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Abstract 

The purpose of this paper is to test the efficient market hypothesis. The thesis includes an 

extensive review of the literature on the Efficient Market Hypothesis and tests if it is possible 

to earn economic profit by trading on an information set known to all market participants. 

The trading strategy is based on statistical arbitrage pairs. Pairs trading is a concept based on 

a co-integrating relationship. Co-integration is the long-term stationary relationship between 

two asset prices. The pairs in this thesis are untraditionally composed of indices. The test for 

co-integration uses the price of the ETF for S&P500 and the prices of six other indices from 

the European continent. I find that there is a stationary long-term relationship between the 

prices of the respective ETF’s of S&P500 and FTSE100 before adjusting for currency. The 

cointegration test shows a stationary relationship between the two prices and that the 

spread has mean-reverting properties. A trading strategy based on an out-of-sample period 

of 85 days does not yield positive profits after adjusting for transaction costs. With USD as 

the base currency, none of the seven variables co-integrates. In the absence of a co-

integrating vector, there is no basis for trading the indices, and the EMH cannot be rejected. 
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1. INTRODUCTION 

In this thesis, I will test the following hypothesis: Is it possible to make economic profits by 

trading indices based on an information set θ, which is available to all participants. The 

weapon of choice is cointegration. In previous research, the test of the efficient market 

hypothesis has been subject to the joint hypothesis problem. The strength of the 

cointegration test diminishes this problem. If there is cointegration between two integrated 

time series, there is a long run relationship between them that implies that one series can be 

used to explain the other (Granger, 1986). Cointegration tests for a long-term stationary 

relationship in price series.  I investigate whether or not there is a statistical long-term 

equilibrium between the price of S&P500 and the prices of the European indices. 

Cointegration and Error Correction Models are tied together through the Granger 

Representation Theorem (Engle and Granger, 1987). Using this theorem, I model the short-

term dynamics and employ a trading strategy on the stationary spread. The out-of-sample 

test does not yield positive results after adjusting for transaction costs. I find that there is a 

long-term statistical equilibrium in the prices before correcting for the exchange rate. 

Testing with a base currency reveals that there are no co-integrating vectors in the system. 

Both these results are in line with the EMH, as there are no arbitrage opportunities after 

adjusting for transaction costs. Based on the analysis in this thesis I cannot reject the 

efficient market hypothesis.  
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2. DEFINITIONS AND PREVIOUS LITERATURE 

2.1 Definitions 
In the following section, the efficient market hypothesis and statistical arbitrage are defined. 

2.1.1 Definitions of the efficient market hypotheses 

Fama (1965) defines three different forms of the EMH. His weak form of the efficient market 

hypothesis states that all information is fully reflected in previous prices and claims that 

prices fully reflect the information implicit in the sequence of past prices. The semi-strong 

form of the hypothesis asserts that prices reflect all relevant information that is publicly 

available. The strong form of the hypothesis states that all information that is known by any 

participant is reflected in market prices. 

Fama (1970) lists three terms that is sufficient to empower the EMH as a relevant 

hypothesis. He clearly states that these are not absolute, and that an approximation to these 

conditions will still yield market efficiency. The first term is the absence of transaction costs. 

The closest equivalent to no transaction costs are trading liquid stocks or indices.  Frequent 

trading of stocks or indices in an efficient market place makes the bid-ask spreads lower 

(Alexander, 2008). The second term is perfect and costless information flow. News and 

financial reports must flow quickly and freely to all market participants. In the age of the 

internet, the term is almost satisfied. But there is still some investors trading on insider 

information, at least in regards of equity options (Bradley et al., 2010, Bradley et al., 2012). 

Insider information is by definition not available to everyone, and thus an example of an 

imperfect information flow. The third and final term is the agreement about the price 

implications of information. This idea constitutes that every recipient interprets and 

understands all the available information in the same way. 

In 1978, Michael Jensen wrote “I believe there is no other proposition in economics which 

has more solid empirical evidence supporting it than the EMH”. His definition of the EMH is: 

“A market is efficient with respect to information set θt if it is impossible to make economic 

profits by trading on the basis of information set θt.” (Jensen, 1978). Jensen’s definition is 

quite similar to the definition of Burton Malkiel in 1992:  “A capital market is said to be 

efficient if it fully and correctly reflects all relevant information in determining security 

prices. Formally, the market is said to be efficient with respect to some information set, θt, if 

security prices would be unaffected by revealing that information to all participants. 
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Moreover, efficiency with respect to an information set, θt, implies that it is impossible to 

make economic profits by trading on the basis of θt.” (Malkiel, 1992).  

2.1.2 Definition of Statistical Arbitrage. 

In this thesis, statistical arbitrage is defined as the low risk portfolio composed of two co-

integrated asset prices with weights derived from the co-integrating vector. If the tests show 

a co-integrating relationship, the prices of the two assets will have a long-term stationary 

relationship. With weights based on the co-integrating vector, the price of the portfolio will 

be stationary. 
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2.2 History and Literature review 
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2.2.1 EMH 

The first notable market inefficiency was in Holland during the 1630s. At the time, the tulip 

was a sign of wealth. So extremely popular that at its price peak one could trade an entire 

estate for a single tulip. Trading a tulip at the end of the decade would not return more than 

an onion (Posthumus, 1929).  

In 1828 Robert Brown, a Scottish botanist, noticed that grains of pollen in water had a rapid 

oscillatory random motion when viewed under a microscope. This movement is what later 

has been called a Brownian motion (Brown, 1828). In 1863 a French stockbroker, Jules 

Regnault, observed that the price deviation of holding a stock is directly proportional to the 

square root of time (Regnault, 1863). The first publication regarding a random walk, was 

made by a British physicist, Lord Rayleigh, in a publication about sound vibrations (Rayleigh, 

1880). The first clear concept published on random walk and Brownian motion, was 

published by a British logician and philosopher in Venn (1888). In “The Stock Markets of 

London, Paris and New York” published in 1889, George Gibson stated that the value of a 

commonly known stock was based on the common judgement of available information 

(Gibson, 1888).  A French mathematician, Louis Bachelier, published his PhD thesis, “Théorie 

de la Spéculation” (1900). In his thesis, he described the statistics of Brownian motion and 

deduced that the expected value of a speculator is zero. Around the same time, Karl Pearson 

(1905) introduced the term random walk. Unaware of “Théorie de la Spéculation” , Albert 

Einstein (1905) developed the equations for Brownian motion in 1905. The first publication 

that linked finance and Bachelier’s thesis was De Montessus’ book on probability and its 

applications in De Montessus (1908).  Langevin (1908) developed the stochastic differential 

equation of Brownian motion. The first publication on leptokurtic distributions of returns 

was Mitchell (1915). Olivier (1926) delivered unquestionable results, showing that returns 

are leptokurtic. 

Alfred Cowles (founder of Econometric Society, and its journal Econometrica) analysed the 

performance of investment professionals and concluded that they cannot forecast (Cowles 

3rd, 1933). Keynes (1936) famously compared the stock market with a beauty contest, 

where the participants of the financial markets base their decision on the perception of the 

other participants’ perceptions. Keynes also claimed that most investors’ decisions are a 

result of ‘animal spirits’. He previously, in 1923, pointed out that investors in the financial 
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markets are not rewarded for knowing better than the market, but simply for taking on risk 

(Keynes, 1923).  

Slutzky (1937) showed that sums of independent random variables might be the source of 

cyclic processes.  Cowles and Jones published the only paper that found significant market 

inefficiencies before 1960. They found significant evidence of serial correlation in average 

time series indices of stock prices (Cowles 3rd and Jones, 1937). In 1944, in a continuation of 

his forecast publication in 1933, Cowles again reported that investment professionals do not 

beat the market. Working (1948) showed that in an ideal futures market no forecaster could 

predict the price.  

Friedman (1953) illustrated that due to arbitrage, the EMH holds when the trading strategies 

of investors are correlated. Kendall (1953) analysed 22 price-series at weekly intervals and 

concluded that they were random; he also found the time dependence of the empirical 

variance (non-stationarity). Roberts (1959) demonstrated that the times series of stock 

prices resembles a random walk. Osborne (1959) was the first to note that the logarithm of 

common-stock prices follows a Brownian motion. He also found the square root of time rule. 

This rule states that if the volatility is based on the logarithm of the stochastic returns, where 

the fluctuations are independent of each other (IID), the volatility can be rescaled by the 

square root of time. 

Larson (1960) found that the central 80% of the distribution resembled the normal 

distribution, but that the tails are fat. Cowles (1960) wrote “A revision of previous 

conclusions regarding stock price behaviour”. He revisited the results of his 1937 paper, and 

corrected for the averaging, which had been criticised by Working (1960).  In his 1960 paper, 

Working showed that the use of averages could induce autocorrelations not present in the 

original time series. The revised Cowles paper of 1960 corrected for averaging and found 

that there were some temporal dependence. 

Independently of Working (1960),  Sydney Alexander (1961) published “Price movements in 

speculative markets: Trends or random walks”. Alexander demonstrated that it is possible to 

induce spurious autocorrelations by averaging. In the same publication, he found leptokurtic 

distributions, concluded that the random walk model is best fit for the data and conducted 

one of the first tests for non-linear dependence. Muth (1961) introduced the rational 



 

7 
 

expectations hypothesis in economics. In short, the theory states that the people in the 

economy make their decisions based on a rational outlook, available information and 

experiences. 

Mandelbrot (1962) defended the statistical law of Pareto, postulating that the law applies to 

distributions of returns. The same year a paper rejecting the stock market as a random walk, 

was published by Paul H. Cootner (1962). Osborne (1962) investigated the periodic structure 

of the Brownian motion in stock prices, and found that the deviations from a simple random 

walk show a pattern of trade bursts among stocks. Moore (1962) found slightly positive 

serial correlation for index-prices, and insignificant negative serial correlations for individual 

stock prices.  

Berger and Mandelbrot (1963) tried to connect error clustering in telephone circuits to the 

financial markets, and argues that if their results were to be applied to the stock market, it 

may give rise to the Pareto-Levy law of distributions claimed by Mandelbrot in his 1962 

paper. Granger and Morgenstern (1963) found that short-run movements are in line with 

the simple random walk hypothesis, but that long-run movements are not. 

Alexander (1964) corrected his 1961 paper, and found that the S&P industrials do not follow 

a random walk. Steiger (1964) concluded that stock prices do not follow a random walk. The 

same year, Godfrey, Granger and Morgenstern published “The random walk hypothesis of 

stock market behaviour”(Godfrey et al., 1964).  

Fama (1965) defined an efficient market in the publications “The behaviour of stock market 

prices” and “Random Walks in stock prices”. The analysis of stock market prices concluded 

that they follow a random walk. Samuelson (1965) used a martingale instead of the random 

walk in his publication “Proof that properly anticipated prices fluctuate randomly”.  

Roberts (1967) introduced the concept of efficient market hypothesis and made the 

distinction between weak and strong form tests, which Fama (1970) elaborated on in his first 

of three review papers: “Efficient capital markets: A review of theory and empirical work”. 

Fama famously defined an efficient market as a market where prices always fully reflect 

available information. He also discussed the “joint hypothesis problem”. The review was 

divided into three parts. The first part included weak-form tests, id est. how well past prices 

or returns predict the future returns. The second part discussed semi-strong-form tests, id 
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est. how quickly the prices adjust to public information announcements. The final part asked 

whether investors have private information that is not fully reflected in market prices, id est. 

strong-form tests. These tests assumed that investors are rational. The idea is that if there 

are irrational investors, their trades will be random and rational arbitrageurs will eliminate 

their trades so that their effects on prices are zero. 

LeRoy (1973) demonstrated that in the presence of risk aversion, there is no theoretical 

justification of a martingale. Burton G. Malkiel is the man who has popularized the random 

walk hypothesis through his classic “A Random Walk Down Wall Street” (Malkiel, 1973). The 

book is now in its 10th edition. 

Sanford Grossman (1976) described a model that separated the non-informed from 

informed traders. The model showed that efficient price systems aggregate information 

perfectly, leaving the initial price to reflect all available information, and thus reducing the 

incentive for collecting information. Beja and Hakansson (1977) illustrated that the models 

and publications of economists are nothing more than a framework for simpler 

understanding of the financial markets, and have less empirical focus. The authors 

concluded that the efficiency of a real market is impossible as the market is in constant 

search of equilibrium.  

Ball (1978) found that there is excess returns after public announcements of earnings. 

Jensen (1978) defined market efficiency contingent on the information set θt . The market is 

said to be efficient if it is impossible to make a profit by trading based on the information 

set. Robert E. Lucas Jr (1978) built a theoretical model of rational agents that replicated the 

conclusions of LeRoy (1973), and demonstrated that the martingale property do not 

necessarily hold under risk aversion. 

Sanford J. Grossman and Joseph E. Stiglitz (1980) pointed out that there must be some 

degree of disequilibrium in the market prices. Given perfect market efficiency, those who 

gather information (perform analysis) will not be compensated.  

LeRoy and Porter (1981) investigated the implications for asset price dispersion on 

conventional valuation models. They used a linear vector autoregressive model to create 

variance bounds. They concluded that the stock market prices have excess volatility. Robert 

Schiller (1981) performed a test on excess volatility using another approach. The results 
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showed that stock prices move too much in relation to the changes in dividends. Richard Roll 

(1984) looked at orange juice futures for the US, and the effect of the weather. The results 

gave clear indications of excess volatility. 

Bondt and Thaler (1985) were the first to include elements of psychology in their studies of 

stock prices. Research in psychology had shown that people overreact to dramatic or 

unexpected news. The authors investigated whether these results were applicable to the 

stock market. They formulated an “overreaction hypothesis” based on these psychological 

elements. The empirical evidence, based on the Center for Research in Security Prices’ 

(CRSP) monthly return data, were consistent with the overreaction hypothesis. The results 

contradicted Harry Roberts’ definition of weak form market efficiency. This paper marked 

the start of behavioural finance. 

Fischer Black (1986) introduced the concept of ‘noise traders’, and accredited the 

functionality and liquidity of financial markets to these traders; who trade on anything other 

than fundamental information. Lawrence H. Summers (1986) examined the power of 

statistical tests used to evaluate the efficiency of speculative markets. The research showed 

that these statistical tests of market efficiency had very low power in discriminating against 

plausible forms of inefficiency. Fama and French (1986) demonstrated that due to significant 

negative serial correlations, portfolio returns are predictable in the 3-5 year horizon. 

Engle and Granger (1987) published their paper on co-integration and error correction 

representation, signalizing the start of cointegration.  

On Black Monday, October 19, 1987, stock markets around the world crashed. The crash 

began in Hong Kong, spread west to Europe, then hit the United States causing the largest 

daily percentage loss in the history of the Dow Jones Industrial Average, -22.61%. The crash 

started a landslide of academic papers regarding market efficiency. Lo and MacKinlay (1988) 

rejected the random walk hypothesis for weekly stock market returns by comparing variance 

estimators derived from data sampled at different frequencies. One weakness of the 

method in this paper is that the rejection is due to the behaviour of small, illiquid stocks. 

Poterba and Summers (1988) showed that stock returns have positive autocorrelation in the 

short run and negative autocorrelation in the long run. Jennifer Conrad and Gautam Kaul 

(1988) characterized the stochastic behaviour of expected returns on common stock. They 
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found that weekly expected returns are well characterized by a stationary first order AR-

process. David Cutler teamed up with Poterba and Summers and published a paper that 

demonstrated how news do not adequately explain market movements (Cutler et al., 1989). 

In 1989, Robert Schiller published “Stock Market Volatility”. The book described the human 

psychology used as the basis for behavioural finance (Shiller, 1989). LeRoy (1989) stated that 

the previous research on efficient capital markets had taken to lightly on the transition 

between the intuitive idea of market efficiency and the martingale. 

Laffont and Maskin (1990) discussed the efficient market hypothesis in light of insider 

trading or other forms of imperfect competition, and found that in the case of imperfect 

competition the EMH may not hold. Lehmann (1990) found reversals in weekly security 

returns, or “overreactions”, that contradicted the efficient market hypothesis. “The evidence 

suggests that the “winners” and “losers” one week experience sizeable return reversals the 

next week in a way that reflects apparent arbitrage profits which persist after corrections for 

bid-ask spreads and plausible transactions costs”. Jegadeesh (1990) found significant 

negative first-order serial correlation in monthly stock returns and positive serial correlation 

for longer lags, the twelve-month serial correlation were particularly strong using a data 

sample from 1934 to 1987. Kim, Nelson and Startz (1991) compared the stock returns data 

before and after World War II and concluded that mean reversion is a pre-war phenomenon. 

They also found evidence that suggested a fundamental change in the stock return process, 

and accredited the change to the uncertainty of the 1930s and 40s. Fama (1991) published 

Efficient Markets: II, number two of his three review papers. The paper gave a review of 

relevant literature regarding efficient markets. He wrote, “Since there are surely positive 

information and trading costs, the extreme version of the market efficiency hypothesis is 

surely false”. Instead of weak-form tests (forecasts based on previous returns), the first part 

now included more general tests for return predictability, with variables like dividend yields 

and interest rates. The paper also included a section that addresses the joint hypothesis 

problem. 

Malkiel (1992) gave his definition of EMH in ‘Efficient market hypothesis’  published in the 

New Palgrave Dictionary of Money and Finance. Fama and French (1992) continued the 

empirical work of Sharpe (1964), Lintner (1965), Mossin (1966) and Black (1972). They 
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demonstrated that market beta, size, book-to-market and earnings-price ratios help explain 

returns.  

Jegadeesh and Titman (1993) published evidence of short term momentum, by enabling 

trading strategies that bought past winners and sold past losers which realized abnormal 

returns. In 1995, Robert Haugen published the book The New Finance: The Case Against 

Efficient Markets. He discussed the overreaction of the market, and how the overreaction 

may lead to long-term reversals (Haugen, 1995).  Chan et al. (1996) examined whether the 

predictability of future returns from past returns were due to the markets under-reaction to 

information, in particular to past news of earnings. They found that an earnings surprise 

caused a drift in the stock price. Market risk, size, and book-to-market effects do not explain 

the drifts. The results showed that the market responded gradually to new information. 

In his third of three reviews, Fama (1998) discussed the EMH against the long term 

anomalies, and found that the anomalies are chance results, as overreaction to information 

were about as common as underreacting, and post-event continuation of pre-event 

abnormal returns were about as frequent as post-event reversal. The publication also 

directly attacked the methodology of the papers that demonstrated anomalies, and showed 

that most long-term return anomalies tend to disappear with reasonable changes in 

technique. 

Shleifer (2000) published “Inefficient Markets: An Introduction to Behavioral Finance”. The 

book discussed the empirical- and theoretical challenges of the EMH, id est. perfect 

arbitrage and rational investors, it also provided an excellent review of the empirical studies 

contradicting the EMH. Shiller (2000) published the first edition of Irrational Exuberance. The 

paper showed that the movement of company earnings or dividends could not sufficiently 

explain market movements. Based on the findings, the author suggested that the stock 

prices contains an element of psychology. 

Malkiel (2003) defended his book from 1973, and the EMH, by reviewing the attacks of the 

last decades. Schwert (2003) showed that practitioners implement anomaly research, and 

thus make the market more efficient.  

Timmermann and Granger (2004) discussed the EMH from the perspective of a forecasting 

pattern in “real time”. They described the constant search for profitable trading strategies as 
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a self-destructing game.  The authors suggested that this self-destructing game gives rise to 

the non-stationarity one still finds in financial markets. 

Malkiel (2005) stated that if the market returns are as predictable as the critics of EMH have 

claimed, then professional investment fund should have outperformed a passive index fund. 

The paper showed that investment funds did not outperform their index benchmarks. 

Wilson and Marashdeh (2007) illustrated that due to co-integration, the markets must be 

efficient in long-run equilibrium because no arbitrage opportunities exist. They also showed 

that due to the error correction disequilibrium there were arbitrage opportunities in the 

short run. The elimination of these arbitrage opportunities means that stock market 

inefficiency in the short run ensures stock market efficiency in the long-run. Yen and Lee 

(2008) presented a survey article that gave a chronological review of empirical findings and 

conclude that the EMH is here to stay. 

2.2.2 Statistical Arbitrage 

Pairs trading or statistical arbitrage, is a quantitative method of trading used at Wall Street 

since the 1980’s. The concept is to trade divergence between two assets that share common 

return factors. The trader opens long and short positions simultaneously when the asset 

prices diverge abnormally, and then close the position when the prices converge 

(Vidyamurthy, 2004). Hogan et al. (2004) showed that statistical arbitrage avoids the joint 

hypothesis problem of conventional market efficiency test, mainly because it is not 

dependent on any equilibrium model. The paper tested momentum and value strategies, 

adjusted for all relevant transaction costs, and found that these strategies generate a profit.  

There are three methods used as statistical arbitrage: The cointegration approach, the 

distance method and the stochastic method. See Do et al. (2006) for further explanation. In 

this thesis, I will focus on the cointegration approach. The cointegration analysis will be 

performed based on the framework provided in Engle and Granger (1987). The reason for 

the choice of cointegration is that it statistically determines the mean reverting nature of the 

spread between two assets. Elliott et al. (2005) proposed a mean-reverting Gaussian Markov 

chain model to model the spread. 

Gatev et al. (2006) back-tested a pairs trading strategy with daily data from 1962–2002. 

Their strategy gave an annualized average return of 11%. These results withstood 
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conservative transaction costs. In an effort to explain the high returns, the authors pointed 

to the presence of a common return factor. Perlin (2009) performed a similar test on the 

Brazilian financial market, testing whether daily, weekly or monthly data would yield the 

highest returns. The study showed that daily returns significantly outperformed the lower 

frequencies. 

Lin et al. (2006) defined pairs trading as “a comparative-value form of statistical arbitrage 

designed to exploit temporary random departures from equilibrium pricing between two 

shares”. In the 2006 paper, they explained that pairs trading is not riskless. They described 

how market events and poor statistical modelling might cause losses. 

Pole (2007) wrote that the statistical arbitrage strategies from 2003-2005 did poorly, partly 

driven by the development of trading algorithms, but returned with splendid returns in 

2006. The author suggested that the low volatility may have killed the statistical arbitrage 

profit, but as the algorithms got faster, the profits rose.  

Engelberg et al. (2009) showed that the profitability of a pairs trading strategy is at its peak 

soon after divergence. The paper also showed that idiosyncratic liquidity shocks influenced 

profitability in a larger scale than idiosyncratic news. Profitability is also influenced by news 

that affect both parts of the pair, but only when the incorporation of information takes 

longer in one of the stocks. 

Bowen et al. (2010) examined the characteristics of a high frequency pairs trade strategy 

using price data from FTSE100 from January to December 2007. They find that the 

profitability is highly sensitive to both transaction costs and the speed of execution.  

Binh Do and Robert Faff published a reproduction of Gatev et al. (2006), testing a larger and 

new sample under the title “Does simple pairs trading still work?” (Do and Faff, 2010). Their 

results were in line with Pole, and supported the weak form EMH. They speculated that the 

reduced profit potential were because the trading strategies based on the “Law of one price” 

do not hold as the common return factors might have changed. The “Law of one” price 

states that two assets with same expected payoff should have the same price. Do and Faff 

(2012) examined the effect of transaction costs on pairs trading in the U.S. equity market, 

from 1963 to 2009. After controlling for commissions, market impact, and short selling fees, 

they found that pairs trading remains profitable up to 2002, and unprofitable after.  
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3. THEORY AND METHOD 

3.1 Stationarity 

Consider a time series (y1, …, yT), as the outcome of a draw from a joint probability 

distribution f(y1, …, yT). A strictly stationary process has a distribution independent of time, 

so that f(y1, …, yt+k)= f(yt+m, …, yt+k+m).  

The restriction implies that all moments of the distribution are constant over time. Weak 

stationarity is less strict, and demands that the first and second order moments of the 

distribution are constant. The second order moment also includes the auto covariance, so 

that the covariance between the lags must be constant. 

cov(y , ) [( )( )] [( )( )]t t k t y t k y t m y t k m yy E y y E y y              

If the restrictions are satisfied, the time series are integrated of order zero, I(0). In the 

absence of constant second order moments, the series are non-stationary. Without a 

constant mean or standard deviation, the series will not have a stable equilibrium. Non-

stationary series can be made stationary by taking the difference δ times. The series are 

called integrated of order δ. Non-stationary time series could contain a common time trend, 

so that one series regressed on the other would seem to be explanatory due to the common 

trend. If the trend is not included in the regression, this may impose that the covariance 

between the explanatory variable and the error term is non-zero. This omitted trend may 

induce invalid answers from the standard hypothesis tests. See appendix on OLS for error 

term assumptions. 

Consider the following regression: 

1  t t ty y u      

If 0 < < 1, the process described by the equation is an autoregressive process. If  = 1 the 

process is a random walk. If =0 the process is white noise, id est. independent and 

identically distributed (IID) with zero mean and constant variance. For the EMH to hold, one 

would expect prices to be random walks and returns to be white noise. A time series with a 

stochastic trend can be modelled as a random walk with drift.  

2

1 1 0 0 ,  , ~ (0, )t t t t uy y u y u IID       
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The equation is composed of a drift term, γ1, and a random walk term, id est. the lagged 

value of the dependent variable (where the coefficient is one) and an error term that is 

white noise. If y0 = γ0 then recursive iterations give the equation, 

0 1

1

t

t i

i

y t u 


    

where the error-term has a non-stationary variance σu
2t. In comparison, a deterministic 

trend is on the form 

2

0 1  , ~ (0, )t t t ey t e e IID      

The difference between a deterministic trend and a stochastic trend is the error term. Using 

the stochastic trend, one can re-write the expression so that the error term of the stochastic 

trend equation follows an AR-process, 

0 1t ty t v     

1t t tv v    

εt is a stationary process with zero mean. If δ = 1, then the error term is a non-stationary 

random walk.  

Subtracting δyt-1 from the re-written equation yields: 

0 1 1

0 1 1

(1 ) (1 )t t t

t t t

y t y

y t y

     

   





     

   
 

To test for non-stationarity one can either test (θ1, δ) = (0,1) by an F-test or δ = 1 with a t-

test. This test is what is known as a Dickey-Fuller test (Dickey and Fuller, 1979). In this thesis 

however, I use the augmented Dickey-Fuller (ADF) test. The reason for the use of ADF is that 

the ADF includes an extra term that captures any autocorrelation in the error term, so that εt 

is white noise. It does so by adding lagged values of the dependent variable to capture 

autocorrelation in the process (Said and Dickey, 1984). In addition, the equation below 

shows the ADF on difference form, 

0 1 1

1

( 1)
k

t t t j t j

j

y t y y     



         



 

17 
 

The H0, H0: (1- δ) = 0, is that the time series are non-stationary. The null hypothesis of 

standard interference tests are based on stationary time series. Because the H0 of the ADF is 

based on a non-stationary time series, the assumptions regarding typical t-tests are not met. 

The instability of the mean or the variance of the non-stationary time series prevents the use 

of typical t-values when performing a t-test on H0. The ADF-test employs simulated, stricter 

values. OxMetrics gives a 5% t-adf as -2.86 and a 1% t-adf as -3.44.  

3.2 Cointegration 

3.2.1 Engle-Granger method 

The test for co-integration is based on Engle and Granger (1987). The test is a two-step 

process. Step one is an OLS regression of the two non-stationary variables with the 

hypothetic stationary relationship. Step two is performed on the residuals of the regression 

in step one. If the coefficient of the first regression is significant and the residuals are 

stationary, there is a co-integrating relationship between the two variables. Engle and Yoo 

(1987) show that the traditional critical values do not suffice when testing the stationarity of 

the residuals. The critical value for two variables and sample size bigger than 200 is 3.25 on 

the 5%-level and 3.75 for the 1% level (Engle and Yoo, 1987). Given two time series, x and y 

generated from the model 

1

2

1 1 1 1 1 1

2 2 2 1 2 2

 ,  , ~ (0, )

 ,  , 1 , ~ (0, )

t t t t t t t e

t t t t t t t e

y x u u u e e IID

y x u u u e e IID

 

   





   

    
 

Imposing α ≠ β, the first equation is I(1) and the second is I(0). The second equation contains 

a linear stationary combination of the two series, both of which are I(1) (can be shown in 

reduced form). Engle and Granger (1987) prove that the alpha from the regression in the 

second equation is not only consistent, but super-consistent. See appendix OLS and super-

consistency. 

As the error term follows an autoregressive process it is possible to model the short term 

dynamics as 

2 2 2 1 2  , 1 t t t t t ty x u u u e         

The difference of the residuals are expressed as 

2 2 1 2 2( 1)  , 1 t t t t t tu u e u y x             



 

18 
 

with 

2 1 1( )t tu y x    

 

Combining these equations gives the Equilibrium Correction Model (EqCM) or Error 

Correction Model (ECM), 

1 2(1 )( )t t t ty x y x e           

in the EqCM/ECM all variables are I(0) and e2t is white noise. The representation of a co-

integrated relationship as an ECM is known as the Granger representation theorem (Engle 

and Granger, 1987). 

There are two problems with Engle Granger. The first is when N>2, then the test will be 

influenced by the choice of dependent variable. Second, Engle Granger only test for one co-

integrating vector. These problems can be avoided by using the cointegration test known as 

the Johansen method (Johansen, 1988).The Johansen method seeks the linear combination 

that is most stationary. The Engle-Granger two-step method seeks the stationary linear 

combination that has the minimum variance. 

3.2.2 Johansen method 

The Johansen method generalizes the argument from the Dickey-Fuller Unit root test to a 

system with n integrated variables. Consider a first order vector autoregressive process 

(VAR), written on matrix form: 

1t t t  X A BX , 

where 

1 1 11 1

1

, ,

t n

nt n n nn

X

X

  

  

     
     

       
     
     

X A B  

By subtracting Xt-1 from both sides, I obtain the Dickey Fuller equivalent, 

1t t t   X A X , 
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where Π=B-I, and I is the (n x n) identity matrix. To remove any autocorrelation in the 

residuals, one adds an appropriate number of lags of the dependent variable,  

1 1 1t t t q t q t          X A X X X , 

if all the variables (X1, … ,Xn) are integrated the difference on the  left-hand side is stationary. 

The stationary left-hand side requires the right-hand side to represent a stationary process, 

id est. ΠXt-1 must be stationary. This condition has no implications for the relationship 

between the variables (X1, … ,Xn) if the rank of the Π matrix is zero. However, if the rank of 

the Π matrix is r, with r>0, then when Xt-1 is stationary, there are r independent linear 

relations between the variables (X1,..,Xn) id est. the variables are co-integrated. Hence, the 

test for cointegration is a test of the rank of the Π matrix, and the rank of the matrix is the 

number of co-integrating vectors (Alexander, 2008).  

Johansen and Juselius (1990) suggests a trace test to test for non-zero eigenvalues. The H0 is 

that r ≤ Rank and the H1 is that r>Rank (Johansen and Juselius, 1990). The test static is given 

by: 

1

1

ln(1 )  ,   1 0
n

r i n

i R

T T   
 

        

Where T is the sample size, R is the hypothetical rank one tests for and λ are the eigenvalues 

of the matrix Π. 
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4. EMPIRICAL ANALYSIS 
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4.1 Variables and data 

Marius Hovde, in Sparebank 1 SMN Markets, has supplied the data 

4.1.1 Indices 

 The analysis in this thesis uses indices to minimize the return influences by the proven 

return anomalies in previous literature, so that the test of EMH does not included any single 

stock anomalies. The choice of indices are based on liquidity and geographic focus. Appendix 

Unit root tests of indices show the results from a unit root test performed on the indices. All 

the indices are I(1). 

Table 1 – Overview of ETFs 

The first column shows the ticker of the index/ETF and the second column shows the underlying 
index of the ETF. The third column shows the geographic region of the index. The last column 
denotes which currency the index is traded in. 

Ticker Index Geographic region Currency 

SPY S&P500 USA  USD 

EZU MSCI EMU European Economic and Monetary Union USD 

FTSEMIIB FTSEMIB Italy EUR 

SXXP Stoxx 600 Europe EUR 

IBEX IBEX Spain EUR 

ISF LN FTSE100 United Kingdom GBP 

UKX FTSE100 United Kingdom GBP 

EFA MSCI  EAFE Europe, Australasia and the Far East USD 

 

4.2 Cointegration 

The notation L before a variable implies that the time series of the variable has been log-

transformed, id est. it is the natural logarithm of the variable. The notation DL means that 

the variable is on log-difference form, id est. the t-1 lagged natural logarithm of the variable 

has been subtracted from the natural logarithm of the variable at time t, giving the log-

returns. 

4.2.1 Engle-Granger 

The Engle Granger two-step procedure is applied on the raw price series and then I log-

transform the price series that are co-integrated with S&P500. I then use the log-

transformed prices to perform a log-log OLS-regression. The coefficient from the level 

regression can be interpreted as number of shares in the co-integrating index. Typically, the 

co-integrating vector (1,-α) represents one share in S&P500 and α shares in the respective 
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variable. The log-log coefficient requires another interpretation as a log-log coefficient 

returns the elasticity of the dependent variable with respect to a change in the explanatory 

variable, see section 5.1.  

Table 2 – Engle-Granger OLS 

The table shows the Engle-Granger OLS-regression with the ETF for S&P500 as the dependent 
variable and the respective variables as explanatory variables one at a time.  

^ ^ ^

0

^ ^ ^

0

^ ^ ^

0

^ ^ ^

0

^ ^ ^

0

^ ^ ^

0

^ ^ ^

0

t t t

t t t

t t t

t t t

t t t

t t t

t t t

SPY EZU u

SPY FTSEMIIB u

SPY SXXP u

SPY IBEX u

SPY UKX u

SPY ISF u

SPY EFA u

 

 

 

 

 

 

 

  

  

  

  

  

  

  

 

The first row gives the name of every dependent variable. The third row shows the coefficient 
known as the Engle-Granger alpha. The estimation sample is 31.03.2004 – 31.12.2013. The 
residuals from the OLS are saved and then tested for stationarity with the Augmented Dickey-Fuller 
test. 

2^ ^ ^

11

1

( 1) tt t t

j

u y u   



        

 The critical value for two variables and sample size bigger than 200 is 3.25 on the 5%-level and 3.75 
for the 1% level (Engle and Yoo, 1987).  The results in the second lowest row show that there is 
cointegration between the ETFs of S&P500 and FTSE100, but no cointegration between the other 
indices. The residuals of FTSE100 are stationary, whilst the other indices yield non-stationary 
residuals and therefore the EG OLS is considered spurious. 

        

 EZU FTSEMIIB SXXP IBEX UKX ISF EFA 

Constant 88.2263 119.271 41.7855 105.645 -19.9837 -21.1913 -21.1913 

Coefficient 1.02927 0.000325 0.305135 0.002129 0.026579 0.267055 0.267055 
T-value 
(Coefficient) 27.2 7.29 55.1 12.2 112 111 48.1 

ADF tests on residuals from the previous regression (T=2545, Constant; 5%=-2.86 1%=-3.44) 

D-Lag t-adf t-adf t-adf t-adf t-adf t-adf* t-adf 

2 0.7893 -0.0415 0.7871 0.2458 -1.841 -1.697 1.221 

1 0.6042 -0.1923 0.3139 0.1049 -2.295 -2.204 0.9868 

0 0.4206 -0.4942 -0.899 -0.3195 -3.898** -3.853** 0.9717 

**Significant in relation to the  1% critical values supplied by OxMetrics  

 



 

23 
 

The level regressions show that there is a significant co-integrating relationship between 

S&P500 and FTSE100 (UKX and ISF). Although all the t-values for the coefficients from the 

Engle Granger regression is significant on the 5% significance level for all variables, the 

corresponding residuals are not stationary. The non-stationary residuals indicate that the 

Engle Granger regression is spurious. 

In the further analysis, the only interesting variable is the ETF for FTSE100, id est. ISF LN. 

Because the price of one unit ISF is higher than the price of SPY, I estimate the Engle-Granger 

regression again, this time with ISF as the dependent variable. In addition to the level 

regression, I also perform the regression analysis on the log-transformed data. 

Table 3 – Engle-Granger OLS with FTSE100 as dependent variable 

The table shows the Engle-Granger OLS regression with the ETF of FTSE100 as the dependent 
variable on the ETF of S&P500. In the upper part of the table, the price series are not transformed. 
The level-level regression equation is given as, 

^ ^ ^

0t t tISF SPY u     

The lower part contains the same regression on the log-transformed time series, id est., the log-log 
regression, 

^ ^ ^

0ln( ) ln( )t t tISF SPY u     

 
The residuals from the EG OLS is tested for a unit root with the ADF-test.  

2^ ^ ^

11

1

( 1) tt t t

j

u y u   



        

The results from the ADF is in the right part of the table.  

LEVEL 

Engle-Granger ADF 

 Coefficient t-value D-lag t-adf 

Constant 160.737 44.5 2 -2.76 

SPY 3.10742 111 1 -3.13* 

   0 -4.51** 

LOG 

Engle-Granger ADF 

 Coefficient t-value D-lag t-adf 

Constant 2.80564 92.6 2 -3.133* 

ln(SPY) 0.725675 116 1 -3.513** 

      0 -5.006** 

**Significant in relation to the 1% critical values supplied by OxMetrics 

 

The critical value for two variables and sample size bigger than 200 is 3.25 on the 5%-level and 3.75 

for the 1% level (Engle and Yoo, 1987). Hence, the results in the last column show that the residuals 
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are stationary and that there is co-integration between the two ETFs. The results show that the 

OLS regression is sensitive to the ordering of the variables. The OLS minimizes the squared 

sum of the residuals of the dependent variable to find the optimal fit. The problem may be 

eliminated by using a model that uses the residuals from both the dependent and 

independent variable such as Total Least Squares. In this thesis, I will try to circumvent the 

problem by using the more robust regression, id est. ISF LN as the dependent variable. The 

fact that the coefficients are not the inverse of each other could imply a problem with the 

hedge ratio, but as long as the coefficients are used consistently, it should be possible to 

avoid the problem. 

4.2.2 Error Correction Model 

The error correction model is defined in Engle and Granger (1987) and is given by 

1 1 1 1

2 2 1 2

t t t t

t t t t

y x Z e

x y Z e

 

 





    

    
 

Table 4 – Error correction model 

The table gives the Error Correction Model, id est. the results from the regressions shown above. DL 
ISF is Δy from the equation above, and is the log-difference of ISF, id est. the log-returns of ISF. DL 
SPY is Δx, and is the log-difference of SPY. Z is the spread given by the residuals of the Engle-
Granger regression.  

DL ISF Coefficient t-value DL SPY Coefficient t-value 

Constant 0.05303 5.14 Constant -0.0334 -3.07 

DL SPY 0.56087 36.9 DL ISF 0.62213 36.9 

Z_1 -0.0189 -5.17 Z_1 0.01195 3.08 

 

The Engle-Granger regression returns a positive alpha. The name error correction describes 

the short-term adjustment back to the equilibrium. The coefficients of Z, found in the last 

row of table 4, are interpreted as the speed of adjustment back to the equilibrium. The ECM 

will only include an error correction mechanism if γ1<0 and γ2>0 given a positive alpha. The 

size of γ1 and γ2 gives the speed of adjustment. In our case they are -0.019 and 0.012. These 

small coefficients signal a low speed of adjustment. As the model corrects to the equilibrium, 

it should be applicable for trading.  

To check if there is any one way Granger flows, the two equations from the ECM is re-

written. Given the ECM-equations, 
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1 1 1 1

2 2 1 2

t t t t

t t t t

y x Z e

x y Z e

 

 





    

    
, 

then Y and X can be expressed using only predetermined lags: 

1 2 1 1 2 1
1 1

1 2 1 2

( ) ( )
(1 )

(1 ) (1 )
t t t ty y x e

     


   
 

 
   

 
 

Inserting the expression for Y into the orignal expression for x yields 

1 2 1 1 2 1
2 2 1 2 2 1 2

1 2 1 2

( ) ( )
( ) (1 ( ))

(1 ) (1 )
t t t tx y x e

     
   

   
 

 
     

 
 

  

Table 5 – Predetermined values from ECM 

The table shows the transformed ECM containing only predetermined variables on the right-hand 
side. The regression investigates whether the other variable has significant explanatory power. The 
results show that the log prices of the ETF for FTSE100 are explained partly by previous log prices of 
SPY, the ETF for the S&P500, but not the other way around. 

ln(ISF) Coefficient t-value ln(SPY) Coefficient t-value 

ln(ISF)_1 0.98129 216 ln(SPY)_1 0.99781 263 

Constant 0.05838 4.02 Constant 0.00879 0.574 

ln(SPY)_1 0.01239 3.44 ln(ISF)_1 0.00032 0.09476 
 

Estimating yt and xt by ordinary least squares illustrates an interesting point. Namely that the 

regression that explains the price of ISF (left side of table) is statistically significant for every 

coefficient, but the regression with SPY as the dependent variable only contain one 

significant coefficient. Recall the definition of Granger causality; X Granger Causes Y if lagged 

values of x increase the precision of current and future predictions.  The Granger causality 

indicates that SPY determines the equilibrium and the equilibrium is adjusted trough ISF, id 

est. the error correction term and the influence SPY has on ISF. 

To verify the findings I test the first differences of ln(ISF) and ln(SPY). Table 6 shows the 

results from the regression: 

1 11 1 12 1 1 1 1 1

2 21 1 22 1 2 1 1 2

( )

( )

t t t t t t

t t t t t t

y x y y x u

x x y y x u

    

    

   

   

        

        
, 

where y is ln(ISF) and X is ln(SPY). The formal test for Granger causality will then be: 
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ln(SPY) Granger causes ln(ISF) if the H0 is rejected. 

ln( )

0 11 1: 0SPYH     

ln(ISF) Granger causes ln(SPY): 

ln( )

0 22 2: 0ISFH     

Table 6 – Granger causality test 

The table shows the results from the Granger causality test, where respectively the first difference 
of the log prices of the ETF for FTSE100 and S&P500 are dependent variables. The variables are 
regressed on lagged values and the lagged spread provided by the Engle-Granger regression. 

  Dln(ISF)     Dln(SPY)   

 Coefficient t-value  Coefficient t-value 

Dln(ISF)_1 -0.30253 -13.1 Dln(SPY)_1 -0.09745 -3.97 

Constant 0.03283 2.72 Constant 0.001892 0.14 

Dln(SPY)_1 0.40646 18.5 Dln(ISF)_1 0.011015 0.428 

z_1 -0.01166 -2.71 z_1 -0.0006 -0.125 
 

The results show that the return on SPY are not explained by the lagged return of ISF LN or 

the spread and that the simultaneous H0
ln(SPY) is rejected so that SPY Granger Cause ln(ISF). 

H0
ln(ISF) is not rejected, stating that ln(ISF) does not Granger cause ln(SPY).  

4.2.3 USD as base currency 

 
Table 7 – Johansen cointegration test 

The table shows the results from the Johansen cointegration test. The variables included are EFA, 
EZU, FTSEMIB, IBEX, ISF, SPY, and SXXP in the base currency USD. The first column show the 
different H0 and describes the number of co-integrating equations (CE). The third column show the 
trace statistic and the forth column show the critical value (5%).  

Unrestricted Cointegration Rank Test (Trace) 

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None  0.017311  117.0119  125.6154  0.1483 

At most 1  0.011017  72.64032  95.75366  0.6303 

At most 2  0.007078  44.48993  69.81889  0.8467 

At most 3  0.004992  26.43960  47.85613  0.8746 

At most 4  0.003004  13.72191  29.79707  0.8559 

At most 5  0.002033  6.077962  15.49471  0.6863 

At most 6  0.000357  0.906304  3.841466  0.3411 
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The results show that there are no co-integrating equations in the system using a 5%-

significance level after adjusting for currency.  If the market capitalization of the indices are 

similar, these results rejects a purchasing power parity-test (PPP). However, Purchasing 

Power Parity is not the focus of this thesis. The focus for this thesis is the efficient market 

hypothesis. The fact that the indices corrected for currency are not co-integrated implies 

that the price of the indices evolve randomly. These results support the efficient market 

hypothesis. 

5. TRADING STRATEGY 

5.1 Design 
This section includes the intuitive reasoning behind the trading strategy. The trading strategy 

is based on the co-integrating relationship of S&P500 and FTSE100. The two indices are 

traded in USD and GBP, respectively. Because the co-integrating relationship disappears 

when we use a base currency, the trading strategy will include a higher transaction cost due 

to the exchange of GBP for USD. I assume that the investor performing the trade is a hedge 

fund or similar with power to reduce the transaction costs. Regarding transaction costs, 

Marius Hovde said the following: “Transaction costs varies from instrument to instrument. 

The major players will be able to trade in the spread and escape this item. When I look at the 

SPY, traded live now as we speak , this trades at 188.17 / 188.18 and it looks like one point 

spread is pretty standard here, and it's practically negligible. One might argue that in the 

turbulent period (financial crisis, etc.) then the spread could be substantially higher. ISF LN is 

now 682.6 / 683.0 (…), but when you have several hundred millions to shop for, then you will 

surely be able to get down towards to zero here as well”. 

If there is cointegration between the asset prices, the residuals from the OLS are stationary. 

Id est. the spread is stationary. As the spread is stationary, the spread will return to its 

equilibrium value. The strategy is based on two threshold values: The equilibrium value +/- 

delta multiplied with the standard deviation of the spread return estimated from the in-

sample estimation. Delta is an arbitrary number. The strategy opens a long position when 

the spread is below the lower threshold. It opens a short position when the spread is above 

the upper threshold. The threshold, λ, is expressed mathematically as 

  U Z Z L Z Z           
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Whenever the spread is in between the two thresholds, the strategy yields a signal equal to 

the lagged signal.  

The quotes used are average bid-ask closing prices, but the bid-ask spread will be 

incorporated by subtracting a percentage whenever there is a change of position. The bid-

ask spread of the ETFs based on S&P500 and FTSE100 are minimal.  The cost of short-selling 

will include a cost of borrowing ETFs to short. This cost will be included in the model by 

subtracting a percentage.  

In Gatev et al. (2006) the authors construct a capital neutral portfolio. A capital neutral 

portfolio is constructed by using the proceeds from short selling to cover the long position. I 

will not construct capital neutral portfolios in this thesis.  

The trading strategy consists of three different approaches. The first approach uses the 

untransformed price series and the corresponding co-integrating vector as the portfolio 

weights. This strategy is called Level Unit, because the co-integrating vector can be 

interpreted as number of shares. The two other approaches use the log-transformed price 

series. The first of the strategies that use log-transformed price series, is called Log Unit, and 

use the co-integrating vector as portfolio weights. The last strategy is called Log Relative 

Weight in Capital, or Log RWC. Lin et al. (2006) constructs a market neutral portfolio by using 

the cointegration coefficient as a hedge ratio. The interpretation of the Engle-Granger alpha 

as a hedge ratio is dependent on the price series used in the regression. If the regression 

uses raw, untransformed prices, the coefficient can be interpreted as a number of share. If 

the regression uses log-transformed data, the coefficient should be interpreted as relative 

weights in capital. The third strategy uses the weights given in the equation below. Assume 

the regression 

^ ^ ^

ln( ) ln( )EGt t tISF SPY u    , 

then the weights for a market neutral portfolio are defined as 

^
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

, 

with the corresponding weight of SPY 
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These weights are necessary for a market neutral portfolio if the prices are log-transformed.  

To evaluate the trading strategies I will use standard deviation and return, and some risk-

adjusted measures like the Sharpe ratio of Sharpe (1966) and an approximation to the 

Treynor index portrayed in Treynor (1965). The Sharpe ratio (SR) is expressed as, 

p

p f

R

R R
SR




  

Where Rp is the return of the portfolio, σRp is the standard deviation of portfolio returns and Rf is the 

risk-free rate. The Treynor index differs from the Sharpe ratio in the use of risk adjustor. The treynor 

index uses the portfolio return beta (defined below). If the investor is fully diversified, she will only 

care about systematic risk (or market risk) and the Treynor index will be a suitable measurement. 

Beta is expressed as,  

( , )

( )p

m p

R

m

Cov R R

Var R
   

So that the treynor index is,  

p

p f

R

R R
Treynor




  

My approximation of the Treynor index is determined by the use of Rm. Both FTSE100 and 

S&P500 are suitable for use as the market return, but because the FTSE100 is used as the 

dependent variable in the regressions I will only use FTSE100 as the market return. 

5.1.1 Level Unit 

When modelling the level spread, the co-integrating vector is interpreted as number of 

shares. Do et al. (2006) discusses the long term level difference of pairs, and argues that the 

long-term difference will not be constant, but that it will increase as the stock prices go up 

and decrease as they go down. Given the spread from the Engle-Granger regression 

^ ^
Level

t t t tz SPY ISF       
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The prices at time t+1 can be written as: 

1 1 1 1(1 ) (1 ) SPY ISF

t t t t t tSPY SPY r ISF ISF r         

The spread at time t+1 is then: 

^ ^

1 1 1 1 1(1 ) (1 )Level SPY ISF Level SPY ISF

t t t t t t t t t tz SPY r ISF r z SPY r ISFr             

From the spread at time t+1 it becomes clear that the last difference must be equal to zero if 

the spread should remain constant. In this thesis, I estimate the expected value of the 

spread based on the historical data. 

5.1.2 Log Unit 

When the price of the portfolio consisting of one unit ISF LN and α unit of SPY is above the 

threshold value, I short the portfolio and vice versa. 

5.1.3 Relative weight in capital (Log RWC) 

The portfolio consisting of weights defined by the relative weight in capital applies the same 

strategy, id est. when the price of the portfolio is above the threshold value the portfolio is 

shorted, and vice versa. The use of rebalancing weights will incur daily transaction costs. 

However, the fluctuations in the in-sample estimation are minimal. Therefore, the cost of 

rebalancing is included in the transaction cost term, rather than a daily percentage.  
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5.2 In-Sample Estimation 
Table 8 – Trading strategies (In-sample) 

The table shows the standard deviation (σZ) of the returns of the spreads and indices, the value 
index (VI) without transaction costs (TC), the Sharpe ratio (SR), the Treynor index and the beta of 
the returns. The risk-free rate is based on the YTM of a 10-year US government bond quoted at 
01.04.2004. The YTM is 3.8786% annually. The Sharpe ratios in the fourth column to the right are 
only positive for the level unit strategy and the buy and hold strategy for the S&P500. The sharpe 
ratio is negative for the two log strategies. The equilibrium value is given in the second column. 
 

  EV σZ  VI TC=0% SR Treynor (ISF) Beta RISF 

Level Unit 159.2596 3.44 % 2.045303 1.19 0.570141 1.021233 

Log Unit 2.803661 0.99 % 1.402321 -0.43 -0.15809 0.384178 

Log RWC 10.22022 0.36 % 1.143798 -6.34 -2.31913 0.137663 

SPY - 1.26 % 1.494405 2.49 0.02622 1.195616 

ISF LN - 1.20 % 1.379768 -6.94 -0.08329 1 

 

The SR of the long position in SPY beats all the trading strategies. The risk adjusted return of 

ISF is lower than of all the other trading strategies.  The level unit has the highest standard 

deviation, and the second highest Sharpe ratio. An undiversified risk-averse investor would 

prefer a long position in SPY instead of the level unit strategy. The Treynor index of the level 

unit strategy is higher than the Treynor index for the long position in SPY.  A well-diversified 

investor might prefer the level unit strategy, as the systematic risk (given by beta) is lower.  

The other strategies has lower standard deviations and lower returns than SPY. If one 

assume the returns to be a predictor of what to come, then the choice of strategy will be 

contingent on investor preferences. The low risk strategy of Log relative weight in capital 

(RWC) in row number 3 does not exceed the risk free rate, but has the lowest standard 

deviation of all the strategies. The large and negative SR for the log RWC strategy is due to 

the low standard deviation. The log RWC strategy has the lowest beta in regards to FTSE100, 

and may therefore be seen as a market neutral portfolio, or a hedge. If the hedging had been 

perfect, the Sharpe ratio would have been zero. The fact that the strategies do not yield a 

higher risk adjusted return than SPY may be because the Sharpe ratio does not incorporate 

the inherent hedge that the spread-based position has.  
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5.3 Out-of-sample test 

The out-of-sample test is based on 85 trading days, from 01.01.2014 to 29.04.2014. The out-

of-sample uses the equilibrium and threshold values estimated by the in-sample model. 

Table 9 – Trading strategies (Out-of-sample) 

The table shows the standard deviation (σZ) of the returns of the spreads and indices, the value 
index (VI) with and without transaction costs (TC), the corresponding Sharpe ratio (SR), the Treynor 
index and the beta of the returns based on the portfolio with transaction costs. The estimation 
period is from 01.01.2014 to 29.04.2014. The risk-free rate is based on the YTM of a 1 month US 
government bond quoted at 01.01.2014. The YTM is 1.01% annually. The value index includes a 
transaction cost. The cost is set to 5% pr. Position change for the cointegration-based strategies and 
1% for the long positions in the indices 

 σz  VI TC=0% SR VI TC=5% SR Treynor Beta 

Level Unit 3.01 % 0.9906 -0.15 0.9406 -0.74 -0.0221 2.83 

Log unit 0.55 % 0.9992 -0.28 0.9492 -3.56 0.0955 -0.57 

Log RWC 0.21 % 1.0001 -0.60 0.9501 -6.73 -0.2455 0.22 

SPY 0.90 % 1.0164 1.74 1.0064 0.41 0.0056 0.55 

ISF LN 0.69 % 1.0162 1.91 1.0062 0.42 0.0029 1.00 

 

None of the cointegration-based strategies yields positive returns after adjusting for 

transaction costs. The level unit strategy that performed well in the in-sample test gives 

approximately the same standard deviation, but with far lower return. The log RWC is still 

close to market neutral, but has the most negative SR index after transaction costs. This 

highly negative SR is because the return of the portfolio is lower than the risk-free, and has a 

very low (0.21%) standard deviation. The log unit strategy returns a negative beta. I consider 

the negative beta to be a coincidence since the beta of the strategy is not negative in the in-

sample estimation. The negative beta makes the Treynor index of the Log unit strategy to 

the highest. The worst SR from the in-sample estimation was ISF, but now the ISF has the 

highest SR. The fact that the SR is “unusual”, in addition to the negative beta of the Log unit 

strategy, might indicate that the out-of-sample period is an atypical period. The ECM gave a 

γ1 and γ2, that were are quite low. The low coefficients from the ECM tells us that mean 

reversion will take some time, and the convergence may take longer than 85 days.   
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6. DISCUSSION 
One interesting finding of this thesis is that S&P500 and FTSE100 are co-integrated. A co-

integrating relationship between the two indices means that there is statistically significant 

stationary long-term equilibrium. Modelling the short-term dynamics shows that the spread 

based on the co-integrating vector has mean reverting properties. The ECM shows that the 

mean reverting will take some time. This mean-reversion is not captured in the 85-day out-

of-sample test. I find that SPY Granger Causes ISF LN, meaning that the returns of SPY help 

describe the returns of ISF LN better than just the lagged returns of ISF LN. The one-way 

granger causality may be due to the different opening hours, and that the indices are open 

for trade at the same time only a couple of hours a day. In spite of the mean-reverting 

process proven by the ECM, the trading strategies did not yield positive results. The fact that 

there is a short term disequilibrium may be the disequilibrium mentioned by Grossman and 

Stiglitz (1980). As mentioned in the literature review, Grossman and Stiglitz argues that there 

must be some degree of disequilibrium in the market prices. If there is perfect efficiency in 

the markets, those who gather information will not receive compensation. 

The other index prices do not have a statistical significant long-term equilibrium with 

S&P500.  The results are in line with the EMH seeing as S&P500 cannot be used to predict 

the returns of the other indices. The long-term equilibrium cannot be directly linked to any 

of the existing asset pricing models (CAPM, APT, FF etc.), which has previously been used to 

test the EMH. But, if one test the definition “A market is efficient with respect to information 

set θt if it is impossible to make economic profits by trading on the basis of information 

set θt.” then the cointegration approach is a great tool for testing the EMH, as the 

information set is known for everybody and easy accessible.  Because of the resemblance to 

previous studies that have implemented similar strategies on single stock pairs, and returned 

positive returns, it might seem as though Schwert (2003) has a valid point as he describes 

how the practitioners implement the anomalies found by researchers. The fact that 

practitioners implement the research gives credibility to Bowen et al. (2010), which showed 

that the speed of trading is crucial. Timmermann and Granger (2004) described the constant 

search for profitable trading strategies as a self-destructing game.  This self-destructing 

game could be one of the reasons for the negative results in the out-of-sample test. 
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The analysis of this thesis has its drawbacks, apart from the currency risk faced in the trading 

strategy, the stationary relationship may be altered as the composition of stocks in the index 

changes. In addition, an improved modelling of the threshold values could maybe enhance 

the profitability of the trading strategies.  
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7. CONCLUSION 

The test of the efficient market hypothesis shows that it is not possible to make economic 

profits trading based on the information set, θ. The interesting part of the empirical analysis 

is that although there is a stationary short-term disequilibrium between the asset prices, the 

trading of the ETFs based on the spread is not profitable. These unprofitable trades may also 

point in favour of the semi-strong EMH, and is in line with the results of Grossman and 

Stiglitz (1980). The analysis in this thesis supports the EMH. 
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Appendix: OLS-coefficients and the superconsistent EG-OLS coefficient. 
Given the model 

0 1 1i iy x u   
 

The model does not capture the underlying process exactly, and the stochastic error term is 

noted u. If one estimates the model  

^ ^ ^

0 1 ii
y x    

Then the observable equivalent to the error term is defined as ûi, and is called the residuals. 

The OLS rests on the assumptions that the error term follows a normal distribution with 

expectation zero and standard deviation σ, the covariance between the explanatory variable 

and the error term is zero and that the auto covariance of the error term is zero. Under 

these assumptions, the OLS-estimators follows a normal distribution. 

The ordinary least squares minimizes the squared sum of residuals by choosing the OLS-

estimators, β0 and β1  

^ ^ ^ ^ ^ ^ ^ ^

0 1 0 1 0 1 0 1

^ ^ ^ ^
2 2 2 2

0 1

, , , ,1 1 1

min min ( ) min ( ) min ( )
n n n

i i i i

i i i

SSR u y y y x
       

 
  

       
 

The first order condition, 

2 ^ ^

0 1^
1

0

: 2 ( )( 1) 0
n

i i

i

SSR
FOC y x 

 


    




 

Yields the expression for the constant, β0, by multiplying the FOC with 1/2n, 

_ _^ ^

0 1y x  
 

To find an expression for the explanatory coefficient β1, insert the expression for β0 in the 

original minimizing problem. Then minimize with respect to β1, 
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^

1

_ _^
2

1

1

_ _ _^

1

1

_ _ _^
2

1

1 1

_ _

^
1

1 _
2

1

min ( ( )

: 2 ( ) ( ) ( 1)( ) 0

( )( ) ( ) 0

( )( )

(*)

( )

n

i i

i

n

i i i

i

n n

i i i

i i

n

i i

i

n

i

i

y y x x

FOC y y x x x x

y y x x x x

y y x x

x x















 





  

 
      

 

    

 









 




 

Given the regression,  

0 1i i iy x u   
 

And, 

_ _ _

0 1y x u     

Then,  

_ _ _

1( ) ( )i i iy y x x u u      

Inserting the last expression into (*) yields the following expression for the OLS-estimator, 

_ _ _

^
1 1

1 1 1_ _
2 2

1 1

( )( ) ( )

(**)

( ) ( )

n n

i i i i

i i

n n

i i

i i

u u x x u x x

x x x x

   

 

  

   

 

 

 
 

 

Consider the difference between the estimator and the parameter. Consistency requires that 

the probability of the difference being less than an arbitrary small number is zero, when 

number of observations goes towards infinity.  

^

lim ( ) 0
n

P   


  
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 Where ε is an arbitrary small number. The estimator is consistent if the probability limit of 

the estimator equals the parameter, 

^

limp    

To investigate if (**) is consistent, I will expand the denominator and the numerator with 

1/n and then take the probability limit of both sides. 

_ _

^
1

1 _
2

1

1
lim ( )( )

lim
1

lim ( )

n

i i

i

n

i

i

p u u x x
n

p

p x x
n

  



 

 






 

When n approaches infinity, the expression becomes 

^

1

( , )
lim

( )

i i

i

Cov u x
p

Var x
  

 

In other words, if the covariance between the error term and the explanatory variable is 

zero, as earlier assumed, then the estimator is consistent. In the Engle-Granger regression 

both y and x in the above model is non-stationary, while u is a stationary AR-process. If we 

consider the probability limit of (**), then the numerator will explode as it contains a non-

stationary process. However, the denominator contains a squared non-stationary process, 

and will thus dominate the numerator so violently that it does not matter if the error term is 

independent of the explanatory variable. 
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Appendix: Unit Root tests 
Unit-root tests of the variables included in the analysis.  

 ADF tests (T=2542, Constant+Trend; 5%=-3.41 1%=-3.97) 

3 lags captures the relevant autocorrelation that might be present. 

SPY US 

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 -0.8067 0.99882 1.412 -2.628 0.0086 0.6918  

1 -0.9354 0.99863 1.413 -4.303 0 0.6937 0.0086 

0 -1.151 0.99831 1.418   0.7002 0 

        

EZU US 

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 -1.752 0.99759 0.6214 -0.916 0.3597 -0.9495  

1 -1.778 0.99755 0.6214 -4.805 0 -0.9499 0.3597 

0 -1.921 0.99735 0.6241   -0.9417 0 

        

FTSEMIB 

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 -1.873 0.99779 337.6 -0.5334 0.5938 11.65  

1 -1.884 0.99777 337.6 -1.653 0.0985 11.65 0.5938 

0 -1.918 0.99773 337.7   11.65 0.2216 

        

SXXP In 

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 -1.479 0.99811 3.158 -1.342 0.1799 2.302  

1 -1.522 0.99805 3.158 -1.366 0.1721 2.301 0.1799 

0 -1.567 0.99799 3.159   2.301 0.1601 

        

IBEX In 

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 -2.056 0.99715 148.5 -1.991 0.0466 10  

1 -2.108 0.99708 148.6 -0.5226 0.6013 10 0.0466 
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0 -2.123 0.99706 148.6   10 0.1204 

        

UKX Ind 

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 -2.162 0.99593 62.01 -1.711 0.0871 8.256  

1 -2.241 0.99578 62.03 -2.554 0.0107 8.257 0.0871 

0 -2.363 0.99555 62.1   8.259 0.0089 

        

ISF LN: 

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 -2.157 0.99589 6.279 -2.548 0.0109 3.676  

1 -2.272 0.99567 6.285 -2.917 0.0036 3.678 0.0109 

0 -2.412 0.9954 6.295   3.681 0.0006 

        

EFA US 

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 -1.739 0.99735 0.8122 -1.857 0.0635 -0.414  

1 -1.8 0.99725 0.8126 -5.635 0 -0.4135 0.0635 

0 -2.001 0.99693 0.8175   -0.4018 0 

        

LSPY: A 

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 -1.223 0.99806  0 0.01262 -3.718 0.0002 -8.743  

1 -1.39 0.99779  0 0.01265 -4.56 0 -8.739 0.0002 

0 -1.606 0.99744  0 0.0127   -8.731 0 

        

LEZU: A 

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 -1.962 0.99683  0 0.01788 -1.333 0.1826 -8.047  

1 -2.008 0.99676  0 0.01788 -4.627 0 -8.047 0.1826 

0 -2.178 0.99647  0 0.01795   -8.039 0 
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LFTSEMI 

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 -2.083 0.99689  0 0.01541 -1.381 0.1675 -8.344  

1 -2.127 0.99682  0 0.01541 -0.2377 0.8121 -8.344 0.1675 

0 -2.136 0.99681  0 0.01541   -8.344 0.375 

        

LSXXP: 

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 -1.59 0.99780  0 0.01218 -2.331 0.0198 -8.815  

1 -1.671 0.99768  0 0.01219 -0.5995 0.5489 -8.813 0.0198 

0 -1.694 0.99765  0 0.01218   -8.814 0.0554 

        

LIBEX: 

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 -2.198 0.99670  0 0.015 -2.405 0.0162 -8.397  

1 -2.27 0.99659  0 0.01502 0.7816 0.4345 -8.395 0.0162 

0 -2.248 0.99663  0 0.01502   -8.396 0.041 

        

LUKX: A 

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 -2.233 0.99570  0 0.01199 -2.642 0.0083 -8.845  

1 -2.353 0.99547  0 0.01201 -2.298 0.0217 -8.843 0.0083 

0 -2.463 0.99526  0 0.01202   -8.842 0.0022 

        

LISFUK: 

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 -2.204 0.99572  0 0.01205 -3.61 0.0003 -8.836  

1 -2.366 0.99540  0 0.01207 -2.604 0.0093 -8.832 0.0003 

0 -2.492 0.99516  0 0.01209   -8.83 0.0001 
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Appendix: Engle-Granger regression before correcting for base currency 
The appendix shows the Engle-Granger regression with the ETF for S&P500 as dependent variable. 

The residuals from the EG-regression is then tested with an Augmented Dickey Fuller test. S&P500 

and the dependent variable has a co-integrating relationship if the residuals are stationary, id est the 

t-adf for D-lag Zero is higher than the critical value. Significant values are marked with * on the 5% 

level and ** on the 1%. The table shows that there are no co-integrating relationships when the 

regression is performed with only one dependent variable. 

 

 Coefficient Std.Error t-value t-prob Part.R^2   

Constant 88.2263 1.498 58.9 0 0.5769   

EZU US Equity 1.02927 0.0379 27.2 0 0.2248   

        

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 0.7893 1.0008 0.9203 -3.114 0.0019 -0.1645  

1 0.6042 1.0006 0.9219 -3.14 0.0017 -0.1615 0.0019 

0 0.4206 1.0004 0.9235   -0.1584 0.0001 

        

        

 Coefficient Std.Error t-value t-prob Part.R^2   

Constant 119.271 1.229 97 0 0.7873   

FTSEMIB Index 0.000325 4.46E-05 7.29 0 0.0205   

        

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 -0.04157 0.99994 1.351 -2.712 0.0067 0.6028  

1 -0.1923 0.99975 1.352 -5.394 0 0.6049 0.0067 

0 -0.4942 0.99934 1.36   0.6155 0 

        

 Coefficient Std.Error t-value t-prob Part.R^2   

Constant 41.7855 1.585 26.4 0 0.2147   

SXXP Index 0.305135 0.005541 55.1 0 0.5439   

        

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 0.7871 1.0012 1.037 -7.741 0 0.0734  

1 0.3139 1.0005 1.049 -20.26 0 0.09595 0 
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0 -0.899 0.99854 1.13   0.245 0 

        

 Coefficient Std.Error t-value t-prob Part.R^2   

Constant 105.645 1.849 57.1 0 0.5621   

IBEX Index 0.002129 0.000174 12.2 0 0.0555   

        

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 0.2458 1.0003 1.255 -2.508 0.0122 0.4559  

1 0.1049 1.0001 1.256 -7.554 0 0.4576 0.0122 

0 -0.3195 0.9996 1.27   0.479 0 

        

 Coefficient Std.Error t-value t-prob Part.R^2   

Constant -19.9837 1.324 -15.1 0 0.0822   

UKX Index 0.026579 0.000236 112 0 0.8325   

        

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 -1.841 0.99443 1.271 -7.459 0 0.4813  

1 -2.295 0.99299 1.285 -21.55 0 0.5022 0 

0 -3.898** 0.98711 1.397   0.6694 0 

        

        

        

        

 Coefficient Std.Error t-value t-prob Part.R^2   

Constant -21.1913 1.348 -15.7 0 0.0886   

ISF LN 0.267055 0.002398 111 0 0.8299   

        

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 -1.697 0.99475 1.307 -7.858 0 0.5377  

1 -2.204 0.99312 1.323 -21.13 0 0.561 0 

0 -3.853** 0.98702 1.434   0.7222 0 
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 Coefficient Std.Error t-value t-prob Part.R^2   

Constant 49.7294 1.648 30.2 0 0.2638   

EFA US Equity 1.33443 0.02773 48.1 0 0.4766   

        

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 1.221 1.0011 0.658 -3.665 0.0003 -0.8355  

1 0.9868 1.0009 0.6596 -0.273 0.7849 -0.831 0.0003 

0 0.9717 1.0009 0.6595   -0.8318 0.0012 
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Appendix EG Regression with USD as base currency. 
The appendix shows the Engle-Granger regression with the ETF for S&P500 as dependent variable. 

The residuals from the EG-regression is then tested with an Augmented Dickey Fuller test. S&P500 

and the dependent variable has a co-integrating relationship if the residuals are stationary, id est the 

t-adf for D-lag Zero is higher than the critical value. Significant values are marked with * on the 5% 

level and ** on the 1%. The table shows that there are no co-integrating relationships when the 

regression is performed with only one dependent variable. 

 

ADF tests (T=2542, Constant; 5%=-2.86 1%=-3.44) 

 

 Coefficient Std.Error t-value t-prob part.R^2   

Constant 118.798 1.23 96.6 0 0.7857   

FTSEMIB USD 0.000282 3.67E-05 7.69 0 0.0227   

        

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 -0.06775 0.99991 1.348 -2.707 0.0068 0.5988  

1 -0.2164 0.99971 1.35 -5.475 0 0.6009 0.0068 

0 -0.5195 0.99931 1.357   0.6118 0 

        

 Coefficient Std.Error t-value t-prob Part.R^2   

Constant 38.915 1.497 26 0 0.2099   

SXXP USD 0.258737 0.004294 60.3 0 0.5881   

        

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 -0.4434 0.99928 1.078 -6.831 0 0.1512  

1 -0.7475 0.99877 1.087 -19.58 0 0.1686 0 

0 -1.692 0.99703 1.166   0.3084 0 

        

 Coefficient Std.Error t-value t-prob Part.R^2   

Constant 102.512 1.868 54.9 0 0.5421   

IBEX USD 0.001997 0.000145 13.8 0 0.0698   

        

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 0.1441 1.0002 1.24 -2.452 0.0143 0.4322  
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1 0.01252 1 1.241 -8.085 0 0.4338 0.0143 

0 -0.4218 0.99947 1.257   0.4584 0 

        

 Coefficient Std.Error t-value t-prob Part.R^2   

Constant 41.7032 1.505 27.7 0 0.2319   

UKX USD 0.008979 0.000155 58.1 0 0.5702   

        

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 0.6583 1.001 1.072 -6.946 0 0.14  

1 0.2214 1.0004 1.082 -20.17 0 0.158 0 

0 -1.031 0.99823 1.165   0.3059 0 

        

 Coefficient Std.Error t-value t-prob Part.R^2   

Constant 42.6887 1.523 28 0 0.2359   

ISF USD 0.088442 0.001559 56.7 0 0.5586   

        

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 0.7219 1.0011 1.087 -6.988 0 0.1686  

1 0.2768 1.0004 1.097 -19.79 0 0.1869 0 

0 -0.9676 0.99834 1.179   0.3296 0 

 

 Coefficient Std.Error t-value t-prob Part.R^2   

Constant 49.7294 1.648 30.2 0 0.2638   

EFA US Equity 1.33443 0.02773 48.1 0 0.4766   

        

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 1.221 1.0011 0.658 -3.665 0.0003 -0.8355  

1 0.9868 1.0009 0.6596 -0.273 0.7849 -0.831 0.0003 

0 0.9717 1.0009 0.6595   -0.8318 0.0012 

        

 Coefficient Std.Error t-value t-prob Part.R^2   

Constant 88.2263 1.498 58.9 0 0.5769   
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EZU US Equity 1.02927 0.0379 27.2 0 0.2248   

        

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob 

2 0.7893 1.0008 0.9203 -3.114 0.0019 -0.1645  

1 0.6042 1.0006 0.9219 -3.14 0.0017 -0.1615 0.0019 

0 0.4206 1.0004 0.9235   -0.1584 0.0001 
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Appendix: The Johansen test tables 
The following table is a test provided by eViews. The test determines if there is a co-

integrating relationship between the included variables. The test uses information criteria to 

the test for co-integrating relationships in five ways, all with no or different trends or 

intercepts.  

Testing with all variables included, except UKX. 

 

The table includes the results from a test perfomed by eviews. The test 
determines via information criteria whether the series should be modelled with 
a trend and/or a intercept. 

Sample: 3/31/2004 12/31/2013    

Included observations: 2540    

Series: EFA_USD EZU_USD FTSEMIB_USD IBEX_USD ISF_USD SPY_USD 
SXXP_USD  

Lags interval: 1 to 4    

 Selected (0.05 level*) Number of Cointegrating Relations by Model 

      
      Data Trend: None None Linear Linear Quadratic 

Test Type No Intercept Intercept Intercept Intercept Intercept 

 No Trend No Trend No Trend Trend Trend 

Trace 0 0 0 0 0 

Max-Eig 0 0 0 0 0 

      
       *Critical values based on MacKinnon-Haug-Michelis (1999)  

      

 Information Criteria by Rank and Model 

      
      Data Trend: None None Linear Linear Quadratic 

Rank or No Intercept Intercept Intercept Intercept Intercept 

No. of CEs No Trend No Trend No Trend Trend Trend 

      
       Log Likelihood by Rank (rows) and Model (columns) 

0 -49534.98 -49534.98 -49529.66 -49529.66 -49524.22 

1 -49516.22 -49514.02 -49508.78 -49508.04 -49502.64 

2 -49505.89 -49499.40 -49494.73 -49493.16 -49487.90 

3 -49498.64 -49489.23 -49485.18 -49480.82 -49476.09 
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4 -49491.45 -49482.03 -49478.82 -49471.28 -49467.46 

5 -49487.60 -49477.81 -49474.82 -49465.21 -49462.44 

6 -49485.13 -49474.02 -49472.16 -49461.23 -49459.69 

7 -49485.04 -49471.56 -49471.56 -49458.70 -49458.70 

      
       Akaike Information Criteria by Rank (rows) and Model (columns) 

0  39.15825  39.15825  39.15958  39.15958  39.16081 

1  39.15450   39.15356*  39.15416  39.15436  39.15483 

2  39.15739  39.15386  39.15412  39.15446  39.15425 

3  39.16271  39.15767  39.15762  39.15655  39.15598 

4  39.16807  39.16380  39.16364  39.16085  39.16021 

5  39.17606  39.17229  39.17151  39.16788  39.16728 

6  39.18514  39.18112  39.18044  39.17656  39.17614 

7  39.19609  39.19099  39.19099  39.18637  39.18637 

      
       Schwarz Criteria by Rank (rows) and Model (columns) 

0  39.60889*  39.60889*  39.62631  39.62631  39.64363 

1  39.63733  39.63868  39.65308  39.65559  39.66985 

2  39.67241  39.67347  39.68523  39.69017  39.70145 

3  39.70991  39.71177  39.72092  39.72675  39.73537 

4  39.74746  39.75239  39.75912  39.76554  39.77179 

5  39.78764  39.79537  39.79919  39.80705  39.81105 

6  39.82891  39.83868  39.84031  39.85022  39.85209 

7  39.87205  39.88304  39.88304  39.89452  39.89452 

      
       

 

The previous table shows that the cointegration test should be performed with a linear 

deterministic trend. The following table employs the Johansen cointegration test based on 

a linear deterministic trend.  

Sample (adjusted): 4/06/2004 12/31/2013     

Included observations: 2541 after adjustments     

Trend assumption: Linear deterministic trend     
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Series: EFA_USD EZU_USD FTSEMIB_USD IBEX_USD ISF_USD SPY_USD 

SXXP_USD    

Lags interval (in first differences): 1 to 3     

Unrestricted Cointegration Rank Test (Trace)     

        
        Hypothesized  Trace 0.05     

No. of CE(s) Eigenvalue Statistic 

Critical 

Value Prob.**    

        
        None  0.017311  117.0119  125.6154  0.1483    

At most 1  0.011017  72.64032  95.75366  0.6303    

At most 2  0.007078  44.48993  69.81889  0.8467    

At most 3  0.004992  26.43960  47.85613  0.8746    

At most 4  0.003004  13.72191  29.79707  0.8559    

At most 5  0.002033  6.077962  15.49471  0.6863    

At most 6  0.000357  0.906304  3.841466  0.3411    

        
         Trace test indicates no cointegration at the 0.05 level    

 * denotes rejection of the hypothesis at the 0.05 level    

 **MacKinnon-Haug-Michelis (1999) p-values     

        

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)    

        
        Hypothesized  Max-Eigen 0.05     

No. of CE(s) Eigenvalue Statistic 

Critical 

Value Prob.**    

        
        None  0.017311  44.37161  46.23142  0.0782    

At most 1  0.011017  28.15039  40.07757  0.5511    

At most 2  0.007078  18.05034  33.87687  0.8751    

At most 3  0.004992  12.71769  27.58434  0.9000    

At most 4  0.003004  7.643948  21.13162  0.9242    

At most 5  0.002033  5.171658  14.26460  0.7200    

At most 6  0.000357  0.906304  3.841466  0.3411    
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 Max-eigenvalue test indicates no cointegration at the 0.05 level    

 * denotes rejection of the hypothesis at the 0.05 level    

 **MacKinnon-Haug-Michelis (1999) p-values     

        

 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):     

        
        EFA_USD EZU_USD FTSEMIB_USD IBEX_USD ISF_USD SPY_USD SXXP_USD  

-0.806115  0.475294 -0.000405 -0.000366  0.031864 -0.200906  0.099872  

-0.275541 -0.518278  5.29E-05  0.001770  0.026936  0.102520 -0.052134  

-0.049624  0.004152  3.58E-05 -0.000223 -0.013141 -0.024600  0.053460  

-0.686233  0.509439  1.25E-05  0.000405  0.006857  0.107219 -0.021597  

 0.161073 -0.154736  9.61E-05  0.000434 -0.004315  0.031596 -0.015749  

-0.019929  0.070223 -0.000115  0.000471 -0.013305 -0.015409  0.027798  

 0.399565 -0.498699  0.000127  0.000185  0.010438 -0.057510 -0.041853  

        
                

 Unrestricted Adjustment Coefficients (alpha):      

        
        

D(EFA_USD)  0.017093  0.008312  0.051472 -0.009003 -0.021369  0.009657 

-

0.003771 

D(EZU_USD)  0.014270  0.011688  0.042472 -0.013633 -0.011994  0.002458 

-

0.002305 

D(FTSEMIB_USD) -16.89271 -0.069832  24.81940 -2.495155 -11.63698 -3.748310  0.697195 

D(IBEX_USD) -4.301999 -5.434888  10.28191 -2.071032 -4.183419 -2.485268 

-

0.887754 

D(ISF_USD) -0.551908 -0.170965  0.811270 -0.142480 -0.141790  0.157918 

-

0.040636 

D(SPY_USD)  0.024634  0.016591  0.054853 -0.047191 -0.048841  0.017828 

-

0.005757 

D(SXXP_USD) -0.217541  0.012339  0.209321 -0.024790 -0.097446 -0.012524 

-

0.022340 

        
                

1 Cointegrating Equation(s):  Log likelihood -49561.43     
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Normalized cointegrating coefficients (standard error in 

parentheses)    

EFA_USD EZU_USD FTSEMIB_USD IBEX_USD ISF_USD SPY_USD SXXP_USD  

 1.000000 -0.589611  0.000503  0.000454 -0.039528  0.249227 -0.123893  

  (0.13829)  (6.1E-05)  (0.00037)  (0.00711)  (0.04790)  (0.02270)  

        

Adjustment coefficients (standard error in parentheses)     

D(EFA_USD) -0.013779       

  (0.01296)       

D(EZU_USD) -0.011504       

  (0.00993)       

D(FTSEMIB_USD)  13.61746       

  (6.38208)       

D(IBEX_USD)  3.467904       

  (2.81016)       

D(ISF_USD)  0.444901       

  (0.19047)       

D(SPY_USD) -0.019858       

  (0.02257)       

D(SXXP_USD)  0.175363       

  (0.05935)       

        
                

2 Cointegrating Equation(s):  Log likelihood -49547.36     

        
        Normalized cointegrating coefficients (standard error in 

parentheses)    

EFA_USD EZU_USD FTSEMIB_USD IBEX_USD ISF_USD SPY_USD SXXP_USD  

 1.000000  0.000000  0.000337 -0.001187 -0.053424  0.100952 -0.049170  

   (6.7E-05)  (0.00024)  (0.00570)  (0.05405)  (0.02281)  

 0.000000  1.000000 -0.000281 -0.002785 -0.023569 -0.251480  0.126733  

   (8.9E-05)  (0.00032)  (0.00757)  (0.07178)  (0.03028)  
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Adjustment coefficients (standard error in parentheses)     

D(EFA_USD) -0.016069  0.003817      

  (0.01370)  (0.01131)      

D(EZU_USD) -0.014724  0.000725      

  (0.01049)  (0.00866)      

D(FTSEMIB_USD)  13.63670 -7.992815      

  (6.74461)  (5.56744)      

D(IBEX_USD)  4.965437  0.772069      

  (2.96835)  (2.45027)      

D(ISF_USD)  0.492009 -0.173711      

  (0.20127)  (0.16614)      

D(SPY_USD) -0.024429  0.003110      

  (0.02385)  (0.01969)      

D(SXXP_USD)  0.171963 -0.109791      

  (0.06273)  (0.05178)      

        
                

3 Cointegrating Equation(s):  Log likelihood -49538.33     

        
        Normalized cointegrating coefficients (standard error in 

parentheses)    

EFA_USD EZU_USD FTSEMIB_USD IBEX_USD ISF_USD SPY_USD SXXP_USD  

 1.000000  0.000000  0.000000  0.000510  0.044993  0.217260 -0.365820  

    (0.00146)  (0.03532)  (0.19129)  (0.09999)  

 0.000000  1.000000  0.000000 -0.004201 -0.105720 -0.348564  0.391048  

    (0.00125)  (0.03027)  (0.16394)  (0.08569)  

 0.000000  0.000000  1.000000 -5.039770 -292.2420 -345.3670  940.2666  

    (4.30621)  (104.421)  (565.520)  (295.592)  

        

Adjustment coefficients (standard error in parentheses)     

D(EFA_USD) -0.018623  0.004030 -4.64E-06     
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  (0.01369)  (0.01128)  (6.6E-06)     

D(EZU_USD) -0.016832  0.000902 -3.64E-06     

  (0.01048)  (0.00864)  (5.0E-06)     

D(FTSEMIB_USD)  12.40506 -7.889772  0.007728     

  (6.74285)  (5.55667)  (0.00324)     

D(IBEX_USD)  4.455204  0.814756  0.001823     

  (2.96824)  (2.44608)  (0.00143)     

D(ISF_USD)  0.451750 -0.170343  0.000244     

  (0.20114)  (0.16576)  (9.7E-05)     

D(SPY_USD) -0.027151  0.003337 -7.14E-06     

  (0.02387)  (0.01967)  (1.1E-05)     

D(SXXP_USD)  0.161576 -0.108922  9.63E-05     

  (0.06273)  (0.05170)  (3.0E-05)     

        
                

4 Cointegrating Equation(s):  Log likelihood -49531.97     

        
        Normalized cointegrating coefficients (standard error in 

parentheses)    

EFA_USD EZU_USD FTSEMIB_USD IBEX_USD ISF_USD SPY_USD SXXP_USD  

 1.000000  0.000000  0.000000  0.000000  0.028577  0.141737 -0.282470  

     (0.02485)  (0.09213)  (0.07318)  

 0.000000  1.000000  0.000000  0.000000  0.029530  0.273676 -0.295678  

     (0.02620)  (0.09712)  (0.07714)  

 0.000000  0.000000  1.000000  0.000000 -129.9959  401.0710  116.4724  

     (33.1452)  (122.872)  (97.5955)  

 0.000000  0.000000  0.000000  1.000000  32.19315  148.1095 -163.4587  

     (12.1060)  (44.8779)  (35.6458)  

        

Adjustment coefficients (standard error in parentheses)     

D(EFA_USD) -0.012446 -0.000556 -4.75E-06 -6.69E-06    

  (0.01757)  (0.01393)  (6.6E-06)  (3.0E-05)    
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D(EZU_USD) -0.007476 -0.006044 -3.81E-06  4.52E-07    

  (0.01345)  (0.01066)  (5.0E-06)  (2.3E-05)    

D(FTSEMIB_USD)  14.11731 -9.160900  0.007697 -0.000488    

  (8.65245)  (6.86137)  (0.00324)  (0.01475)    

D(IBEX_USD)  5.876414 -0.240307  0.001798 -0.011181    

  (3.80867)  (3.02026)  (0.00143)  (0.00649)    

D(ISF_USD)  0.549525 -0.242928  0.000242 -0.000339    

  (0.25809)  (0.20466)  (9.7E-05)  (0.00044)    

D(SPY_USD)  0.005233 -0.020704 -7.73E-06 -1.10E-05    

  (0.03062)  (0.02428)  (1.1E-05)  (5.2E-05)    

D(SXXP_USD)  0.178588 -0.121551  9.60E-05  4.48E-05    

  (0.08050)  (0.06383)  (3.0E-05)  (0.00014)    

        
                

5 Cointegrating Equation(s):  Log likelihood -49528.15     

        
        Normalized cointegrating coefficients (standard error in 

parentheses)    

EFA_USD EZU_USD FTSEMIB_USD IBEX_USD ISF_USD SPY_USD SXXP_USD  

 1.000000  0.000000  0.000000  0.000000  0.000000 -0.111910 -0.067902  

      (0.14674)  (0.04938)  

 0.000000  1.000000  0.000000  0.000000  0.000000  0.011568 -0.073953  

      (0.15266)  (0.05137)  

 0.000000  0.000000  1.000000  0.000000  0.000000  1554.893 -859.5836  

      (638.104)  (214.745)  

 0.000000  0.000000  0.000000  1.000000  0.000000 -137.6317  78.25910  

      (154.960)  (52.1495)  

 0.000000  0.000000  0.000000  0.000000  1.000000  8.875837 -7.508360  

      (5.05550)  (1.70136)  

        

Adjustment coefficients (standard error in parentheses)     

D(EFA_USD) -0.015887  0.002750 -6.81E-06 -1.60E-05  0.000123   
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  (0.01775)  (0.01415)  (6.8E-06)  (3.1E-05)  (0.00071)   

D(EZU_USD) -0.009408 -0.004188 -4.96E-06 -4.75E-06  0.000170   

  (0.01359)  (0.01083)  (5.2E-06)  (2.4E-05)  (0.00055)   

D(FTSEMIB_USD)  12.24291 -7.360241  0.006579 -0.005534 -0.833190   

  (8.74179)  (6.96645)  (0.00333)  (0.01513)  (0.35137)   

D(IBEX_USD)  5.202576  0.407018  0.001396 -0.012994 -0.414733   

  (3.84854)  (3.06696)  (0.00147)  (0.00666)  (0.15469)   

D(ISF_USD)  0.526686 -0.220988  0.000228 -0.000401 -0.033217   

  (0.26085)  (0.20787)  (9.9E-05)  (0.00045)  (0.01048)   

D(SPY_USD) -0.002634 -0.013146 -1.24E-05 -3.22E-05  0.000398   

  (0.03093)  (0.02465)  (1.2E-05)  (5.4E-05)  (0.00124)   

D(SXXP_USD)  0.162892 -0.106472  8.66E-05  2.50E-06 -0.009100   

  (0.08134)  (0.06482)  (3.1E-05)  (0.00014)  (0.00327)   

        
                

6 Cointegrating Equation(s):  Log likelihood -49525.56     

        
        Normalized cointegrating coefficients (standard error in 

parentheses)    

EFA_USD EZU_USD FTSEMIB_USD IBEX_USD ISF_USD SPY_USD SXXP_USD  

 1.000000  0.000000  0.000000  0.000000  0.000000  0.000000 -0.134400  

       (0.01944)  

 0.000000  1.000000  0.000000  0.000000  0.000000  0.000000 -0.067079  

       (0.03431)  

 0.000000  0.000000  1.000000  0.000000  0.000000  0.000000  64.35220  

       (83.8669)  

 0.000000  0.000000  0.000000  1.000000  0.000000  0.000000 -3.523235  

       (15.0602)  

 0.000000  0.000000  0.000000  0.000000  1.000000  0.000000 -2.234234  

       (0.30070)  

 0.000000  0.000000  0.000000  0.000000  0.000000  1.000000 -0.594212  

       (0.13906)  
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Adjustment coefficients (standard error in parentheses)     

D(EFA_USD) -0.016080  0.003429 -7.92E-06 -1.14E-05 -5.86E-06 -0.005637  

  (0.01776)  (0.01419)  (7.0E-06)  (3.2E-05)  (0.00074)  (0.00406)  

D(EZU_USD) -0.009457 -0.004015 -5.25E-06 -3.59E-06  0.000137 -0.004592  

  (0.01359)  (0.01086)  (5.4E-06)  (2.4E-05)  (0.00057)  (0.00311)  

D(FTSEMIB_USD)  12.31760 -7.623459  0.007010 -0.007297 -0.783320  2.198657  

  (8.74281)  (6.98818)  (0.00345)  (0.01558)  (0.36673)  (2.00126)  

D(IBEX_USD)  5.252104  0.232495  0.001681 -0.014164 -0.381668 -0.261768  

  (3.84878)  (3.07635)  (0.00152)  (0.00686)  (0.16144)  (0.88100)  

D(ISF_USD)  0.523539 -0.209898  0.000210 -0.000327 -0.035318  0.051206  

  (0.26087)  (0.20851)  (0.00010)  (0.00046)  (0.01094)  (0.05971)  

D(SPY_USD) -0.002989 -0.011894 -1.45E-05 -2.38E-05  0.000161 -0.011475  

  (0.03093)  (0.02472)  (1.2E-05)  (5.5E-05)  (0.00130)  (0.00708)  

D(SXXP_USD)  0.163141 -0.107352  8.80E-05 -3.39E-06 -0.008933  0.034277  

  (0.08135)  (0.06502)  (3.2E-05)  (0.00014)  (0.00341)  (0.01862)  

        
         

 

 


