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Abstract: Modern design for marine and coastal activities places increasing focus on numerical
simulations. Several numerical wave models have been developed in the past few decades with
various techniques and assumptions. Those numerical models have their own advantages and
disadvantages. The proper choice of the most useful numerical tool depends on the understanding
of the validity and limitations of each model. In the past years, REEF3D has been developed into
an open-source hydrodynamic numerical toolbox that consists of several modules based on the
Navier–Stokes equations, the shallow water equations and the fully nonlinear potential theory.
All modules share a common numerical basis which consists of rectilinear grids with an immersed
boundary method, high-order finite differences and high-performance computing capabilities.
The numerical wave tank of REEF3D utilises a relaxation method to generate waves at the inlet
and dissipate them at the numerical beach. In combination with the choice of the numerical grid and
discretisation methods, high accuracy and stability can be achieved for the calculation of free surface
wave propagation and transformation. The comparison among those models provide an objective
overview of the different wave modelling techniques in terms of their numerical performance as
well as validity. The performance of the different modules is validated and compared using several
benchmark cases. They range from simple propagations of regular waves to three-dimensional wave
breaking over a changing bathymetry. The diversity of the test cases help with an educated choice of
wave models for different scenarios.

Keywords: numerical wave models; high-performance computing; open-source; CFD; Navier–Stokes
equations; shallow water equations; potential flow theory

1. Introduction

Each fluid flow is subject to the conservation laws of mass, momentum and energy which can
be described by several nonlinear partial differential equations. Numerical modelling is the method
of solving these equations numerically by replacing them with a set of algebraic equations. Today,
this powerful technique is used in all industries and research areas, such as aero- and hydrodynamics,
weather predictions or mixing processes. In contrast to experiments, numerical simulations are in
general cheaper, faster in the preparation and more flexible with respect to specific external conditions
or changing geometries.

Free surface flows frequently arise in nature and present an increasingly important subject due
to increased sea transport, population growth and changing climate. The correct simulation of the
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interfaces separating the different fluids is key knowledge in marine and hydraulic engineering.
The class of interface phenomena range from current to large-scale waves of varying amplitude to
splashing with coalescence and breakup situations. This variety of effects reveals the development of
capable numerical models for two-phase flow applications as a difficult task.

The open-source hydrodynamics framework REEF3D [1] was originally developed to overcome
these difficulties by taking the specific challenges in hydraulics, coastal and marine engineering into
consideration. This affected the design choices for the grid architecture, the discretization methods of
the governing equations, the treatment of the complex free surface and the computational efficiency.

The ever increasing computational resources allow the computation of more and more complex
flow problems at a reasonable cost, even for small companies and research institutions. The limiting
factor of such simulations becomes less the necessary computational power but rather the time
it takes for the engineer to generate the numerical grids and post-process the results. However,
these high-performance computations are only possible if the code provides a consistent parallelisation
strategy. From the beginning, REEF3D was designed under consideration of high-performance
computations (HPC). Therefore, all parts of the code are fully parallelised based on the domain
decomposition strategy and the Message Passing Interface (MPI).

The numerical grid affects the range of applicability of numerical methods but also the
productivity in usage. REEF3D utilises a rectilinear grid to overcome the limitations from complicated
grid generation processes. In each principal direction, user-specified analytical stretching functions
enable the refinement of the grid at selected locations. Ray tracing and inverse distance algorithms
are included to incorporate natural bathymetries and complicated structures using the STL file
format. Together with the directional immersed boundary method of Berthelsen and Faltinsen [2],
this effectively simplifies the user input in pre-processing.

Suitable boundary conditions for the application in hydraulics, coastal and marine engineering
have to be given. This particularly includes establishing a numerical wave tank with varies
wave generation and dissipation methodologies. The level set method is used for capturing the
propagation of the free surface [3]. The challenge arising from most interface models relates to
physical discontinuities of the fluid properties at the interface. Low-order discretization techniques
lead to a large amount of numerical diffusion, whereas high-order methods produce oscillatory and
non-physical results. In order to keep a high numerical accuracy and stability, the implementation
of a high-order weighted essentially non-oscillatory (WENO) scheme is the key step towards the
accurate representation of sharp interfaces. The Cartesian grid makes it possible to employ the
fifth-order accurate WENO scheme of Jiang and Shu [4] for all convection terms in REEF3D. Also for the
discretization in time, a high-order method is selected with the third-order total variation diminishing
(TVD) Runge–Kutta scheme [5]. The equations of fluid motion are solved on a staggered grid which
ensures tight velocity–pressure coupling and avoids unphysical high air velocity above waves. As a
result, wave propagation and transformation can be calculated throughout the wave steepness range
up to the point of wave breaking and beyond, with no artificially high air velocities impacting the
quality of the free surface. In the past, multiple applications proved the validity of this approach for
wave propagation and wave–structure interaction. In [6], the wave generation and absorption were
validated and compared to other CFD codes. Bihs et al. [7] analysed the generation, propagation and
impact of wave packets using REEF3D. Breaking waves and their interaction with a complex jacket
structure were investigated by Aggarwal et al. [8]. Multi-directional irregular waves were subject of
the studies in [9]. Alternative approaches for a numerical wave tank based on CFD were presented in
e.g., [10,11]. Both utilise a volume of fluid method with interface-compression [12] to capture the free
surface and a collocated unstructured grid with second-order accuracy for the spatial and temporal
discretization. The models were applied to experiments for wave propagation, and all results indicated
the applicability of CFD for these kinds of problems [13–15].

The source code of REEF3D is available at http://www.reef3d.com and is published under
the GPL license, version 3. REEF3D is written in an object-oriented C++ structure which enables
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a module-based design. This led to the development of several extensions of the main code.
For applications near the coast and in rivers, a dynamic sediment transport model and porous structures
were incorporated. The simulated flow field is coupled with the morphological module in REEF3D to
simulate, e.g., the scouring process around piles [16]. The morphological evolution of the sediment
bed is based on the Exner formula, a modified calculation of the critical bed shear stress and a sand
slide algorithm. The porous medium module solves the volume-averaged Navier–Stokes equations by
adding appropriate terms and coefficients to the common Reynolds-averaged Navier–Stokes equations
solved in REEF3D::CFD [17]. The model is also adapted for vegetation [18]. In Bihs and Kamath [19],
a floating algorithm was presented which utilises the same directional immersed boundary method
developed for fixed structures. Recently, a mooring model based on finite elements [20] was added
which improves the capabilities of the model for the simulation of moored-floating structures in
waves [21].

The phase-resolved modelling of the far-field is important for providing a realistic wave boundary
condition for near-field CFD wave modelling. REEF3D, with its distinct numerical basis of high-order
finite differences on rectilinear grids, is capable of incorporating simplified phase-resolving wave
models for these types of problems.

For very large scale wave modelling, such as the wave transformation from the ocean to the
coast, spectral wave models such as SWAN [22] are applicable. SWAN solves the wave action or
energy balance equation, which describes the wave spectrum evolution in space and time. The model
lacks the ability to resolve phases which is necessary information for more detailed analyses. Here,
depth-averaged shallow water models have been favoured for the coastal and harbour wave modelling
because most coastal areas share relatively shallow water conditions. Shallow water models are
essentially two-dimensional and, thus, require fewer computational resources. One possible approach
is based on the Boussinesq equations [23] which can accurately model wave reflection and diffraction as
well as non-dispersive linear wave propagation. Extended versions of the Boussinesq equations enable
the prediction of wave propagation and transformation from deep to shallow water using improved
dispersive terms [24]. In contrast, REEF3D::SFLOW was introduced as a novel non-hydrostatic
shallow water model following the quadratic pressure profile assumption. It benefits from the
high-order discretization schemes and good scaling properties of REEF3D. Thus, large-scale coastal
wave propagations over natural topography are possible.

The specific characteristic of Norwegian fjords and the general demand for fast far-field solutions
in marine engineering require an alternative approach due to the changing dispersion relation in deep
water regions. A potential flow solver is ideal for the fast calculation of wave propagation in deep water
conditions as viscous effects are not important in the far-field domain. The general potential problem
for waves is described by the Laplace equation with boundary conditions for the free surface and the
bottom. This system of equations is highly nonlinear and describes a one-phase three-dimensional
flow field. High-order spectral (HOS) methods [25], which solve the fully nonlinear potential problem
in deep water, have gained popularity [26]. HOS methods are capable of capturing nonlinear wave
interaction at a reasonable computational cost, though they are dependent on empirical input for
wind forcing and wave breaking. Amongst others, Seiffert and Ducrozet [27] incorporated a wave
breaking parameter in HOS-NWT [28] and simulated irregular breaking waves in 2D without wind or
current. They could successfully compare surface elevation, wave spectra and energy dissipation with
experiments. An alternative approach is the fully nonlinear potential flow (FNPF) model, which is
based on the solution of the potential problem in physical space and time. The direct numerical
solution of the Laplace equation using the method of finite differences is the basis of the model
OceanWave3D [29]. This model has been used to simulate wave–structure interaction [14,30] and
nonlinear wave propagation over large spatial scales with variable bathymetry [31]. The effects of
wave steepness, water depth, white-capping, and directional spreading can be included with few
assumptions to obtain a better description of the real sea state to calculate extreme wave statistics
and wave crest height distributions. Within the REEF3D framework, REEF3D::FNPF combines the
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approach of solving the Laplace equation on a σ-coordinate system using high-order finite difference
methods with its high-performance computing capabilities and natural bathymetry handling.

Previously, different wave models are developed by different developers and institutes, often with
various numerical implementations, making a direct comparison among the modelling techniques
difficult. Now, REEF3D has evolved into an open-source numerical framework that includes several
types of numerical wave modelling: a computational fluid dynamic (CFD) solver REEF3D::CFD solving
the Navier–Stokes equations, a shallow water model REEF3D::SFLOW solving the non-hydrostatic
shallow water equations and a fully nonlinear potential flow solver REEF3D::FNPF solving the Laplace
equation with the fully nonlinear boundary conditions. With such a numerical framework, an objective
comparison of the different wave modelling techniques is made possible. The authors attempt to
reveal the differences in the three numerical wave modelling methods in terms of their numerical
performance and physical validity by explaining the development and numerical implementations of
REEF3D and testing its three modules through a series of benchmark cases.

The structure of the manuscript is arranged as the following. First, in Section 2, the development
and numerical implementation of the REEF3D numerical framework and its three wave modelling
modules are introduced. Then, an objective comparison among the different types of wave modules is
performed using the three REEF3D wave modelling modules through a series of benchmark testings
in Section 3. In the process, the evidence of the models’ strengths and limitations are revealed and
explained. Finally, the findings and recommendations for an educated choice of the wave models are
summarised in Section 4.

2. Numerical Fluid Modules

2.1. REEF3D::CFD

Mass and momentum are conserved for an incompressible fluid by solving the continuity and
Reynolds-averaged Navier–Stokes (RANS) equations

∂ui
∂xi

= 0, (1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p
∂xi

+
∂

∂xj

[
(ν + νt)

(
∂ui
∂xj

+
∂uj

∂xi

)]
+ gi, (2)

with ui the velocity vector, ρ the fluid density, p the pressure, ν and νt the kinematic and turbulent
viscosity, and gi the gravity acceleration vector.

The Boussinesq hypothesis is used to calculate νt from the turbulent kinetic energy k and its
specific rate of dissipation ω according to

νt =
k
ω

. (3)

In REEF3D::CFD, the two-equations k-ω turbulence model [32] is typically applied to propagate
the turbulence properties in space and time. Wall functions are taken into account to approximate
the boundary layer flow. A limiter for νt is introduced to account for eventual overproduction of
turbulence in highly strained flows outside the boundary layer [33]:

νt = min

(
k
ω

,

√
2
3

k
|S|

)
(4)

Special attention is paid to the correct turbulence modelling near the free surface as the turbulent
length scales in the water are reduced in its proximity. Standard two-phase RANS turbulence models
do not account for this which can lead to increased ω and damped fluctuations normal to the surface
due to a redistributed to parallel fluctuations. Additionally, standard RANS turbulence closure will
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incorrectly predict the maximum turbulence intensity at the free surface because the mean rate of strain
S can be large especially in the vicinity of the interface between water and air [34]. A more realistic
representation of the free surface effect on the turbulence can be achieved through the replacement of
the original equation for ω in the vicinity of the surface by the empirical formula [34,35]:

ωs =
c−0.25

µ

κ
k0.5

(
1
y′

+
1
y∗

)
, (5)

with cµ = 0.07 and κ = 0.4. The virtual origin of the turbulent length scale y′ is empirically found to
be 0.07 times the mean water depth [36]. y∗ is the distance from the nearest wall. Hence, a smooth
transition from the free surface value to the wall boundary value of ω is ensured.

The location of the free surface is represented implicitly by the zero level set of a smooth signed
distance function ϕ which can be expressed with the Eikonal equation |∇ϕ| = 1. The simple
advection equation

∂ϕ

∂t
+ uj

∂ϕ

∂xj
= 0 (6)

is applied for propagating the function in space and time. The hyperbolic property of (6) necessitates the
usage of conservative numerical schemes. The level set function has to be reinitialized regularly in order
to keep its signed distance property. The PDE-based reinitialization algorithm by Sussman et al. [37]
is, therefore, executed after each time step. By solving

∂ϕ

∂τ
+ S(ϕ)

(∣∣∣∣∣ ∂ϕ

∂xj

∣∣∣∣∣− 1

)
= 0, (7)

with ∆τ an artificial time stepping, the original properties of ϕ can be retained. S(ϕ) is the smoothed
sign function [38].

The material properties of the two phases are determined for the whole domain in accordance
with the continuum surface force model of Brackbill et al. [39]. The properties are defined at any
location in the domain as

ρi = ρw H(ϕi) + ρa(1− H(ϕi)), (8)

νi = νwH(ϕi) + νa(1− H(ϕi)), (9)

with w indicating water and a air properties. H is the smoothed Heaviside step function

H(ϕi) =


0 i f ϕi < −ε
1
2

(
1 + ϕ

ε + 1
π sin

(πϕi
ε

))
i f |ϕi| ≤ ε

1 i f ϕi > ε,

(10)

Typically, the thickness of the smoothed out interface is chosen to be ε = 2.1∆x on both sides of
the interface. The density is generally determined directly at the cell faces in order to avoid spurious
oscillations at the interface (see [1] for details).

The numerical discretisation of the different equations is achieved using finite difference methods
on rectilinear grids. The coupling of pressure and velocity during the solution of (2) is ensured by
staggering the grid. A fifth-order accurate weighted essentially non-oscillatory (WENO) scheme [4]
adapted to non-uniform cell sizes is applied for the convection terms. In (6), the convection term
is discretised by the fifth-order accurate Hamilton–Jacobi WENO method of Jiang and Peng [40].
Diffusion terms are, generally, discretised using second-order accurate central finite differences.



J. Mar. Sci. Eng. 2020, 8, 526 6 of 27

The solution process follows the projection method for incompressible flows of Chorin [41].
In the predictor step, the conservation equation for momentum (2) is solved without considering the
pressure gradients

u(∗)
i − u(n)

i
∆t

= −uj
∂ui
∂xj

+
∂

∂xj

(
ν ·
(

∂ui
∂xj

+
∂uj

∂xi

))
+ gi. (11)

Thus, a predicted velocity field u(∗)
i is obtained. Here, the time derivatives are solved by applying

the third-order accurate Total Variation Diminishing (TVD) Runge–Kutta scheme [5]. The same time
discretisation is also used in (6) and (7). Turbulence time advancement is solved using implicit methods
due to its source term driven character. The general time-stepping is controlled adaptively under
consideration of the CFL condition (see [1]). Diffusion terms are treated implicitly to overcome their
restrictions on this condition. The insertion of the predicted velocities into the continuity equation
leads to the Poisson equation

∂

∂xi

(
1

ρ(Φ̂n+1)

∂p(n+1)

∂xi

)
=

1
∆t

∂u(∗)
i

∂xi
. (12)

for the pressure of the new time step. It is solved by the fully parallelized BiCGStab algorithm
of the HYPRE library [42] with the geometric multigrid PFMG pre-conditioner [43] to enhance
the performance. As the final step, the divergence-free velocity field of the new time step is
obtained following

u(n+1)
i = u(∗)

i −
∆t

ρ(Φ̂n+1)

∂p(n+1)

∂xi
. (13)

High-performance computations are enabled in REEF3D::CFD by applying the Message Passing
Interface (MPI) and ghost cells as the parallelisation strategy. Three layers of ghost cells are added
to each sub-domain due to the fifth-order accurate WENO scheme. Similarly, the directional ghost
cell immersed boundary method (GCIBM) of Berthelsen and Faltinsen [2] is implemented to handle
complex solid geometries. Here, the domain is virtually extended into the geometry, and the values
at these ghost cells are found through extrapolation and under consideration of a wall boundary
condition. Thus, the numerical discretisation of the fluid domain does not need to account for the
boundary conditions explicitly. Instead, they are incorporated implicitly. Simple geometries such
as boxes, cylinders or prisms can be generated directly through user input. Otherwise, STL files
are to be generated. Then, a level set function, with the zero level set representing the solid
boundary, is generated using a ray-tracing algorithm as presented in [44], see above. In the same way,
natural bathymetries can be incorporated in a straightforward manner [45].

2.2. REEF3D::Sflow

The governing equations for the non-hydrostatic shallow water module are derived from the
mass and momentum conservation for an incompressible inviscid fluid. Following the quadratic
assumption [46,47], the governing equations are written with depth-averaged variables:
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∂ζ

∂t
+

∂hu
∂x

+
∂hv
∂y

= 0, (14)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −g
∂ζ

∂x
− 1

ρh

(
∂hq
∂x
−
(

3
2

q +
1
4

ρhΦnh

)
∂d
∂x

)
, (15)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −g
∂ζ

∂y
− 1

ρh

(
∂hq
∂y
−
(

3
2

q +
1
4

ρhΦnh

)
∂d
∂y

)
, (16)

∂w
∂t

+u
∂w
∂x

+ v
∂w
∂y

= − 1
ρh

(
3
2

q +
1
4

ρhΦnh

)
, (17)

where u, v, w and q are the depth-averaged velocity components in x, y, z-directions and the
depth-averaged dynamic pressure. d is the still water depth, ζ represents the free surface elevation and
h = d + ζ. The hydrodynamic pressure at the bottom is represented as 3

2 q + 1
4 ρhΦ, which describes

the quadratic vertical pressure profile [46]. The term Φ is expressed as follows [46]:

Φnh = −∇d · (∂tu + (u · ∇)u)− u · ∇(∇d) · u. (18)

The governing equations are solved on REEF3D’s structured staggered grid using finite differences.
The solution of the velocities are obtained using Chorin’s projection method [41]. The convective terms
for the velocities u, v and w are discretised with the fifth-order accurate WENO scheme. The TVD
third-order accurate Runge–Kutta explicit time scheme is used for time discretisation. The pressure
information is obtained from the solution of the Poisson equation

hp

ρ

(
∂2q
∂x2 +

∂2q
∂y2

)
+

2q
ρhp

=
1

∂x∂t

(
−hp

(
∂u
∂x

+
∂v
∂y

)
− 2w− u

∂d
∂x
− v

∂d
∂y

)
. (19)

Here, the parameter hp denotes the water level in the centre of the cell, where the dynamic
pressure q, the vertical velocities w and the free surface location ζ are solved. The horizontal velocities
u and v are solved at the cell faces. The PFMG preconditioned BiCGStab algorithm [43] of HYPRE is
applied to solve for pressure. The solution is then utilised to correct the velocities in a correction step:

un+1 = u∗ + ∆t
(

3
2

qn+1

ρhp

∂d
∂x

+
1
4

Φnh
∂d
∂x

)
, (20)

vn+1 = v∗ + ∆t
(

3
2

qn+1

ρhp

∂d
∂y

+
1
4

Φnh
∂d
∂y

)
, (21)

wn+1 = w∗ + ∆t
(

3
2

qn+1

ρhp
+

1
4

Φnh

)
, (22)

with u∗, v∗, w∗ the intermediate velocities using only the hydrostatic pressure information.
The free-surface elevation ζ is determined from Equation (14) using the divergence of the

depth-integrated horizontal velocities and the fifth-order WENO scheme.
A straightforward wetting and drying scheme [48,49] is applied at the coastlines. The velocities

are set to be zero in cells where the local water level is below a user-defined threshold:{
u = 0, if ĥx < threshold,
v = 0, if ĥy < threshold.

(23)

The default threshold is set to be 0.00005 m. This approach tracks the variations of the coastlines
accurately and avoids numerical instabilities by ensuring non-negative water depth [48,49].
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Breaking waves are detected when the vertical velocity of the free-surface exceeds a fraction of
the shallow water celerity [50]:

∂ζ

∂t
> α

√
gh. (24)

During breaking, the dynamic pressure is removed at the front of the breaker and only the
hydrostatic pressure is present in the momentum equations. Another parameter β (0 < β < α) is
introduced to replace α in Equation (24) to stop wave breaking and determine the persistence of the
breaking process. α = 0.6 and β = 0.3 are recommended by the SWASH developers [50]. In this
combined approach, the momentum is well conserved and the energy is correctly dissipated [50].

2.3. REEF3D::FNPF

The governing equation for the fully nonlinear potential flow module REEF3D::FNPF is the
Laplace equation [51]

∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 = 0. (25)

Boundary conditions at the free surface and the bottom are required in order to solve for the
velocity potential φ. The kinematic and dynamic free surface boundary conditions state that the fluid
particles at the free surface must remain at the surface and the pressure at the free surface should be
equal to the atmospheric pressure. These boundary conditions can be expressed as follows:

∂η

∂t
=− ∂η

∂x
∂φ̃

∂x
− ∂η

∂y
∂φ̃

∂y
+ w̃

(
1 +

(
∂η

∂x

)2
+

(
∂η

∂y

)2
)

, (26)

∂φ̃

∂t
=− 1

2

((
∂φ̃

∂x

)2

+

(
∂φ̃

∂y

)2

− w̃2

(
1 +

(
∂η

∂x

)2
+

(
∂η

∂y

)2
))
− gη, (27)

where η is the free surface elevation, x = (x, y) represents the horizontal directions, φ̃ = φ(x, η, t) and
w̃ are the velocity potential and the vertical velocity at the free surface. At the bottom, the component
of the velocity normal to the bottom surface must be zero at all times. This gives the bottom
boundary condition

∂φ

∂z
+

∂h
∂x

∂φ

∂x
+

∂h
∂y

∂φ

∂y
= 0, z = −h, (28)

with h = h(x) the water depth measured from the still water level to the bottom.
The Laplace equation is solved in each time step with the finite difference method on a

σ-coordinate system as proposed by Li and Fleming [52]. Here, the σ-coordinate system follows
the irregular variation of the water depth. A Cartesian grid can be transformed to a σ-coordinate
as follows:

σ =
z + h (x)

η(x, t) + h(x)
. (29)

The vertical coordinates are clustered towards the free surface by including a stretching function:

σi =
sinh (−α)− sinh

(
α
(

i
Nz
− 1
))

sinh (−α)
, (30)
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where α is the stretching factor, i is the index of the vertical grid point and Nz stands for the total
number of cells in the vertical direction. The boundary conditions and the governing equation in the
σ-coordinate can be written as:

Φ = φ̃ , σ = 1; (31)

∂2Φ
∂x2 +

∂2Φ
∂y2 +

(
∂2σ

∂x2 +
∂2σ

∂y2

)
∂Φ
∂σ

+ 2
(

∂σ

∂x
∂

∂x

(
∂Φ
∂σ

)
+

∂σ

∂y
∂

∂y

(
∂Φ
∂σ

))
+

((
∂σ

∂x

)2
+

(
∂σ

∂y

)2
+

(
∂σ

∂z

)2
)

∂2Φ
∂σ2 = 0 , 0 ≤ σ < 1;

(32)

(
∂σ

∂z
+

∂h
∂x

∂σ

∂x
+

∂h
∂y

∂σ

∂y

)
∂Φ
∂σ

+
∂h
∂x

∂Φ
∂x

+
∂h
∂y

∂Φ
∂y

= 0 , σ = 0, (33)

with Φ the velocity potential with a dependency on σ. The fluid velocities can then be calculated using

u (x, z) =
∂Φ (x, z)

∂x
=

∂Φ (x, σ)

∂x
+

∂σ

∂x
∂Φ (x, σ)

∂σ
, (34)

v (x, z) =
∂Φ (x, z)

∂y
=

∂Φ (x, σ)

∂y
+

∂σ

∂y
∂Φ (x, σ)

∂σ
, (35)

w (x, z) =
∂Φ (x, z)

∂z
=

∂σ

∂z
∂Φ (x, σ)

∂σ
. (36)

The Laplace equation is discretized using second-order central differences, and the solution
is obtained using the geometric multigrid preconditioned conjugated gradient solver provided by
HYPRE. The convection terms in the free surface boundary conditions are discretized using the
fifth-order accurate Hamilton–Jacobi version of the WENO scheme [40]. The time-dependent terms
in the free surface boundary conditions are treated with the third-order accurate TVD Runge–Kutta
scheme [5]. An adaptive time step is included by controlling a constant time factor that is equivalent
to the Courant criterion [53]:

cu =
∆x∣∣max(umax,
√

9.81 ∗ dmax)
∣∣ ,

cv =
∆x∣∣max(vmax,
√

9.81 ∗ dmax)
∣∣ ,

ctot = min(cu, cv),

∆t = ctot CFL,

(37)

where cu, cv, cw are the phase velocities in x, y and z directions, and umax, vmax are the maximum
particle velocities in x- and y-direction.

The wetting-drying scheme for detecting coastlines and the shallow water breaking criterium
follow the same principle as in REEF3D::SFLOW. For deep water breaking, a wave slope criterion is
used. Wave breaking takes place when the ratio between the free surface elevation difference and the
horizontal distance difference at adjacent cells is higher than the criterion, which has a default value
of 1.25. A filtering scheme is used to smooth the free surface in order to dissipate wave energy when
wave breaking is detected [54].

Another challenge in handling coastlines in a potential flow model is the possible numerical
instability during the wave run-up process in the swash zone. The derivatives of velocity potential
over water depth in Equation (32) indicate a possible numerical instability when water depth becomes
infinitesimal. Therefore, an innovative coatline lagorithm is introduced to eliminate the instability.
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After the wet and dry cells are identified, the wet cells are assigned with +1 and the dry cells are
assigned with −1. With these initial values, the coastline is captured using the level-set function by
Osher and Sethian [3]:

ϕ(~x, t)


> 0 i f ~x ∈ wet cell

= 0 i f ~x ∈ Γ

< 0 i f ~x ∈ dry cell

(38)

Γ represents the coastline, and the Eikonal equation |∇ϕ| = 1 remains valid in the level-set function.
From the initial values, the correct signed distance function is obtained by solving the following Partial
Differential Equation (PDE) based reinitialisation function [37]:

∂ϕ

∂t
+ S (ϕ)

(∣∣∣∣∣ ∂ϕ

∂xj

∣∣∣∣∣− 1

)
= 0 (39)

where S (ϕ) is the smoothed sign function [38]. This equation is solved until convergence and results in
the correct signed distance away from the coastline in the whole horizontal plane. The exact coastline
location is the zero-contour of the level set function.

Relaxation zones are applied along the the wet side of the coastline. With these relaxation zones,
the extreme run-ups are avoided and therefore eliminate numerical instabilities in the free surface
boundary conditions at extreme shallow regions.

3. Numerical Results

3.1. Comparison of the Different Modules for the Numerical Simulation of Progressive Waves

The different modules of REEF3D all share high-order numerical schemes for spatial and temporal
discretisation and a high-performance computation capacity. To demonstrate the modules’ capabilities
and limitations, simulations of progressive waves over constant and varying topography are performed
using all three modules. First, progressive regular wave propagation over constant intermediate water
depth in 2D is simulated. The numerical wave tank is 28 m long and the water depth is 0.5 m. Two input
waves are used, one is a linear wave with the wave height H = 0.01 m and a wave period of T = 1.95 s,
and another is a Stokes 2nd-order wave with a wave height of H = 0.05 m and the same wave period
of T = 1.95 s and wavelength 3.936 m. A one-wavelength wave generation zone is located at the inlet
boundary, and a two-wavelength numerical beach is arranged at the outlet boundary. All simulations
are conducted for a duration of 40 s on a Mac Pro with a four 2.7 GHz Intel Xeon E5 cores. The grid
convergence studies of the linear wave simulations are shown in Figure 1a–c. For REEF3D::FNPF,
the vertical grid is determined by keeping a constant truncation error in the vertical direction [55],
which results in 10 vertical cells with a stretching factor of 1.25. It is seen that the results for amplitude
and phase converge with ∆x = 0.05 m, 0.02 m and 0.1 m for REEF3D::CFD, REEF3D::SFLOW and
REEF3D::FNPF, respectively. With these cell sizes, the total number of cells Nt and the simulation
time Ts are compared in Table 1. The spatial free surface profiles are compared against the theoretical
wave profile in Figure 1d. All three modules generate the theoretical wave profile accurately and
the numerical beach absorbs the wave energy at the outlet boundary effectively. REEF3D::SFLOW
requires the least number of cells due to its two-dimensional grid. Consequently, it is 7.3 times faster as
REEF3D::CFD. However, REEF3D::FNPF is the fastest (35 times as fast at REEF3D::CFD), even though
it needs more cells than REEF3D::SFLOW.
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(c) Grid convergence study using REEF3D::FNPF
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(d) Comparison of the spatial wave profiles

Figure 1. Convergence study on cell sizes for the 2D regular linear wave simulation and the comparison
of free surface elevation among the three modules. (a–c) grid convergence study, (d) comparison of the
spatial wave profiles using the finest cell sizes.

The mean square root errors for wave height in the grid convergence study for the 2D regular
linear wave simulation using the three modules are summarised in Table 2.

Table 1. Comparison of total number of cells Nt and simulation time Ts in seconds for the simulation
of progressive linear wave using the three modules.

Module Nt Ts

REEF3D::CFD 11,200 594.9 s
REEF3D::SFLOW 560 81.5 s
REEF3D::FNPF 2800 16.8 s
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Table 2. Mean square root errors on wave height in the grid convergence study for the 2D regular
linear wave simulation using the three modules. The notations dx1 to dx4 represent the finest and
coarsest cell size in the tests of each of the modules.

dx (m) REEF3D::CFD REEF3D::SFLOW REEF3D::FNPF

dx1 7.889 × 10−5 8.031 × 10−5 5.025 × 10−5

dx2 8.872 × 10−5 9.656 × 10−5 5.701 × 10−5

dx3 1.010 × 10−4 1.999 × 10−4 3.303 × 10−4

dx4 1.213 × 10−4 4.251 × 10−4 4.842 × 10−4

Similarly, the grid convergence study and the comparison of the spatial wave profiles for the
simulations of the 2nd-order Stokes wave using different modules are shown in Figure 2. The mean
square root errors for wave height in the grid convergence study for the 2D regular Stokes 2nd-order
wave simulation using the three modules are summarised in Table 3. It is seen that the grid
convergence is achieved with ∆x = 0.05 m, 0.02 m and 0.1 m for REEF3D::CFD, REEF3D::SFLOW and
REEF3D::FNPF. With these cell sizes, all three modules represent the 2nd-order Stokes wave with
correct amplitude, phase and asymmetry over the still water level. Similarly, the total number of cells
and computational time are summarised in Table 4, and the computational speed is similar to the
linear wave simulations.

Table 3. Mean square root errors for wave height in the grid convergence study for the 2D regular
Stokes 2nd-order wave simulation using the three modules. The notations dx1 to dx4 represent the
finest and coarsest cell size in the tests of each of the modules.

dx (m) REEF3D::CFD REEF3D::SFLOW REEF3D::FNPF

dx1 3.581 × 10−4 5.117 × 10−4 4.739 × 10−4

dx2 3.582 × 10−4 7.637 × 10−4 5.483 × 10−4

dx3 4.421 × 10−4 9.529 × 10−4 1.41 × 10−3

dx4 1.109 × 10−3 1.80 × 10−3 2.15 × 10−3

Table 4. Comparison of total number of cells Nt and simulation time Ts in seconds for the simulation
of progressive 2nd-order Stokes wave using the three modules.

Module Nt Ts

REEF3D::CFD 11,200 638.3 s
REEF3D::SFLOW 560 86.7 s
REEF3D::FNPF 2800 16.9 s
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(a) Grid convergence study using REEF3D::CFD
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(b) Grid convergence study using REEF3D::SFLOW
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(c) Grid convergence study using REEF3D::FNPF
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(d) Comparison of the spatial wave profiles

Figure 2. Convergence study on cell sizes for the 2D regular Stokes 2nd-order wave simulation and
the comparison of free surface elevation among the three modules. (a–c) grid convergence study,
(d) comparison of the spatial wave profiles using the cell sizes achieving grid convergence.

3.2. Two-Dimensional Wave Propagation over a Submerged Bar

Next, the experiment of the wave propagation over a submerged bar [56] is reproduced using all
three modules. The numerical tank setup is shown in Figure 3. A wave generation zone of 5 m is located
at the inlet boundary and a numerical beach of 9.5 m is located at the outlet boundary. The submerged
bar starts 6 m from the wave generation zone, and eight wave gauges are located over the horizontal
range of the submerged bar. A 2nd-order Stokes wave with a wave height 0.021 m and a wave period of
2.525 s is generated from the inlet boundary and propagates over the bar for 60 s. The simulations are
computed with four 2.7 GHz Intel Xeon E5 cores on Mac Pro for REEF3D::FNPF and REEF3D::SFLOW
and 128 2.1 GHz Intel E5-2683v4 cores on the supercomputer Fram for REEF3D::CFD.
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Figure 3. Numerical setup for the simulation of the wave propagation over a submerged bar.

The grid convergence study is shown in Figure 4. The vertical grid arrangement for REEF3D::FNPF
follows the same constant truncation error principle. Here, 10 vertical cells and a stretching factor of 1.2
is used. Only the horizontal grid convergence of REEF3D::FNPF is performed. The last wave gauge 8
is used for the convergence study as high-frequency wave components appear during the de-shoaling
process after the waves propagate over the submerged bar. REEF3D::CFD and REEF3D::FNPF are able
to capture the high-frequency wave components with cell sizes of 0.005 m and 0.025 m, respectively.
For REEF3D::SFLOW, even with a converged cell size of 0.02 m, the wave phases are not correctly
represented because these high-frequency waves have significantly shorter wavelengths and the water
condition is not appropriate for shallow water models at this location.
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(a) REEF3D::CFD convergence at Gauge 8
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(b) REEF3D::SFLOW convergence at Gauge 8
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(c) REEF3D::FNPF convergence at Gauge 8

Figure 4. Convergence study on horizontal cell sizes at wave gauge 8 for the simulations of wave
propagation over a submerged bar. (a) REEF3D::CFD grid convergence, (b) REEF3D::SFLOW grid
convergence, (c) REEF3D::FNPF grid convergence.
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Using the converged cell sizes, the free surface elevation time history in the simulations are
compared against the experimental measurements in Figure 5. The free surfaces from all simulations
agree well with the experimental data during the shoaling process, while REEF3D::SFLOW starts to
show phase differences from gauge 6 in the de-shoaling process as the water condition gets deeper
due to shorter waves.
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Figure 5. Comparison of the time histories of the free surface elevations at the wave gauges in the
simulations of wave propagation over a submerged bar using the cell sizes achieving grid convergence.

The number of cells and computational time for the simulations of the wave propagation over
a submerged bar are summarised in Table 5. When complicated phenomena are present, CFD often
requires a large number of cells, and the speed-up with the shallow water model and the potential
flow model is dramatically increased.

Table 5. Comparison of total number of cells Nt and simulation time Ts in seconds for the simulation
of wave propagation over a submerged bar using the three modules.

Module Nt Ts

REEF3D::CFD 1,216,000 10,759.5 s
REEF3D::SFLOW 1900 761.7 s
REEF3D::FNPF 15,200 282.2 s
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The simulations show that, for progressive regular waves below the breaking limit, all three
modules can represent the frees surface accurately. However, the requirements of the grid resolution
are different. It is commonly seen that 80 to 100 cells per wavelength is able to capture the free-surface
well with REEF3D::CFD, while only 30 to 40 cells per wavelength are needed in REEF3D::FNPF.
The grid resolution in REEF3D::SFLOW might be higher, but the 2D vertical grid structure reduces the
total number of cells dramatically. In practice, when the wave steepness is not close to the breaking
limit, REEF3D::SFLOW and REEF3D::FNPF are much faster alternatives, especially for large-scale sea
states and coastal wave simulations. In shallow for intermediate water condition up to wavelength
to water depth ratio 0.25 [46], REEF3D::SFLOW has an advantage because it is capable of resolving
the run-up process in the swash zone. However, for water conditions with large water depth changes,
the de-shoaling process limits the application of REEF3D::SFLOW as seen in the simulation of wave
propagation over a submerged bar. In such conditions, REEF3D::FNPF is the optimal choice as its
applicability is not limited by large water depth gradients. REEF3D::CFD is slower but contains more
information about turbulent effects in the flow. In cases where strong wave–structure interaction
take place or waves break, REEF3D::CFD is the only option for numerical modelling of the associated
phenomena. The following applications focus on the most suitable applications for each of the modules.

3.3. Two-Dimensional Wave Breaking over a Mild Slope

In shallow water regions, depth-induced wave breaking is a common phenomenon. All three
modules are equipped with breaking wave algorithms to represent the energy dissipation during a
wave breaking process, as described in Section 2. In this section, a depth-induced breaking wave over
a mild slope is simulated with all three modules in a two-dimensional numerical wave tank. In order
to reduce the computational cost of the CFD simulation, the original setup from Ting and Kirby [57]
is truncated in its longitudinal direction. The breaking wave zone and swash zone are all remained
in the truncated numerical wave tank. The new numerical wave tank setup is shown in Figure 6.
The mild slope starts 13.8 m from the inlet boundary and rises up to 0.463 m at the outlet following
a slope of 1:35. The water depth at the wave generator is 0.4 m. A 5th-order Cnoidal wave with a
wave height of 0.128 m and wave period of 5 s is generated at wave generation zone that is 9.8 m long,
i.e., one wavelength. Four wave gauges are located on the slope adjacent to the wave breaking location.
From wave gauges 1 to 4, the x-coordinates are x = 19.8, 20.8, 21.8 and 22.1 m. The simulations are
computed with four 2.7 GHz Intel Xeon E5 cores on Mac Pro for REEF3D::FNPF and REEF3D::SFLOW
and 128 2.1 GHz Intel E5-2683v4 cores on the supercomputer Fram. The grid convergence study for
the three models REEF3D::CFD, REEF3D::SFLOW and REEF3D::FNPF were reported respectively
by Bihs et al. [1], Wang et al. [47] and Bihs et al. [51]. As a result, the dx = 0.005 m, dx = 0.005 m
and dx = 0.005 m are used in the REEF3D::CFD, REEF3D::SFLOW and REEF3D::FNPF simulations
respectively. Ten cells are used in the vertical direction for the simulation with REEF3D::FNPF.
The simulations are performed for 40 s with adaptive time stepping and CFL = 0.1, 0.2 and 1.0 for
the REEF3D::CFD, REEFD::SFLOW and REEF3D::FNPF simulations, respectively. The simulated free
surface elevation time series from all three modules are compared to the experimental measurements
in Figure 7.
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Figure 6. Numerical wave tank setup for wave breaking over a mild slope.
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Figure 7. Comparison between the simulated free surface elevation time series from the three REEF3D
modules and the experiment measurements at all four wave gauges in the simulations of wave breaking
over a mild slope.

As can be seen in Figure 7, the results from all three modules achieve a good agreement with the
experiment both in wave amplitude and wave phase. The wave amplitudes increase from waver gauge
1 to wave gauge 2 due to the shoaling effect in both the simulations and the experiment. Wave gauge 3
shows a decrease in wave amplitude and the decreasing trend continues to wave gauge 4. This change
of amplitude indicates a wave breaking happens between wave gauge 2 and 3 as a result of energy
dissipation during the wave breaking process. The correct representation of the amplitude change
shows that all three modules produce correct wave energy dissipation.

To compare the computational performance of the three modules, the total number of cells and
computational time for each model to finish the simulations are summarised in Table 6.
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Table 6. Comparison of total number of cells Nt and simulation time Ts in seconds for the simulation
of wave propagation over a submerged bar using the three modules.

Module Nt Ts

REEF3D::CFD 1,200,000 31,578.8 s
REEF3D::SFLOW 6000 5326.62 s
REEF3D::FNPF 6000 639.9 s

Similar to Section 3.2, REEF3D::SFLOW and REEF3D::FNPF use much less cells in comparison
to REEF3D::CFD to achieve a similar level of accuracy. In this case, both REEF3D::SFLOW and
REEF3D::FNPF only need 1/200 the number of cells as used in the REEF3D::CFD simulation. In terms
of the computational speed, REEF3D::SFLOWS is seen to be roughly 190 times faster than REEF3D::CFD
while REEF3D::FNPF is 1580 times faster. However, the slower computational speed of REEF3D::CFD
is compensated by the fact that REEF3D::CFD is the only model that is able to represent a correct
geometry of an overturning breaker, which is shown in the next section with a three-dimensional
overturning wave breker.

3.4. Three-Dimensional Wave Breaking over a Flat-Tipped Reef

The design of coastal structures such as combined coastal defences, recreational surfing reefs
and marine biodiversity enhancement measures such as submerged porous reefs require a detailed
analysis of the interaction between the incident waves and the proposed structure. The evaluation
of the properties of the breaking waves generated due to the presence of the submerged structure
is one of the essential analyses in such cases. In this sub-section, three-dimensional wave breaking
is investigated using all three models. The free surface elevations at different locations calculated
by the two models are also compared. The illustration of the numerical wave tank with the bottom
topography used in the simulations is presented in Figure 8. The bottom topography consists of a
1 in 20 slope over which a flat-tip shaped reef with a reef slope of 1 in 6 is placed. The reef angle
that is the angle between the reef normal and the direction of wave propagation is 60◦. A detailed
description of the complicated reef geometry is provided in [58]. The width of the flat tip is 0.188 m
and the width of the reef at the far end is 3.88 m. The numerical wave tank is 20 m long, 9 m wide,
0.8 m wide with a water depth of d = 0.4 m. Cnoidal waves with a height of H = 0.12 m and period
T = 2.50 s are generated. The submerged reef will affect the propagation of the incident waves and
induce wave breaking with the overturning wave crest first appearing over the slope of the reef as
shown in Figure 9. The rest of the wavefront undergoes overturning as it propagates further along the
submerged reef and the bottom slope. All simulations are computed with 128 2.1 GHz Intel E5-2683v4
cores on the supercomputer Fram.

The free surface elevations at different locations along the reef in the numerical wave tank using
the three models are presented in Figure 10. The incident wave at the toe of the slope near the wall is
shown in Figure 10a. The free surface elevation over the reef slope is seen in Figure 10b,c. The wave
appears to break at these locations as seen from the vertical wave crest front. The difference between
the results from the two models are seen in the shape of the wave crest front. The shallow water model,
REEF3D::SFLOW and the potential flow model REEF3D::FNPF cannot account for an overturning crest
and therefore represent a perfectly vertical wave crest fronts to represent the breaking wave before a
sudden reduction in the free surface elevation. In the time series in Figure 10b,c, this is seen through
the graph retracing its path, before its eventual reduction. In contrast, REEF3D::CFD represents the
overturning wave crest. Therefore, the vertical wave crest front is followed by a reduction of the free
surface elevation, without a period of retracing of the initial path to the peak. The wave gauges WG
2, 3 and 4 show this process in Figure 10b–d respectively as they are placed in the region of wave
breaking over the reef slope. The free surface elevations at WG 5, 6 and 7 in Figure 10e–g respectively
show the secondary breaking process and the post breaking splash up. This is signified by the reduced
free surface elevations and the appearance of secondary crests in the time series. A slight phase
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difference is seen between the results from REEF3D::SFLOW and REEF3D::CFD. The first secondary
breaker in the REEF3D::FNPF simulation is in phase with the other two models. However, significant
phase differences are seen in comparison to the other two models after the first secondary breaking.
The reason is that the incoming waves start to interact with the wave run-up and run-down on the
slope which takes place after the first secondary breaker. In the potential flow model, the wet side of
the coastline is covered with a narrow relaxation zone of 0.675 m to avoid numerical instabilities due to
the derivatives of the velocity potential over z in the infinitesimal water depth. Therefore, the run-up
and run-down are not correctly represented, which lead to a large phase different and smaller wave
amplitude in the potential flow simulation. The complex 3D swash zone dynamic and the steeper
slope at the end of the numerical wave tank amplify this effect, which is not noticeable in Section 3.3.
Figure 10h–j present the free surface elevations at WG 8, 9 and 10, respectively, which are along the
reef slope but in post-breaking region. The free surface elevations are seen to be further reduced and
several secondary crests appear in the time series. There is also some phase difference seen among the
models. On the other hand, the wave heights calculated by all models are similar for the first breaking
wave. This suggests that the loss of wave energy due to wave breaking is well represented in the
shallow water model as well as the potential flow model, even though the overturning wave crest is
not accounted for.
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m = 1: 20

m = 1: 6
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Wave generation
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Figure 8. Numerical wave tank setup for the simulation of three-dimensional wave breaking on a reef.
m represents the slopes. (a) schematics from top view, (b) 3D view in the NWT.
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Figure 9. Three-dimensional wave breaking over the reef in the numerical wave tank calculated using
REEF3D::CFD.

The free surface elevations in the numerical wave tank with the horizontal velocity contours
for the simulations carried out using all three models are presented in Figure 11. The overturning
wave crest at t/T = 5.5 is represented in the CFD model in Figure 11a, whereas only a steep free
surface is seen in REEF3D::SFLOW and REEF3D::FNPF in Figure 11c,e. The free surface and velocities
over the rest of the wavefront are seen to be similar for all the models. The overturning wave crest
moves towards the preceding wave trough and the rest of the wavefront gets steeper at t/T = 5.6
in Figure 11b in the REEF3D::CFD model. The REEF3D::SFLOW and REEF3D::FNPF simulations
show smoothened free surfaces in the region of the overturning wave crest in Figure 11d,f. Wave
breaking is seen on the reef slope and wave breaking is initiated away from the reef in Figure 11g at
t/T = 5.8 in the REEF3D::CFD simulation. Figure 11i,k show steep wavefronts in the region away
from the reef for the REEF3D::SFLOW and REEF3D::FNPF simulations. The process of secondary
breaking is seen to have started at this time step in the simulations. The overturning wave crest in the
region away from the reef at t/T = 6.1 is seen in Figure 11h in the REEF3D::CFD simulation. The free
surfaces in the REEF3D::SFLOW ad REEF3D::FNPF simulations in Figure 11j.l are seen to be similar
over the reef in the absence of wave breaking and a steep wavefront are seen away from the reef.
However, the post-breaking region is seen to be very different in the simulation of REEF3D::FNPF
in comparison to the other models, as seen in Figure 11k,l. Less run-up on the slope and some small
high-frequency waves are seen only in the simulation of REEF3D::FNPF as the result of the coastal
relaxation zone arrangement.

The key difference in the results from REEF3D::CFD and the other two models is that the
overturning wave crest is not represented by REEF3D::SFLOW and REEF3D::FNPF. On the other hand,
the wave heights after the wave breaking process are seen to be similar in all models. Therefore, if the
representation of the overturning wave crest is not critical in a simulation, the shallow water model
and potential flow model can provide similar wave kinematics solutions as the three-dimensional and
two-phase flow model. However, REEF3D::SFLOW is a better choice when swash zone dynamics
result in strong interaction with the incoming waves.
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Figure 10. Free surface elevations at several locations in the numerical wave tank for three-dimensional
wave breaking on a submerged reef calculated using CFD and SFLOW.
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(k) FNPF, t/T = 5.8 (l) FNPF, t/T = 6.1

Figure 11. Free surface elevations with velocity contours at different time steps for three-dimensional
wave breaking on a reef calculated using CFD and SFLOW.

The computational grid, computational resource and computational time from the three models
are compared in Table 7. The computational speed gains from REEF3D::SFLOW and REEF3D::FNPF in
a 3D simulation are seen to be even more prominent in comparison to the CFD solver, with a speedup
factor of 60 and 800, respectively. On the other hand, the computational speed of REEF3D::CFD
is compensated by the fact that REEF3D::CFD is the only model that is able to represent a correct
geometry of an overturning breaker.

Table 7. Comparison of total number of cells Nt and simulation time Ts in seconds for the simulation
of wave propagation over a submerged bar using the three modules.

Module Nt Ts

REEF3D::CFD 28,700,000 90 h
REEF3D::SFLOW 450,000 5014.73 s
REEF3D::FNPF 720,000 401.34 s

4. Conclusions

In the presented manuscript, a comparative study of the three major types of phase-resolved
wave models is presented with the use of the open-source hydrodynamics framework REEF3D.
The development and numerical implementation of REEF3D are explained extensively to show
the numerical consistency as well as differences among the wave models. The benchmark studies
provide an insight into the strengths and limitations of each type of the wave modelling technique
in terms of their computational performance as well as their limitations in different types of wave
hydrodynamic phenomena. Thanks to the fact that all three models are implemented in the same
numerical framework, an objective comparison is presented, which is not influenced by the various
numerical implementations from different developers.

REEF3D::CFD solves the incompressible Navier–Stokes equations with a RANS turbulence model.
Here, the pressure is solved on a staggered grid using the projection method. This ensures a tight
pressure–velocity coupling. The model benefits from the utilization of a level set function to capture
the motion of the free surface implicitly. In the numerical wave tank, the waves are generated and
absorbed with either the relaxation method or using Dirichlet boundary conditions.

REEF3D::SFLOW reduces the computational costs significantly by solving the depth-averaged
shallow water equations with a non-hydrostatic extension based on a quadratic vertical pressure
profile. In comparison to existing approaches, like Boussinesq-type models or multi-layer approaches,
the system of equations is solved with the projection method and high-order discretization schemes.
This increases the stability of the computation through simpler terms in the equation and semi-implicit
calculations for the pressure. Furthermore, the model benefits from the parallelization strategy in
REEF3D which enables the simulation of large scale wave propagation near shores.
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REEF3D::FNPF closes the gap between the efficient 2D shallow water solver and the accurate
CFD solver for wave propagation problems as the FNPF potential flow solver is not restricted by water
depth. By solving the three-dimensional Laplace equation with nonlinear boundary conditions for the
free surface and the bottom, no simplifying assumptions regarding the wave characteristics or bottom
slope are taken into account. At the same time, the use of a σ-coordinate system removes the additional
cost of a two-phase approach. The model employs high-order discretization schemes in space and
time which allows for larger cell sizes and time steps. Typically, ten cells in the vertical direction are
sufficient to obtain accurate wave propagation. Very fast parallelized algorithms for solving the system
matrix ensure the computational efficiency and enable the application for large-scale problems in deep
and shallow water.

The performance of the presented modules has been tested and compared for several benchmark
applications. The direct comparisons for regular waves show that all approaches are capable of
predicting the wave propagation in their range of applicability. The challenging submerged bar case
revealed very good accuracy of REEF3D::CFD and REF3D::FNPF, whereas the shallow water model
fails due to its theoretical limitations. The two-dimensional wave breaking case shows that all three
models are able to represent a correct wave energy dissipation during a breaking process. In the case
of the three-dimensional wave breaking case, REEF3D::CFD and REEF3D::SFLOW capture the second
breaking wave more accurately since both represent the swash zone dynamics better. The CFD based
numerical wave tank is the only model that accurately represents the physics of wave propagation
including complex overturning wave breaking. The computational speed gains from REEF3D::SFLOW
and REF3D::FNPF in comparison to REEF3D::CFD are found to be by factors of about 10 and 40 on
average for 2D simulations and 60 and 800 for the 3D simulation. The higher computational demands
of the CFD model are compensated by that fact that it is the only model capable of representing the
geometry of an overturning wave breaker accurately, which is important for studies on slamming load
on structures.

With the strengths and limitations of each numerical models in mind, the future work will
focus on the coupling of the different modules within REEF3D. A one-way coupling will use
the propagated waves from a potential theory model as input waves in the CFD simulations.
Two-way coupling processes will be interesting for applications in marine engineering with strong
fluid–structure interactions.
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