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Abstract

This master thesis focuses on the problem of forecasting volatility and Value-at-Risk (VaR)

in the financial markets. There are numerous methods for calculating VaR. However, re-

search in this area has not currently reached one universally accepted method that can

produce good VaR estimates across different data series, and VaR prediction and quality

testing is still a very challenging statistical problem.

The thesis has two main purposes, the first is to propose a simple quantile regression

model for forecasting one-day-ahead VaR. Our proposed model uses only observable mea-

sures of daily, weekly and monthly volatility as input and thus simplifies the optimization

compared with many models proposed in the literature. The second is to test our proposed

model along with other models found in the literature, and compare them to each other

in terms of accuracy. The models’ performance is evaluated with both the unconditional

(Kupiec, 1995) and conditional (Christoffersen, 1998) coverage tests. Further, we analyze

the results and see if any conclusions can be drawn.

In this paper we examine three widely used models to calculate VaR. The models ex-

amined are Historical Simulation, RiskMetrics and GARCH(1,1). We compare these

approaches with a new quantile regression model, HAR-QREG and our own proposed

model, RHAR-QREG. The study is conducted on four different assets, Toyota, Apple,

Nike and S&P500, and the conducted data sample ranges from 03.01.2000− 31.12.2013.

We use a rolling window of 1000 days in our study.

When subjected to formal coverage tests for out-of-sample VaR predictions, RHAR-

QREG is, overall, more accurate in predicting one-day-ahead VaR compared to the three

most popular models used in our study (i.e. Historical Simulation, RiskMetrics and

GARCH(1,1)). However, the HAR-QREG model outperforms all of the models, and is

found to be a VaR model that can produce good estimates across different datasets. Previ-

ous studies argue that the most important return feature to account for when calculating

VaR, is volatility clustering. However, our study shows that the most important return

characteristic is the distribution of the returns and how well the models capture it.
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Sammendrag

Masteroppgaven ser p̊a problemet knyttet til å predikere volatilitet og Value-at-Risk (VaR)

i finansmarkedene. Det finnes i dag uttallige metoder for beregning VaR. Forskning p̊a

dette omr̊adet har imidlertid ikke kommet fram til én universelt akseptert metode som

estimerer VaR godt p̊a tvers av dataserier, og VaR-predikering og kvalitetstesting er fort-

satt et svært utfordrende statistisk problem.

Masteroppgaven har to hovedformål. For det første, foresl̊ar vi en enkel kvantilregresjon-

smodell som kan predikere VaR en dag frem i tid. V̊ar foresl̊atte modell bruker kun ob-

serverbare mål p̊a daglig, ukentlig og m̊anedlig volatilitet som input. Modellen forenkler

derfor optimalisering sammenlignet med mange andre modeller foresl̊att i litteraturen.

Det andre form̊alet er å teste v̊ar foresl̊atte modell sammen med andre modeller som

finnes i litteraturen, og deretter sammenligne dem i forhold til hvor nøyaktig de klarer

å predikere VaR en dag frem i tid. Modellenes presisjon blir evaluert ved hjelp av b̊ade

en ubetinget (Kupiec, 1995) og en betinget (Christoffersen, 1998) dekningstest. Videre,

analyserer vi resultatene og ser om noen konklusjoner kan trekkes.

I studiet ser vi blant annet p̊a tre av de mest benyttede modellene for å predikere

VaR. Disse modellene er er Historisk Simulering, RiskMetrics og GARCH(1,1). Vi sam-

menligner disse modellene med en ny kvantilregresjonmodell, HAR- QREG, og v̊ar egen

foresl̊atte modell, RHAR - QREG. Studiet er gjennomført p̊a fire forskjellige aksjeserier,

henholdsvis Toyota, Apple, Nike og S&P500. Utvalget strekker seg i tidsrommet 03.01.2000−
31.12.2013. Vi bruker et rullerende vindu p̊a 1000 dager i v̊art studie.

N̊ar modellene blir evaluert ved hjelp av de nevnte formelle dekningstestene for out-of-

sample VaR prediksjoner, viser resultatene at RHAR-QREG predikerer VaR en dag frem i

tid mer nøyaktig enn de tre mest populære modellene som benyttes i v̊art studie (Historisk

Simulering, RiskMetrics og GARCH(1,1)). RHAR-QREG blir imidlertid utkonkurrert av

HAR-QREG, som viser seg å være en god modell da den gir gode estimater p̊a tvers

av dataseriene. Tidligere forskning viser til at volatilitetsklumping er den viktiste egen-

skapen i avkastningsserier, og som da er det viktigste å ta høyde for n̊ar man estimerer

VaR. V̊art studie viser imidlertid at det er fordelingene til avkastningsseriene som er viktig

å fange opp. Da vil modellene skal være i stand til å predikere VaR, en dag frem i tid,

mer presist.
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1 Introduction

The purpose of this master thesis is to propose a Value-at-Risk (VaR) prediction model

that can easily be implemented by managers, traders and regulators. Further, we compare

the performance of various existing models, that can forecast one-day ahead VaR, against

our proposed model. According to Jorion (2001), VaR is a measure that represents a

prediction of the likely maximum amount that could be lost on a bank’s or a trader’s

portfolio with a certain degree of statistical confidence. In other words, what is the most

you can lose on your investment? This is a question that almost every investor asks at

some point in time, and VaR tries to provide a reasonable answer.

Many of the traditional models, which have been giving good results in previous studies,

require advanced risk management skills along with complex programming, making the

analysis suitable for a smaller target market. Therefore, our aim is to propose a simple

VaR model based upon quantile regressions. Additionally, since VaR models are known

for being data sensitive (Angelidis and Deiannakis, 2006), our study adds value to the

research by comparing the traditional models.

We implement different mathematical VaR models to capture the stylized features of

the historical returns. These features are crucial to note for the purpose of modeling and

forecasting (Brooks, 2008):

- Leptokurtosis: Market returns have distribution with fatter tails than the normal

distribution. This gives an excess peak at the mean, which is called kurtosis.

- Volatility clustering/pooling: the tendency for volatility in financial markets to

appear in bunches. Volatility exhibits certain patterns and it is not constant over

time. Large movements in returns are expected to be followed by further large

movements. Thus the economy has cycles with high volatility and low volatility

periods.

- Leverage effects: the tendency for volatility to increase more following a large

price fall than following a price rise of the same magnitude. In other words, price

movements are negatively correlated with the volatility.

We want to study the long and short positions in financial assets. Hence, we want to

study the lower and upper tail of the return distributions, which represents risk of loss
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on the investment. Losses on investments arise as a combination of two factors: (1) the

volatility of the underlying variable and (2) the exposure of it. VaR captures the combined

effect of these elements, and estimates the worst-case loss over a period of time, given a

particular level of significance (Jorion, 2001). To manage this risk, regulators came up

with minimum capital requirements with which all financial institutions have to comply.

The law required that all financial institutions are mandatory by law to set aside money

for a buffer in case the money markets would dry out, as seen during the financial crisis1.

VaR is essential in the calculation of this buffer. In 1988 the Basel Accord guidelines

were introduced in order to better control of credit and market risk that financial institu-

tions are facing. The guidelines represent a milestone in the process of risk management,

and are used by more than 100 countries worldwide. The guidelines required that the

Cook rate2 should be equal to or above 8 percent. This rate was developed to ensure

that all banks had enough capital set aside to reduce the risk of their respective assets.

The main criticism of the Cook rate was that all loans banks had were considered to be

equally risky, which in fact they were not. The criticism also included the 8 percent rule,

which was believed to be arbitrarily determined. The rule moreover failed to capture

the diversification effects. On this basis a new framework tool to calculate market risk

was developed, the Internal Models Approach. The Internal Models Approach allowed

banks to use their own models to calculate VaR, as long as they complied with the official

requirements in terms of specific quantitative parameters (Jorion, 2001):

- A time horizon of 10 days, or two calendar weeks.

- A 99% confidence level.

- The observation should include at least one year of historical data and the data

should be updated at least once a quarter.

These guidelines are used by most financial institutions (not just banks), and are the

foundation for VaR estimations in this study. However, in our study, we use one-day

ahead VaR forecasts, in line with several other studies (such as McNeil and Frey (2000),

Gencay, Selcuk and Ulugulyagci (2003)).

1If Lehman Brothers had set off an amount equivalent to that which is required by law, they would
not have gone bankrupt in 2008.

2The Cook-rate is a rate, which calculates the amount of capital a financial institution shall at all
times have, relative to the risk-adjusted total assets. Banks in case of unexpected loss use the calculation
to determine minimum capital adequacy requirements that must be maintained.

3



It is especially the tails of the distribution that are of interest when forecasting the return

series. Hence, it is interesting to study volatile markets when comparing different VaR

models.

The popularity of VaR is due to its simplicity, and the fact that it can convert the likely

loss of a portfolio of assets, or a position, to a percentage or a nominal amount. Besides

the regulatory framework we also use VaR models to quantify the relationship between

risk and return for active traders.

The underlying assets, on which our VaR calculations are based, are Toyota, Apple,

Nike and S&P500. We will compare the performance of Historical Simulation (HS), Risk-

Metrics, GARCH(1,1), HAR-QREG and our proposed model, RHAR-QREG.

When subjected to formal coverage tests for out-of-sample VaR predictions, the RHAR-

QREG is, overall, more accurate in predicting one-day-ahead VaR compared to the three

most popular models (i.e. Historical Simulation, RiskMetrics and GARCH(1,1)). How-

ever, the HAR-QREG model outperforms all of the models, and is found to be a VaR

model that can produce good estimates across different datasets.

The paper is organized as follows. Section 2 describes previous studies of the selected

models. Section 3 highlights the condition we have set for the study. Section 4 describes

the performance criteria. Section 5 provides the features of the chosen data series. Section

6 present how the models are being examined. Section 7 presents our results. Section 8

contains further comments on the results. Section 9 contains the conclusion of our study,

while section 10 suggests further research on the topic.
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2 Literature Review

We will start this section by presenting some general literature on different VaR models.

Further, we will take a look at our chosen models, and how they have performed in pre-

vious studies.

VaR models have been extensively discussed in literature. The early study by Beder

(1995) compared Historical Simulation and Monte Carlo simulation to estimate VaR. The

variations of the models were constructed by employing different assumptions with re-

spect to the data samples and/or data correlation. Beder (1995) applied eight different

approaches to three hypothetical portfolios. Her findings showed that VaR calculations

differ significantly for the same portfolio. In fact, the study shows that the results varied

more than 14 times for the same portfolio. Specifically, the sample portfolios demonstrated

that the 99% VaR changed significantly based on the time horizon, the underlying data

as well as assumptions and applied methodology. Some firms make the mistake of associ-

ating VaR under a 99% expectation to the certainty or confidence that the firm will not

lose more than the stated amount, more than 1% of the time. However, this study shows

that VaR rather provides an expectation of outcomes based on specific assumptions, not

a certainty or confidence of outcomes.

Hendricks (1996) compared twelve VaR models to 1000 randomly chosen foreign exchange

portfolios. The study shows that the different models tend to produce risk estimates that

are similar in average size, but the study also shows substantial differences among the

various VaR approaches for the same portfolio on the same date.

The Historical Simulation (HS) approach has emerged as the most popular method for

VaR calculation in the industry. A survey conducted by Perignon and Smith in 2006,

shows that 73% of all financial institutions employ HS for predicting VaR. Sharma (2012)

has conducted a study where thirty-eight papers were surveyed to understand perfor-

mance measures for VaR methods and the comparative performance of HS VaR methods

(i.e. both unfiltered- and filtered HS). Sharma (2012) shows that the HS method appears

to provide superior unconditional coverage in comparison to the simple (variance covari-

ance, Monte Carlo, EWMA) as well as sophisticated GARCH models. However, the study

shows that the HS method is not successful when the conditional coverage performance

measures are used. However, the filtered HS gives adequate results on the conditional
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coverage test. According to Dowd (2005), who summarizes numerous disadvantages of

the HS approach, the biggest weakness is the assumptions of IID3 return series. Conse-

quently, the basic (unfiltered) HS would perform well only if there were no changes in

volatility of returns over time. However, from empirical evidence it is known that return

series are clearly not independent as they exhibit certain patterns such as volatility clus-

tering. Unfortunately, HS does not take into account such patterns.

JP Morgan was the first to develop comprehensive market risk management method-

ology based on the VaR concept (Jorion, 1997). They developed the methodology that

today is known as RiskMetrics (RiskMetrics Group, 1996). This product has become ex-

tremely popular and widespread due to its simplicity and that it performs well at the 5%

significance level. McMillan and Kambouroudis (2009) provides a comparison between

RiskMetrics and different GARCH models. The paper studies stock index from 31 inter-

national markets. The study shows that when forecasting 1% VaR, the RiskMetrics model

performs poorly and is the worst performing model amongst all of the models examined

in the paper. However, when forecasting the 5% VaR the RiskMetrics model provides a

good performance. Hence, the RiskMetrics model appears to perform well when predict-

ing higher VaR measures.

Hansen and Lunde (2001) provide an out-of-sample comparison of 330 different volatility

models using daily exchange rate data (DM/$) and IBM stock prices. The authors use

the GARCH(1,1) as a benchmark in the comparison paper. The analysis does not point

to a single winner amongst the different volatility models, since there are different models

that are best at forecasting the volatility of the two types of assets. However, the best

models do not provide a significantly better forecast than the GARCH(1,1) model.

HAR-RV model of Corsi (2009) is an approximating model with long memory and is

designed to capture short-, medium- and long-term volatility. Haugom et. al (2014) pro-

pose a modified HAR-RV model of Corsi (2009), called HAR-QREG, that predicts the

conditional quantile directly. The study compares the HAR-QREG method with four

Caviar models of Engle and Manganelli (2004). The four methods are (1) Symmetric Ab-

solute Value, (2) Asymmetric Grinding, (3) Indirect GARCH (1,1) and (4) adaptive. In

addition to these, they also compare HAR-QREG with HS and the RiskMetrics method.

Finally, the skewed Student t-APARCH model of Ding et al. (1993) is included, which

3Independently and identically distributed.
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is known to be a model that works well across different asset (Giot and Laurent, 2003).

When HAR-QREG model is subjected to more formal coverage tests on out-of-sample

VaR predictions, it turns out that the model compares favorably with more complex

models.

Summarizing the presented literature it can be concluded, that there seems to be no

ideal VaR model that can produce good estimates across different datasets. It seems that

the various VaR models gives both adequate and poor results depending on the charac-

teristics of the different data series, and also on the significance levels chosen. Common

sense might suggest that simple models should not produce reliable forecasts and that

more advanced models should be used. But the simple HAR-QREG model shows that

this is not necessarily true. The question of whether there is a VaR model that can

produce sufficiently good estimates for different data series is still unanswered.
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3 Purpose of the thesis

The thesis has two main purposes, the first is to propose a simple quantile regression model

for forecasting one-day-ahead VaR. The second is to test our proposed model along with

other models found in the literature, and compare them to each other in terms of accuracy.

Specifically, throughout this study we want to estimate the one-day-ahead VaR with 99%

confidence level, as this is in line with the guidelines in the Internal Models Approach. In

addition we will include confidence levels at 97.5%, 95% and 90%. This means that the

realized losses exceed VaR forecasts in 1, 2.5, 5 and 10 out of 100 times/days, respectively.

We want to study the long and short positions in financial assets. Our master thesis com-

pares five different models that are used to estimate the one-day ahead VaR. The models

we examine are Historical Simulation, RiskMetrics, GARCH(1,1), HAR-QREG and our

proposed model, RHAR-QREG.

We compare the performance of the various models by examining the violation ratio

and two formal coverage tests. The unconditional coverage test of Kupiec (1995) assess

whether the actual violation rates equal the expected violation rate, while the conditional

coverage test of Christoffersen (1998) examines whether the models jointly satisfy both

the unconditional property and the independent property (see section 4).

Our conducted data sample ranges from 03.01.2000− 31.12.2013. This allows us to com-

pare VaR models under extreme conditions, such as the financial crisis in 2008 and the

Dot-Com bubble, which had its climax in March 2000. These historical events will provide

an additional dimension to our study, as data series in volatile markets shows returns in

the tails of the distributions.
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4 Model Comparison/Backtesting

The most common method to compare the accuracy of different VaR models is the viola-

tion ratio method. This method is an important part in evaluating the Internal Models

Approach in the Basel Accord. A violation occurs when the actual return of an asset or

portfolio at time t is equal or outside the estimated VaRt|t−1|Ωt−1(α).

The calculation of the violation ratio for the long position is done by estimating an

indicator variable, It, also known as the hit function:

It(α) =

{
1 if rt < VaRt|t−1|Ωt−1(α)

0 otherwise
(1)

However, the hit function for the short position is defined as:

It(α) =

{
1 if rt > VaRt|t−1|Ωt−1(α)

0 otherwise
(2)

The hit function will give us a series of ones and zeros, and the desired result is when the

mean of the hit function, E [It] equals α.

Most application of VaR are used to control for risk over short time horizons and require

conditional VaR estimate that employs information up to time t to produce VaR for some

time period t + h, where h is the time horizon of the forecasts. However, the Historical

Simulation estimates the unconditional VaR directly (see section 6.2). Note that the value

of VaR is dependent on both the VaR approaches and whether the trader has a long (eq.

1) or short (eq. 2) position in the underlying asset.
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4.1 Kupiec Test

Kupiec (1995) was one of the earliest proposed VaR backtests. The Kupiec test is focusing

exclusively on the property of unconditional coverage. Hence, Kupiec (1995) is using a

sample of T observations, and the test statistic measure the proportion of failures (POF),

which examines how many times a financial institution’s or a trader’s estimated VaR is

violated over a given time period (i.e. statistically tests if It = VaRt|t−1(α)).

Kupiec’s (1995) statistic is best defined as a likelihood-ratio (LR) test:

LRUC/POF = −2ln

(
(1− α)T0αT1(
T1
T

) [
1−

(
T1
T

)]T0
)

∼ X2(1), (3)

where T0 and T1 is the number of zeros and ones in the hit function. α is VaR’s theoretical

coverage rate.

The null and the alternative hypothesis of the POF-test is:

H0:E [It] = α vs H1:E [It] 6= α (4)

If the value of LRUC/POF -statistic exceeds the critical value of the X2 distribution, the

null hypothesis will be rejected and the model is regarded as inaccurate, i.e. if the mean

of the hit function differs significantly from α · 100%. This can also be seen by examining

the p-value4 of the test. We use a 5% significance level when we test the various models.

This means that if the p-value is greater than 5%, we can not reject the null hypothesis,

and we can conclude that we have an acurrate forecasting model.

4P-value is used as an alternative to rejection points to provide the smallest level of significance at
which the H0 would be rejected. The smaller the p-value, the stronger the evidence is in favour of the
H1.
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4.2 Christoffersen Test

According to Christoffersen (1998), VaR forecasts are valid if and only if the hit function

satisfies the following two properties:

1. The unconditional coverage (UC) property - Kupiec(1995): The probability that the

return on a given day exceeding the VaR forecast must be equal to the α% coverage

rate,

Pr [It(α) = 1] = E [It(α)] = α (5)

The hit function gives a sequence of numbers, e.g.(0, 0, 1, 0, 0, ..., 1), and if the fre-

quency of violations observed over T periods is significantly lower (higher) than the

coverage rate then the model used to estimate VaR, overestimates (underestimates)

the true level of risk.

2. Independence property: As seen, the UC property places a restriction on how often

the violation occurs. The Independence test, on the other hand, places a restriction

on how these violations occur. Specifically, two elements of the hit sequence must be

independent from each other. In general, a clustering of VaR violations represent a

violation of the independence property, which signals a lack of responsiveness in the

reported VaR measure. Hence, changing market risk fail to be fully incorporated

into the reported VaR measures, which make successive runs of VaR violations more

likely (Campbell, 2005). In fact, a model, which does not satisfy the independence

property, can lead to clustering of violations (for a given period) even if it has the

correct average number of violations. Consequently, there must be no dependence

in the hit function, whatever the coverage rate considered (Dumitrescu, 2012).

The relevant test statistic for independence is given by (Kavussanos and Dimitrakopoulos,

2011):

LRind = −2ln

 (1− T1
T

)T0 (T1
T

)T1(
1−

∏̂
01

)T00 ∏̂T01

01

 ∼ X2(1), (6)

where Ti,j, i, j = 0, 1 is the number of observations with a j following and i in the hit

function, It, and
∏̂

01 = T01/ (T00 + T01).
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It is only the hit functions that satisfy both properties that can be considered to be

an accurate VaR model, because each property characterizes a different dimension of an

accurate VaR model. When property 1. and 2. are simultaneously satisfied, VaR fore-

casts are said to have a correct conditional coverage. A VaR model that satisfies one

property or the other will result in an inaccurate description of the bank’s/trader’s risk

exposure. These two properties are often combined into the single statement, the null

hypothesis:

i.i.d.

It(α) ∼ B(α), (7)

which means that the hit function, It(α), is identically and independently distributed

as a Beournalli random variable5 with probability α (Campbell, 2005). The alternative

hypothesis is that the hit function, It, is not i.i.d..

By combining the independence statistic with Kupiec’s POF-test we obtain a joint test

that examines both properties of a good VaR model, the correct failure rate and indepen-

dence of violations, i.e. conditional coverage. Hence, we have:

LRCC = LRUC/POF + LRind ∼ X2(2), (8)

In this case we have two degrees of freedom due to the fact that we have two separate

LR-statistics in the test. If the value of the LRCC-statistic is lower than the critical value

of X2 distribution, the model passes the test. Hence, a higher value will lead to rejection

of the model. Additionally, a p-value of less than 5% concludes that the null hypothesis

should be rejected in both tests, which means that the VaR model is inaccurate.

5Beournalli random variable is the probability distribution of a random variable, which takes value 1
with success probability and value 0 with failure probability.
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5 Data and Descriptive Analysis

In this section we will address the stylized features of the different return series. In the

basic descriptive statistics, it is especially important to notice the skewness and kurtosis in

terms of the VaR estimations. In the following two sections we will present these features

in more detail.

5.1 Skewness

The skewness tells us whether the returns are symmetric or not, which in turn tells us if the

returns are normally distributed. Specifically, normally distributed data are assumed to

have a symmetrical distribution around its mean if it has a skew of 0. A dataset with either

a positive or a negative skew therefore deviates from the normal distribution assumptions,

which can cause numerical parametric models, such as RiskMetrics and GARCH(1,1), to

be less effective. The reason is that these VaR approaches assume that the returns are

normally distributed, which can result in an overestimation or underestimation of the

VaR value, depending on the skew of the underlying return distribution (Lee, Lee and

Lee, 2000). This is graphically shown in Figure 1:

Figure 1: shows distributions with negative and positive skewness.
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5.2 Kurtosis

The kurtosis provides information about how concentrated the returns are around their

mean. A high kurtosis means that the returns consist of more extreme values relative to

the normal distribution, i.e. the data’s variance comes from extreme deviations. Accord-

ing to Lee, Lee, and Lee (2000) a mesokurtic (normal) distribution has a kurtosis equal

to 3, and if the return distribution deviates from this number, it can cause problems for

the RiskMetrics and GARCH(1,1) models in this study. A kurtosis less than 3 is called

platykurtic distribution, while positive excess, kurtosis above 3, is called leptokurtic. (see

Figure 2). Regarding the VaR-estimations, a low kurtosis may cause too small VaR values,

and vice versa.

Figure 2: shows (a) normal distribution, (b) leptokurtic distribution and (c) platykurtic distribution.
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5.3 Data

This study consists of a total of four financial assets, from which the characteristics differ

substantially. The four financial assets are:

- Car industry: Toyota for the 03.01.2000–31.12.2013 period.

- Technology: Apple for the 03.01.2000–31.12.2013 period;

- Clothing industry: Nike for the 03.01.2000–31.12.2013 period;

- Index: S&P500 for the 03.01.2000–31.12.2013 period;

In each series we use daily closing prices from the period 03.01.2000 to 31.12.2013, which

is obtained from Quandl6. For all price series, pt, daily continuously compounded returns

are defined as:

rt = 100ln(pt/pt−1) (9)

However, in our proposed model (see section 6.6) we use intraday returns. Therefore, we

want to present the differences between the daily close-close and open-close returns.

The open-close return is defined as:

Rt = 100ln(popen,t/pclose,t) (10)

Descriptive characteristics for the close-close return series are given in Table 1, while de-

scriptive graphs (price, daily close-close returns, density of the daily close-close returns

and QQ-plot against the normal distribution) are given in Figures 3−6. Table 2 presents

the descriptive statistics of the open-close returns, together with the corresponding de-

scriptive graphs, in Figures 7− 10.

6 Quandl - a numeric database: www.quandl.com
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5.4 Close-close returns

Table 1:

Toyota Apple Nike S&P500

Count 3520 3520 3520 3520
Mean 0.006 % 0.046 % 0.053 % 0.007 %
Minimum -18.061 % -73.125 % -21.625 % -9.470 %
Maximum 13.253 % 13.019 % 14.108 % 10.957 %
Standard Deviation 1.822 % 3.361 % 2.047 % 1.315 %
Kurtosis 6.813 142.025 13.563 7.713
Skewness -0.114 -7.020 -0.686 -0.175
Jarque-Bera 6769 3004543 27497 8715
Jarque-Bera P-value 0.000 0.000 0.000 0.000
Box Ljung 68.889 60.782 85.462 149.201
Box-ljung P-value 0.001 0.004 0.000 0.000
ADF - drift, 2 lag -35.391 -34.992 -36.516 -36.129

Table 1 shows the main descriptive statistics of the data, along with the Jarque-Bera

test, Box-Ljung tests and Augmentd Dickey-Fuller. All values are computed using

Excel and the packages (tseries) and (fUnitRoots) in R. Source: Quandl database

and authors’ calculations.

We see that the mean return is approximately the same for Toyota and S&P500, while

Apple and Nike stand out with a significantly higher average returns, respectively 0.046%

and 0.053%. Apple and Nike have the greatest volatility, 3.361% and 2.047% respectively.

The excess kurtosis is high and exceeds 07 by a wide margin in all series. The kurtosis

ranges from 6.183 for Toyota to 142.05 for Apple. All of the return series exhibit negative

skewness, and Apple stands out with a negative skewness of −7.020, which for investors

can mean a greater chance of extremely negative outcomes.

From Table 1, the Jarque-Bera test statistic and the corresponding p-value test the null

hypothesis that the return series is normally distributed8. In Table 1 we see that the

p-value is 0 for all return series, which indicates that we can reject the null hypothesis of

normal distribution.

7Note that in Microsoft Excel, a kurtosis of 0 means that the series has no excess kurtosis.
8The null hypothesis is that the bias and excess kurtosis is 0. The alternative hypothesis is that at

least one of the factors under the null hypothesis is not satisfied.
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Ljung Box (Ljung and Box, 1978) Q-statistic is a test for autocorrelation in the return

series, i.e. we test if the return series are independently distributed. The null hypothe-

sis is no autocorrelation for a specified number of autocorrelation lags. The number of

lags is found by using the stats package in R. For all return series we can reject the null

hypothesis of no serial correlation. A small p-value is evidence that there is dependence

in the return series, and the tests show p-values (almost) equal to zero. We see strong

evidence of autocorrelation for all return series, in other words ARCH effects.

A stationary time series is, theoretically, one whose statistical features such as variance,

autocorrelation, mean, etc. are all constant over time. This is often not the case for

financial time series, which are far from stationary when expressed in their original units

of measurements. However, most statistical forecasting is based on the assumption that

the return series can be approximately stationary through the use of mathematical trans-

formations, such as the natural logarithm. The ADF-test examines the null hypothesis

of random walk, yt I ∼ (1), against the alternative hypothesis of stationarity, yt I ∼ (0).

We see that the test statistics range from −34.992 for Apple to −36.516 for Nike. We

see that the test statistic for the return series is sufficiently less than the critical value

of -3.43, and we can thus reject all null hypotheses based on 1% significance level, and

conclude that all the series are (approximately) stationary.
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Figure 3: Toyota cash price in level (cash), daily close-close returns (r), daily close-close returns density
and QQ-plot against the normal distribution. The time period is 03.01.2000−31.12.2013. Source: Quandl
database and authors’ calculations

Figure 4: Apple cash price in level (cash), daily close-close returns (r), daily close-close returns density
and QQ-plot against the normal distribution. The time period is 03.01.2000−31.12.2013. Source: Quandl
database and authors’ calculations
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Figure 5: Nike cash price in level (cash), daily close-close returns (r), daily close-close returns density
and QQ-plot against the normal distribution. The time period is 03.01.2000−31.12.2013. Source: Quandl
database and authors’ calculations

Figure 6: S&P500 cash price in level (cash), daily close-close returns (r), daily close-close returns
density and QQ-plot against the normal distribution. The time period is 03.01.2000−31.12.2013. Source:
Quandl database and authors’ calculations
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The price graphs show that all assets have experienced multiple periods of both bull and

bear markets during the sample period. Note that the prices were extremely volatile

in late 2000 for Apple and during the financial crisis for Toyota, S&P500 and Nike. A

return of −73.12% was observed on September 29th, 20009, for Apple as the price fell

from 53.50 to 25.75! For Toyota, S&P500 and Nike, the prices were extremely volatile

during the recession in the late 2008, with a peak of -18.06%, −9.46% and −12.59%,

respectively. From the figures we notice leverage effects (especially for the Apple stock

series), as volatility tends to cluster when the market experience negative shocks, while

in periods when the market is bull, the volatility is more stable. In Figure 2, we also see

volatility clustering, as we have sub-periods of high volatility, and other periods of low

volatility. Volatility clustering leads to an excess kurtosis, which in turn reflects that the

volatility is time varying. This is a known feature in financial return series. Volatility

clustering creates problems in terms of how to model the data, since we no longer can

assume that the series are normally distributed. Both the QQ-plots and the return density

figures show the return series against a normally distributed reference. The high peak

and the corresponding fat tails means that the distribution is more clustered around the

mean, which confirm that the returns are leptokurtic.

9Apple announced that its fourth quarter profit would fall well short of Wall Street forecasts, which
spurred a flurry of analyst downgrades.
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5.5 Open-close returns

Table 2:

Toyota Apple Nike S&P500

Mean -0.004 % 0.013 % -0.088 % -0.010 %
Minimum -6.738 % -12.606 % -14.351 % -10.246 %
Maximum 10.481 % 12.789 % 20.990 % 9.127 %
Standard Deviation 1.014 % 2.358 % 1.744 % 1.274 %
Kurtosis 8.501 2.733 11.746 7.258
Skewness 0.427 -0.046 -0.061 0.202

Table 2 shows the main descriptive statistics of the open-close returns.

Figure 7: Toyota daily open-close returns, daily open-close returns density and QQ-plot against the
normal distribution. The time period is 03.01.2000− 31.12.2013. Source: Quandl database and authors’
calculations
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Figure 8: Apple daily open-close returns, daily open-close returns density and QQ-plot against the
normal distribution. The time period is 03.01.2000− 31.12.2013. Source: Quandl database and authors’
calculations

Figure 9: Nike daily open-close returns, daily open-close returns density and QQ-plot against the nor-
mal distribution. The time period is 03.01.2000 − 31.12.2013. Source: Quandl database and authors’
calculations
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Figure 10: S&P500 daily open-close returns, daily open-close returns density and QQ-plot against the
normal distribution. The time period is 03.01.2000− 31.12.2013. Source: Quandl database and authors’
calculations

From Table 2, we see that the open-close return series are significantly less volatile com-

pared to close-close returns in Table 1. Specifically, comparing the minimum returns in

Table 1 and 2, we see that these are considerably lower in Table 1. The standard devia-

tions are lower for all of the returns series in Table 2 compared to Table 1. We observe

positive skewness for Toyota and S&P500 and negative skewness for Apple and Nike,

whereas in Table 1 all the returns series have negative skewness. Figures 7− 10 show the

descriptive graphs of the open-close return series. The figures highlight the differences of

the stylized features when using open-close returns compared to the close-close returns.

Summarizing the presented descriptive statistics it can be concluded, that the distri-

bution of the open-close returns is different from the close-close returns. Consequently,

the open-close returns will produce different VaR forecasts compared to using close-close

returns. Common sense suggests that the close-close returns will capture more of the

information of the historical volatility, since it captures all the information within a 24

hours time span, i.e. from the closing price at dayt−1 to the closing price at dayt, whereas

the open-close captures the information during each trading day. However, we are using

the open-close returns as proxies only when estimating the short- and medium volatility

component, which may be beneficial (see section 6.6 for further explanation).
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6 Methodology

In this section we will explain VaR, Quantile Regression, In-/Out-of-sample and our

chosen models in more detail.

6.1 Value-at-Risk, Quantile Regression and In-/Out-of-sample

Value-at-Risk

According to Alexander (2008), VaR can be defined as the loss, in present value terms,

that we are 100 · α% confident will not be exceeded if the portfolio is held static over

a certain period of time (however, it might be better to interpret the VaR value as an

expectation of outcomes, as discussed under section 2). Specifically, if we let {r}Tt=1 de-

note a time series of portfolio returns and α ∈ (0, 1) represents the probability that a

forecasted value of the portfolio returns will be exceeded each period, the challenge is to

find V aRt such that Pr[rt < VaRt|t−1|Ωt−1] = α, which is defined as the conditional VaR.

Ωt−1 represents the information set available at time t− 1.

The RiskMetrics and GARCH(1,1) estimates the conditional variance and assume nor-

mally distributed return series, rt, and according to Kavussanos and Dimitrakopoulos

(2011), we can then forecast the conditional VaR as follows:

V aRα,t+1|t = µ̂t+1 − F−1(α)σ̂t+1, (11)

where F−1 is the number of standard devations that corresponds to the selected confi-

dence level (1 − α) from the assumed distribution (e.g. normal distribution), and µ̂t+1

and σ̂t+1, denotes the forecasted location and scale parameters, respectively. Since we are

predicting one-day-ahead VaR (short time horizon) in our study, Figlewski (1997) states

that we can assume that the sample mean (µ̂t+1) in equation (11) is zero.

The alternative models for forecasting σ̂t+1 (RiskMetrics and GARCH(1,1)) and hence

VaR, are presented in the following. Note that the Historical Simulation, HAR-QREG

and RHAR-QREG estimate VaR directly.
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Quantile Regression

VaR is simply put a particular percentile of future returns, conditional on current in-

formation, and therefore, a quantile regression seems to be an obvious choice for VaR

forecasting. In the general case, if Yt is the dependent variable and X1,t, X2,t are the

independent variables, the quantile regression is given by:

Yt = ωq + β1X1,t + β2X2,t + εt (12)

Where εt has an unspecified distribution function. The conditional qth quantile, 0 < q < 1,

is defined as any solution to the minimization problem (Koenker and Bassett, 1978 and

Haugom et. al., 2014):

min

ω, β1, β2

T∑
t=1

(q − 1Yt≤ω+β1X1,t+β2X2,t)(Yt − (ω + β1X1,t + β2X2,t)), (13)

where

1Yt≤ω+β1X1,t+β2X2,t =

{
1 if Yt ≤ β1X1,t + β2X2,t

0 otherwise
(14)

The quantile regression method explicitly allows you to model all relevant quantiles of

the distribution of the dependent variable. Because VaR simply is a particular condi-

tional quantile of future returns, the conditional quantile function can be expressed as

follows:

V aRq,t+1|X1,t, X2,t = ω̂q + β̂1,qX1,t + β̂2,qX2,t + εtq |X1,t, X2,t (15)

A unique set of regression parameters β1,q and β2,q can be obtained for each quantile of

interest and the whole conditional distribution can be modeled or forecasted. In our study

we are concerned with the upper and lower tails of the return distribution.
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In-/Out-of-sample

Out-of-sample forecasts simulates an actual risk management setting. We move our

present back in time and use the out-of-sample as an unknown future, yet measurable.

We test how precise the models are when predicting VaR for the out-of sample period,

using the hit function. This gives us a violation if the return in the out-of-sample period

exceeds the prediction. A perfect result is when the mean of the hit function, consisting

of ones and zeros, is equal to the significance level used in the prediction.

The size of the in- and out-of-sample can vary, but as the title suggests we have chosen a

one-day out-of-sample approach. In practice we do this by using the interval defined as

time t− 1000 to time t, as the in-sample data, to estimate the out-of-sample t+ 1.

6.2 Historical Simulation

This non-parametric approach does not make use of conditioning information. Hence the

approach estimates the unconditional VaR. the HS method involves creating a database

consisting of the daily returns based on closing prices over a period of time. We then

use a rolling window of 1000 days, and find the upper (and lower) quantiles of the rolling

distributions, which per definition is the one-day-ahead unconditional VaR (Hull and

White, 1998)., Mathematically defined as (Kavussanos and Dimitrakopoulos, 2010):

V aRα,t+1 = Qα ({rt}nt=1) , (16)

where Qα denotes the α-quantile and {rt}nt=1 is the series of returns from 1 to n, where n

represents the rolling window. We use a rolling window of 1000 days/observations, and a

V aR0.05,t+1 is simply the 50th lowest observation in the window, with returns sorted from

low to high:

r1 < r2 < ... < rn−1 < rn

where n = T is used to denote an order not based on time.
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6.3 RiskMetrics

The RiskMetrics model is based on the unrealistic assumption of normally distributed

returns, and completely ignores the presence of fat tails in the probability distribution,

which is one of the most important features of financial data. However, the RiskMetrics

model incorporates another important feature, volatility clustering. RiskMetrics capture

the phenomenon of volatility clustering by choosing a particular autoregressive moving

average process to model price process, which is known as the exponentially weighted

moving average (EWMA).

RiskMetrics exploits a restricted Integrated GARCH (IGARCH) filter for returns, with a

zero constant (ω = 0), and predetermined parameters α1 = 0.06 and β = (1−α1) = 0.94.

The value of β = 0.94 produces the best backtesting results, which implies a high degree

of persistence in the variance (RiskMetrics Group, 1996).

The estimator for the condional variance is given by:

σ2
t+1 = α1r

2
t + βσ2

t (17)

The notation σt+1 (square root of σ2
t+1) emphasizes that the volatility estimated on a given

day (t) is actually used as a predictor for the volatility of the next day (t+ 1). V aRα,t+1|t

can then be calculated (under the assumption of normal distribution) by multiplying σt

with F−1, as shown in equation (11).

6.4 GARCH (1,1)

The AutoRegressive Conditional Heteroscedasticity ARCH (Engle, 1982) and Generalized

AutoRegressive Conditional Heteroscedasticity GARCH (Bollerslev, 1986) can capture the

time varying volatility, like volatility clustering and serial correlation, which is common

in most financial return series. The GARCH model captures these features by allowing

the variance of the returns to be conditional on previous values of the returns, defined

as:

σ2
t = V ar (rt|rt−1, rt−2, rt−3...) (18)
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Hence, a GARCH model can be used as an appropriate tool when forecasting VaR. A

GARCH(p,q) forecasting model is defined as:

σ2
t+1 = ω +

q−1∑
i=0

αir
2
t−i +

p−1∑
j=0

βjσ
2
t−j (19)

The estimated parameters ω, αi and βj must satisfy the non-negativity of the conditional

variance, i.e. 0 < ω, 0 ≤ α1 and 0 ≤ β1, which means that α1 + β < 1. See Bollerslev

(1986) and Nelson and Cao (1992) for details on the non-negativity and stationarity con-

ditions of the GARCH process.

A GARCH(1,1) model is defined as (Jorion, 2001):

σ2
t = ω + α1r

2
t−1 + β1σ

2
t−1, (20)

where, σ2
t−1 is the lagged conditional variance and r2t−1 is the lagged squared returns.

Note that the α1 denotes how fast the variance reacts to shocks in the squared returns.

In other words, a large α1 indicates that the shock almost instantly will be reflected in

the variance forecast for the next period, while small values of the coefficient forecasts

a smoother transition in the future variance pattern. Values of β1 represent how much

yesterdays variance estimation weights into the forecast.

The ω, α and β is estimated numerically using Maximum Likelihood Estimation (MLE),

defined as (Jorion, 2001):

maxF (σt) =
T∑
t=1

(
ln

(
1√

2Πσt

)
− r2t

2σt

)
, (21)

where ω, α and β gives the values of the σ2
t . We maximize this function by adjusting ω,

α and β (with their non-negativity constraints), which in turn gives us the optimal values

of ω, α and β. We use a rolling window size equal to 1000 days, and the optimization

takes into account each and every observation within this window. Further, the ω, α and

β are adjusted by the MLE.

The actual VaR value is calculated by multiplying the square root of the one-day-ahead

variance (i.e. standard deviation) with F−1, as shown in equation (11)
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6.5 HAR-QREG

The HAR-QREG model predicts the conditional quantiles directly by using quantile re-

gressions. We have used quantreg package in R to estimate the quantile regressions.

Haugom et. al. (2014) define rt as the daily logged return at day t, and the daily, weekly

and monthly backword-looking volatility as:

σday,t =
√
r2t

σweek,t =

√
1

5

(
r2t−4 + r2t−3 + ...+ r2t

)

σmonth,t =

√
1

20

(
r2t−19 + r2t−18 + ...+ r2t

)

The HeterogenousAutoregressive − Quantile Regression Model (HAR-QREG) is then

defined as:

rqt+1 = ωq + β1,qσday,t + β2,qσweek,t + β3,qσmonth,t, (22)

where rqt+1 = V aRq,t+1 is the conditional quantile of the day-ahead return, and ωq, β1,q,

β2,q, and β3,q, are parameters which estimate the constant term, daily, weekly and monthly

historical volatility, respectively.

6.6 RHAR-QREG

We have chosen to modify the HAR-QREG model, by using squared intraday return

as a proxy when estimating the realized short- and medium-term volatility components.

The RHAR-QREG will incorporate the same features as the HAR-QREG, but by using

intraday volatility on the short and medium term components, we believe it will capture

the historical volatility even better. The other models are constructed with the data

of closing prices, which might neglect the important intraday information of the price
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movements, and in return this might lead to loss of information and efficiency. For

example, if yesterday’s closing price equals to today’s closing price, the price return will

be zero, even though the price variation during the today might be turbulent. However,

the return based models that use only closing prices cannot capture this. The problem

of getting zeros can also be found when using open-close returns, but all our data series

consist of more zeros in the close-close returns than in the open-close returns. Hence

our hypothesis is to capture more of the medium- and short-term variation. We have

therefore incorporated the intraday return by using the daily opening and closing prices

of the financial assets, defined as:

Rt = 100ln(popen,t/pclose,t) (23)

Further we use Rt to define the daily and weekly historical volatility components:

σday,t =
√
R2
t

σweek,t =

√
1

5

(
R2
t−4 +R2

t−3 + ...+R2
t

)
Since all traders are concerned with the long-term volatility, the long-term volatility

component will have a strong effect on the conditional return quantiles. In Haugom et. al

(2014) the monthly component is substantially significant. As mentioned, the open-close

returns may also be equal to zero, but by implementing the close-close return as a proxy

on the long-term volatility component we will still capture some of the variation in the

returns. Hence, we have chosen to use the daily closing prices on the monthly component,

rather than intraday return. We suspect that the long-term component will capture more

of the historical volatility when using closing prices, and that the short- and medium-

term component is better estimated when the intraday return is incorporated, because of

their short time horizon. The monthly component will be defined in the same way as in

Haugom et. al (2014):

σmonth,t =

√
1

20

(
r2t−19 + r2t−18 + ...+ r2t

)
,
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where rt is the estimated daily return constructed with the data of closing prices. Our

proposed Remodeled HeterogenousAutoregressive − Quantile Regression Model (RHAR-

QREG) model can then be defined as:

rqt+1 = ωq + β1,qσday,t + β2,qσweek,t + β3,qσmonth,t (24)

where rqt+1 = V aRq,t+1 is the conditional quantile of the day-ahead return, and ωq, β1,q,

β2,q, and β3,q, are parameters which estimate the constant term, daily, weekly and monthly

historical volatility, respectively.
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7 Results

We compare the accuracy of the VaR forecasts from the RHAR-QREG method with

Historical Simulation, RiskMetrics, GARCH(1,1) and HAR-QREG. The estimations are

performed using R (R Core Team, 2013).

In all cases we obtain VaR using a rolling window of 1000 days to estimate the pa-

rameters and then predict one-day-ahead, out-of-sample with each method. The choice

of using 1000 days is based on the findings of Alexander and Sheedy (2008).

In table 2 we present the failure rates for eight VaR-levels (1%, 2.5%, 5%, 10%), long

and short positions, respectively. We present the results for two different coverage tests

to assess the accuracy and independence of the provided VaR forecasts. These are the

unconditional coverage test of Kupiec (1995), and the conditional coverage test of Christof-

fersen (1998), which were explained earlier in the thesis. We use a significance level of 5%

in both tests.

The results from these coverage tests are presented in Table 3:
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Table 3: Results
Toyota

VaR for long positions VaR for short positions
Model 1.00 % 2.50 % 5.00 % 10.00 % 90.00 % 95.00 % 97.50 % 99.00 % Passes
Historical Simulation 1.43 % ‡ 2.86 % †‡ 4.57 % †‡ 8.87 % † 90.58 % † 95.15 % † 97.57 % † 98.85 % †‡ 68.75 %
RiskMetrics 1.39 % †‡ 2.63 % †‡ 4.93 % †‡ 8.99 % †‡ 90.25 % †‡ 94.19 % †‡ 96.38 % 98.09 % 75.00 %
GARCH(1,1) 1.19 % †‡ 2.35 % †‡ 4.02 % †‡ 7.99 % 91.41 % †‡ 95.23 % †‡ 97.14 % †‡ 98.57 % ‡ 81.25 %
HAR-QREG 1.19 % †‡ 2.35 % †‡ 4.77 % †‡ 9.46 % †‡ 89.98 % †‡ 95.23 % †‡ 97.50 % †‡ 98.81 % †‡ 100.00 %
RHAR-QREG 1.51 % 2.94 % †‡ 5.45 % †‡ 9.34 % †‡ 89.70 % †‡ 94.63 % †‡ 96.70 % ‡ 98.17 % 81.25 %

S&P500
VaR for long positions VaR for short positions

Model 1.00 % 2.50 % 5.00 % 10.00 % 90.00 % 95.00 % 97.50 % 99.00 % Passes
Historical Simulation 1.67 % 3.06 % † 5.16 % † 8.33 % 91.35 % 95.40 % †‡ 97.42 % †‡ 98.69 % †‡ 50.00 %
RiskMetrics 1.96 % 3.86 % 5.88 % ‡ 10.49 % †‡ 90.22 % † 94.88 % †‡ 97.10 % †‡ 98.66 % †‡ 62.50 %
GARCH(1,1) 1.90 % 3.49 % 5.48 % †‡ 9.05 % †‡ 90.87 % 95.71 % †‡ 97.74 % †‡ 99.17 % †‡ 62.50 %
HAR-QREG 1.47 % ‡ 2.90 % †‡ 5.04 % †‡ 9.29 % †‡ 89.56 % † 94.68 % †‡ 97.34 % †‡ 98.89 % †‡ 87.50 %
RHAR-QREG 1.55 % 2.54 % †‡ 5.16 % †‡ 9.33 % †‡ 89.60 % † 94.80 % †‡ 97.38 % †‡ 98.65 % †‡ 81.25 %

Apple
VaR for long positions VaR for short positions

Model 1.00 % 2.50 % 5.00 % 10.00 % 90.00 % 95.00 % 97.50 % 99.00 % Passes
Historical Simulation 0.95 % †‡ 1.87 % 4.30 % † 8.31 % 92.12 % 96.30 % 97.85 % †‡ 99.16 % †‡ 43.80 %
RiskMetrics 1.43 % †‡ 2.35 % 4.34 % 8.00 % 89.81 % †‡ 94,51 % †‡ 96.50 % †‡ 97.81 % 50.00 %
GARCH(1,1) 1.35 % † 2.07 % † 3.34 % 6.80 % 91.09 % † 95.19 % † 97.06 % † 98.37 % 31.25 %
HAR-QREG 0.99 % †‡ 2.47 % † 4.69 % †‡ 9.67 % †‡ 90.69 % †‡ 95.27 % †‡ 97.45 % †‡ 98.93 % †‡ 93.75 %
RHAR-QREG 1.19 % †‡ 2.59 % † 4.81 % † 9.75 % †‡ 90.37 % †‡ 95.19 % †‡ 97.41 % †‡ 98.81 % †‡ 87.50 %

Nike
VaR for long positions VaR for short positions

Model 1.00 % 2.50 % 5.00 % 10.00 % 90.00 % 95.00 % 97.50 % 99.00 % Passes
Historical Simulation 1.39 % † 2.78 % † 4.97 % † 9.11 % † 91.09 % † 95.31 % † 97.26 % †‡ 98.97 % †‡ 62.50 %
RiskMetrics 1.35 % †‡ 2.55 % †‡ 4.18 % † 7.40 % 91.33 % ‡ 94.91 % †‡ 96.82 % ‡ 98.09 % 62.50 %
GARCH(1,1) 1.15 % †‡ 1.91 % † 3.66 % 6.72 % 92.33 % 95.63 % †‡ 97.46 % †‡ 98.57 % †‡ 56.25 %
HAR-QREG 1.03 % †‡ 3.10 % †‡ 5,13 % †‡ 10.06 % †‡ 90.38 % †‡ 95.11 % †‡ 97.57 % †‡ 98.77 % †‡ 100.00 %
RHAR-QREG 1.15 % †‡ 2.66 % †‡ 5.17 % †‡ 9.86 % † 90.10 % †‡ 94.99 % †‡ 97.57 % †‡ 99.05 % †‡ 93.75 %

Table 3: Failure rates for the three financial series. † indicates that the model passes the unconditional coverage test of Kupiec (1995) at
the 5% significance level, and ‡ indicates that the model passes the conditional coverage test of Christoffersen (1998) at the 5% significance
level. We have used the quantileVaR package by Steinar Veka(2014) in R. The column labeled ‘Passes’ shows what fraction the model passes
the two tests at all VaR-levels. Best possible score is 16/16 = 100% (eight VaR-levels times two tests). The Sample period is January 3.2000
to December 31.2013. The results are based on out-of-sample forecasts using a 1000-days rolling window.
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Table 3 presents the result for the four financial assets. The first row shows the results for

the Historical Simulation, followed by the RiskMetrics, GARCH(1,1), HAR-QREG and

RHAR-QREG. The RHAR-QREG outperforms all the models across the different series,

except on the Toyota series where the model is on par with GARCH(1,1). However, the

HAR-QREG model delivers extraordinarily good results and outperforms all the models.

The Toyota stock series gives the overall best results. Both the RHAR-QREG and

GARCH(1,1) models passes 81.25% against the RiskMetrics (75.00%) and Historical Sim-

ulation (68.75%). The HAR-QREG outperforms the other models with its 100% score.

For the S&P500 series, the RHAR-QREG model passes 81.25% of the coverage tests

and is outperformed by the HAR-QREG model, with a score of 87.5%. The Histori-

cal Simulation method, RiskMetrics and GARCH(1,1) models pass 50.00%, 62.50% and

62.50%, respectively.

The results are similar for the Apple series. The RHAR-QREG delivers a good per-

formance and outperforms the Historical Simulation, RiskMetrics and GARCH(1,1). The

RHAR-QREG passes 87.5% in the coverage tests for this series, while the HAR-QREG

model passes 93.75%. GARCH(1,1) has its worst performance and passes 31.25%. His-

torical Simulation (43.80%) and RiskMetrics (50.00%) again performs poorly relative to

the quantile models.

For the Nike stock series, the RHAR-QREG has its best performance with a score of

93.75% on the coverage tests. Yet again, it is outperformed by the HAR-QREG’s which

passes 100% of the tests. Still, the RHAR-QREG model outperforms the Historical Sim-

ulation (62.50%), RiskMetrics (62.50%) and GARCH(1,1) (56.25%).

RHAR-QREG’s total success rate, i.e. across the four stocks and the eight theoretical sig-

nificance levels, is equal to 85.94%. The Historical Simulation, RiskMetrics, GARCH(1,1)

and HAR-QREG have total success rates equal to 56.25%, 62.50%, 57.81% and 95.31%,

respectively.

Note, the two most popular methods, Historical Simulation and RiskMetrics, perform

substantially worse than the RHAR-QREG model for all the series.
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8 Comments

On the basis of these estimation outputs and the estimation methods discussed in the

previous sections, we briefly summarize the advantages and disadvantages of the chosen

models.

8.1 Historical Simulation

The HS method performs worst in our study. Overall, the HS approach performs best

at higher confidence levels and especially the upper tail (i.e. short positions at 97.5%

and 99%), where the approach performs adequately in terms of the Kupiec (1995) and

Christoffersen (1998) tests. The reason for this may be that the historical window size

is better suited for these confidence levels as it considers the extreme values that fall out

of the normal distribution. On the lower tail (i.e. long trading positions) and with lower

confidence levels, the HS method generally produces too few violations and the violations

comes in clusters, which gives more rejections from the unconditional and conditioanl

coverage tests, relative to the best models.

The HS method has no assumptions regarding the distribution of the return series of

financial assets, but fail to capture the time-varying volatility (e.g. volatility clustering)

due to its assumption of i.i.d return series. Specifically, the HS method captures the fatter

tails of the return series, but the results show the importance of the model also capturing

the time-varying volatility in the return series when forecasting one-day-ahead VaR.

This approach looks at the latest 1000 daily returns when calculating VaR (i.e. a rolling

window of 1000 days, in line with the other models examined). A rolling window of 1000

days makes the approach react slowly to new information and changes in the daily re-

turns. If we had chosen a shorter interval, we would have increased the impact of new

observations, which in turn would have put a higher focus on recent market conditions,

which might improve forecasts.

Generally, the historical simulation model is considered to perform well with return distri-

butions that are leptokurtic, but this study shows that when the leptokurtosis is extreme,

the method cannot capture this. The bad performance on the Apple stock series supports

this argument.
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Based on our study, the HS method with a rolling window of 1000 days can be rec-

ommended when estimating VaR at high confidence levels for traders with short trading

positions, and on return distributions that are not too leptokurtic. However, it seems

that the rolling window size has to be chosen with respect on the confidence level and the

kurtosis.

8.2 RiskMetrics

The RiskMetrics scores overall good at the 5% significance level. This is expected due

to the fact that the model is designed estimating VaR on the 5% significance level. D.

Nelson (2010) shows that even though the RiskMetrics model is considered to be a mis-

specified model, it still estimates volatility reasonably accurately. The RiskMetrics sets

the confidence level at 95%, and the prescription to obtain this 5% quantile is to multiply

the volatility estimate by −1, 65 (long position) or 1.65 (short position), assuming the

returns are conditionally normally distributed. It is very often found that despite the

presence of fat tails (leptokurtic distribution), for many distributions the 5% quantile is

roughly −1, 65 (or 1.65) times the standard deviation. Thus, the RiskMetrics at a 95%

confidence level will perform well (S. Pafka and I. Kondor, 2001).

However, our study shows that for higher confidence levels (e.g. 99%) the effect of fat

tails becomes much stronger, and therefore VaR is underestimated (i.e. too many returns

exceed the VaR predictions) if one assumes normal distribution.

RiskMetrics has its best performance on the Toyota series. Based on the descriptive

analysis in section 5, we found that the return series for Toyota exhibits characteristics

most similar to a normally distributed series. Hence, the model’s assumption of normality

is reflected in the adequate performance score.

The RiskMetrics approach has its worst performance on the Apple stock series, and this

may be due to the fact that the distribution exhibits significant leptokurtosis compared

to the other series. Consequently, the model cannot capture the presence of fat tails due

to the model’s assumptions of normality.
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8.3 GARCH(1,1)

The model building approach, like GARCH(1,1) captures the time-varying volatility, but

the disadvantage is that the model assumes normal distributed returns. The GARCH(1,1)

model has been giving adequate results, except on the Apple stock series. It seems that

it fails to capture more extreme price movements, which is a highlighted feature in the

Apple series (see Data and Descriptive Analysis). Not surprising, due to the fact that the

approach assumes normality. Consequently, this is a common disadvantage to a standard

GARCH model. The GARCH(1,1) model is not able to capture the asymmetries of the

volatility with respect to the sign, since we are squaring the lagged error term (i.e. we

are losing its sign). In other words, the standard GARCH model fails to capture leverage

effects, and it seems that this defect has led to a poor performance for the Apple series.

The threshold GARCH (TGARCH), by Rabemananjara and Zakoian (1993), may be a

consideration for future volatility models, as it can capture the asymmetry in the volatility.

Not surprisingly, the GARCH(1,1) performs best on the Toyota stock series, and is in

fact on par with the RHAR-QREG model. As explained in the comments of RiskMetrics,

this is due to the fact that the Toyota return series exhibit properties that are most similar

to a normal distribution.

Since the Apple series exhibit the characteristics least compatible with the normal dis-

tribution, we also suspect that the assumption of normality has caused the maximum

likelihood estimation (MLE) to generate values ω, α and β that are off their optimum. It

seems that the model captures the volatility clustering, but fails to capture the distribu-

tion of the series. Hence, this may have caused the GARCH(1,1) to estimate poorly on

both coverage tests relative to the better models. A future consideration could be to work

on adjusting the MLE function in R to better fit the asset returns in order to increase the

performance of the GARCH(1,1) model.
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8.4 HAR-QREG

HAR-QREG delivers good results with a 100% score in two of four data series. According

to Haugom et. al (2014), the advantage of the HAR-QREG is that it can capture all

shapes of the conditional return distribution and isolate the effect from short-, medium-,

and long-term volatility. To exemplify, if the conditional day-ahead distribution of a re-

turn series is skewed to either side, this will be captured in either the constant term or the

slope-coefficients for “similar” quantiles in the two tails. Additionally, quantile regression

estimates are more robust against outliers (i.e. fat tails) in the response measurements

(Koenker and Roger, 2005). The model has thus no assumptions regarding the distribu-

tion.

The model exhibits the important feature of capturing the heterogeneous effects occurring

from different traders’ investments horizons, for both the lower and upper tails, i.e. long

and short positions. The heterogeneous effects will be revealed through the parameters

in the model, i.e the short-, medium-, and long-term volatility components.
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8.5 RHAR-QREG

The RHAR-QREG model delivers good results, as it captures many of the features men-

tioned for the HAR-QREG model. Still, it is outperformed by the HAR-QREG. The main

reason seems to be that the violations in the RHAR-QREG’s hit function comes more in

clusters compared to HAR-QREG’s hit function (i.e. the HAR-QREG performs better in

the conditional coverage test). In other words, changing market risk fail to be fully incor-

porated into RHAR-QREG’s VaR measures, even though RHAR-QREG has the correct

average number of violations. HAR-QREG incorporates yesterday’s return in the short-,

medium and long-term volatility, which may be a critical factor to capture changing mar-

ket risks. It appears that HAR-QREG captures more of the information of the historical

volatility, since it captures all the information within a 24 hours time span, i.e. from the

closing price at dayt−1 to the closing price at dayt, whereas the RHAR-QREG only cap-

ture the information during each trading day (se Figure 11). Our hypothesis of capturing

more of the historical volatility using intraday return on the short-, and medium-term

volatility component was rejected.

Figure 11: Shows the differences between RHAR-QREG and HAR-QREG in terms of capturing the
historical volatility/information.
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9 Conclusion

In this master thesis, we examine VaR models relevant for stock traders who have long and

short trading positions in stock markets. Our time horizon is short-term as we focused

on the one-day-ahead market risk. In an out-of-sample study, covering car industry (Toy-

ota), technology (Apple), clothing industry (Nike), and the index (S&P500), we assessed

the performance of the Historical Simulation, RiskMetrics, GARCH(1,1), HAR-QREG

and RHAR-QREG. While the HAR-QREG performs best in all cases, the RHAR-QREG

model nevertheless delivered good results. An important feature of the quantile-based

models is that it simplifies the optimization compared to other models. Hence, managers

and regulators can easily implement RHAR-QREG (and HAR-QREG) in a spreadsheet.

Another important feature is that HAR-QREG and RHAR-QREG has no assumption

regarding the distribution of the return series.

In general, we see that all the models examined in this study, perform better at the

upper tail of the return distribution. We suspect that there are several factors that

contribute to these findings: We see that all the close-close return series exhibit negative

skewness. This means that the peak of the distribution is tilted to the right relative to the

normal distribution (see Figure 1). Combined with a leptokurtic distribution, this means

that there are more positive than negative returns. Hence, we have more observations on

the upper tail (i.e. between zero and maximum return) of the return distribution, which

makes it easier for the models to forecast the one-day-ahead VaR. The leverage effects

also causes the volatility to be more stable when the market is bull (i.e. positive returns),

which may be an important factor.

Our findings also show that RiskMetrics and GARCH(1,1) give good results, when the

return series exhibits normally distributed patterns. Not surprising, since this is the key

assumption in the two models. According to previous studies, they argue that the most

important return feature to account for when calculating VaR, is volatility clustering.

In our opinion, and according to our study, it seems that the most important return

characteristic is the distribution of the returns and how well the models capture it.
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10 Further Research

Several extensions to our study can be considered. It would be interesting to conduct

a study on other assets (i.e. other stocks and/or commodities) to see if the conclusions

drawn would be the same. Other assets can have characteristics that fit our model better

leading to better results. Additionally, it would have been interesting to examine suit-

able window sizes for the calculation of both Historical Simulation and the RHAR-QREG

(and HAR-QREG) model. The window size is the only factor that influences the VaR

prediction on the Historical Simulation approach, but also for the RHAR-QREG and

HAR-QREG.

Instead of using only the open-close volatility estimator in the RHAR-QREG, it could be

an alternative to use the High-Low-Open-Close volatility estimator introduced by Gar-

man and Klass (1980). This volatility estimator, which is built upon the Parkinson (1980)

estimator, incorporates both the high and low and opening and closing historical prices

when estimating variance and hence volatility.
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11 Appendix

Figure 12: R-Coding for Histrical Simulation with rolling window.

Figure 13: R-Coding for RiskMetrics.
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Figure 14: R-Coding for GARCH(1,1) with rolling window.

Figure 15: R-Coding for HAR-QREG. Supplied by Erik Haugom and Steinar Veka.
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Figure 16: R-Coding for RHAR-QREG.

Figure 17: R-Coding for the Unconditional (Kupiec (1995) and Conditional (Christoffersen (1998))
coverage tests supplied by Steinar Veka.
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Figure 18: R-Coding for example VaR estimation. Here Riskmetrics.

Figure 19: VaR illustration, (a) is the significance interval, (b) is the critical value (α) e.g. 5% and
the confidence level ρ e.g. 95%, (c) is the confidence interval.

Figure 20: In- and Out-Of-Sample illustration
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