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Abstract
An adaptive task difficulty assignment method which we reckon as balanced difficulty task finder (BDTF) is proposed in

this paper. The aim is to recommend tasks to a learner using a trade-off between skills of the learner and difficulty of the

tasks such that the learner experiences a state of flow during the learning. Flow is a mental state that psychologists refer to

when someone is completely immersed in an activity. Flow state is a multidisciplinary field of research and has been

studied not only in psychology, but also neuroscience, education, sport, and games. The idea behind this paper is to try to

achieve a flow state in a similar way as Elo’s chess skill rating (Glickman in Am Chess J 3:59–102) and TrueSkill

(Herbrich et al. in Advances in neural information processing systems, 2006) for matching game players, where ‘‘matched

players’’ should possess similar capabilities and skills in order to maintain the level of motivation and involvement in the

game. The BDTF draws analogy between choosing an appropriate opponent or appropriate game level and automatically

choosing an appropriate difficulty level of a learning task. This method, as an intelligent tutoring system, could be used in a

wide range of applications from online learning environments and e-learning, to learning and remembering techniques in

traditional methods such as adjusting delayed matching to sample and spaced retrieval training that can be used for people

with memory problems such as people with dementia.

Keywords Adaptive task difficulty � State of flow � Intelligent tutoring system � Game ranking systems � Online learning �
Adjusting delayed matching-to-sample � Computerized adaptive testing � Stochastic point location

Introduction

Attempts to achieve computer tutoring systems that are as

effective as human tutors can be traced back to the earliest

days of computers (Smith and Sherwood 1976). Online

learning is becoming a significant driving force in today’s

educational systems. The lack of faculty members is a

common trend in today’s universities which makes per-

sonalized one to one teaching challenging, or practically

impossible. Students may struggle to fulfill their full

potential because the assigned tasks are generic and not

tailored to their specific needs and skill level. Several

studies show that personalized learning is the key to

increased fulfillment of potential (see, e.g., Miliband 2004).

A possible solution to the latter problem is resorting to the

advances in AI in order to personalize the teaching process.

AI could be defined as: ‘‘The automation of activities that

we associate with human thinking, activities such as
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decision-making, problem solving and learning’’ (Bellman

1978).

Some of early studies that allude to the term Intelligent

Tutoring System (ITS) dates back to 1982, where D. Slee-

man and J.S Brown pioneered the idea of a system

designed to help students reach their full potential in a

limited amount of time (see Sleeman and Brown 1982). A

few years later, a study is published demonstrating that

individual tutoring is twice as effective as group teaching

(Bloom 1984). Later, online e-learning platforms such as

Kahn Academy1 and Udemy,2 massive open online course

(MOOC) such as MIT OpenCourseWare,3 digital hand in

tools like Fronter, plagiarism controls like Ephorus

(Fronter), and autograding assignment tools such as Bak-

pax4 have emerged. True ITS also exists with open tools

like Codeacademy5 and other e-learning platforms.

ITSs can raise student performance beyond the level of

traditional classes and even beyond the level of students

who learn from human tutors (see Kulik and Fletcher 2016,

for a survey). A recent study by Chirikov et al. (2020)

shows that online education platforms could scale high-

quality science, technology, engineering, and mathematics

(STEM) education through national online education plat-

forms at universities. Such instruction can produce similar

learning outcomes for students as traditional, in-person

classes with a much lower cost (see also VanLehn 2011, for

a review of relative effectiveness of human tutoring,

intelligent tutoring systems, and other tutoring systems or

no tutoring).

An ITS is supposed to ‘‘provide immediate and cus-

tomized instruction or feedback to learners’’ (Psotka et al.

1988). In this paper, we provide algorithms that aspire to

fulfill the latter statement for the purpose of task selection.

Many ITSs are based on Computerized Adaptive Testing

(CAT) which is a form of computer-based test in which the

correctness of the student’s responses shapes the difficulty

level of upcoming tasks (see, e.g. Hatzilygeroudis et al.

2006; Kozierkiewicz-Hetmańska and Nguyen 2010; Jansen

et al. 2016, for instance). The aims of testing and practic-

ing through tutoring differ; testing should efficiently esti-

mate the student’s ability (Birnbaum 1968; Eggen and

Verschoor 2006), while training and practicing need to

consider motivation and involvement of students in line

with the length of the test (Jansen et al. 2016). A proba-

bility of success of 0.5 could minimize the test length, but

this level of challenge could be frustrating for some stu-

dents. For instance, in Math Garden, which is a web-based

application for monitoring and practicing math skills based

on CAT principles (Klinkenberg et al. 2011), a success

rate of 75% is considered on average.

There is a substantial body of work on Learning Auto-

mata (LA) and ITSs (see, e.g. Oommen and Hashem 2013).

In simple terms, LA is a stochastic machine attempting to

find the optimal strategy from a set of actions in a random

environment. LA, as a fundamental problem in AI, is

particularly important in decision making under uncer-

tainty (see Narendra and Thathachar 2012, for an intro-

duction to LA). The term tutorial-like systems refers to

study tutorial systems while no entity needs to be a real-life

individual. Research in this field tries to model components

of the system with appropriate learning models, such as

LA (Oommen and Hashem 2013).

In a tutorial-like system, the teacher also might be

stochastic and learns through the process of training

(Hashem 2007). The design and analysis of a tutorial-like

system model could involve modeling of a student (Oom-

men and Hashem 2009b), modeling of a classroom of

students where artificial students can interact and learn

from each other as well as the teacher (Oommen and

Hashem 2009a), modeling of a (stochastic) teacher

(Hashem and Oommen 2007), modeling the domain

knowledge (Oommen and Hashem 2010), and modeling

how teaching abilities of a teacher can be improved

(Oommen and Hashem 2013).

ITSs can also be applied in some traditional learning

methods in behavior analysis such as titrated delayed

Matching-to-Sample (MTS) method, also referred as

adjusting delayed MTS (Cumming and Berryman 1965;

Sidman 2013).6 Titrated delayed MTS has been used to

study remembering in a variety of settings, including to

study important variables in analyzing short-term memory

problems (Arntzen and Steingrimsdottir 2014). Similar

applications of ITSs in MTS and titrated delayed MTS

procedures, can proposed to the computational models of

these experimental methods which are usually introduced

in the sake of research (see, e.g. Mofrad et al. 2020, for a

recent computational model that simulates MTS proce-

dure). ITSs can be used as a tool in the simulation part of

training phase of MTS or titrated delayed MTS procedures

to study the effect of adaptive training in a simulator

model.

1 www.khanacademy.com.
2 www.udemy.com.
3 https://ocw.mit.edu.
4 www.bakpax.com.
5 www.codecademy.com.

6 Matching-to-sample procedures, have been frequently used to study

complex human behavior (see for instance Cumming and Berryman

1965; Sidman 1994). Arntzen (2012) provides an overview of MTS

experiments and several variables that can be manipulated when

designing an experiment through MTS procedures. In adjusting

delayed MTS, the length of the delay changes as a function of the

participants’ responses, which makes it similar to the adaptive task

assignment problem.
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Spaced retrieval training (SRT) (Camp et al. 1989) is

another method of learning and retaining a piece of infor-

mation by recalling that piece of information over

increasingly longer intervals. The underlying problem in

SRT is also similar to the adaptive difficulty task assign-

ment which is addressed here. The SRT method is espe-

cially used for people with dementia (Camp et al. 1996).

Note that defining or measuring task difficulty can be

addressed in many ways. A definition based on whether or

not a task is performed, has applications in developmental

research. In this context, easier tasks can be performed at

earlier stages of development (see, e.g. Gilbert et al. 2012).

For healthy adults, a difficult task can be defined as a

quantitative measure, say percentage of task compliance in

a series of trials. Response time is another measure of task

difficulty, where a longer response time in average is

equivalent to a more difficult task. Accuracy and response

time, however, trade against each other (Fitts 1966;

Wickelgren 1977) and both must be considered in a well-

defined and standard task difficulty measure. Difficult tasks

in this respect, can be defined as those with long response

time and and/or high frequency error (see, e.g. Gilbert et al.

2012, for other accounts in defining task difficulty).

In this paper, we present a formal theory by which an

ITS can select the difficulty of task in a similar manner to

selecting an opponent of similar capabilities in balanced

difficulty game (Herbrich et al. 2006), which is called

Balanced Difficulty Task Finder (BDTF). As suggested by

systems such as Elo’s chess skill rating (Glickman 1995)

and TrueSkill (Herbrich et al. 2006) for matching game

players, matched players should have similar capabilities

and skills in order to achieve a balance between skills and

challenges to experience the state of flow. We draw anal-

ogy between choosing an appropriate opponent or appro-

priate game level and automatically choosing an

appropriate level of a learning task. It is noteworthy that by

way of analogy, we can model the student as the player and

the chosen task by the system as the opponent.

Paper organization

The remainder of this paper is organized as follows. ‘‘State

of art’’ section reviews the state of the art and various

approaches to ITS modeling. ‘‘Modeling task selection as

balanced game using balanced difficulty task finder’’ sec-

tion models task selection as balanced difficulty game by

resorting to our devised BDTF. ‘‘The concept of flow’’

section addresses the concept of flow from psychological

point of view. In ‘‘Related work on games’’ section, related

works from research on games are reported. ‘‘Neural basis

of adaptive learning and state of flow experience’’ section

addresses some literature on neural basis of adaptive

learning and state of flow. Furthermore, theoretical

formulation of BDTF is provided in ‘‘Formulating learning

as a balanced difficulty game’’ section. Experimental

results in ‘‘Experimental results’’ section catalogues the

convergence properties of the BDTF discussed in the the-

ory part. Finally, concluding remarks and future works are

addressed in ‘‘Conclusions and future work’’ section.

State of art

In this section, relevant studies and papers are discussed to

give the reader an overview over the current state of the art.

Although several papers on this topic exist dating back

several years, the literature reviewed in this section is

limited to content published (preferably) after 2005.

There are several approaches to create an ITS. In the

most recent papers, we are presented with a mix of dif-

ferent artificial intelligence approaches to solve the prob-

lem. Common for most of the papers reviewed is the need

for a model of student including different properties like

learning-rate, previous experience and knowledge, and

other variables. An approach for such a model (from now

referred to as the student model) is represented in numerous

studies (see for instance Brusilovsky and Millán 2007;

Clement et al. 2014, 2015; Millán et al. 2010).

The use of the student model in recent papers suggests

that this approach is fairly common in the field of ITS.

Even though the model itself is fairly common, the

implementation varies significantly. As an example, Cle-

ment et al. (2015) resort to a combination of a student

model and a cognitive model to create a tutoring model.

With this approach, the authors try to eliminate the need for

a strongly typed student model. The goal is to adjust the

learning tasks to individual students with as little infor-

mation as possible. The use of a Learning Automata (LA)

algorithm enables the system to find the optimal learning

sequence for a specific student subject to some constraints;

such as requiring certain activities to happen before others.

A disadvantage of the latter approach is particularly the

assumption that some tasks should be carried out in an

order. The authors (Clement et al. 2015) assume that after

task A1, either A2 or B1 need to follow. If students move

to B1, they can not move back to any task in A category.

This is in most cases a simplification of the learning pro-

cess, since students should be able to work on several

categories and practice by repeating previous categories.

Clement et al. (2015) use partial-observable Markov

decision process (POMDP) for optimization of task

selection, which is inspired by Rafferty et al. (2011) who

used the students acquisition level to propose activities.

This method requires the system to assume all students

learn in the same way. It is also stated that this approach

can be optimal, but requires sophisticated student and
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cognitive models. In most cases these methods are based on

knowledge tracing-methods (KTM) which attempt to esti-

mate student knowledge in a parametric manner. Usually,

the lack of data causes this form of modeling to be inac-

curate. POMDPs also has been suggested to be used for

modeling a population of students, instead of individuals.

This approach has been proven to be suboptimal in an ITS

setting (Clement et al. 2015; Lee and Brunskill 2012).

On the other hand, several improved versions of the

KTM have been proposed in the literature. A Representa-

tive example is the Bayesian knowledge tracing (BKT) with

skill-specific parameters for each student. There are strong

indicators that BKT models accounting for the student

variance is superior to the Bayesian knowledge model

(Pardos and Heffernan 2010; Yudelson et al. 2013). This

partially nuances the criticism proposed by Clement et al.

(2015).

A significant number of studies indicate that intrinsically

motivated students perform better. Thus, this requires a

good ITS keeps motivating the student throughout the

whole learning experience. Lumsden (1994) investigated

the optimal strategy for motivating the student, and found

that one of the main keystones for a motivational experi-

ence is task mastery. This is backed up by Clement et al.

(2015) who proposes a solution where the student is pre-

sented with tasks that are neither too easy nor too hard, but

slightly beyond their current abilities. Psychologists refer

to this experience as state of flow (see, e.g. Csikzentmi-

halyi 1996).

In this article, we propose a solution where each student

starts with a predefined optimal-difficulty (Clement et al.

2015) which will be adjusted over time based on the stu-

dent answers. Some students may be more prone to be

motivated with challenging tasks, and therefore the overall

learning outcome may be more effective for these students.

On the other hand, we might find students struggling with

the default or optimal-difficulty. In such cases, the learn-

ing-rate should be decreased, allowing these students to

participate at a slower pace.

There are several possible alternatives to design an ITS.

We have looked at several candidates in this study,

including multi-armed bandits (Clement et al. 2015),

Bayesian-networks (Millán et al. 2010) and neural-net-

works (Zatarain Cabada et al. 2015), each with its own

advantages. As mentioned earlier the student model is an

important part of this ITS. In the latter reviewed papers, the

neural network and Bayesian-network both relied on

comprehensive student models, with a solid core of data in

order to be able to draw accurate assumptions and deci-

sions. These systems are shown to be reliable and effective,

but comprehensive data models are required in order to

achieve optimal operation (Clement et al. 2015). With the

use of LA it is possible to eliminate the need for prior-

knowledge about the students. The LA is efficient, and it

requires a weaker link between student and the cognitive

model. Clement et al. (2015) propose an LA for seven to

eight years old school-children learning to decompose

numbers while manipulating money. Even though a generic

solution is presented by Clement et al. (2015) relying

on multi-armed bandit, there is no evidence that a similar

approach is viable for use for adults and contexts addressed

in online learning (see also Hashem and Oommen 2007;

Hashem 2007; Oommen and Hashem 2009a, b, 2010, 2013,

for LA based models for a generalized framework of

tutoring system, called tutoring-like systems).

A limited number of studies describe the use of ITS in

programming courses. As representative studies, we iden-

tified Java Sensei (Zatarain Cabada et al. 2015) and ASK-

ELLE (Jeuring et al. 2012), each of the latter studies use a

different machine learning approach. Java Sensei resorts to

a combination of neural-network strategies and emotion

sensors to register information and to make decisions based

on input. ASK-ELLE ITS utilizes a domain reasoner using

a Haskel Compiler called Helios. This compiler was

developed to give feedback on wrong syntax. The system

requires each student to complete a given task, but helps

the student to accomplish the tasks by giving hints and

examples relevant to found error(s).

Before moving to the model and contribution of this

paper, we refer to the Stochastic Point Location (SPL)

problem which has some similarities to the current work. A

considerable amount of literature has been published on

SPL since the Oommen work (Oommen 1997) (see for

instance Yazidi et al. 2014; Mofrad et al. 2019). In SPL, an

LA search for a point location in a line through the guid-

ance of an external environment which might give faulty

advice. Many scientific and real-life problems can be

modeled as the instances of SPL problem, including

adaptive task assignment problem. For instance, in Mofrad

et al. (2019), some authors of this paper discuss that the

point location can represent the difficulty level of a task

that a participant can handle, and tries to find that point as

fast and accurate as possible. The participant performance

in Mofrad et al. (2019) is modeled using a stair function

with two levels: a high performance for difficulties under

the optimal manageable difficulty level and a low perfor-

mance for difficulties just above the same level, i.e., the

manageable optimal difficulty level. However, if we rather

use a more realistic performance function according to

which the performance is continuous and monotonically

decreases as a function of the difficulty level, the approach

proposed in Mofrad et al. (2019) will basically converge to

difficulty level for which the participant performance is at

50% under some mild conditions. In other words the model

finds a manageable difficulty level and can be used in

titrated delayed MTS, SRT and online environments. Such
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remark motivated the current study in which we resort to

the latter realistic performance model, for efficiently find-

ing a higher rates of performance that are motivating

enough for the learner, and provides a balance between

challenge and skills, usually above 50% such as 70%. In

comparison with Mofrad et al. (2019), where the adjust-

ment technique is symmetric, in the current work the effect

of correct and incorrect responses are not the same, i.e. the

adjustment is asymmetric.

Modeling task selection as balanced game
using balanced difficulty task finder

In this section, we present BDTF as the main contribution

in this article which is a theory that aspires to learn the

appropriate difficulty of a task rather than exploring dif-

ferent types of tasks as in the case of work in Andersen

et al. (2016). Although both approaches can be combined,

we clearly distinguish between them as the second case can

be seen as a novel theory for determining the adequate

difficulty level of an assignment for the purpose of keeping

the learning activity motivating and not exploring (as in

Andersen et al. (2016), which is more concerned about

exploring the different tasks in a similar manner to bandit

problem).

Difficulty is a subjective concept, or more precisely, it is

more individual and personal (see, e.g. Gilbert et al. 2012).

We argue that difficulty should be tailored to the ability of

the student. In fact, as in video games, or chess, the player

is motivated by an appropriate level of challenge or

equivalently difficulty. For example, the purpose of Xbox

TrueSkill system (Herbrich et al. 2006) is to match players

that have similar capabilities so that the outcome of the

game is unpredictable (optimally equi-chance of winning

and losing). Elo tries to find a global ranking among

players and TrueSkill is similar to the Elo rating system for

matching chess players. We advocate that, in a similar

manner to TrueSkill and Elo, a student needs to find an

enough challenging assignment that matches his

capabilities.

After a brief introduction on psychological concept of

flow experience (‘‘The concept of flow’’ section), review-

ing related works on games (‘‘Related work on games’’

section), and related works addressing neural basis of

adaptive task difficulty and the state of flow (‘‘Neural basis

of adaptive learning and state of flow experience’’ section),

we provide a sound mathematical formulation (‘‘Formu-

lating learning as a balanced difficulty game’’ section) that

emanates from the field of stochastic approximation

(Kushner and Yin 2003).

The concept of flow

The history of optimal human functioning in humanistic

and health psychology can be tracked back to the work of

Maslow (1959) who refereed to these moments of self-

actualization peak experiences. These experiences are

described as instances of happiness, fulfillment, and

achievement with a feeling of awareness to one’s human

potential. Csikzentmihalyi (1996) has described such an

experience as a state of flow since it is characterized by ‘‘an

almost automatic, effortless, yet highly focused state of

consciousness’’ (p. 110).

Any mental or physical activity, according to

Csikzentmihalyi (1996), can generate flow if: it is a chal-

lenging enough task that requires intense concentration and

commitment, involves clear goals, provides immediate

feedback, and is perfectly balanced to the skill level of the

person.

Delle Fave and Massimini (1988) discuss that balancing

challenges and skills is not enough for optimizing the

quality of experience and the notion of skill stretching

inherent in the flow concept. They redefined flow as the

balance of challenges and skills at the time both are above

average levels for the person. Moreover, the quality of

experience intensifies in a channel by moving away from a

person’s average levels in the challenge/skills space. Fig-

ure 1 depicts a classification of experiences based on the

level of challenge and skill in eight categories. The rings

depict increasing intensity of experience in each channel or

Fig. 1 Model of the flow state adapted from Csikszentmihalyi (2020).

Perceived challenges and skills must be above the person average

level in order to experience a state of a flow. The apathy is the case

when both are below the average and the experience intensity is

increased by distancing from average, shown by rings
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quadrant (see Nakamura and Csikszentmihalyi 2014, for a

detailed overview of the concept of flow).

Related work on games

A representative study that sheds light on the relationship

between three inter-related concepts: difficulty, motivation

and learning is presented by Chen (2007) that introduces

the flow Channel to the filed of games. According to Schell

(2014) and Chen (2007), when the difficulty exceeds the

learner’s skill, the learner experience a feeling of anxiety at

the thought of his learning skills are insufficient, and as a

result gets demotivated. Consequently, the learner tends to

abandon the activity after short time. On the other hand,

boredom takes place in the other extreme case where the

student level is much higher than the assignment’s diffi-

culty. In this sense, the student perceives the assignment as

a waste of time. The ideal case according to Schell (2014)

and Chen (2007) takes place when the aptitude of the

learner and the difficulty level are in state of balance. In

this case, similar to the psychological definition of flow, the

learner is said to achieve a state of flow. Chen (2007)

defines the flow as: ‘‘the feeling of complete and energized

focus in an activity, with a high level of enjoyment and

fulfillment’’.

As reported by Gallego-Durán et al. (2016), the notion

of difficulty in games does not seem to have attracted much

attention in the field of education in general. In this per-

spective, the proposed BDTF tries to bridge the gap

between two seemingly disjoint fields of research, namely,

ITSs and game ranking/matching systems.

The most pertinent work to our approach emanates from

the realm of computer games and chess where it was

remarked that when the level of the game is either too

difficult or too easy, the players abandon playing (Chen

2007; Schell 2014). Extensive literature has been centred

on the design of adaptive method to adjust the difficulty of

the game so that to match the level of the players, but in the

interest of brevity, we skip them (see, e.g. Hunicke 2005).

Neural basis of adaptive learning and state
of flow experience

There are many studies on the neural basis of state of flow

that we briefly review some of them. Due to the complexity

of concept of flow, it must be measured through its com-

ponents. Dietrich (2004) analyses the flexibility/efficiency

trade-off in the flow state and concludes that a prerequisite

to the experience of flow period is ‘‘a state of transient

hypofrontality that enables the temporary suppression of

the analytical and meta-conscious capacities of the explicit

system’’. Klasen et al. (2012) use brain imaging to study

neural basis of flow and showed an influence of flow on

midbrain reward structures as well as complex network of

sensorimotor, cognitive and emotional brain circuits. Some

of the components of flow that identified in this study are

focus, direct feedback, balance between skill and difficulty,

clear goals and having control over the activity. Flow

association with prefrontal functions such as emotion and

reward processing was suggested by Yoshida et al. (2014)

where brain activity in the prefrontal cortex during a flow

state is examined using functional near-infrared spec-

troscopy (fNIRS). Cheron (2016) addresses some possible

ways to measure the psychological flow from a neuro-

science perspective. The neuroscience studies on games are

not limited to the flow state, but we leave it since it is out of

the scope of this article (see Palaus et al. 2017, for a sys-

tematic review on neural basis of video gaming).

To achieve and keep the state of flow, we use adaptive

task difficulty methods. The neural basis of adaptive task

difficulty has been studied by researches of the field (see,

e.g. Flegal et al. 2019). An important issue is to see if the

cognitive training effect could transfer to untrained tasks

and neural plasticity. Kalbfleisch et al. (2007) study the

influences of task difficulty and response correctness dur-

ing fluid reasoning on neural systems using functional

magnetic resonance imaging (fMRI). Von Bastian and

Eschen (2016) compared conditions in which the difficulty

of working memory training tasks was adaptive, self-se-

lected, or randomly varied, in a behavioral study. The

reported results indicate that all three procedures produced

equivalent improvement on trained tasks, in comparison

with an active control group. However, no significant dif-

ference between the training groups and the active control

group, was reported for the transfer effects on untrained

working memory tasks and far transfer (reasoning) tasks.

So the transfer effects could not link to adaptivity or

variability of task difficulty. McKendrick et al. (2014)

examined mechanisms of training-induced plasticity by

comparing a group that received adaptive working memory

training with an active control group where task difficulty

was matched to the performance of participants in the

adaptive group, i.e. training was variable but not individ-

ually adaptive. The method was continuous monitoring of

working memory training with near infrared spectroscopy

(NIRS) during a dual verbal–spatial working memory task.

The results suggested refuting the hypothesis that the

effectiveness of adaptive task difficulty and variable task

difficulty are alike. Flegal et al. (2019) study the effect of

adaptive task difficulty on transfer of training and neural

plasticity by measuring behavioral and neural plasticity in

fMRI sessions before and after 10 sessions of working

memory updating (WMU) training. The tasks difficulty was

either fixed or adaptively increased in response to perfor-

mance. The results show the transfer to an untrained epi-

sodic memory task activation decreases in striatum and
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hippocampus on a trained WMU task in adaptive training.

Flegal et al. (2019) support the use of adaptive training as

the best practice and suggest that cognitive training pro-

grams need to incorporate adaptive task difficulty to extend

the transfer of training gains and optimize the efficiency of

task-related brain activity (see also Gaume et al. 2019;

Mora-Sánchez et al. 2020, for brain-computer interfaces

which are able to monitor the working memory load and

cognitive load in real-time based on biomarkers derived

from EEG).

Formulating learning as a balanced difficulty
game

Without loss of generality, we suppose that the difficulty of

any given task can be characterized by a real number from

[0, 1], where 0 denotes the lowest possible difficulty and 1

denotes the highest possible difficulty.

The main intuition behind BDTF is the fact that the

chance of a student for succeeding in a given task decreases

monotonically as the difficulty level increases. We suppose

that a student possesses a characterizing skill-curve that

describes the relationship between the difficulty of the task

and the student chance for succeeding in solving the task.

We assume that the tasks are ranked on scale from 0 to 1 by

an expert such as teacher where 0 denotes the lowest level

of difficulty and 1 denotes the highest level of difficulty.

We suppose that s� is the optimal success probability

that we want a learner (student) to experience. It is up to

the designer of the intelligent tutoring system to fix the

desired target chance of the succeeding in a task for a

student. Thus, our approach will try to adjust the difficulty

of the given tasks in an online manner that drives the

system towards a state of flow (Chen 2007). Inspired by

Elo system, one can choose s� ¼ 0:5 which basically

means that the designer desires that the student finds the

tasks challenging enough by fixing the target success

probability to 50%.

Please note that this reflects the most uncertain case

since the outcome of the task in terms of success or failure

is unpredictable. However, deciding on s� value requires

more in depth study that takes into account many factors

including psychological factors. In this paper, and in all the

experiments presented in the rest of the article, we will fix

s� ¼ 0:7 which basically reflects the fact that we desire the

student to succeed most of the time in solving the given

task while failing just 30% of the time.

In addition, we suppose that we are operating in a dis-

crete time space and t referring to the current time instant.

The difficulty of the next assignment at time t þ 1 depends

on the difficulty of the solved assignment at time t as well

as the previous achievement (success or failure).

dðt þ 1Þ ¼ minð1; dðtÞ þ kð1� s�ÞÞ: if xðtÞ ¼ 1

maxð0; dðtÞ � ks�Þ: if xðtÞ ¼ 0

�

ð1Þ

where d(t) denotes the difficulty of the task at time t,7 k is

an update parameter that is in the interval ]0, 1[, and x(t)

denotes the binary variable that records the result of solv-

ing the task given at time instant t. xðtÞ ¼ 0 in case of

failure and xðtÞ ¼ 1 in case of success.

Equation (1) describes a recursive update of the diffi-

culty of the tasks depending on the performance of the

student, x(t). According to Eq. (1), the difficulty gets

increased upon success and decreased upon failure in an

asymmetric manner. We suppose that at time t ¼ 0, the

BDTF starts by suggesting a task with difficulty

dð0Þ ¼ 0:5, i.e, we start with tasks with medium level. We

suppose that for student i, there is a function SiðdÞ that

describes the success probability given the difficulty of the

task. Whenever there is no ambiguity, we drop the index i.

As explained previously, the latter function is monotoni-

cally decreasing. Please note that xðtÞ ¼ 1 with probability

S(d(t)) and xðtÞ ¼ 0 with probability 1� SðdðtÞÞ. We will

later provide theoretical results that demonstrate that if

there exists a point d� such that Sðd�Þ ¼ s� then the update

equation converges to it. Since d is defined over [0, 1] and

S(d) is decreasing over [0, 1] and admits values in [0, 1],

then for any function Si such point d
� is unique (if it exists).

A simple and sufficient condition for the existence as well

as uniqueness of d� is that Sið0Þ ¼ 1 and Sið1Þ ¼ 0. This

has an intuitive interpretation: the success probability for

the min difficulty is one and for the max difficulty is zero.

However, in general, S(0) might be different from one and

S(1) might be different from zero. The following theorem

catalogues the convergence of our scheme for an arbitrary

monotonically decreasing function S such that S is mapping

from [0, 1] to [0, 1].8

It is noteworthy that the proof of the coming theorem is

based on the results of the stochastic approximation theory

(Kushner and Yin 2003). The informed reader would

observe that our algorithm is very similar to the seminal

algorithm of Robbins and Monro (1951) who pioneered the

field of stochastic approximation. The main differences are

the following:

• They use a time dependent update parameter k.
• In Robbins and Monro (1951), the response function is

increasing, while in our case it is decreasing.

7 When relation to time is not important, we simply use d to refer to

difficulty.
8 The function S(.) has values within [0, 1] since it denotes the

probability of success.
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Those differences can be tackled easily in the proof as

within the field of stochastic approximation, there are two

types of algorithms: algorithms with fixed step size and

algorithms with time varying step size, usually decreasing.

We are working in this paper with a fixed step size algo-

rithm. The second difference concerns the response func-

tion. The monotonicity of the function gives uniqueness of

the equilibrium. If our function was increasing, we would

simply change k by �k. This form of update is similar to

gradient descent where the direction of movement is

determined according to whether we are facing a mini-

mization or maximization problem.

Theorem 1 The stochastic process d(t) converges to one of

the three following cases as the learning parameter k tends

to zero:

Case 1 If min SðdÞ� s� � max SðdÞ, then

limt!1 limk!0 dðtÞ ¼ S�1ðs�Þ ¼ d�.
Case 2 If max SðdÞ\s�, then limt!1 limk!0 dðtÞ ¼ 0.

Case 3 If min SðdÞ[ s�, then limt!1 limk!0 dðtÞ ¼ 1.

Proof Similar to Altman et al. (2009), we can re-write the

update equations as per:

dðt þ 1Þ ¼ PHðdðtÞ þ kðxðtÞ � s�ÞÞ ð2Þ

where PH denote the following projection

PHðdÞ ¼
d; if 1\d\0;
1; if d� 1;
0; if d� 0:

8<
:

The usage of projection is common with the field of

stochastic approximation to force the iteration to stay with

a bounded set H ¼ ½0; 1�, and they are projected back to the

set whenever they go outside it. Without loss of generality,

the boundary set we are using here, consisting of zero and

one, is a well-behaved one as described by Borkar

(2009, Chapter 5.4). We can show that process converges

to some limit set of the following Ordinary Differential

Equation (ODE):

_d ¼ E½xðtÞjd� � s�: ð3Þ

We know that E½xðtÞjd� ¼ SðdÞ, therefore the ODE is

_d ¼ SðdÞ � s�: ð4Þ

The decreasing nature of S(d) provides the uniqueness of

the fixed point s� whenever min SðdÞ� s� � max SðdÞ.
Whenever s� lies outside H ¼ ½0; 1�, we will converge

towards the boundary point, zero and one, according to

whether max SðdÞ\s� or min SðdÞ[ s� respectively. h

Experimental results

In this section, we provide some experimental results

which confirm the theoretical results presented in

Theorem 1.

In order to describe the relationship between difficulty

and success, we define

SðdÞ ¼ a� b=ð1þ expð� 20 � ðd � 0:5ÞÞÞ, where

0\b� a� 1, ensuring that S is decreasing. In the reported

results for three cases of the theorem, k ¼ 0:01, and the

target success probability is s� ¼ 0:7. Please note that the

aim of the section is to rather confirm the theoretical

properties of our scheme so any decreasing function

suffices.

Figure 2 depicts the time evolution of d and the corre-

sponding success probability S(d) where SðdÞ ¼
1� 1=ð1þ expð� 20 � ðd � 0:5ÞÞÞ for an update parameter

k ¼ 0:01. Please note that since

min SðdÞ ¼ 0� s� ¼ 0:7� max SðdÞ ¼ 1, then according

to Theorem 1, d(t) converges to d� ¼ S�1ðs�Þ ¼ 0:458.

Figure 3 depicts the time evolution of d and the corre-

sponding success probability S(d) where SðdÞ ¼ 0:6�
0:5=ð1þ expð� 20 � ðd � 0:5ÞÞÞ for an update parameter

k ¼ 0:01. Please note that since max SðdÞ ¼ 0:6\s� ¼ 0:7,

then d(t) converges to d� ¼ 0.

Finally, Fig. 4 depicts the time evolution of d and the

corresponding success probability S(d) where SðdÞ ¼ 1�
0:2=ð1þ expð� 20 � ðd � 0:5ÞÞÞ for an update parameter

k ¼ 0:01. Since min SðdÞ ¼ 0:8[ s� ¼ 0:7, then d(t) con-

verges to d� ¼ 1.

Please note that the convergence time is a function of

both starting point distance to optimal difficulty and value

of k. In Fig. 2, the optimal difficulty is d� ¼ 0:458 which

means it is about 0.14 far from the starting point. After

around 100 iterations, the optimal difficulty is reached. In

Figs. 3 and 4 the optimal difficulty is about 0.5 far from the

starting point, and in both cases after about 600 steps, the

optimal difficulty is reached. In all the three cases,

k ¼ 0:01. To study the role of k in the convergence time,

we fix the success probability function to

SðdÞ ¼ 1� 1=ð1þ expð� 20 � ðd � 0:5ÞÞÞ, which is

depicted in Fig. 2 and test it for three different values of

k ¼ 0:1, k ¼ 0:01, and k ¼ 0:001. As we see in Fig. 5,

smaller values of k result into a slower, but smoother

convergence. In Fig. 5a, with k ¼ 0:1, the convergence is

just about 10 steps, in Fig. 5b, with k ¼ 0:01, the conver-

gence happens after about 100 steps, and finally in Fig. 5c,

with k ¼ 0:001, the convergence happens after about 1000

steps. Hence, the value of k can be chosen in a way to find

a compromise between convergence speed and conver-

gence accuracy.
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The aim of the last experiment is to demonstrate the

ability to track the changes in optimal difficulty. This is

analogous to the cases where instructor or teacher decides

to give easier or harder tasks based on the feedback from

learner. In Fig. 6 the optimal success probability is set to

s� ¼ 0:7 at the beginning where the learner achieves this

success rate when the optimal difficulty is d� ¼ 0:458.

Then at time instance t ¼ 1500, the teacher see that this is

still challenging for the student and decided to provide

student with tasks that 90% of the time handled by student.

Figure 6a shows the case that k ¼ 0:01 and therefore the

change rate it higher. Figure 6b is when changes are

slower, k ¼ 0:001. The optimal difficulty for s� ¼ 0:9

equals d� ¼ 0:39.

Conclusions and future work

In this paper, we tackled the problem of personalized task

assignment in online learning environment as well as

training methods for retaining information. We present the

BDTF which is a formal theory by which an ITS can fine

tune the difficulty of a task to a level that matches the

student level. The underlying assumption of the BDTF is

that the ITSs can fine tune the difficulty of the task to a

continuous level. The BDTF application to the learning

methods that focus on memory and retaining information

such as adjusting delayed MTS and spaced retrieval

training methods is discussed. These methods are looking

for the best delay time between two consecutive tasks and

can be used for memory training.

Fig. 2 Case 1 in the theorem.

SðdÞ ¼ 1� 1=ð1þ expð� 20 �
ðd � 0:5ÞÞÞ so d(t) converges to

d� ¼ S�1ðs�Þ ¼ 0:458

Fig. 3 Case 2 in the theorem.

SðdÞ ¼ 0:6� 0:5=ð1þ
expð� 20 � ðd � 0:5ÞÞÞ so d(t)
converges to d� ¼ 0
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The BDTF approach deals only with binary feedback. It

is possible to extend our work so that to accommodate non-

binary feedback in the form of a continuous or discrete

score reflecting the achievement of the student in solving a

given task. Furthermore, as a future work, we intend to

explore the effect of learning on the progress of the student.

Intuitively, the success probability S(d) shall also be fre-

quency dependent, i.e, the more assignments the student

Fig. 4 Case 3 in the theorem.

SðdÞ ¼ 1� 0:2=ð1þ
expð� 20 � ðd � 0:5ÞÞÞ so d(t)
converges to d� ¼ 1

(a) λ = 0.1 (b) λ = 0.01

(c) λ = 0.001

Fig. 5 The success probability function based on difficulty is SðdÞ ¼ 1� 1=ð1þ expð� 20 � ðd � 0:5ÞÞÞ, which is depicted in Fig. 2. The

optimal task difficulty for success probability s� ¼ 0:7 is d� ¼ 0:458 and shown by dashed red line
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tries, the higher the chance of success in future tasks. This

is also described as the learning effect that results from

repetitive trials. The latter effect can be easily accommo-

dated in our model by rendering S(d) a function of the

number of trials, meaning the dynamics of S(d) shall

include a frequency dependent term. An interesting avenue

for research is the possibility of introducing the recency

and spacing in time between the different student trials as

an extra parameter in S(d). BDTF approach could be

extended to the tutorial-like systems similar to the LA

applications for a generalized concept of ITS proposed by

Hashem (2007). Since we are using LA, we can integrate

the idea of having an stochastic teacher (Hashem and

Oommen 2007), modeling a classroom of students where

artificial students can interact and learn from each other as

well as the teacher (see Oommen and Hashem 2009a, for

such a model), and propose an adaptive learning model of

teacher and how teaching abilities of a teacher can be

improved during the process (inspired by Oommen and

Hashem (2013)).

Funding Open Access funding provided by OsloMet - Oslo

Metropolitan University.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Altman E, Neglia G, De Pellegrini F, Miorandi D (2009) Decentral-

ized stochastic control of delay tolerant networks. In: IEEE

INFOCOM 2009. IEEE, New York, pp 1134–1142

Andersen P-A, Kråkevik C, Goodwin M, Yazidi A (2016) Adaptive

task assignment in online learning environments. In: Proceedings

of the 6th international conference on web intelligence, mining

and semantics. ACM, New York, pp 1–10

Arntzen E (2012) Training and testing parameters in formation of

stimulus equivalence: methodological issues. Eur J Behav Anal

13(1):123–135

Arntzen E Steingrimsdottir HS (2014) On the use of variations in a

delayed matching-to-sample procedure in a patient with neu-

rocognitive disorder. I: Swahn B, Palmier (eds) Mental disorder.

iConcept Press, London

Bellman RE et al (1978) An introduction to artificial intelligence: Can

computers think?. Boyd & Fraser Publishing Company, New

York

Birnbaum AL (1968) Some latent trait models and their use in

inferring an examinee’s ability. In: Lord FM, Novick MR (eds)

Statistical theories of mental test scores, Addison-Wesley,

Reading, pp 397-479

Bloom BS (1984) The 2 sigma problem: the search for methods of

group instruction as effective as one-to-one tutoring. Educ Res

13(6):4–16

Borkar VS (2009) Stochastic approximation: a dynamical systems

viewpoint, vol 48. Springer, Berlin

Brusilovsky P, Millán E (2007) User models for adaptive hypermedia

and adaptive educational systems. The adaptive web. Springer,

Berlin, pp 3–53

Camp CJ, Gilmore G, Whitehouse P (1989) Facilitation of new

learning in Alzheimer’s disease. In: Gilmore GC, Whitehouse

PJ, Wykle ML (eds) Memory, aging, and dementia: theory,

assessment, and treatment, Springer, pp 212–225

Camp CJ, Foss JW, O’Hanlon AM, Stevens AB (1996) Memory

interventions for persons with dementia. Appl Cogn Psychol

10(3):193–210

Chen J (2007) Flow in games (and everything else). Commun ACM

50(4):31–34

Cheron G (2016) How to measure the psychological ‘‘flow’’? A

neuroscience perspective. Front Psychol 7:1823

Chirikov I, Semenova T, Maloshonok N, Bettinger E, Kizilcec RF

(2020) Online education platforms scale college stem instruction

(a) λ = 0.01 (b) λ = 0.001

Fig. 6 The success probability function based on difficulty is

SðdÞ ¼ 1� 1=ð1þ expð� 20 � ðd � 0:5ÞÞÞ, which is depicted in

Fig. 2. The optimal task difficulty for success probability s� ¼ 0:7
is d� ¼ 0:458 in the first 1500 time instances, then the target success

probability changes to s� ¼ 0:9 which means the optimal task

difficulty is d� ¼ 0:39. The optimal task difficulty is shown by

dashed red line

Cognitive Neurodynamics

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


with equivalent learning outcomes at lower cost. Sci Adv

6(15):eaay5324

Clement B, Roy D, Oudeyer P-Y, Lopes M (2014) Online optimiza-

tion of teaching sequences with multi-armed bandits. In: 7th

international conference on educational data mining

Clement B, Roy D, Oudeyer P-Y (2015) Multi-armed bandits for

intelligent tutoring systems. J Educ Data Min 7(2):20–48

Csikzentmihalyi M (1996) Creativity: flow and the psychology of

discovery and invention. Harper Perennial, New York

Csikszentmihalyi M (2020) Finding flow: the psychology of engage-

ment with everyday life. Hachette, London

Cumming WW, Berryman R (1965) The complex discriminated

operant: studies of matching-to-sample and related problems. In:

En DI Mostofsky(ed) Stimulus generalization, Stanford Univer-

sity Press, Stanford, pp 284–330

Delle Fave A, Massimini F (1988) Modernization and the changing

contexts of flow in work and leisure. In: Mihaly C, Isabella

Selega C (eds) Optimal experience: psychological studies of flow

in consciousness. Cambridge University Press, Cambridge,

pp 193–213

Dietrich A (2004) Neurocognitive mechanisms underlying the

experience of flow. Conscious Cogn 13(4):746–761

Eggen TJ, Verschoor AJ (2006) Optimal testing with easy or difficult

items in computerized adaptive testing. Appl Psychol Meas

30(5):379–393

Fitts PM (1966) Cognitive aspects of information processing: III. Set

for speed versus accuracy. J Exp Psychol 71(6):849

Flegal KE, Ragland JD, Ranganath C (2019) Adaptive task difficulty

influences neural plasticity and transfer of training. NeuroImage

188:111–121

Gallego-Durán FJ, Molina-Carmona R, Llorens-Largo F (2016) An

approach to measuring the difficulty of learning activities. In:

International conference on learning and collaboration technolo-

gies. Springer, Berlin, pp 417–428

Gaume A, Dreyfus G, Vialatte F-B (2019) A cognitive brain–

computer interface monitoring sustained attentional variations

during a continuous task. Cogn Neurodyn 13(3):257–269

Gilbert S, Bird G, Frith C, Burgess P (2012) Does ‘‘task difficulty’’

explain ‘‘task-induced deactivation?’’. Front Psychol 3:125

Glickman ME (1995) A comprehensive guide to chess ratings. Am

Chess J 3:59–102

Hashem MK (2007) Learning automata based intelligent tutorial-like

systems. PhD thesis, Carleton University

Hashem MK, Oommen BJ (2007) Using learning automata to model

the behavior of a teacher in a tutorial-like system. In: 2007 IEEE

international conference on systems, man and cybernetics. IEEE,

New York, pp 76–82

Hatzilygeroudis I, Koutsojannis C, Papavlasopoulos C, Prentzas J

(2006) Knowledge-based adaptive assessment in a web-based

intelligent educational system. In: 6th IEEE international

conference on advanced learning technologies (ICALT’06).

IEEE, New York, pp 651–655

Herbrich R, Minka T, Graepel T (2006) Trueskill: a Bayesian skill

rating system. In: Advances in neural information processing

systems, vol 20, The MIT press, pp 569–576

Hunicke R (2005) The case for dynamic difficulty adjustment in

games. In: Proceedings of the 2005 ACM SIGCHI international

conference on advances in computer entertainment technology.

ACM, New York, pp 429–433

Jansen BR, Hofman AD, Savi A, Visser I, van der Maas HL (2016)

Self-adapting the success rate when practicing math. Learn Ind

Differ 51:1–10

Jeuring J, Gerdes A, Heeren B (2012) Ask-elle: a Haskell tutor. In:

21st century learning for 21st century skills. Springer, New

York, pp 453–458

Kalbfleisch ML, Van Meter JW, Zeffiro TA (2007) The influences of

task difficulty and response correctness on neural systems

supporting fluid reasoning. Cogn Neurodyn 1(1):71–84

Klasen M, Weber R, Kircher TT, Mathiak KA, Mathiak K (2012)

Neural contributions to flow experience during video game

playing. Soc Cogn Affect Neurosci 7(4):485–495

Klinkenberg S, Straatemeier M, van der Maas HL (2011) Computer

adaptive practice of maths ability using a new item response

model for on the fly ability and difficulty estimation. Comput

Educ 57(2):1813–1824
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