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We extend the SAFT-VRQ Mie equation of state, previously developed for pure fluids [Aasen et al.,
J. Chem. Phys. 151, 064508 (2019)], to fluid mixtures of particles interacting via Mie potentials with
Feynman–Hibbs quantum corrections of first (Mie-FH1) or second order (Mie-FH2). This is done using
a third-order Barker–Henderson expansion of the Helmholtz energy from a non-additive hard-sphere refer-
ence system. We survey existing experimental measurements and ab initio calculations of thermodynamic
properties of mixtures of neon, helium, deuterium and hydrogen, and use them to optimize the Mie-FH1 and
Mie-FH2 force fields for binary interactions. Simulations employing the optimized force fields are shown to
follow the experimental results closely over the entire phase envelopes. SAFT-VRQ Mie reproduces results
from simulations employing these force fields, with the exception of near-critical states for mixtures contain-
ing helium. This breakdown is explained in terms of the extremely low dispersive energy of helium, and
the challenges inherent in current implementations of the Barker–Henderson expansion for mixtures. The
interaction parameters of two cubic equations of state (SRK, PR) are also fitted to experiments, and used as
performance benchmarks. There are large gaps in the ranges and properties that have been experimentally
measured for these systems, making the force fields presented especially useful.

I. INTRODUCTION

In Paper I1 we presented an equation of state for
Mie potentials with first- (Mie-FH1) or second-order
(Mie-FH2) Feynman–Hibbs quantum corrections, called
SAFT-VRQ Mie. It was shown to accurately repro-
duce the thermodynamic properties of these potentials,
denoted collectively as Mie-FH potentials, with a simi-
lar accuracy as present state-of-the-art for classical (un-
corrected) Mie potentials.2 We found the optimal Mie-
FH1 and Mie-FH2 potential parameters for the pure flu-
ids helium, neon, deuterium, normal-, ortho and para-
hydrogen by fitting the Mie-FH1 and Mie-FH2 potentials
to thermodynamic data. With no new adjustable param-
eters, the Mie-FH potentials were shown to be more ac-
curate models for these pure fluids than classical Mie po-
tentials, representing their thermodynamic properties to
high accuracy except for pressurized helium below 20 K.

The present paper builds on Paper I and extends the
framework to fluid mixtures of helium, neon, hydrogen,
as well as their isotopologues and spin isomers. These ul-
tracryogenic fluids exhibit stable vapor–liquid equilibria
below 50 K, and have been touted as key to increase
the efficiency in large-scale hydrogen liquefaction pro-
cesses.3,4 One reason is that adding neon to the mix-
ture increases its molecular weight, so that highly effi-
cient turbo compressors can be used instead of piston
compressors.3 Another advantage of using neon mixtures
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as a refrigerant at low temperatures is the enhanced
heat transfer coefficient due to evaporation and conden-
sation;4 accurate prediction of phase equilibria for these
fluids is crucial for this application. Hydrogen–neon and
deuterium–neon mixtures are also used in bubble cham-
bers to detect gamma rays.5,6 Furthermore, when liquid
hydrogen is used as fuel for vehicles7 or space rockets,8
helium is a preferred choice for pressurization and expul-
sion since other components will solidify. For this appli-
cation, the solubility of helium in the liquid hydrogen is
needed at low temperatures.

There is little work in the literature on modeling the
thermodynamic properties of ultracryogenic fluid mix-
tures and, to our knowledge, no accurate model cur-
rently exists. Wilhelmsen et al.4 tested several EoS for
modeling the phase equilibria of helium–neon mixtures,
such as cubic EoS with advanced mixing rules,9–11 so-
phisticated corresponding-states EoS such as SPUNG,12
and PC-SAFT.13 None of these EoS yielded good agree-
ment with measurements. For pure fluids, however,
accurate reference-grade equations of state exist for
helium,14 neon,15 ortho-, para- and normal-hydrogen,16
and deuterium.17 These multiparameter EoS are sophis-
ticated correlations of experimental data aiming to fulfill
all thermodynamic consistency criteria.18 However, al-
ready for pure fluids these EoS come with challenges19
that hinder their widespread use. These challenges are
amplified for mixtures, and currently one lacks the binary
mixing models needed to extend multiparameter EoS to
ultracryogenic fluid mixtures. The current paucity of
experimental data exacerbates the problem of designing
such mixing models.
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Perturbation theory and SAFT-type EoS, on the other
hand, are readily extended to mixtures.2,20 Moreover, a
major advantage of EoS based on interaction potentials
is that molecular simulations of the underlying force field
can be leveraged to estimate transport properties such as
viscosity, thermal conductivity, or interfacial properties
such as the surface tension or the Kapitza resistance.21
Furthermore, simulations can be used to obtain thermo-
dynamic properties in regions outside of the domain of
validity of the EoS.

Following Barker and Henderson’s seminal works on
perturbation theory22,23 for pure substances, Leonard et
al.20 shortly thereafter extended it to mixtures. Since
then, the theory has been successfully applied to a vari-
ety of fluid mixtures such as electrolyte solutions, poly-
mer mixtures, mixtures of cyclic and ring-forming com-
pounds, and much more.24–27 However, the present work
is the first time the theory is used to describe mixtures
of quantum-corrected Mie fluids. The hard-sphere con-
tribution turns out to be especially important for these
fluids, since their interaction potentials have shallower
attractive tails and harder repulsive cores than classical
Mie fluids. As a result, we find that details of the pertur-
bation theory that are commonly neglected2,13 become
important.

Although neon is well-represented by a classical Mie
potential,28 hydrogen, deuterium and helium are not.1
We will therefore not present mixture results for clas-
sical Mie potentials; seeing as they mispredict several
single-component properties such as density and satu-
ration vapor pressures (except for neon), they cannot
yield a satisfactory mixture model. We will, however,
benchmark our approach against a cubic EoS, namely
Soave–Redlich–Kwong (SRK).9 This is because SRK is
both simple and fast,19 and one needs to know whether
the gain in accuracy justifies the higher complexity of the
SAFT-VRQ Mie EoS and/or simulations of the underly-
ing force fields. For convenience, we present optimized
interaction parameters for the two most common cubic
EoS: SRK, and the Peng–Robinson10 (PR) EoS.

In Sec. II we discuss the Feynman–Hibbs-corrected Mie
potential, second virial coefficients for mixtures, and the
extension of the perturbation theory from Paper I to mix-
tures. In Sec. III we provide details on the Monte Carlo
simulations and the regression of force-field parameters
to binary mixture data. In Sec. IV we survey experimen-
tal data on binary mixtures of ultracryogenic fluids, and
compare them with simulations of the optimized force
fields and the predictions of SAFT-VRQ Mie. Conclud-
ing remarks are given in Sec. V.

II. THEORY

A. The Feynman–Hibbs-corrected Mie potential

The complete expression for the quantum-corrected
Mie-FH2 potential between particles of type i and j is

uij(r, β)/(C(λr,ij , λa,ij)εij) = (σij)λr,ij

rλr,ij
− (σij)λa,ij

rλa,ij

+Dij

(
Q1(λr,ij)

(σij)λr,ij

rλr,ij+2 −Q1(λa,ij)
(σij)λa,ij

rλa,ij+2

)
+D2

ij

(
Q2(λr,ij)

(σij)λr,ij

rλr,ij+4 −Q2(λa,ij)
(σij)λa,ij

rλa,ij+4

)
,

(1)

where β = 1/kBT , kB is Boltzmann’s constant, T is tem-
perature, and

C(λr, λa) =
(

λr

λr − λa

)(
λr

λa

) λa
λr−λa

, (2)

Dij =
β~2(m−1

i +m−1
j )

24 , (3)

Q1(λ) = λ(λ− 1) , (4)

Q2(λ) = 1
2(λ+ 2)(λ+ 1)λ(λ− 1) , (5)

where mi is the mass of component i, and ~ = h/2π is
the reduced Planck’s constant. The expressions for the
Mie-FH1 potential are obtained by omitting the term
in Eq. (1) with the prefactor D2

ij , whereas the classical
Mie potential is obtained by also omitting the term with
prefactor Dij .
We have used the same combining rules that are com-

monly used for classical Mie fluids:2

λk,ij − 3 =
√

(λk,ii − 3)(λk,jj − 3), k = a, r , (6)

σij = (1− lij)
σii + σjj

2 , (7)

εij = (1− kij)

√
σ3
iiσ

3
jj

σ3
ij

√
εiiεjj , (8)

where kij and lij are adjustable parameters that will be
fitted to experimental data on binary mixtures. The
pure-component parameters for helium, neon, deuterium
and hydrogen are fixed to be as in Paper I.
For classical Mie potentials, −εij is the minimum value

of the potential, and σij is the distance at which the po-
tential is zero. For the Mie-FH1 and Mie-FH2 potentials,
we define the analogous quantities εij,eff and σij,eff by the
equations

uij(σij,eff, β) = 0 , (9)
εij,eff = −min

r
(uij (r, β)) , (10)

which both vary with temperature. As explained in Pa-
per I, for Mie-FH potentials we have the general relations
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εij,eff ≤ εij and σij,eff ≥ σij , with equality being reached
only in the limit T →∞.

Finally, we define the dimensionless van der Waals en-
ergy of the ij interaction as

αij = − 1
εij,effσ3

ij,eff

∫ ∞
σij,eff

uij (r, β) r2 dr . (11)

B. Extending the perturbation theory from Paper I to
mixtures

We shall apply the Barker–Henderson perturbation
theory20,23,29 to obtain an equation of state for multi-
component fluids of particles interacting through the pair
potential described in Sec. II A. The reduced, residual
Helmholtz energy ares = A/NkBT , where N is the num-
ber of particles, is given by

ares = aHS + βa1 + β2a2 + β3a3, (12)

where aHS is the reduced, residual Helmholtz energy of
a reference system of hard-spheres to be specified below,
while a1, a2 and a3 are the first-, second- and third-order
perturbation coefficients.

The procedure for obtaining the four terms in Eq. (12)
is well-known for pure fluids,2,30 and was carried out in
Paper I for pure Mie-FH1 and Mie-FH2 fluids. The the-
ory for mixtures was first presented by Leonard et al.,20
who derived the theory for several choices of reference
systems. In this work we shall use a reference system
that is a mixture of hard spheres where component pair
ij interacts with diameter dij , where

dij =
∫ σij,eff

0
[1− exp{−βuij(z, β)}] dz . (13)

The fact that generally dij 6= (dii + djj)/2 means that
the reference is a mixture of non-additive hard spheres.

As far as we are aware, the current work is the first
implementation of perturbation theory for a non-additive
reference system. The main reason for this will become
clear in Sec. IV, where we will encounter binary systems
for which dij is significantly different from (dii + djj)/2.
Current implementations of perturbation theory using
an additive reference system are in these cases inaccu-
rate; although a more accurate implementation of the
perturbation theory might improve this, currently the
non-additive hard-sphere reference system is superior.

We next detail how to calculate the four terms in
Eq. (12).

1. The hard-sphere term

The EoS by Santos et al.31 is used to model the
Helmholtz energy density aHS of the non-additive hard-
sphere mixture interacting with diameters dij . Whereas
several other models exist,32 the model by Santos et al. is

highly accurate and was constructed to provide the cor-
rect second and third mixture virial coefficients of non-
additive hard-sphere mixtures.31
The non-additive mixture hard-sphere diameter is

given as

dna =
(∑

i

xid
3
ii

)1/3

, (14)

where xi is the mole fraction of component i, and the
corresponding packing fraction is

ηna = πρd3
na

6 , (15)

where ρ is the density. The residual compressibillity fac-
tor is modeled as

Zres
na = ηna

1− ηna
10d3

naB2 − 4B3

6d6
na

+ Zres
pure (ηna) B3 − d3

naB2

6d6
na

, (16)

where

B2 = 4
∑
i

∑
j

xixjd
3
ij , (17)

B3 =
∑
i

∑
j

∑
k

xixjxkB
3
ijk , (18)

and Bijk is given by

Bijk = 4
3
(
ck;ijd

3
ij + cj;ikd

3
ik + ci;jkd

3
jk

)
, (19)

ck;ij = δ3
k;ij + 3

2
δ2
k;ij

dij
δi;jkδj;ik , (20)

δk;ij = max (dik + djk − dij , 0) . (21)

Defining the volume-independent quantities

A1 (T,x) = 10d3
naB2 − 4B3

6d6
na

, (22)

A2 (T,x) = B3 − d3
naB2

6d6
na

, (23)

the reduced, residual Helmholtz energy becomes

aHS =
∫ ∞
V

Zres
na
V

dV

= − ln (1− ηna)A1 (T,x) + apure(ηna)A2 (T,x) .
(24)

We have used the Carnahan–Starling EoS33 for the re-
duced residual Helmholtz energy of the pure fluid, apure.
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2. The first-order perturbation term

The first-order perturbation term is calculated as

a1 =
∑
i

∑
j

xixja1,ij , (25)

where a1,ij is given by

a1,ij = 2πρ
∫ ∞
σij,eff

gHS,mix
ij (z; ρ,x, β)uij (z, β) z2 dz .

(26)
Here gHS,mix

ij (z) is the radial distribution function of
components i and j in the hard-sphere reference mix-
ture at separation z. In addition to depending on den-
sity ρ and mole fractions x = (x1, x2, . . .), it also de-
pends on temperature through the hard-sphere diameters
(cf. Eq. (13)).

Although Eqs. (25)–(26) are exact, gHS,mix
ij is unknown

and must be approximated. There exist several expres-
sions such as Eqs. 27 and 31 in Ref. 31 that can be used,
but these would increase the complexity of the model
significantly. We will instead employ the simpler approx-
imation of Lafitte et al.,2 substituting gHS,mix

ij with the
radial distribution function of a single-component hard-
sphere fluid at the temperature of the mixture and an
effective packing fraction. More specifically, we set

gHS,mix
ij (z; ρ,x, β) ≈ gHS,puredij

(z; ηij) (27)

where gHS,puredij
(z; ηij) is the radial distribution function

in a pure system of hard spheres of diameters dij , at the
packing fraction

ηij =
πρd3

ij

6 . (28)

We therefore have

a1,ij ≈ 2πρ
∫ ∞
σij,eff

gHS,puredij
(z; ηij)uij (z, β) z2 dz . (29)

To simplify further, note that Eq. (1) is a linear combi-
nation of Sutherland potentials, i.e. we can write

uij(r) = C(λr,ij , λa,ij)
∑
k

wijku
S
ij(r;λijk), (30)

where the Sutherland potentials are defined by

uSij (r;λijk) = −εij
(σij
r

)λijk

. (31)

The prefactors wijk are given in Tab. I. Since the expres-
sion in Eq. (29) for a1,ij is linear in uij , we can combine
it with Eq. (30) to write

a1,ij = C(λr,ij , λa,ij)
∑
k

wijka1,ijk (32)

k λijk wijk

1 λa,ij 1
2 λr,ij −1
3 λa,ij + 2 DijQ1 (λa,ij) /σ2

ij

4 λr,ij + 2 −DijQ1 (λr,ij) /σ2
ij

5 λa,ij + 4 D2
ijQ2 (λa,ij) /σ4

ij

6 λr,ij + 4 −D2
ijQ2 (λr,ij) /σ4

ij

TABLE I. λijk and wijk coefficients.

where we now only need expressions for a1,ijk. For the
Mie-FH1 potential we have k ∈ {1, 2, 3, 4}, while for Mie-
FH2 we have k ∈ {1, . . . , 6}.
It was shown in Paper I and Ref. 2 that, for single-

component fluids, each a1,ijk can be correlated using two
quantities called aS1 and B. We extend these to mixtures
in the same way as Ref. 2, and refer the reader to Ref. 2
and Paper I for details. We have that

a1,ijk =(x0,ij)λijk
[
aS1,ijk +Bijk

]
, (33)

where

aS1,ijk = −12ηijεij
(

1
λijk − 3

)
1− ηeff (ζx;λijk) /2
(1− ηeff (ζx;λijk))3 ,

(34)

Bijk = 12ηijεij

(
1− ζx/2
(1− ζx)3 Iijk −

9ζx (1 + ζx)
2 (1− ζx)3 Jijk

)
.

(35)

The rest of the quantities in Eqs. (34)–(35) are defined
as follows: We have

x0,ij = σij,eff
dij

, (36)

and

Iijk = −
x

(3−λijk)
0,ij − 1
λijk − 3 , (37)

Jijk = −
x

(4−λijk)
0,ij (λ− 3)− x(3−λijk)

0,ij (λijk − 4)− 1
(λijk − 3) (λijk − 4) .

(38)

The effective packing fraction is given by

ηeff (ζx;λ) = c1 (λ) ζx + c2 (λ) ζ2
x + c3 (λ) ζ3

x + c4 (λ) ζ4
x,

(39)
where ζx is the mixture packing fraction, given by

ζx =
∑
i

∑
j

xixjηij . (40)

3. The second-order perturbation term

The second-order perturbation term is calculated as

a2 =
∑
i

∑
j

xixja2,ij , (41)
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where a2,ij is approximated by the following expression
(cf. Paper I):

a2,ij = πρKHS (1 + χij)

×
∫ ∞
σij,eff

gHS,puredij
(z; ηij) (uij (z, β))2

z2 dz . (42)

Since (uij (z, β))2 is a sum of Sutherland potentials, the
integral can be treated in the same manner as for a1,ij ,
where the Sutherland integrals are described as functions
of η, ζx and x0 (see Paper I and Ref. 2 for further de-
tails). The same isothermal compressibillity KHS of the
pure hard-sphere EoS33 is used for all pair contributions,
obtained by substituting the pure-fluid packing fraction
η with the mixture packing fraction ζx:

KHS = (1− ζx)4

1 + 4ζx + 4ζ2
x − 4ζ3

x + ζ4
x

. (43)

For the correction factor χij , we introduce an effective
packing fraction based on σij,eff, which is computed as

ζ̄x = πρ

6
∑
i

∑
j

xixjσ
3
ij,eff , (44)

giving the following correlation for χij ,

χij = f1 (αij) ζ̄x + f2 (αij)
(
ζ̄x
)5 + f3 (αij)

(
ζ̄x
)8
. (45)

The definitions of f1, f2 and f3 are given in Ref. 2.

4. The third-order perturbation term

Similar to Ref. 2, the third-order perturbation term is
calculated using a van der Waals mixing rule,

a3 =
∑
i

∑
j

xixja3,ij , (46)

where the pair contribution is given as

a3,ij = −ε3ij,efff4 (αij) ζ̄x exp
(
f5 (αij) ζ̄x + f6 (αij) ζ̄2

x

)
.

(47)
The definitions of f4, f5 and f6 are given in Ref. 2.

C. Computing second virial coefficients

The virial expansion can be expressed in terms of the
pressure:

βP (T, ρ,x)
ρ

= 1 +B(T,x)ρ+O(ρ2), (48)

where x is the vector of mole fractions and B is the
second mixture virial coefficient. For a mixture, the

composition-dependence of the second mixture virial co-
efficient is known exactly,34 namely

B(T,x) =
∑
i

∑
j

xixjBij(T ). (49)

For particles interacting with Mie-FH potentials, Bij can
be rigorously computed from the expression34

BMie-FH
ij = −2π

∫ ∞
0

[exp(−βuij(r))− 1] r2 dr . (50)

For an equation of state, Bij is given by the derivative

Beos
ij = β

2

(
∂2P

∂ρi∂ρj

)
T

(51)

in the zero-density limit, where ρi = xiρ is the density
of component i. In this work, we shall compare Beos

ij ,
BMie-FH
ij , with the experimental values Bexpt

ij . For the
binary systems composed of H2, D2 and He, the symbol
Bexpt
ij will denote the virial coefficients computed from

ab initio calculations. The reason that we treat virial co-
efficients from ab initio calculations on the same level as
experimental measurements is that, for He, H2, and D2,
the quantum-mechanical calculations can be performed
with an accuracy that exceeds what is possible with cur-
rent experimental techniques.35,36

D. Cubic equations of state

The calculations with the SRK9 and PR10 equations
of state have been performed with the classical alpha
correlations, the quadratic mixture rule, and no volume
shift. We refer the reader to Refs. 37–39 for details on
these models. Note that volume shifts were tested in
Paper I for pure neon and hydrogen, and found to not
significantly improve the density predictions.

III. METHODS

A. Gibbs Ensemble Monte Carlo simulations

We performed Gibbs Ensemble Monte Carlo (GEMC)
simulations40–42 of binary mixtures of Mie-FH1 and Mie-
FH2 fluids to determine two-phase coexistence densities
and compositions. This simulation method involves two
simulation boxes, one for each phase, that are subjected
to three types of Monte Carlo (MC) moves: (i) dis-
placing a particle within a box; (ii) swapping a par-
ticle from one box to the other; (iii) isotropically ex-
panding/contracting a box volume. Whereas the GEMC
method for pure components preserves the total vol-
ume of the simulation boxes, for binary mixtures this is
unnecessary,40 and in this work we maintained the pres-
sure by adjusting each box volume independently.
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A numberNtot of particles in the range 3000–5000 were
distributed across the two simulation boxes, with the ra-
tio of each species in the boxes being equal to the phase
equilibrium compositions predicted by SAFT-VRQ Mie.
The sequence of MC moves was randomized, with the
ratio of moves (i):(ii):(iii) initialized to Ntot:Ntot:2. The
swap move was performed by choosing one of the boxes
with equal probability, randomly (but not equiprobably)
choosing which species to attempt swapping, and then
choosing a random particle of that species and attempt-
ing to move it to the other box. During an equilibration
stage, the relative probability of which species to attempt
swapping was adjusted to yield an equal number of suc-
cessful swaps for each species. The volume moves were
performed as random walks in the logarithm of volume.42
The maximum volume step size was tuned independently
for each box to yield an acceptance ratio between 30%
and 50%; the maximum displacement step size was tuned
independently for each species and each box, to yield an
acceptance ratio in the same interval.

We define a Monte Carlo cycle as Ntot attempted dis-
placement moves, 2 attempted single-box volume moves,
and Nswap attempted swap moves. The number Nswap
was initialized to Ntot, and increased to ensure that
at least 0.1% of the Ntot particles were on average ex-
changed in a cycle. Sampling of densities and composi-
tions was performed after each 100th MC move; although
it is conventional to sample only at the end of each cy-
cle, sampling more often is both computationally cheap
and increases accuracy. After 3 × 104 equilibration cy-
cles, sampling was performed during 3× 105 production
cycles. The simulations were run with a temperature-
independent cutoff of rc = 4σ coupled with on-the-fly
long-range corrections as described in the appendix of
Paper I, which we extended to mixtures. To gauge the
effect of cutoff length, we also ran some of the simulations
with the cutoff rc = 5σ; the results were equal within the
uncertainty.

B. Regression of interaction parameters for real fluids

The adjustable parameters of Mie-FH potentials are
the same as for Mie potentials, namely σ, ε, λa and λr.
We have previously presented optimized parameters for
pure helium, neon, hydrogen and deuterium for both Mie-
FH1 and Mie-FH2 potentials (Tab. II in Paper I). For
mixtures, we introduce the two adjustable interaction pa-
rameters kij and lij , as defined in Eqs. (7)–(8). We also
tested the effect of varying the cross-exponent for the re-
pulsive interaction, λr,ij , but concluded that its effect on
the predictions can be captured by varying (kij , lij).

The interaction parameters were optimized for the ac-
curacy of the force fields, not the accuracy of the equa-
tion of state. In addition to yielding more accurate force
fields, this approach makes it possible to improve the ac-
curacy of the perturbation theory without having to re-
fit the force-field parameters. Whereas SAFT-VRQ Mie

and simulations of the underlying force fields are in ex-
cellent agreement away from the critical region, for some
mixtures they differ close to a critical point. For this
reason, it was infeasible to fit the potential parameters
using SAFT-VRQ Mie, as we did not know a priori for
which states SAFT-VRQ Mie fails to reproduce the ther-
modynamic properties of Mie-FH fluids.
We therefore resorted to the more time-consuming job

of fitting the force fields directly, i.e. comparing sim-
ulation results to experimental data for different val-
ues of the interaction parameters. Fortunately, we were
able to speed up this process significantly by using
measurements43 and accurate ab initio calculations35,36
of the cross virial coefficients (Bexpt

12 ) for the binary mix-
tures. These Bexpt

12 values were used to quickly produce
a small set of interaction parameters (kij , lij) with the
property that BMie-FH

12 ≈ Bexpt
12 . Given this small set of

(kij , lij) values, we chose the optimal value as that which
yielded best agreement with phase-composition measure-
ments for the simulations of the force fields.
For real fluids, the intermolecular forces are not exactly

pairwise additive, and the optimized Mie-FH potentials
we present in this work are effective pair potentials –
they also implicitly account for three-body and higher-
order effects. One might question the use of the second
virial coefficient, which is a property only probing two-
body interactions,34 to fit an effective potential that will
be influenced by higher-body effects. However, for the
fluids and conditions considered in the present work, this
is indeed justified: Such effects, if significant, would likely
be noticeable already for pure fluids, and we have veri-
fied in the Supplementary Material that the optimized
parameters of Paper I yield accurate virial coefficients
for pure fluids. Moreover, for the binary mixtures con-
sidered here, we found that it was possible to obtain good
agreement with both the second virial coefficients and the
phase equilibrium composition measurements. This indi-
cates that two-body interactions dominate, at least at
the moderate pressures considered here, and hence our
fitting process is a posteriori justified.

The relevant experimental measurements for these bi-
nary systems were all published during the years 1951–
1981. In fact, with a few notable exceptions6,44–46 the
1973 survey of Kidnay et al.47 is still reasonably up-to-
date. To evaluate the quality of the experimental mea-
surements, we checked whether measurements from dif-
ferent publications agree, and whether the mixture data
extrapolate to the (accurately known) pure-component
data. This extrapolation procedure is facilitated by
Henry’s law, i.e. that the Pxy phase equilibrium envelope
is well-approximated by linear function of finite slope for
states close to pure-component saturation states.

IV. RESULTS AND DISCUSSION

The regressed interaction parameters for the six binary
combinations of He, Ne, H2 and D2 are given in Tab. II,
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TABLE II. Optimal interaction parameters (kij , lij) for the
Mie-FH1 potentials for pairs of real fluids.

D2 H2 He

H2 (0, 0) − −
He (0.0,−0.05) (0.08,−0.05) −
Ne (0.13, 0) (0.105, 0) (−0.22, 0)

TABLE III. Optimal interaction parameters (kij , lij) for the
Mie-FH2 potentials for pairs of real fluids.

D2 H2 He

H2 (−0.04, 0) − −
He (0.12,−0.05) (0.15,−0.025) −
Ne (0.14, 0) (0.105, 0) (−0.06, 0)

Tab. III and Tab. IV. It was only for He–H2 and He–D2
that we found it necessary to tune the lij parameter to
accurately reproduce the experimental data.

As mentioned in Paper I, three types of hydrogen are
commonly considered:1,16 orthohydrogen (the two pro-
tons have equal spin), parahydrogen (opposite spin), and
normal hydrogen which is a 3–1 mixture of ortho- and
parahydrogen that represents the equilibrium composi-
tion at high temperature. In Paper I, we fitted the in-
termolecular potential for these three pure fluids, and
found that they were very similar. In the present work
we will only fit the interaction potential for normal hy-
drogen with other fluids; if one wants to explicitly model
orthohydrogen or parahydrogen as separate components
in a mixture, we recommend using the same interac-
tion parameter with other fluids as for normal hydrogen.
The interaction parameters between orthohydrogen and
parahydrogen, however, should be taken as zero. Three
analogous types of deuterium also exist,17 but here we
only treat normal deuterium, i.e. the equilibrium config-
uration at room temperature.

We now discuss the six binary mixtures separately. In
addition, we refer the interested reader to the Supplemen-
tary Material for an overview of the global fluid phase
behavior in temperature–pressure space, as predicted by
SAFT-VRQ Mie with the optimal Mie-FH1 parameters;
these show the loci of pure-component saturation, vapor–
liquid–liquid equilibria (VLLE), azeotropes and critical
points. The calculation and classification of global phase
diagrams builds on Refs. 48–50.

TABLE IV. Optimal interaction parameters kij for the SRK
and PR EoS for pairs of real fluids.

SRK PR
D2 H2 He D2 H2 He

H2 0 − − 0 − −
He 0.37 0.37 − 0.38 0.37 −
Ne 0.18 0.19 0.10 0.17 0.18 0.15

A. The helium–neon mixture

Two publications report measurements on the helium–
neon system: Knorn (1967),51 and Heck and Bar-
rick (1967),52 who both measured only phase equilib-
rium compositions. Unfortunately, the bubble point
(i.e. saturated-liquid) measurements from these publica-
tions are inconsistent with each other. An example is
the bubble point compositions at 26.95 K and 27.03 K,
reported by Ref. 52 and Ref. 51 respectively; although
the measurements are at essentially the same tempera-
ture, they exhibit large and systematic deviations. More-
over, none of the isothermal measurement series can be
linearly extrapolated to the pure-component vapor pres-
sures and thus violate Henry’s law. That the measure-
ments were taken in the Henry’s-law regime is indicated
by the fact that the first four bubble point measurements
lie on a straight line in Px-space with correlation coeffi-
cients above 0.99. Moreover, SAFT-VRQ Mie also pre-
dicts an essentially linear bubble point curve in these
regions.
The helium–neon mixture is a challenging test of the

perturbation theory underlying SAFT-VRQ Mie. Away
from the critical point, Figs. 1a–1d show good agreement
between GEMC simulations of Mie-FH potentials, pre-
dictions by SAFT-VRQ Mie, and experimental measure-
ments. The same good agreement is seen for virial coef-
ficients (Fig. 2). SAFT-VRQ Mie, however, provides in-
accurate predictions in the critical region, in some cases
overpredicting the critical pressure of Mie-FH fluids by
more than 50%. In Ref. 53, we show that, even for simple
mixtures of Lennard-Jones fluids, the representations of
a2 and a3 become inaccurate as the ratio of ε22,eff/ε11,eff
becomes large. For the Mie-FH1 and the Mie-FH2 poten-
tials this ratio is 7.55±0.1 and 4.3±0.2, respectively, for
the temperatures considered in Fig. 1. This explains the
overpredictions in the critical region. Improving the rep-
resentation of a2 and a3 is beyond the scope of this work.
A different but related aspect of the perturbation theory
is the choice of reference system. We found that using
a non-additive hard-sphere reference in SAFT-VRQ Mie
significantly increased agreement with simulations results
for the bubble points in Figs. 1a–1d, compared to using
the additive reference by Lafitte et al.2 The agreement
between simulations and SAFT-VRQ Mie is better for
the Mie-FH2 potential than for the Mie-FH1 potential,
which is especially clear for the phase-equilibrium den-
sities (cf. Figs. 1b and 1d), which might be due to the
smaller value of kij . We refer to Ref. 53 for a further
discussion of choice of reference systems.

GEMC simulations of the Mie-FH potentials exhibit
better agreement with experimental data than SAFT-
VRQ Mie, as they do not suffer from the inadequacies of
the EoS in the critical region discussed above. As shown
in Fig. 1a and Fig. 1c, simulations of the optimized Mie-
FH1 and Mie-FH2 potentials largely agree with the ex-
perimental vapor–liquid equilibrium (VLE) composition
measurements, including the critical region. The excep-
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(f) SRK Pρ phase diagram.

FIG. 1. Phase-equilibrium diagrams for the helium–neon mixture using Mie-FH1 potentials (Figs. 1a and 1b), Mie-FH2
potentials (Figs. 1c and 1d) and SRK (Figs. 1e and 1f). Crosses are experimental measurements,51,52 circles are simulation
results, and lines are calculations with SAFT-VRQ Mie (Figs. 1a–1d) or SRK (Figs. 1e–1f). The crosses in the density plots
are the pure-component values computed from reference EoS.14,15 The temperatures are 24.71 K (black), 26.00 K (red), 29.91
K (blue), 35.90 K (brown), 38.80 K (green) and 41.90 K (purple).
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FIG. 2. Cross second virial coefficients for the helium–neon mixture using the Mie-FH1 potential (Fig. 2a) and Mie-FH2
potential (Fig. 2b), compared to predictions by SAFT-VRQ Mie, SRK and measurements by Brewer and Vaughn.43

This is the accepted version of an article publishet in Journal of Chemical Physics 
http://dx.doi.org/10.1063/1.5136079



9

tion is states close to the saturation locus of pure neon.
However, as explained, these measurements cannot be
trusted as they do not extrapolate to the saturation lo-
cus of pure neon. Simulations of the Mie-FH potentials
(Figs. 1b and 1d) are in our opinion more trustworthy
than measurements in this region, especially since they
accurately reproduce the saturation locus of pure neon,
as shown in Paper I. For this binary mixture, the simula-
tions and SAFT-VRQ Mie agree well with experimental
data at temperatures below 30 K. This indicates that the
discrepancies at higher temperatures are not due to in-
correct modeling of quantum effects, which are stronger
at lower temperatures.

SRK fails to accurately reproduce the phase-
equilibrium measurements of helium–neon (Figs. 1e–1f),
even for pressures below 40 bar. This is in line with
the conclusions of Wilhelmsen et al.,4 who demonstrated
that the PR cubic EoS is also unable to accurately
model phase-composition measurements. More specifi-
cally, they found that a cubic EoS is able to match the
phase-composition measurements of either the vapor or
the liquid phase, but not both at once; sophisticated in-
teraction rules11 did not improve on this situation. Fig. 1f
illustrates SRK’s poor predictions of pure-component liq-
uid densities, which are overestimated at low temper-
atures and underestimated at high temperatures, and
gives a sense of the error that must be expected in den-
sity predictions for mixtures. This is in clear contrast to
SAFT-VRQ Mie (Figs. 1b and 1d), which is able to accu-
rately predict both saturation vapor pressures and den-
sities for pure components (see Paper I). Finally, Fig. 2
shows that SRK also severely underpredicts the cross sec-
ond virial coefficient.

B. The hydrogen–neon mixture

The phase behavior of hydrogen–neon is rather exotic:
azeotropic VLE at low temperatures, liquid–liquid equi-
librium (LLE) at low temperatures and high pressures.
The VLE and LLE regimes are separated by three-phase,
vapor–liquid–liquid equilibrium (VLLE) states. The in-
terested reader is referred to the Supplementary Material
for an overview of the phase behavior in temperature–
pressure space. We used the experimental measure-
ments by Streett and Jones (1965)54 and Heck and Bar-
rick (1966).55 Streett and Jones found the upper critical
solution temperature for the LLE to be 28.96 ± 0.04 K,
and measured azeotropes for temperatures up to 31.5 K.
We also mention that Simon (1963)56 reported measure-
ments on parahydrogen–neon system at the triple-point
temperature of neon (24.56 K); these data have not been
used.

In spite of the complexity of the phase diagram, both
simulations and theory are able to describe the mixture,
as seen in Figs. 3 and 4. The simulations of the Mie-
FH potentials consistently yield a slightly higher mole
fraction of hydrogen in both phases than the theoreti-

cal predictions by SAFT-VRQ Mie, as well as slightly
lower densities of the saturated liquid phase. Overall,
however, the correspondence between theory and simu-
lations is good.
SRK seems to be slightly more accurate at reproduc-

ing phase composition measurements than the Mie-FH
potentials, but less accurate at representing cross virial
coefficients. Fig. 3f shows that SRK overestimates liquid
densities at low temperatures and underestimates them
at high temperatures. SAFT-VRQ Mie and the under-
lying force fields are clearly more accurate for the den-
sities (Figs. 3b and 3d) than SRK. Fig. 5 compares the
measurements of mixture densities and sound speeds by
Güsewell et al.6 to the predictions of SAFT-VRQ Mie
and SRK; the Mie-FH1 and Mie-FH2 parameters yield
good predictions for both properties, whereas SRK shows
higher deviations as well as a wrong variation with tem-
perature.

C. The helium–hydrogen mixture

There is a wealth of measurements on the phase-
equilibrium compositions of the helium–hydrogen mix-
ture, even extending up to supercritical fluid–fluid equi-
librium at 100 K and 10 000 bars.44 Curiously, we did
not find any measurements on densities of these mixtures,
other than those for pure components. In this work we
used experimental VLE data by Streett et al. (1964),57
Sonntag et al. (1964),58 Sneed et al. (1968),59 and Streett
et al. (1973).44 All these authors assume that their hy-
drogen is normal hydrogen, due to the short cooling and
sampling times.
The results are plotted in Fig. 6. With kij = 0.37,

SRK generally estimates all phase compositions well, al-
though the helium mole fraction in the liquid phase is
systematically overpredicted. SRK also mispredicts the
pure-component densities, which in turn ruins the mix-
ture density predictions. Simulations of the Mie-FH po-
tentials yield decent agreement with the measurements,
with the Mie-FH1 potential being the most accurate.
Simulations at 31.50 K (brown curve) of both Mie-FH
potentials yield a slightly too high critical pressure com-
pared to measurements.
Whereas SAFT-VRQ Mie is in excellent agreement

with simulations away from the critical region, SAFT-
VRQ Mie strongly overpredicts the critical pressure for
the helium–hydrogen mixture. Once again we attribute
this to a deficiency in the description of the critical re-
gion as there is, in this case, a large relative difference in
the effective potential well-depths. For example, for the
temperatures considered in Fig. 6, the ratio ε22,eff/ε11,eff
equals 4.64± 0.02 for Mie-FH1 and 4.15± 0.01 for Mie-
FH2. Although the critical pressure is overpredicted,
also for this system we found that the non-additive hard-
sphere reference for SAFT-VRQMie improved agreement
with simulation results for the saturated liquid.
Since both helium and hydrogen only have two elec-
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(e) SRK Pxy phase diagram.
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(f) SRK Pρ phase diagram.

FIG. 3. Phase-equilibrium diagrams for the hydrogen–neon mixture using the Mie-FH1 potential (Figs. 3a and 3b) and
Mie-FH2 potential (Figs. 3c and 3d). Crosses are experimental measurements,54,55 circles are simulation results, and lines
are calculations with SAFT-VRQ Mie (Figs. 3a–3d) or SRK (Figs. 3e–3f). The full lines are VLE, the dashed lines are LLE,
and the dotted lines indicate VLLE. The crosses in the density plots are the pure-component values computed from reference
EoS.15,16 The temperatures are 24.59 K (black), 28.00 K (red), 34.66 K (blue), 39.57 K (brown) and 42.50 K (green).
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FIG. 4. Cross second virial coefficients for the hydrogen–neon mixture using the Mie-FH1 potential (Fig. 4a) and Mie-FH2
potential (Fig. 4b), compared to predictions of SAFT-VRQ Mie, SRK and measurements by Brewer and Vaughn.43
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FIG. 5. Liquid densities (top plot) and sound speeds (bot-
tom plot) for the hydrogen–neon mixture at hydrogen mole
fraction 0.8. The curves are equation-of-state predictions,
from both SRK and SAFT-VRQ Mie using the Mie-FH1 and
Mie-FH2 potentials, and the markers are measurements by
Güsewell et al.6

trons, direct quantum-mechanical ab initio calculations
can predict the second virial coefficients B12 with
an accuracy exceeding what is currently achievable in
experiments.36 Such calculations, which are based on
path-integral Monte Carlo simulations,41 were performed
by Garberoglio et al. (2014).36 Their resulting cross virial
coefficients are shown in Fig. 7 as green diamonds, where
the uncertainties are smaller than the symbol size. Fig. 7
shows that, for the cross second virial coefficient, the
Mie-FH1 potential constitutes an accurate model, while
Mie-FH2 and SRK show some deviations. Whereas for
Mie-FH1 there is complete agreement between BMie-FH

12
and calculations of BEoS

12 from SAFT-VRQ Mie, for Mie-
FH2 there is a slight mismatch. This mismatch may stem
from the second virial coefficient of the Mie-FH2 poten-
tial for pure hydrogen being less accurate than that of
the Mie-FH1 potential (see the Supplementary Material).
We found that when lij = 0, the cross second virial coef-
ficient for the Mie-FH1 potential shows large deviations
from the ab initio calculations for all values of kij , and
so having lij 6= 0 is in this case essential.
The helium–hydrogen mixture can exhibit barotropic

inversion. This means that in certain parts of the VLE
region, the liquid phase has lower mass density than the
vapor and therefore floats on top of the vapor. Conven-
tional process equipment is not designed for this phe-
nomenon, making it important to predict the conditions
where it happens. Fig. 8 shows a comparison of the pre-
dicted and measured59 barotropic inversion curve for the
helium–hydrogen mixture. The predictions by SAFT-
VRQ Mie lie closer to the measurements than those of
SRK, with predictions using the Mie-FH2 potential be-

ing the most accurate. The reason that Mie-FH2 is the
most accurate model may be its superior accuracy for
modeling the density of supercritical helium (cf. Paper
I).

D. The helium–deuterium mixture

There are fewer reported measurements on the helium–
deuterium mixture than the helium–hydrogen mixture.
However, Hiza (1981)45 has measured the phase equilib-
rium compositions at pressures up to 20 bar, and the
cross second virial coefficients are known to a high ac-
curacy from the ab initio calculations by Garberoglio et
al.36
SAFT-VRQ Mie overpredicts the saturated liquid he-

lium compositions compared to simulations of the Mie-
FH potentials, especially at the lowest temperatures
(Figs. 9a and 9c). For example, at 20 K and 20
bar, the Mie-FH1 simulation predicts a helium content
(0.77± 0.1)%, whereas SAFT-VRQ Mie predicts 1.15%,
and measurements extrapolate to 0.43%. The use of a
non-additive hard-sphere reference system in the per-
turbation theory improves on the additive reference of
Lafitte et al.,2 which underpredicts the helium content
for the simulation at 20 K in Fig. 9a by a factor 5
(not shown). Moreover, the low dispersive energy of he-
lium again results in large ratios of ε22,eff/ε11,eff; for the
temperatures plotted in Fig. 9, they are in the range
5.64± 0.01 and 3.71± 0.5 for the Mie-FH1 and the Mie-
FH2 potential, respectively. SAFT-VRQ Mie, in its cur-
rent implementation, will therefore overpredict the criti-
cal pressure.
Overall, simulations of the Mie-FH1 potentials yield

best agreement with experimental measurements. All
models accurately predict the measured vapor-phase
compositions, whereas SRK seems to yield the overall
most accurate predictions of liquid-phase compositions.
However, SRK overpredicts the liquid densities at the
lowest temperature by ∼ 20%, whereas the Mie-FH1
model yields highly accurate density predictions. The
Mie-FH2 predicts liquid phase compositions with the low-
est accuracy of the three models, but is intermediate be-
tween Mie-FH1 and SRK for accuracy of density predic-
tions. Whereas both Mie-FH potentials reproduce the
cross second virial coefficient well, SRK underpredicts it
(Fig. 10).

E. The deuterium–neon mixture

The qualitative phase behavior of the deuterium–neon
mixture is similar to that of the hydrogen–neon mix-
ture: azeotropic VLE at low temperatures and LLE at
low temperatures and high pressures (Fig. 12). In 1962,
Simon published deuterium–neon VLE measurements at
the single temperature 24.56 K,60 i.e. the triple point of
neon. Although he also measured second virial coeffi-
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0 10 20 30 40
ρ/(kmol/m3)

0

20

40

60

80

100

P
/b

ar
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FIG. 6. Phase-equilibrium diagrams for the helium–hydrogen mixture using the Mie-FH1 potential (Figs. 6a, 6b) and Mie-FH2
potential (Figs. 6c, 6d). Crosses are experimental measurements,44,57–59 circles are simulation results, and lines are calculations
with SAFT-VRQ Mie (Figs. 6a–6d) or SRK (Figs. 6e–6f). The crosses in the density plots are the pure-component values
computed from reference EoS.14,16 The temperatures are 20.40 K (black), 26.00 K (red), 29.00 K (blue) and 31.50 K (brown).
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FIG. 7. Cross second virial coefficients for the helium–hydrogen mixture using the Mie-FH1 potential (Fig. 7a) and Mie-FH2
potential (Fig. 7b), compared to predictions of SAFT-VRQ Mie, SRK and ab initio calculations by Garberoglio et al.36
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FIG. 8. Barotropic inversion locus for the helium–hydrogen
mixture, i.e. the states at which the mass densities of the
vapor and liquid phases are equal. Predictions by SRK and
SAFT-VRQ Mie with Mie-FH1 and Mie-FH2 potentials, as
well as measurements by Sneed et al.59

cients, and stated that “more extensive measurements”
were in progress, it seems that these measurements were
never published. More extensive Pxy measurements were
conducted by Streett in 1968.61 Streett found that the
LLE vanishes above the upper critical solution temper-
ature of 25.74 ± 0.03 K,61 and that azeotropes exist for
temperatures up to at least 36.88 K. Streett also conjec-
tured that azeotropes persist all the way up to the vapor–
liquid critical locus. Interestingly, SAFT-VRQ Mie using
the Mie-FH1 potential makes the same prediction (see
Supplementary Material).

The measurements by Simon, and two isotherms by
Streett, are shown in Fig. 12 together with predictions
by SAFT-VRQ Mie and SRK. Moreover, densities and
sound speeds for liquids with deuterium mole fraction
are shown in Fig. 11. The takeaway is that the Mie-FH1
and Mie-FH2 models are in excellent agreement with the
experimental data, whereas SRK exhibits larger devia-
tions for densities and sound speeds. The deuterium–
neon mixture is the only mixture for which we have not
found any measurements or ab initio calculations of the
cross second virial coefficients. However, Fig. 13 shows
that for B12, all models yield very similar predictions,
and given the good fit for phase-equilibrium measure-
ments we expect that the predicted second virial coeffi-
cients are accurate.

F. The hydrogen–deuterium mixture

Phase-equilibrium composition measurements of the
hydrogen–deuterium system were performed by Hoge and
Arnold in 195162 and by Newman and Jackson63 in 1958.
Studies of this system were initiated to assess the feasi-
bility of separating these two isotopologues by fractional
distillation.64 Since the 1950s, this system has not been
studied by experimentalists, but accurate ab initio cal-
culations of virial coefficients were performed by Gar-

beroglio and Harvey35 in 2013.
Due to the similarity of the two components, the

hydrogen–deuterium interaction can be predicted well
by simply letting kij = lij = 0.0 without any fitting.
Fig. 14 shows the results for phase-equilibrium calcu-
lations. With no fitting parameters, SAFT-VRQ Mie
with the Mie-FH1 potential yields excellent predictions
for both compositions and densities, and also agrees well
with simulations. For the Mie-FH2 potential, a small kij
of −0.04 yields a slightly better match between SAFT-
VRQ Mie and the experiments at 23 K and 24 K, and
is therefore chosen as the optimal parameter. However,
Fig. 14c shows a mismatch between theory and simula-
tions of the Mie-FH2 potential for phase compositions at
28 K. Also, unlike experiments, simulations of the Mie-
FH2 potential at 20 K indicate solid formation; this mix-
ture should therefore not be modeled by the Mie-FH2
potentials at such low temperatures. Figs. Figs. 14e–14f
show that SRK is able to predict compositions, but over-
predicts densities.
Fig. 15 shows that also for this mixture there is an

almost exact match between the ab initio calculations
and those of the Mie-FH1 potential, Mie-FH2 results be-
ing only slightly worse. For both Mie-FH1 and Mie-FH2
there is good agreement with SAFT-VRQ Mie. SRK also
yields good predictions of the cross virial coefficient, but
is slightly less accurate than SAFT-VRQ Mie.

G. Summary of current challenges of modeling mixtures
of ultracryogenic fluids

Before settling on the non-additive hard-sphere ref-
erence, we also explored the use of a single-component
hard-sphere reference, an additive hard-sphere reference
mixture, and the approach by Lafitte et al.2 We chose the
non-additive reference for two reasons: (1) SAFT did not
generally reproduce the cross virial coefficients BMie-FH

12
of the underlying force fields without using a non-additive
hard-sphere reference mixture; (2) compared to the other
reference fluids, the non-additive reference resulted in sig-
nificantly more accurate predictions for high-density liq-
uid states of mixtures containing helium (away from the
critical region). The problems of the perturbation the-
ory for mixtures encountered in the present work are not
linked to the quantum corrections of the potential, but
occur even for binary mixtures of Lennard-Jones fluids.53
We refer the reader to Ref. 53 for a detailed discussion
of these issues, such as the merits of different choices of
hard-sphere reference systems, and how to improve accu-
racy in the critical region.
Independently of how the hard-sphere reference term

is modeled, the perturbation theory underlying SAFT-
VRQ Mie severely overestimates critical pressures for the
binary mixtures involving helium. He atoms have the
weakest dispersive attractions of all known substances,
reflected in its extremely low critical temperature of 5.2
K. This translates into He having a small value of the
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FIG. 9. Phase equilibrium diagrams for the helium–deuterium mixture using the Mie-FH1 potential (Figs. 9a, 9b) and Mie-
FH2 potential (Figs. 9c, 9d). Crosses are experimental measurements,45 circles are simulation results, and lines are calculations
with SAFT-VRQ Mie (Figs. 9a–9d) or SRK (Figs. 9e–9f). Composition plots have been split to magnify the bubble point
region. The crosses in the density plots are the pure-component values computed from reference EoS.14,17 The temperatures
are 20 K (black), 24 K (red), and 30 K (blue).
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FIG. 10. Cross second virial coefficients for the helium–deuterium mixture using the Mie-FH1 potential (Fig. 10a) and Mie-FH2
potential (Fig. 10b), compared to predictions of SAFT-VRQ Mie, SRK and ab initio calculations by Garberoglio et al.36
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FIG. 11. Liquid densities (top plot) and sound speeds (bot-
tom plot) for the deuterium–neon mixture at deuterium mole
fraction 0.7. The curves are equation-of-state predictions,
from both SRK and SAFT-VRQ Mie using the Mie-FH1 and
Mie-FH2 potentials, and the markers are measurements by
Güsewell et al.6

(effective) potential well-depth ε, resulting in large rela-
tive differences in potential well depths for binary mix-
tures, that the present state-of-the-art representations of
the perturbation coefficients a2 and a3 cannot handle.
For binary mixtures not involving helium, the ratios of
the well-depths stay between 0.5 and 2, and the corre-
spondence between simulations and perturbation theory
is good. Once again, we stress that these observations
also hold for binary mixtures of (classical) Lennard-Jones
fluids.53

We showed that SRK, using a single binary interaction
parameter, can reproduce the phase-composition mea-
surements for all the binary mixtures except helium–
neon. The same is true for PR (not shown). This reduces
our confidence in the measurements for the helium–neon
system further, in addition to their violation of Henry’s
law discussed in Sec. IVA. In light of their simplicity,
the ability of SRK and PR to reproduce experimental
Pxy measurements with a single fitting parameter is re-
markable. However, as is well documented,38,65 this ac-
curacy does not hold for other properties such as densi-
ties or caloric properties (e.g., heat capacities), although
the densities can in some cases be amended using volume
shifts.37 Moreover, the present work shows that SRK con-
sistently underpredicts the second virial coefficient. As
shown in Paper I, one of the strengths of the Feynman–
Hibbs-corrected Mie fluids and SAFT-VRQ Mie is their
capability of accurately reproducing these properties for
ultracryogenic fluids. Another strength of Mie-FH po-
tentials is that they allow for studying these fluids from
the molecular perspective, which is not possible with a
semi-empirical EoS such as SRK.

V. CONCLUSION

The SAFT-VRQ Mie equation of state was success-
fully extended to mixtures of Mie fluids with Feynman–
Hibbs quantum corrections of first and second order.
The underlying force fields were fitted to cross second
virial coefficients and phase composition measurements
of binary mixtures of the ultacryogenic fluids helium,
neon, hydrogen and deuterium. These optimized force
fields generally exhibit close agreement with experimen-
tal data on second virial coefficients and phase equilib-
rium compositions, as well as densities and sound speeds
for the mixtures where measurements of these prop-
erties exist. SAFT-VRQ Mie satisfactorily reproduces
phase-equilibrium simulations for mixtures not contain-
ing helium; for helium mixtures the agreement is satis-
factory only at low pressures, whereas critical pressures
are severely overestimated. This is a consequence of the
representation of the second and third perturbation co-
efficient in the Barker–Henderson theory, which are inac-
curate for the large relative differences in potential well-
depths that result from helium’s small dispersive energy.
The current implementation of SAFT-VRQ Mie thus

has potential for improvement. However, in this work
and in Paper I, force-field parameters were optimized for
agreement between simulations and experimental data.
This means that if a more accurate perturbation theory
is developed in the future, the force-field parameters can
be used without any re-fitting.
Cubic equations of state such as SRK are able to ac-

curately model the phase equilibrium compositions of all
binary mixtures except helium–neon with a single binary
interaction parameter. For applications where only phase
equilibrium compositions are of interest, a cubic equation
of state with the interaction parameters provided here is a
simple and rather accurate approach. However, their in-
accurate representation of pure-component densities and
virial coefficients carries over to mixture properties, and
the same must be expected for predictions of caloric prop-
erties.
There is a clear need for more experimental measure-

ments on mixtures of helium, neon, hydrogen and deu-
terium at low temperatures. No measurements of caloric
properties have been reported, whereas mixture densi-
ties have been measured only for the neon–hydrogen and
the neon–deuterium mixtures. The experimental cover-
age of phase equilibrium compositions, however, is de-
cent for most binary mixtures. The industrially im-
portant helium–neon mixture is an exception: there are
only two sources, which are not only mutually inconsis-
tent, but also inconsistent with the accurately known
pure-component saturation pressures of neon. Finally,
at least one measurement of a ternary mixture, for ex-
ample helium–neon–hydrogen, would be valuable to val-
idate the predictive abilities of these force fields beyond
two components.
The force fields presented in this work were shown to

enable accurate simulations of thermodynamic proper-
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(e) SRK Pxy phase diagram.
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(f) SRK Pρ phase diagram.

FIG. 12. Phase equilibrium diagrams for the deuterium–neon mixture using the Mie-FH1 potential (Figs. 12a and 12b) and
Mie-FH2 potential (Figs. 12c and 12d). Crosses are experimental measurements,60,61 circles are simulation results, and lines are
calculations with SAFT-VRQ Mie (Figs. 12a–12d) or SRK (Figs. 12e–12f). The full lines are VLE, the dashed lines are LLE,
and the dotted lines indicate VLLE. The crosses in the density plots are the pure-component values computed from reference
EoS.15,17 The temperatures are 24.60 K (black), 31.86 (red) K and 34.47 K (blue).
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FIG. 13. Cross second virial coefficients for the deuterium–neon mixture using the Mie-FH1 potential (Fig. 13a) and Mie-FH2
potential (Fig. 13b), compared to predictions of SAFT-VRQ Mie and SRK.
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(e) SRK Pxy phase diagram.
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FIG. 14. Phase equilibrium diagrams for the hydrogen–deuterium mixture using the Mie-FH1 potential (Figs. 14a and 14b)
and Mie-FH2 potential (Figs. 14c and 14d). Crosses are experimental measurements,63 circles are simulation results, and
lines are calculations with SAFT-VRQ Mie (Figs. 14a–14d) or SRK (Figs. 14e–14f). The crosses in the density plots are the
pure-component values computed from reference EoS.16,17 The temperatures are 20 K (black), 23 K (red), 24 K (blue) and 28
K (brown).
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FIG. 15. Cross second virial coefficients for the hydrogen–deuterium mixture using the Mie-FH1 potential (Fig. 15a) and
Mie-FH2 potential (Fig. 15b), compared to predictions of SAFT-VRQ Mie, SRK and ab initio calculations by Garberoglio et
al.35
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ties of mixtures of helium, neon, hydrogen and deuterium
at low temperatures. The force fields can also be used
to study transport and relaxation properties, for exam-
ple in the manner as done for He–H2 and He–D2 mix-
tures in Refs. 66 and 67. Considering the high accuracy
with which these force fields reproduce the existing ex-
perimental measurements, they currently constitute the
most accurate, predictive and cost-effective modeling ap-
proach for obtaining thermodynamic properties of ultra-
cryogenic fluid mixtures.

SUPPLEMENTARY MATERIAL

See Supplementary Material for (1) single-component
virial coefficients; (2) global temperature–pressure binary
phase diagrams; (3) tabulated simulation results for bi-
nary mixtures.
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