
Dither signal optimization for multi-agent extremum seeking control

Thiago Lima Silva1 and Alexey Pavlov1

Abstract— In this paper we formulate and solve the problem
of multi-agent extremum seeking with dither signals opti-
mization. The solution is a distributed perturbation-based
extremum-seeking controller with an additional objective of
minimizing overall dither signals disturbances for the whole
system. In particular, the proposed method dynamically cal-
culates dither signals for individual subsystems to minimize
the dither-induced variations in the total input and output
of the process. The overall scheme consists of a dither signal
optimizer coupled with a least-squares gradient estimator and a
distributed synchronization-based process optimizer. Simulation
results for an oil production system with multiple gas-lifted
wells demonstrate that the proposed controller is capable of
optimizing the production process, while minimizing, on the
fast time scale, dither-induced variations both in the total
input (total gas injection rate) and in the total output (total
oil production rate) of the production system.

I. INTRODUCTION

Extremum seeking control (ESC) is a popular model-free
optimization method, receiving significant attention from the
scientific community in the last two decades, see, e.g. [1],
[2], [3], [4], [5], [6], [7], [8].

Extremum seeking control allows one to achieve automatic
optimization of steady-state behavior of an unknown plant,
where the steady-state behavior is quantified in terms of an
a-priori unknown cost function. Optimization is achieved by
manipulating inputs through feedback of the plant outputs.
Apart from applications to optimization of individual sys-
tems, ESC has been applied to optimization of systems con-
sisting of multiple interconnected (over a network of certain
topology) subsystems, resulting in a number of publications
on distributed Extremum Seeking Control for multi-agent
systems [9], [10], [11], [12].

Conceptually, extremum seeking controller consists of the
following components:
• Dither signal generator (for perturbation-based ESC)

that provides excitation of the nominal input signal
for extracting information about the gradient of the
unknown cost function.

• Gradient estimator – a block that extracts information
on the gradient of the cost function from the available
measurements of the inputs and outputs of the system.
This block estimates either the gradient itself, or a
quantity co-directed with the gradient. Clearly, to be
able to extract this information, the inputs must have
sufficient variation, which is usually guaranteed by the
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dither signal or through the variation of the input by the
next block – the steady-state optimizer.

• Steady-state optimizer – a block that, based on the
estimated gradient, continuously adjusts the nominal
input towards the optimum of the cost function.

All these components can be selected and tuned in differ-
ent ways to achieve guaranteed convergence to the optimum,
desired convergence rate, simplicity of the overall controller,
and quality of the steady-state optimization, see, e.g., [5],
[13], [8] for gradient estimators, and [2], [14] for optimizer
designs.

When it comes to dither signals, previous works focused
on their shape, frequency and amplitude. The shape affects
the convergence rate of the gradient estimator [6]. Dither
signal frequency should be sufficiently high in relation to
the dynamics in the gradient estimator, process optimizer and
the plant dynamics to guarantee convergence to the optimum
through time scales separation between these dynamics [3],
[15]. The amplitude should be chosen sufficiently small
to be able to extract the essentially local information on
the gradient of the cost function. At the same time, it
should be large enough to ensure gradient estimation in the
presence of noise and other practical limitations. One can
also select a dither-free ESC scheme [5] and a scheme with
the dither signal vanishing at the optimum [16]. Although the
dither-free approaches are very elegant, for optimization and
tracking of a slowly changing optimum, some kind of dither
signal still needs to be employed to track possible changes
in the optimum.

The shape, frequency and amplitude are the main degrees
of freedom for selection of dither signals in extremum
seeking control of individual systems. When applying ESC
to multiple systems, like in distributed ESC for multi-agent
systems, there appears a new degree of freedom: coordination
of dither signals with respect to each other. For example,
for two systems one can choose sine dither signals of the
same amplitude and frequency, but shifted in phase, i.e.
d1(t) = a sin(ωt) and d2(t) = a sin(ωt + ϕ). Provided
that the amplitude and frequency are chosen correctly, these
dither signals will work well for gradient estimation in both
systems, regardless of the selected phase shift ϕ, which
represents the new degree of freedom. In extremum seeking
control of individual systems we are free to select not
only arbitrary phases, but also amplitudes within a certain
minimal/maximal range without compromising convergence
properties of the algorithm. Therefore, in addition to phases
we can also use dither signals amplitudes (within a certain
range) to coordinate the dither signals.

This new degree of freedom is essential in a number of



potential ESC applications. In particular, in process control
applications, large/fast variations in the overall input signal
(the sum of all input signals) and/or large/fast variations in
the overall output (the sum of all output signals) represent a
significant disturbance to the overall process. Such variations
may not be compatible with the process limitations or may
represent an undesired disturbance for the rest of the process.
For our example with two systems, the sum of input varia-
tions due to dither signals equals d1(t)+d2(t) = a sin(ωt)+
a sin(ωt + ϕ). If the phase shift is chosen to be ϕ = 0,
the total amplitude will be equal to 2a. For N systems,
the amplitude will be Na. Even though for each individual
system a can be chosen small (as is usually done in ESC),
the total variation of all dither signals can be prohibitively
large. On the other hand, if, for two systems, the phase shift is
chosen ϕ = 180 deg, we will have d1(t)+d2(t) ≡ 0, which is
definitely an advantage in the above mentioned applications,
as it represents no further disturbance to the overall process
input.

This simple example demonstrates that optimal (in some
sence) coordination of dither signals is important and can
be essential for a number of applications of ESC to multi-
agent systems. The problem of optimal coordination of dither
signals becomes more interesting if one wants to cancel
dither-based variations not only in the total input, but also
in the total output of the systems, which is also affected by
the choice of the dither signals.

In this paper we, firstly, demonstrate, by a motivating
example from the petroleum industry, the importance of
dither signals optimization for reduction of overall process
disturbances. Secondly, we formulate the problem of dither
signals optimization in distributed ESC, which is a new class
of problems within ESC for multi-agent systems. To the
best of our knowledge, these problems have neither been
formulated nor addressed in the prior literature on ESC (apart
from our paper [12], where we briefly discuss this challenge,
but only for the input signals). Thirdly, we provide a method
that solves the problem of dither signals optimization for the
optimal resource allocation problem. Finally, we demonstrate
feasibility of this method by applying it to the motivating
example - optimal allocation of gas between gas-lifted wells
in an oil-production system.

The paper is organized as follows: Section II presents the
motivating example. In Section III we formulate the problem
of dither signals optimization for the case of distributed
ESC for multi-agent systems. Section IV contains analysis
and a numerical method to solve it. Section V demonstrates
application of the proposed solution to the problem of
optimal gas allocation for gas-lifted wells. We conclude with
Section VI.

II. MOTIVATING EXAMPLE

In oil production, there are cases when oil reservoir pres-
sure is not high enough to guarantee economically reasonable
production rates. In this case one employs various methods
of artificial lift. One such method is called gas-lift. In this
method, compressed gas is injected down into the well.

In the vertical column of the well the gas reduces the
density of the fluid, thus reducing the hydrostatic pressure
at the inflow section of the well. This leads to increase of
production rate from the reservoir (higher production rates).
The production rate depends on the flow-rate of the injected
gas, as well as on reservoir pressure, and fluid composition
(ratios of oil, water and gas coming from the reservoir).
The dependency of the oil rate on the gas injection rate,
called production characteristics, is typically a concave curve
(y = f(u)) with a unique maximum point u∗, where u is gas
injection rate and y is the oil production rate. Examples of
production curves are given in Figure 3. However, this curve
and its maximum are uncertain as they change with slowly
varying reservoir conditions and fluid composition. This
makes gas-lift a good candidate for model-free optimization
methods, like extremum seeking control [12]. Omitting the
fluid dynamics from the equation, this optimization problem
can be formulated as finding an optimum gas injection rate
u∗ corresponding to the maximum oil production rate, or
maximum of the unknown production characteristic function
f(u).

Manifold 1

Manifold 2

Pipeline & 
Riser 1

Pipeline & 
Riser 2

W ll 4

U(t)

Y(t)

Gas-lift injection

Gas-Lift 
Manifold

Processing Facilities

Wells

Oil Production

Export gas

Gas-lift

Water

Fig. 1. A production gathering network with 4 gas-lifted wells and subsea
manifolds.

In offshore production, there are usually several wells pro-
ducing to the same top-side processing system and supplied
with gas from a common gas compressor, as can be seen in
Figure 1. The produced fluids from each well are collected
by a subsea manifold and sent to the processing facilities for
separation and subsequent exportation. A portion of the gas
is pressurized and sent to a gas-lift manifold to be distributed
among the wells. For each individual well i, its production
characteristic is given by

yi = fi(ui), (1)

with an uncertain strictly concave function fi(ui). In this
multi-well setting, the optimization problem becomes the
optimal resource (gas) allocation problem: how to distribute
the available gas injection rate between individual wells to
achieve maximal total oil production from all the wells?

This optimal resource allocation problem has been solved
in [12] through distributed perturbation-based ESC algo-
rithm for multi-agent systems. In this approach (as in other



perturbation-based schemes), the injection rate for each in-
dividual well equals

ui(t) = ūi + di(t), (2)

and
yi(t) = fi(ūi + di(t)), (3)

where, for each well i, ūi is the quasi static value of the gas
injection rate, which is slowly optimized by the ESC, di(t)
is the dither signal and yi(t) is the measured oil production
rate. The total gas injection rate and oil production rate for
all the wells equal

U(t) =

N∑
i=1

ūi +

N∑
i=1

di(t) (4)

Y (t) =

N∑
i=1

fi(ūi + di(t)). (5)

Both U(t) and Y (t) consist of slowly varying components
(corresponding to ūi) and fast changing components corre-
sponding to di(t). It is clear from this expression that for
a large number of wells, the sum of di(t) can result in fast
potentially large variations both in the total input and in the
total output of the overall production system. These persistent
variations constitute a significant load for the compressor
and for the top-side processing facilities. However, as it
will be demonstrated in the rest of the paper, a dynamically
updated optimal choice of the dither signals di(t) can allow
us to minimize (and sometimes even totally cancel) these
variations both in the total input and in the total output. How
to find such optimal dither signals is addressed in the rest of
the paper.

III. DITHER SIGNALS OPTIMIZATION

In this section we formulate the problem of extremum
seeking control with dither signals optimization. We consider
N systems of the form (1) with strictly concave functions
fi(ui). The inputs ui can vary within the set

umin
i ≤ ui ≤ umax

i , i = 1, . . . , N (6)

for some umax
i > umin

i . In resource allocation problems,
there is an additional constraint on the available resources
Umax:

N∑
i=1

ui ≤ Umax. (7)

The extremum seeking problem is to automatically find the
maximum of the sum of the systems outputs:

N∑
i=1

fi(ui)→ max (8)

subject to constraints (6) and (7).
In perturbation-based extremum seeking control, this prob-

lem is solved by introducing an additional dither signal
di(t) to the nominal input signal ūi in order to estimate the

gradient ∂fi
∂ui

, as given in (2), with the corresponding outputs
in (3).

Next we want to optimize the selection of dither signals.
This optimization should not interfere with the convergence
of the overall ESC algorithm. The minimum requirement
for an ESC algorithm to work is that the dither signals,
chosen from a certain family of signals D, have sufficient
persistent variation with an amplitude being sufficiently small
to allow gradient estimation algorithm to extract the gradient
information, and, sufficiently large to ensure robust gradient
estimation with noisy measurements:

dmin
i ≤ lim sup

t→inf
|di(t)| ≤ dmax

i (9)

for some positive dmaxi and dmini , i = 1, . . . , N , where T
denotes the process time-span.

Motivated by the example in Section II, we formulate the
following dither signals optimization problem: find dither
signals di(t) from the family D that minimize the amplitudes
of the total variations in the input signals and the total
variations in the corresponding systems outputs:

Ju =

∣∣∣∣∣
N∑
i=1

di(t)

∣∣∣∣∣
2

→ min
{di(·)∈D}

, ∀t ∈ T (10)

Jf =

∣∣∣∣∣
N∑
i=1

fi(ūi)− fi(ūi + di(t))

∣∣∣∣∣
2

→ min
{di(·)∈D}

, ∀t ∈ T

(11)

subject to constraints (9). Notice that, without loss of gen-
erality, the excitation amplitudes are considered in squared
form because it will fit our results subsequently.

Depending on practical needs, one can combine the two
objective functions in (10) and (11) into one or consider
minimization of only one of them, setting an low value upper
constraint on the other.

Since fi(u) in (11) is unknown, we utilize its linear
approximation instead:

fi(ūi)− fi(ūi + di) ≈ f ′i(ūi) · di (12)

and for simplicity f ′i(ūi) is denoted as Fi(ūi). This linear
approximation is valid for small dither signals di with the
requirement of how small they should be captured by Eq.
(9). Thus, instead of (11), we want to minimize:

JF =

∣∣∣∣∣
N∑
i=1

Fi(ūi) · di(t)

∣∣∣∣∣
2

→ min
{di(·)}

, ∀t ∈ T (13)

Although in (13) the gradients Fi are still unknown, we
can use their estimates obtained by the gradient estimator
in extremum seeking algorithm.

A. Problem reformulation

In this subsection we reformulate the general dither signals
optimization problem (9), (10), (13), for the case of the



family D being sinusoidal signals, which are commonly used
in extremum seeking control:

di(t) = αi sin(ωt+ ϕi), i = 1 . . . N (14)

where αi is the amplitude, ω is the frequency and ϕi is the
phase of the signal. We assume that ω is chosen by the design
of the ESC controller (to achieve time-scale separation), and
focus on optimizing amplitudes αi and phases ϕi.

The cost functions (10), (13) can be rewritten as:

Ju =

∣∣∣∣∣
N∑
i=1

αi sin(ωt+ ϕi)

∣∣∣∣∣
2

→ min
{αi,ϕi}

, ∀t ∈ T (15)

JF =

∣∣∣∣∣
N∑
i=1

Fi · αi sin(ωt+ ϕi)

∣∣∣∣∣
2

→ min
{αi,ϕi}

, ∀t ∈ T (16)

This results in an essentially nonlinear and non-convex
optimization problem with respect to αi and ϕi, which is
very challenging to solve. To resolve this problem, we re-
parameterize dither signals in (14) as described below.

1) Re-parametrization of dither signals: The dither sig-
nals in (14) can be equivalently parametrized in the following
way:

di(t) = ai · sin(ωt) + bi · cos(ωt), (17)

such that parameters ai and bi that need to be optimized
appear linearly in the dither equation in contrast to the
nonlinear relation in (14).

With the re-parametrization the variations of the dither
signals and of the corresponding outputs become

N∑
i=1

di(t) =

(
N∑
i=1

ai

)
sin(ωt) +

(
N∑
i=1

bi

)
cos(ωt) (18)

N∑
i=1

Fi di(t) =

(
N∑
i=1

Fi · ai

)
sin(ωt) +

(
N∑
i=1

Fi · bi

)
cos(ωt)

(19)

2) Overall dither signal effects: With the new
parametrization of dither signals, the total overall excitation
effects can be rewritten. The squared amplitude of the total
input variation Ju in Eq.(15) becomes:

Ju =

(
N∑
i=1

ai

)2

+

(
N∑
i=1

bi

)2

(20)

and the squared amplitude of the total output variation JF in
(16) equals

JF =

(
N∑
i=1

Fi · ai

)2

+

(
N∑
i=1

Fi · bi

)2

(21)

Further, the squared amplitude of individual dither signals
(|di|) are written as follows:

|di(t)|2 = a2
i + b2i , ∀t ∈ T (22)

3) Formulation of the dither signals optimization prob-
lem: With expressions (20)-(22) we can now formulate the
problem of finding the optimal parameters ai and bi for the
dither signals in (17). For clarity, we select to minimize the
dither effects on the output (objective (13)), while limiting
the amplitude of the total dither signal by δin (instead of
obective function (10)).

Then the dither signal optimization problem is formulated
as follows:

JF =

(
N∑
i=1

Fi · ai

)2

+

(
N∑
i=1

Fi · bi

)2

→ min
{ai,bi}

(23)

(
N∑
i=1

ai

)2

+

(
N∑
i=1

bi

)2

≤ δ2
in (24)

(dmini )2 ≤ a2
i + b2i ≤ (dmaxi )2, i = 1 . . . N (25)

This is a nonlinear programming problem with a quadratic
objective and convex constraints, except for the non-
convexity present in the lower bound in (25). Despite this
non-convexity, it can be solved efficiently at each time step.
To ensure continuity of the input signals, the changes in the
parameters of the dither signals (ai and bi) from one step to
the next step are required to be bounded:

|∆ai|2 ≤ ∆amax, i = 1, . . . N (26)

|∆bi|2 ≤ ∆bmax, i = 1, . . . N (27)

where ∆amax (∆bmax) are the maximal admissible changes
in ai (bi) in consecutive time steps.

In what follows, the dither signal optimizer is incorpo-
rated into a distributed extremum-seeking scheme. Since the
gradients Fi are unknown, the scheme contains a gradient
estimator, which provides estimates F̂i to both the dither
signal optimizer and to a steady-state optimizer. On a faster
time-scale, the dither optimizer calculates excitations that are
sufficient for gradient estimation and also minimize the total
variations in the plant. On a slower time-scale, the steady-
state optimizer performs adaptations in the input signals
towards the optimal solution also based on the gradient
estimates.

IV. DISTRIBUTED ESC WITH DITHER OPTIMIZATION

We propose a distributed extremum-seeking scheme in
which the steady-state optimizer is based on gradients syn-
chronization [12], and the gradient estimation is performed
with least-squares (LS) fits from past data [5].

The proposed scheme is illustrated in Figure 2. For the
static plants considered in this paper, there are two time-
scales in the scheme: the fast time scale of dither signal
excitations, and the slow time scale of the steady-state
optimizer. For a given input signal ui, the controller measures
the corresponding output yi for the unknown cost function
fi(ui). Both the input ui and the system output yi are sent
to the gradient estimator, which calculates the estimated
gradient ∂f̂i

∂ūi
based on a least-squares fit from past data.

The gradient estimate is then sent to both the steady-state
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Fig. 2. Extremum-Seeking Scheme.

optimizer and the dither signal optimizer. On a slower time-
scale, the steady-state optimizer performs the adaptation of
the input signal ūi based on a control law derived from
the synchronization of gradients from all the systems [12].
On the faster time-scale, the dither signal optimizer solves
the optimization problem formulated in Eqs (23)–(27) to
determine optimal excitations di to each system’s input.
Finally, the resulting input signal ui becomes the summation
of the nominal input ūi and the dither signal di received from
the dither signal optimizer.

The other systems j = i + 1, . . . , N work analogously.
Each system receives the excitations from the dither opti-
mizer on a fast time-scale and performs adaptations of the
input signals based on the synchronization the estimated
gradients ∂f̂j

∂ūj
,∀j 6= i on the slow time-scale.

A. Least-squares filter

The gradient estimation has a central role in the ESC
scheme since both the dither signal optimizer and the steady-
state optimizer rely on accurate gradient estimates to function
properly. Many perturbation-based ESC schemes utilize dy-
namic estimators such as band-pass filters [17] and observers
[18] for gradient estimation. In order to avoid the interplay
between the dither signal excitations and the estimation, we
chose to use a static filter for gradient estimation.

The static estimator works as follows. There is a sliding
window that stores data from the last Tw seconds of previous
time steps. The gradient is obtained from 1st-order least-
square fits pi ·ui(t)+qi of window data at time t, which are
calculated from the following convex optimization problem:

min
pi,qi

∫ 0

−Tw

(fi(t+ τ)− (pi · u(t+ τ) + qi))
2 · dτ (28)

The explicit solution for the estimated gradient pi can be
computed in closed-form [5]. The window size Tw is selected
to be an integer multiplier of the dither signal wave period.
Its size is an important tuning parameter of the estimator,
and should be chosen based on the trade-off between the
smoothness of the gradient estimates and the delay of the

estimates: the bigger the window size, the smoother and more
delayed is the estimation.

B. Synchronization-based optimizer

The steady-state optimizer is responsible for the con-
tinuous adaptation of the nominal inputs ūi towards the
optimum. We chose to utilize the synchronization-based
optimizer proposed in [12]. In resource allocation problems
with inequality coupling constraints (7), a slight modification
in the problem formulation is required. A fictitious input
uN+1 denoting the slack of the shared resource is created
such that uN+1 = Umax −

∑N
i=1 ui and its corresponding

fictitious function fN+1(uN+1) is set to zero. The optimizer
is designed based on the optimality condition, which is that
the gradients from all systems must be synchronized at the
optimal point u∗:

∂f̂i
∂ui

(u∗i ) =
∂f̂j
∂uj

(u∗j ), ∀i, j = 1, . . . , N + 1 (29)

Each steady-state optimizer is then constructed based on
the following synchronization-based control law:

u̇i = ν
∑
j 6=i

γi,j

(
∂f̂i
∂ūi

(ui)−
∂f̂j
∂ūj

(uj)

)
, (30)

where the tuning parameters γi,j = γj,i ≥ 0 and ν are the
synchronization gains and optimizer gain respectively. The
derivations and convergence proofs of the synchronization-
based optimizer applied to a resource allocation problem can
be found in [12].

C. Dither signal optimizer

With the estimated gradients F̂i, the dither signal optimizer
defined in Eqs (23)–(27) is formulated as:

ĴF =

(
N∑
i=1

F̂i · ai

)2

+

(
N∑
i=1

F̂i · bi

)2

→ min
{ai,bi}

(31)

(
N∑
i=1

ai

)2

+

(
N∑
i=1

bi

)2

≤ δ2
in (32)

(dmini )2 ≤ a2
i + b2i ≤ (dmaxi )2, i = 1 . . . N (33)

|∆ai|2 ≤ ∆amax i = 1, . . . N, (34)

|∆bi|2 ≤ ∆bmax, i = 1, . . . N, (35)

where ĴF is the total estimated output variation in the plant.

V. SIMULATIONS

The proposed method is assessed in the gas-lift allocation
optimization problem described in Section II.

We consider a production gathering network of N = 5
gas-lifted wells. Let ui, i = 1, . . . 5 be the gas-lift injection
rate for each well. The production curves mapping the gas
injection rates to corresponding oil production rates are given



by the following functions:

f1(u1) =− 3.9× 10−7u4
1 + 2.1× 10−4u3

1

− 0.043u2
1 + 3.7u1 + 12, (36)

f2(u2) =− 1.3× 10−7u4
2 + 10−4u3

2

− 2.8× 10−2u2
2 + 3.1u2 − 17, (37)

f3(u3) =− 1.2× 10−7u4
3 + 10−4u3

3

− 0.028u2
3 + 2.5u3 − 16, (38)

f4(u4) =− 4× 10−7u4
4 + 1.8× 10−4u3

4

− 0.036u2
4 + 3.5u4 + 10, (39)

f5(u5) =− 1.4× 10−7u4
5 + 10−4u3

5

− 0.029u2
5 + 3u− 5. (40)

The production curves are depicted in Figure 3. The
maximum of the curves lies at (u∗1, u

∗
2, u
∗
3, u
∗
4, u
∗
5) ≈

(83.75, 98.31, 64.81, 108.62, 79.68). Box constraints are im-

Fig. 3. Gas-lift performance curves.

posed to bound the individual gas injection rates between
lower (umin

i = 40) and upper limits (umax
i = 140). Although

the proposed ESC scheme is capable of handling constraints,
since this is not the focus of this work, we consider a scenario
in which the total gas is sufficient to reach the optimal
injection rate for all wells, i.e., Umax >= u∗1 + u∗2 + u∗3 +
u∗4 + u∗5 = 435.17.

The tuning parameters of the extremum-seeking con-
trollers are set to ν = 0.3, ωi = 0.75, and γi,j = 1 ,
∀i, j ∈ 1, . . . , N with i 6= j. The initial conditions for the
input signals are u1(0) = 50, u2(0) = 70, u3(0) = 100,
u4(0) = 70, and u5(0) = 50.

The ESC scheme was implemented in Simulink and Mat-
lab R2018b. The least-squares gradient estimator and the
dither signal optimizer are external scripts embedded in the
ESC scheme implemented in Simulink. In order to avoid
an algebraic loop at time step k, the dither signal optimizer
utilizes gradient estimates from time step k − 1. The time
step was set to Ts = 0.1, and the window size for the least
squares fits is Tw = d3 × (2π/ωi)/Tse, which corresponds
to 3 times the period of the dither signals. The dither signal
optimizer is formulated in CasADI v3.4.5 [19], and the
dither optimization problem is solved with the nonlinear
solver IPOPT [20] at each time step. The bounds for the
constraints are set to δin = 10−6, dmin

i = 0.5, dmax
i = 2.5,

∆amax
i = ∆bmax

i = 0.8.

To evaluate the performance of the dither signal optimizer,
the ESC scheme with dynamically optimized signals is
compared to a similar scheme with fixed dither signals. In
the latter, the dither signals have the same amplitude and
phases, αi = 2.5 and φi = 0, ∀i = 1, . . . , N .

The total variations in the input signals are shown in
Figure 4. While the total variations using dynamically op-

Fig. 4. Dither-induced variations in the total gas injection rate for optimized
and fixed dither signals.

timized dither signals JU is practically zero, the total vari-
ations JU,std with constant dither signals is relatively large,
corresponding to a variation in the range of 5 to 10% of
the total input. This variation in the fast time-scale can be
damaging for the gas-lift compressor and other equipment in
the processing facilities.

The resulting gas injection rates ui, i = 1, . . . , N obtained
with the proposed dither optimization scheme are depicted in
Figure 5 It can be seen that the injection rates converge to the
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Fig. 5. Input signals.

local neighborhood of the optimal values (u∗1, u
∗
2, u
∗
3, u
∗
4, u
∗
5)

≈ (83.75, 98.31, 64.81, 108.62, 79.68).
Figure 6 shows the total oil production rate obtained with

dynamically optimized dither signals and, for comparison,
for fixed dither signals. As the gas injection rates approach
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the optimal solution, the objective function converges to a
value that is close to the optimal value

∑N
i=1 fi(u

∗
i ) =

513.28. Notice that the ESC scheme with optimized dither
signals has a similar performance to the scheme with constant
signals regarding convergence to optimality. However, the
latter has more high-frequency variations than the scheme
with optimized dither signals because of dither-induced
variations in the output. To highlight these differences, we
compare the total output variations of both schemes in Figure
7. With optimized signals, the estimated total variation in the

Fig. 7. Dither-induced variations in the total oil production rate for
optimized and fixed dither signals.

output ĴF is practically zero, while the total variation JF is
quite small, bounded by 10−2 in absolute values. On the
other hand, the total variations with fixed signals, JF,std, is
considerably larger, specially during the transients where the
gradients are still not synchronized.

To demonstrate adaptation of the sinusoidal dither signals,
we demonstrate their amplitudes and phases in Figures 8
and 9. They are calculated from ai and bi according to the

following formulas:

αi =
√
a2
i + b2i (41)

ϕi = arctan
bi
ai

(42)

The adaptations occur mainly during the transients, when the

Fig. 8. Signal amplitudes.

Fig. 9. Signal phases.

total variation tends to be larger. The smoothness of the adap-
tations depend on the upper bounds chosen for the continuity
constraints in Eqs 26 and 27, since these constraints limit the
changes in amplitudes and phases between consecutive time
steps. The limits for these constraints should be compatible
with the gains chosen for the steady-state optimizers.

VI. CONCLUDING REMARKS

In this paper we have presented a perturbation-based
extremum-seeking scheme with adaptive dither signals for
an optimal resource allocation problem. The adaptation of
the dither signals is performed by a dynamic optimizer that
minimizes the total variations in the input and output of the
plant. The dither optimizer is combined with a distributed



extremum-seeking algorithm based on synchronization of
gradients and with a gradient estimator based on least-
squares fits. As demonstrated in an example from the
petroleum industry, this overall ESC scheme demonstrates
the ability to converge to the optimum with similar per-
formance as with fixed dither signals. At the same time, it
significantly reduces dither-induced variations in the overall
input and output of the system. This feature is particularly
attractive for practitioners who are interested in the appli-
cation of extremum-seeking control in large-scale industrial
cases, where the total variations can be prohibitively large.

To the best of the authors’ knowledge, this is the first time
the problem of dither signals optimization/coordination for
multi-agent extremum seeking control systems is formulated
and addressed in the literature. Formal stability/convergence
proofs, as well as further attempts to simplify the solution
will be presented in a journal version of the paper. Further
work will also focus on different formulations of the dither
optimization problem, which would result in more com-
putationally attractive solutions (e.g. avoiding non-convex
optimization problems).
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