
On the Resilience of the NFV-MANO:
An Availability Model of a Cloud-native

Architecture
Besmir Tola, Yuming Jiang, and Bjarne E. Helvik

Department of Information Security and Communication Technology
NTNU-Norwegian University of Science and Technology

Trondheim, Norway
Email: besmir.tola@ntnu.no, yuming.jiang@ntnu.no, bjarne@ntnu.no

Abstract—With Network Function Virtualization (NFV), the
management and orchestration of network services require a
new set of functionalities to be added on top of legacy models of
operation. Due to the introduction of the virtualization layer and
the decoupling of the network functions and their running infras-
tructure, the operation models need to include new elements like
virtual network functions (VNFs) and a new set of relationships
between them and the NFV Infrastructure (NFVI). The NFV
Management and Orchestration (MANO) framework plays the
key role in managing and orchestrating the NFV infrastructure,
network services and the associated VNFs. Failures of the MANO
hinders the network ability to react to new service requests
or events related to the normal lifecycle operation of network
services. Thus, it becomes extremely important to ensure a high
level of availability for the MANO architecture. The goal of
this work is to model, analyze, and evaluate the impact that
different failure modes have on the MANO availability. A model
based on Stochastic Activity Networks (SANs), derived from
current standard-compliant microservice-based implementations,
is proposed as a case study. The case study is used to quan-
titatively evaluate the steady-state availability and identify the
most important parameters influencing the system availability
for different deployment configurations.

Index Terms—NFV-MANO, OSM, Availability, SAN models,
Docker.

I. INTRODUCTION

Network Functions Virtualization (NFV) is expected to
bring significant changes in today’s network architectures. By
decoupling the network function software from the underlying
hardware infrastructure, hence, allowing the software to run
on commodity hardware, it provides the necessary flexibility
to enable agile, cost-efficient, and on-demand service delivery
combined with automated management.

The European Telecommunications Standards Institute
(ETSI) defines the NFV-Management and Orchestration (NFV-
MANO) framework [1], in the following referred to as simply
MANO, as a set of three main functional blocks: the NFV Or-
chestrator (NFVO), the VNF Manager (VNFM), and the Virtu-
alized Infrastructure Manager (VIM). The NFVO orchestrates
all the functionality on the service level including operations
like on-board, instantiate, scale, or terminate network services.
The VNFM is responsible for the lifecycle management (e.g.
instantiation, scaling, and healing) of one or more virtual

network function (VNF) instances. It receives management
(e.g. deploy, scale, and terminate) instructions for VNFs from
the NFVO, which it executes through its interface with the
VNFs. The third major component, the VIM, manages the
physical infrastructure (NFVI) where the VNFs are executed.

Operating-system-level virtualization technologies, com-
monly referred to as containers (e.g., Docker [2] or LXD [3])
have enabled a shift in the way applications are deployed
going from a monolithic to a microservice-based, i.e., cloud-
native, architecture. The later empowers the development,
deployment, and operation of large and complex applications
as a set of independent smaller and lighter components (i.e.,
microservices) where each component provides a specific
service, and communicates through well-defined lightweight
mechanisms. This way, service provisioning becomes more
flexible, agile, and reliable [4]. Driven by such benefits,
several open source MANO projects leverage a micro-service
architecture in deploying and operating MANO components
through lightweight containers [5]–[7].

Network operators demand that some of their NFV-based
services ensure a carrier grade quality of service [8], i.e.
highly reliable and trustworthy. However, service outages,
induced by various component failures, are inevitable events
that service operators need to deal with. To this end, an
automated management and orchestration system embracing
resiliency aspects is mandatory for conducting correct counter-
actions to such events. Failures on the management and
orchestration level could jeopardize the functionality of all
the network and potentially impact the service delivery by
inducing severe outages, which sometimes might be hard to
deal with [9], [10]. It is thus of an utmost importance to ensure
that a logically centralized control and orchestration system is
highly dependable and able to ensure service continuity [11].
To this end, ETSI has streamlined several guidelines and
requirements of the management and orchestration resiliency
capabilities [12].

The objective of this paper is to model and quantitatively
analyze MANO steady-state availability when deployed on
container-based technologies for various deployment options.
To this end, we present an NFV-MANO availability model,



derived from current ETSI-compliant architectures, based on
Stochastic Activity Networks (SANs) and perform a quantita-
tive availability assessment aiming at finding the factors mostly
impacting system availability. In the model, we incorporate
various failure modes on both hardware and software level of
the MANO framework. A sensitivity analysis helps us identify
the most critical components of the system in terms of relative
impact on the system steady-state availability. Moreover, we
examine several ways of deploying the software stack aiming
at providing higher availability, inspired by current MANO
implementations adopting cloud-native practices.

The paper structure is organized as follows. Section II
presents the related work and highlights the key contributions.
The MANO architecture used to provide the basis of the model
is illustrated in Section III. The case study availability model
is presented in Section IV. In Section V, we show the results
of the analysis and conclude the paper by highlighting the
most important insights in Section VI.

II. RELATED WORK

Even though the MANO may have a huge impact on the
NFV-enabled network service performance [9], [10], a study
of its failure dynamics and overall availability analysis is still
missing in the literature. Almost all related work focus on
network service availability modeling and quantification. They
either focus on specific use cases like virtualized-EPC [13] and
virtualized-IMS [14], or model and analyze generic network
services provided through NFV-based networks [15], [16]
without considering the impact of the MANO on the overall
service performance. By aggregating non-state space (Reli-
ability Block diagrams) and state-space models (Stochastic
Reward Nets) they quantify and give insights on the service
availability and propose appropriate redundancy configurations
aiming at providing 5-nines availability.

In a more recent study [17], a composed availability model
of an NFV service, based on SANs, is proposed. Each VNF,
composing the network service, is considered as a load-
sharing cluster and the authors propose separate models for
various redundancy mechanisms called Availability Modes
and investigate the impact that a faulty orchestrator has on
the service availability. Differently, in this paper we propose
availability models derived from current micro-service based
implementations, i.e., containerized, and provide insights on
the most critical parameters affecting the availability for dif-
ferent deployment options.

Availability models of containerized systems for different
configurations have been proposed in [18]. The authors pro-
pose and compare various container deployments and through
both analytic and simulation results they investigate k-out-of-
N availability and the system sensitivity to failure parameters.
In [19], the same authors present a software tool, called Con-
tAv, for the evaluation of containerized systems’ availability.
Through the use of both non-state and state-space models
designed by the authors, the tool assess the system availability
for different configurations and allows a system architect to
easily parametrize and perform sensitivity analysis.

In [20], even though not related to availability modeling,
the authors propose centralized and distributed mechanisms
for a providing a reliable and fault-tolerant microservice-
based MANO. The mechanisms exploit load balancing and
state sharing and include some tunnable parameters which can
help an operator optimise the trade-offs between reliability
and the associated costs in terms of resource usage. The
proposed setup allows the definition of a cost function which
can help the operator determine the best configuration among
the centralized and distributed mechanisms.

Compared to the related studies our contribution aims at
filling the current gap regarding the availability assessment of a
critical element of the NFV architecture. We model and assess
a hypothetical MANO system inspired by the current trend of
adopting cloud-native software development and maintenance
embraced by several architectures. In addition, we investigate
various containerized deployment options aiming at achieving
high availability levels and identify critical failure parameters
impacting the MANO availability.

III. CASE STUDY

An ETSI-compliant MANO should adhere to the specifi-
cations streamlined by ETSI and include the main functional
blocks which should interact with each other through well-
defined reference points and provide an end-to-end network
service orchestration. In this paper we extrapolate the de-
ployment options of OSM [5], a well-established architecture
hosted by ETSI and led by a large community including
both operators and research institutions [5]. OSM is closely
aligned with NFV specifications and consists in a production-
quality and VIM-independent software stack. Seven releases
have been distributed up to now. Release 6 (Release 0 has had
a relatively short lifetime) is currently the latest release and
includes different installation procedures where the MANO
components can be deployed as dockerized instances [2] into
a hypervisor-based virtualized environment, a public hosting
infrastructure, or directly into a proprietary commodity hard-
ware. The latter represents the most common way of deploying
and running the OSM stack. It represents the most advanced
release including among others network service and slicing
capabilities, enhanced user interface, and a lighter orchestrator.

The default installation deploys 13 docker containers run-
ning in a Docker swarm mode with each component having
one single replica. Docker swarm mode is a native feature of
Docker for managing and orchestrating a cluster of Docker
engines called swarm. It entails several cluster management
characteristics like: i) decentralized configuration of cluster
nodes at runtime, ii) automatic scaling, iii) automatic cluster
state reconciliation, and iv) integrated load balancing. A swarm
is a cluster of Docker nodes, running in a swarm mode, and
they act as managers, who manage the swarm membership and
delegate tasks, and workers which run swarm services.

A Docker node can be a manager, worker, or both. A
swarm may consist in only one node which by default will
act as a manger and worker at the same time, but it cannot
be only a worker without a manager. We refer to this as the



Manager configuration. In case the cluster is composed of
worker and manager nodes, we refer to it as Manager-Worker
configuration.

One of the key features of a swam is the automatic cluster
state reconciliation. This is very important in terms of fault
management policies. In case one of the services of the
cluster is down, the swarm state changes and the manager
immediately respawns the failed container/containers on other
available node and the service stack becomes healthy again.

IV. AVAILABILITY MODEL

A SAN is a modeling formalism with which detailed perfor-
mance, dependability, or performability models can be imple-
mented in a comprehensive manner [21]. SANs are stochastic
extentions of Petri Nets consisting of four primitives: places,
activities, input gates, and output gates. Places are graphically
represented as circles and contain a certain number of tokens
which represent the marking of the place. Activities are actions
that take a certain amount of time to fire and move tokens from
one place to another. Input and output gates define marking
changes that occur when an activity completes. Different from
output gates, the input gates are also able to control the
enabling of activity completion, i.e., firing.

In the following, we illustrate the proposed models repre-
senting the different MANO configurations.

A. Manager Configuration

Past studies classify software faults into two main cate-
gories, Bohrbugs and Mangelbugs [22]. Bohrbugs, otherwise
called deterministic, are typically easily reproducible since
they tend to manifest themselves consistently under the same
conditions. They often may lead to a software crash or process
hanging and the bugs need to be identified and resolved.
Mandelbugs are bugs whose activation and error propagation
are complex. As a result, it is quite hard to reproduce and their
manifestation is transient in nature. They are usually caused by
timing and synchronization issues resulting in race conditions.
A retry operation or software restart may resolve the issue.
There is a further subtype of Mandelbugs that is related to
an aspect know as software aging. Software aging is a well-
know issue which characterizes the software failure rate due to
phenomena like the increase of software execution period [23].
It has been shown that the increase of process runtime is a
common cause to the increase of software failure rate and the
system performance may degrade over time. Typical faults in
IT systems caused by aging effects include resource leakages,
numerical error, or data corruption accumulation. Therefore,
the failure might occur as a result of the increase of system
uptime. Common methods of recovering from such failures
rejuvenation techniques consisting of restart and/or reboots
procedures [24].

On the software level, for the scope of our investigation,
we differentiate between two types of software failures, non-
aging related failures and aging related failures. The former
set aims at representing both Bohrbugs and non-aging Man-
gelbugs where the majority of these failures can be recovered

Fig. 1: SAN availability model of the MANO deployed in a Manager
configuration.

through a manual intervention for software repair and the latter
represents the failures due to aging effects where the majority
of these failure are recovered by a software restart/reboot.

Fig. 1 illustrates the SAN model of the Manager configura-
tion. It consists of the deployment of the MANO containerized
software into one physical node which acts as both manger and
worker for the service tasks. The model includes the MANO
software, Docker daemon, OS, and hardware components and
their relative places sw, D, OS, and HW are initialized with
1 token each, indicating a fully working system. Similar to
previous works (see related work [13]–[16]), it is assumed
that all the timed activities follow a negative exponential
distribution unless otherwise specified.

The aging effect is represented through a specific timed
activity sw ag with rate λswag which defines the time it takes
for the software to age, i.e., the average time that the software
accumulates errors that might lead to an aging-related failure.
The timed activities sw ag f and sw nag f represent the
aging and non-aging related software failure events with rates
λsw−failag and λsw−failnag , respectively. For both events, we
differentiate between two types of software failures based on
their recovery process. To this end, we make use of case
probabilities associated to the timed activities where Cnag

defines the probability that a non-aging related failure event is
recovered with a software restart. With probability 1−Cnag the
failure recovery requires a manual intervention for executing a
software repair. Similarly, Cag defines the probability that an
aging related failure is recovered with a software restart and
with 1− Cag the recovery requires a software repair.

Once a software failure is experienced, a token is placed in
either sw p failed or sw t failed defining the recovery pro-
cess the software will undergo. heartbeat and catch-exception
represents the detection of the failures and are defined with de-



terministic times µh and µc. sw rep and restart represents the
repair (including any eventual reboot or upgrade of software)
and restart events of the software with rate µswrep

and µswres
.

On the docker engine level, i.e., daemon, D f and D reload
represents the failure and recovery events of the daemon with
rates λD and µDr

, respectively. The recovery entails a daemon
reload where with probability CD a daemon reload recovers
the failure and with 1−CD a hard repair is needed. The later
is defined through the activity D rep with rate µDrep

. Once the
daemon is repaired, an additional reload is performed to fully
recover it. Similarly to the daemon, the operating system level
is modeled with the same dynamics having specific failure and
repair parameters which we introduce in Section V. On the
hardware level, HW f and HW replace represents the failure
and recovery events of the hardware with rates λHW and
µHWrep

, respectively. The place HW spare indicates the spare
hardware equipment used to replace the failed hardware and
is initialized with 1 token.

Finally, the following output gates define the token marking
movements among places: OG1/OG3/OG5 manage the failure
events of the daemon, OS, and hardware levels, respectively.
When their related timed activities fire, connected to their
incoming arcs, the output gate places 1 token in the respective
failed position and sets to zero the upper-level places. This is
because a failure of the physical hardware will cause a failure
of the OS which in turn impacts the operational state of the
daemon and MANO software as well; OG2/OG4/OG6 places
1 token in their relative working place, i.e., D/OS/HW, and
the relative upper-level places to which they are connected by
outgoing arcs. For example, a recovery from a daemon failure
brings the daemon in the up state but requires a restart of the
MANO software for a fully working MANO.

B. Manager-Worker Configuration

The Manager-Worker swarm configuration consists of two
separate nodes forming a cluster where the OSM stack is
deployed on the worker node and the Manager node per-
forms the control and scheduling of tasks. Fig. 2 depicts the
Manager-Worker SAN model. To distinguish the models of
the two entities, we make use of a suffix M for all the places
and activities regarding the manager part. The system is fully
working if there is a token in either of the sw, sw aged, or
sw M places.

On the worker node, the MANO software component is
similar to the Manager configuration except for the recovery
phase where once a failure is detected, the containers run-
ning the software are respawned, through the timed activities
respawn or respawn1, in the manager node. We distinguish two
cases: when a software repair is needed, the token is moved
from p det of the worker node to p det M of the manager.
In the other case, the token is moved from t det to sw M
indicating that a respawn, i.e., container restart, is sufficient
to recover the system. However, for both cases, we consider
the eventuality of a respawn process that fails. To this end,
we consider two case probabilities associated with the timed
activities. With probability Crespawn, the container respawn

Fig. 2: SAN availability model of the MANO deployed in a
Worker-Manager configuration.

is successful and 1 − Crespawn it fails. In the latter, there is
a need for a manual coverage, represented by manual cov,
and the token is placed back in place sw. In order for the
respawn to instantiate, the hosting manager node needs to
be operational and this is controlled by the enabling gates
IG1/IG2 which enable the respawn only if the daemon, OS
and hardware of the manager are working, i.e., their respective
places D M, OS M, and HW M contain each 1 token. In
addition, differently to the Manager setup, once the daemon
fails, there is just the recovery of the daemon since the MANO
software is immediately respawned in the manager node. The
rest of the model is similar to the Manager configuration,
hence we omit further illustrating.

On the manager node, once a token is deposited in sw M,
the system is again operational. While the software is running
in this node, we assume that it is subject to only non-aging
software failures. This is because swarm mode best practices
suggest that the worker node should be the dedicated node
for handling task requests in a ’normal’ condition. Therefore,
we limit the hosting of the MANO software to the manager
node only for the period the worker node is failed. To this
end, the input gate IG3 enabled a respawn of the software
containers from the manager node to the worker node once
the worker node is up and running again and ready to
accommodate the containers. As a result, the manager node
will host the containers for a relatively short time compared
to the software aging time, hence making the assumption of
only non-aging failure events while the software is running
on the manager node a reasonable assumption. The rest of
the manager components, i.e., daemon, OS, and hardware are
similar to the Manager configuration.

C. Replicated Configuration

One of the most advantageous swarm features is automatic
scaling and integrated load balancing. In case MANO utiliza-
tion gets close to its resource limits, an operator can easily



TABLE I: Availability model parameters.
Intensity Time Description [Mean time to]
λ−1
swag = 1 week MANO software aging
λ−1
sw−failag

= 3 days next MANO software failure after aging

λ−1
sw−failnag

= 2 month next MANO non-aging software failure

µ−1
swrep = 1 hour MANO software repair
µ−1
swres = 30 seconds MANO software restart
µ−1
h = 10 seconds heartbeat*
µ−10
c = 1 millisecond catch exception*
λ−1
D = 4 months next daemon failure
µ−1
Drep

= 1 hour daemon repair

µ−1
Dr

= 15 seconds daemon reload
λ−1
OS = 4 months next OS failure
µ−1
OSrep

= 1 hour OS repair

µ−1
OSr

= 5 minutes OS reboot
λ−1
HW = 6 months next hardware failure
µ−1
HWrep

= 4 hours hardware repair

µ−1
HWreplace

= 1 hour hardware replace

µ−1
respawn = 1 minute respawn MANO software containers
Cnag = 0.3 prob. for non-aging transient failures
Cag = 0.7 prob. for aging transient failures
CD = 0.9 daemon reload coverage factor
COS = 0.9 OS reboot coverage factor
Crespawn = 0.9 respawn coverage factor
Nspare = 1 Number of spare hardware

*Deterministic time

spin up additional replicas of the containers and the swarm
integrated load balancer will manage the task scheduling with-
out any additional configuration required from the operator.
Spinning up additional replicas can bring advantages both
in terms of performance and availability. To this end, we
consider the case where multiple MANO instances are running
in both Manager and Manager-Worker setups and the system
is considered availability if at least one replica is working.

For modeling the replicated configuration, it is sufficient
setting the number of tokens in the sw place equal to the
number of replicas for both Manager and Manager-Worker
configurations. This way, the models resemble a setup where
multiple containers, for each of the MANO components, are
launched and run in the same OS and physical hardware.

V. NUMERICAL ANALYSIS

In this section we present the sensitivity analysis of the
steady-state availability for both configurations and failure
impact on the overall unavailability. The presented models are
defined in the Möbius software tool [25] and the numerical
analysis is performed using discrete-event simulations, inte-
grated in the tool, with 95% confidence interval and 0.05 width
of relative confidence interval.

A. Manager configuration: Sensitivity Analysis

We performed a sensitivity analysis to determine which of
the parameters have the highest impact on the steady-state
availability of the Manager configuration. The SAN model
parameters are retrieved from previous literature [17]–[19] and
are illustrated in Table I. They represent the reference values
and given these parameters, the achieved MANO availability is
presented in Table II, together with its component availabilities
where the latter are derived from individual dynamics, i.e.,
not influenced by underlying component failures. It can be

TABLE II: Steady-state availability of Manager Configuration.
MANO MANO Sw Daemon OS Hardware

Availability 0.99751 0.99787 0.99964 0.99967 0.99975

0.
98

8

0.
98

9
0.

99

0.
99

1

0.
99

2

0.
99

3

0.
99

4

0.
99

5

0.
99

6

0.
99

7

0.
99

8

0.
99

9

MANO Availability

sw repair rate
hw replace rate
catch exception
OS reboot rate
sw restart rate

daemon repair rate
OS repair rate

daemon reload rate
heartbeat

daemon failure rate
OS failure rate

sw aging failure rate
sw aging rate

hw failure rate
sw non-aging failure rate x10

x10
-1

Fig. 3: Sensitivity analysis for the Manager configuration.

seen that the software part is the most fragile component.
For computing a sensitivity analysis, the parameters regarding
failure and recovery events were increased and reduced by one
order of magnitude, i.e., ×10 and ×10−1, from their reference
values. The availability sensitivity to these parameters, sepa-
rated into failure and recovery events, is presented in Fig. 3.

From a failure events perspective, the most important pa-
rameter is software non-aging failure rate followed by hard-
ware, software aging, and software aging failure rates. Among
these, it is the latter that brings the highest improvement on the
steady-state availability when there is an order of magnitude
reduction of the relative intensities. On the contrary, for the
same level of parameter reduction, software repair rate has the
highest impact by reducing the system availability from 0.997
to almost 0.988 followed by the hardware replace rate. At the
same time, the highest improvement is achieved for a software
repair rate increase reaching 0.9993.

Beside the failure and repair parameters, the probability
factors that define the types of software failures which may
have an important influence on the overall availability. The
choice of the reference values is driven by common assump-
tions that non-aging failures, i.e., deterministic failures, often
lead to system crashes and debugging processes can improve
software robustness by identifying and resolving the bug.
Hence, choosing a CNAG = 0.3 means that the majority of
such failures require a software repair. The opposite is valid for
aging-related failures which more often may lead to transient
failures that can be resolved by simply restarting the software.
To this end, we explore a range of these factors and their
impact on the availability.

Fig. 4 presents the MANO availability for the different
combinations. We notice that for the same level of reduction,
the aging factor achieves a much higher availability improve-
ment compared to the non-aging factor. This indicates that the
system can benefit more from the transient nature of aging
related bugs than those of deterministic failures, otherwise
called Bohrbugs.

1) Failure Impact: It is expected that on average around
52 failures per year will contribute to a total duration of



0.4 0.55 0.7 0.85 1.0

Non-aging factor - C
nag

0.995

0.996

0.997

0.998

0.999

1

M
A

N
O

 A
v
a
ila

b
ili

ty

0.0 0.15 0.3 0.45 0.6

Aging factor - C
ag

Fig. 4: Impact of aging and non-aging factors on the availability.

Failure frequency Unavailability impact
0%

20%

40%

60%

80%

100%

Non-aging failure Aging failure Daemon failure

OS failure HW failure

Fig. 5: Failure frequency and relative impact on the unavailability.

21.7 hours of unavailability. The contribution of different
failure types, in terms of their frequency and the impact
on the system downtime, is presented in Fig. 5. It can be
observed that software failures are the predominant events,
accounting for almost 84% of all the failures. In particular,
we notice that despite software aging failures represent almost
60% of the overall failures, they lead to only 27.5% of the
MANO downtime. On the other hand, non-aging software
related failures consists of the 16% of the total failure but
contribute to almost 58% of the total downtime. In addition,
hardware failures represent around 4% of all the failures and
they contribute to more than 10% of the system downtime.

2) Software aging impact: In the sensitivity analysis we
noticed that aging failure rate may have a considerable impact
on the availability of the MANO. However, software aging rate
and aging failure rate are very unpredictable parameters since
they depend on several factor that may be out of developer’s
control such as software utilization rate, i.e., system load,
operating infrastructure and software implementation. We ex-
plore a wide range of software aging parameters, varying the
aging rate between 1 day and 2 weeks and the aging failure
rate between 12 hours and 1 week. The MANO availability
for different combinations of the parameters is presented in
Fig. 6. It can be seen that the impact of the aging failure rates
depends greatly on the rate of aging. When the time it takes
the software to age is short, i.e, lower than 3 days, the aging
failures have a much higher impact on the availability.

B. Manager-Worker Configuration: Sensitivity Analysis

The deployment of the MANO stack in a Manager-Worker
configuration entails an automatic respawn of the containers
in the manager node in case the MANO experiences a failure.
This setup is suitable for recovering system outages due to

1 day 3 days 1 week 2 weeks

Software aging rate

0.988

0.99

0.992

0.994

0.996

0.998

1

M
A

N
O

 A
v
a

ila
b

ili
ty

Aging fail rate = 12 hrs Aging fail rate = 1 day

Aging fail rate = 3 days Aging fail rate = 1 week

Fig. 6: Impact of software aging and its failure rate on the availability.

0.
99

55

0.
99

6

0.
99

65

0.
99

7

0.
99

75

0.
99

8

0.
99

85

0.
99

9

0.
99

95 1

Availability

sw repair rate
manual cov rate

respawn rate
OS M failure rate

daemon M failure rate
hw M failure rate

C
respawn

daemon failure rate
OS failure rate
hw failure rate

sw non-aging failure rate x10

x10
-1

Fig. 7: Sensitivity analysis for the Manager-Worker configuration.

external components like the daemon engine, OS, or hardware
failures of the hosting node, i.e., worker node. However, such
procedure is triggered only if the manager is capable, i.e.,
fully working, of hosting the containers running the software
components. Therefore, the respawn procedure is constrained
by the operational state of the manager node. Fig. 7 depicts the
sensitivity analysis of some of the critical parameters in this
setup. First, we notice that applying this configuration, i.e, by
joining another node into the swarm, the MANO availability
is increased from 0.99751 of the Manager case to 0.99916 for
the reference parameters (refer to Table I). Second, we observe
that software repair and manual coverage rate, i.e., the mean
time to manually recover a failed respawn procedure, may have
a tremendous impact in deteriorating the system availability
where for the latter despite the successful respawn factor is
set to 0.9. Moreover, we evidence that the external failures
on the worker node (hardware, OS, and daemon) have a much
higher impact than those of the manager node parameters. This
is due to the policy that a respawn of the containers from the
manger to worker is done as soon as the worker node is ready
to re-host the containers, i.e, it is recovered from failures which
triggered a respawn to the manager in the first place.

C. Replicated Configuration

Fig. 8 illustrates the gains in terms of system availabil-
ity due to the introduction of additional replicas. For both
cases, there is a relatively restricted gain which is due to
the constraints posed by external components availabilities
since all the replicas are still running on the same physical
node. However, engaging multiple replicas brings additional
benefits in terms of the reduction of the impact of critical
parameters as highlighted by the dotted lines in both Fig. 3



1 2 3 4 5

Number of replicas

0.997

0.9975

0.998

0.9985

0.999

0.9995

M
A

N
O

 A
v
a
ila

b
ili

ty

Manager

Manager-Worker

Fig. 8: Availability for different container replicas.

and Fig. 7, representing the cases with 4 replicas for the most
impactful parameters in the Manager and Manager-Worker
configurations. We notice that for both configurations, the
largest reduction is achieved on software repair rate followed
by the non-aging failure rates when the related reference pa-
rameters are degraded by one order of magnitude. In addition,
a significant reduction is achieved for the impact the manual
coverage rate has on the Manager-Worker setup.

One solution to the limited gain when multiple replicas are
applied can be Docker Universal Control Plane (UPC) for
enterprises which envisions a complex architecture that max-
imally leverages docker swarm scalability for achieving high
availability [26]. It consists of a docker swarm with multiple
manager and worker nodes instantiated into separated physical
nodes. This solution promises much higher availability levels
than those anticipated in our study and could represent a
viable solution for network operators deploying and managing
a cloud-native MANO. We leave the investigation of this
solution for future work.

VI. CONCLUSION

In this paper, we present an availability model for a cloud-
native NFV-MANO architecture from which we analyze and
quantify its steady-state availability. We have included the
most typical failure modes and evaluated their impact through
sensitivity analysis for different containerized deployments.
The proposed model, based on Stochastic Activity Networks
(SANs), captures both failure and recovery dynamics involving
containerized applications and the effects of software aging.
The investigation has shown that adopting containerized tech-
nologies with standard deployments having both single and
multiple replicas deployed into a single physical node is not
sufficient for achieving “5-nines” availability. The sensitivity
analysis also revealed that non-aging-related software failures
and software repair stand out as key important failure and
repair parameters, respectively. When clustering mechanisms
such as Docker swarm mode with separated worker and
manager nodes are adopted, we observed that the MANO
availability is further increased and the above parameters
become less critical when multiple MANO container replicas
are engaged. Software aging may have a considerable impact
on the availability and we showed the relationship between
aging effects and failures related to it. As future work we
will consider modeling and analysis of more complex swarm
deployment options similar to those designed for Docker
Enterprise solutions.

ACKNOWLEDGMENT

This research was funded by the joint EU FP7 Marie Curie
Actions Cleansky Project, Contract No. 607584.

REFERENCES

[1] G. N. ETSI, “Network Functions Virtualisation (NFV): Architectural
Framework,” ETSI GS NFV, vol. 2, no. 2, p. V1, 2013.

[2] Docker Website. Accessed: 2019-10-30. [Online]. Available: ”https:
//www.docker.com/”

[3] LXD. Accessed: 2019-10-30. [Online]. Available: ”https:
//linuxcontainers.org/”

[4] N. Dragoni et al., “Microservices: yesterday, today, and tomorrow,” in
Present and ulterior software engineering. Springer, 2017, pp. 195–
216.

[5] OSM website. Accessed: 2019-10-30. [Online]. Available: ”https:
//osm.etsi.org”

[6] OpenBaton website. [Online]. Available: ”https://openbaton.github.io”
[7] SONATA website. Accessed: 2019-10-30. [Online]. Available: ”https:

//www.sonata-nfv.eu/”
[8] ETSI, “Reliability; Report on Models and Features for E2E Reliability,”

ETSI, Tech. Rep. GS REL 003 v1.1.2, 2016-07.
[9] A. J. Gonzalez et al., “Dependability of the NFV orchestrator: State

of the art and research challenges,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 4, pp. 3307 – 3329, 2018.

[10] G. Nencioni et al., “Orchestration and control in software-defined 5G
networks: Research challenges,” Wireless Communications and Mobile
Computing, vol. 2018, 2018.

[11] I. N. ETSI, “ETSI GS NFV-REL 001 v1. 1.1: Network Functions
Virtualisation (NFV); Resiliency Requirements,” 2015.

[12] ——, “ETSI GR NFV-REL 007 v1.1.2: Network Function Virtualisation
(NFV); Reliability; Report on the resilience of NFV-MANO critical
capabilities,” 2017.

[13] A. Gonzalez et al., “Service availability in the NFV virtualized evolved
packet core,” in Global Communications Conference (GLOBECOM),
2015 IEEE. IEEE, 2015, pp. 1–6.

[14] M. Di Mauro et al., “IP multimedia subsystem in an NFV environment:
availability evaluation and sensitivity analysis,” in 2018 IEEE NFV-SDN.
IEEE, 2018, pp. 1–6.

[15] ——, “Service function chaining deployed in an NFV environment: An
availability modeling,” in IEEE CSCN. IEEE, 2017, pp. 42–47.

[16] ——, “Availability modeling and evaluation of a network service de-
ployed via NFV,” in International Tyrrhenian Workshop on Digital
Communication. Springer, 2017, pp. 31–44.

[17] B. Tola, G. Nencioni, B. E. Helvik, and Y. Jiang, “Modeling and
evaluating NFV-enabled network services under different availability
modes,” in IEEE DRCN. IEEE, March 2019.

[18] S. Sebastio, R. Ghosh, and T. Mukherjee, “An availability analysis ap-
proach for deployment configurations of containers,” IEEE Transactions
on Services Computing, 2018.

[19] S. Sebastio, R. Ghosh, A. Gupta, and T. Mukherjee, “ContAv: A Tool
to Assess Availability of Container-Based Systems,” in IEEE SOCA.
IEEE, 2019, pp. 25–32.

[20] T. Soenen et al., “Optimising microservice-based reliable NFV manage-
ment and orchestration architectures,” in IEEE RNDM, Sep. 2017, pp.
1–7.

[21] W. H. Sanders and J. F. Meyer, “Stochastic activity networks: Formal
definitions and concepts,” in School organized by the European Educa-
tional Forum. Springer, 2000, pp. 315–343.

[22] M. Grottke and K. S. Trivedi, “Software faults, software aging and soft-
ware rejuvenation,” The Journal of Reliability Engineering Association
of Japan, vol. 27, no. 7, pp. 425–438, 2005.

[23] M. Grottke, R. Matias, and K. S. Trivedi, “The fundamentals of software
aging,” in 2008 IEEE ISSRE Wksp, Nov 2008, pp. 1–6.

[24] K. S. Trivedi et al., “Recovery from failures due to Mandelbugs in
IT systems,” Proceedings of IEEE PRDC, no. December, pp. 224–233,
2011.

[25] Möbius: Model-based environment for validation of system reliability,
availability, security and performance. Accessed: 2019-10-30. [Online].
Available: ”https://www.mobius.illinois.edu”

[26] Docker Reference Architecture: Docker Enterprise Best
Practices and Design Considerations. Accessed: 2019-
10-30. [Online]. Available: ”https://success.docker.com/article/
docker-enterprise-best-practices\#highavailabilityindockerenterprise”


