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a b s t r a c t 

A novel shape descriptor for cluttered scenes is presented, the Radial Intersection Count Image (RICI), 

and is shown to significantly outperform the classic Spin Image (SI) and 3D Shape Context (3DSC) in 

both uncluttered and, more significantly, cluttered scenes. It is also faster to compute and compare. The 

clutter resistance of the RICI is mainly due to the design of a novel distance function, capable of disre- 

garding clutter to a great extent. As opposed to the SI and 3DSC, which both count point samples, the 

RICI uses intersection counts with the mesh surface, and is therefore noise-free. For efficient RICI con- 

struction, novel algorithms of general interest were developed. These include an efficient circle-triangle 

intersection algorithm and an algorithm for projecting a point into SI-like ( α, β) coordinates. The ’clut- 

terbox experiment’ is also introduced as a better way of evaluating descriptors’ response to clutter. The 

SI, 3DSC, and RICI are evaluated in this framework and the advantage of the RICI is clearly demonstrated. 

© 2020 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

Local shape descriptors have seen extensive use in a wide vari-

ety of applications where determining shape correspondences are

beneficial or even required. Such applications include registration

[1–3] , shape segmentation [4–6] , and retrieval [7,8] . 

Many local 3D shape descriptor methods rely on the surfaces

present in the volume around a point to compute the degree to

which two points are similar. This also makes them susceptible to

any unwanted geometry present in the neighbourhood, commonly

referred to as clutter . For this reason, clutter has been named as a

major factor degrading the performance of current descriptors [9] . 

The degree to which different descriptors are capable of re-

sisting the negative effects of clutter varies. One classical method

which has shown to be significantly resistant to clutter is the Spin

Image [10] (SI). This descriptor is invariant under rigid transforma-

tions, and has been applied successfully for applications such as

shape registration [11] and facial recognition [12] . 

In this paper, we present the Radial Intersection Count Image

(RICI) combined with a novel distance function. The new descriptor
This article has been certified as Replicable by the Graphics Replicability Stamp 
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hares the original concept of the Spin Image but is advantageous

n terms of its generation speed and clutter resistance. 

In order to show the effectiveness of the RICI, we propose a

epeatable experiment aimed at quantifying the effects of clutter

n the matching performance of 3D shape descriptors. The main

dvantage of this evaluation method is that it can be used with

atasets of any size, and ensures scenes are cluttered with natural

hapes. 

In summary, the contributions of this paper are: 

1. The novel RICI descriptor and an accompanying distance func-

tion, capable of resisting clutter. 

2. Algorithms for efficient generation of RICI descriptors, also ca-

pable of accelerating SI construction. 

3. The clutterbox experiment for quantifying the effects of clutter.

4. Evidence that the Support Angle filter proposed in the original

SI paper does not necessarily improve matching performance. 

5. Freely available GPU implementations for generating and com-

paring Spin Image, 3DSC, and RICI descriptors, as well as an

implementation of the proposed clutterbox experiment. 

. Background and related work 

Numerous local shape descriptors have been proposed to date

9] . The Spin Image has been the foundation for a number of meth-

ds, which attempt to improve its matching performance or other
under the CC BY-NC-ND license. 
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Fig. 1. A visualisation of the α and β coordinates corresponding to a given point 

P, relative to the Spin Vertex S v and Spin Normal S n . The Central Axis; the line 

described by the Spin Vertex and Spin Normal is also shown. 

l  

f

2

 

c  

w

 

w  

r  

b  

A

 

w  

v  

(  

t  

p  

s  

v

 

s  

d  

t  

C  

c  

i

 

p  

C  

S  

t  

t

 

p  

c  

t

 

t  

u  

p  

t

2

 

U  

c  

m  

r

 

i  

s  

D  

c  

[  

e

 

t  

t  

u  

d  

[

2

 

h  

s  

p  

i  

t  

S  

T  

o  

b  

r

 

w  

e  

t  

i

2

 

t  

i

 

d  

t  

I

 

p  

L  

c  

a  

t  

m

 

d  

e  

i  

a  

m  

n  

f  

p

 

u  

j  

s  

w  

a  

I  

a  

o

imitations. Clutter is a major challenge for object descriptors and

ew methods have addressed it. 

.1. Spin images 

The Spin Image [10] , originally presented by Johnson et al., is a

lassic descriptor generated from an oriented point cloud (vertices

ith position and normal). 

An SI is constructed around an oriented point, the position of

hich is in this paper referred to as the Spin Vertex S v . The cor-

esponding normal is referred to as the Spin Normal S n . The com-

ined oriented point describes a line, which is called the Central

xis. 

Computing the descriptor involves placing a square plane

hose left side is on the Central Axis, with the Spin Vertex at its

ertical halfway point. This plane is subsequently subdivided into

 N bins × N bins ) equivalently sized bins, and rotated for one revolu-

ion around the Central Axis. As the plane rotates, the number of

oint samples intersecting each bin is counted. The descriptor it-

elf is a histogram of the resulting value of each bin, which can be

isualised as an image. 

In practice, the locations where point samples will inter-

ect with the rotating square can be computed directly as two-

imensional cylindrical coordinates. Here the α coordinate refers

o the distance from the point sample to the closest point on the

entral Axis, and the β coordinate refers to the distance from this

losest point to the Spin Vertex. The projection of a given point P

s shown in Fig. 1 . 

The physical width and height of the square plane is the Sup-

ort Radius of the descriptor. By rotating the plane around the

entral Axis, a cylindrical volume is created, which represents the

upport Volume of the descriptor. Additionally, point sample con-

ributions are divided over nearby bins using bilinear interpolation

o reduce the effects of aliasing. 

Johnson et al. also describe a prefiltering step called the Sup-

ort Angle, where a sample oriented point is not included in the

omputation of the descriptor if the angle between its normal vec-

or and the Spin Normal exceeds a set threshold. 

The descriptor’s core idea is that a pair of points with iden-

ical surfaces surrounding them, and assuming both have been

niformly sampled, will have proportional quantities of projected

oints in similar locations. Images can thus be compared using sta-

istical correlation. 

.2. Methods related to the SI 

One of the major issues with the Spin Image is its volatility.

niform sampling of triangle meshes as well as scans from 3D

apture devices are inherently noisy. Carmichael et al. proposed a

ethod to address this by computing the exact area of the support

egion intersecting each pixel [13] . 

Other methods aim to address specific limitations of the spin

mage. Assfalg et al. proposed the spin image signature aimed at
implifying the ease of image retrieval from a large database [14] .

inh et al. aimed at addressing the issue of selecting bin sizes by

reating a spin image variant with variable sized histogram bins

15] , although their solution involves the manual setting of param-

ters. 

An alternate spin image variant, proposed by Guo et al. used

hree spin images per vertex rather than a single one for bet-

er matching performance [16] . Accelerating spin image generation

sing a GPU was first proposed by Davis et al. [17,18] . Alternate

erivative methods include Spin Contours, proposed by Liang et al.

19] and colour spin images by Pasqualotto et al. [20] . 

.3. The 3D shape context 

The 3D Shape Context, proposed by Frome et al. [21] , is a

istogram descriptor constructed by accumulating points by their

pherical coordinates and distance relative to an oriented reference

oint in a spherical support region. The support region is divided

nto J equally spaced spherical wedges, centred around the cen-

ral axis described by the reference oriented point (similar to the

I). Each wedge is subsequently divided into K elevation divisions.

he bin volumes are finally created by the intersection volume

f each radial and elevation divisions with the volume bounded

y two of L successive spheres with exponentially increasing

adii. 

The descriptor has a degree of freedom around the Central Axis,

hich the Authors solve by generating J different descriptors for

ach vertex, where each of the wedges has been offset by a mul-

iple of the angle 2 π
J . However, due to its self-symmetry, this step

s unnecessary for descriptors used for querying. 

.4. Other clutter-Resistant shape matching methods 

Some methods which have been proposed to date, in addition

o the Spin Image and 3DSC, have been shown to perform better

n cluttered scenes than others [9,22] . 

Mian et al. presented a method which creates a three-

imensional grid of voxels based on two randomly selected ver-

ices, referred to as a Tensor [22] . Their results outperform the Spin

mage, and show resistance to clutter being present in the scene. 

The THRIFT descriptor, proposed by Flint et al. [23] , uses an ap-

roach similar to the Scale-Invariant Feature Transform (SIFT) by

owe et al [24] . The method aims to find distinctive points which

an be detected reliably under a wide range of conditions. This is

ccomplished by computing a three-dimensional density map of

he input point cloud, and selects interest points by locating local

axima of the Hessian matrix. 

Local surface patches, proposed by Chen et al. [25] , is a two-

imensional histogram descriptor generated from points in an ori-

nted point cloud. Each descriptor accumulates points in a spher-

cal support volume, by their shape index and the cosine of the

ngles between their normal vectors. The authors only test their

ethod on range images, and do not expose the descriptor to sig-

ificant levels of clutter themselves. However, experiments per-

ormed in the review by Guo et al. [9] suggest that this method

erforms well in cluttered scenes. 

Unfortunately, the above works on clutter resistant descriptors

sed very small datasets for testing their methods (1 to 56 ob-

ects). Therefore, the provided results may be statistically biased,

ince the proposed descriptors were not subjected to a sufficiently

ide range of possible surface features. The datasets used were

lso not made public, making it difficult to compare their results.

n addition, some used very similar objects (such as cars), presum-

bly for ease of creation, which is not representative of all forms

f clutter that can be encountered in a real scene. 



120 B.I. van Blokland and T. Theoharis / Computers & Graphics 91 (2020) 118–128 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α
x

y

z
β

Fig. 2. A triangle depicted alongside its projection in cylindrical coordinate space. 

The area in which circles centred and directed along the z-axis intersect the triangle 

twice is coloured in dark grey. Sizes may not be to scale. 

 

 

 

 

 

3

 

d  

R  

o

 

t  

t  

w  

T  

i

 

f  

a  

e  

q  

c

 

t

c  

r  

t  

y

[

 

P  

P

P  

T  
2.5. Learning approaches 

More recent shape matching methods have attempted to utilise

Neural Networks. One of the major hurdles these methods need to

overcome is the inherent irregularity present in 3D shape data, as

opposed to more regular data such as images on which learning

methods have been applied successfully. 

To this end, many methods, such as the PPFNet proposed by

Deng et al. [26] , make use of existing descriptors or features in a

pre-processing step to regularise the input to the neural network.

PPFNet specifically uses point pair features, and was shown to out-

perform many current state-of-the-art handcrafted methods. 

Another regularisation approach is the voxelisation of the in-

put point cloud or mesh, which has amongst others been exploited

in the 3DMatch method proposed by Zeng et al. [27] , who suc-

cessfully apply their proposed method on point cloud alignment

and keypoint matching, outperforming both handcrafted and ear-

lier learning methods. 

While these learning methods show great promise, their appli-

cability depends highly on the used dataset for training, and may

require retraining for new environments. Moreover, current learn-

ing methods tend to be highly computationally expensive, which

can limit their applicability to small datasets only [28] . 

3. Radial intersection count images (RICI) 

The novel RICI descriptor is now detailed, which shares

some conceptual similarities with the original Spin Image, and

has preliminarily been proposed as a quasi Spin Image [29] . 

3.1. RICI Generation 

A RICI descriptor is a 2D histogram of integers. It is constructed

around an oriented point, and has a Central Axis around which a

square plane is conceptually rotated, similar to the Spin Image. The

square plane is divided into ( N bins × N bins ) bins, producing a his-

togram which can be visualised as a grayscale image. 

The primary difference between the RICI and the SI is what

is counted in each histogram bin. In Spin Images, projected point

samples are accumulated to create an estimate of the surface area

intersecting each bin or pixel as the square plane is rotated for a

full revolution. In contrast, RICI bins count the number of intersec-

tions of circles with the surfaces of the scene and are thus integers.

The conceptual construction method, i.e. the relationship be-

tween the aforementioned intersection circles and the produced

descriptor is visualised in Fig. 3 . Consider a set of circles that are

centred at fixed distances from the Spin Vertex on the Central Axis

and have a fixed number of radii. Each bin in the RICI image stores

the number of intersections of the corresponding circle with the

surfaces of the scene. RICI rows thus represent circles on the same

plane, and RICI columns circles with equivalent radii. 

The remainder of this section presents a method for efficiently

computing RICI descriptors. The general idea is to iterate over each

triangle in the scene, and determine the set of circles in cylindri-

cal coordinates (see Fig. 1 ) which will intersect with it. This im-

plies a complexity of O(T), where T is the number of triangles in

the scene, as in the worst case, the number of circles is fixed and

equal to the resolution of a RICI image. The bins corresponding to

these circles are incremented. Note that cylindrical projections will

not preserve the linearity of a triangle’s edges (as shown in Fig. 2 ),

thus not allowing the use of common rasterisation methods. In-

stead we exploit a circle-triangle intersection algorithm in order to

determine the correct projections. 

To summarise, a RICI image is generated by iterating over each

triangle in the scene, and in turn each triangle is processed in 3

steps: 
1. Project the triangle vertices into cylindrical coordinate space, as

described in Section 3.1.1 . 

2. Using the circle-triangle intersection method outlined in

Section 3.1.2 , compute the range of α coordinates which will

intersect with the triangle for each β coordinate in the trian-

gle’s β-extent. 

3. Increment the histogram bins that correspond to these

intersections. 

.1.1. Projecting vertices into cylindrical coordinate space 

An efficient method for projecting points from Euclidean coor-

inates into cylindrical coordinates is presented. Apart from the

ICI, this method can also be applied directly in the construction

f SI descriptors. 

The algorithm projects a point P = (P x , P y , P z ) by computing

wo transformations. First, a translation that moves the Spin Ver-

ex S v = (S v x , S v y , S v z ) to the origin ( Eq. 3 ), and second, a rotation

hich aligns the Spin Normal S n = (S nx , S ny , S nz ) with the z-axis.

he projected point’s α and β coordinates can be computed triv-

ally afterwards. 

For the z-axis alignment transformation, a common technique

or aligning two vectors consists of a vector product followed by

 rotation (shown in Fig. 4 ). While the vector product itself is in-

xpensive (due to one of the vectors being the z-axis) the subse-

uent alignment rotation requires a relatively expensive multipli-

ation with a 3 × 3 matrix. 

Our alignment method instead uses two rotations, exploiting

he observation that only distance must be preserved for the α
oordinate. We align the spin normal with the xz-plane using a

otation around the z-axis (see Fig. 5 (a) and Eq. 4 ). We then align

he transformed normal with the z-axis by a rotation around the

-axis ( Fig. 5 (b) and Eq. 5 ). 

 N ax , N ay ] = Normalize [ S nx , S ny ] 

[ N bx , N bz ] = Normalize [ S nx , S nz ] (1)

P ′ x = P x − S v x 

 

′ 
y = P y − S v y (2)

P ′ z = P z − S v z 

 

′′ 
x = N ax · P ′ x + N ay · P ′ y 

 

′′ 
y = −N ay · P ′ x + N ax · P ′ y (3)

T x = N bz · P ′′ x − N bx · P ′ z 

 y = P ′′ y (4)

T z = N bx · P ′′ x + N bz · P ′ z 
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Fig. 3. A visualisation of the construction of a RICI image. 
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zSn
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Fig. 4. Direct approach for vector alignment. First, compute the vector product 

S n × Z between the spin normal S n and z-axis. Second, rotate S n around S n × Z to 

align it with the z-axis. 
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zSn

(a) Rotation 1:
Align the spin normal with the
XZ-plane by a rotation around
the Z-axis (Equation 3)

x

y
z
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(b) Rotation 2:
Align the spin normal with the
Z-axis by a rotation around the
Y-axis (Equation 4)

Fig. 5. Visual representation of the rotations that form our alignment method. 
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zontal plane through an arbitrary coordinate β on the z axis. 
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i = | (T x , T y ) | 
i = T z (5) 

The coefficients of the rotation transformations N a and N b can

e calculated inexpensively from components of the spin normal

 n , as shown in Eq. 1 . When both coefficients of either N a or N b are

ero, that rotation step is unnecessary and an identity rotation is

sed instead. The key here is that, considering a two-dimensional

oordinate system xy , the coordinates of a normalised vector rep-

esent the sine and cosine values of a rotation which aligns that

ector with the x-axis. These normalised coordinates can therefore

e used directly for this purpose. 

It should be noted that since the rotation coefficients only de-

end on the spin normal, they are constant for the entire spin im-

ge. Therefore they only need to be computed once per image, es-

entially taking this computation out of the inner loop. This is the

rimary reason for the method’s efficiency compared to previous

ork. 

.1.2. Circle-Triangle intersection 

A circle-triangle intersection test can result in four outcomes;

o intersection, one intersection, two intersections, or infinite in-

ersections. However, due to floating point rounding errors, han-

ling the latter, while possible, is not feasible in practice and is

hus not addressed by the proposed algorithm. 

Our algorithm starts off with the triangle vertices in cylindrical 

oordinate space. For a given β coordinate, it determines the range
f α coordinates which result in a single or double intersection.

his information is subsequently used to “rasterise” a row of pixels

or the triangle in the RICI descriptor. 

The method operates in three distinct stages. First, the trian-

le is intersected with the plane π of the circle, which is parallel

o the xy plane, as shown in Fig. 6 . Next, the triangle vertices are

otated around the z-axis in order to further simplify subsequent

omputations. Finally, the ranges of circle radii in which respec-

ively single and double intersections occur, are calculated. 

Prior to detailing these stages individually, we will outline the

eometric background used in the intersection test calculations. 

Fig. 6 shows a given β coordinate. The triangle being tested is

efined by its transformed vertices T 0 , T 1 , and T 2 , using the pre-

iously described alignment transformation. Here all points with

qual β coordinates lie on the plane π . 

Where the triangle intersects the plane, it forms an intersection

ine segment E 0 E 1 , which defines a line L . The range of α coordi-

ates either intersecting the triangle once or twice can be calcu-

ated by determining which radii intersect with this line segment.

his reduces the determination of intersection distances to a two-

imensional problem. 

For single intersections, the lower and upper bounds of radii is

 min (| E 0 |, | E 1 |), max(| E 0 |, | E 1 |)]. Note that the 2D coordinates of E 0 
nd E 1 are equivalent to the vectors �

 βE 0 and 

�
 βE 1 , respectively. 

A double intersection occurs when the closest point to β on

ine L is also on the line segment E 0 E 1 . When double intersections

xist, the range of radii in which they occur is [| C |, min(| E 0 |, | E 1 |)]. 

Given the aforementioned background, the next step of our

ethod is aligning the vector �
 βC with the y-axis, as illustrated in

ig. 7 . The objective of this step is to simplify the remaining calcu-

ations for the intersection test. Alignment is done by normalising

he vector between E 0 and E 1 , and subsequently rotating the trian-

le vertices around the z-axis; the coordinates of the normalised



122 B.I. van Blokland and T. Theoharis / Computers & Graphics 91 (2020) 118–128 

Fig. 7. Aligning an �
 E 0 E 1 vector with the x-axis. Any value of C can be chosen for 

which an �
 E 0 E 1 vector exists for this purpose. A sample �

 E 0 E 1 vector has been indi- 

cated in the Figure. Point A represents the point on the Central Axis marked by β

in Fig. 6 . 
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(a) Intersection counts without
clutter
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(b) Intersection counts with
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Fig. 8. Demonstration of changes in intersection counts generally being unaffected 

by clutter. A portion of a single layer of intersection circles is shown. Intersections 

with the shape surface have been marked. 
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vector can be used directly as sine and cosine coefficients for the

rotation. 

At this stage, determining the existence of a double intersection

is inexpensive, and can be achieved by comparing signs of the x

components of the aligned E 0 and E 1 coordinates. Different signs

indicate that a double intersection exists. If so, the length of �
 βC 

(the rotated y-coordinate of C ) represents the lower bound of radii

which correspond to double intersections. 

The intersection test itself can be done by comparing a given

radius against the computed ranges, which yields an intersection

count corresponding to that radius. 

Summarising, computing the range of values of α that will re-

sult in a single or double intersection for a given value of β in-

volves the following steps: 

1. Determine the intersection points E 0 and E 1 for any value of

value of β where L is defined, as shown in Fig. 6 . 

2. Rotate E 0 and E 1 around the z-axis such that the vector �
 E 0 E 1 is

aligned with the x-axis (as shown in Fig. 7 ). 

3. Determine the distance of E 0 and E 1 from the z-axis. 

4. The range of circle radii in which single intersections occur is

[ min (| E 0 |, | E 1 |), max(| E 0 |, | E 1 |)]. 

5. Determine the existence of a double intersection by comparing

the signs of the x-coordinates of E 0 and E 1 . If they are different

then a double intersection exists. 

6. If a double intersection exists, the range of α coordinates (cir-

cle radii) corresponding to the double intersection is the y-

coordinate of either E 0 or E 1 and the shortest distance between

the z-axis and E 0 or E 1 . 

3.2. A Clutter-Resistant RICI Distance function 

Spin Images, by their nature of being generated from oriented

point clouds, are inherently noisy. They have as such relied on

statistical correlation to compute similarity. The idea here is that

two matching bins tend to have proportionally similar accumu-

lated sample counts. Unfortunately, this method is susceptible to

the effects of clutter. Additional geometry present in the support

volume causes portions of the image to receive additional pro-

jected point samples, which consequently negatively affects the

computed correlation value. 

When it comes to comparing RICIs, one important downside

of the Pearson Correlation Coefficient is that it is not defined for

sequences of constant values. While this scenario is unlikely to

occur for Spin Images, there exist situations in which RICIs consist

solely of pixels with equivalent intersection counts. For these

situations, the Pearson correlation coefficient is undefined, and

therefore an insufficient solution for comparing RICIs. Handling

these edge cases separately is possible, but results in a solution

that requires balancing awarded scores against normal situations. 

Meanwhile, the RICI does not have the aforementioned issue of

noise, and is as such not bound solely to using statistical methods

 

or measuring similarity. For these reasons we propose a new dis-

ance function, which is by design able to resist some of the nega-

ive effects of clutter, primarily by exploiting features of the RICI. 

First, the distance function does not consider the values of pix-

ls in the RICI. Instead, changes in pixel values (i.e. intersection

ounts which show up as edges in the RICI) are compared. As RI-

Is are free of noise, it is possible to interpret pixel values directly.

he main advantage of this approach is that changes in intersec-

ion counts are largely unaffected by clutter. The reason for this

an be seen in Fig. 8 . 

In Fig. 8 (a), a cross section is shown of an arbitrary 3D shape.

n the same plane, circles are drawn with increasing radii, similar

o how RICI images are computed. The numbers below each circle

ndicate the number of intersections they encounter, which corre-

ponds to the value of their respective pixels in the RICI image. 

Similarly, Fig. 8 (b) shows the same situation in which a clut-

er object has been added. From the intersection counts can be

een that even though the absolute intersection counts have now

hanged, the change in intersection counts from the third to the

ourth circle, caused by the original object, is still present. 

Second, when searching, our distance function treats the needle

query) and the haystack image asymmetrically, in contrast to the

earson correlation coefficient. One can use the needle image to

educe what features to look for in a given haystack image. 

This asymmetry consists of only computing a sum of squared

ifferences distance on pixels where there are changes in the nee-

le RICI image. 

Returning to Fig. 8 , we’ll assume that Fig. 8 (a) shows a cross

ection of the needle object that we are attempting to locate in the

luttered haystack scene shown in Fig. 8 (b). In our needle image,

nly the increased intersection counts from the third to the fourth

ircle are relevant. Including other pixels is not relevant, as there

re no changes in the needle image’s intersection counts. We can

herefore ignore these pixels in our distance computation. This also

eans any clutter present in the haystack image is ignored by this

ethod. 

The proposed Clutter Resistant Distance function

RD ( needleRICI , haystackRICI ) is shown in Eq. 7 , and the cor-

esponding pseudocode is given in Listing 1 . Note here that the

istance function is positive, but not symmetric. It has a complex-

ty of O(1), because comparing a descriptor pair requires a fixed

umber of operations. 

 (rici, r, c) = rici (r, c) − rici (r, c − 1) (6)

RD (n, h ) = 

N bins ∑ 

r=0 

N bins ∑ 

c=1 

{
(D (n, r, c) − D (h, r, c)) 2 , if D (n, r, c) � = 0 

0 , otherwise 

(7)
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Listing 1. Pseudocode for our proposed method for computing the distance be- 

tween two RICI images. 
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. Evaluation 

The proposed method has been evaluated in terms of its clutter

esistance, generation speed, and matching performance. Where

pplicable, we compare our method against the two most refer-

nced among those listed in survey [9] as being clutter resistant.

hese are the Spin Image 1 and the 3D Shape Context. It is worth

oting that the survey also observes that popular descriptors such

s the Fast Point Feature Histogram [32] , Unique Signatures of His-

ograms [30] , and Rotational Projection Statistics [31] , do not ex-

ibit optimal performance under cluttered conditions. We have

herefore implemented the above two most referenced clutter re-

istant methods on the GPU, to allow a direct comparison on the

ame dataset. 

The novel Clutterbox Experiment is proposed in order to evalu-

te the effect of clutter on the descriptors’ matching performance. 

.1. The clutterbox experiment 

In previous work, clutter has typically been defined as the pro-

ortion of area within the support volume that does not belong to

he object being recognised. Greater proportions of clutter gener-

lly imply worse descriptor performance. The expression used in

revious work, initially proposed by Johnson et al. [10] is shown in

q. 8 . Here A all is the surface area of all objects within the support

olume and A object is the surface area of the object of interest. 

lutter = 

A all − A ob ject 

A all 

(8) 

The objective of the proposed evaluation method, which we

all the “clutterbox experiment”, is to measure the relationship be-

ween increasing levels of clutter and the resulting performance of

he descriptor being tested. 

In previous clutter experiments, clutter has generally been eval-

ated by measuring descriptor performance against levels of clut-

er present at points in a scene without controlling the points’

dentities. However, this measures the effects of two parameters

ombined; the descriptor’s ability to recognise the desired shape,

nd the level of clutter present around it. Ideally an evaluation of

he effects of clutter should control the former of these parame-

ers, while varying the latter. This is the primary objective that the

lutterbox experiment addresses. 

Varying clutter levels in the neighbourhood of an object can

e done trivially by adding triangles, points, spheres, or cubes in
1 [30] and [31] also support the SI as a clutter resistant descriptor. 

p  

i  

t

andom locations and sizes around an object. However, this kind

f clutter is not representative of the clutter that can be expected

n a realistic 3D scene. The clutterbox experiment therefore inserts

omplete objects rather than random noise. This results in a more

atural distribution of clutter in the scene, and therefore more

irectly measures the effect of clutter that can be expected of a

iven descriptor when applied in a practical context. 

The clutterbox experiment is executed a large number of times

y varying objects and their transformations, in order to provide

obust results, independent of object type. 

The steps of the experiment are outlined below: 

1. Define the clutterbox as a cube of side s . 

2. Select n objects at random from a large object collection. 

3. Scale and translate each object such that it fits exactly inside a

unit sphere. 

4. Pick one of the n objects at random. This is the reference object.

5. Compute the reference descriptor set { RD }, by computing one

descriptor for each unique vertex of the reference object. 

6. For each of the n objects in random order, but starting with the

reference object: 

6.1 Place the object within the clutterbox, at a randomly cho-

sen orientation and position, with the constraint that the

bounding sphere fits entirely within the clutterbox. 

6.2 Compute the set of cluttered descriptors { CD }, by computing

one descriptor for each unique vertex of the combined mesh

in the clutterbox. 

6.3 For each d ∈ { RD }, create a list of ranked distances to all

c ∈ { CD }. Keep the rank where the corresponding cluttered

descriptor was found in the ranked list ( 0 ≤ rank ≤ |{ CD }| −
1 ). Note that lower ranks are better. 

6.4 Create a histogram where bin i holds the number of times

the correct vertex is found in the search results at rank i . 

hus the output of the clutterbox experiment is a list of his-

ograms, one for each level of clutter. A visualisation of a sequence

f scenes with increasing clutter generated by the above experi-

ent is shown in Fig. 9 . 

.2. Clutter resistance evaluation 

We used the clutterbox experiment to quantify the effects of

lutter on the SI and 3DSC versus the proposed RICI descriptor. For

ur object collection, we selected the combined SHREC2017 dataset

33] , which consists of 51,162 triangle meshes. 

In the case of the SI and 3DSC, the combined triangle mesh of

he reference and clutter objects was sampled into a point cloud

efore generating their descriptors; RICI descriptors are generated

rom the triangle mesh directly. For optimal performance, SI and

DSC require a high number of samples to ensure a low level of

oise in the produced descriptors. However, one cannot increase

he sample count indefinitely as that results in a lower genera-

ion rate. Based on our experimental evidence on the given dataset,

e feel that 10 samples per triangle is a reasonable point on this

rade-off. 

While Johnson et al. define the bin size (thus the support ra-

ius) of the SI to be equal to the mesh resolution, we do not be-

ieve their reasoning holds any longer for present day 3D objects.

imilar objects can have significant variance in their resolution. As

uch, making the support radius dependent on the mesh resolu-

ion is not a guarantee for better matching performance. We there-

ore use a constant support radius for all tested methods, set to 0.3

nits, relative to the bounding unit sphere, for all scenes in the ex-

eriment for ease of reproducibility. For the 3DSC, we set the min-

mum support radius to r min = 0 . 048 units, which is proportionally

he same as the one originally used by Frome et al. [21] . 



124 B.I. van Blokland and T. Theoharis / Computers & Graphics 91 (2020) 118–128 

Fig. 9. Visual representation of the increasing number of clutter objects added into the clutterbox. The leftmost image only contains the reference object. 

Fig. 10. Percentage of search results for all tested methods that ended up at rank 0 for each of the 1500 performed experiments. 
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We executed the experiment 1500 times, iteratively cluttering

a scene with n = 1 (the reference object only), n = 5 , and n = 10

objects, into a clutterbox of size s = 3 . The size of the RICI and

SI descriptors N bins was set to 6 4x6 4 bins, while the 3DSC descrip-

tor’s dimensions were left the same as those used in previous work

( J = 15 , K = 11 , L = 12 [9] [21] ). A more detailed discussion on size

settings can be found in Section 5.2 . In order to visualise the his-

tograms generated by the clutterbox experiment, we opted to com-

pute the fraction of the bin representing rank 0 in the histogram

against the sum of all bins (all search results). For clarity, each se-

quence of such fractions has been sorted individually to produce

monotonically increasing curves. The results are shown in Fig. 10 . 

The support angle parameter used to generate the SI results in

Fig. 10 requires further elaboration. In their original SI paper, John-

son et al. claim this filter reduces the effects of self-occlusion and

clutter. However, our testing which compared using a support an-

gle filter to not filtering any input points ( Fig. 11 ) could not con-

firm this. All SI results in this paper therefore do not apply any

support angle filter, as this favours the SI. 

While Fig. 10 shows that our RICI descriptor clearly outper-

forms both the SI and 3DSC in scenes that contain clutter (see

Eq. 8 ), it is also relevant to gain insight in the relationship be-

tween descriptor performance and the specific clutter level present

in the support region. Fig. 12 shows a heatmap plot of the frac-

tional area of clutter present in the support volume around each

Spin Vertex, versus the rank of the corresponding descriptor in the

haystack. It can be observed that the RICI trends towards lower

ranks than the SI and 3DSC, even at high levels of clutter. Fur-

thermore, while the 3DSC generally does not outperform the SI,

it appears more clutter resistant than the SI at extreme clutter

levels ( > 90%). 
The heatmaps have been computed over 73.5 million search re-

ults extracted from scenes with 4 added clutter objects, based on

he results of the Clutterbox experiment. 

It is not expected that a RICI image would be very dependent

n mesh resolution (which may be related to scanning) as inter-

ection counts should in most cases not be very sensitive to that. 

The experiment was implemented using C++, with the descrip-

or generation and search kernels written in CUDA 10.0. The code

as written in such a way that given a dataset of objects, a sin-

le random seed determines all randomly chosen parameters, mak-

ng all results reproducible. The experiment was executed on a

ombination of Nvidia Tesla cards (P100 16GB, V100 16GB, and

100 SXM3 32GB). All time-based results were exclusively gath-

red on the latter. One relevant implementation detail is that in

ases where multiple search results have the same distance (which

ay occur due to reasons such as object self-similarity), we use

he highest (best) rank of the matched haystack image for the sake

f consistency. 

.3. Generation performance 

Fig. 13 shows the difference in the rate at which the RICI, SI,

nd 3DSC descriptors are generated. As can be seen, the RICI is

pproximately one order of magnitude faster than the 3DSC, and

wo orders faster than the SI for the given settings. 

.3.1. Performance of point projection algorithm 

The largest portion of the computational effort involved in

he RICI and SI generation algorithms require projecting points

nto cylindrical coordinate space. We have proposed an efficient

lgorithm for this, as outlined in Section 3.1.1 . 
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Fig. 11. Percentage of SI search results that ended up at rank 0 for each of the 1500 performed experiments for two different support angles. 

ISCSD3ICIR

Fig. 12. Visualisation of the clutter resistance of RICI, SI, and 3DSC. Colours are mapped using a logarithmic function (colours toward the red end of the spectrum lower in 

the images is better). A pixel’s colour represents the number of search results, i.e. descriptors, that ended up in the specific rank in relation to the amount of clutter within 

their support volume. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. Relationship between the number of triangles present in the scene, and the rate at which our implementations generate RICI, SI, and 3DSC descriptors. 
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Table 1 

Point projection algorithm average execution times for pro- 

jecting 1 · 10 9 points. 

PCL ( s ) Proposed method ( s ) 

7.559 3.084 

t  

l  
A similar algorithm is included in Point Cloud Library [32] , as

art of the Spin Image generation implementation. To the best of

ur knowledge, this was up to now the most efficient implemen-

ation available. We therefore compare our projection algorithm

gainst this previous work. 

We evaluate both algorithms using a microbenchmark which

rojects a sequence of 1 · 10 9 randomly generated points. To en-

ure a fair comparison, all code unrelated to point projection has

een removed from the Point Cloud Library SI generation imple-

entation. The results are shown in Table 1 . 

It’s worth noting that points are projected into cylindrical co-

rdinates relative to the same oriented point. Our method can
 i
herefore precompute the values of N ax , N ay , N bx , and N bz , as out-

ined in Section 3.1.1 . Both methods were tested on an Intel Core

7-8750H CPU. 
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Fig. 14. Image matching rates in a scene with 5 objects. For clarity, each sequence has been sorted individually to produce a monotonically increasing curve. 
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4.4. Matching rate 

The rates of evaluating the distance functions for each method

are shown in Fig. 14 . As can be seen, the RICI distance function’s

execution times are similar to the SI’s Pearson correlation coeffi-

cient, while 3DSC is significantly slower. 

For all methods, the bandwidth of the GPU memory bus is the

main factor limiting the comparison rate. As our proposed distance

function relies on computing the difference between neighbouring

pixels, this would in a naive implementation, have required double

the bandwidth. Instead, we use specialised “shuffle instructions”

to read the value of neighbouring pixels without having to resort

to another memory transaction, thereby halving the needed mem-

ory bandwidth. The result is a kernel whose memory bandwidth

requirements, and consequently execution time, is similar to the

Pearson Correlation Coefficient used to compare Spin Images. 

We further optimised our implementation by using an early exit

condition. Since the distance score can only go up for every sub-

sequent pixel being processed, if the only objective is determining

whether the distance between two images is smaller than some

given threshold distance (as is the case in many retrieval appli-

cations), it is possible to cease execution when a predetermined

distance threshold is exceeded. In our clutterbox experiment, this

threshold can be trivially precomputed. Utilising this early exit

condition resulted on average in a 4.2 times speedup over the SI

distance function. 

5. Observations and discussion 

There are several topics and observations that may be relevant

for the interpretation of the presented results. 

5.1. Analysis of experimental results 

While analysing the results presented in Section 4 , we made

several observations that are relevant to their interpretation. Fig. 15

contains a visualisation of a subset of these. 

Fig. 15 (a) shows the result set where RICI experienced the

smallest decrease in matching performance between 0 and 9

added clutter objects in the scene. It is also possible to observe the

clutter resistant properties of RICI. The seat part of the desk chair

is significantly cluttered, while the wheels experience relatively

small amounts of clutter (and remain visible). All three methods

are capable of reasonably recognising these exposed wheels, how-

ever, the SI and 3DSC descriptors in large part fail to recognise the

cluttered seat part. 

Fig. 15 (b) shows the result set where RICI experienced the

largest drop in performance between the scenes with 0 and 9

added clutter objects. The primary cause of this drop is due to the
uboid-like shape and low level of details on the police van, which

auses a low number of changes in intersection counts. In turn, the

roduced RICI images become relatively susceptible to clutter. 

Fig. 15 (c) shows the experiment where RICI performed worst

n the uncluttered reference object. The particular object, a book-

helf, has high levels of self-similarity; a property which is also,

o varying degrees, present in other objects in the CAD-oriented

HREC2017 dataset. Thus any local descriptor would rank vertices

elonging to self-similar regions equally and whether they end up

t Rank 0 is a matter of luck. One would expect to find them

ithin the top s ranks, where s is the number of self-similar ver-

ices. On the other hand, this is a useful tool for detecting self-

imilar regions. 

To investigate this further we visualised the results of an ex-

eriment where the reference object had countable symmetric fea-

ures, as shown in Fig. 16 . As opposed to Fig. 15 , we highlighted in

ed those vertices that were detected in the top s ranks instead

f only rank 0. For instance, vertices in the table’s legs are ex-

ected to constitute 12 self-similar partitions (6 legs with a sym-

etric front and backside each), which are all detected in the top

2 results, as shown in Fig. 16 (d). Also all vertices in the base of

he tabletop are correctly detected within the top 4 results (4-way

ymmetry). 

In contrast to Fig. 15 (c), (d) shows the experiment in which RICI

ad the highest recognition rate in the uncluttered scene. Little

atching performance is lost after adding significant amounts of

lutter. 

In Fig. 15 (e) the experiment whose drop in matching perfor-

ance was closest to the total average of all performed 1500 ex-

eriments is shown. Worth noting here is the relatively low drop

n recognition performance between the uncluttered scene, and the

cene with 9 added clutter objects. 

Finally, in Fig. 15 (f) a rare phenomenon is shown where match-

ng performance slightly improves between 4 and 9 added clutter

bjects. 

.2. Performance of 3DSC 

As can be seen in Fig. 10 , in contrast to the results obtained in

revious work [9,21] , the SI generally outperforms the 3DSC de-

criptor. The primary cause of this is that in previous work, the

I resolution was set to the 15x15 bins used originally by John-

on et al. [10] . In contrast, we used a resolution of 6 4x6 4 bins

or parity with the RICI descriptor, which we also consider to be

 resolution more suitable to the capabilities of modern proces-

ors. This significant increase in resolution meant the SI descriptor

n our testing performs better than 3DSC with our chosen settings.

The decision to use the same bin dimensions for 3DSC as in

revious work was primarily motivated by a tradeoff between
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Fig. 15. Visualised results from 6 selected experiments. For each of the 6 subfigures, the Clutterbox scene (with 1, 5, and 10 objects) is shown on the left hand side, with 

the reference object highlighted in blue. Vertices correctly ranked at index 0 are highlighted in red, other vertices are coloured grey. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 16. Symmetric object whose vertices were present in the top s ranks of the search results, with varying values of s . 
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omparison performance and GPU hardware limitations. Our

mplementation makes use of shared memory when comparing

DSC descriptors, due to the needle and haystack descriptor both

eing accessed once for each radial division. Current GPU shared

emory pools allow fitting of approximately 2 image pairs sized

t default settings simultaneously, which implies the number

f bins can either be left intact, or doubled, or performance

an be expected to be suboptimal. While it would be possible

o double the number of bins in the 3DSC descriptor (which

ould make its memory requirements equal to the SI and RICI)

eading to an increase in matching performance, the matching

ate would decrease below acceptable levels because of the dis-

ance algorithm used. We therefore consider the used settings

o be the best balance between quality and execution time for
DSC. d
. Conclusion 

In this paper, a clutter resistant shape descriptor, RICI, is pre-

ented and evaluated using a novel evaluation framework for such

escriptors, called the clutterbox experiment. Novel algorithms for

ylindrical coordinate projection, circle-triangle intersection, and 

he rasterization of triangles in cylindrical coordinates were pre-

ented. The largest quantitative evaluation of the SI, 3DSC, and RICI

ethods to date is also made, along with a useful observation for

he SI support angle. 

The main advantages of RICI are its noise-free nature and gen-

ration speed, while the related distance function makes it clutter

esistant. We anticipate that the proposed clutterbox experiment,

hich is being made public, will aid future benchmarking of shape

escriptors for cluttered scenes. 
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