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Abstract— An adaptive observer design for a system of n+1
coupled 1-D linear hyperbolic partial differential equations
with an uncertain boundary condition is presented, extending
previous results by removing the need for sensing collocated
with the uncertainty. This modification is important and moti-
vated by applications in oil & gas drilling where information
about the down-hole situation is crucial in order to prevent or
deal with unwanted incidents. Uncertainties are usually present
down-hole while measurements are available top-side at the
rig, only. Boundedness of the state and parameter estimates
is proved in the general case, while convergence to true values
requires bounded system states and, for parameter convergence,
persistent excitation. The central tool for analysis is the infinite-
dimensional backstepping method applied in two steps, the first
of which is time-invariant, while the second is time-varying
induced by the time-varying parameter estimates.

I. INTRODUCTION

A. Problem formulation

We consider the system of linear first-order hyperbolic Par-
tial Differential Equations (PDEs) with n positive convecting
invariants and 1 negative convecting invariant given by

ut +Λux =Σ(x)u+ω(x)v (1a)
vt −µvx =ϖ(x)u (1b)

where u∈Rn is the upward propagating Riemann invariants,
v∈R is the single downward propagating Riemann invariant,
Σ : [0,1]→Rn×n with diagonal terms being zero, ω : [0,1]→
Rn×1, ϖ : [0,1] → R1×n, and Λ = diag(λ1, ...,λn) and µ

satisfying −µ < 0 < λ1 < · · · < λn. We consider boundary
conditions on the form

u(0, t) =qv(0, t)+d (2a)
v(1, t) =ρu(1, t)+U(t) (2b)

where q = {qi}1≤i≤n ∈ Rn and d = {di}1≤i≤n ∈ Rn are
unknown, ρ ∈ R1×n is known, and U : [0,∞)→ R can be
any known time-varying function. In addition, we assume
that

y(t) := u(1, t) (3)

is measured. The initial conditions

u(x,0) =:uic(x) (4a)
v(x,0) =:vic(x) (4b)
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satisfy certain compatibility conditions, making the Cauchy
problem (1)–(4) well-posed (see e.g. [1, Theorem 3.1]).

B. A motivating application
The system (1) can be used to model, among others,

various phenomena in multiphase fluid flows. An overview
of other possible applications ranging from open-channel
networks to transmission lines can be found in [2]. In this
paper, we are concerned with the problem of state estimation
in fluid flow systems where one of the boundaries is specified
in terms of uncertain parameters and sensing is limited to
the opposite boundary. The motivation is an application in
oil & gas drilling where only top-side flow measurements
are available and the bottom-hole flow is influenced by an
oil/gas reservoir with unknown properties.

In the drilling application, mud is circulated down the drill-
string, through the drill-bit at the bottom, and up in the open
annulus surrounding the drill-string back up to the rig where
flow is measured. See Figure 1. If the pressure down-hole
is lower than the reservoir pressure, oil, water or even gas
might start flowing into the well and up the annulus. This
is called a kick and can, if not handled, lead to catastrophic
consequences when the reservoir fluids reach the surface.
If properties such as the reservoir pressure is unknown,
handling and even detecting such influxes of reservoir fluids
is a very challenging problem. Previous methods of detecting
and estimating influxes have mainly focused on lumped-
order models [3]–[11], were the distributed dynamics are
neglected. Some results using the so called early-lumping
approach where the PDE model is spatially discretized and
approximated by a set of ODEs have also been explored
[12]–[14]. In this paper, we propose to use the contrasting
late-lumping approach where the observer is derived for the
distributed model, and discretization is only necessary for
computer implementation.

In the drift-flux model, which is the most commonly used
model for drilling applications involving gas, all liquids
(mud, oil, water) are lumped into a single phase, and gas
is considered separately. Following [15], the drift flux model
proposed in [16] can be written on conservative form in terms
of pressure, gas fraction and gas velocity by the quasi-linear
3×3 system

wt +A(w)wx = S(w) (5)

over the domain (x, t) ∈ [0,1]× [0,∞), where A and S are
complicated and given in [15]. System (5) can be linearized
around a given operating profile, diagonalized and written
in terms of Riemann invariants to obtain the form (1) with
n = 2 [17].



Fig. 1. Schematic of the drilling system.

Interaction with the reservoir is modeled by the boundary
conditions which are assumed to equal the bottom-hole net
liquid and gas inflow qL(0, t) and qG(0, t), respectively. It
is common to model them as proportional to the pressure
difference between the bottom-hole pressure p(0, t) and
reservoir pressure pres(t), that is,

qL(0, t) =JL(pres(t)− p(0, t)) (6a)
qG(0, t) =JG(pres(t)− p(0, t)) (6b)

where JL and JG are constants called production indices
(PI). Both PI’s JG and JL and the reservoir pressure pres
are assumed to be unknown and (6) can be rephrased in the
form (2a). For the top-side boundary condition at x = 1, we
assume that the pressure p(1, t) and flow q(1, t) are known
(one is measured, the other is a control input).

C. Relevant previous results

We use the much celebrated backstepping method for
infinite dimensional systems, first derived for hyperbolic
systems in [18] and later extended to 2×2 systems [19] and
m+ n systems [20]. In the adaptive setting with uncertain
boundary parameters, an observer for a 2× 2 system only
relying on measurements on the boundary opposite of the
boundary with the uncertain parameters is derived in [21],
[22]. For n + 1 systems, the adaptive observer problem
has been solved in [23]–[25] utilizing sensing at the same
boundary as the uncertain parameters. Particularly relevant to
this paper is [25] which considers an application in under-
balanced drilling. Worth mentioning is also [17] where the
backstepping approach is used to control multiphase flows
in drilling using state-feedback.

In this paper, we extend the observer in [21] and derive
an observer for n+1 systems with parametric uncertainties
on one boundary and measurements taken at the opposite
boundary. A disadvantage of the method in [21] is that the
observer injection gains have to be updated on-line with
every new time-varying parameter estimate. We propose a
design avoiding the on-line recalculation of injection gains

by instead solving a set of computationally simpler transport
equations on-line. The estimation scheme with state observer
and adaptive laws including stability proofs are presented
in Section II. Some concluding remarks are offered in
Section III.

D. Notation

For a signal z : [0,1]× [0,∞)→Rn , partial derivatives with
respect to i.e. space are denoted zx or ∂xzi for each element
i = 1, ...,n. The L2-norm is denoted

||z|| :=

√∫ 1

0
zT (x, t)z(x, t)dx. (7)

For f : [0,∞)→ R, we use the vector spaces

f ∈Lp↔
(∫

∞

0
| f (t)|pdt

) 1
p

< ∞ (8)

for p≥ 1 with the particular case

f ∈L∞↔ sup
t≥0
| f (t)|< ∞. (9)

Derivatives with respect to time are denoted ḟ . If not
otherwise stated, a statement for a variable with subscript
i refers to all variables with subscript i = 1, ...,n.

II. STATE AND PARAMETER ESTIMATION

Let (û, v̂) ∈ Rn+1 denote the state estimates. We consider
the observer system

ût +Λûx =Σ(x)û+ω(x)v̂

+P1(x, t)(y(t)− û(1, t)) (10a)
v̂t −µ v̂x =ϖ(x)û+P2(x, t)(y(t)− û(1, t)) (10b)

û(0, t) =q̂(t)v̂(0, t)+ d̂(t) (10c)
v̂(1, t) =ρu(1, t)+U(t) (10d)

with compatible initial conditions (û(x,0), v̂(x,0)) =
(ûic(x), v̂ic(x)) and where q̂i(t) and d̂i(t) are the parameter
estimates of q and d. The injection gains P1 and P2 have
the structure

P1(x, t) =M(x,1)Λ+G(x,1, t)Λ

+
∫ 1

x
M(x,ξ )G(ξ ,1, t)Λdξ (11a)

P2(x, t) =N(x,1)Λ+
∫ 1

x
N(x,ξ )G(ξ ,1, t)Λdξ (11b)

where (M,N,G) are Volterra integral kernels and will be
specified further in the next sections. The state estimation
error ũ = u− û, ṽ = v− v̂ then satisfies

ũt +Λũx =Σ(x)ũ+ω(x)ṽ−P1(x, t)ũ(1, t) (12a)
ṽt −µ ṽx =ϖ(x)ũ−P2(x, t)ũ(1, t) (12b)

ũ(0, t) =q̂(t)ṽ(0, t)+ q̃(t)v(0, t)+ d̃(t) (12c)
ṽ(1, t) =0 (12d)

where q̃(t) = q− q̂(t) and d̃ = d− d̂(t). The design strategy
is as follows: In Section II-A, we specify the (M,N)-kernels



and show that the estimation error system (12) is equivalent
to a simpler target system. This target system is used to
derive a parametric model relating the unknown parameters
to some known signals in Section II-B. Equivalence to
yet another target system are shown in Section II-C by
specifying the remaining G-kernel. Properties of this final
target system together with appropriate adaptive laws based
on the parametric model are used in Theorem 1 in Section II-
D to state the main contribution of this paper on state end
parameter estimation.

A. Backstepping transformation

Lemma 1: Let q̄ = {q̄i}1≤i≤n ∈ Rn. On the triangular
domain T1 = {(x,ξ )|0 ≤ x ≤ ξ ≤ 1}, the backstepping
transformation

ũ(x, t) =α(x, t)+
∫ 1

x
M(x,ξ )α(ξ , t)dξ (13a)

ṽ(x, t) =β (x, t)+
∫ 1

x
N(x,ξ )α(ξ , t)dξ , (13b)

with kernels M = {Mi j(x, t)}1≤i, j≤n : T1 → Rn×n, N =
{Ni(x, t)}1≤i≤n : T1→ R1×n satisfying

Mξ Λ+ΛMx =Σ(x)M+ω(x)N (14a)

Nξ Λ−µNx =ϖ(x)M, (14b)

Σ(x) =M(x,x)Λ−ΛM(x,x) (15a)
ϖ(x) =N(x,x)Λ+µN(x,x), (15b)

Mi j(0,ξ ) =q̄iN j(0,ξ ), 1≤ i≤ j ≤ n (16)

and
Mi j(x,1) =

Σi j(x)
λ j−λi

, 1≤ j < i≤ n (17)

is invertible and maps the target system

αt(x, t)+Λαx(x, t) =ω(x)β (x, t)−G(x,1, t)Λα(1, t)

−
∫ 1

x
A(x,ξ )β (ξ , t)dξ (18a)

βt(x, t)−µβx(x, t) =−
∫ 1

x
B(x,ξ )β (ξ , t)dξ (18b)

α(0, t) =q̂(t)β (0, t)+
∫ 1

0
H(ξ , t)α(ξ , t)dξ

+ q̃(t)v(0, t)+ d̃(t) (18c)
β (1, t) =0 (18d)

where G = {gi j(x, t)}1≤i, j≤n is an upper triangular matrix to
be decided, A and B satisfy

A(x,ξ ) =M(x,ξ )ω−
∫

ξ

x
M(x,s)A(s,ξ )ds (19a)

B(x,ξ ) =N(x,ξ )ω−
∫

ξ

x
N(x,s)A(s,ξ )ds, (19b)

and H(ξ , t) = {hi j(ξ , t)}1≤i, j≤n is defined by

hi j(ξ , t) :=q̂i(t)N j(0,ξ )−Mi j(0,ξ ), (20)

into the error system (12) with injection gains (11). More-
over, the kernel equation (14)–(17) has a unique solution.
The target system (18), but without the G(x,1, t)α(1, t) term,
and injection gains P1(x) = M(x,1)Λ and P2(x) = N(x,1)Λ,
was first used in [24] for non-collocated observer design for
n+1 systems, which itself was a straightforward application
of the kernel equations derived in [20]. The effect of includ-
ing the G(x,1, t)α(1, t) term in the target system can be seen
by substituting G(x,1, t)α(1, t) for α(ξ , t) in (13) showing
the origin of the injection gains (11). The proof of Lemma 1
is therefore omitted.

Remark 1: The constant q̄ can be chosen arbitrarily, but
better performance is expected if it is chosen as close to q
as possible, i.e. q̄ = q̂(0), presuming q̂(0) is our best guess
of q at t = 0. Due to (16), we have

hi j(ξ , t) = (q̂i− q̄i)N j (21)

for all j ≥ i, meaning that H(ξ , t) will in general only be
strictly lower triangular for all ξ ∈ [0,1] if q̄ = q̂(t). The
remaining injection gain G(x,1, t)Λ left unspecified in (18a)
(specified later in Section II-C) will be used to handle the
time-varying discrepancy (q̄− q̂(t)).

B. Parametric model

The advantage of transforming the error system to the form
(18) is that, for t ≥ µ−1, β ≡ 0 and the α-dynamics can be
solved independently for each element αi. This solution is
exploited in the next lemma to obtain a bilinear parametric
model relating the unknown parameters to known signals.

Lemma 2: Let λ =min
i

λi = λ1. For t ≥ tF := µ−1+2λ−1,

ψi(t) = qiφ(t)+di, 1≤ i≤ n (22)

where

ψi(t) =ỹi(t +λ
−1
i −λ

−1)

+ q̂i(t−λ
−1)φ(t)+ d̂i(t−λ

−1)

−
n

∑
j=i

∫ t+λ
−1
i −λ−1

t−λ−1
gi j((τ− t +λ

−1)λi,τ)λ j ỹ j(τ)dτ

−
n

∑
j=1

∫ 1

0
hi j(ξ , t−λ

−1)

(
ỹ j(t +λ

−1(1−ξ )−λ
−1)

−
n

∑
l= j

∫ t+λ
−1
j (1−ξ )−λ−1

t−λ−1
k jl(ξ +λ j(τ +λ

−1− t),τ)

× ỹl(τ)dτ

)
dξ , (23)

φ(t)≡−v̂(0, t−λ
−1)+

n

∑
i=1

∫ 1

0
Ni(0,ξ , t−λ

−1)

×

(
n

∑
j=1

∫ t+λ
−1
i (1−ξ )−λ−1

t−λ−1
gi j(ξ +λi(τ +λ

−1− t),τ)

×λ j ỹ j(τ)dτ− ỹi(t +λ
−1
i (1−ξ )−λ

−1)

)
dξ , (24)



and
ỹi(t) := αi(1, t) = yi(t)− ûi(1, t). (25)

Proof: Consider the target system (18) in Lemma 1.
Since β ≡ 0 for t ≥ µ−1, we have on component form

∂tαi +λi∂xαi =
n

∑
j=i

gi j(x, t)λ j ỹ j(t) (26a)

αi(0, t) =
n

∑
j=1

∫ 1

0
hi j(ξ , t)α j(ξ , t)dξ

+ q̃i(t)v(0, t)+ d̃i(t) (26b)

with the solution

αi(x, t) =
n

∑
j=i

∫ t

t+λ
−1
i (x0−x)

gi j(x+λi(τ− t),τ)λ j ỹ j(τ)dτ

+αi(x0, t +λ
−1
i (x0− x)) (27)

valid for all t ≥ µ−1 +λ
−1
i and some x0 ∈ [0,1]. Selecting

x0 = 0 and inserting (18c) yield

αi(x, t) =
n

∑
j=i

∫ t

t−λ
−1
i x

gi j(x+λi(τ− t),τ)λ j ỹ j(τ)dτ

+
n

∑
j=1

∫ 1

0
hi j(ξ , t−λ

−1
i x)α j(ξ , t−λ

−1
i x)dξ

+ q̃i(t−λ
−1
i x)v(0, t−λ

−1
i x)+ d̃i(t−λ

−1
i x). (28)

Selecting x0 = 1 and inserting (25) yield

αi(x, t) =−
n

∑
j=i

∫ t+λ
−1
i (1−x)

t
gi j(x+λi(τ− t),τ)λ j ỹ j(τ)dτ

+ ỹi(t +λ
−1
i (1− x)). (29)

We have from (13b) for t ≥ µ−1, and (29) that

v(0, t) = v̂(0, t)+
∫ 1

0
N(0,ξ )α(ξ , t)dξ

=v̂(0, t)+
n

∑
i=1

∫ 1

0
Ni(0,ξ )

(
ỹi(t +λ

−1
i (1−ξ ))

−
n

∑
j=i

∫ t+λ
−1
i (1−ξ )

t
gi j(ξ +λi(τ− t),τ)λ j ỹ j(τ)dτ

)
dξ . (30)

Thus,
v(0, t−λ

−1) =−φ(t). (31)

Next, inserting the right hand side of (29) into the left hand
side of (28) evaluated at x = 1 and t = t + λ

−1
i − λ−1 ≤ t

yields

ỹi(t +λ
−1
i −λ

−1) = q̃i(t−λ
−1)v(0, t−λ

−1)+ d̃i(t−λ
−1)

+
n

∑
j=i

∫ t+λ
−1
i −λ−1

t−λ−1
gi j((τ− t +λ

−1)λi,τ)λ j ỹ j(τ)dτ

+
n

∑
j=1

∫ 1

0
hi j(ξ , t−λ

−1)α j(ξ , t−λ
−1)dξ

=
n

∑
j=i

∫ t+λ
−1
i −λ−1

t−λ−1
gi j((τ− t +λ

−1)λi,τ)λ j ỹ j(τ)dτ

+qiv(0, t−λ
−1)+di

− q̂i(t−λ
−1)v(0, t−λ

−1)− d̂i(t−λ
−1)

+
n

∑
j=1

∫ 1

0
hi j(ξ , t−λ

−1)

(
ỹ j(t +λ

−1(1−ξ )−λ
−1)

−
n

∑
l= j

∫ t+λ
−1
j (1−ξ )−λ−1

t−λ−1
k jl(ξ +λ j(τ +λ

−1− t),τ)

× ỹl(τ)dτ

)
dξ (32)

which is equivalent to (22) in view of (23)–(25) and (31).

C. Properties of estimation error target system

We now show equivalence to yet another target system by
specifying the G-kernel.

Lemma 3: For t ≥ µ−1, the backstepping transformation

α(x, t) = η(x, t)+
∫ 1

x
G(x,ξ , t)η(ξ , t)dξ (33)

with kernel G = {gi j}1≤i, j≤n : T1× [0,∞)→Rn×n satisfying

∂tgi j =−λ j∂ξ gi j−λi∂xgi j (34a)

gi j(x,x, t) =0 (34b)

gi j(0,ξ , t) =hi j(ξ , t)+
j

∑
k=1

∫
ξ

0
hik(s, t)gk j(s,ξ , t)ds (34c)

for 1 ≤ i ≤ j ≤ n and gi j ≡ 0 for 1 ≤ j < i ≤ n, which has
a unique, bounded solution for every bounded hi j, maps the
sub-system (18a) and (18c) (recall that β ≡ 0 for t ≥ µ−1)
into the target system

ηt(x, t)+Ληx(x, t) =0 (35a)

η(0, t) =
∫ 1

0
H̄(ξ , t)η(ξ , t)dξ

+q̃(t)v(0, t)+ d̃(t) (35b)

where H̄ is the strictly lower triangular matrix

H̄(ξ , t) :=H(ξ , t)−G(0,ξ , t)+
∫

ξ

0
H(s, t)G(s,ξ , t)ds. (36)

Proof: Differentiating (33) with respect to time and
space, inserting the dynamics (35), and integrating by parts
yield

αt(x, t)+Λαx(x, t)+G(ξ ,1, t)Λα(1, t)
=ηt(x, t)+Ληx(x, t)+G(ξ ,1, t)Λα(1, t)

+
∫ 1

x
Gt(x,ξ , t)η(ξ , t)dsdξ

+G(x,x, t)Λη(1, t)−G(x,1, t)Λη(1, t)

+
∫ 1

x
Gξ (x,ξ , t)Λη(ξ , t)dξ

−ΛG(x,x, t)η(x, t)+
∫ 1

x
ΛGx(x,ξ , t)η(ξ , t)dξ

=
∫ 1

x

(
Gt(x,ξ , t)+Gξ (x,ξ , t)Λ+ΛGx(x,ξ , t)

)
η(ξ , t)dξ

+(G(x,x, t)Λ−ΛG(x,x, t))η(x, t)

+G(x,1, t)Λ(α(1, t)−η(1, t)) (37)



x

ξ

ξ
=

x

ξ = 1

ξ = 0

λ
iξ

=
λ

jx

s ∈ [0, ξ̄ )
ξ = ξ̄

Fig. 2. Characteristic lines of gi j for j > i.

which in view of (34) and α(1, t) =η(1, t) verifies (18) (with
β ≡ 0). For the boundary condition, we have

η(0, t) =q̃(t)v(0, t)+ d̃(t)−
∫ 1

0
G(0,ξ , t)η(ξ , t)dξ

+
∫ 1

0
H(ξ , t)

(
η(ξ , t)+

∫ 1

ξ

G(ξ ,s, t)η(s, t)ds
)

dξ

=
∫ 1

0

(
H(ξ , t)−G(0,ξ , t) +

∫
ξ

0
H(s, t)G(s,ξ , t)ds

)
×η(ξ , t)dξ + q̃(t)v(0, t)+ d̃(t). (38)

Defining H̄ as in (36), which due to (34c) is strictly lower
triangular, yields (35b).

The system (34) is a set of Riemann invariants parame-
terized by (ξ , t) with characteristic lines (λiλ

−1
j s,ξ + s, t +

λ
−1
j s) originating from the (0,ξ , t)-boundary for λiξ−λ jx≥

0 . See Figure 2. Since (34c) is causal for all ξ ∈ [0,1] in
the sense that gi j(0,ξ , t) is uniquely specified by hi j(ξ , t),
hik = (s, t) and gk j(0,s, t−λ

−1
j ) for s ∈ [0,ξ ),k = 1, ..., j, it

follows that there exist a unique solution gi j(0,ξ , t) to (34c),
which in turn implies the existence of a unique solution
gi j(x,ξ , t) to (34) for all bounded hi j. Since gi j(0,ξ , t) can
be upper bounded in terms of hi j, gi j(x,ξ , t) is bounded.

D. Adaptive law and stability of estimation error

Theorem 1: Consider the system (1) and observer (10).
Let q̃i(t) = qi− q̂i(t), d̃i(t) = d− d̂i(t) and ψ̃i(t) := ψi(t)−
q̂i(t)φ(t)+ d̂i(t). If

˙̂qi =γqi

ψ̃i(t)φ(t)
2+φ 2(t)

, ˙̂di = γdi

ψ̃i(t)
2+φ 2(t)

(39)

for t ≥ tF and ˙̂qi =
˙̂d = 0 otherwise, where γqi ,γdi > 0 are the

adaptation gains, then

q̂i, d̂i ∈L∞, ˙̂qi,
˙̂di ∈L∞∩L2 (40)

and
(ũ(x, ·), ṽ(x, ·)) ∈L∞. (41)

If in addition v(0, t) is bounded for all t ≥ 0, then

||ũ||, ||ṽ|| → 0. (42)

Lastly, if the persistence of excitation condition

c1I2×2 ≥
1
T

∫ t+T

t
[φ(τ),1]T [φ(τ),1]dτ ≥ c2I2×2 (43)

is satisfied for some constants c1,c2,T > 0, the parameter
estimates q̂i and d̂i converge exponentially to their true values
qi and di.

Proof: Consider the parametric model (22) in Lemma 2.
The properties (40) of q̂ and d̂ follow from [26, Theorem
4.3.2], along with the fact that ψ̃i(2+φ 2)−1 ∈L2∩L∞. Let

Θ̃i(t) =:
[
q̃i(t), d̃i(t)

]T (44)

Φi(t) =:
1√

1+φ 2(t)
[φ(t),1]T . (45)

so that ψ̃i(t)(2+φ 2(t))−1 = ΦT
i (t)Θ̃i(t). We have

Φ
T
i (t)Θ̃i(t) = Φ

T
i (t)

(∫ t

t−λ−1

˙̃
Θi(τ)dτ + Θ̃i(t−λ

−1)

)
(46)

which after rearranging and squaring both sides give the
inequality

(ΦT
i (t)Θ̃i(t−λ

−1))2

≤ 2(ΦT
i (t)Θ̃i(t))2 +2

(
Φ

T
i (t)

∫ t

t−λ−1

˙̃
Θi(τ)dτ

)2

≤ 2(ΦT
i (t)Θ̃i(t))2 + c

∫ t

t−λ−1
˙̃q2
i (τ)+

˙̃d2
i (τ)dτ (47)

for some constant c > 0. As already stated, the first term is
integrable. For the second term, we have by changing the
order of integration

lim
T→∞

∫ T

λ−1

∫ t

t−λ−1
˙̃q2
i (τ)dτdt

= lim
T→∞

∫
λ−1

0

∫
τ+λ−1

λ−1
dtλ ˙̃q2

i (τ)dτ

+
∫ T−λ−1

λ−1

∫
τ+λ−1

τ

dtλ ˙̃q2
i (τ)dτ

+
∫ T

T−λ−1

∫ T

τ

dtλ ˙̃q2
i (τ)dτ (48)

Since all the inner integrals evaluate to λ−1 or less,

lim
T→∞

∫ T

λ−1

∫ t

t−λ−1
˙̃q2
i (τ)dτdt ≤ lim

T→∞
λ
−1
∫ T

λ−1
˙̃q2
i (τ)dτ (49)

which by (40) is bounded. The term involving ˙̃di can simi-
larly be shown to be bounded and integrable, showing that
the left hand side of (47) is bounded and integrable. That is

πi :=
q̃iv(0, ·)+ d̃i√

2+ v2(0, ·)
∈L2∩L∞. (50)

We construct the Lyapunov function candidate

V (t) =
∫ 1

0
e−x

η
T (x, t)Πη(x, t)dx (51)

where Π is a positive definite diagonal matrix. Differentiating
(51) with respect to time inserting the system dynamics (35)



and integrating by parts give the upper bound

V̇ (t)≤−
∫ 1

0
η

T (x, t)
[
Πλ1− H̄T (x, t)ΠH̄(x, t)λn

]
η(x, t)dx

− c1η
T (1, t)η(1, t)+ c2π

T (t)π(t). (52)

where π = {πi}1≤i≤n. Since H̄(x, t) is strictly lower trian-
gular and by (40) bounded for all t ≥ 0, it is possible to
(recursively, see e.g. [27, Appendix B.2.]) select Π such that
Πλ1− H̄T (x, t)ΠH̄(x, t)λn � 0 yielding

V̇ (t)≤− c3V1(t)− c1η
T (1, t)η(1, t)

+ c2π
T (t)π(t) (53)

for some constants c1,c2,c3 > 0. The bound (53) is of the
form considered [28, Lemma 3] yielding V → 0 which in
turn implies ||η || → 0. Invertibility of the transformations
(13) and (33) and boundedness of all kernels finally give
(42).

III. CONCLUDING REMARKS

We have designed an adaptive observer estimating bound-
ary parameters and distributed states in an n + 1 linear
hyperbolic system using measurements on the boundary
opposite the uncertainty. Boundedness of state estimates are
proved. The state and parameter estimates are shown to
converge to their true value assuming bounded system states
and persistence of excitation, respectively. The observer can
be applied to a multiphase fluid flow system in drilling to
estimate distributed flow and pressure profiles and reservoir
properties. The drift-flux model mentioned in Section I-B is
quasi-linear and linearization is only a valid simplification
for limited variations around an equilibrium profile. This is
violated for kick and loss scenarios, but may be fine for
underbalanced drilling operations. An interesting option to
pursue in applications, is to allow the non-linear terms in
the observer even though output injections are designed for
the linearization.
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