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Abstract. As more vulnerabilities are being discovered every year[17],
malware constantly evolves forcing improvements and updates of secu-
rity and malware detection mechanisms. Malware is used directly on the
attacked systems, thus anti-virus solutions tend to neutralize malware
by not letting it launch or even being stored in the system. However, if
malware is launched it is important to stop it as soon as the malicious-
ness of a new process has been detected. Following the results from [8] in
this paper we show, that it is possible to detect running malware before
it becomes malicious. We propose a novel malware detection approach
that is capable of detecting Windows malware on the earliest stage of
execution. The accuracy of more than 99% has been achieved by finding
distinctive low-level behavior patterns generated before malware reaches
it’s entry point. We also study the ability of our approach to detect mal-
ware after it reaches it’s entry point and to distinguish between benign
executables and 10 malware families.
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1 Introduction

Every year our society becomes more dependent on computers and computer
systems, thus attacks on the personal, industry and infrastructure computers
start having more severe consequences [23][26]. According to NIST the amount
of vulnerabilities discovered every year has grown almost 3 times during the years
2015-2019 [17]. At the same time a number of vulnerabilities found on Windows
platforms has shown 10% growth[18]. Furthermore, the amount of newly discov-
ered Windows malware has grown 30% during the same period[4]. Such security
landscape outlines the need for updates in existing and invention of new malware
detection mechanisms.

Malware detection methods can be divided based on which features of mal-
ware they use for detection: static and dynamic. Static features emerge from
the properties of an executable files themselves: file header, opcode and byte
n-grams or hashes are known to be used for malware detection[24]. Dynamic
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features represent the behavior of malware when it runs and can be roughly
divided into high- and low-level features[8]. API and system calls, network and
file activity are some of the high-level features, while memory access operations,
opcodes or hardware performance counters are the low-level features. Basically
we perceive behavioral features that emerge from the system’s hardware as the
low-level ones[7][13][20]. Static features are easier to change for an attacker uti-
lizing techniques such as obfuscation or encryption. However, malware becomes
malicious only when it is executed and it is impossible to avoid a behavioral
footprint[10]. Even though different techniques such as polymorphism, anti-VM
or anti-debug might be used to change high-level behavioral patterns, the func-
tionality of malware remains similar. Moreover, as soon as malware is launched
- it is impossible to avoid execution on the system’s hardware. That’s why in
this paper we use low-level features such as memory access patterns for malware
detection[9] and classification[7].

Memory access patterns previously were proven to be effective features for
malware detection[9] and classification[7]. A memory access pattern is a sequence
of read and write operations performed by an executable and will be described
in details in Section 3. The problem with low-level features is that it is hard
for a human analyst to understand the context under which a certain pattern
has occurred. A previous work [8] presented an attempt to fill the gap between
low-level activity (memory access patterns) and its high-level (more human un-
derstandable API calls) representation. During the study it was also found, that
under the experimental design used in [8] and [7] most of the recorded behavioral
activity emerged not from the main module of an executable (after the Entry
Point1 - AEP) but prior to the moment when instruction pointer (IP) is set
to the Entry Point (before the Entry Point - BEP). Without going into much
details (see Section 2 for details) these findings showed, that it is potentially
possible to detect running malicious executable before it starts executing the
logic that was put into it by the creator.

To study these findings, in this paper we use a novel approach in behavioral
malware analysis. This approach involves analysis of behavioral traces divided
into those generated BEP and those generated AEP: BEP-AEP approach. More
specifically, we show how memory access patterns can be used for malware de-
tection based on the activity produced BEP. To be consistent in our studies
we also compare these results to those achieved based on the activity produced
AEP: by the malicious code itself. As paper [7] showed a possibility to clas-
sify malware into categories (families or types) using memory access patterns,
further we investigate the usefulness of BEP-AEP approach for distinguishing
between benign executables and different malware families. In order to formalize
our future findings we propose the following hypotheses:

Hypothesis 1. It is possible to detect (distinguish from benign) running mali-
cious executable based on the memory access patterns it produces before it begins
to execute malicious code (BEP).

1 In this paper, by Entry Point, we mean the first executed instruction from the main
module of executable.
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Hypothesis 2. It is possible to detect (distinguish from benign) running mali-
cious executable based on the memory access patterns it produces after its Entry
Point (AEP).

And as the logic put into the executable (and makes malware malicious) normally
runs AEP we had another hypothesis:

Hypothesis 3. If Hypotheses 1, 2 are true, then it should be easier (higher clas-
sification performance) to detect running malicious executable AEP than BEP.

To test whether a BEP-AEP approach can be used to distinguish between benign
and several different categories of malicious executables we had another three
hypotheses (directly derived from Hypotheses 1, 2 and 3)

Hypothesis 4. It is possible to distinguish between several malware categories
and benign executables based on the memory access patterns they produce BEP.

Hypothesis 5. It is possible to distinguish between several malware categories
and benign executables based on the memory access patterns they produce AEP.

Hypothesis 6. If Hypotheses 4, 5 are true then it should be easier (higher
classification performance) to distinguish between several malware categories and
benign executables based on the memory access patterns they produce AEP.

In order to check the above mentioned hypotheses we decided to perform a series
of experiments that consist of several parts. First, we record memory access pat-
terns produced by executables before and after entry point with help of dynamic
binary instrumentation framework Intel Pin[12]. Second, we perform feature con-
struction and selection to create different feature vectors. Last, we train several
machine learning (ML) algorithms to check our hypotheses by looking at classi-
fication performance of machine learning models.

The remainder of the paper is arranged as following: Section 2 provides a lit-
erature overview, Section 3 describes our choice of methods, Section 4 explains
our experimental setup, in Section 5 we provide results and analyze them, in
Section 6 we discuss our findings and in the Section 7 we provide conclusions.

2 Related works

In this section we provide an overview of papers that are related to this article
in terms of features used for malware detection as well as methods to extract
those features. The first paper we would like to mention is [3] where authors
suggested to use Intel Pin based tool to detect malicious behavior by matching
it against predefined security policies. Authors record execution flow of executa-
bles and describe it by splitting into basic blocks with additional information
about each basic block. Among the different sources of information of the basic
blocks they used: file modification system calls, fact of presence of exec function
call and the fact of presence of memory read and write operations. During the
testing phase they managed to achieve average path coverage of more than 93%
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which later helped them to get as much as 100% detection rate on Windows
and Linux systems. Even though their datasets were relatively small this work
showed promising capabilities of Intel Pin in the malware research.

The next paper [5] focuses more on the low-level features and their use in
malware detection. As the features they used retired and mispredicted branch
instructions as well as retired load and stored instructions derived from hard-
ware performance counters. Authors achieved classification precision of more
then 90%. Their dataset was also relatively small, but they pointed to the ef-
fectiveness of low-level feature in malware detection. Later, the same authors
expanded their approach by using additional low-level features (near calls, near
branches, cache misses etc.) in the paper [6]. They have also expanded their task
to multinomial classification of benign and malicious samples divided into sev-
eral families. This time they achieved 95% precision on a bigger dataset, what,
once again, showed capabilities of low-level features use in malware detection
and classification.

In [14] another example of application of hardware-based features is proposed.
Extending their work from [19], authors propose hardware malware detector that
uses several low-level features such as: frequencies and presence of opcodes from
different categories, memory reference distance, presence of a load and store op-
erations, amount of memory reads and writes, unaligned memory accesses as
well as taken and immediate branches. Using ensemble specialized and ensemble
classifiers authors achieved classification and detection accuracy of around 90%
and 96% respectively.

Papers [3][5][14] used information about memory access operations but they
didn’t use sequences, or patterns, of memory access operations. The first paper
where memory access patterns were used for malware detection was [9]. There
authors explored a possibility of malware detection based on n-grams of memory
access operations. They recorded sequences of memory access operations from
malicious and benign executables. After the experiments authors found, that
with n-gram size of 96 it is possible to achieve malicious against benign clas-
sification accuracy of up to 98%. Later, the same authors explored possibility
of a use of memory access n-grams for malware classification [7]. They tested
their approach on two datasets label into malware types and families respec-
tively. After the feature selection they went down to as low as 29 features which
allowed them to classify malware types with accuracy of 66% and families with
accuracy of 78%. This performance was not as good as pure malicious against
benign classification. However, for 10-class classification problem such accuracy
showed that this methods (with certain limitations) can be used for malware
classification as well. During their studies authors discovered a following prob-
lem: memory access patterns provide little context to a human analyst as it is
almost impossible to understand which part of the execution flow created a dis-
tinctive memory access pattern. To eliminate this knowledge gap, in their next
paper [8] they performed an attempt to ”correlate” memory access patterns (as
low-level features) with API calls (as high-level features). Together with memory
access operations they recorded API calls performed by malicious executables.
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In the end their attempt was not successful: with their methodology they were
not able to find any significant ”correlation” between memory access patterns
and API calls. However, as those events were proven to be independent they
showed, that combining API calls and memory access patterns into integrated
feature vector results into increased classification performance. On the dataset
from [7] they managed to show increased classification accuracy of 70% and of
86% for malware types and families respectively. It was in this paper where they
discovered, that most of the behavioral activity they recorded originated from
BEP and outlined a need for additional study of such finding.

To the best of our knowledge no one has analyzed the possibility of malware
detection and classification based on activity generated BEP. Therefore we think
that our paper provides a novel contribution and grounds for further research.

3 Methodology

This section describes the methods used in our work. We begin with a descrip-
tion of the process creation flow on Windows. It has multiple stages and it is
important to show where we begin to record a behavioral trace: a set of op-
codes with their memory access operations, current function and module name.
Second, we explain the way we transform a behavioral trace into the memory
access patterns that are later used as features for training the ML models. We
also describe how we perform a feature selection. Last, we provide a description
of ML methods and evaluation metrics.

3.1 General overview

As we present BEP-AEP approach in this paper, we have to provide a brief
description of a process creation flow the way it is implemented in Windows.
The flow of process creation consists of several stages (as described in Win-
dows Internals [28]) and is depicted on the Fig. 1. First, the process and thread
objects are created. Then a Windows Subsystem Specific process initialization
is performed. Lastly, the execution of the new process begins from the Final
Process Initialization (Stage 7 on Fig. 1). During these stages OS initializes a
virtual address space that is later used by a process. Virtual address space is
divided into private process memory and protected OS memory. The size of vir-
tual address space depends on the OS type. Normally 32-bit Windows will have
up to 4GB while 64-bit - up to 512GB of virtual address space. The virtual ad-
dress space contains heap, stack, loaded DLLs, kernel and code of the executable
(main module). CPU executes instructions (opcodes) from main module or one
of the loaded libraries. Each opcode can be divided into several microopera-
tions. Some microoperations are used for arithmetical-logical operations while
some are responsible for memory read and write operations. Whenever execution
of an opcode requires a memory related microoperation to be executed, Intel Pin
tool will record this into the behavioral trace. Intel Pin tool begins to record the
behavioral trace at Stage 7, when a new process is started. In the context of a
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newly created process, Stage 7 generates a BEP activity and includes (but is not
limited to) the following actions: installing of exception chains; checking if the
process is debugee and whether prefetching is enabled; initialization of image
loader, heap manager; loading of all the necessary DLLs. When it is finished,
AEP activity begins from execution of Entry Point in the main module. Some
malware samples might use packing, thus will unpack itself in the beginning
of its execution. However, it is important to understand, that unpacking will
be done with instructions from the main module of executable. Thus, with our
approach, unpacking will happen AEP.

Convert and Validate 

Parameters and Flags

Open EXE and Create Sec�on 

Object

Create Windows Process and 

Thread Objects

Perform Windows Subsystem 

Speci�c Process Ini�aliza�on

Start Execu�on of the Ini�al 

Thread

Convert and Validate 

Parameters and Flags

Final Process Ini�aliza�on

Start Execu�on of Entry Point

Done

Windows Susbsystem

New Process

Crea�ng Process
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Stage 2

Stages 3+4

Stage 5

Stage 6

Stage 7

Fig. 1. Process creation flow [28]

3.2 Data collection

In this subsection we describe the way we record behavioral traces. In order to
record memory access traces we wrote a custom tool that was based on the Intel
Pin framework[12]. Intel Pin is a binary instrumentation framework that allows
to intercept execution flow of a process and extract much of the information
related to this process such as: memory access operations, opcode, name of a
module from which an opcode is being executed and name of a current routine
(if possible to derive). Every executable from our dataset (Section 4.1) was
launched together with the Intel Pin tool. The tool records all the data mentioned
above into the behavioral trace. The process of each executable was observed
from the beginning of its execution. We recorded the behavioral trace until we
gathered 1,000,000 (1M) of memory access operations (similar to [9] and [7])
BEP, and then we continued recording AEP - again until we reached 1M of
memory access operations. As we worked with real-life malicious and benign
executables, we were not always able to record the desired amount of memory
access operations. Some samples reached main module before producing the
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desired 1M of memory access operations BEP, while some finished their work
before producing 1M of memory access operations AEP. It is worth mentioning,
that some samples didn’t produce any traces AEP. All data collection was done
in the Virtual Box virtual machine (VM) in order to protect the host system,
allow automation and ensure equal launch conditions for all executables.

3.3 Feature construction and selection

Before using our data for training the ML models we have to construct and select
features. Memory access operations (BEP or AEP respectively) are concatenated
into memory access sequence. Based on the methods used in [8] we split memory
access sequence produced by an executable into a set of subsequences: n-grams of
the length 96. These n-grams are overlapping, so every next n-gram begins from
the second element of the previous one. A typical memory access n-gram looks
the following way: RRRWWWWR...WRRRRRRRW. If we treat R as 0 and
W as 1 n-gram of a size n=96 becomes binary sequence with potential feature
space of 296. Even though we do not get this amount of distinctive features,
our samples still produce millions of features (see Section 5). So we need to
perform feature selection in order to reduce feature space, reject uninformative
features and be able to train ML models in a feasible time. Smaller feature set
also contributes for better understanding of the findings and allows ”manual”
analysis if necessary[7][8].

The feature selection is performed in two steps. On the first step we go down
from millions of features to 50,000 by using Information Gain feature selection
method. Information Gain (IG) is an attribute quality measure that reflects ”the
amount of information, obtained from the attribute A, for determining the class
C ”[15] and is calculated as following:

Gain(A) = −
∑
k

pk log pk +
∑
j

pj
∑
k

pk|j log pk|j

where pk is the probability of the class k, pj is the probability of an attribute to
take jth value and pk|j is the conditional probability of class k given jth value
of an attribute. On the second step we use Correlation-based feature selection
(CFS)[11] from Weka[2] package (CfsSubsetEval). This method selects a subset of
features based on the maximum-Relevance-Minimum-Redundancy principle by
selecting features that have maximal relevance for representing the target class
and minimal mutual correlation[21]. The reason we did not apply this method
to the full feature set is computational complexity. In order to perform CFS
feature selection one needs to calculate correlation matrix between all features
which would require infeasible amount of computational resources and time.
We also select 5,10,15 and 30 thousands of features with IG. It is important
to know, that CFS adds features to the feature set until further increase of its
merit is no longer possible. Thereby, in the end we use IG to select the same
amount of features as was selected by CFS. By doing so we can directly compare
performance of two feature selection methods. After the feature selection process
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we create data that is later used to train ML models. Basically we generate a
table, where each row represents values that features from the feature set take
for a certain sample. In our paper similarly to [9] we use 1 if feature (memory
access n-gram) is generated by sample and 0 if not.

3.4 Machine Learning methods and evaluation metrics

We use Weka[2] machine learning toolkit to build and evaluate our models. Sim-
ilarly to [8] we choose the following ML methods to build our models: k-Nearest
Neighbors (kNN), RandomForest (RF), Decision Trees (J48), Support Vector
Machines (SVM), Naive Bayes (NB) and Artificial Neural Network (ANN) with
the default for Weka[2] package parameters. To evaluate quality of models we
use 5-fold cross validation[15] and choose the following evaluation metrics for
models assessment: accuracy (ACC) as number of correctly identified samples
and F1-measure (F1M) which takes into account precision and recall. We omit
using False Positives measure as it is not representative for multinomial clas-
sification. The F1M values presented in Section 5 are average weighted. For
the benign against malicious classification our dataset is nearly balanced (see
Subsection 4.1), however while doing multinomial classification we had to deal
with imbalanced classes. The problem with imbalanced classes is that evaluation
metrics does not reflect real quality of models, since simple guessing on the ma-
jority class will give high accuracy. To deal with this problem we apply weights
to the samples, so that sums of the weights of samples within each class would
be equal.

4 Experimental setup

In this section we describe our dataset, experimental environment and experi-
mental flow.

4.1 Dataset

As Windows is the most popular desktop platform [16] we focused on analyzing
Windows malware. Our dataset consists of two parts: malware samples and be-
nign samples. Benign samples were collected from Portable Apps [22] in Septem-
ber 2019. It is a collection of free Portable software that includes various types
of software such as graphical, text and database editors; games; browsers; office,
music, audio and other types of Windows software. In total we obtained 2669 PE
executables. Malicious samples were taken from VirusShare 00360 pack down-
loaded from VirusShare[1]. VirusShare 00360 contained 65518 samples, out of
which 2973 were PE executables. For each sample we downloaded a report from
VirusTotal[27] and left samples that belonged to the 10 most common fami-
lies. Those families are: Fareit, Occamy, Emotet, VBInject, Ursnif, Prepscram,
CeeInject, Tiggre, Skeeyah, GandCrab. According to the VirusTotal reports, re-
sulted samples were first seen (first submission date) between March 2018 and
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March 2019. Not all the samples were launched successfully, and from those
that launched not all the samples produced traces AEP (most likely executables
lacked some resources, e.g. certain libraries). So the amounts of samples that
generated traces BEP and AEP are different. In the Table 1 we present amount
of samples of each category that produced traces BEP and AEP.

Table 1. Amount of samples that generated traces BEP and AEP.

Benign Malicious Fareit Occamy Emotet VBInject Ursnif Prepscram CeeInject Tiggre Skeeyah GandCrab

BEP 2098 2005 573 307 196 164 162 143 127 117 115 101
AEP 1717 1755 573 174 188 162 161 143 115 69 73 97

4.2 Experimental environment

For our experiments we used Virtual Dedicated Server with 4-cores Intel Xeon
CPU E5-2630 CPU running at 2.4GHz and 32GB of RAM with Ubuntu 18.04
as a main operating system. As a virtualization software we used VirtualBox
6.0.14. We created a Windows 10 VM and disconnected it from the Internet.
We have uploaded Intel Pin togther with our custom tool into the VM. We also
disabled all built-in anti-virus features to make malware run properly and also
because they kept interrupting the work of Intel Pin and created a base snapshot
which was used for all experiments. We controlled the VM and data collection
process with Python 3.7 scripts.

4.3 Experimental flow

During the data collection phase we begin with starting up a VM. Then we
upload an executable to the VM and launch it together with Intel Pin tool.
When a behavioral trace is ready we download it from the VM and begin a new
experiment with reverting a VM to the base snapshot. It is important to notice
that benign executables were uploaded together with their folder. This allowed
more of the benign applications to run properly and helped to emulate a more
real-life scenario, where benign applications often come with various additional
resources they need for normal operations.

5 Results and Analysis

In this section we provide the classification performance of ML models performed
under different conditions. We also analyze the results and show how they align
with the Hypotheses from Section 1.
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5.1 Classification performance

Each table contains performance metrics of ML methods (Subsection 3.4) achieved
with a feature sets (Subsection 3.3) of a different length (FSL stands for feature
set length). Some of the cells contain missing values: due to processing limita-
tions of Weka we were not able to obtain all of the results.

In the Tables 2 and 3 the results of malicious against benign classification
BEP and AEP are presented. As we can see, under our experimental design it is
possible to achieve classification accuracy of 0.999 for BEP and 0.992 for AEP
with 10000 features. CFS selected 9 features for BEP and 39 for AEP. Clas-
sification performance with use of CFS-selected features is slightly lower than
the best result achieved with those selected by IG. At the same time, it is often
higher for the same amount of features selected by IG.

Table 2. Malicious vs Benign BEP classification performance.

kNN RF J48 SVM NB ANN

Method FSL ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

InfoGain

50K 0.996 0.996 0.996 0.996 0.997 0.997 0.983 0.983 0.693 0.671 - -
30K 0.996 0.996 0.997 0.997 0.998 0.998 0.986 0.986 0.983 0.983 - -
15K 0.996 0.996 0.998 0.998 0.998 0.998 0.991 0.990 0.983 0.983 - -
10K 0.998 0.998 0.999 0.999 0.998 0.998 0.992 0.991 0.983 0.983 - -
5K 0.995 0.995 0.997 0.997 0.997 0.997 0.988 0.988 0.983 0.983 - -

9 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988

CFS 9 0.997 0.997 0.997 0.997 0.996 0.996 0.997 0.997 0.988 0.988 0.997 0.997

Table 3. Malicious vs Benign AEP classification performance.

kNN RF J48 SVM NB ANN

Method FSL ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

InfoGain

50K 0.974 0.974 0.985 0.985 0.991 0.991 0.948 0.948 0.735 0.720 - -
30K 0.982 0.982 0.990 0.990 0.989 0.989 0.949 0.949 0.795 0.787 - -
15K 0.990 0.990 0.992 0.992 0.988 0.988 0.947 0.947 0.795 0.787 - -
10K 0.990 0.990 0.992 0.992 0.989 0.989 0.955 0.955 0.795 0.787 - -
5K 0.989 0.989 0.991 0.991 0.988 0.988 0.960 0.960 0.795 0.787 - -
39 0.910 0.909 0.910 0.909 0.908 0.908 0.907 0.906 0.844 0.840 0.910 0.909

CFS 39 0.990 0.990 0.990 0.990 0.989 0.989 0.987 0.987 0.982 0.982 0.991 0.991

In the Tables 4 and 5 we present performance of ML models in classifying
benign and 10 malicious families using features generated BEP and AEP. In
these tables we show classification performance for the imbalanced (Imb) and
balanced datasets (Bal) (Subsection 3.4). As we can see, performance of multi-
nomial classification is lower than the benign against malicious classification. By
using BEP and AEP features we achieved 0.605 and 0.749 classification accuracy
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respectively. The main observation that can be derived from these tables is that
it is easier to distinguish between benign executables and 10 malware families
using features generated AEP than BEP. As the number of samples that pro-

Table 4. 10 Malicious families vs Benign BEP classification performance.

kNN RF J48 SVM NB ANN

Method FSL ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

Imb 0.812 0.776 0.812 0.775 0.811 0.771 - - 0.429 0.462 - -
50K

Bal 0.601 0.546 0.605 0.549 0.596 0.541 - - 0.403 0.326 - -
Imb 0.812 0.777 0.813 0.776 0.808 0.769 0.789 0.740 0.687 0.667 - -

30K
Bal 0.598 0.542 0.600 0.543 0.594 0.538 0.549 0.477 0.433 0.355 - -
Imb 0.813 0.777 0.815 0.777 0.811 0.772 0.792 0.745 0.689 0.668 - -

15K
Bal 0.594 0.538 0.596 0.540 0.594 0.539 0.565 0.501 0.435 0.355 - -
Imb 0.813 0.775 0.814 0.776 0.809 0.770 0.798 0.753 0.689 0.668 - -

10K
Bal 0.589 0.531 0.593 0.535 0.590 0.531 0.569 0.502 0.435 0.356 - -
Imb 0.789 0.745 0.790 0.745 0.789 0.743 0.782 0.728 0.633 0.591 - -

5K
Bal 0.508 0.446 0.513 0.452 0.512 0.446 0.492 0.413 0.382 0.301 - -
Imb 0.653 0.575 0.653 0.575 0.653 0.575 0.652 0.571 0.651 0.567 0.652 0.573

InfoGain

92
Bal 0.184 0.140 0.185 0.140 0.183 0.137 0.182 0.135 0.180 0.128 0.170 0.136

Imb 0.813 0.775 0.813 0.775 0.810 0.769 0.805 0.760 0.740 0.725 0.810 0.771
CFS 92

Bal 0.585 0.526 0.585 0.527 0.578 0.529 0.572 0.512 0.521 0.467 0.576 0.540

duced traces BEP and AEP is different we have also tested the performance of
features from BEP on the normalized dataset, when we only take into account
samples that produced traces AEP. These results are present in the Appendix
Appendix A. We also combined features produced BEP and AEP and tested
classification performance of the combined feature set. These results presented
in the Appendix Appendix B.

5.2 Analysis

From the results presented in Tables 2 and 3 we can conclude that both Hy-
potheses 1 and 2 are supported: we can distinguish between malicious and
benign behavior BEP and AEP. However, even if there is a visible decline in
accuracy when switching from AEP behavior to BEP it is relatively low. Thus,
we are not able to conclude that our approach allows to detect malware BEP
better then AEP or vise versa. Thereby, we were not able to support or reject
Hypothesis 3. This may be a reflection of property of our dataset or a limitation
of our approach, and therefore needs further investigation in the future work.

By looking at the numbers of features selected by CFS we can see, that it
selects more features for AEP data than for BEP data. And it’s not surpris-
ing, since the behavior of executables become more diverse AEP: this is where
their internal logic starts being executed. It is also confirmed by the amount
of unique features produced by the samples BEP and AEP. Malicious samples
produced more than 1M features BEP, and more than 7M features AEP. On the
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Table 5. 10 Malicious families vs Benign AEP classification performance.

kNN RF J48 SVM NB ANN

Method FSL ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

Imb 0.890 0.883 0.902 0.890 0.897 0.888 - - 0.433 0.420 - -
50K

Bal 0.715 0.694 0.724 0.714 0.749 0.737 - - 0.503 0.418 - -
Imb 0.891 0.883 0.891 0.883 0.898 0.888 0.727 0.635 0.505 0.527 - -

30K
Bal 0.725 0.705 0.732 0.714 0.729 0.708 0.539 0.498 0.493 0.414 - -
Imb 0.889 0.881 0.900 0.891 0.898 0.887 0.780 0.712 0.508 0.530 - -

15K
Bal 0.724 0.704 0.731 0.714 0.723 0.702 0.625 0.589 0.499 0.420 - -
Imb 0.887 0.878 0.900 0.891 0.897 0.886 0.805 0.756 0.509 0.530 - -

10K
Bal 0.717 0.695 0.725 0.706 0.729 0.711 0.645 0.606 0.497 0.418 - -
Imb 0.866 0.851 0.872 0.854 0.865 0.848 0.747 0.669 0.384 0.384 - -

5K
Bal 0.660 0.618 0.661 0.619 0.653 0.605 0.504 0.442 0.433 0.342 - -
Imb 0.694 0.615 0.694 0.616 0.693 0.613 0.688 0.604 0.670 0.597 0.693 0.617

InfoGain

40
Bal 0.306 0.212 0.307 0.206 0.302 0.204 0.299 0.217 0.298 0.193 0.283 0.225

Imb 0.902 0.896 0.903 0.892 0.891 0.880 0.889 0.873 0.872 0.864 0.900 0.890
CFS 40

Bal 0.725 0.701 0.726 0.704 0.717 0.695 0.706 0.667 0.695 0.653 0.722 0.692

other hand, benign applications produced more than 4.5M of features BEP and
almost 20.5M AEP. This resulted in more then 5M unique features to choose
from for BEP classification, and 25M for AEP classification. This also shows,
that benign applications are more diverse and produce more distinctive memory
access patterns as a result of a more distinctive behavior. And it makes sense,
since malware samples belong to 10 malware families, thus should share more
common properties according to the definition of malware family from [7].

The results of multinomial classification (Tables 4 and 5) are more diverse
then those for malicious against benign classification. This time, it is clearly eas-
ier to distinguish between 11 classes AEP than BEP. Even though multinomial
classification accuracy BEP is not that impressive it is still significantly better
than potential accuracy of 0.09(09) that can be achieved by random guessing.
Thus we can conclude, that Hypothesis 4 is supported. Multinomial classifica-
tion accuracy AEP was significantly better. So we can conclude that Hypothesis
5 is also supported, thereby Hypothesis 6 as well.

This time CFS has chosen less features for the AEP classification than for
the BEP classification. As we mentioned above, malware assigned to one of the
families based on its particular functionality. And this functionality becomes
revealed AEP. Thereby it is logical to say, that classification of 11 classes is
more accurate based on the behavior generated AEP. Table 6 present combined
results of the Hypotheses evaluation.

Table 6. Evaluation of Hypotheses after analyzing the results

H 1 H 2 H 3 H 4 H 5 H 6

Supported Yes Yes - Yes Yes Yes
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6 Discussion

In this section we present an attempt to interpret our findings. Earlier, we showed
the possibility of malware detection based on the memory access patterns gen-
erated BEP. So, we wanted to find an explanation of why the BEP activity of
malicious and benign executables is so different. More specifically we wanted to
see which high-level activity is responsible for generating specific memory access
patterns. As it was written in Subsection 3.2, we recorded not only memory
access operations, but also routine names for each executed opcode. Since BEP
activity happens in the Windows libraries (Subsection 3.1) we are always able
to derive a name of a current routine. Thereby, a memory access pattern can
be represented as a sequence of routine names. However, our memory access
patterns are of a length 96, so having 96 routine names (many of which are
repetitive) makes analysis harder and adds redundant information. Thus, we de-
cided to represent each memory access pattern as a sequence of unique routine
names. For example, if memory access pattern begins in a routine RTN 1, pro-
ceeds into the RTN 2 and finishes in the RTN 1 we store the following sequence:
{RTN 1,RTN 2,RTN 1}. After performing this search on the 9 features selected
by CFS (Subsection 5.1) we made a surprising discovery: most of these fea-
tures originated in RtlAllocateHeap routine from the ntdll.dll Windows library.
Some memory access patterns were completely generated by RtlAllocateHeap,
while others involved other routines as well. The same memory access pattern
can be found in different routine sequences. However, similar to [8], this is the
result of our patterns structure and feature construction method (e.g. they can
start and end with a sequence of repetetive W’s or R’s) that allow similar
pattern to appear multiple times in a row. For example, one feature can be
found in the following sequences: {RtlAllocateHeap}, {bsearch,RtlAllocateHeap},
{LdrGetProcedureAddressForCaller,RtlAllocateHeap}, {RtlEqualUnicodeString, Rt-
lAllocateHeap}. The RtlAllocateHeap routine is responsible for allocating a mem-
ory block of a certain size from a heap. Thus, when the Final Process Initializa-
tion phase of process creating flow needs to allocate a memory block it produces
a distinctive activity that allows to distinguish between malicious and benign
processes on the stage of initialization. Unfortunately, we were not able to ex-
plain why this memory allocation activity can be so distinctive. Neither the
official Microsoft documentation on RtlAllocateHeap, nor the Windows Internals
book[28] gives enough details about memory allocation routines. To answer this
question, one may need to revers engineer ntdll.dll library and perform a Kernel-
level[25] debugging. And we leave it for the future work, as this is out of scope
of this paper.

7 Conclusions

In this paper we presented a novel dynamical malware analysis approach, where
we distinguish between activity produced before and after Entry Point. As we
were able to show, it is possible to distinguish between malicious and benign
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executables BEP with accuracy of up to 0.999 with 10000 features, and up
to 0.997 with just 9 features. It means, that it is possible to detect malicious
executables on the stage of their launch: before they become malicious. We
also found, that distinguishing between benign samples and samples from 10
malware families is also possible using BEP activity. We have also made an
interesting discovery: many of the memory access patterns used for malware
detection BEP are generated by the RtlAllocateHeap routine. This paper shows
a need for further research of the low-level activity use in malware analysis.
First of all, we need to make a complete explanation of why the BEP activity
of malicious and benign executables are that different. Second, we have to check
the robustness of this approach against the previously unknown malware. Lastly,
to fully utilize the capabilities of BEP-AEP approach we need to study the
possibility of building the real-time system that uses our approach. This will
involve assessment of computational overhead and potential impact on the user
experience.
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Appendix A Classification results: normalized dataset

Here we present classification results for the normalized dataset using features
from BEP.

Table 7. Malicious vs Benign BEP classification performance on the normalized
dataset.

kNN RF J48 SVM NB ANN

Method FSL ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

InfoGain

50000 0.997 0.997 0.996 0.996 0.998 0.998 0.981 0.980 0.750 0.738 - -
30K 0.997 0.997 0.997 0.997 0.998 0.998 0.983 0.983 0.981 0.980 - -
15K 0.997 0.997 0.999 0.999 0.998 0.998 0.990 0.990 0.981 0.980 - -
10K 0.997 0.997 0.999 0.999 0.998 0.998 0.990 0.990 0.981 0.980 - -
5K 0.995 0.994 0.996 0.996 0.997 0.997 0.988 0.988 0.981 0.981 - -
10 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988

CFS 10 0.998 0.998 0.998 0.998 0.997 0.997 0.998 0.998 0.988 0.988 0.997 0.997

Table 8. 10 Malicious families vs Benign BEP classification performance on the nor-
malized dataset.

kNN RF J48 SVM NB ANN

Method FSL ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

Imb 0.819 0.779 0.818 0.776 0.817 0.774 - - 0.478 0.500 - -
50K

Bal 0.586 0.528 0.588 0.528 0.590 0.532 - - 0.386 0.292 - -
Imb 0.817 0.776 0.819 0.777 0.816 0.774 0.798 0.744 0.685 0.659 - -

30K
Bal 0.579 0.517 0.587 0.525 0.591 0.536 0.555 0.491 0.423 0.337 - -
Imb 0.815 0.774 0.821 0.779 0.815 0.770 0.799 0.747 0.686 0.662 - -

15K
Bal 0.574 0.511 0.587 0.525 0.584 0.522 0.587 0.525 0.428 0.345 - -
Imb 0.817 0.776 0.819 0.777 0.817 0.772 0.800 0.749 0.685 0.660 - -

10K
Bal 0.576 0.513 0.580 0.517 0.578 0.518 0.569 0.505 0.422 0.335 - -
Imb 0.812 0.769 0.815 0.771 0.814 0.770 0.803 0.750 0.631 0.572 - -

5K
Bal 0.571 0.505 0.570 0.505 0.570 0.509 0.564 0.502 0.419 0.313 - -
Imb 0.663 0.579 0.663 0.579 0.663 0.579 0.661 0.575 0.661 0.575 0.661 0.575

InfoGain

52
Bal 0.190 0.135 0.189 0.155 0.189 0.133 0.189 0.144 0.188 0.131 0.190 0.146

Imb 0.823 0.782 0.822 0.781 0.817 0.772 0.809 0.760 0.739 0.721 0.823 0.781
CFS 52

Bal 0.588 0.531 0.584 0.525 0.584 0.525 0.571 0.510 0.507 0.444 0.567 0.529

Appendix B Classification results: combined feature set

Here we present classification results achieved with combined feature set.
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Table 9. Malicious vs Benign classification performance on the normalized dataset
using combined feature set

kNN RF J48 SVM NB ANN

Method FSL ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

InfoGain

50000 0.996 0.996 0.998 0.998 0.999 0.999 0.981 0.981 0.981 0.980 - -
30K 0.996 0.996 0.999 0.999 0.998 0.998 0.982 0.982 0.981 0.980 - -
15K 0.997 0.997 0.999 0.999 0.998 0.998 0.987 0.987 0.981 0.980 - -
10K 0.998 0.998 0.999 0.999 0.998 0.998 0.989 0.989 0.981 0.980 - -
5K 0.999 0.999 0.999 0.999 0.998 0.998 0.995 0.995 0.981 0.980 - -
13 0.988 0.987 0.988 0.987 0.998 0.998 0.988 0.987 0.988 0.987 0.988 0.987

CFS 13 0.997 0.997 0.998 0.998 0.996 0.996 0.996 0.996 0.988 0.988 0.997 0.997

Table 10. 10 Malicious families vs Benign classification performance on the normalized
dataset using combined feature set.

kNN RF J48 SVM NB ANN

Method FSL ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

Imb 0.910 0.905 0.917 0.910 0.910 0.906 - - 0.802 0.771 - -
50K

Bal 0.740 0.718 0.749 0.726 0.746 0.736 - - 0.508 0.419 - -
Imb 0.906 0.900 0.918 0.910 0.910 0.904 0.787 0.750 0.795 0.761 - -

30K
Bal 0.744 0.744 0.743 0.722 0.734 0.718 0.518 0.465 0.495 0.403 - -
Imb 0.904 0.898 0.917 0.909 0.908 0.902 0.806 0.771 0.908 0.902 - -

15K
Bal 0.744 0.723 0.740 0.720 0.737 0.723 0.608 0.570 0.493 0.400 - -
Imb 0.903 0.896 0.909 0.901 0.908 0.898 0.799 0.765 0.790 0.753 - -

10K
Bal 0.735 0.708 0.729 0.705 0.728 0.707 0.593 0.550 0.486 0.388 - -
Imb 0.792 0.763 0.789 0.759 0.790 0.757 0.754 0.710 0.679 0.647 - -

5K
Bal 0.535 0.499 0.534 0.498 0.535 0.499 0.440 0.382 0.408 0.311 - -
Imb 0.663 0.579 0.662 0.577 0.662 0.577 0.662 0.577 0.660 0.569 0.663 0.579

InfoGain

62
Bal 0.190 0.134 0.191 0.156 0.190 0.134 0.189 0.133 0.181 0.418 0.185 0.140

Imb 0.915 0.909 0.916 0.909 0.909 0.903 0.896 0.879 0.876 0.862 0.908 0.903
CFS 62

Bal 0.744 0.722 0.745 0.724 0.739 0.721 0.723 0.691 0.669 0.625 0.743 0.729
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