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Abstract

In vitro wound models are useful for

research on wound re-epithelializa-

tion. Hyperspectral imaging repre-

sents a non-destructive alternative to

histology analysis for detection of re-

epithelialization. This study aims to

characterize the main optical behav-

ior of a wound model in order to

enable development of detection

algorithms. K-Means clustering and

agglomerative analysis were used to

group spatial regions based on the spectral behavior, and an inverse photon

transport model was used to explain differences in optical properties. Six sam-

ples of the wound model were prepared from human tissue and followed over

22 days. Re-epithelialization occurred at a mean rate of 0.24 mm2/day after

day 8 to 10. Suppression of wound spectral features was the main feature char-

acterizing re-epithelialized and intact tissue. Modeling the photon transport

through a diffuse layer placed on top of wound tissue properties reproduced

the spectral behavior. The missing top layer represented by wounds is thus

optically detectable using hyperspectral imaging.
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1 | INTRODUCTION

Standardized in vitro wound models are useful for
controlled investigation of re-epithelialization [1, 2],
as systematic research on in vivo wounds is other-
wise ethically challenging to carry out. Samples are

typically subjected to destructive histology analysis
in order to evaluate re-epithelialization, which makes
it difficult to follow the same sample over time.
Optical techniques like hyperspectral imaging could
provide a non-destructive and non-contact alter-
native.
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A spectral dimension that enables spectroscopy, com-
bined with a high spatial resolution suitable for imaging
of heterogeneous structures makes hyperspectral imaging
relevant for a wide range of biomedical applications
[3]. Examples include wound imaging [3–11], burn
wound imaging [9, 12], skin bruises [13], cancer diagnos-
tics and surgical guidance [3, 14]. The large amounts of
data generated by the technique require methods for
extracting relevant information. These methods should
avoid subjective evaluation and be automatic in order to
alleviate the effort in handling the data. The overall aim
of this study is thus the development of automated analy-
sis methods to enable use of hyperspectral imaging for
in vitro wound applications. Histologies were not avail-
able for the current study, which somewhat limits the
conclusions that may be drawn. The focus of the current
paper is therefore on observations of the optical behavior
in the available hyperspectral dataset.

Wound healing is a complex multistep process, which
involves triggers and biological mechanisms that are fully
outlined in Singer et al. [15] and Arnoux et al.
[16]. Keratinocytes migrate into the wound from the sur-
rounding tissue a few hours after the injury [15, 16]. The
keratinocytes start generating new epidermal cells after
1 to 2 days [15]. The re-epithelialization happens simulta-
neously with a remodeling of the collagen matrix due to
the migration of fibroblasts into the wound [15, 16].

The wound model used in this study is based on an
in vitro model setup developed by Jansson et al. [17] and
Kratz [2]. Their standardized model consists of circular
6 mm diameter samples of human breast tissue or
abdominal tissue that are prepared with 3 mm diameter

wounds using punch biopsy. These consistently re-
epithelialize by day 7 when embedded in Dulbecco's
Modified Eagle Medium (DMEM) containing 10% fetal
calf serum (FCS) with streptomycin (50 U/mL) and peni-
cillin (50 μg/mL) added [2, 17–22]. Both partial thickness
wounds (epidermis + superficial dermis) [17, 18] and full
thickness wounds (1-mm depth) [2, 19] re-epithelialize
by day 7 under these conditions. Samples completely sub-
merged in medium were found to be covered by a single
cell layer of keratinocytes over the 7 days, which then
started to stratify into a thicker epidermis [2]. Jansson
et al. [17] showed that submerged wounds and samples
with the wounds exposed to air had similar time-course
of the re-epithelialization. Exposed wounds had migra-
tion of more than one cell layer and a neoepidermis more
resembling a normal human epidermis by day 7 [17]. Sam-
ples of a submerged model are shown in Figure 1 for
illustrational purposes. Here, the healing wounds are
covered by keratinocytes after 7 days. Variations over this
wound model in similar media have been studied, for
example, 4 mm wounds in 12 mm skin samples (48% clo-
sure by day 4, 66% closure by day 16) [23] and 4 mm
wounds in 6 mm skin samples (52% closure by day
7, above 80% closure by day 12) [24].

Some prior work on optical characterization of in vitro
wound models exist. A similar wound model was charac-
terized using fluorescence imaging by Wang et al. [23, 25]
This study considered intrinsic fluorescence emission at
excitation/emission wavelengths 335/390 nm (collagen)
and 295/340 nm (tryptophan). This was done in order to
investigate re-epithelialization by epidermal extinction of
fluorescent collagen emission from dermis, and

FIGURE 1 Histologies from an unpublished study on a wound model similar to the wound model used in this paper: Day 7 of a re-

epithelialized sample (A, ×20 magnification), day 8 from re-epithelialized samples (B, D, ×10 magnification) and day 8 from non-healing

samples (C, E, ×10 magnification). The samples here were cut using 6 mm punch biopsy, wounds prepared using 3 mm punch biopsy. The

medium consisted of 1 mL DMEM with 10% FCS and penicillin and streptomycin added. Non-healing samples were treated with 10 μM CpG B
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proliferation activity in the newly formed epidermis by
tryptophan emission. The current study does not consider
fluorescence, but reflectance from a normal light source in
the visible range. However, mechanisms influencing the
reflectance would be similar to the mechanisms influenc-
ing the lack of collagen fluorescence emission in the re-
epithelialized regions. Randeberg et al. [26] did initial
characterization of hyperspectral images of a previous iter-
ation of the wound model used in this study. This initial
analysis was limited to considerations using the cosine dis-
tance and sample spectra. The current study seeks to do
more in-depth analysis using other statistical techniques
and extend the analysis by inverse photon transport
modeling. Finally, a 3D wound model constructed using
collagen and keratinocytes was characterized using hyper-
spectral imaging by Wahabzada et al. [27]. This represents
a different type of wound model, and mainly the fibroblast
migration activity rather than re-epithelialization was cor-
related with the hyperspectral data. The current study uses
similar cluster analysis to analyze the data.

A hyperspectral imaging setup typically acquires
reflectance spectra, that is, the amount of light reflected
and back-scattered off the imaged samples at different
wavelengths. The ability of the hyperspectral system to
sense changes in the wounds is dependent on the ability
of these changes to influence the reflectance. The reflec-
tance is determined by the optical properties of the tissue,
which is typically modeled as a multilayer structure with
absorption and scattering coefficients μa(λ) and μs(λ) in
each layer [28–31].

The high spatial and spectral resolution of hyper-
spectral datasets requires special techniques to handle
the large amounts of information. Common processing
techniques for biomedical hyperspectral imaging in the
literature include clustering analysis [5, 12, 27, 32–34],
use of decomposition or dimensionality reduction
methods [9, 32, 33] and supervised classification [10,
35–37]. Unsupervised cluster analysis is a first choice to
group similar reflectance spectra. Such analysis serves to
break apart the dataset and infer properties about wound,
re-epithelialized and intact tissue over time, and discern
the measurable optical differences of these tissues.
Decomposition methods like Principal component analy-
sis (PCA) can be used to investigate the spectral proper-
ties in a low-dimensional space. Supervised classification
techniques are useful for building classification models to
identify samples as wound or intact tissue based on train-
ing samples. Such methods yield classification rules that
can be investigated and compared against the similarity-
based unsupervised analysis results.

In this paper, all these techniques are in combina-
tion used to infer the properties of the different types of
tissue over time. This is valuable as a part of

exploratory data analysis. However, understanding the
clustering or classification is important for understand-
ing their general applicability. Explanations are not
readily offered up by these statistical methods alone.
Photon transport modeling serves as a tool to under-
stand the physics and relate the statistical results and
measurable responses in reflectance back to changes in
scattering and absorption, and finally changes in skin
constitution. The main feature separating wound from
re-epithelialized or intact tissue is missing upper layers.
These layers are therefore of special interest for charac-
terization of re-epithelialization.

For a semi-infinite, one-layered model, it can be
argued that the reflectance can be written as a function
of μa/μs [38]. The same is valid for the semi-infinite layer
of an N-layer model. This means that such a model is
uniquely defined only down to ratios between the absorp-
tion and scattering coefficients of the semi-infinite layer.
It is desired to see whether re-epithelialized tissue can be
explained by some absorbing and scattering layer added
on top of a model representing the optical properties of
wound. This can be done without having to completely
inverse-model the wound, by exploiting the scale-
invariance of the reflectance model.

The combination of statistical methods and photon
transport modeling serves to make hyperspectral imaging
a promising non-destructive technique for characteriza-
tion of in vitro wound models. In Section 2, sample prep-
aration and the image acquisition procedure are outlined.
The PCA method, proposed clustering method and super-
vised classification methods used for exploration of the
dataset, and the inverse modeling method, are given in
Section 3. Results of the clustering and the investigation
using PCA and inverse photon transport modeling are
then given in Section 4.

2 | MODEL PREPARATION AND
DATA ACQUISITION

Reflectance data were acquired using a push-broom
Hyspex VNIR-1600 hyperspectral camera (Norsk Elektro
Optikk, Lillestrom, Norway). The images were acquired
over the wavelength range 400 to 1000 nm, with a spec-
tral resolution of 3.7 nm. The pixel size on the sample
surface was approximately 24 × 24 μm. The camera sys-
tem acquires one line of the image at a time with an
acquisition time of 7.5 ms per line. A full image was
acquired by moving the samples under the camera on a
translation stage. Raw images containing three wells
and a reflectance standard consisted of 6300 image
lines, resulting in a total acquisition time of approxi-
mately 47 seconds. A tissue sample with diameter 8 mm
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would have an individual acquisition time of
2.5 seconds.

The reflectance data were acquired with illumina-
tion from two linear light sources (Model 2900 Tung-
sten Halogen, Illumination Technologies, New York).
Polarizers (VLR-100 NIR, 450-1100 nm, Meadowlark
Optics, Frederick, Colorado) were mounted on the cam-
era lens and the light sources in order to avoid specular
reflection. A Spectralon reflectance target (WS-1-SL,
Ocean Optics, Duiven, Netherlands) was included
within each image.

The samples were prepared from human abdominal
skin collected from a single donor during plastic surgery.
The project was approved by the regional ethical commit-
tee (REK-Midt-Norge), and informed consent was
obtained from the donor.

Six samples of the wound model and two tissue sam-
ples without wounds were prepared, all with total sample
diameter of 8 mm. Wounds were cut into the tissue using
3 mm punch biopsy on three of the samples, and 4 mm
punch biopsy on the other three samples. Wounded tis-
sue was lifted using suction for the former three samples,
and a cannula for the latter three samples, and cut using
scissors. Final samples were cut out from the donor tissue
using 8 mm punch biopsy. Due to heterogeneity resulting
from the sample preparation, the 3 mm wounds are not
circular and do not strictly have 3 mm diameter. For sim-
plicity, these are still referred to as 3 mm wounds.

The samples were placed in separate wells, on metallic
grids in order to avoid submersion of the samples. The
wells were filled with Dulbecco's Modified Eagle Medium

(Gibco), with fetal calf serum (10%), penicillin (50 μg/mL),
streptomycin (50 U/mL) and glutamine added. The
medium was changed after each imaging session. For more
details on the wound preparation, see Haneberg [39].

The samples were followed up over a period of
22 days. Images were acquired at day 1, 2 and then
every other day, yielding a total of 12 measurements for
every sample. RGB images over all samples are shown
in Figure 2, along with labels used in this paper. RGB
images are shown at the start, mid and end of the mea-
surement period in order to give an overview over the
available data. The samples were sorted in two trays
(tray I and III) and inherited the same labeling as the
trays for convenience. The samples with label III_* cor-
respond to 4 mm biopsy wounds, while samples with
label I_* correspond to 3 mm biopsy wounds. One each
of the samples without wounds were sorted along with
the 4 mm and 3 mm wounds, respectively. The intact
samples were included in order to evaluate shrinking.
These are not considered throughout the rest of this
paper.

The raw spectra were converted to reflectance, and the
images were subset to regions with size 600 × 600 pixels
centered on each sample. The tissue samples were seg-
mented from the background using a random forest classi-
fier, which has been tested for this purpose in a previous
study [40]. The classifier was trained on manually labeled
regions from sample I_5 at days 1, 16 and 22. Manually
selected regions containing both wound and intact tissue
were labeled as 'tissue', and non-tissue regions as
'background'.

FIGURE 2 RGB images of all samples at day 1, 12 and 22, constructed using the 615, 564 and 459 nm wavelength bands of the

hyperspectral images. Models with label III_* consist of one intact sample (III_1) and the samples prepared with 4 mm wounds, while

samples with label I_* consist of one intact sample (I_6) and the samples prepared with 3 mm wounds
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3 | PROCESSING METHODS

3.1 | Principal component analysis

PCA decomposes a dataset of size N observations × p fea-
tures in terms of p orthonormal components (loadings),
which transform each mean-subtracted observation into
new variance-maximizing coordinates (scores) by a linear
combination between the components and the original
features [41].

This method is used for dimensionality reduction
before clustering and for inference of important spectral
features in the wound model. In total, three main PCA
models will be constructed throughout this paper:

• As a pre-processing method in order to reduce the
dataset before clustering, one PCA model for each trained
clustering model.

• For investigation of spectral features of the samples
and corroboration of the clustering results. This model
was trained on wound and intact tissue at days 1, 2,
6, 12 and 22 across all samples.

• For summarizing the temporal-spatial developments
within the wounds. This model was trained on wound
spectra only, across all measurement times and samples.

3.2 | Unsupervised clustering analysis

K-means clustering was used to cluster the pre-processed
data using a high number of clusters (K = 25). The single
linkage distance was found between each possible pair of
clusters, that is, the distance between the two closest points
of each pair. The distances between cluster i and all possi-
ble clusters j were organized in a 25 × 25 distance matrix
and subjected to agglomerative analysis, in order to com-
bine the 25 clusters down to two spectrally distinct clusters.

A clustering model was trained for each single sample
across all measurement time points, as illustrated in
Figure 3. The use of K-Means as the core method enables
classification of unseen data. Each trained clustering
model could therefore be used to classify all other sam-
ples according to its cluster definitions. This was done in
order to reduce computational requirements, investigate
the stability of the approach by varying the subjected
dataset, and finally increase the robustness by combining
the assigned clusters through a majority vote.

The images were found to have level variations in the
obtained spectra due to changes in illumination. The
clustering was found to yield clusters corresponding to
different illumination conditions rather than spectral
changes unless the level changes were properly
suppressed. Spectral derivatives have earlier been used in
spectroscopy [42] and hyperspectral imaging [43–47] as a

preprocessing technique to better target interesting spec-
tral features rather than level or illumination variations.
The first order spectral derivative of a reflectance spec-
trum y(λ) is given as y0 λð Þ= dy λð Þ

dλ . For simplicity, the deriv-
atives throughout the paper are taken with respect to the
band index rather than the wavelength λ.

Smooth numerical estimates of the derivatives can be
obtained by Savitzky-Golay filtering [48]. The filter essen-
tially fits polynomial functions to the data in a sliding-
window fashion, which can be efficiently implemented as
a convolution operation. Third degree polynomials and a
window length of 21 were used in the filter. These param-
eters were by visual inspection found to yield smooth
enough spectra (low variance) without smoothing over
important spectral features (low bias). The derivative fil-
ter was followed by a PCA transform in order to reduce
the dimensionality of the data, before clustering finally
was applied.

3.3 | Supervised classification

A random forest classifier [49, 50] is used as a standard
classification method, as it is simple and sufficiently
robust without needing special pre-processing treat-
ments, parameter tuning or many assumptions on the
data [49–53]. The classification method can in addition
compute feature importances, and show which wave-
lengths are used the most during classification, which is
valuable for further exploration of the data.

The classification model was trained on examples of
wound and intact skin from a single wound model sam-
ple across all measurement times, and its wound bound-
aries were compared against the boundaries obtained
from the clustering analysis. The method was trained and

FIGURE 3 Clustering setup: the clustering method is trained

on all measurements of a sample and applied to the rest of the

samples, producing a variation in the final clustered regions
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compared on the reflectance spectra and the first and sec-
ond derivatives of the spectra.

3.4 | Inverse photon transport modeling

It is desired to investigate whether the optical proper-
ties of apparently re-epithelialized tissue can be
explained by the optical properties of wound with some
extra layer on top that represents epithelium. This is
done in order to strengthen the findings of the statisti-
cal analysis.

The scale-invariance of the one-layer model enables
the wound to be represented by any μa and μs which obey
the given ratio that reproduces the wound reflectance.
Inserting these properties into the semi-infinite layer of a
two-layer model lets the boundary conditions of the
upper layer be the same as they would be against some
arbitrary multilayer model representing wound. This
then enables investigation of an upper layer without hav-
ing knowledge of the constituent layers of the wound
tissue.

In practice, the following algorithm is used:

1 Pick a wound reflectance spectrum.
2 Use a semi-infinite, one-layer model to estimate μa/μs.
3 Assume some μs, reuse μa, μs in a two-layer model to

reproduce the correct boundary conditions between
the first and second layers of the two-layer model.

4 Find the properties of the first layer by minimization

of
P R−Rmeas

Rmeas

� �2
.

The properties of the first layer will not be unique.
The approach is mainly used to show that some diffuse
layer with the correct ratios can be added on top of the
wound tissue properties to yield the reflectance from re-
epithelialized tissue. The basic geometry of the approach
is shown in Figure 4.

4 | RESULTS AND DISCUSSION

The clustering model is first presented and established in
Section 4.1 by use of RGB images, principal component
analysis and supervised analysis. The apparent clustering
rules are investigated in Section 4.2 using an inverse pho-
ton transport model to characterize optical properties. The
temporal development in optical properties of the samples
is characterized in Section 4.3. The main results are finally
summarized and discussed in Sections 4.4 and 4.5.

4.1 | Establishing a spectral clustering
model

4.1.1 | Comparison of clustering results
and RGB images

In lieu of histologies and until a spectral behavior has
been established, visual indicators of re-epithelialization
must first be established. Close-ups of the RGB images
for days 2 and 22 for sample III_5 are shown in Figure 5,
with the original wound boundary indicated with arrows
in both figures. The general behavior was visually similar
for the other samples.

For day 2, the outline of the wound is indicated by a
transition from a brown to a pink area. The same outline
can be observed in day 22, but now as a darker brown line
which divides two similarly brown areas. This brown area
gradually transitions to a pink area. Clear pink areas are
assumed to correspond to non-healed wound tissue, brown
areas within the darker outline are assumed to be tissue
which has undergone re-epithelialization, while skin out-
side the darker outline is intact tissue. This establishes:
(1) the sample has likely partially re-epithelialized, with a
new apparent wound boundary well within the original
wound boundary, and (2) some basic markers for verify-
ing, for example, a clustering model by visual inspection.
It can be seen here that the old wound boundary at day
22 has similar extent as the original wound boundary,
indicating that there has been no or minimal wound
contraction.

Boundaries obtained from each clustering model as
applied to sample III_5 are shown in Figure 6. Most of
the clustering models agree on a given boundary across
the various samples. The disagreement is somewhat
larger at day 1. Mean distance between the majority vote
boundary and the boundaries of the respective clusters is
3.94 pixels at day 1 (standard deviation (SD) 9.97 pixels),
and 1.62 pixels at day 2 to 22 (SD 2.46 pixels) across all
wound model samples. Corresponding statistics for the
shown sample (III_5) are 2.34 pixels (SD 3.51 pixels) for
day 1 and 1.22 pixels (SD 1.52 pixels) for day 2 to 22.

FIGURE 4 Inverse modeling procedure. A one-layered model

is first fitted to the wound reflectance. Due to scale-invariance

considerations, the effect of adding an epidermis on top of the

wound tissue is evaluated by reusing these optical parameters in a

two-layer model
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Increases in both mean and SD at day 1 demonstrate a
higher uncertainty in the boundary. There are indications
of somewhat lower boundary deviations at day 8 to
14 (mean 1.36 pixels, SD 1.93 pixels) which increase back
to day 2 to 6 levels towards day 22. This is visually consis-
tent with the behavior illustrated for sample III_5 in
Figure 6, where a single cluster model boundary encom-
passes a larger area than the rest of the boundaries at day
22 but stays consistent with the rest of the boundaries at
day 6 and 12.

Across all samples, all models generally agree on a
cluster boundary well within the marks indicating the
original wound boundary, except for the first day, and
most of the boundaries encompass regions that can be
established by visual inspection to be the wound. The
regions within boundaries represented by this cluster are
therefore likely to correspond to non-reepithelialized
wound tissue.

For the shown sample (III_5), the region
encompassed by the boundary is smaller than the
expected size of the wound at day 1. The region size
increases towards day 8. This it at odds with the expected
wound development. Inspection of the left-out regions
reveals brown spots present only in the intact skin
regions, and a separate clustering run on day 1 gave only

minor differences to the cluster boundary. The left-out
regions are probably thus an artifact from the wound
preparation, where there has been removal of dermal tis-
sue with some epidermal tissue remaining.

The majority vote cluster size as a function of day is
shown in Figure 7 for all samples. All samples have an
increase in the apparent wound region from day 1 to day

FIGURE 5 Positions of the original wound

boundary as determined by RGB images

constructed from the hyperspectral images at

the 615, 564 and 459 nm wavelength bands, at

day 2 and 22 for sample III_5. The new wound

boundary at day 22 is somewhere along the

unclear, fuzzy region to the left of the original

boundary. The image values were raised to the

power of 0.4 in order to brighten the darker

details

FIGURE 6 The six cluster boundaries for sample III_5 across day 1, 2, 6, 12 and 22. All boundaries are plotted in black in order to

enhance contrast, and the variation in the borders is mainly shown through the thickness of the combined boundaries

FIGURE 7 Majority vote cluster size as a function of day.

Linear fits from day 10 and on are marked with dotted lines, and

slopes/re-epithelialization rates are written in the figure legend
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2. One sample (III_5) has a clear increase in wound size
over the first 8 days, while two (I_3 and I_4) decrease in
size from day 2 and on. The remaining samples (I_5,
III_4 and III_2) have a stabilization or slight decrease in
wound size until day 6 (I_5) or 8 (III_4 and III_2). Mean
surface coverage among all samples, with respect to the
maximum size of each combined wound cluster region, is
22% (SD 6%) at day 14, and 36% (SD 6%) at day 22. Mean
surface coverage rate is 0.24 mm2/day (SD 0.06).

4.1.2 | Spectral behavior over the cluster
boundary at day 22

In Figure 8, reflectance spectra are plotted across the
cluster boundary. The trends were found to be the same
for all samples, and only sample III_2 is shown for brev-
ity. The main trend which can be observed here is that
the spectra are skewed as the pixels transition from
wound into intact skin. The reflectance spectra at 600 nm
and up have slopes that descend within the wound, while
re-epithelialized and intact tissue spectra ascend. Simi-
larly, the reflectance below 500 nm is higher for the
wound and lowered for re-epithelialized and intact skin.
The cluster boundary seems to set a threshold for when
such suppression leads to a pixel being clustered with
intact skin rather than wound tissue.

Mean increase at day 22 in the spectral derivative at
650 nm from within each wound cluster to a 25 pixel
wide ring outside the wound cluster was found to be
0.0016 (SD 0.0002) across the various samples, and 0.0014
for the shown sample (III_2). Mean over spectral deriva-
tives at the same wavelength inside all wound clusters at
day 22 was 0.0001 (SD 0.0008), and 0.0018 (SD 0.0008) in
the 25 pixel wide ring outside.

4.1.3 | Comparison of clustering results
and PCA

PCA was run in order to generalize the correspondence
between clustered regions and the spectral features noted
above.

The loading plots are shown in Figure 9, while scores
of sample III_5 at days 1, 2, 6, 12 and 22 are shown in
Figure 10. All samples showed similar temporal develop-
ment. Scores for all samples at day 22 are shown in
Figure 11. The derivative PCA model showed the best sep-
aration between the spatial features of its two components,
and for brevity, scores from only this model are shown.
The reflectance scores of component 1 showed a mixture
of the behavior of component 1 and 2 of the derivatives,
while the reflectance scores of component 2 mainly cor-
responded to component 2 of the derivative model.

The second component of the reflectance PCA model
has an overall steep, negative sloping across the entire
spectral range, some of which is correspondingly
reflected in the second component of the derivative PCA
model above 600 nm. Scores of the second component
represent these spectral features. Derivative component
1 has a large amplitude from around 540 to 600 nm, with
a zero-crossing at around 560 nm corresponding to the
minimum at the reflectance loadings at the same wave-
length. This component therefore summarizes mainly the
behavior responsible for this minimum.

According to the spatial features of component 1, the
clustering boundary does not match what could seem to
be the real wound boundary at day 1 and 2 for the shown
sample in Figure 10 (sample III_5). However, component
2 shows a tight fit around within-wound textures and
characteristic values that are not present outside the clus-
ter boundary. The cluster boundary would therefore seem

FIGURE 8 Positions across the wound boundary at day 22 (left), and corresponding reflectance spectra (right). A single wound model

sample (III_2) is shown. The color used to mark a coordinate to the left is also used for the corresponding reflectance spectrum to the right.

Dotted lines are within the boundary of the wound cluster. The artifact described in Figure 9 has been removed by linear interpolation

(marked with brighter line color). The general spectral trends over the wound boundary (suppression, increased sloping) was found to be

similar for the other samples
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to have separated two distinct spectral behaviors, where
the inner region is represented by the right combination
of component 1 and component 2. This was visually con-
sistent for the other samples as demonstrated at day 22 in
Figure 11.

Thus, the clustering represents a collection of the spec-
tra that have steep, negative slopes, combined with a sig-
nificant presence of an absorption maximum at 560 nm,
in line with the spectra plotted over the boundary in the

previous section. Single-pixel spectra (not shown) confirm
the trend indicated by the PCA model.

The use of PCA as a data exploratory technique is
usually subject to whether its maximization of the vari-
ance can reveal useful information. This seems to be the
case for this dataset, though changes to illumination con-
ditions or changes to the dataset selection could change
the resulting PCA loadings and their order. The PCA
decomposition will not represent a perfect decomposition

FIGURE 9 PCA loading plots for reflectance (left) and derivatives (right). The peaks between 700 and 750 nm in the reflectance

loading plot are artifacts due to mismatch of the order sorting filter in the hyperspectral camera

FIGURE 10 Sample III_5 scores from the PCA model trained on derivative spectra, along with boundaries (yellow) obtained from

clustering analysis. First and second PCA component scores are shown in the first and second rows, respectively. The development was

similar for the other samples. Day 22 scores are shown for the rest of the samples in Figure 11

FIGURE 11 Day 22 scores for all samples from the PCA model trained on derivative spectra, along with boundaries (yellow) obtained

from clustering analysis. First and second PCA component scores are shown in the first and second rows, respectively
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of the data. There will be discrepancies due to the optical
features not being linearly separable. However, the gen-
eral spectral behavior can be inferred.

4.1.4 | Comparison between clustering
results and a supervised classification
model

A random forest classifier was trained on the derivative
spectra from manually labeled pixels well within and out-
side the wounds, as per a visual inspection of the RGB
images. The wound boundary results are shown for sam-
ple III_5 in Figure 12. The mean accuracy of the classifi-
cation results with respect to the clustering boundary was
98% (SD 1%) for sample III_5, and 97% (SD 2%) for all
samples. The boundaries obtained here are similar to the
boundaries obtained from the clustering. Thus, the
unsupervised clustering results are reproduced when
training a supervised model on examples of wound and
intact skin, partially confirming the soundness of the
unsupervised approach for these data.

The applied classification method, random forest, has
the possibility to reveal what features are used for deci-
sion making by investigating the feature importances.
These are shown in Figure 13. For raw reflectance, the
behavior between 400 and 500 nm is used the most, while
derivatives result in utilization of the slopes at 520 and
650 nm. For second derivatives, the turning points of the
reflectance at 500, 560 and 600 nm are used.

4.2 | Investigation of the re-
epithelialization influence by inverse
modeling

An intact epidermis has absorption and scattering spectra
that can be described by exponentially decaying models.
The properties of such an epidermal layer were fitted to a
region representing re-epithelialized tissue after using a

wound spectrum as a basis, in order to check whether it
could fully explain the transition from wound to appar-
ently re-epithelialized regions. The result is shown in
Figure 14 for sample III_5 at day 22.

The simulated spectrum shows a remarkably good fit
against the measured spectrum between 400 and 700 nm.
Some discrepancies are evident above 700 nm, indicating
that some minor changes to the scattering in dermis
would be needed for a perfect fit across the entire spectral
range. Due to coupling between the epidermal parame-
ters, the fitted properties are not unique. Regardless, they
demonstrate that the region between wound and intact
tissue has a reflectance spectrum which can be explained
by the addition of some diffuse layer on top of a dermal
layer with properties obtained from the wound tissue.

This then shows that this region likely has re-epit-
helialized, and that there are no other chromophores
involved in dermis other than those already seen in the
wound. The apparent absorption minimum towards
400 nm for re-epithelialized tissue, for example, is only
due to epidermal suppression. The dermal composition of
chromophores seems to be the same. The absorption
peak at 561 nm is just as strongly present in the wound
spectrum as in the re-epithelialized spectrum, but
suppressed by the added epidermis. Gradually altering

FIGURE 12 Wound boundary obtained from a random forest classifier trained on derivative spectra (black), compared against the

majority vote clustering results (red) for sample III_5. Boundary correspondence was similar for the rest of the samples

FIGURE 13 Feature importances as obtained from the

random forest classifier trained on reflectance, derivative and

second derivative spectra, respectively, compared against rescaled

reflectance spectra from wound and intact tissue
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the thickness of the layer or the absorption and scattering
magnitudes would thus transition the spectrum rep-
resenting wound into something more or less indistin-
guishable from intact skin. The increased positive sloping
and suppression of spectral features observed earlier is
then fully explained by the addition of this diffuse layer.

The strong, unsuppressed presence of the minimum
at 561 nm thus serves as a wound marker favored by the
random forest as applied to second derivative spectra.
Slopes between 600 and 700 nm likely are more robust,
however, due to the changes the tissues undergo during
the first days below 600 nm, as will be shown during the
next sections. This is reflected in the PCA components
shown in Section 4.1.3. Component 1 corresponds to the
unsuppressed minimum at 561 nm, but the sloping
between 600 and 700 nm partially represented by compo-
nent 2 decides the tightening of the cluster boundary.
The latter is likely more sensitive to the epidermal pres-
ence than just the suppression of the minimum at

561 nm. A thin epidermis would suppress the minimum
some, but has a larger influence on the slope between
600 and 700 nm. Likely due to illumination differences
leading to level changes in reflectance, reflectance classi-
fication favors the level at 400 to 500 nm which is signifi-
cantly suppressed by epidermis due to the high
absorption and scattering here.

4.3 | Characterization of the temporal
development in optical properties

4.3.1 | Mean wound spectra across all
times

In Figure 15, mean reflectance spectra from the wounds
are plotted. These have different overall heights, but the
same spectral characteristics at a given day are clearly
evident across samples.

FIGURE 14 Inverse modeling of re-epithelialized tissue using a wound spectrum as the basis for the dermal properties (left) and an

RGB image showing the corresponding spatial positions (right). Sample III_5 at day 22 is shown

FIGURE 15 Mean spectra from within all wounds during the first and last days. There is a systematic change in the spectra at the

400 to 500 nm wavelength region at day 1 to 4, which then stays the same until day 22. The artifact described in Figure 9 has been removed

by linear interpolation (marked with brighter line color). Spectra from 3 mm (I_*) and 4 mm (III_*) wounds have been split in separate rows

for increased clarity
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The spectral shapes change systematically from day to
day. On day 1, all spectra slope upwards from 400 to
500 nm. This slope changes gradually until day 4, where
it stabilizes to a flat, slightly curved appearance. All sam-
ples seem to have the same absorption peak at 561 nm
after the stabilization. Most of the samples have the same
absorption peak at the first day, while others show a flat-
ter spectrum at 500 to 600 nm.

Comparing against a reflectance spectrum obtained
from the medium, see Figure 16, it can be seen that the
absorption peak at 561 nm corresponds well with the
main absorption peak in the medium spectrum. The
medium spectrum also has slopes in the reflectance which
seem to correspond with the slopes of the wound reflec-
tance, except that they are wavelength-shifted with respect
to each other. However, since these are slopes and not
actual absorption peaks, they could easily be shifted by
changes in absorption and scattering spectra. The wounds
would seem to obtain the same spectral characteristics as
the medium over time. The medium feeds the skin tissue,
enabling re-epithelialization, which means that the
medium necessarily infuses the tissue. It stands to reason
that the skin should obtain similar spectral features as the
medium. This is likely difficult to verify, however. Intact
skin undergoes similar changes as wound, but not as
strongly pronounced. An early theory was that the
changes could be due to changes in cytochromes, but no
specific evidence has been found for this.

4.3.2 | Wound decomposition by PCA
across all times

The wound spectra were decomposed using PCA in order
to infer spatial variations that are averaged away by taking

the mean. Taking PCA of the wound reflectance was
found to mainly show spatial variations within the wound,
while taking PCA of higher order derivatives yielded com-
ponents apparently corresponding to the noted develop-
ments above. Only PCA of the second derivatives is
shown. Loading vectors are shown in Figure 17, while
scores of the two first components are shown in Figure 18.

The first loading vector has a large amplitude at
561 nm, corresponding to the high and positive curvature
of the reflectance here. The first component therefore
describes the influence of the minimum here. The mean
second derivative spectrum already had contributions from
the minimum, and negative PCA scores thus express sup-
pression of this, while scores close to zero and above
express presence. The corresponding component 1 scores
in Figure 18 show an inhomogeneous distribution across
the first day (two-peaked distribution with peaks at
−0.0050 and −0.0023, mean PCA score −0.0034, SD
0.0014), which changes to a largely homogeneous distribu-
tion over the entire wound at day 2 (single-peaked distri-
bution with peak at 0.0016, mean PCA score 0.0011, SD
0.0011). This partially explains the behavior seen in the
mean spectra in Figure 15, where some samples (sample
III_2, I_3, I_4 and I_5, mean PCA score −0.0030, SD
0.0013) apparently had more contributions from the mini-
mum at 561 nm than others (sample III_4 and III_5, mean
PCA score −0.0043, SD 0.0010) at the first day. This contri-
bution homogenizes and becomes stronger from day 1 to
day 2 (mean PCA score and SD 0.0011, 0.0011 for sample
III_2, I_2, I_3, I_4 and I_5, 0.0010, 0.0009 for III_4 and
III_5) in Figure 15.

Some of the wound spectra have demonstrated a “flat-
ness” around 540 to 580 nm at day 1, illustrated in
Figure 16. This behavior, and the further decrease in
absorption close to 400 nm, likely correspond to compo-
nent 2 of the PCA model. The positions of the maxima
and minima and corresponding curvature in the day
1 wound reflectance spectrum in Figure 16 indicate this.

FIGURE 16 Comparison between wound spectra at day

1 and 22 for sample III_5 and corresponding reflectance spectra

obtained from the medium. Important features of the medium

reflectance spectrum are marked by vertical lines

FIGURE 17 Loading vectors for the PCA model trained on

the second derivative of all wound samples
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PCA component 2 has a drop from day 2 (mean PCA
score 0.0009, SD 0.0007) to day 4 (mean PCA score
0.0000, SD 0.0006). There are indications in the score
images for component 2 in Figure 18 that the scores are
further reduced for some samples until day 8.

Thus, there is a temporal development of the optical
properties which continues until day 8 for some of the
samples. With respect to this, day 1 is a spectral outlier.

4.4 | Summary and discussion of the
main clustering results

A clustering of the data helps in separating important
spectrally distinct regions from each other and simplifies
further analysis. Inspection of spectra from selected
regions and a PCA decomposition demonstrates that the
clustering is consistent in separating two main spectral
behaviors from each other. The results were compared
against wound boundaries obtained from supervised
analysis and visual inspection of RGB images, which
demonstrate that the two clusters correspond to wound
and regions with some epidermis intact. Inverse photon
transport modeling further confirms the found spectral
trends.

A combination of K-Means and agglomerative cluster-
ing was used as the main technique. Cluster membership
in K-Means is determined by closest distance to the clus-
ter centers. The technique is therefore naturally extend-
able to classification of unseen data. This enables
training on different samples and subsequent combina-
tion of the clustering results. However, the same property
means that the clusters optimally should be spherical in
the image space. Investigation in a lower-dimensional
PCA space would reveal that the structures to be clus-
tered are elongated and twist throughout the image
space. K-Means is therefore unlikely to reflect the inher-
ent structure of the data by a number of clusters

corresponding to the actual, few clusters. Agglomerative
clustering is more suitable for such cases, but difficult to
apply to large datasets and does not readily extrapolate to
new data. As the best of two worlds, agglomerative analy-
sis was therefore successfully used as a technique to com-
bine the too-high number of clusters obtained from the
K-Means analysis.

Clustering methods are in general difficult to verify.
They are highly subject to preprocessing treatments,
choice of distance metrics and subjective evaluations
[41]. It is still possible to check the stability of such
approaches by varying the data subjected to clustering
[41]. Separate clustering models were therefore trained
on each wound model sample. Splitting across samples
was found to be the most natural way to split the data.
Training across all measurement times enables the
method to generalize across changes in the reflectance of
the samples during the first 4 to 8 days. Finally, applica-
tion to a single sample avoids merging of characteristics
of several wounds into the same cluster. Merging of
wound clusters instead happens more robustly with the
majority vote. The data variation yielded apparently sta-
ble and consistent clusters across all samples and days.

The K-Means clusters were merged down to two clus-
ters that overall seem to represent wound and re-epit-
helialized/intact tissue. Including a third cluster was
found to be challenging, as it was difficult to retain con-
sistency across all samples and measurement times. This
is to be expected in light of the inverse modeling results.
Different locations of and stages along the wound re-
epithelialization process yield different re-epithelialized
layer thicknesses. The layer gradually transforms the
reflectance from wound to intact tissue reflectance. The
main bulk is therefore best summarized by two clusters
with some implicit threshold in spectral behavior.

Spatial features in the RGB images were used for verifi-
cation of the hyperspectral clustering results. This means
that the RGB bands technically are sufficient to identify

FIGURE 18 Scores of component 1 (left) and component 2 (right) from the PCA model trained on second derivative of the wound

spectra, centered on and zoomed in on the wounds. All wound model samples (rows) across all measurement time points (columns) are

shown in order to illustrate the temporal change
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similar degrees of re-epithelialization as in the hyper-
spectral results. The study on fluorescence emission by
Wang et al. [23] also seems to indicate, judging from the
figures, that there is a similar correspondence between the
RGB images of their study, and the re-epithelialization
indicated by their collagen fluorescence emission. The
hyperspectral system used in the current study acquires
images within the visible range. Band redundancy is
expected, which is the reason why techniques like PCA
are successful in compressing the information down to a
few component bands. The RGB bands sample informa-
tion at spaced intervals throughout most of the imaged
wavelength range. Redundancy will cause features in the
various bands to be present to a stronger or lesser degree
in the RGB bands. Further, the identified photon transport
mechanisms affecting the re-epithelialized tissue reflec-
tance will have impact on the RGB bands. The contrast
offered by the RGB images alone is weak, however, and
re-epithelialized tissue is identifiable mainly when coupled
with the hyperspectral analysis results. The spectral
dimension is needed when investigating whether visually
similar tissue parts should be included or not. There is also
a possibility for detection of subtler changes, though the
implicit threshold in the cluster analysis mainly cor-
responded with the visually observable features.

The end goal, a tool for identifying healing in in vitro
wound models, does not necessarily require the full spec-
tral dimension offered by hyperspectral imaging. There
are indications that a multispectral system with fewer
bands is feasible. These might not necessarily be the RGB
bands, but other bands that offer better contrast between
wound and re-epithelialized tissue. Initial studies using
hyperspectral imaging are necessary for understanding
the mechanisms affecting such bands, and for esta-
blishing a baseline for comparing such reduced systems.
Further, classification models can be built based on sin-
gle pixel spectra. This significantly eases the analysis for
larger bulks of data. Classification based on RGB or other
bands would require incorporation of spatial information
and less intuitive approaches like convolutional neural
networks. Hyperspectral imaging is then suitable as an
initial research tool to be replaced by less expensive and
tailored multispectral systems in the long run.

4.5 | Summary and discussion of the
physical interpretation of the results

A challenge with any hyperspectral dataset is the high
amounts of data, and automatized and objective methods
are required to extract the relevant information. This data
exploratory study has gained an overview of the optical
properties of the investigated in vitro wound model and

showed possible ways detection algorithms could be built
for automatic classification of unhealed wound tissue.
The missing top layer of unhealed wounds is an impor-
tant component of this.

Apparent re-epithelialized tissue regions have optical
behavior that through inverse photon transport modeling
has been shown to be consistent with the addition of a dif-
fuse layer on top of the optical properties represented by
wound tissue regions. The influence from the epidermal
layer can be characterized by a skewing of reflectance
slopes and suppression of the spectral features of the
wound. Derivative spectra can thus provide illumination-
insensitive and possibly donor-invariant features for classi-
fication. Re-epithelialization seems to be the main opti-
cally detectable feature, and other changes like migration
of fibroblasts or remodeling of the collagen matrix are
more subtle, undetectable or absent. Most studies on this
type of wound model have focused mainly on re-epitheli-
alization, and complete remodeling might not be expected
outside some expression of collagenase [22].

The modeling approach is promising. The properties
of re-epithelialized tissue can be probed without having
to consider full photon transport modeling of the dermal
tissue layers, by utilizing scale-invariance properties.
Properties like thickness could be inferred, but this has to
be investigated and verified further. However, knowing
that some diffuse layer with finite thickness can explain
the spectral differences of different tissue regions is suffi-
cient for the conclusions in this paper.

The change in reflectance over time indicates a
change in the optical properties of the tissues. The
change has been established to be related to the spectra
attaining the same spectral properties as the medium.
This leads to a confusion in the analysis. Spectra rep-
resenting wound for the later days are not necessarily
similar to spectra representing wound for the first day,
and the behavior results in some noise and discrepancy
in the day 1 clustering. Despite this, the still-present slop-
ing behavior due to epidermis has made the clustering
rather consistent.

It has been established that the samples converge
towards the same spectral behavior as the medium. What
they start out with is not as clear. Possible explanations
are absorption due to cytochromes, which in the absence
of blood would have a pronounced effect on the reflec-
tance, or absorption due to a residual blood content
which is gradually replaced with medium.

The analysis shows that the wound is re-epithelialized
from the edge and towards the center of the wound. Mul-
tiple cell layers are expected to migrate in this fashion
and quickly develop into a mature epidermis when the
samples are exposed to air [17], as opposed to the initial
single layer of keratinocytes expected from submerged
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samples [2, 17]. Glinos et al. [54] (8 mm samples, 3 mm
wound, DMEM, 10% FCS, air exposure) used optical
coherence tomography to study re-epithelialization in a
similar wound model, with a spatial resolution
corresponding to the current hyperspectral study. More
mature epithelium is shown to migrate over the wound
with a small tip of non-cornified epidermis extending on
the wound side of the epithelium. Wang et al. [23]
(12 mm samples, 4 mm wound, DMEM, 10% FCS, air
exposure) shows a correspondence between reduction of
dermal collagen fluorescence at 390 nm and wound clo-
sure. Extinction here would require the newly formed
epithelium to have similar absorption and scattering
mechanisms as the intact epidermis. Thus, it is likely that
the detected epithelium in the current study represents a
more mature epidermis with multiple cell layers. Imma-
ture epidermis might be expected at the very edge of this.
For example, Figure 5 indicates a more white-ish line
extending on the wound side of the newly formed epithe-
lium. This would be consistent in size with the findings
of Glinos et al. [54], but has to be investigated further.

The found time development of the re-
epithelialization is inconsistent with the expected devel-
opment of the model. Epithelium is detected at the very
edges of the wounds after day 8 to 10 for the 4 mm
wounds, and day 3 to 8 for the 3 mm wounds. Mean sur-
face coverage at day 22 is 36%. The 3 mm wounds should
be fully covered (100% surface coverage) by epithelium
already at day 7 [17]. The prepared wounds are heteroge-
neous in size, and two of the intended 3 mm sized
wounds are closer to 4 mm in size. Available data on
4 mm wounds in the same type of medium indicates
somewhat delayed wound coverage (48% closure by day
4 and 66% closure by day 16 [23], or around 50% closure
by day 7 and around 80% closure by day 12 [24]), but still
earlier and more complete epidermal coverage than what
is observed in the current study.

The development in optical properties indicates that
medium is diffused throughout the tissue. Delay in access
to nutrients due to the need for diffusion of nutrients
through the bottom layer could have delayed the re-epithe-
lialization. However, submerged wounds and wounds
exposed to air are expected to have similar time develop-
ment [17]. Full exposure to air over the entire tissue surface
[23, 55] or increased tissue sample size [23, 54, 55] does not
seem to cause similar delays in other studies. The large
number of consistent studies on 3 mmwounds in 6 mm tis-
sue samples [2, 17–22] shows that there is little variation in
re-epithelialization rate due to donor variability or donor
tissue location. The tissue samples rested on a metallic grid,
but it is unlikely that this should have any effect.

Histologies were not available for this particular
dataset. Wound tissue is transformed into tissue

reminiscent of intact tissue, and photon transport model-
ing shows that the spectral behavior is consistent with an
epidermal layer placed on top of wound tissue. However,
histological verification is necessary for final confirma-
tion of these results. The fact that the time kinetics of the
investigated samples seem far slower than expected
makes comparison to existing studies challenging.

The experiment has to be repeated, preferably with
histologies sampled at multiple time points during the
course of the experiment. This calls for a high number of
samples. Representativeness can be challenging due to
heterogeneity from the wound preparation method.
Eikebrokk et al. [1] developed a method for creating
more reproduceable wounds. These were superficial
wounds with the basal layer intact, which re-epithelialize
and stratify into a mature epidermis more quickly. In
addition to being more reproduceable, this could also be
useful for investigating the optical influence of the vari-
ous stages of layer stratification. This can be corroborated
back to the results of the current study. These wounds
behave somewhat differently, however, and wounds
more similar to the the wounds in the current study
should be included for verifying the mechanisms of the
epidermal migration. For simplification, only a single
wound size should be included.

A major difficulty identified in this study is the gen-
eral change in optical properties over the period where
re-epithelialization normally would be expected. Separat-
ing these from the re-epithelialization processes could be
important when the experiment is repeated, especially if
the normal time course of re-epithelialization is observed.
Incubating some of the models in 2% FCS rather than
10% FCS leads to viable tissue with no re-epithelialization
[2]. Such modifications could be used to evaluate optical
changes without interference from re-epithelialization.

5 | CONCLUSION AND
FURTHER WORK

Optical techniques like hyperspectral imaging could pro-
vide an objective, non-destructive and non-contact alter-
native to histology analysis for evaluating re-
epithelization in in vitro wound models. Appropriate
analysis methods are required for extracting information
about the wound coverage.

The different tissue types in the samples have been
separated and investigated using clustering analysis. This
analysis, along with corroborating techniques like super-
vised classification and PCA, significantly helped identi-
fying and generalizing important spectral features. Intact
tissue and apparently healing regions are characterized
by a suppression of and increased sloping in spectral
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features that are present in the wound reflectance spec-
tra. The use of a specially developed photon transport
model has shown that this behavior can be explained by
a diffuse layer of finite thickness placed on top of optical
properties representing wounds, which is consistent with
the expected re-epithelialization process.

The full characterization of the spatial and temporal
behavior enables further development of classification
and photon transport techniques that can be used to
detect and characterize wound re-epithelialization pro-
cesses. There is further a possibility that a multispectral
system with fewer bands can be feasible for detection of
re-epithelialization, which will be investigated in future
work. Histologies were not available for this study, how-
ever, and the experiment has to be repeated for final con-
firmation of the found behavior.
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