
Comput Appl Eng Educ. 2020;28:779–791. wileyonlinelibrary.com/journal/cae | 779

Received: 9 December 2019 | Accepted: 21 April 2020

DOI: 10.1002/cae.22249

RE S EARCH ART I C L E

Teaching complexmolecular simulationalgorithms:Using
self‐evaluation to tailor web‐based exercises at an
individual level

Oda Dahlen1 | Anders Lervik1 | Ola Aarøen2 | Raffaela Cabriolu1 |

Reidar Lyng3 | Titus S. van Erp1,4

1Department of Chemistry, Faculty of
Natural Sciences and Technology,
Norwegian University of Science and
Technology (NTNU), Trondheim, Norway
2Department of Biotechnology and Food
Science, Norwegian University of Science
and Technology (NTNU), Trondheim,
Norway
3Department of Education and Lifelong
Learning, Norwegian University of Science
and Technology (NTNU), Trondheim,
Norway
4Center for Molecular Modeling (CMM),
Ghent University, Technologiepark,
Zwijnaarde, Belgium

Correspondence
Titus S. van Erp, Department of
Chemistry, NTNU, Trøndelag, 7941
Trondheim, Norway.
Email: titus.van.erp@ntnu.no

Funding information
Research Council of Norway,
Grant/Award Number: 237423; Faculty of
Natural Sciences of the Norwegian
University of Science and Technology;
Olav Thon foundation

Abstract

It is quite challenging to learn complex mathematical algorithms used in

molecular simulations, stressing the importance of using the most advanta-

geous teaching methods. Ideally, individuals should learn at their pace and

deal with tasks fitting their levels. Web‐based exercises make it possible to

tailor every small step of the learning process, but this requires continuous

monitoring of the learner. Differentiation based on the scores after the first

round of common tasks can be demotivating for all students, as they will

experience the initial set of tasks as being either too easy or too hard. We

designed two tests, a self‐monitoring test and a rapid test (RT) in which the

students explained equations relating to the current topic. The first test was

aimed to see if the students were able to evaluate their own level of knowledge,

whereas the RT was aimed to find a fast way to determine the level of the

students. We compared both tests with traditional measures of knowledge and

used a relatively new method, which was originally designed for the analysis

of molecular simulation data, to interpret the results. Based on this analysis,

we concluded that self‐evaluation, rather than an RT, is a valuable tool to

automatically steer individual students through a tree of web‐based exercises

to match their skill levels and interests.
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1 | INTRODUCTION

In a university environment, research and teaching are
ideally interlinked [19, 20]. Certainly at the master level,
it can be highly motivating for both staff and students

when parts of the teacher's own contemporary scientific
research are transferred to the class. Besides a hopefully
contagious enthusiasm that a teacher is likely to trans-
mit to the students, an intertwined approach of teaching
and research ensures that state‐of‐the‐art knowledge,
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which has not yet arrived in the textbooks, will be
provided.

However, when working with complex mathematical
methods, it can be challenging to convey your research to
others. A consequence can be low student recruitment
and an ineffective learning outcome. This is further
complicated by the fact that students often have very
different backgrounds and skill levels. This stresses the
importance of teaching the students in the way they
learn best.

The direct motivation for the research performed in
this paper is the experience of the university course
Molecular Modeling, a master course taken by students
with a theoretical interest in chemistry, physics, bio-
technology, and chemical engineering. In this course, we
also aim to report on topics that are a part of our present
research focus. In particular, our research group develops
algorithms for increasing the accessible time scales of
standard molecular simulations. Present time scales of
molecular dynamics are generally far from sufficient to
study processes like protein folding, chemical reactions,
and crystal formation. The algorithms we develop are the
so‐called rare‐event algorithms. More specifically, we
develop methods within the path sampling family of
molecular algorithms that combine two techniques:
Monte Carlo and molecular dynamics. Based on a set of
clever numerical tricks, depending on the system, the
increase in speed, compared with standard molecular
dynamics, varies from a modest factor 10 to a few
millions. Moreover, a positive aspect of these approaches
is that they provide the same results, as an extremely long
molecular dynamics simulation, which can be proven
using statistical thermodynamics principles [4, 32, 34].

However, both the steps in the algorithmic proce-
dures and the theoretical validation of these steps are
quite complex and require special mathematical notation.
For this reason, even experienced scientists from the
same field have difficulty comprehending the approach
by just reading the research articles. The challenge that
we face is to make these approaches understandable at
the master level using dedicated web applications,
ranging from visually instructive videos and interactive
web applets to hands‐on exercises and questionnaires. It
is fairly common in higher education that there is a large
variation in prior knowledge and skills in any student
cohort, especially in courses that recruit students from
several different study programs. To bring all students in
a cohort to the point where they can progress from a
common ground is a recognized challenge for many
teachers. The way to optimally support learning of such
complex problems in science, technology, engineering,
and mathematics has been the subject of debate and
research for many decades [17].

Two major distinctive approaches to this challenge differ
most clearly in deciding whether teaching–learning activities
for students should be mainly guided or unguided. The
first approach is sometimes called non‐constructivist,
which relies on reducing cognitive load in the design of
teaching–learning activities and instructional material [29].
The latter approach belongs to a constructivist under-
standing of learning including, that is, cognitive and
social constructivism. This is the basis for a number of
teaching–learning designs, such as inquiry‐based learning,
team‐based learning, and problem‐based learning [6]. The
common aspect of these approaches is that students in some
way construct their understanding and learning as a result of
interacting with the material at hand, rather than as a result
of being told what to learn and understand. There is an
ongoing discussion regarding which approach is more
successful [13, 14]. Although it seems that novice learners
benefit more from direct instructional methods, there is
certainly evidence that points out that experienced
learners benefit more from a more discovery‐based approach
[6, 16, 22]. The self‐regulated learner [25] is also one of the
most important learning outcomes for higher education.

Hence, a pedagogical approach that serves the needs of
a diverse group of students should be a mix of guided and
unguided teaching–learning activities, and the extent and
design of inquiry‐based teaching should be tuned to the
learning skills of the student. Ideally, each student should
be provided with personalized feedback in order to be able
to acquire the learning skills necessary for becoming a self‐
regulated learner. It is well established that feedback that
supports the students in constructing an understanding
needs to be clear about what good performance is, how
performance so far relates to good performance, and how
to close the gap [28]. Providing individual feedback is not a
viable alternative in many cases. The bigger the cohort, the
bigger is the cost in terms of time and resources for pro-
viding feedback on an individual basis. This strengthens
the need to develop a method of continuously monitoring
the level of the students, which does not require more
work from the teachers.

Web‐based exercises are potentially ideal for provid-
ing the learners with a personalized learning experience
tailored to their needs during each step of the learning
process, but to achieve this, continuous monitoring of the
student's level of knowledge is required. One conven-
tional approach is to let all students do the same exercises
and give more challenging exercises to the ones who
finish quickly. We know that this often leads to boredom
among clever students, as they have to go through many
easy exercises. Moreover, it can be very demotivating for
novice students when they see other students rushing
through exercises while they themselves are struggling.
Finally, it is also very time consuming, as it requires a
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substantial amount of test exercises before a reasonable
evaluation of the students' skills can be made.

In this study, we, therefore, investigated alternative
ways of monitoring the students with the purpose of
differentiation and personalization of learning experi-
ences. With the use of computer‐based exercises, this
becomes more feasible. We have compared the evalua-
tion of student answers with a series of questions related
to molecular simulations in two different ways: first, by
checking the answers in a rapid test (RT) covering the
same topic, and second, by asking the students to self
evaluate the quality of the answer. The RT is commonly
used for the purpose described above, whereas the
self‐evaluation (SE) test is a rather new approach within
this context. The use of SE is based on the hypothesis that
students can assess their own level and, therefore, tailor
the needs of their own learning.

2 | THEORY

Cognitive load theory was proposed by John Sweller in 1988
[30]. Cognitive load refers to the amount of mental effort
used in the limited capacity working memory when solving
a task. Simply put, extraneous load arises from factors that
can be addressed by reducing stress, distractions, or by
clarity of information, whereas intrinsic load is imposed by
the intrinsic difficulty of the concept that is to be learnt or
mastered. The effect of both extrinsic and intrinsic loads may
vary considerably from student to student. Later, Sweller
et al. [30] further developed the theory to include the con-
cept of germane load, describing the necessary intellectual
workload required to process the information at hand for
learning. The concept of germane load suggests the possi-
bility of optimizing the design of teaching–learning activities,
where good design limits the effects of extrinsic load while
taking into consideration the variation in learning progress
among students. Several studies in this field outline a bal-
ance between direct, or guided, instruction and different
kinds of inquiry‐based learning [1, 5, 7, 9, 26, 27, 30, 36, 37].
Although it is recognized that children may benefit more in
learning from instructional guidance [14, 13], the explicit
aim of higher education is to foster students to become
self‐regulated life‐long learners, which implies that students
should benefit from being trained in internal guidance as
a skill.

In a review of six studies on undergraduates, Clark [6]
found that high‐ability learners preferred direct instruction,
but four out of six studies reported that the students learned
more from inquiry‐based learning, with no or little difference
for the remaining two studies. In contrast, low‐ability lear-
ners learned more from direct instruction in five of the six
studies. Kirschner et al. [13] argued that the students should

have acquired a minimum level of knowledge and under-
standing for self‐regulated learning to be superior to
receive guided instruction. Also, Roblyer, Edwards, and
Havriluk [27] reported that teachers have found that dis-
covery learning is successful only when students have pre-
requisite knowledge and some prior structured experience.

The challenge, then, is to construct tasks that strike a
balance between the needs of novices in the field and
those with some experience and prerequisite knowledge,
which can support the learning of both the factual
knowledge required for higher‐order thinking and the
development of the same higher‐order thinking skills. If
the task is too simple, the student will probably do well,
regardless of the instruction method, and the conclusion
will be that the methods are working equally well.
Similarly, we can also expect little difference in the ef-
fectiveness of the learning methods if the tasks are too
difficult from the start. To tune the level of tasks and the
right mix of direct instruction versus inquiry‐based
learning, some performance feedback is required, ide-
ally without having to expose the students with many ill‐
suited exercises from the start. Our study compares two
approaches to provide feedbacks: first, checking the an-
swers in an RT, and second, asking the students to self‐
evaluate the quality of their answer.

To analyze the data, we used, among other approaches,
the recently developed predictive power method [35] that
was originally designed to analyze molecular simulation
data, in particular, data from path sampling simulations. The
main idea is to check whether certain types of information
could be useful to improve the prediction that a certain
output function exceeds a predefined threshold, when we
already know how often this happens on average. A
requirement is that the output function is not the same
for all data points, but varying, so that additional a priori
information, expressed by certain auxiliary variables, could
tell whether the chance to exceed the threshold will be
higher or lower than the average. The output function could
then be the grade that corresponds to the answers, con-
sidering all answers given to all questions and by all students.
The output function could also be the average grade for each
student, considering all students. The former approach was
applied in this article, whereas the RT and the SE results
were used as additional information to predict whether the
provided answer would exceed a minimum objective score.

3 | METHOD

3.1 | Participants

In total, 18 students participated in the experiment,
10 men and eight women, who were chemistry or
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chemical engineers, bachelor or master, students
from NTNU. Only one of the students had already
followed the Molecular Modeling course in which the
topics were discussed in detail. However, the type the
questions were made was basic enough such that no
advance knowledge of molecular simulation techniques
was necessary. They could not discuss together and had
to sit separately. They were also given maximum two
hours to complete the test.

3.2 | Experiment

We constructed a set of 36 questions (see Supporting
Information Material) on the basis of some interactive
web exercises.1 The questions were grouped according
to the topic. These topics were as follows: movement of
a simple pendulum, time steps in molecular simulations,
movement in a two‐dimensional potential, reflecting on
forces and energies, a double‐well spring bond, calcula-
tion of π using random numbers, and Replica Exchange
Transition Interface Sampling [33]. These topics con-
sisted of 7, 7, 4, 3, 3, 3, and 9 questions. The last
topic was related to our current research, as replica
exchange transition interface sampling [RETIS] [33] is
a part of the path sampling algorithms, which is being
developed in our research group. For each topic (except
for a double‐well spring bond), one of the questions was
to write down or explain an equation relating to the
topic. This was the RT. For each question, the students
were asked to give an answer and then rate their own
answer on a scale ranging from 1 to 6. Examples are
shown in Figure 1.

In the exercises related to Figure 1a, we asked questions
related to Newton's equation of motion and how a timestep
affects a simulation, specifically regarding the error. We

gave equations → → → →x t t x t v t t a t t( + Δ ) = ( ) + ( )Δ + ( )Δ
1

2
2

and → → → →
v t t v t t( + Δ ) = ( ) + Δ

a t a t t( ) + ( + Δ )

2
, and asked

them to explain tΔ , →x t t( + Δ ), →v and →v t t( + Δ ). In the
middle picture, we asked how the forces of the
particles change, what is the relationship between
the forces and the velocities or acceleration of the
particles, and what it is called when a particle reaches
the edge of the dashed square, disappears, and
reappears on the opposite side. In the last picture, we
asked if they could explain what the picture depicted
and also what the line drawn in the image meant in
the context of a chemical reaction.

3.3 | Measures

The objective evaluation (OE), was obtained by correcting
the exercises without looking at the students' self‐rating.
The average grade of the OE of the students was 3.75,
which corresponds to a C according to a European credit
transfer system grading scale. The SE was the students'
own judgment of their answer, which was measured on
the same scale (1–6). The RT consisted of six questions,
each question belonging to one of the topics. The result
of the RT was compared with the average OE (excluding
the RT question) for the specific topic. Some of the
questions (see Supporting Information Material) were
considered to require knowledge or skills not reflected by
the RT. These questions were, therefore, not considered
in the analysis in which the outcome was compared with
the RT evaluations.

3.4 | The Pearson product–moment
correlation coefficient

The Pearson correlation coefficient [24] is a number
describing the strength of a linear association between
two variables. It is measured by drawing a linear plot
with one of the variables along the x‐axis and the other
one along the y‐axis and, then, finding the best fit
through the points. This coefficient, called r , then in-
dicates how far are all these points from the best linear
fit. The Pearson correlation coefficient can range from +1
to −1, and a value of zero means that there is no linear
association between the variables. A value above zero
implies a positive linear correlation, whereas a value
below zero implies a negative linear association. The
equation for r can be expressed as follows:

∑

∑ ∑
r

x x y y

x x y y
=

( − ¯)( − ¯)

( − ¯) ( − ¯)
,i

n
i i

i

n
i i

n
i

=1

=1
2

=1
2

(1)

where xi and yi are the i‐th value of x and y in the
samples, respectively. x̄ and ȳ are the means or averages
of the samples.

3.5 | Predictive power method

Another way to analyze the results, which we applied to
the test results, was actually inspired by the subject of the
test itself. As stated before, the main aim of this study is
to improve the teaching of complex molecular simulation
algorithms, especially path sampling methods. Recently,
we developed an analysis method, called the predictive

1The web applets were derived from the PyRETIS [15] program, which
is freely available at pyretis.org.
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power method [35], to detect hidden variables in the data
of path sampling simulations that correlate to reactivity.
The strength of the correlation is expressed by a measure
called the predictive capacity.

If we exploit the analogy between reactivity and
obtaining a minimal score on the test or on a single
question, the exact same machinery of analysis can be
used. In the molecular version of the predictive power
method, molecular trajectories are categorized into
reactive trajectories or unreactive trajectories, based on a
progress coordinate. Trajectories reaching a minimal
threshold progress are assigned as reactive and the
others as unreactive. The predictive power method aims
to identify the auxiliary conditions that are not already
described by the progress coordinate, which can predict
whether a trajectory is reactive or not at an early stage,

that is, when the progress coordinate is still below
the threshold [18]. Similarly, we can try to identify
which parameters correlate with getting a correct or
wrong answer.

We here give a label “r” (reactive) or “u” (unreactive)
to each student answer if OE, respectively, exceeds or not
exceeds a score OEr . One can also decide to consider only
those answers that reached a minimum score OEc (here,
“c” stands for crossing [35]) to remove nonserious
attempts or questions that were unanswered due to time
trouble. Naturally, OEc must be chosen to be smaller
than OEr . Hence, each answer is assigned as “r” if

≥OE OEr and as “u” if ≤OE OE < OEc r . Let q be an-
other variable or a set of variables different from OE.
Here, q can be the SE (the SE given by the student),
RT (the RT connected to the specific question), or

FIGURE 1 Examples of four exercises given in the experiment. Panel a shows a screenshot of the exercise on time steps in molecular

simulations, b shows a screenshot of the exercise on movement in a two‐dimensional potential, reflecting on forces and energies, c shows a
screenshot of the exercise on Calculate pi using random numbers, and d shows a screenshot of the exercise on replica exchange transition
interface sampling
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combinations. The q parameter can even be nonnumeric,
like q identifying which student delivered the answer.
An example of how this is computed is given in the
Supporting Information Material, Section 2. Naturally,
the SE and RT are natural ways of measurement to be
used in a web‐based exercise.

The predictive power method for this application
works as follows. An auxiliary variable q should be cho-
sen. All questions should be considered, and the values
for q and score OE should be calculated. Then, for a
chosen threshold OEr and minimum score OEc, dis-
tributions ⋅r ( ) and ⋅u ( ) should be constructed:

∣
≥

≥

∣

≤

≥

r q
q q

u

q

q q

( ′ OE , OE ) =
number of answers with = ′ and OE OE

total number of answers with OE OE
and

( ′ OE , OE )

=
number of answers with = ′ and OE OE < OE

total number of answers with OE OE
.

r c
r

c

r c

c r

c

Now, let P (OE , OE )r c be the total fraction of all answers
with a score larger than or equal to OEc, with ≥OE OEr.

≥

≥
P (OE , OE ) =

number of answers with OE OE

total number of answers with OE OE
.r c

r

c

In path simulations, this term is called the crossing
probability [31].

The following relations must hold:

∑

∑

∑

∣ ∣

∣

∣

r q u q

r q P

u q P

[ ( OE , OE ) + ( OE , OE )] = 1,

( OE , OE ) = (OE , OE ),

( OE , OE ) = 1 − (OE , OE ),

q

r c r c

q

r c r c

q

r c r c

(2)

where the summations must be taken over all possible q
values.

If q is a perfect indicator of score OE being larger than
OEr, we would expect that ∣u q( ′ OE , OE ) = 0r c , for any
value q′, whenever ∣r q( ′ OE , OE ) > 0r c and vice versa,

∣r q( ′ OE , OE ) = 0r c whenever ∣u q( ′ OE , OE ) > 0r c . This
means that if the value of q is known, we will know
with 100% certainty whether the score exceeds OEr or
not. In that case, the predictive capacity T (OE , OE )r c

should be equal to 1. The other extreme case is that
whenever q has absolutely no informative value about the
OE. This means that our predictions with the additional
information on q are just as good as for a random
question of a random student; the chance to exceed OEr,
given a minimum score of OEc, is simply P (OE , OE )r c ,
and the predictive capacity should have the same
value. Most practical cases will lie in between these two

extremes, for which we define the predictive capacity
as [35]

⎧
⎨⎪
⎩⎪

⎡
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⎢⎢
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∑

∑
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∣
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T

r q

r q u q

r q

r q

(OE , OE )

=
( OE , OE )

( ( OE , OE ) + ( OE , OE ))

×
( OE , OE )

( ′ OE , OE )
.

r c

q

r c

r c r c

r c

q

r c

′

(3)

It should be note that ∣ ∕ ∣r q r q( OE , OE ) [ ( OE , OE )+r c r c

∣u q( OE , OE )]r c is the probability for having OE > OEr

for a specific value of q. The predictive capacity reflects a
weighted average of these probabilities for different q values.
The weight is given within the squared brackets and can be
viewed as the relevance of the q value for the r distribution;
it is large for those q values that describe a large part of the

≥OE OEr answers and small otherwise. Equation (3) can
be rewritten using Equation (2) as [35]

∑
∣ ∣

∣ ∣

T
P

r q u q

r q u q

(OE , OE ) = 1 −
1

(OE , OE )

×
( OE , OE ) ( OE , OE )

( OE , OE ) + ( OE , OE )
,

r c
r c

q

r c r c

r c r c
(4)

where the last part after the minus sign can be viewed as
the overlap between the ⋅r ( ) and ⋅u ( ) distributions.

If the overlap is small, it implies that the two dis-
tributions in q space are well separated and q is appar-
ently a good parameter to discriminate between the data
points belonging to the “reactive” or the “unreactive”
category (i.e., for our case, answers having an objective
score ≥OEr and having a score < OEr). Hence, if one
does not know the value of the OE of an answer, but
knows the value of the corresponding q variable and
knows beforehand how the distributions u q( ) and
r q( ) appear, it is possible to predict very well whether

≥OE OEr or not. This quality of prediction is reflected
by the small overlap, which implies that the T ‐function is
nearly 1. If, however, the ratio between r q( ) and u q( )

is the same along the full q‐axis, even if the absolute
values of r q( ) and u q( ) may vary, then the overlap will
be ∣P1 − (OE OE )r c [35], and thus ∣T (OE OE ) =r c

∣P (OE OE )r c . More explanation about how to compute the
predictive ability ∣T (OE OE )r c is given in the Supporting
Information Material.

4 | RESULTS AND DISCUSSION

In total, the students answered 594 out of 648 questions.
This means that each student, on average, answered 33
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out of 36 questions, and each question, on average, was
answered by 16.5 out of the 18 students. There was no
significant difference between men and women. Figure 2
shows the difference between the SE and OE for each
student and each question.

It is clear that the results nearly cover the full scale
ranging from −5 to 5. The extreme values occur in the case
of a student estimating an answer to be absolutely wrong,
when in fact it is fully correct (maximal underestimation),
or analogously for the reverse situation of maximal over-
estimation. Both extremes occurred equally often, 11 and 10
times. Also, 41% of the data points show exact correspon-
dence (SE–OE = 0). The difference between SE and OE per
student and per question is shown in Figure 3.

The sample mean per student was −0.13 and the
standard deviation was 0.76 (here we mean the actual
standard deviation of the answers, not the standard de-
viation of the mean that relates to the statistical error or
68% confidence interval). The difference SE–OE per
question had a sample mean of −0.16 and an SD of 0.59.
From this, we can observe that the students, on average,
evaluated themselves very close to the OE, despite a
considerable number of large overestimations and un-
derestimations. As both occur equally often, they get
canceled in the average.

Figure 4 shows the relationship between the OE and SE
(top), and OE and the RT (bottom). The height of the col-
umn at x y( , ) is a count of the number of times OE = x and
SE = y at the same time. In the top image, we observe from
the column heights that OE = SE = 1, OE = SE = 6, and
OE = 5, SE = 6 are occurring 30, 15, and 20 times as often
as the average of the other columns, respectively.

Evaluating yourself when you are sure that you either have
the correct answer or the wrong answer seems to be much
easier than evaluating yourself when you are on a grade
between 2 and 5. In the bottom image, we observe that that
the histograms in the OE versus RT are more spread as
compared with the top picture. Specifically, the extremes
SE = 1, RT = 6, and SE = 6, RT = 1 have higher heights
than other columns, as compared with the top panel.

The Pearson product–moment correlation coefficient for
the OE versus SE was calculated from Equation (1), and r
was found to be 0.627 indicating that the relation is to some
extent linear. For the relation of the OE as a function of the
RT, we found the Pearson product–moment correlation to
be r = 0.543. Hence, also this shows approximate linear
correlation, though somewhat lower than for the OE versus
SE dependence. Indeed, Figure 4, shows that there is a
larger fraction of counts in off‐diagonal bars in the OE
versus RT graph compared to OE versus SE. Though the

FIGURE 2 Plot showing the self evaluation–objective
evaluation (SE–OE) for each student and each question. The total
number of data points in this plot is 594, of which 243 are at the
surface, SE–OE = 0, implying that the question was evaluated
correctly

FIGURE 3 (Top) Plot showing the average deviation, SE–OE,
for each student, 1–18. (Bottom) average deviation, SE–OE, for
each question, 1–36. The height of the bars (from center to top/
bottom) indicates the standard deviation of the data for which the
average is computed. OE, objective evaluation; SE, self evaluation
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linear character in both graphs is predominantly due to the
high corner values at OE = SE equal to 1 and 6. Hence, it is
rather difficult to make conclusions based on the difference
in the Pearson product–moment correlation coefficients as
both curves are not linear enough to make a quantitative
assessment.

Finally, we applied the predictive power analysis [35]
using as auxiliary parameters q = SE, q = RT,
q = (OE, RT) and q = Stud (student). The latter refers to
the case where the auxiliary information is nonnumeric
but refers to the student who provided the answer
(see Supporting Information Material). The use of
multidimensional parameter (like q = (OE, RT)) or
nonnumeric parameter (like q = Stud) is evidently not
possible to study with the Pearson method. The mini-
mum score OEc was set equal to 1 in all of our analysis.
This implies that all answers were considered except

when nothing was written down (unanswered questions,
mainly due to time limitations as reported by the stu-
dents). Also, the RT questions were not considered for
the averages of the OE score. Instead, RT was only used
as an auxiliary variable; for each answer with a score ≥ 1

and not part of the RT questions, we determined the OE,
and the auxiliary parameters q = SE and q = RT. Here,
the SE value was the SE by the student of that specific
answer and the RT value was the score in the RT that
corresponded to the non‐RT question for which the answer
was given. Hence, all answers by a student within a specific
theme, for which an RT was designed, were assigned to the
same RT value. The results of P (OE , OE = 1)r c as a func-
tion of OEr is given in Figure 5a together with
T (OE , OE = 1)r c for q = SE, RT, (SE, RT), and Stud.

Clearly, T (OE , OE )r c is always equal or strictly larger
than P (OE , OE )r c but the increase is significantly larger
for q = SE than for q = RT. The combined analysis
q = (SE, RT) further enhances the predictive power, but
only slightly. The difference in predictive performance of
the different q variables becomes more evident if we vi-
sualize the relative difference of T (OE , OE )r c compared
to P (OE , OE )r c as is done in Figure 5b. The SE score is a
considerably better predictor for the OE than the
knowledge of who actually gave the answer (q = Stud) as
is illustrated by their relative predictive capacities which
is twice as large for q = SE than for q = Stud. This im-
mediately implies that SE is a better predictor than any
person inherent specific variable like IQ of the student,
hours of preparation by the student (not relevant for this
test), background knowledge of the student, etc. The RT
variable, on the contrary, show a relative predictive ca-
pacity that is twice as low as the one for q = Stud.

The difference in predictive capacity between q = SE

and q = RT is further analyzed in Figure 6, where the
⋅u ( ) and ⋅r ( ) distributions are shown for the two cases, SE

and RT, for OE = 4, 5r , and 6. The distributions for the
different OEr values look very similar. The distributions
u (SE) and r SE( ) both have a single maximum, but at
opposite extremes. The distributions u (RT) and r RT( ),
on the contrary, are double peaked. We will look further
into the OE = 6r case.

As we see in Figure 6a, ∣r (SE OE = 6) is nearly zero at
SE = 1, whereas ∣u (SE OE = 6) peaks here. More quan-
titatively, these values are 0.02 and 0.126 which implies
that if the student gave a SE equal to 1, it is nearly certain
(0.126/[0.126 + 0.02] = 86%) that the OE will be less than
6. Reversely from the values of ⋅u ( ) and ⋅r ( ) at SE = 6
(0.036 and 0.222, respectively), we see that the chance of
a score OE equal to 6, given the SE score was 6, is also
86% ∕(0.222 [0.222 + 0.036]). However, given the higher
absolute values r u( (SE=6) + (SE=6) = 0.222 + 0.036 =

r u0.258 > (SE=1) + (SE=1) = 0.126 + 0.02 = 0.146), it

FIGURE 4 3D plot of the correlation between the OE and SE
(top) and OE and RT (bottom). In the calculation of the correlation
between OE and SE, the questions from the rapid test was excluded
from the sample. OE, objective evaluation; SE, self evaluation
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is clear that it happens more often that students evaluate
their answers with the maximal score than with the
minimal score.

The double‐peaked character of the u (RT) and r (RT)

distributions is due to the type of RT questions whose
answers are mostly either fully correct or completely
wrong with little possibility to score something in be-
tween a 1 and a 6. Again, the distributions look similar
for the different OEr values considered (corresponding to
the distributions ≥OE 4, ≥OE 5, and OE = 6). Again we
focus on ⋅u ( ) and ⋅r ( ) for the OE = 6r case and examine
the values at RT = 1 and 6. For RT = 1, u (1) = 0.292

which is only slightly higher than r (1) that is 0.228.
Hence, scoring a very bad RT is not very predictive with
respect to having an OE equal to 6 or having an OE lower
than that. These chances are nearly equal. Note that also
P (6, 1) = 0.522 implying that someone scoring RT = 1

has still nearly the same chance to obtain the maximal
OE score, as someone scoring an RT > 1. Reversely for
RT = 6, we have u (6) = 0.092 and r (6) = 0.192 implying
that with a maximal score in the RT test the chance to
get also a maximal OE becomes twice as large than to get
a lower OE. Still, from the absolute numbers r (1) = 0.228

and r (6) = 0.192, we can conclude that among the an-
swers with a maximum OE score, there were more
answers having a corresponding RT = 1 than a RT = 6
evaluation. The predictive capacity for obtaining the
maximum OE, T (OE = 6, OE = 1)r c can be expressed as
a weighted average of the ∕r q r q u q( ) [ ( ) + ( )] prob-
abilities for all possible q values (q = 1, …, 6) where
the weights are proportional to r q( ). So, even if the fact
that RT = 6 is a reasonable predictor for OE = 6,

∕(0.192 [0.192 + 0.092] = 68%), it is given a lower
weight than the RT = 1 case in the computation for
overall the predictive capacity. The predictive power
method establishes hence a measure that reflects a
measure of predictivity of individual q values that is
balanced with the number of occurrences of these q

values within the r‐ensemble.

(a)

(b)

FIGURE 5 (a) Predictive capacity T (OE , OE )r c with fixed
OE = 1c as a function of OEr is shown for auxiliary variables
q = SE, RT, (SE, OE), and Stud. As reference also P (OE , OE )r c is
shown in the same plot. The minimum value OEc implies that
everything except unanswered questions were included in the
analysis. (b) Same data relative to P (OE , OE )r c . OE, objective
evaluation; SE, self evaluation; RT, rapid test

FIGURE 6 Distributions of u q( ) and r q( ) are shown for (a)
q = SE and (b) q = RT. SE, self evaluation; RT, rapid test
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We, therefore, believe that we convincingly demon-
strated that the SE is a better predictor than the RT and
that the predictive power method provides a more con-
clusive analysis than the Pearson product–moment cor-
relation method with respect to this quantitative
comparison between RT and SE (Figure 5b). Naturally,
one has to be careful as our analysis is based on a limited
number of volunteers and the test results are dependent
on the phrasings of both the OE and the RT questions.

Although there are aspects of our particular design of
questions in this study, the findings that SE has a better
effect on the students' learning than an RT is in agree-
ment with a wide body of work. Nicol and Macfarlane‐
Dick [21] presented seven principles for self‐regulated
learning and feedback that support and develop self‐
regulation on students. Based on previous work [3, 8, 10,
11, 12], they discussed several problematic aspects of
formative feedback: first, that feedback needs to be more
than mere information about whether the student is right
or wrong, if the student's self‐regulation skills are to be
developed; second, that the feedback is easily decoded by
the student; and, third, that considering feedback only to
be about information neglects that feedback interacts
with the student's motivation and beliefs. Finally, if
feedback is seen only as correcting information for the
student, then the workload of providing that information
grows with the number of students. Using RTs that can
be corrected automatically addresses the last of these is-
sues but falls short of addressing the first three. The first
two principles of good feedback practice, among the se-
ven identified by Nicol and Macfarlane‐Dick [21], are
helping to clarify what good performance is, and facil-
itating the development of self‐assessment. Both these are
to some degree satisfied at least by the combination of OE
and SE. The RT cannot in its present design convey more
information than whether the student is right or wrong,
akin to checking for the correct answer. In future work
we shall further address the design of both the SE and the
RT with the ambition to support both the students'
learning of the necessary factual knowledge and the de-
velopment of self‐regulating learning skills.

5 | CONCLUSION AND
PROSPECTIVES

The results presented in this paper belong to a first ex-
perimental stage of our new teaching approach to en-
hance students learning. A fundamental challenge for
students is to build the bridge between the mathematical
description and the real chemical‐physics process. It has
been established that the integration of information‐
communication‐technology tools in traditional teaching

methods can greatly enhance student learning in higher
education [23]. In this context, we propose web‐based
exercises integrating SE methods and statistical analysis
aiming on quantitatively measuring progresses and faults
in the learning process of the students. Web‐based ex-
ercises are able to create a personalized learning experi-
ence that fits the needs and time of the individual
student. The self‐evaluating tool encourages each stu-
dents to think on her/his own performance. In addition,
it allows the students to detect their weak points and
strategies for improvement. Finally, the SE together with
automated procedure to correct numerical exercises
could be used to make a selection from a large database
of exercise to offer the best training.

To quantify the value of SE in teaching molecular
simulations via web‐based exercises, we developed a
small test consisting of 36 basic questions and asked
18 volunteering students to solve them. After completion
of the evaluation, we examined the relations among the
scores of the SE, the RT, and the final OE. Analysis based
on the Pearson product–moment correlation coefficient
was not conclusive due a lack linearity. We, therefore,
applied the relatively new analysis method that origi-
nated from the molecular simulation field itself. The
predictive power method [35] is an analysis method de-
rived for path sampling simulations to identify auxiliary
parameters that can be used to predict whether a reaction
will take place or not. In this case, we examined whether
knowing the RT and SE scores are predictive with respect
to obtaining an OE larger than a threshold OEr . The
advantage of the predictive power method is that it does
not require a near‐linear correspondence between the
two variables being compared (RT and SE) and the OE.
The resulting analysis showed, more convincingly than
the Pearson product–moment correlation analysis, that
the SE is a better predictive parameter than RT for ob-
taining a high OE score.

A plausible explanation for this finding is that the SE
and OE values reflect a measure of exactly the same
question, whereas RT reflects a measure of a different,
though related question. On the contrary, RT and OE
have in common that both reflect evaluations done in an
objective manner by the teacher, whereas SE is not. Our
predictive power analysis shows that the first connection
is stronger than the second one. Naturally, these findings
are very much dependent on the question design. But it
can be very challenging if not impossible to design a
question that is fast but still faithfully tests the skill and
knowledge levels required for a more elaborate question.

In the coming years, we plan to develop a database of
questions for theMolecular Modeling course and test if we
can effectively use the SE tool to automatically select at an
individual level the best matching tasks. Given the nature
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of molecular simulations as a scientific field, which al-
ready involves extended use of numerics and computer
visualizations, training using web‐based exercises is a
natural development. Moreover, we plan to intertwine
the series of web exercises with links to instruction
videos and animations such that theory of a certain
subject could be refreshed before commencing with a
new set of questions. We believe that this approach
will be applicable to many other courses which build up
on a strong numerical or mathematical foundation and
could well be combined with the “flipped‐classroom”
pedagogical approach [2].
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