moderate to good’, ‘Moderate’, and ‘Poor to moderate’ more than the 
unbalanced accuracies. We would expect these intermediate categories 
to be more subjective than the more clear-cut categories ‘Good’, ‘Poor’, 
and ‘Free pipe’. Thus, our results indicate that the performance is limited 
by some degree of interobserver variability. To quantify interobserver 
and intraobserver variability further, however, a dedicated study would 
be necessary. 

It may also be possible to reduce this subjectivity by using a different 
annotation system for the well log interpretations. For example, the 
system used for annotating bond quality uses a rating scale from ‘Good’ 
to ‘Poor’ (as well as ‘Free pipe’, which may at times be difficult to 
separate from ‘Poor’), which is inherently opinion-based. An annotation 
system aiming for a more objective description of the distribution of 
material behind the casing may be able to result in more consistent 
annotations, although there may still be disagreements as to what that 
distribution is. 

5.2. Other possible causes of reduced performance 

Beyond the factors that may cause data heterogeneity, other factors 
may also have limited our performance. 

5.2.1. Network setup 
It could also be argued that the network setup is not ideal. However, 

we experimented with a number of variations, including reducing and 
increasing the capacity of the network. These changes most often did not 
affect the accuracy significantly, although some changes gave slightly 
negative effects. For example, while we could expect that choosing a 
lower learning rate would help reduce the accuracy variation shown in 
Fig. 12, our tests indicated that it did not, but instead reduced the overall 
accuracy slightly. This indicates that performance may mainly be 
limited by other factors than the network setup. 

5.2.2. Differences in interval size 
Manual interpretation often defines quite large depth intervals with 

the same interpretation. It can be argued that some of these intervals are 
coarse-grained and could be divided into multiple subintervals with 
different labels for BQ and HI. The two manual interpretations in Fig. 14 
show this effect to some degree. The automatic interpretation, on the 
other hand, is in principle free to label each 1 m segment differently. In 
practice, both the baseline and the neural networks end up with in
tervals (by which we mean a series of consecutive segments with the 
same interpretation) that tend to be smaller than the manual in
terpretations. This discrepancy can reduce the match between the 
manual and automatic results. 

To investigate the interval sizes, we looked at the length of inter
preted intervals in the official manual interpretations used for training 
and testing, and the resulting neural network interpretations. Looking at 
BQ, the median official and neural network interval lengths are 29 m 
and 8 m, respectively. For HI, they are 26.5 m and 17 m. This shows that 
the neural networks do tend to perform a finer-grained interpretation of 
the well than human interpreters. 

This limits our accuracy metrics, as they are calculated through 
segment-by-segment comparisons between the finer-grained automatic 
interpretations and the coarser-grained manual interpretations. To get 
an idea of how much these differences in interval size reduce the 
interpretation accuracy metrics, we tried forcing the neural network 
interpretations to use the same depth intervals as the reference in
terpretations. For all segments inside each official depth interval, we 
found the median of the automatic labels and set all labels to this 

median. We performed this procedure separately for BQ and HI. 
Table 5 compares the original results shown Table 4 with results 

calculated from these interval-restricted automatic interpretations. We 
find that forcing our automatic interpretations into the coarser depth 
intervals used by the manual interpreters improves every accuracy 
metric by around 23%. 

This result shows that the fine-grained nature of the automatic in
terpretations limits the reported accuracy when tested against coarse- 
grained manual interpretations. However, it also has implications for 
the training process, which is based on the same manual interpretations. 
If the manual interpretations are often too coarse-grained, this would 
make it more difficult for the networks to learn relationships between 
data and labels. As a hypothetical example, consider a coarse-grained 
manual interval with BQ labelled as ‘Moderate’ that also contains a 
smaller subinterval that would have been labelled ‘Poor’ if the manual 
interpreter had been requested to perform a finer-grained resolution. 
During training, the neural networks would be taught that segments 
similar to those inside this subinterval should be labelled ‘Moderate’ 
instead of ‘Poor’. This would give the networks mixed messages when 
similar segments in other parts of the dataset are labelled ‘Poor’, likely 
reducing the networks’ performance. 

5.2.3. External information 
The human interpreters may have access to information beyond what 

the data channels provide. For example, the well history can tell them 
where to expect the top of cement, as we saw in Sec. 2.1.2. The well log 
history may also tell them if some data channels should not be trusted 
uncritically, for example due to logs being run with an improper tool 
setup. The automatic system, on the other hand, only has access to the 
information present in the data channels. According to Benge (2014), 
such information can be quite important to the interpretation process. 

However, there is a large variety of possibly useful external infor
mation, and it is is largely not present in machine-readable form in our 
dataset. It is therefore difficult for us quantify the importance of having 
such information available. In any case, however, a human interpreter is 
needed to verify an automatic log interpretation. Part of that task would 
be to compare it with any such information that might be available. 
Thus, the networks not having such information available would not be 
a major problem in this workflow. 

5.3. Estimates of confidence 

When using an automatic interpretation system like the one 
described in this article in practice, it would be useful if the system gave 
an estimate of its confidence in its interpretations. For example, an in
terval marked with low confidence could warrant closer scrutiny than an 
interval marked with high confidence. 

However, while it is straightforward to get confidence estimates from 
conventional neural networks performing nominal classification, these 
confidence estimates are often not useful unless found using special 
techniques (Guo et al., 2017; DeVries and Taylor, 2018). Additionally, 
for the ordinal classification technique that we use to improve perfor
mance as described in Sec. 3.8, Beckham and Pal (2017) explain that 
estimating confidence is less straightforward. Additionally, the 

Table 5 
Comparison of the original neural network accuracy metrics and the metrics 
found when using the median neural network interpretation within each manual 
depth interval.   

Acc. metric 

BQ HI 

Original Median Original Median 

UPA [%] 51.6 � 0.8 54.0 � 1.6 86.7 � 0.3 89.5 � 0.5 
BPA [%] 46.7 � 0.7 50.0 � 2.8 86.6 � 0.3 88.6 � 0.7 
UAA [%] 88.5 � 0.2 90.8 � 0.4 – – 
BAA [%] 89.1 � 0.4 91.3 � 0.6 – –  
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aforementioned special techniques are designed for nominal classifica
tion, and cannot be easily adapted to our approach. 

Instead, we attempted to estimate the confidence of an ensemble 
through the agreement between the five individual networks that make 
up the ensemble. We tried quantify this agreement by a segment-by- 
segment agreement metric based on Cohen’s weighted kappa extended 
to multiple raters (Cohen, 1968; Conger, 1980). However, for this 
agreement metric to be useful, it would need to be strongly negatively 
correlated with the prediction error, i.e. the distance between the pre
dicted and reference labels, so that high agreement tends to coincide 
with low error and vice versa. Using Spearman’s rank correlation coef
ficient ρ to quantify this cross-correlation, we found ρ ¼ � 0:025 for BQ 
and ρ ¼ � 0:14 for HI, i.e., a very weak negative correlation. Thus, we 
found that the disagreement between the individual networks in the 
ensemble unfortunately cannot be used to identify intervals requiring 
additional scrutiny. To identify such intervals, if it is even possible, 
another approach would have to be found. 

6. Conclusion 

Well log interpretation is a challenging problem, and so is creating an 
automatic well log interpretation system. In this work, we show how it is 
possible to train deep neural networks to interpret well logs through 
supervised learning: We show them a dataset of well log data and their 
interpretations and let the networks themselves draw the connections 
between data and interpretations. We cannot directly train the networks 
to come up with ‘true’ answers; there is no ground truth available, as the 
logs often do not unambiguously show what the true well status is. This 
is why we must use a dataset of manually interpreted data as the net
works’ reference for how well logs should be interpreted. 

One particular limitation of such an approach is that the networks 
may not be able to interpret data that is not similar to data they have 
seen before. The neural networks can only make decent interpretations 
of edge cases, such as logs with strongly broken symmetry where the tool 
or casing is highly eccentered, if the training dataset contains enough 
examples of such data. Manual or automatic quality control of new logs 
to be interpreted might be necessary, as a neural network will give an 
output even for data of such poor quality that it should not be inter
preted. Additionally, any supervised learning system would not be able 
to handle a type of data it has not seen before, such as data from a new 
logging tool. To learn to handle new types of data, the system would 
need to be trained on large amounts of interpreted data of the new type, 
although machine learning techniques such as transfer learning may 
reduce the amount needed. 

Another major challenge is interpretation subjectivity. As the log 
data may be ambiguous, different interpreters may come to different 
conclusions based on similar data and apply different labels. This can 
give the neural networks mixed messages during training. For this 
reason, the dataset should ideally be thoroughly quality controlled data, 
hand-picked to form an internally consistent reference for training. 
Using a more objective annotation system instead of the inherently 
subjective rating scale used in our dataset may also help with this in
ternal consistency. 

Despite such challenges, the neural network interpretation results 
are very promising: For bond quality, we found an unbalanced precise 
accuracy of 51.6% and an unbalanced adjacent accuracy of 88.5%, and 
for hydraulic isolation, we found an unbalanced precise accuracy of 
86.7%. Comparing the performance of the networks and a skilled 
interpreter on a subset of the dataset, we find that the networks’ in
terpretations match the reference interpretations better than the manual 
reinterpretations do, according to five out of six accuracy metrics. While 
a comparison with a single reinterpretation is not sufficient to let us 
conclude that our networks generally agree better with the reference 
than manual reinterpretations do, it does indicate that the neural net
works’ overall ability to recreate unseen interpretations from the dataset 
is, at the very least, comparable with the ability of other skilled 

interpreters. 
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