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A B S T R A C T   

Continuous-time optimization models have successfully been used to capture the impact of ramping limitations 
in power systems. In this paper, the continuous-time framework is adapted to model flexible hydropower re-
sources interacting with slow-ramping thermal generators to minimize the hydrothermal system cost of op-
eration. To accurately represent the non-linear hydropower production function with forbidden production 
zones, binary variables must be used when linearizing the discharge variables and the continuity constraints on 
individual hydropower units must be relaxed. To demonstrate the performance of the proposed continuous-time 
hydrothermal model, a small-scale case study of a hydropower area connected to a thermal area through a 
controllable high-voltage direct current (HVDC) cable is presented. Results show how the flexibility of the hy-
dropower can reduce the need for ramping by thermal units triggered by intermittent renewable power gen-
eration. A reduction of 34% of the structural imbalances in the system is achieved by using the continuous-time 
model.   

1. Introduction 

The Norwegian power system is in an interesting state of transition 
towards tighter integration to the rest of Europe. New high-voltage 
direct current (HVDC) cable interconnections to Germany and Great 
Britain are under construction, which increases the potential of cross- 
zonal trading of both energy and balancing services. Hydropower 
dominates the Norwegian generation mix and is well suited to provide 
system balancing services due to its flexibility. A larger share of inter-
mittent renewable generation means that hydropower will play an in-
creasingly important role in providing flexibility to the interconnected 
North European system in the future. However, propagating the flex-
ibility across HVDC cables is challenging with current practices related 
to the hourly day-ahead market structure. According to the Norwegian 
transmission system operator Statnett, changing the HVDC cable flow 
between areas on an hourly basis has the potential of increasing the 
structural (or deterministic) imbalances caused by the mismatch in the 
scheduled hourly production and real-time load [1]. In this paper, a 
modified version of the continuous-time optimization framework is 
proposed to impose a smooth and continuous flow of power between a 
hydropower area and a thermal area connected by an HVDC cable. 

Continuous-time optimization was originally used to accurately 
describe the cost of ramping scarcity in thermal systems with large 
amounts of renewable power generation, such as the power system in 
California [2]. Ramping restrictions can be directly applied to the de-
rivatives of the decision variables when they are allowed to be con-
tinuous and smooth functions of time instead of the usual piece-wise 
constant formulation. The continuous-time formulation relies on lim-
iting the decision variables to be polynomials of degree r, which allows 
the variables to be expressed by the Bernstein polynomials of the same 
degree. The optimization problem can then be defined in terms of the 
coefficients of the Bernstein polynomials, which is a mixed-integer 
linear program (MILP) in the case of the unit commitment problem. The 
continuous-time framework has lately been expanded in several direc-
tions. The existence of a continuous-time marginal price for the eco-
nomic dispatch problem was proven and calculated in [3] for a thermal 
system. This work was later extended to include energy storage devices 
in [4], which has applications in optimal control of charging electric 
vehicles according to queue theory [5,6] and the scheduling of batteries 
in balancing markets [7]. A stochastic continuous-time model was 
formulated for unit commitment and reserve scheduling problem in [8], 
with the inclusion of energy storage in [9] and a method for load 
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estimation and scenario generation in [10]. Applications to other areas 
within the power system operations field are also emerging, such as the 
active distribution network model in [11]. 

Hydrothermal scheduling has been an active field of research for 
decades, which in turn has contributed to the advanced mathematical 
models used for system and operational planning in hydropower- 
dominated systems. Good examples of this are the models used in 
Norway [12–14] and Brazil [15,16]. Previous hydrothermal scheduling 
models have been based on the standard discrete-time formulation, 
which assumes piece-wise constant values for time-dependent variables 
and model input parameters. This paper concerns the novel integration 
of hydrothermal scheduling and the continuous-time framework. In 
particular, the integrated modeling of continuous-time operation of 
complex hydropower cascades poses several new challenges to both 
hydropower scheduling and continuity constraints. The novel con-
tributions of this paper are outlined as follows: 

• A continuous-time model including hydropower, thermal genera-
tion, and HVDC cables is formulated and studied. To the best of the 
authors’ knowledge, this has not been published previously. 

• A method for modelling the forbidden production zone of the hy-
dropower production curve in the continuous-time framework is 
presented. This involves enforcing the continuity constraints on the 
sum of generated hydropower instead of on the individual plants.  

• The issue of correct uploading of piece-wise linearized variables in 
the continuous-time framework is highlighted in relation to the 
hydropower production function, and a binary variable solution is 
presented. 

Section 2 presents the novel continuous-time model in detail, which 
is then solved for a two-area system and compared to a discrete-time 
(hourly) model in Section 3. Concluding remarks are given in Section 4. 

2. Model 

2.1. Fundamentals of a continuous-time model 

The core idea of the continuous-time framework is to represent 
time-dependent input and decision variables as polynomials of time 
instead of piece-wise constant functions. This increases the complexity 
of the model formulation, but sub-hourly effects and constraints related 
to derivatives with respect to time are easily captured. The motivation 
behind the original continuous-time unit commitment model in [2] was 
precisely to incorporate the impact of ramping scarcity into the market 
clearing. The time-dependent decision variables in the typical con-
tinuous-time optimization framework are defined through the Bernstein 
polynomials of degree r, Br(t), which form a basis for any polynomials 
of at most degree r on the time interval [0,1]. By splitting the time 
horizon of the model into N intervals h of length δh, the time- 
dependent decision variables can be expressed as polynomials of the 
form 

= x Bx t( ) · ( ) ( ),
h

h
T

r h h
(1) 

where τh and Π(τh) are defined as follows: 

=
<

t h1 ,h
h i h

i
(2)  

= h( ) 1, 0 1
0, otherwise .h

h

(3)  

The vectors xh contain the +r 1 coefficients of the Bernstein poly-
nomials in each time interval, which become the decision variables of 
the continuous-time model. It is necessary to use the scaled time τh and 
the operator Π to project the Bernstein polynomials into the correct 

Nomenclature 

Sets and indices 

Thermal generators, index j 
Water value cuts, index k 
HVDC cables, index l 
Hydropower plants and reservoirs, index m 
Areas in the system, index a 

m
d b o/ / Reservoirs that discharge/bypass/spill into m, index i 
m Discharge segments in plant m, index n 

Time intervals, index h 

Variables 

α Future expected system cost [mu] 
s t¯ ( )m

/ Startup/shutdown of hydropower plant [MW] 
fl(t), flh Flow on HVDC cable [MW] 
gj(t), gjh Generated thermal power [MW] 
pm(t), pmh Generated hydropower [MW] 
q t( ),m

b qmh
b Flow through bypass gate [m3/s] 

q t( ),m
d qmh

d Flow through turbine [m3/s] 
q t( ),m

net qmh
net Net flow into reservoir [m3/s] 

q t( ),m
out qmh

out Total controlled flow out of reservoir [m3/s]  
qmh

in Total controlled flow into reservoir [m3/s] 
q t( ),m

o qmh
o Flow through spill gate [m3/s] 

q t( ),m
rel qmh

rel Total flow released out of reservoir [m3/s] 
q t( ),mn

s qmnh
s Flow through discharge segment [m3/s] 

s t( )j
/ Startup/shutdown of thermal generator [MW] 

uj(t) State of thermal unit, on/off 

vm(t) Reservoir volume [m3] 
wmn(t) Discharge segment commitment decision 
zm(t) State of hydropower unit, on/off 

Parameters 

δh Length of time interval [s] 
ηmn Energy conversion factor [MWs/m3] 
Cb Penalty for bypassing water [mu/m3] 
Co Penalty for spilling water [mu/m3] 
Cj Marginal cost of thermal generator [mu/MW] 
Cj

/ Thermal unit startup/shutdown cost [mu] 
Dk Water value cut constant [mu] 
Fl

max Maximal flow limit on HVDC cable [MW] 
Gj

max min/ Maximal/minimal thermal capacity [MW] 
Gla Line flow direction coefficient 
I t( )m

u Natural inflow from creek intakes [m3/s] 
Im(t) Natural inflow into reservoir [m3/s] 
La(t) Net area load [MW] 
N Number of time intervals in 
Pm

max min/ Maximal/minimal hydropower capacity [MW] 
Qm

b Maximal flow through bypass gate [m3/s] 
Qm

d Maximal flow through turbine [m3/s] 
Qmn

s Maximal flow through turbine segment [m3/s] 
Rj

/ Thermal ramping gain for starts/stops [MW/s] 
Rj

u d/ Ramping limits of running thermal unit [MW/s] 
Rl

u d/ Ramping limits of HVDC cable flow [MW/s] 
Vm

0 Initial reservoir volume [m3] 
Vm Maximal reservoir capacity [m3] 
WVmk Water value cut coefficient [mu/m3]   
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time interval while maintaining their property as basis functions. One 
of the main reason for using Bernstein polynomials is the convex hull 
property, which makes it possible to impose inequality constraints on x 
(t) for all times t by directly bounding the coefficients xh [2]. This paper 
uses Bernstein polynomials of degree 3 as the basis: 

=B t t t t t t t( ) [(1 ) , 3 (1 ) , 3 (1 ), ] .T
3 3 2 2 3 (4)  

This is a popular choice in the literature, as it keeps the size of the 
model reasonable without sacrificing the ability to model complex time 
dependencies. Another advantage is the linear relationship to the cubic 
Hermite splines H(t), which can be used as an equivalent basis: 

=H B W Bt t t( )

1 1 0 0
0 0 0
0 0 1 1
0 0 0

· ( ) · ( ).
1
3

1
3

3 3

(5)  

The coefficients of the Hermite splines have a physical interpreta-
tion as the value of x(t) and its derivative at the start and end of the 
time interval h: 

= =x W x x x x x( ) · [ , , , ] .H
h

T
h h

start
h
start

h
end

h
end T1 (6)  

This interpretation is useful for expressing the continuity of x(t) 
across the time intervals h. The reader is referred to [2] for a more 
detailed introduction to the continuous-time formulation with further 
references to the properties of the Bernstein polynomials mentioned in 
this section. 

2.2. Objective function 

The objective of the proposed hydrothermal model is to minimize 
the future expected cost of the system, the penalties for bypassing and 
spilling water, and the operational, startup and shutdown costs of the 
thermal generators: 

= + +

+ + +

Z C q t C q t dt

C g t dt C s C s

( ( ) ( ))

( ) ( ).

m

t b
m
b o

m
o

j

t
j j

j h
j jh j jh

0

0

end

end

(7)  

Note that startup and shutdown cost are assumed to be negligible 
for the hydropower plants. The definite integral of the Bernstein poly-
nomials of the third degree is =B 1t dt( ) ,0

1
3

1
4 which simplifies the 

integrals in (7) to the sums 

= + +

+ + +

1 q q

1 g

Z C C

C C s C s

1
4

·( )

1
4

· .

m h
h

T b
mh
b o

mh
o

j h
h j

T
jh j jh j jh

(8)  

As this paper focuses on modelling hydropower generation in the 
continuous-time framework, a simplified linear formulation of the 
thermal generation cost function is used in (8). More advanced mod-
eling of quadratic and piece-wise linear cost functions in continuous- 
time unit commitment are available in the literature [2,9], and their 
integration in the model proposed in this paper is straightforward. 

2.3. Hydropower topology constraints 

The cascaded topology constraints dictate how water moves be-
tween the reservoirs. These constraints are equality constraints, see for 
instance [14], which means that equating the polynomial coefficients 
are sufficient to satisfy them in the continuous-time framework. The 
convex hull property of the Bernstein polynomials and the fact that 

=1 B t· ( ) 1T
3 is used to enforce the physical bounds on the variables: 

= +q I q q m h, ,mh
net

mh mh
in

mh
out (9)  

= + m hq q q , ,mh
out

mh
rel

mh
o (10)  

= + + m hq q q q , ,mh
in

i
ih
d

i
ih
b

i
ih
o

md mb mo (11)  

= + m hq q q I , ,mh
rel

mh
d

mh
b

mh
u (12)  

Q m h0 q 1 , ,mh
d

m
d (13)  

Q m h0 q 1 , ,mh
b

m
b (14)  

m h0 q , ,mh
o (15)  

Fig. 1. Depiction of the different waterways for discharging, bypassing and 
spilling water between reservoirs. All waterways may lead to different down-
stream reservoirs or out of the system. Natural inflow enters the system in two 
different ways, either into the reservoir (triangle shape) or directly into the 
main tunnel of the plant (rectangle shape). 

Fig. 2. The continuous-time load profiles of the thermal and hydropower areas 
are shown together with the hourly constant load approximations (solid and 
dashed lines, respectively). The profiles have been scaled by the value of the 
peak load. 

Table 1 
Model size comparison of the continuous-time and hourly models. The problem 
size after the CPLEX presolve routine is listed under reduced model.       

Parameter Initial model Reduced model  

Hourly Cont.-time Hourly Cont.-time  

Binary variables 1152 2040 1106 1706 
Continuous variables 2474 8954 2179 7371 
Constraints 2706 16,962 2316 13,107 
Solution time [s]   2.2 60.0 
MIP gap [%]   0.0 0.28 
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m h0 q , , .mh
rel (16)  

There are three waterways that connect reservoirs; discharge 
through the turbine, the bypass gate and the spill gate. Fig. 1 shows the 
relationship between the different waterways in addition to where 
natural inflow enters the system. 

2.4. Volume constraints 

The rate of change in the reservoir content is described by the dif-
ferential equation: 

=dv t
dt

q t m( ) ( ) .m
m
net

(17)  

The integral of Bernstein polynomials of degree 3 can be expressed 
using Bernstein polynomials of degree 4 using a linear mapping matrix  
[4,9]: 

=B B N Bt dt t t( ) 1
4

0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

( ) · ( )3 4 4

(18) 

which is further utilized to show the volume increase within a time 
interval h as follows: 

= =

=

v t v dv t
dt

dt dtq B

q N B

( ) ( ) ( ) · ( )

( ) · · ( ).

m mh t h

t
mh
net T

t h

t
h

h mh
net T

h

( )

’

’
’

( ) 3
’

4 (19)  

Here, = <t h( ) i h i and the fact that =N B 0· (0)4 was used. Note 
that the volume variables vmh denotes the volume at the start of interval 
h. Based on equation (19), the following volume balance constraints can 
be added to the optimization problem: 

=v V mm m0
0 (20)  

=+ 1 qv v m h1
4

· , ,m h mh h
T

mh
net

, 1 (21)  

+v V m h0 1 N q 1· , , .mh h
T

mh
net

m (22)  

Constraint (20) sets the initial volume of each reservoir and (21) 
calculates the volume change from one time interval to the next by 
inserting =N B 1· (1)4

1
4 . Constraint (22) uses the convex hull property to 

bound the volume within the limits of the reservoir for all times t. 

2.5. Future cost bounds 

The future expected cost of the system is represented by a set of 
Benders cuts created by a hydrothermal long-term model such as [14]. 
The expected future cost depends on the state of all hydropower re-
servoirs in the system at the end of the last time interval N: 

++WV v D k .
m

mk m N k, 1
(23)  

2.6. Hydropower production 

The conversion from discharge through the turbine to generated 
power is a non-linear function which depends on the effective plant 
head and the efficiency curves of the turbine and generator [17]. By 
assuming a constant head for the planning horizon, the hydropower 
production function can be approximated as a single piece-wise linear 
curve, where the discharge variable is split into n m segments with 
constant gradient ηn. In an discrete-time model, the discharge segments 
will usually be uploaded in the correct order as long as the gradient is 
decreasing for increasing segment number. The exception is extreme 
situations where it is beneficial to dump as much water as possible 
while limiting the power produced, which can be the case in high 

inflow and low load scenarios. A similar effect of incorrect uploading of 
discharge segments has been observed in this work when the con-
tinuous-time framework was implemented. Segments with high effi-
ciency are still favoured but there is no guarantee that segment n is at 
its maximal capacity for all times that segment +n 1 is being used. The 
model will often start using the next segment too early to be able to 
fulfill the continuous-time power balance described in Section 2.7. To 
remedy this problem, binary variables wmn

= 1 Bt w( ) · ( ) ( )h mnh
T

h h3 are used in this work to force the seg-
ments to be fully utilized before the next segment can be used: 

=q q m h, ,mh
d

n
mnh
s

m (24)  

=p q m h, ,mh
n

mn mnh
s

m (25)  

Q w Q m h n1 q 1 , , , ,mn
s

mnh mnh
s

mn
s

m (26)  

Q w m h nq 1 , , , , {0}.mnh
s

mn
s

m n h m, 1, (27)  

This modelling choice of the hydropower production function has 
the unfortunate effect of introducing additional binary variables into 
the model but also enables the use of non-concave linearizations of the 
hydropower production function. It is also possible to incorporate for-
bidden production regions within the operating range of the turbine by 
modifying (26) to =q 1Q wmnh

s
mn
s

mnh for the segment representing the 
forbidden region. 

2.7. Power balance and HVDC power flow 

The power balance constraints must be satisfied in each node of the 
system. In this work, each node represents a larger market area as-
suming no internal power flow limits. The areas are connected with 
HVDC cables where the flow can be controlled by the system operator. 
The power balance constraints are formulated as 

+ =G a hp g f L , , .
m

mh
j

jh
l

la lh ah
a a (28)  

The coefficient Gla dictates the positive and negative direction of 
flow on each cable l by taking the values   ±  1, or zero if cable l is 
not connected to area a. a and a are the sets of hydropower and 
thermal units located in area a, respectively. The flow on the HVDC 
cables is constrained by maximal flow limits 

1 f 1F F l h, , ,l
max

lh l
max (29) 

and additional limitations on the change of flow is imposed on the 
derivative f t( )l to stay within the specified HVDC cable ramping limits 
used in the Nordic system [18]. By using the following property of the 
Bernstein polynomials, 

Fig. 3. The sum production in the thermal and hydropower areas relative to 
their respective load peaks in the hourly and continuous-time solution. The 
hourly and continuous-time solutions are shown as dashed and solid lines, re-
spectively. 
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=B B K Bd t
dt

t t( ) 3
1 0 0

1 1 0
0 1 1
0 0 1

· ( ) · ( ),3
2 2

(30) 

the minimum and maximum ramping limits can be expressed as: 

1 f K 1R R l h1 · , , .l
d T

h
lh
T

l
u T

(31)  

2.8. Thermal generation constraints 

The thermal generators are subject to unit commitment decisions 
which signify if a generator is offline or producing between the minimal 
and maximal production limits. The thermal unit commitment con-
straints are modelled by the use of the binary decision variables uj(t): 

G G j hu g u , ,j jh jh j jh
min max

(32)  

= + +u u u u j h Nu [ , , , ] , , { }jh jh jh j h j h T, 1 , 1 (33)  

= u ju 1jN jN (34)  

= +s s u u j h N, , { }jh jh j h jh, 1 (35)  

+s s j h1 , ,jh jh (36)  

u s j h, {0, 1} , , .jh jh
/

(37)  

The constraints closely follow the implementation used in [2] and  
[8], which are in turn adapted from the standard discrete-time unit 
commitment formulation found in for instance [19]. The choice of the 
commitment decision vector in (33) and (34) allows the thermal gen-
erator to use time interval h to ramp up from zero to above Gmin, or 
conversely ramp down production to zero. The smooth transition is 
necessary for the continuity constraints that will be applied to the 
thermal production variables in Section 2.10. Constraint (35) captures 
the startups and shutdowns of the generators, which are accounted for 
in the objective function (8). The up and down ramping constraints of 
thermal generators, taking into account the startup and shutdown ramp 
limitations, are modeled as follows: 

+g K 1R R s j h1 · ( ) , ,
h

jh
T

j
u

j jh
T

(38)  

+g K 1R R s j h1 · ( ) , , .
h

jh
T

j
d

j jh
T

(39)  

The minimum up and down time constraints of thermal generation 
is not considered in this paper, and the readers are referred to our 
previous works for details on modeling these constraints in the con-
tinuous-time unit commitment model [2]. 

2.9. Hydropower unit commitment 

Due to operating characteristics such as mechanical vibration or loss 
of efficiency, hydropower turbines usually have one or several for-
bidden production regions depending on the turbine type. It is im-
portant to model these regions when looking at short-term scheduling 
of a hydropower system to have an accurate representation of the op-
erating range of the hydropower plants. The unit commitment con-
straints of the hydropower plants in the continuous-time optimization 
model must account for the forbidden production region so that the 
flexibility of the plant is not overestimated. The hydropower unit 
commitment decisions zm(t) are used to model this in the following way: 

P P m hz p z , ,m mh mh m mh
min max (40)  

= z m hz 1 , ,mh mh (41)  

= +s s z z m h N, , { }mh mh m h mh, 1 (42)  

+s s m h1 , ,mh mh (43)  

z s m h, {0, 1} , , .mh mh
/ (44)  

In contrast to the choice of the thermal unit commitment vector in  
(33), the formulation in (41) forces the hydropower unit commitment 
decisions to be constant for the whole time interval so that the pro-
duction is never between 0 and Pmin. However, this formulation is in 
opposition to the normal continuous-time formulation, as discontinuous 
jumps in power production must be allowed. If not, the hydropower 
plants will be unable to start and stop at all. These issues are addressed 
in Section 2.10. 

2.10. Continuity constraints 

The standard continuous-time optimization framework builds on 
the C1 continuity of all decision variables x(t). This requires both the 
value x(t) and the value of the derivative x t( ) to be continuous over the 
change of time intervals h . Such constraints are enforced by using 
the relationship between the Bernstein polynomials and the cubic spline 
functions, shown in (5). The interpretation of the coefficients of H(t) 
described in (6) simplifies the implementation of the C1 continuity 
constraints. By labelling the components of the vector x as x[i] for 
i ∈ {0, 1, 2, 3}, the continuity constraints become: 

= +x x h N[2] [0] { }H H
h h 1 (45)  

= +x x h N[3] [1] { }.H H
h h 1 (46)  

These constraints are applied to the thermal generation and HVDC 
flow variables: 

= +g g j h N[2] [0] , , { }H H
jh j h, 1 (47)  

= +g g j h N[3] [1] , , { }H H
jh j h, 1 (48)  

= +f f l h N[2] [0] , , { }H H
lh l h, 1 (49)  

= +f f l h N[3] [1] , , { }.H H
lh l h, 1 (50)  

As mentioned in Section 2.9, discontinuous jumps in power pro-
duction are required to model the forbidden production region of hy-
dropower plants. Therefore, enforcing the C1 continuity constraints on 
the variables related to the hydropower production is not possible. In 
addition, requiring continuous derivatives for water flow and hydro-
power production is strict when δh is longer than a few minutes. To 
avoid conservative solutions underestimating the ramping capabilities 
of hydropower, (46) is not implemented for any variable related to 
hydropower. The bypass and overflow variables are C0 continuous: 

= +q q m h N[2] [0] , , { }H H
mh
b

m h
b,

, 1
,

(51)  

Fig. 4. The HVDC cable power flow from the hydropower area to the thermal 
area in the hourly (dashed line) and continuous-time (solid line) models. 
Negative values indicate flow in the opposite direction. 
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= +q q m h N[2] [0] , , { },H H
mh
o

m h
o,

, 1
,

(52) 

and the reservoir volume continuity is already secured by (21). The 
hydropower production is forced to be C0 continuous unless a startup or 
shutdown happens in the time interval. This is modelled by replacing  
(45) by the following two inequalities: 

+ P s m h Np p[2] [0] , , { }mh m h m mh
H H

, 1
max

(53)  

+ P s m h Np p[0] [2] , , { }m h mh m mh
H H

, 1
max

(54) 

which is consistent with the unit commitment constraints imposed in  
(40) to (44). Note that this relaxation produces a more constrained 
problem, as production in the forbidden region is impossible. Due to the 
connection between production and discharge in (25), the discharge 
variables qs must also be allowed to have discontinuous jumps. How-
ever, the binary definitions of the discharge bounds in (26) and (27) 
take care of continuity when the hydropower plant is producing, so 
there is no need to apply any further constraints to the discharge 
variables. The continuity properties of the derived flow variables qnet, 
qout, qin, and qrel are also implicitly accounted for through (9) to (12). 

It is important to note that even though the individual hydropower 
plants may have discontinuous jumps and discontinuous derivatives in 
the power production curve between time intervals, their sum is still 
forced to be C1 continuous through the power balance constraint (28) 
since all other quantities in the equation are C1 continuous. The C1 

continuity constraints of the flexible hydropower have effectively been 
lifted from the individual plant to the sum on an area level. The hy-
dropower model formulation presented in this paper can be seen as an 
approximation of a fully C1 continuous model where short time inter-
vals have been inserted around every major time interval shift. By 
forcing the hydropower plants to only start or stop in these short in-
tervals, an accurate production profile spending minimal time in the 
forbidden production zone would be achieved. By letting the length of 
short intervals go to zero, the partially C0 continuous hydropower 
formulation used in this paper is recovered. Therefore, the alterations 
made to the continuity constraints for the hydropower-related variables 
will not drastically impact the operation of the hydropower, as long as 
δh is long compared to the time it takes to ramp up and down a hy-
dropower plant, which is usually only a few minutes. 

3. Case study 

A small scale case study with two areas connected by a single HVDC 
cable is presented in this section. The continuous-time model proposed 
in Section 2 and an analogous discrete-time hourly model are both 
solved to show and compare the interaction between fast and slow 
ramping components in the system. Both models have been im-
plemented in Pyomo and solved with CPLEX 12.8. One area contains 
only hydropower, while the other only contains thermal generation. 
The hydropower topology is based on a real Norwegian water course 
consisting of 12 reservoirs and plants which is described in more detail 
in [20], and the future expected cost of the hydropower system is cal-
culated based on the long-term model described in [14]. The inflow is 
considered piece-wise constant within each hour in the entire hydro-
power area, which has a total hydropower production capacity of 537 
MW. The thermal area contains four thermal generators with a total of 
256 MW of production capacity and varying ramping capabilities and 
marginal, startup and shutdown costs. The areas are connected by an 
HVDC cable with a flow limit of 50 MW in either direction. The 
ramping limitations of the cable are based on the current practice of 
how fast the flow on an HVDC cable can be changed in the Nordic 
market, which is 600 MW/h [18]. The flow change is performed in a 
20 min window around hourly shifts, which gives an effective ramping 
rate of 30 MW/min or 1800 MW/h [1]. The time horizon is set to 24 
hours with hourly time intervals for both the hourly and the con-
tinuous-time model. 

The scaled net load profiles for the two areas are shown in Fig. 2. 
The peak net load value in each area is used as a scale in the figure, 
which is 450 MW and 160 MW in the hydropower and thermal areas, 
respectively. The net load profiles are based on measured data from 
NYISO and CAISO from 1/1-2019, available at [21,22] with a 5-minute 
resolution. The CAISO net load has been used for the thermal area, 
which experiences significant ramping events in the morning and 
afternoon as solar plants start and stop producing power. The con-
tinuous-time load was calculated from the raw data by a standard least- 
squares error fit to the Bernstein polynomials, while the hourly load is 
the average load for each hour. The structural imbalances in both areas 
go down in the continuous-time model compared to the hourly model, 
with a reduction of 34% on system level. This represents 97 MWh of 
saved balancing energy, which is 0.9% of the total daily net system 
load. The reduction of imbalances is higher in the thermal area (87%) 
than the hydropower area (20%) because B3(t) provides a better fit to 
the CAISO load data. 

The size and solution times of the models are listed in Table 1, 
which shows the initial model size and the reduced size after CPLEX 
performs an automatic presolve routine. The number of continuous and 
binary variables and constraints are considerably higher in the con-
tinuous-time model compared to the hourly model, also after the pre-
solve. The larger model size of the continuous-time model results in a 
longer solution time on a standard office laptop, i7-7600 CPU at 
2.8 GHz with 4 cores, though solution time in MIP models can vary 
greatly based on the parameter settings given to the solver. A small 
relative MIP gap of 0.28% was reached in 60 seconds for the con-
tinuous-time model, but solving it to zero gap like the hourly model 
takes about 10 hours on a server with 36 cores. Upon investigation, it is 
clear that the hydropower production continuity constraints, (53) and  
(54), are the complicating constraints. If these constraints are removed, 
which means the hydropower production variables are discontinuous 
over the interval changes, the continuous-time model can be solved to 
zero MIP gap in 22 seconds. This is a trade-off between realistic phy-
sical modelling and tractability that should be considered when solving 
larger systems. 

The resulting sum production of hydropower and thermal gen-
erators are shown in Fig. 3. The figure shows that the hourly model 
overestimates the ramping capabilities of the thermal system during the 
extreme ramping events. Thermal production is shut down in the 
morning and turned back on in the afternoon, while the hydropower 
producers increase their production to cover the load in both areas in 
the meantime. This is not the case in the continuous-time model, as 
shutting down all thermal generators is either infeasible or very costly 
when following the net load during the ramping events. The cheapest 
and slowest thermal generator stays on for the whole 24 hours in the 
continuous-time model, contributing to the ramping in a modest way. 

Most of the ramping is carried out by the hydropower system 
through the HVDC cable, which can be seen in Fig. 4. The figure shows 
how the hydropower system is able to mitigate the ramping in net load 
in both directions while keeping the thermal generator online. The 
power flow is kept close to 50 MW throughout the day in the hourly 
model since the hydropower is generally cheaper than the thermal 
generators. However, two major changes in flow occur when the 
thermal generators are shut down and then started back up in the 
thermal system. This behaviour is undesirable, as it can increase the 
structural imbalances in the system [1]. 

4. Conclusion 

Hydropower is considered an important balancing resource due to 
its flexibility. A continuous-time hydrothermal unit commitment model 
with HVDC cables was formulated in this paper to show how excessive 
ramping in the thermal system can be avoided by hydropower and 
active use of the HVDC cables. The structural imbalances in the system 
are reduced by 34% in the continuous-time model compared to the 
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hourly discrete-time model since sub-hourly effects are captured by the 
polynomial expansion. Several modelling issues related to in-
corporating hydropower into the continuous-time framework have been 
uncovered in the process. The linearization of the hydropower pro-
duction curve requires binary variables to avoid unphysical uploading, 
and modelling the forbidden production zone requires the relaxation of 
the continuity constraints of the individual hydropower plants. The 
overall continuity of the model is still preserved on a system level, as 
the power balance forces the sum of hydropower production to be C1 

continuous. Investigating other potential modelling choices of the hy-
dropower production curve, calculating system prices, and expanding 
the model to cover cross-zonal reserve capacity procurement are in-
teresting avenues of further research. 
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