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1. Introduction

The degree of interdependence between stock mdr&stiseen examined in many empirical
studies in the last few decades [Kasa (1992), Rishél995), Chen, Firth and Meng Rui
(2002), Jeon and Chiang (1991)]. This interestasnihy because of the increase in capital
flow across countries, opportunities for portfdiiwersification and potential predictability of
stock data. One aspect of such interdependencénitegration. Cointegration between stock
markets has become a topic of interest and staa¢srtarkets tend to move together over the
long-run (Engle and Granger, 1987). The mentionediss have all showed that stock
markets around the world are not as independemharg It has become quite plausible to
expect that they share a common trend. This imghiasstock indices are linked closely and

that movements in one market affect other stockkataimmediately (Lee and Jeon, 1995)

Cointegration has many implications both for fin@htheory and for portfolio management

of the individual investor. Cointegration is impamt in theory of finance due to the fact that

if the efficient market hypothesis holds, it shontit be possible to predict stock indices using
indices from other stock markets. However, if méskaove together in the long-run, this
hypothesis will not hold (Shleifer, 2000). Cointation has also implications on the

individual investor — in order to hedge risk, intggs diversify their portfolios by investing in
assets traded in different stock markets. If cgragon between markets is present, their
indices will behave in a similar way in the longirand give similar returns, leading to the
potential reduction of gains from internationaleafisification [Kasa (1992), French and
Poterba (1991), Richards (1995)].

The purpose of this research is to examine wheliege is evidence for cointegration among
stock markets in Scandinavia. Stock markets of Mgrn&weden, Denmark and Finland are
included in this analysis. The main reason for sivap Scandinavian stock markets is
because of their historical, political and regioclake relation in addition to the small amount
of attention that these developing markets haveived in previous cointegration research.
The United States market was included mostly bexatithe global significance of the US
economy and empirical findings the US market isnégrnational source of common
stochastic trends [Masih and Masih (2001), HassaNaka (1996)]. Data was gathered



using a sample period from February 1993 to Felpr2@t3. This research is unique because
of the recent sample period it uses, as many ecapstudies use data from the 1980s and
1990s only. In addition, Scandinavian stock marketge not been in the focus of many
cointegration studies. Most studies about cointegran Scandinavia are based only on

pairwise analysis and usually performed before 2000

Both the long-run and short-run linkages betweenkstnarkets are examined in this
research, with a focus on the long-run concepbaoftegration. For the long-run relationship,
we test whether the stock markets are pairwisetegiated over the sample period by using
the Engle—Granger test as well as the Johanserothéfhe Johansen method is also used to
examine cointegration among stock markets as arsysh terms of short-run relations, the
Granger causality test is performed. For everyttestull 20-year sample period is divided
into two equal subsamples to check if the resuéisstable. The result suggest no strong or
stable evidence for cointegration among these stoakets over this sample period, which is
consistent with results of many similar researcBeandinavia [Booth, Martikainen and Tse
(1997), Malkamaki, Martikainen, Perttunen and Puwgto(1993), Pynnonen and Knif (1998)].

Causality tests showed some short-run pairwiséioaekbetween the analyzed stock markets.

This thesis is divided into seven chapters. Chapterthe introduction. Chapter 2 contains a
theoretical introduction to cointegration and dgs®s its importance. Chapter 3describes the
empirical background with focus on the concepttafignarity. A description of the data used
in this thesis is given in Chapter 4. Chapter S@nés the various econometric tests and
methods used to examine cointegration. The restittsese tests are presented in Chapter 6.

Chapter 7 concludes this research.
1.1 Previous empirical work

Many studies around possible cointegration betvilgennational stock markets have been
performed earlier. However, the results are qutdlcting and show no consensus on

cointegration, even between the major internatiomalkets.

Corhay, Rad and Urbain (1993) examine the largesksnarkets of Europe from 1975
t01991 and find evidence for cointegration betwdsemm. The same conclusion is found for

stock markets in Latin America by Chen, Firth and (2002), using the indices of six major



stock markets in Latin America and data from 1993Q00. Kasa (1992) gives the strongest
rejection of no cointegration hypothesis. In tl@search, testing for cointegration is
performed between the major stock markets of Ufad, England, Germany and Canada
using both monthly and quarterly data from 19749360. Strong evidence for one single
cointegrating vector is found for these marketss Toonclusion is partially at odds with other

work in this area which suggests little or no cegration between stock markets.

Richards (1995) criticizes the work of Kasa (19889 finds little empirical evidence for
cointegration of stock market indices using datalf®international stock markets. Kanas
(1998) tests for pairwise cointegration betweenUSestock market and six major European
markets using daily data from 1983 to 1986. Theltesuggest that the US market is not

pairwise cointegrated with any of the European misk

The major, leading stock markets which include UBK, Japan, Germany etc., have
received most attention in earlier cointegratioalgses. However, empirical evidence for
cointegration in Scandinavia is various. Boothl¢i897) find no evidence for cointegration
in Scandinavian markets using a sample period ft688 to 1994. Some evidence for price
and volatility spillovers was found. Pynnonen amdf1998) focus on the Finnish and the
Swedish stock market in their research, coveriugrg large sample period from 1920 to
1994. No pairwise cointegration or fractional cegmation was found in this research. A
similar analysis was performed by Malkamaki etl®93), where the lead-lag causality
relationships between the stock markets in Sweldenmark, Finland and Norway were
examined. Even with this research there is little@evidence for cointegration among these
markets, although some causality relations wereatiedl and the Swedish market was found
to be the leading one in the region. However, kamifl Pynndénen (1999) in their later research
manage to find fractional cointegration betweenn8aavian markets. One of the few recent
studies performed by Zhang (2012) also suggestsbidegrating vectors among

Scandinavian stock markets in the last decade.

The results from previous work about cointegraiamong Scandinavian markets are
obviously inconsistent and mixed. In general, cagnation results depend widely on the
choice of stock markets, the chosen sample pernegiiency of the data and the model

specification.



2. Theoretical background

The empirical concept of cointegration will be meted and discussed in chapter 3.2 but for
understanding the implications of cointegratioms iimportant to introduce the essence of the
concept. The main idea behind cointegration is\thatbles have a tendency to move
together in the long run — there is an equilibriwtationship between them. Short-term
deviations from the equilibrium are possible, luthe long-run the variables will return back
to equilibrium relation due to the error or equilitm correction model (Engle and Granger,
1987).

2.1 Factors contributing to stronger interdependence

Trading and investing across different countries mmarkets has increased in the past few
decades. One of the reasons is certainly libetadisaf the markets. Another reason is the
globalisation of world economy which has made itmeasier to instantly make investments
in any stock market of the world (Corhay et al. 399

One of the many motives behind investing abroativiersifying the portfolio to hedge risk
and increase expected return from stocks. Increasechational trading has in great extent
led to stronger dependence among stock markets #re point of view of involved
countries, stronger interdependence has also egsulincreased competition within the
markets, positive capital flow across borders Ehis flow of capital can especially be

noticed from the developed to developing countfiBessler and Yang, 2003).

The process of globalisation is a relevant fadtat tontributed to a more interdependent
world. Globalisation in the economic perspectiveangincreased interdependence among
national economies, which led to opening of théomatl economies to foreign trading,
liberalization of the markets and increased cafiba across countries. Most of the
developed countries removed restrictions aboutdargrading during the 1980s and 1990s
(Henry, 2000).

Factors that have the strongest impact on thisgsare deregulation of the economies,
multinational corporations and their activities ottee globe and coordination of national

policies. These are economic growth factors thabnty increase the economic



interdependence among countries, but also betveanstock markets (Phengpis and
Apilado, 2004).

One of the most important factors to strengtherlittk@ages between stock markets, is the
development of communications technology and coerméd systems. It is impossible to
imagine the stock markets today without advancelrtelogy that shortens the time between
trades being initiated and trades being compléfkxate relevant for our discussion about
globalisation is the information that has becomearavailable and allowed institutions, as
well as individuals, over the world to buy or s&thcks rather quickly at lower transaction
costs. These factors have as well had a signifiogpéct on increased capital flow among

countries and a more interdependent financial w@ldckman, Holden and Thomas, 1994).

Phengpis and Apilado (2004) analyzed in their waoslv stronger economic interdependence
among the countries contributes to cointegrationragrthem. The five largest stock markets
in Economic and Monetary Union (EMU) were consideusing a sample period from 1979
to 2002. EMU is a good example in this case, asithen promotes strong economic
interdependence and harmonization of the econoniicigs of the members. The results
indicated strong cointegration over the full sanfpletEMU-members. The same analysis for
five non-EMU countries showed no cointegration aghthrem. In their work the conclusion is
that strong economic interdependence between dgesimgrcrucial for cointegration and

common stochastic trends between stock markets.

The findings from Phengis and Apilado’s work suddbat cointegration could theoretically
be found between the Scandinavian stock markethe&rseconomic interdependence has
certainly increased in the past decade. Althoughptiocess of their integration started earlier,
the NASDAQ OMX group was formed in May 25, 2007 containing Stadfh Helsinki,
Copenhagen and four other stock markets. This veagéficant step towards stronger

interdependence among the Scandinavian markets.

! NASDAQ OMX merger press release
http://www.nasdagomx.com/newsroom/pressreleasesimiease/?messageld=760059&displayl anguage=en
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2.2 Economic implications of cointegration

The cointegration results have significant impiicas in the world of economics. The degree
of international stock market cointegration is intpat for investor’s investment strategy and

stock market portfolio. We will discuss these imptions in detail.

2.2.1 Investment strategy - Diversification

The cointegration results can be helpful towardssiens about the investment strategy.
Aside from the positive impacts on the capital fipwtronger interdependence among stock
markets leads to diversification problems for thdividual investor. In order to reduce the
risk and achieve higher returns, investors ofted te invest in foreign stock markets (French
and Poterba, 1991). This technique is called imtgwnal diversification of the portfolio. The
analogy behind this is that loss in one markebmgensated with the gain in another market,
but these benefits will hold only if the stock metikare not perfectly correlated. Therefore
investors are constantly seeking for stocks thatatcorrelate with each other and hence
provide better opportunities for hedging the ridkalogously, if international stock markets
are strongly correlated in the long-run, the pesitffects of diversification will be

diminished or excluded (Brooks, 2008).

If the cointegration analysis of stock markets shidhwat they follow their own different
patterns, investors can fully achieve the benefiiaternational diversification. However, if
cointegration between markets is detected, itimiflly that a common trend brings these
stock markets together. Any market by itself welpresent the behavior of the whole group of
markets gathered around a common trend. The proisiémat this could reduce or even
remove the gains from international diversificatibonss in one stock market will mean loss
in another market as well, since they move togetker time. Investing in a group of
cointegrated markets at the same time will not betig risk of investment. However, it does

not mean that short-run profits and gains are ebariu

When cointegration is present between stock marketslicates that fewer assets are
available for diversification of the portfolio. Ttefore, cointegration may force investors to

reconsider allocation of their capital when invegtin foreign stock markets. It is advisable to



invest in stock markets that are not cointegrabetdximize the benefits of diversification
(Kasa, 1992).

2.2.2 Market efficiency

The efficient market hypothesis (EMH) is one of deatral hypotheses in financial theory. In
efficient markets, all relevant information abotdcks is free and available for all rational
investors. Therefore, the stock prices alreadyainrand fully reflect all available and
relevant information (Shleifer, 2000). There aréedent forms of market efficiency based on
the degree of information that is available. Théntyaobserved and examined form is the
weak form of market efficiency, which claims th#itgast, historical information about prices
is reflected in today’s price [Fama (1991), Gilsond Kraakman (1984)].

The EMH excludes the possibility for investors taperform the market and earn extra profit
since the same information is available for alleistors. This way of earning excess profit is
known in economic theory as arbitrage opporturfityitrage is a way of making a profit by
simultaneously buying and selling samesinilar assets at different prices (Shleifer and
Vishny, 1997). This is possible only if markets arefficient as the prices of same or similar

asset deviate from each other and this differeaocebe exploited.

How is the EMH linked to cointegration? A simpleaexple of a plausible cointegrating
relation is between the spot and future price cdisset. The only difference between these
two prices is in the timing of the payment anddly, but they are both prices for the same
asset. If these prices start to differ from ead¢teptue to new information in the market, an
arbitrage opportunity would occur. Rational investwill exploit this opportunity to earn
extra profit and this will briefly bring the pricdmck to equilibrium again. Hence markets

where arbitrage is possible could be cointegradedyér and Wallace, 1992).

Due to this, testing for cointegration is in matydses performed in order to test the efficient
market hypothesis. Hakkio and Rush (1989) for mstause cointegration methods to test for

market efficiency between spot and future ratéSenmany and United Kingdom.

Moreover, the definition of efficient markets in akeform is that, based on available

information, it is not possible to predict futunege movements. Price movements do not
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follow any trend or pattern. This unpredictablet@at of the price movement can be called a
‘random walk'. However, cointegration implies thitck market indices follow treame
common pattern in the long run (Richards, 1995usTany known fact about one stock price
index should provide valuable information abouttbenmon trend between them. This will
make it possible to predict the behavior of thelsfarices in other countries (Hakkio and
Rush, 1989).

In summary, stock market cointegration cocdehtradictthe weak-form market efficiency as

the movements in one market can be used to predicéments in another market.

2.2.3 Arbitrage

As the stock markets are becoming more approachabédl investors over the world due to
factors mentioned in 2.1, it can be easier to axpigspricings in different markets. Due to
increased integration of markets, investors nowehaatter opportunities to simultaneously
buy and sell assets if they believe that one maskemderpricing the asset. This means that
when the stock markets are closely linked, arbé&ragportunities could be more available

and more easily exploited.

The concept of statistical arbitrage is based antegration. If prices of two assets move
largely together (are cointegrated), it does naamthat they move in theusiedirection

every trading day. The general idea is that theapbetween the prices is mean-reverting —
in the long-run manner, the spread always retuack ko its mean value. Let us illustrate this
with an example, where the prices of stock A andlsB cointegrate over the long-run.
When the price of stock A increases relativelyhis price of stock B, the strategy is to short-
sell stock A and buy stock B. This is a typical mxde of statistical arbitrage based on
cointegrated stock prices. When investors are éxpioiting this chance, the deviating prices
are pushed back to their equilibrium relation. Whsnprice spread again returns to
equilibrium, this strategy results in an excesdipravery time the spread between the prices
of stocks widens, an arbitrage opportunity occsreygestors can predict how the spread will
behave in the long-run [Shleifer and Vishny (199¥gxander (2001)].

An important distinction between correlated andhtegrated stock prices can be drawn here.

If the prices constantly move in the same direcéwen in short periods as days, we say that

8



they are correlated. There may never be a widenitige spread between them. Even if a
spread occurs in some way, it will not return soritean value as the stocks are not
cointegrated in the long-run, but correlated. Ttmese will be no arbitrage opportunity to

exploit and no chance to earn extra profit.

Arbitrage opportunities are thus possible to find axploit in cointegrated markets, but
arbitrage is not unlimited. The definition of arage does not take into account that such an
opportunity is highly risky and requires capitatoBomists believe that identical assets must
be traded at identical prices because of the affefcarbitrage pushing them back to
equilibrium. However, this is not the case wheatiaonal investors are present in the market.
A good example of differing prices is the case aofekican Depositary Receipts (ADR). They
represent securities of a foreign stock tradintp@éUS stock market, so they are actually
identical assets. Still, the ADR have differentps in the USA than the original stocks have
in their local markets (Shleifer, 2000).

The theory of limits of arbitrage could explain wrgces of equal or similar assets differ.
The model consists of rational investors (arbittaggand irrational investors (noise traders).
A rational investor is faced with additional risken irrational investors are present in the
market - the non-fundamental, noise trader risis the risk that irrational noise traders will
become more extreme, making the difference betyeeas even worse. In that case, the
spread between the prices will not return to elrilim and rational investors will loose on

their investment (De Long et al. 1990).

The risk of this happening makes the rational itarssmore careful when it comes to
exploiting arbitrage. Therefore the very importafiects of arbitrage in pushing the prices
back to equilibrium are limited and prolonged. Aedt consequence is that prices of equal

assets may differ and not be cointegrated as wédveogpect them to be.

Based on our discussion about arbitrage and inwgtsirategies, examining cointegration
between stocks and stock markets can be useftliddnternational investor in many ways.
Yet, the very general idea is that existing coiraéign between stock markets will imply that
arbitrage opportunities are available by stratdlyicgavesting in these markets. On the other
hand, non-cointegration between stock marketsma&n opportunities for international

diversification of portfolios and possibilities fask hedging.



3. Empirical background

3.1 Stationarity/Non-stationarity

It is important to distinguish between stationang aon-stationary time series, as well as
weak and strict stationarity. This is relevantdomtegration analysis between stock markets,

as we expect stock prices to be non-stationaryh@as, 1995).

A time series is considered strictly stationarthé probability distribution of its values does

not change over time (Brooks, 2008):

PO Yoo ¥r )= F O s Yo oo Y (0.1)
The concept of strict stationarity implies thattatiher-order moments are constant, including
mean and variance. However, strict stationary ser@es are rarely found in practice.
Therefore we will focus oweakly stationary processesour further analysis. Conditions
and assumptions of weakly stationary processesudiieient to be regarded as stationary. A
time series is considered weakly stationary wheameariance and autocovariance are

constant over time (Enders, 2008).

On the other hand, the properties of non-statiotiarg series change over time. For this type
of time series, mean and variance have differelutegaat different time-points. Its variance

will increase as sample size goes toward infirtitgrfis and Sollis, 2003).

There are several reasons why it is importantgordjuish between stationary and non-

stationary series. We will show this by using aplgrautoregressive (AR) process:

N=HYPY4 U (0.2)

where the current value of varialylelepends on the constant temvalue of the variable y
from last period-1 and an error terny. It is the value op that we are particularly interested
in, because it will indicate whether the processtagionary or non-stationary. There are three

possible cases that could occur, or three poss#dlees ofp (Brooks, 2008):

10



1. | p | < 1; a shock to the system in current time period t is temporary; it will die away
over time and this seriess$ationary — it has constant mean, variance and
autocovariance. A stationary time series will rettor its mean value in the long run

(‘Mean reversion’).

2. p=1; ashock in time period t will not die awayeovime, it will be permanent. Its
variance will approach infinity over time. This &nseries is regardetn-stationary,

better known as the unit root case — the varialdentains a unit root.

3. p>1;ashockin time period t will explode ovendé and this sort of time series is

alsonon-stationary. There is no mean reversion to its true value tues.
The best way to understand this concept is to shgraphically. Figure 1a) plots a non-
stationary 1(1) process with non-zero mepr (1) and Figure 1b) shows a stationary process

where | p| < 1.

Figure 1: Stationary / Non-stationary proces%

=} e

© 4

0 50 100 150 200 250 0 50 100 150 200 250
a) Non-stationary I(1) process b) Stationary 1(0) process

Using a model with non-stationary variables canl leafalse interpretation of the results. The
standard ordinary least squaré8LS) estimation method of a model with non-stadiy
variables will give misleading results, also knoasspurious regression results (Granger and

Newbold, 1984). Spurious regression results shoslagion between two independent,

2 Brooks (2008)
3 OLS is a method used for estimation of unknowrffaments in a regression model. It minimizes thensof
squared residuals to fit a function of data (Bro@a08).
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random variables, based on high value of the adefft of determinatichR?. In reality there
is no meaningful economic relationship betweenghesiables, while the coefficieRF
shows otherwise. The t-ratios do not follow thestigbution, meaning that standard theory of

inference cannot be used.

A stationary variable is integrated of order O,atedy; ~ I(0), while non-stationary variables
are integrated of ordek whered > 1: y~ I(d). In the rest of the thesis, only values d = 0 and

d = 1 will be considered.

Non-stationary variables can be transformed irdtigtary variables by taking the difference
one or more timé&s|f a time series contains one unit root (the tBedes is integrated of
order one) then taking the difference once will m#he time series variable stationary.
Analogous to that, taking the difference d-timesifra non-stationary variable that contains

unit roots (integrated of order d), will transfotiis variable to a stationary variable.

3.2 Concept of cointegration

The concept of cointegration has its roots in tleekvof Engle and Granger (1987). Two

variables are cointegrated if they share a comrtmrhastic trend in the long-run.

The general rule when combining two integratedalaes is that their combination will
always be integrated at the higher of the two ar@éintegration. The most common order of
integration in time series is either zero or oneo(i&s, 2008);
1.) if y;~1(0), and x~ 1(0), then their combination (ax by) will also be 1(0),
2.) if yi~ 1(0), and x~ 1(1), then their combination (ax by;) will now be 1(1), because
I(1) is higher order of integration and dominates iower order of integration 1(0),
3.) if yi~ I(1), and x~ I(1), then their combination (ax by) will also be I(1), in the

general case.

However, if there exists such linear combinatiomai-stationary variables 1(1) that is

stationary, 1(0), cointegration between those \#eis exists .

* Coefficient of determination shows the goodnesiit of a regression. It shows how much of the ation in
the dependent variable is explained by the indepetineariable(s) (Enders, 2008)
5The proof can be found in Enders, 2008.
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The following regression model includes two I(1nrsiationary variableg andx;:

Y =p+BX+Y (0.3)

If the OLS estimat@ is such that the linear combinationypndx; stationary, these two
variables are cointegrated. The error term betvtleem is then constant over time

(stationary):

u=y-Bx (0.4)

In order for two variables to be cointegrated thegd to be integrated of the same order. For
example if one variable is 1(0) and the other anK1), they cannot be cointegrated. The
highest order of integration of the two variablagB dominate and cointegration will not

exist.
Stock market indices, which are the focus of tagearch are usually characterized as non-

stationary 1(1) variables (Bollerslev, Chou and k&g 1992) However, if there is a linear

combination of the stock indices that is stationapintegration between them exists.
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4. Data

This chapter describes the data that is used $ts fer stationarity, cointegration and other
econometric methods. In this thesis the focus iBvenstock markets: USA, Norway,

Sweden, Denmark and Finland. The time period obthaysis is from February 1993 to
February 2013. Monthly data is used, creating 2geovations. This sample period is
divided into two subsamples to check the consistefthe results and methods. The national
stock price indices are collected for each of treések markets using the Thomson Reuters
DataStream database. By using price indices, didsl@re excluded from this analysis. All
series are expressed in terms of local currenEmslevel series, all stock indices are
converted into natural logarithms to smooth tharfitial data. In order to get monthly returns,

first differences of log stock indices are taken.

The original thought was to take an even longerdarperiod to examine cointegration, since
it is a long-run concept. By increasing the lengftthe sample period, tests would be more
powerful and provide better discrimination amongdiheses. However, increasing the
frequency by choosing weekly or daily observationsomparison to monthly observations in
the same sample period would not contribute to reeet results. A large number of
observations due to a longer time period rathar thigh frequency of data captures the

cointegrating relation more efficiently (Hakkio aRdish, 1991).

The sample period of twenty years is chosen mastbause of restricted access to data
further back in time. Another contribution for chsireg this time period in this thesis is
because it is well-known from literature that dedatjons and liberalizations of stock market,
as well as the informational boom that influencechovement of stock markets, did not
happen before the middle of the 198Dise stock markets could also previously have been
cointegrated, but these circumstances made aisigmifcontribution to the cointegration
between them [Corhay et al. (1993), Phengpis arithdg (2004)].

The following national price indices present thecktmarket data used in our analysis:
» the S&P 500 index for the U.S. market
» the OBX Price Index for Norway
» the OMX Stockholm 30 Index (OMXS30) for Sweden
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* the OMX Copenhagen 20 Index (OMXC20) for Denmark
* the OMX Helsinki 25 Index (OMXH25) for Finland

Stock market indices are generally good exampléd pEeries (Bollerslev et.al, 1992).
Although only statistical tests can provide pr@graphical representation can give some
indication about the time series properties ofsfoek market indices. Figure 2 represents the
levels of the stock market indices for each mankaile the first differences of the logs

(monthly returns) are presented in Figure 3.

Figure 2: Stock markets in log-levels
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Figure 3: Stock markets in first differences (retuns)
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Visual inspection of Figure 2 indicates non-stadidty of the series in levels, with a tendency
to drift upwards over time. Stock indices for Nogwand Denmark seem to have similar
behaviorduring the sample period, but it is not unusuat tsual inspection of figures is
completely misleading when it comes to cointegratioalysis. A solid drop can be noticed in
all figures around year 2008 and 2009, referrinth&oglobal financial crisis during these
years which obviously had an impact on the analgtedk markets as well. By looking at
Figure 3, returns seem to be oscillating aroundzére mean. ‘Mean reversion’ is common to
return series whichkntailsthat they eventually tend to move back towards timeian. The

strongest oscillations can be noticed around y8@8 n this figure as well.
The return series from Figure 3 indicate zero meiimout any upward or downward trend,

suggesting that they could be stationary. The siudices in levels from Figure 2 indicate

non-stationarity.
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The suggestion is that stationarity can possiblgdigeved when taking first differences of
the logs of these indices. This is a visual indoathat stock market indices in levels could
be non-stationary(1) processes, while taking the first differencessfarms them into

stationary variables. However, formal statistid¢dder stationarity need to be performed.

Table 1 contains basic descriptive statisticsHterfirst difference in log levels of these five
indices. Highest average return in the sample gasiaetected in the Finnish stock market,
while the lowest is in the US market. Accordinghe standard deviation values, Finland has
also the most volatile return, followed by Norw®y. looking at Figure 2 that shows the price
index from Oslo Stock Exchange, strong oscillatioas be noticed for the Finnish stock
market which indicates a high volatility. From egséurtosis values, we notice that first
differences in log price indices have a highly mammal distribution. The negative numbers
of skewness show that stock index returns havéi-akewed distribution, indicating that
there are relatively few low values. Mass of th&rihution is on the right side of the

distribution figure.

Table 1: Descriptive statistics for monthly returns(Feb 1993 — Feb 2013)

DLUSA DLNOR DLSWE DLDEN DLFIN
Mean 0,005250 0,006560 0,007610 0,007714 0,008006
Median 0,011307 0,018500 0,013656 0,011037 0,020273
Maximum 0,119906 0,146680 0,188461 0,148999 0,274402
Minimum -0,288490 -0,462991 -0,297831 -0,298270 -0,303907
Std.Dev. 0,049173 0,070779 0,063057 0,058803 0,083116
Skewness -1,5666 -1,8755 -0,982184 -1,064026 -0,44763
Kurtosis 6,1197 11,01215 5,9057 6,64699 4,25246

Note: DLUSA is a variable name which shows thatfitet difference has been taken of the logs, in
order to get monthly returns. This is true for DLRADLSWE, DLDEN and DLFIN as well.

Table 2 shows simple correlation coefficients befmveeturns from these five stock markets.
Generally, the correlation coefficient can havaugalfrom -1 to +1. A coefficient more close
to 1 means relatively strong correlation betweeamatdes. All coefficient values from Table 2
show mostly strong, positive correlation betweetiomal stock indices, where the correlation
with value of 77,59% between Sweden and Finlaneaggpto be the strongest one. The
weakest correlation among these markets is beteamark and Finland, only 58,1%.
However, all of the markets indicate high mutuatidependence.
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Table 2: Correlation matrix, monthly returns

DLUSA DLNOR DLSWE DLDEN DLFIN
DLUSA 1,0000 - - - -
DLNOR 0,742606 1,0000 - - -
DLSWE 0,729137 0,764841 1,0000 - -
DLDEN 0,653075 0,770528 0,716926 1,0000 -
DLFIN 0,605948 0,606462 0,775859 0,580999 1,0000

Note: All correlations are statistically signifideat the 5% and 1% level.
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5. Methodology

5.1 Testing for stationarity

After discussing the concept of stationarity, tleetrstep is to show how stationarity can be
tested. Many empirical papers concerning cointemradtart with using either DF test or
Phillips-Perron teStfor stationarity of the original stock market dgasa (1992), Richards
(1995), Chen et al. (2002)].

We test whether there are one or more unit rootisardata - whether the individual series are
I(1). As stated earlier, performing such tests at tiggniméng of any analysis is necessary
because of the possibility of getting misleadinspits if non-stationary variables are
included. There are various ways to test for statitly, but the most commonly used test is
the Dickey-Fuller test (DF) (Dickey and Fuller, 27To show how this test works, we start
with the simplest case, using an AR(1) model, whvels introduced in chapter 3.1:

Y =BY%aty (2.1)

whereuis the error term - a white noise procéss.

By differentiating the equation above once, we iobta

yt_¥—1=:3Y—1_ Yot u (2.2)

or

Ay, = py,+y (2.3)

wherep = ($-1). The DF test tests the valueofif |p| <1, variabley is stationary. Since =
(8-1), the restriction op being less than 1 implies that aJsdhe coefficient at the lagged
value of variablg, is less than 1. In this case, the time serielsbeiktationary.

® Phillips—Perron (PP) test is similar to the DR, tbst here a correction is implemented to the Bde@dure
allowing for autocorrelated residuals. The DF tggiform better than the PP tests in small san{plasidson
and MacKinnon, 2001).

" The error term is a white noise process if it hagro mean, constant variance and zero autococasga
(Brooks, 2008).
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The hypotheses that we want to test with a DickeleFtest are:

Hy:p=0 B=1)
H,tlo|<1 (B<0)

The null hypothesis §iclaims that the time series is non-stationary @rdains at least one

(2.4)

unit root. Performing the DF test on levels revediether the time series is stationary or not;
whetherat leastone unit root is included or not. Performing thene test on first differences
will help us to determine the order of integratibmorder to test for cointegration, as

previously stated in chapter 3.2, variables havsetotegrated of the same order.
The null hypothesis is tested against the alteraedtypothesis K, which states that the time
series is stationary. An OLS procedure has to b®eed on the equation (4.3) in order to

get the estimated value for coefficignt

The test statistics used in a DF test for stationar (Brooks, 2008):

Yo,
SH®)

test statistic= (2.5)

wherep is the OLS estimated coefficient, aB8()is the standard error ¢f The test

statistics does not follow a normal distributiogjther the usual t-distribution, but rather a
non-standard ‘Dickey-Fuller’ distribution, skewetithe left (Dickey and Fuller, 1979).
Therefore, the critical values used for comparstth the computed test statistics are special
DF critical values. These values are much largabsolute values than the standard critical
values from t-distribution. This implies that thellrhypothesis in a DF test is harder to reject,
than for a standardtest.The null hypothesis is rejected whenever the tasistic is higher in

absolute terms than the DF critical value.

There are several practical issues that have tmhsidered before performing the DF test for
stationarity. One of them is whether to includeedinistic terms as intercept and linear
trend into the basic equation (4.3). This decissimportant since it implies different critical
values, depending on which deterministic termdragieided. There are three possible options
to model the equation (4.3) (Enders, 2008):
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1. A model with no intercept and no trend
2. A model with an intercept, but no trend

3. A model with an intercept and a linear trend

The test procedure is the same regardless of tteealmodel, but the DF critical values are

different for each model. Tables can be found ini@son and Mackinnon (2001).

It is important to determine which model to usedbbefproceeding with testing, because
adding irrelevant terms into the equation will m&se the DF critical values in absolute terms
and make the null hypothesis harder to reject.islarrd Sollis (2003) suggest examining the
figures of the series. A constant should be indudléhe plot of the data does not start from
zero, as can be observed in Figure 2. A trend shimeiladded if the plot of the data shows an

upward or downward trend.

Another practical issue is that the DF test pre=gtabove is valid only if the error teuyis a
white noise process;; ~ 11D (0,6%), but in most financial series this is not the ca¥ben
there is autocorrelation in the dependent varialethe error term will also be
autocorrelated, because the omitted lagsypvill be a part of it. To control for the possible
autocorrelation, the basic equation for this tds3)(has to be expanded withags of the
dependent variabley; (Enders, 2008):

p

Ayt = P Y +ZizlaiAM—i +y (26)

By including lags of the dependent variable, iteeptial autocorrelation is absorbed, the error
term is a white noise process and usual DF tesstata and critical values can be used. This
test is known as the Augmented Dickey-Fuller (AD#st and will be used further in the
cointegration analysis of the included stock magket ensure that the error terms are white
noise processes. The hypotheses, test statisticBRmritical values are exactly the same as

for the simple DF test.

Expanding the basic equation with lags of the ddpahvariable also leads to the issue of the
number of lags to include. Including too few lags cesult in some of the autocorrelation to
remain in the model. On the other hand, choosiongriany lags will unnecessarily use up
degrees of freedom and thus reduce the power aéth¢Cheung and Lai, 1995). There are
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various methods to choose the optimal number & I8gch methods include different
information criterion which will be discussed latBor the ADF test, the Akaike information
criterion (AIC) will be used. The number of lagstiminimizes the AIC value is the optimal

lag length, where AIC is:
AIC = Iog‘i‘ +?|_—k (2.7)

where$’ is the variance-covariance matrix of residuilis the number observations akis

the number of coefficients in equation (Davidsod &acKinnon, 2001).

5.2 Testing for cointegration

Cointegration tests should reveal whether the stoaikets move together over a longer time
period. There are several methods to test for egration between two or more variables
(Engle and Granger, 1987). First it is importandigtinguish between the univariate and the

multivariate approach:

The univariate approach to cointegration impligmewise analysis of the five stock market
indices. The Engle-Granger single-equation meteapplied to perform pairwise analysis of
the stock indices presented in chapter 4. It alloalg for one endogenous and one exogenous
variable. We will also apply the Johansen metheg&rwise cointegration to check the

consistency of the results achieved with the El@i@nger method (Kihl, 2010).

The multivariate approach to cointegration teststiver there is cointegration in a system of
more than two variables. The Johansen method islyvigsed to perform this analysis
(Juselius, 2006). It improves some of the drawbaadks the Engle-Granger method (Brooks,
2008), which will be discussed later. The Johamsethod allows for all variables to be
endogenous and makes it possible to determin@iallegrating relationships between the

stock markets. Both methods will be explained itad®in this chapter.

5.2.1 The Engle-Granger test

The Engle-Granger test is a single-equation metised to determine whether there is a
cointegrating relationship between two variablasgle and Granger, 1987). The precondition

to examine cointegration is that the variablesbaté non-stationary and integrated of the
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same order. The Engle-Granger (EG) method can itherped by following the next four-
step procedure:

Step 1: Perform the ADF test as explained in chapter 5drépest for the order of integration.
If the variables are both 1(1), cointegration isdtetically possible and we can proceed to step
2. If the variables are of different order, the dosion is that cointegration is not possible as

explained in chapter 3.2.

Step 2: Estimate the long-run, static relationship or &gdum by running the OLS

regression on the general equation:

Y. =B%+y (2.8)

This equation can be expanded with a constant ée@nconstant term and a time trend, but
this issue will be discussed later. If the varigldee cointegrated, an OLS regression will give
a “super-consistent” estimator, denotegasnplying that the coefficien will converge

faster to its true value than using OLS on statipnariables](0) (Dolado et al, 1990)f

there is a linear combination of variablgandx; that is stationary, the variables are said to be
cointegrated. This linear combination of the vaealtan then be presented with the

estimated error term:

A

U =y —BX% (2.9)

Step 3: Store the residuai® and examine whether they are stationary or nate lda ADF
test, as explained earlier, is performed on thedagsiduals from every regression [equation
(2.3)]. The hypotheses for the EG test for coiraégn are:

H,:0, 01(1) -non-stationary residualand no cointetipn between variable

A : . . : . 2.10
H,:0, O1(0) - stationary residual and cointegration betwegriables ( )

If the null hypothesis is rejected, the variablesf the model are cointegrated. The test
statistics is the same as the one used for the t&Bi-but the critical values are different.
Since the Engle-Granger method includes testingstimated residuai instead of the
actual values, the estimation error will changediséribution of the test statistics. Therefore

the critical values used in an Engle-Granger appreell be larger in absolute value, or more
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negative compared to those used in a DF or ADE Tés$ means that the magnitude of the
test statistics must be much larger in order teatethe null hypothesis, compared to the usual
DF critical values. Davidson and Mackinnon (200djvide appropriate critical values for
residual-based cointegration testing, dependinglogther and which deterministic terms are

included in the model.

Step 4: If cointegration is found between the variablestineate an error-correction model.
However, this will not be part of our analysis,c@rwe are interested only in detecting

cointegration.

Drawbacks with the Engle-Granger method

The Engle-Granger cointegration test is very papuoastly because it is easy to estimate the
regression using OLS and the error correction mprdwlides valuable information about the
speed of adjustment to equilibrium. Therefore @ften used when testing for pairwise
cointegration [Richards (1995), Jang and Sul (2D03)

However, there are several problems with this netlme of the drawbacks with using OLS
regression in general is that it can identifiy onecointegrating vector even when there are
many variables in the system (Dolado et al., 199h)the other hand, the Johansen method

makes it possible to detealt cointegrating relationship in a system of variable

Other problems with the EG tests are linked tousigal small sample problems and unit root
testing (Harris and Sollis, 2003):

* Lack of power in stationarity tests, which is aitgb ADF test problem

» Standard inference cannot be used, as the inchatféables are non-stationary

» Potentially biased results, which usually occus variable that belongs to the model

is omitted from the regression

Also, a challenge that usually arises is whethén¢tude deterministic terms into the model.
Including unnecessary terms can lower the powéhetest (Harris and Sollis, 2003).

Generally, including a time trend in the ADF testresiduals, will result in loss of power or
to be more specific, will lead to under-rejectihg nhull hypothesis of no cointegration when

it is false.
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5.2.2 The Johansen method

There could be more than one cointegrating veatarsystem of variables and the Johansen
method can discover all such cointegrating relatidouselius (2006), Johansen and Juselius
(1990), Kasa (1992)]. The Johansen method relies\a@ttor autoregression (VAR) model.

A VAR is a system regression model which includeserthan one dependent variable. Every
variable is regressed on a combination of its agyéd values and lagged values of other
variables from the system. Here, the simplest fierpresented, whetedenotes the number

of lags included (Brooks, 2008):

Y =Bt LYot A Yt Y (2.11)

To use the Johansen test, the VAR model needstram&formed into a vector error

correction model (VECM), by differentiating:
BY =[] Vi FTt AN+ T AY o+ AT AY oyt Y (2.12)

where there arg variables in the model akdl lags of the dependent variableéss the

coefficient matrix for every lagged variable drds the long-run coefficient matrix.

This VECM is estimated by Maximum Likelihobdstimation process, not OLS estimation as
for the Engle-Granger method. The Johansen tesinsltivariate case of an ADF test for unit
root. The focus in this method is on tHamatrix - we test the rank (r) of this matrix. Tizek

is equal to the number of characteristic rootsgi@iglues, denoted, that are significantly
different from zero. That means that the rank (i) giwve us the number of cointegrating

vectors in a system of variables.

There are three possible cases, based on the ramkId matrix (Johansen and Juselius,
1990):
« full rank (r = g) - all eigenvalues are significantly different fra@ro, implying that

the original variables are stationary and therefmiategration is not possible.

8 Explanation of the maximum likelihood estimatiamgedure can be found in Johansen and Juseliu§)199
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* rank is zero (r = 0} none of the eigenvalues are significantly differieom zero,
implying that there are no linear combinations afiables that are 1(0), and thus no

cointegration.

* reduced ranKO < r < g) — there arelinear combinations of variables that are 1(0),

meaning that cointegration exists in this systeith wcointegrating vectors.

For example, if g > 2 and resulting: 2, there are two linear combinations of non-statipna

variables that are stationary, or two cointegratiegtors in the model.

In the Johansen method, two tests are used totdetategration and the number of

cointegrating vectors (Enders, 2008):

1. The Trace test:
MaeeN) =T Y7 In(@-A) (2.13)
The null hypothesis af or less tham cointegrating vectors is tested against the atera of

more tharr cointegrating vectors.

2. The Maximum eigenvalue test (the Max test):
A (6 +1)=-T In(1-4,) (2.14)

The null hypothesis of exacttycointegrating vectors is tested against the atera ofr+1

cointegrating vectors.

r is the number of cointegrating vectotsjs the estimated eigenvalue of ordéwom thell
matrix, and T is the number of observations. Tistrithution of the two test statistics is not
standard and the critical values depend on theevafig — r) and the deterministic terms
included (Johansen and Juselius, 1990). If thestasistics is larger than the appropriate

critical value, the null hypothesis of no cointdgra is rejected.

If we detect a reduced rank and we find cointegrawithr cointegrating vectors, tHe

matrix can be defined as a product of two matrices:

[1=o8 (2.15)
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wherea is a(g x r) matrix ands is a(r x g) matrix. The matrix shows the cointegrating
vectors while the matriz shows the amount of each cointegrating vectonenMECM, or

the adjustment coefficients.

The critical values of the Johansen method ardtsento the lag length and the number of
deterministic terms in the VECM. Therefore it ioantant to choose the optimal lag length
and whether a constant term and/or a time trendlghme included. This will be discussed in

the model specification in chapter 6.3.

5.3 Granger causality test

Cointegration indicates existence of a long-ruatiehship between variables. Even when the
variables are not cointegrated in the long-runy thgyht still be related in the short-run. In
order to understand short-run interdependence arstoeg markets, Granger causality tests

will be performed.

Granger causality test is based on a standardt Mrtesh seeks to determine if changes in one
variable cause changes in another variable. A4 is said to ‘Granger cause’ variable Y,
if the previous values of X could predict the catrealue of Y. Let us start with a simple

VAR model:

Ve =BVt BoYoot B F AT X oA Xt (2.16)

If all o - coefficients on lagged values of X are significa this equation, then ‘X Granger
causes Y'. If X Granger causes Y and not vice vatss called unidirectional causality. If the
causality goes both ways from X to Y and from YXiathen this is called bidirectional
causality (Brooks, 2008).

After estimating the VAR, restrictions are imposeul the following hypotheses are tested in

a Granger causality test:

Hoioy=0,=...=a,=0 ("X does not Granger cause Y 2.17)
H,:atleastone oé - coefficientsz 0 ("X does Grager cause Y") '
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The test statistic follows g distribution, withp degrees of freedom under the null

hypothesisp is the optimal number of lags.

The term ‘causality’ should not be wrongly interjei— it does not mean that changes in one
variable cause changes in the other variablemiplsi means that there is a correlation
between the current value of one variable and teeiqus values of another variable.

We will use Granger causality tests to examindehd-lag relationships among stock
markets.

However, these tests can only provide informatibwliether a significant impact exists
between stock markets, but nothing about the sigheoimpact or how long it will last. An
impulse response analysis could give us answessdig this, but as cointegration between
the stock markets is the focus of this thesis, wideave this as a suggestion for further

research.
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6. Empirical results

6.1 ADF stationarity tests

A requirement for cointegration is that the stockrkets are integrated of the same order. The
visual impression from the figures in chapter thit the stock markets are all integrated of
order one, since their first differences appedretantegrated of order zero. However, the

ADF test, described in 5.1 will be used to formadgt for stationarity and order of

integration.

The optimal lag length must be selected for eamtkstnarket index. This is a precondition

for performing the ADF test. The Akaike informatioriteria (AIC) will be used to select the
lagged terms by using a regular t-test. As sugddsgeBrooks (2008), we start with 12 lags
since the data is monthly. The optimal number gé s the one that minimizes the value of

the Akaike information criterion.

The null hypothesis is non-stationarity in serigkile the alternative hypothesis is

stationarity. The null hypothesis of non-statiotyais rejected in favor of the alternative
hypothesis, if the test statistics is more negétiam the critical values. The optimal lag
lengths as well as the ADF test results obtaineohfthe software package EViews are

presented in Table 3:

Table 3: ADF test results (log-levels, Feb 1993 eb 2013)

Stock Number of | Test statistics ADF | Test statistics ADF
market lags (constant) (constant + trend)
LUSA 0 -2,024 -1,907
LNOR 1 -1,784 -2,820
LSWE 1 -2,436 -2,394
LDEN 5 -1,533 -2,820
LFIN 1 -2,603 -2,012

Note: A constant term and/or a trend are includsdsome of the series indicated a trend but thietis
absolutely obvious from the figures in chapter £okstant should be included anyways, as the plots

of data do not begin from the origin. Hence, theFABst was performed for these two cases.
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When only a constant is included, the critical Rigkuller (DF) values are -3,46 and -2,88 at
1% and 5% significance level, respectively (Davidaod Mackinnon, 2001). When a
constant and trend are included, the critical Dieesare -3,99 (1%) and -3,42 (5%). The
table shows that none of the test statistics agetahan the critical values in absolute value
in order to reject the null hypothesis. Therefohe, null hypothesis of non-stationarity cannot

be rejected. The stock market indices contain aroot and are considered non-stationary.

As the ADF test is sensitive to the chosen lagtlerag sensitivity analysis was performed for
different lag lengths. The test results showedars#ivity to the chosen, optimal lag length.
If we increase or reduce the lag length, the result still show non-stationarity of stock

markets.

An ADF test on first differences is additionallyrfigmed to determine the order of
integration of the stock markets as they have tmtagrated of the same order to perform
cointegration tests. If the ADF results show staitty, 1(0), for the first differences, this will
imply that stock market indices in levels are iméggd of order ond(1). Again, the null-
hypothesis of non-stationarity (unit root) is teséaainst the alternative hypothesis of

stationarity. The results are presented in Table 4.

Table 4: ADF test results (first differences, Feb 993 — Feb 2013)

Stock market Number Test statistics ADF
of lags (constant)
DLUSA 0 -15,961 **
DLNOR 0 -13,467 **
DLSWE 0 -13,425 **
DLDEN 0 -14,285 **
DLFIN 0 -12,641**

Note: Only a constant term is included, as thespbdtdata for returns (Figure 3) do not show an
upward or downward trend. (*) denotes rejectiothef null hypothesis at 5% significance level, and
(**) at 1% significance level.

The critical values are the same: -3,46 and -2(884@and 5% significance level respectively.
All of these test statistics are also larger inollie value than the critical values, and the null-

hypothesis of non-stationarity is rejected atigihgicance levels. The first differences of
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stock market indices seem therefore to be stayoi@). The same results are obtained for

two sub-samples and the results are shown in Appénd

Since differentiating the stock indices once cotsvéfrem into stationary variables, the
conclusion is that stock markets are initially greged of order oné(1).This finding

confirms the results of many other studies. AltHotltere is little consensus concerning the
cointegration between stock markets, almost eveigysconfirms that stock markets are non-
stationary 1(1) variables, including Kasa (1992i;Hards (1995) and Pynndnen and Knif
(1998) for the Scandinavian markets. Cointegraisdmence theoretically possible and we can

perform the cointegration tests.

6.2 The Engle—Granger pairwise test

Using the Engle-Granger test for cointegrationaavse analysis of the five stock markets
can be performed as described in chapter 5.2. lwlWtest whether a linear combination of
two stock market indices is stationary. If it isifal to be stationary, the two stock markets are
cointegrated. Table 5 presents the results fromtést obtained by using EViews.

The equation (2.8) is formulated for every paistafck markets. As an example, the first pair
from the table LNOR — LUSA can be used. A constant is included in the regression and
OLS is used for its estimation:

LNOR=4+4 LUSA+ | (3.1)

Ten possible pairs of stock markets are formulgfteoim the table, the first variable in every
pair is the dependent one, while the second istheppendent variable. In the pair LNOR —
LUSA for example, the Norwegian stock market ingethe dependent variabl¥)( while

the US market is the independent variable Table 5 shows the estimated values of the

constant ternf; and the coefficient on the independent varighl®r each market pair.

An ADF test is performed on the saved residualsifewvery regression, where the hypotheses

for the Engle-Granger cointegration test are:
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H, G, ~1(1)

—non-stationary residual; no cointegaatbetween stock marke
H,:0 ~ 1(0) -stationary residual;cointegration between stockaetar

(3.2)

The optimal lag lengths chosen by the AIC as weliest results are shown in Table 5 for

every pair of market.

Table 5: Regressions and Engle-Granger test for aategration (Feb 1993 — Feb 2013)

Pair Constant Coefficient Number | ADF test statistics (on
Bo B1 of lags residuals)

LNOR - LUSA | -1,898031 1,029637 4 -1,356464
LSWE — LUSA | -2,417344 1,296199 3 -3,223982 +

LDEN — LUSA | -3,611066 1,320097 3 -1,346232
LFIN — LUSA -2,834791 1,649799 0 -2,094409
LSWE - LNOR | 1,630582 0,940994 1 -2,280216
LDEN — LNOR | -0,141671 1,083538 0 -2,132605
LFIN — LNOR 3,094888 1,048671 1 -1,607205
LFIN — LSWE 0,537029 1,227686 2 -0,744119
LDEN — LFIN -0,452743 0,696251 11 -0,979091
LDEN - LSWE -1,074423 1,007010 0 -1,911824

Note: Only constant is included, in ADF tests osidaals, as the plots of the residuals showed no

trend.

+ rejection of the null hypothesis at 10% significahevel

When only a constant is included, the EG criticdles are -4,00, -3,37 and -3,07 at 1%, 5%

and 10% significance level, respectively (Davidaod Mackinnon, 2001).

Based on the regression coefficients, in ordemteelcointegration, the constant tefgmeeds

to be close to 0, while the coefficigfitshould be close to 1. It is easy to notice thaenain

the coefficients from the table have these requisddes, except of the pair Denmark —

Norway.
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The results from Table 5 indicate cointegratioween Sweden and USA at 10%
significance level. The ADF test statistics of B14s larger in absolute value than the critical
value of -3,04. The coefficient estimgiigndicates that if the US stock market increase by
1%, then the Swedish stock market will increasé 2p%. However, the null hypothesis of
no cointegration is rejected only at 10% signifioatevel, which is not a very strong proof of
cointegration. At more strict significance levekel5% or 1%, no cointegration is found
between Sweden and USA. This result is not serditithe chosen lag length. Random lag
lengths from 1 to 12 were tested and cointegrdietmween Sweden and USA is still found at

10% significance level.

For the other pairs, the ADF test statistics atevbéhe critical values, so we fail to reject the
null hypothesis of a unit root in the residualseThsiduals ar1).The graphs for the

residuals are presented in Appendix B, indicativag they are non-stationary processes.

This pairwise analysis shows no cointegration betwihe other pairs of stock markets in the
full sample from February 1993 to February 2013:r€his no long-run relationship between
stock markets and equation (3.1) is spurious, witlamy economic meaning. This is quite
surprising, as the stock index figures showed sinphtterns, for instance between Denmark

and Norway.

However, when deterministic terms are excluded ftbenregressions, the conclusions about
cointegration are quite different. For several dine null hypothesis of no cointegration is
rejected at 5% and 10% significance level. Singg éssential for the outcome of the tests
whether deterministic terms are included in the eh@d not, a standard t-test is used to test
the statistical significance of the constant inrgwegression. The test statistics were various
but in every case statistically significant. Thieans that constant terms need to be included
in the ADF equations.

We will now look at the Engle—Granger test resfriisn two subsamples, before making a

conclusion about pairwise cointegration.
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6.2.1 Test for cointegration in subsamples

The full sample period from February 1993 to Febr@®13 is divided into two subsamples

to check the consistency and stability of the tssul

e Subsample 1; from February 1993 to February 2002
* Subsample 2; from March 2002 to February 2013

The results for the two subsample periods are pteden Table 6 and 7. The test procedure

is identical; the only difference with regards e full sample test is that the critical values

are slightly higher in absolute values as the numbebservations is smaller.

Table 6: Regressions and Engle-Granger test for atiegration (Feb 1993 — Feb 2002)

Pair Constant Coefficient Number | ADF test on residuals
Bo B1 of lags
LNOR - LUSA | 0,741700 0,616270 9 -3,4483 *
LSWE — LUSA | -2,21598 1,264128 3 -3,3176 +
LDEN - LUSA | -1,63746 1,003960 8 -3,0793 +
LFIN-LUSA | 0,67125 0,213261 0 -1,9101
LSWE —LNOR | -2,44878 1,787256 0 -2,1093
LDEN - LNOR | -1,97671 1,451046 0 -2,3239
LFIN-LNOR | -3,53932 2,412186 0 -1,5906
LFIN -LSWE | -0,60223 1,408294 11 -1,2989
LDEN — LFIN 0,70037 0,535002 6 -2,6428
LDEN - LSWE | 0,18419 0,784353 0 -1,6449

**rejection of the null hypothesis at 1% significanlevel
* rejection of the null hypothesis at 5% significa level

+ rejection of the null hypothesis at 10% significatevel

Critical values: -4,01 (1%), -3,39 (5%) and)8(10%).
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Table 7: Regressions and Engle-Granger test for atiegration (Mar 2002 — Feb 2013)

Pair Constant Coefficient Number | ADF test on residuals
Bo B1 of lags
LNOR - LUSA | -7,63509 1,85705 0 -2,0197
LSWE — LUSA | -2,60316 1,32412 0 -1,7887
LDEN — LUSA | -4,59262 1,47643 3 -1,8309
LFIN — LUSA 2,30733 0,92389 0 -1,0537
LSWE — LNOR | 2,96787 0,68990 0 -3,2741 +
LDEN — LNOR | 1,81473 0,73367 0 -1,9580
LFIN — LNOR 6,58123 0,41099 0 -1,8454
LFIN — LSWE 5,33359 0,51872 0 -1,3566
LDEN — LFIN -0,02072 0,663702 0 -2,3647
LDEN - LSWE | -1,10250 1,02809 5 -3,1687 +

Note: Only a constant is included in every ADF doprg as the plots of the saved residuals did not
indicate a trend.
**rejection of the null hypothesis at 1% significanlevel
* rejection of the null hypothesis at 5% significa level
+ rejection of the null hypothesis at 10% significatevel
Critical values: -4,01 (1%), -3,39 (5%) and)43(10%).

Dividing the full sample into two subsamples, thsults become more various. In subsample
1, we find proof for cointegration between NorwaygdJSA at 5% significance level. Also,
USA seems to be cointegrated with Denmark and Swatl®@0% significance level. At the
downside, the results are extremely sensitiveadal length, probably because this is a
small sample with only 109 observations. The ADdt texs a tendency to under-reject the
null hypothesis when it is false and to over-rejeathen it is true in small samples (Harris
and Sollis, 2003). The AIC chosen lag length fonDark — USA is 8. If we try to select the
lag length of 7 or 9 lags in the ADF regression,fiwd no cointegration between Denmark
and USA. A similar outcome is detected for the gaireden — USA. The pair Norway — USA
shows cointegration for higher lags as well and ih some degree robust to different lag

lengths, probably because cointegration is fouradtagher significance level. This
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cointegrating relationship appears to be more stdr the rest of the pairs in subsample 1,

the null hypothesis of no cointegration cannotdjeated.

In subsample 2, Sweden — Norway and Denmark — Sweelem to be cointegrated at 10%
significance level. No cointegration is detecte8%t level. However, these pairs show strong
sensitivity to the chosen lag length. The reasance again probably the small sample size

of 132 observations, which will strengthen the rniegasides of an ADF test.

The results from 1990s show stronger cointegraifdhe Nordic countries with USA which
is not detected in the past 10 years. In 2000sd8wedicates some cointegration to Norway

and Denmark, but the evidence for this is neittreng nor stable over time.

The general conclusion based on Engle - Grangetegration test is that Sweden and USA
show a weak cointegration relationship at 10% $icgmce level. This was stronger in the
1990s than in the 2000s. This is consistent wighfittdings by Knif and Pynndnen (1999),
who also detected cointegration between the USSavetlish stock market using data from
1990s. However, before taking any strong conclysianhave to keep in mind that this
detected cointegrating relationship is weak andstadile over the two subsamples. We will

verify these results using a Johansen pairwisgagiation test.

6.3 Formulating the VAR model for the Johansen test

The test results of the Johansen method are affegt¢he selected lag length in the model
and the included deterministic terms. We will ndwow how to formulate a VAR model and

determine this before performing the Johansen test.

6.3.1 The optimal lag length

Two common procedures can be used to determineptiveal lag length (Enders, 2008):
1. Likelihood ratio (LR) test

2. Using an information criterion

A likelihood ratio test implies estimating an uriresed VAR. One should begin with the
longest lag length that seems reasonable andéseif it can be shortened. The null

hypothesis is that the coefficients on this higlegtare jointly zero. If rejected, that lag is the
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optimal one. If we falil to reject, we continue ketnext lag length, until the null hypothesis is
rejected. Enders (2008) provides the test stafistievery lag length:

LR=(T-9(log|Zt~logzy) (3.3)
where). denotes the varianeeovariance matrix of residuals for the restriateatiel (r) and
for the unrestricted model (u), T is the sample siad c is the number of parameters in the
unrestricted model. The test statistics ha$distribution with degrees of freedom equal to

the number of coefficient restrictions.

The LR test requires that the errors from each tamuare normally distributed (Brooks,
2008). However, this is not likely to hold for skomarket data, as the descriptive statistics in
Table 1 showed. Therefore, a suggestion is to carate on an information criterion when

selecting the lag length.

We are familiar with the information criterion pess, as it was used to determine the lag
length for the ADF stationarity test. The Akaikéommation criterion was presented in
chapter 5.1, but since this is an important mdttethe Johansen test, the other information
criteria will also be presented here (Brooks, 2008)

1. Schwarz - Bayesian criterion (SC): SC= Iog‘i‘+$log T (3.4)
2. Hannan — Quinn criterion (HQ):  HQ=log|3| +2T—k log (logT) (3.5)
3. Akaike criterion (AIC): AIC =Iog‘i‘+2?k (3.6)

where$! is the variance — covariance matrix of residuglis, the number of observations and

k is the number of parameters in all equations.

The values of the criteria are calculated for défe lags from 0 t& lags, and the optimal
number of lags is the one that minimizes the valfuie information criteria.

Monte Carlo studies showed that the Schwarz—Bayd€Si&@) criterion could be the better
selection criterion to use than the AIC when degliith small samples (Koehler and
Murphree, 1988). We will therefore focus on thigesion when selecting lag length for the

Johansen test.
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6.3.2 Deterministic terms — the Pantula principle

After choosing the appropriate lag length, the rs¢ep is to specify which deterministic terms
will be included in the VECM or in the cointegragirelation; a constant term and/or a trend.
Based on the deterministic terms included in theehdarris and Sollis (2003) suggest the

following models:

* Model 1: There are no deterministic terms in the datanahé cointegrating relations.
There is little or almost no possibility that thiodel is the optimal one, as the
constant term is usually necessary to accountiffarent units of measurement of the
variables.

* Model 2: Only a restricted constant term is included indbmtegrating relation,
implying that the equilibrium mean is not zero. fiehare no linear trends in the levels
of data, which implies that the returns as firgtedenced data have zero means.

* Model 3: Two constant terms are included; in the shortmadel and in the
cointegrating relation, which are combined to fanty an unrestricted constant term
in the short-run model. There are no linear trandsided. This model should be used
if all trends seem to be stochastic (Juselius, 2006

* Model 4: There is a linear trend (restricted) in the cegnating relation, but no trend
in the VECM. This model should be chosen if we dadi some of the variables are
trend-stationary in levels.

* Model 5: Linear trends are present both in the cointeggatation and in the model.

Similar as for model 1, this case occurs rarelgractice.

Since models 1 and 5 are not likely to occur oitepractice, we will consider only models 2
— 4 as possible (Juselius, 2006). It is not easletidde which model to use in the Johansen

method and this must be done carefully. Critichllea and the asymptotic distribution of the
cointegration test will depend on the chosen mdélghe model is not specified well, the

results can be misleading and biased.

One possibility is to look at the figures of staokices in levels and in returns, but this will
only provide an indication. Juselius (2006) sugg#s¢ Pantula principle to choose the
appropriate model. The idea behind this principl®ifirst estimate the VAR model for the

three plausible cases. The results should be ardieym the most restrictive case (model 2),
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to the least restrictive case (model 4). Startnoghfthe most restrictive model, we compare
the test statistics for that model with the criticalues. If we fail to reject the null hypothesis
of a unit root, we can stop the process thereelfeyect the null hypothesis, we move on to
the next most restrictive model and so on untilrtbl hypothesis is not rejected. First non-
rejection of the null hypothesis indicates the appate model for the data. It is possible to
use the Pantula principle in EViews and let théveafe package determine which of the five

models is appropriate to use and which deterministims should enter the model.

Enders (2008) suggests the use of an interceptdatside the cointegrating relation to
capture the effects of an increasing or decreasimgency of variables. A suggestion is also

to avoid including a trend term unless there i®sadgreason to do so.

6.4 Testing pairwise cointegration using the Johansen ethod

Although the Johansen method is best known as ivaihte approach to cointegration
testing, it can also be used to test for cointégndtetween a pair of variables (Johansen,
1991). The results can also be used to check thgstency with the Engle - Granger test
results. All variables are in log-levels. The paifstock markets are the same as in the Engle-

Granger procedure. A VAR model is formulated foemnpair of markets.
The optimal lag length for each pair will be detared first. Table 8 shows tl&chwarz —
Bayesian lag length criterion considering up tadsland estimating a VAR for each lag

length.

Table 8: The selection of lag length for pairwise malysis using SC

Pair VAR(1) VAR(2) VAR(3) VAR(4) VAR(5)

LNOR - LUSA | -6,3296* |-6,3019 -6,2256 -6,1769 -6,1328
LSWE - LUSA | -6,5796 * | -6,5517 -6,4720 -6,4079 -6,3397
LDEN - LUSA | -6,4897 * |-6,4619 -6,4173 -6,3653 -6,2894
LFIN - LUSA | -5,7307 -5,7345* | -5,6482 -5,5648 -5,4786
LSWE — LNOR | -5,9273* |-5,9103 -5,8218 -5,7520 -5,6619
LDEN—LNOR | -6,0957 * |-6,0288 -5,9474 -5,8687 -5,7850
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LFIN — LNOR -4,9499 -4,9637 * -4,8831 -4,8055 -4,7179
LFIN — LSWE -5,6719 * -5,6429 -5,5769 -5,5058 -5,4342
LDEN — LFIN -5,2786 * -5,2653 -5,1820 -5,1191 -5,0334
LDEN - LSWE |-6,1791* -6,1293 -6,0612 -6,0011 -5,9111

*indicated lag order selection by SC informatioitesion

SC clearly indicates the use of 1 lag for mosthefpairs of stock markets. Exceptions are
Finland — USA and Finland - Norway with 2 as théimpl lag length. The other information
criteria such as the Akaike and Hannan — Quineitaih were evaluated as well. HQ did not
seem to differ much from the SC chosen lag lerfmih AIC suggested higher lags than 1 and
2. As mentioned earlier, this information criteri@mds to overfit the model, so the SC

suggested lag length will be used.

The deterministic terms that will be included ie MECM are specified by applying the
Pantula principle, which performs a joint testdointegration and deterministic terms. A
VAR with the chosen lag length is estimated for gld] 3 and 4. The testing starts with the
most restrictive model, which is model 2, and mogatwards to the least restrictive model;
model 4. Using EViews, Trace and Max test stagsdie obtained for model 2 and we
compare them to the given critical values. The firme we reject the null hypothesis
indicates the correct model to use. This teststiiw us which model fits the data best, but

also which model detects cointegration.

The results from this joint test are presentedahl& 9, with the test statistics for every model
and the critical values in brackets. The resultsrssho cointegration between any of the pairs.
For every pair the test statistics is lower thandtitical value so the null hypothesis of no

cointegration cannot be rejected. This is valichdot the Trace and Max test.
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Table 9: Joint test for pairwise cointegration anddeterministic terms (full sample)

No. of Model 2 Model 3 Model 4
coint.
Pairs vector | Trace Max Trace Max Trace Max
statistics | statistics | statistics | statistics | statistics statistics
(critical (critical (critical (critical (critical (critical
value) value) value) value) value) value)
LNOR - LUSA | None |8,8420,3)| 6,97(15,9)| 6,1€(15,5) | 4,2€(14,3) | 11,15(25,9) | 8,2(19,4)
At most | 1,91(9,16) | 1,91(9,16) | 1,91(3,8) | 1,91(3,84)| 2,95(12,5) | 2,9512,5)
1
LSWE — LUSA | None 15,2(20,3) | 9,8((15,9)| 12,5(15,5) | 8,67(14,3) | 14,1%(25,9) | 10,4((19,4)
At most | 5,4€(9,16) | 5,4€(9,16) | 3,7((3,8) | 3,7((3,84)| 3,77(12,5) | 3,77(12,5)
1
LDEN - LUSA | None | 11,420,3)| 7,4415,9)| 7,6€(15,5) | 4,41(14,3) | 17,3¢(25,9) | 13,3%(19,4)
Atmost | 3,81(9,16) | 3,87(9,16)| 3,243,8) | 3,243,84)| 4,0512,5) | 4,0512,5)
1
LFIN—LUSA | None |16,%20,3)] 14,%15,9)| 13,515,5)| 12.7(14,3)| 18,7(25,9) | 13,7419,4)
At most | 1,9§9,16) | 1,9¢(9,16) | 1,25(3,8) | 1,253,84) | 4,9€(12,5) | 4,9€(12,5)
1
LSWE — LNOR | None | 13,6(20,3)] 9,92(15,9)| 10,415,5) | 7,45(14,3)| 15,61(25,9) | 9,2€(19,4)
At most | 3,71(9,16) | 3,71(9,16) | 3,3€(3,8) | 3,3€(3,84) | 6,3€(12,5) | 6,36(12,5)
1
LDEN —LNOR | None | 13,§20,3)| 8,77(15,9)| 9,7<(15,5) | 7,2414,3) | 14,35(25,9) | 9,2€(19,4)
At most | 5,059,16) | 5,059,16) | 2,553,8) | 2,553,84)| 5,07%(12,5) | 5,07(12,5)
1
LFIN—LNOR | None | 9,6€(20,3)| 8,0%(15,9)| 7,9((15,5) | 6,5%14,3)| 15,7 (25,9) | 9,0¢ (19,4)
At most | 1,5¢9,16) | 1,5¢9,16) | 1,3%(3,84) | 1,3%3,84)| 6,57(12,5) | 6,51(12,5)
1
LFIN-LSWE | None |13,3(20,3)| 11,515,9)| 10,515,5) | 9,2%(14,3) | 18,27(25,9) | 9,3%(19,4)
At most | 1,6€(9,16) | 1,6€(9,16)| 1,25(3,8) | 1,253,8) | 8,9412,5) | 8,9412,5)
1
LDEN —LFIN | None | 10,420,3)| 8,56(15,9)| 7,25(15,5) | 6,7414,3)| 16,525,9) | 10,6(19,4)
At most | 2,349,16) | 2,349,16)| 0,51(3,8) | 0,51(3,8) | 5,7((12,5) | 5,7((12,5)
1
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LDEN — LSWE | None | 18,6(20,3)] 11,2(15,9)] 14,7(15,5) | 11,2(14,3)] 22,8525,9) | 11,61(19,4)

At most | 7,34(9,16) | 7,3%9,16) | 3,55(3,84) | 3,55(3,84) | 11,1(12,5) | 11,1i(12,5)
1

*denotes rejection of the hypothesis at 5% sigaifie level

The results from Table 9 indicate that model 2thes stock market data best. Let us
demonstrate this for the first pair, Norway — USAe Pantula principle suggests starting
with model 2. The test statistics is 8,89 whicless than the critical value 20,3 at 5%
significance level. The null hypothesis of no cegration cannot be rejected and this is the
first non-rejection of the null. Therefore we dd nontinue to the next model, but rather
conclude that model 2 is appropriate for the Jolatsst. The same thing can be concluded

for every pair.

The Johansen test results in Table 9 from thestutiple do not detect the cointegrating
relation found between Sweden and USA in Engle—@¥atesting. However, the Johansen
test in EViews uses 5% significance level and thvedees are valid at that level. We
remember that Sweden and USA showed cointegratib@% significance level in the Engle
— Granger testing, but not at 5%. It was also detkthat this relation was no consistent over

the two subsample periods.

There is no strong evidence of cointegration betwaagy of the pairs of stock markets, when
the full sample from Feb 1993 to Feb 2013 is carsid. The investors could theoretically
diversify their portfolios and achieve gains frometsification by investing in these pairs of

stock markets.

Subsamples

We will now test for cointegration in the two subgaes. The EG results indicated
cointegration between some pairs of markets irstiiesamples and we will see whether the
Johansen method will detect the same cointegragilagions. The lag lengths and the
appropriate model used for the full sample in the/jpus section are valid for the subsamples

as well. The results of the Johansen test for supkal are presented in Table 10.
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Table 10: Pairwise cointegration using Johansen miedd (subsample 1)

Number of
Pair cointegrating Trace Max
vectors
LNOR - LUSA None * 20,36(20,26)* 15,98(15,89)*
At most 1 4,4£(9,16) 4,42 (9,16)
LSWE — LUSA None 19,55(20,26) 16,05(15,89) *
At most 1 3,5( (9,16) 3,5 (9,16)
LDEN — LUSA None * 20,66(20,26) * 18,89(15,89)*
At most 1 1,77(3,84) 1,77(3,84)
LFIN — LUSA None 19,70(20,26) 18,28(15,89)*
At most 1 1,42(9,16) 1,42(9,16)
LSWE — LNOR None 13,31(20,26) 8,81(15,89)
At most 1 4,50(9,16) 4,50(9,16)
LDEN — LNOR None * 23,31(20,26)* 18,22(15,89)*
At most 1 5,1C (9,16) 5,1 (9,16)
LFIN — LNOR None 9,74(20,26) 6,37(15,89)
At most 1 3,37(9,16) 3,37(9,16)
LFIN — LSWE None 11,23(20,26) 7,77(15,89)
At most 1 3,47(9,16) 3,47(9,16)
LDEN — LFIN None 11,3¢(20,26) 7,22 (15,89)
At most 1 4,17(9,16) 4,17(9,16)
LDEN — LSWE None 19,46(20,26) 13,81 (15,89)
At most 1 5,59(9,16) 5,59(9,16)

* denotes rejection of the null hypothesis at 5%iéicance level
Model 2 is used for all pairs. Number of observagics 109.

Cointegration is suggested for several pairs oketar In subsample 1, which includes the
period from February 1993 to February 2002, coirategn is detected for:

¢ Norway — USA
¢ Denmark — USA

* Denmark — Norway
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The indication is that there is one cointegratiegter in each of these 4 pairs at 5%
significance level. Both Trace and Max test confils conclusion. Denmark is pairwise
cointegrated with USA and Norway, while Norway kscapairwise cointegrated with USA.
The null hypothesis was not rejected for any oéhpairs. If this happened, it would indicate
two cointegrating vectors (full rank), and the ara) stock market variables would be

stationary.

Comparing the results from subsample 1 to the twes EG testing, similar cointegrating
pairs are found. Cointegration between Norway aBd dt 5% significance level is
confirmed by both methods. It is interesting theg pair Sweden — USA seems to be
cointegrated according to the Max test, but nahé&Trace test. In small samples, it is not
rare to get different conclusions for these twastedowever, Juselius (2006) claims that the
power of the Trace test is larger than the on¢lferMax test, which means the Trace test
results could be more reliable. With the EG metheel found cointegration between Sweden
and USA, but only at 10% significance level. Altigbuthe results for 10% level are not

reported here, the Johansen method shows coirteglstween them at 10% level as well.

Denmark and USA are cointegrated at 10% signifiedagel according to the EG method,

but the Johansen test shows that this cointegradiatjon is more stable (5%).

Table 11: Pairwise cointegration using Johansen miebd (subsample 2)

Number of
Pair cointegrating Trace Max
vectors

LNOR — LUSA | None 6,07(20,26) 4,25(15,89)
At most 1 2,82(9,16) 2,82(9,16)

LSWE — LUSA | None 7,40(20,26) 4,90(15,89)
At most 1 2,50(9,16) 2,50(9,16)

LDEN — LUSA | None 10,71(20,26) 8,43(15,89)
At most 1 2,28(9,16) 2,28(9,16)

LFIN — LUSA | None 7,0€ (20,26) 5,6¢ (15,89)
At most 1 1,40(9,16) 1,40(9,16)
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LSWE — LNOR | None 12,94(20,26) 8,69(15,89)
At most 1 4,2£(9,16) 4,2£(9,16)
LDEN — LNOR | None 7,08(20,26) 4,85(15,89)
At most 1 2,22(9,16) 2,22(9,16)
LFIN —LNOR | None 7,50(20,26) 5,04(15,89)
At most 1 2,46(9,16) 2,46(9,16)
LFIN —LSWE | None 10,16(20,26) 8,57(15,89)
At most 1 1,59(9,16) 1,59(9,16)
LDEN — LFIN | None 9,4z (20,26) 7,5%(15,89)
At most 1 1,89(9,16) 1,89(9,16)
LDEN — LSWE | None * 21,08(20,26) * 16,32(15,89) *
At most 1 2,C7 (9,16) 2,C7 (9,16)

*denotes rejection of the null hypothesis at 5% iigance level.
Note: Model 2 is used. Number of observations & 13

In subsample 2 (period March 2002 — February 2€48pnly cointegrating pair we find at

5% significance level is Denmark — Sweden, whichficms the same result from EG testing.
However, at the same level, no cointegration isctetl between Sweden and Norway, while
EG test found this relation. We will now examinéntegration for these two pairs as EG test

suggested, but only at 10% significance level. idseilts are shown in Table 12.

Table 12: Pairwise cointegration at 10% significane level (subsample 2)

Number of
Pair cointegrating Trace Max
vectors
LSWE — LNOR | None * 15,31(13,43) * 13,75(12,30) *
At most 1 1,55(2,71) 1,55(2,71)
LDEN — LSWE | None * 18,09(13,43) * 16,32(12,30) *
At most 1 1,77(2,71) 1,77(2,71)

* denotes rejection of the null hypothesis at 108fificance level

We see that both Trace and Max test confirm corategn between Sweden — Norway and
Denmark — Sweden at 10% significance level duriregg2000s. These are the same results as

in the EG tests. The null hypothesis of at mostamirtegrating vector is rejected for all
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pairs. This suggests one cointegrating relaticevery pair. Again, this is confirmed by both
Trace and Max test at 10% significance level. Tieopairs do not show cointegration in

subsample 2 at 5% or 10% level.

Cointegration between Sweden - Norway and Denm&weden was detected in period

2002 — 2013, but not before that or in the full peenThis could suggest that these pairs have
become cointegrated over the past 10 years. Sulls@ngives us some interesting results. It
makes sense that the Scandinavian stock marketsralooe cointegration in the 2000s, as
their financial interdependence deepened duringgtlyears, when they became a part of
OMX Group. For both subsamples, the Johansen methioiirms most of the results of the
EG results at least at 10% level of significand@isTndicates consistency of the used

methods to some degree.

However, a downside is that all these potentiahtegrating pairs are extremely sensitive to
the chosen lag length, except Denmark — USA irfiteesubsample. This is not unusual
when dealing with small samples. When interpretiregse results, we have to keep in mind
that the samples are very small, only 109 and b32wvations, respectively. Choosing higher

frequency of data (daily or weekly) is not verygfal, as we discussed earlier in chapter 4.

The general conclusion about pairwise cointegrabetmveen these stock markets is that no
stable cointegrating relation is found. Neither mogt managed to detect a stable cointegrating
relation over the full sample period. However, éhare some indications about pairwise
cointegration between the mentioned Nordic stockkata in the past 10 years. This finding
confirms the results of Zhang (2012) where usispat sample period from 2001 to 2011
showed that Scandinavian stock markets are comtedjto some extent in 2000s, but not

before.

6.5 The Johansen multivariate test

6.5.1 Lag length selection

After performing the pairwise analysis of stock keds, we will now consider the markets of

USA, Norway, Sweden, Denmark and Finland as a systée will examine whether there is
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cointegration between these five stock marketsthegeusing the Johansen method once

again.

A VAR model will be formulated with all five marketogether. We will determine the

optimal lag length of the model, as the Johans&ngesensitive to this. Since there are many

restrictions on LR test, only the information cridéeused to choose the lag length will be

presented here. A VAR model was estimated for elagfrom 1 to 6. Three different

information criteria are reported for each VAR. Teab3 presents the results.

Table 13 Lag length selection (full sample)

VAR(1) |VAR(2) |VAR(@3) |VAR@) |VAR(G) | VAR()
AIC 17,065 |-17,099* |-17,087 | -17,065 | -16,967 -16,888
HQ -16,886* | -16,773 16,612 | -16,442 | -16,196 -15,968
SC -16,623* | -16,289 15909 | -15519 | -15,053 -14,606

*denotes indicated lag order by different inforratcriteria

In the multivariate approach, the AIC suggests lwgs, while the HQ and SC suggest only
one lag. In general, Juselius (2006) recommendsgbef two lags when dealing with a
system of variables. In the Juselius example,rif@mation criteria also indicated using only
one lag, but it is argued for the use of rather kgs as a starting point, because even in small
samples, two lags can cover a very rich dynamiggire. We will follow this example in our

analysis, and use the lag length of 2 for the sysiEfive stock markets.

6.5.2 Deterministic terms

The same joint test for cointegration and deterstimterms as described in chapter 6.3.2 will

be performed for the system of stock markets.

All three plausible models are estimated with aléagth of 2 and the results are presented in
Table 14 and 15 from the most restrictive altexatmodel 2) to the least restrictive (model
4). We move from model 2 to model 4, until the rylpothesis cannot be rejected. As in any
test, we compare the test statistics with thecaiivalue. There can be at most four

cointegrating vectors in the model, as there aeVariables (stock markets) included in the
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VAR. The results for the Trace test are shown ibl&4d4, and those for the Max test are in

Table 15. The critical values are given in brackets

Beginning with model 2, the Trace test statistc63,78 which is less than the critical value
76,97 at 5% significance level. This means thatamnot reject the null hypothesis of no
cointegrating vectors. This is the first time thia null hypothesis cannot be rejected and we
will therefore conclude that model 2 is the bestlieido describe the given data. The Max test

confirms this result.

Table 14:Trace test for cointegration and deterministic terns (full sample)

Number of

cointegrating vectors

Model 2

Model 3

Model 4

None 63,7¢(76,97) * | 58,9((69,82) | 80,9¢ (88,80)
At most 1 35,44(54,08) | 33,33(47,86) |52,19(63,88)
At most 2 19,5:(35,19) | 17,74(29,80) | 29,5 (42,92)
At most 3 7,20(20,26) | 5,44(15,49) 15,51(25,87)
At most 4 2,19(9,16) 0,60(3,84) 3,63(12,52)

* denotes the first time the null hypothesis carmtejected.

Lag length of 2 is used.
Endogenous variables are LUSA, LNOR, LSWE, LDEN &RtN.

Table 15: Max test for cointegration and deterministic terms(full sample)

Number of

cointegrating vectors

Model 2

Model 3

Model 4

None 28,34(34,81)* | 25,58(33,88) | 28,80(38,33)
At most 1 15,91(28,59) | 15,5¢(27,58) | 22,6F (32,12)
At most 2 12,33(22,30) | 12,30(21,13) | 14,03(25,82)
At most 3 5,01(15,89) | 4,8Z(14,26) 11,8¢ (19,39)
At most 4 2,19(9,16) 0,60(3,84) 3,63(12,52)

* denotes the first time the null hypothesis cariotejected.

Lag length of 2 is used. Endogenous variables &¥@A, LNOR, LSWE, LDEN and LFIN.

The results from Table 14 and 15 suggest that kare cointegrating vector in the system.
This assumes that we have specified the right mangtlused the optimal lag length. We will

check how sensitive these results are to the chagdength and model. All five models will
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be considered, as well as a lag length up to 6.nfésamum lag length of 6 is chosen as
Enders (2008) suggests starting with a lag lenfjttpproximately ¥° where T is the number
of observations, which is 241 in our analysis. €l shows the number of cointegrating

vectors in the system.

Table 16: Sensitivity analysis of cointegration radts to selected lag length and model

Model 1 | Model 2| Model 3| Model 4 Model

Lag length 1
Trace| O 0 0 0 0
Max | O 0 0 0 0

Lag length 2
Trace| O 0 0 0 0
Max | O 0 0 0 0

Lag length 3
Trace| O 0 0 0 0
Max | O 0 0 0 0

Lag length 4
Trace| O 0 0 0 1
Max | O 0 0 0 0

Lag length 5
Trace| O 0 0 0 0
Max | O 0 0 0 0

Lag length 6
Trace| O 0 0 0 1
Max | O 0 0 0 0

It is clear that no cointegration vectors are fotordhe system of stock markets, regardless
of the assumptions made. The results are robubketeelected lag length as well as to the

included deterministic terms.

Pynnodnen and Knif (1998) suggest in their resetir¢ast the use of up to 12 lags in
cointegration analysis. This was tested for thesystem, however the results are not
reported here but no cointegration was found everry high lag lengths. Choosing the

significance level of 10% did not change the result
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The conclusion is that when the stock markets oA U$orway, Sweden, Denmark and
Finland are all included in the VAR, no cointegoatis detected among them in the full

sample.

6.5.3 The Johansen multivariate test: Subsamples

The full sample will once again be divided into taubsamples to check the consistency of
the results. So far the results did not show cgnatigon for the system of stock markets. The

model formulation as well as the testing procedsitbe same as for the full sample.

Subsample 1:

Table 17 shows the results from the Johansen ratilite test for subsample 1, containing
109 observations. Critical values are in brackéts.see that the Trace test suggests two
cointegrating vectors in the system, while the st does not confirm this result, when lag
length 2 is used. A sensitivity analysis of the elassumptions was performed and the

numbers of cointegrating vectors for different medend lags are presented in Table 18.

Table 17: Trace and Max test for cointegration at 5% signifi@ance level (subsample 1)

Number of
cointegrating vectors Trace test statistics Max test statistics
None* 90,0¢ (76,97)* 32,9¢(34,81)
At most 1* 57,15(54,08)* 23,60(28,59)
At most 2 33,5£(35,19) 20,12 (22,30)
At most 3 13,44(20,26) 9,85(15,89)
At most 4 3,58(9,16) 3,58(9,16)

* rejection of the null hypothesis
Lag length of 2 is used. Endogenous variables &f®A, LNOR, LSWE, LDEN and LFIN.

It is difficult to come to a conclusion based ois thensitivity analysis, as the numbers of
cointegrating vectors are very various. This mehasthe results are very sensitive to chosen
lag length, which is not unusual for cointegratamalyses. Many cointegration studies such
as those from Kasa (1991) and Ahlgren and Ant€i022 showed mixed results when

concluding about the number of cointegrating vector
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Table 18: Sensitivity analysis of cointegration radts (subsample 1)

Model 1| Model 2| Model 3| Model 4 Model

Lag length 1

Trace| O 0 0

Max | O 0 0 0 0
Lag length 2

Trace| 1 2

Max | 1 0 0 0 0
Lag length 3

Trace| 1 1

Max | 1 1 0 0 0
Lag length 4

Trace| 2 3 5 2 3

Max | 1 1 1 0 1
Lag length 5

Trace| 2 3 5

Max | 1 2 1 0 0
Lag length 6

Trace| 2 5 5 2 2

Max | 1 1 1 1 1

It is possible to observe from Table 18 that sonoeets and lag lengths indicate no
cointegrating vectors, while others indicate a fatik. Trace test for higher lag lengths
suggests a full rank, meaning that the stock maret stationary, which is not the cadehe
results for one lag length suggest no cointegratitmwever, as mentioned earlier, Juselius
(2006) argues against the use of only one lagstesys of variables as it cannot capture the

dynamic structure well. We will therefore not paych attention to this lag length.

Unlike the Trace test, the Max test results aréequibust to the main lag and model

assumptions, indicating mostly one cointegratingtien.

From the results in Table 18, we can see that gvarsmall sample like this one,
cointegration is found to some extent. It wouldigaioly be wrong to make a strong

conclusion about two or three existing cointegiatiactors in the system, but the results

® This may be due to low power of cointegrationgesta misspecified VAR model.
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indicate one for sure, when the optimal assumpt@wasonsidered. As stated, this is detected
only for the period Feb 1993 — Feb 2002.

Subsample 2:

This subsample contains 132 observations and iaslpdriod from March 2002 to February
2013. Table 19 present the results from Johansétivariate test in this sample period.
Critical values are in brackets. There is no cgragng relation in the system of stock
markets, under the assumptions of 2 lags and nepéeification 2. The results from
changing these assumptions are given in Table \&h Eor higher lags and different models,

no evidence for cointegration is found in perio®26- 2013.

Table 19: Trace and Max test for cointegration at 5% signifi@ance level (subsample 2)

Number of
cointegrating vectors Trace test statistics Max test statistics
None 50,96(76,97) 20,20(34,81)
At most 1 30,7¢ (54,08) 15,8((28,59)
At most 2 14,95(35,19) 10,25(22,30)
At most 3 4,70(20,26) 3,54(15,89)
At most 4 1,1€ (9,16) 1,1€ (9,16)

* rejection of the null hypothesis
Lag length of 2 is used. Endogenous variables Bf®A, LNOR, LSWE, LDEN and LFIN.

Table 20: Sensitivity analysis of cointegration radts (subsample 2)

Model 1 | Model 2 | Model 3| Model 4 Model 5
Lag length 1
Trace| O 0 0 0 0
Max | O 0 0 0 0
Lag length 2
Trace| 0
Max | O 0 0 0 0
Lag length 3
Trace| 0 0 0 0 0
Max | O 0 0 0 0
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Lag length 4

Trace| O 0 0 0 0

Max | O 0 0 0 0
Lag length 5

Trace| O 0 0 0 0

Max | O 0 0 0 0
Lag length 6

Trace| 1 1 1 2 2

Max | O 0 1 1 1

The general conclusion for the multivariate analydicointegration is that no stable
cointegrating relation is detected between the steek markets from Feb 1993 to Feb 2013.

In other words, long — run equilibrium does notsékietween them.

However, the results from the two subsamples dferdnt — at least one cointegrating vector
is found in period 1993 — 2002, while the laterigetishows no cointegration. The plots of the
first potential cointegrating relations are showppendix C for the full sample and for the
two subsamples. The figures indicate non-statibnaekcept the relation in subsample 1

which looks stationary to some degree.

Similar result of one cointegration vector existargong Nordic stock markets during the
1990s is found in the research of Mangeloja (20Rb)cointegration was detected among the
five stock markets in the recent 10 years, whialmigsual concerning the constantly higher

integration of stock markets around the world an8c¢andinavia as well.

6.6 Granger causality analysis

In the long run, there is no cointegration betwdenUS, Norwegian, Swedish, Danish and
Finnish stock market. However, short-run relatiansong them could exist. We will try to
detect short-term lead-lag relations among thedteek markets by using the Granger
causality test. This causality test is also based YAR model. Since the results can be
misleading when more than two variables are indude will perform a pairwise causality
analysis here. A requirement for the causality ieeitat the variables are stationary, so we

have to use the first differenced data (monthlymes) in this test.
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The general rule is that if cointegration is detddbetween two stock markets, then there
must be Granger causality between them in at resivay. However, if there is causality in
one or both ways between two stock markets, it doésiave to mean that they are
cointegrated (Granger, 1988). This could hopefo#ya useful test for validity of our

cointegration results.

Table 21 presents the results from the Grangeratiugest for the full sample. The decision

whether to reject of not reject the null hypothesisased on the p-values from the table.

Table 21: Granger causality test (Feb 1993 — Feb 28)

Null hypothesis df | Chi-squared| p-value Conclusion
test statistic
Norway does not Granger cause USA |5 3,7331 0,5884
USA does not Granger cause Norway |5 7,0820 0,2146
Sweden does not Granger cause USA | 2 12,077 0,0024* | SWE— USA
USA does not Granger cause Sweden | 2 1,8545 0,3956
Denmark does not Granger cause USA | 4 3,9959 0,4066
USA does not Granger cause Denmark | 4 13,572 0,0088* | USA - DEN
Finland does not Granger cause USA | 2 10,812 0,0045* | FIN —» USA
USA does not Granger cause Finland | 2 2,2833 0,3193
Sweden does not Granger cause Norway2 4,6899 0,0958
Norway does not Granger cause Sweden2 4,0507 0,1319
Denmark does not Granger cause Norwa¥ 0,1662 0,6835
Norway does not Granger cause Denmark 4,1056 0,0427* | NOR - DEN
Finland does not Granger cause Norway 2 1,8527 0,3960
Norway does not Granger cause Finland 2 4,3608 0,1130
Finland does not Granger cause Sweden2 5,7202 0,0408* | FIN - SWE
Sweden does not Granger cause Finland2 1,0660 0,5868
Denmark does not Granger cause Finlan@ 3,7983 0,1497
Finland does not Granger cause Denmark 6,4241 0,3617
Denmark does not Granger cause Swedeh 3,5146 0,1725
Sweden does not Granger cause Denmatk 13,864 0,0010* | SWE— DEN

*denotes significance at 5%. Note: The degreesegfdom are denoted df.
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The conclusions from Granger causality tests askffificance level are:
» Finland ‘Granger causes’ USA and Sweden
* Sweden ‘Granger causes’ USA and Denmark
* Norway ‘Granger causes’ Denmark

» USA ‘Granger causes’ Denmark

No bidirectional Granger causality is found in #aanple period, only unidirectional
causality. As we can notice, more short-term refetiare found between the analyzed stock
markets than long-run. The results indicate thakafid and Sweden are the most influential
markets in this sample, which is interesting gitleatt the US market is present in the

analysis.

The cointegration detected by the EG test betwaed&n and USA is supported with the
Granger causality test. This means that previolgegaof Sweden can be used to predict US
stock market index. We would not expect the catystdigo in the direction from, for
example Finland or Sweden to USA, as it is not lyighausible that an investor from USA
can predict movements in the US stock index by iirsg the movements in the Swedish or
Finnish stock market and earn extra profit. Bothkats are relatively small in order to
predict changes in a large market as the US. Howewaesality is a purely statistical result

and cannot say much about realistic economic ogigti

Pynnodnen and Knif (1998) surprisingly detected weladrt — term causality from Finland to
Sweden, which is consistent with our findings. Tihdicates that current value of Swedish
stock market index is correlated to the past vatig¢ke Finnish stock index. However,
because of the lack of cointegration between thkets, we cannot draw strong conclusions
about predictability here. The predictive powestafck market returns depends on the
volatility of returns as well and this has to beenned before making conclusions about
predictability and violation of the weak form of rkat efficiency (Pesaran and Timmermann,
1995).

In the other cases, the absence of Granger causafities that the short-run differences

between the markets are sufficient for investorsdioieve gains by portfolio diversification.
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6.7 Misspecification tests

After estimating the VAR model, assumptions ofrésiduals should be checked. The
assumption is that error terms are i.i.d. Gaussiadom variables with zero mean and
variance-covariance matrjx. Among many diagnostic tests, it is most importantheck for
normality, autocorrelation and heteroscedasticitisélius, 2006). We will also check the
stability of the VAR model.

All of these diagnostic tests were performed in&Ns and details about the procedures will
not be explained het® The summary of the performed tests is given iDlg&2. The tests
are performed for subsamples as well, since subdsalngave different results than the full

sample.

Stability of the VAR model

The estimated VAR is stable if all roots have madwmaller than 1. They will then lie
inside the unit circle, and we can say that the \fA®el is stable. Performing an AR roots
test in EViews shows that all roots are insideuthi¢ circle, and the VAR satisfies the

stability condition. This is valid for both subsalegpas well.

Normality of residuals

The null hypothesis is that the residuals are wadiate normal. We used the Jarque—Bera
residual normality test (Johnston and Dinardo, 1@®d the results are presented in Table 22.
The p-values in brackets indicate rejection ofritb# hypothesis of normality. The residuals
are not normally distributed in any sample. In dreamples non—normality is often a

problem, as it takes a very large sample to gets&es and kurtosis asymptotically normal
(Juselius, 2006). A quick look at the excess kistaad skewness values for the residuals

indicates a left-skewed distribution with fat tails

A possible solution to remove non-normality couddtb re-specify the model; include
dummy variables to account for reforms, crisis anyg significant event that could affect the
variables. This was also attempted by dividingfthlesample in two parts, based on the
global financial crisis and merging in Nordic staularkets in year 2008. The results are not

reported here but the residual tests for thosestwbsamples did not indicate better results.

1% Details about diagnostic tests are available mdmn and Dinardo (1997).
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Autocorrelation of residuals

The null hypothesis is no autocorrelation in realduUsing the Portmanteau test, we can see
if there is significant correlation left in the r@sals. The reported Q-statistic is adjusted for
small samples. Still the null is clearly rejected autocorrelation is present in the residuals.
Autocorrelation can come from a wrongly specifiedd®l or omission of some important
variables (Brooks, 2008). It usually warns us thatmodel contains some unnecessary
variables or that important variables are not idelili As we are analyzing cointegration of all
five stock markets, it is possible that some ofitlao not belong to the model. A suggestion
is to use exclusion tests to check if one of tbelsmarkets can be excluded from the model.
Another possible solution to remove autocorrelafrom the error term could be to add more
variables to the model — include more than onlgggslin the VAR. However, this did not

seem to work for lags up to 8.

Heteroskedasticity

According to the p-values obtained from the Whig¢éehoskedasticity test, variances of the
error terms are not constant. This implies thatlte®f hypothesis tests could be wrong. To
remove heteroskedasticity, Mackinnon and White $)$8iggest the use of a modified
version of heteroskedasticity-consistent covariane&ix estimator - HC3, which performs
well when the sample size is less than 250. Asapin is not available for a cointegrating

VAR model in software packages, we will not utilides method in our research.

Table 22: Misspecification tests on residuals

Test Full sample Subsample 1 Subsample| 2
Stability AR root test Stable Stable Stable
Normality Jarque — Bera 501,417 [0,000@12,261 [0,0000] | 233,919 [0,0001]

Autocorrelation Portmanteau| 76,517 [0,0000] 73,40Q000] | 51,782 [0,0013]

Heteroskedasticity White test 415,075 [0,000]] 371,129 [0,0145] 385,[B6006]

Juselius (2006) argues that cointegration testhigtdy sensitive to autocorrelation and non-
normality of residuals, as this can lead to ov@eating the null hypothesis of no
cointegration. Further, Juselius (2006) argueshb#troskedastic residuals are not such a big
issue in the Johansen test. Unfortunately, diagntegts of our VAR model are not

encouraging. None of the assumptions about theivatilite error term is fulfilled, which
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generally indicates a misspecified model. Therelsvant information left in the residuals
and we probably need to include more variablessé&l®uld be dummy variables to control
for significant events during the sample periodiorply including more lags on dependent
variables. Selecting higher frequency of data aébably not a good solution, as the
autocorrelation and non-normality tests could slesen worse results. We tried to include up
to 8 lags in the VAR model, which did not improve tdiagnostic test results much. We will
not estimate another VAR model, as it is rarelypadjyidea to include more lags than
necessary and as two lags are usually enough toreape dynamics. Specifying an over-
parameterized VAR model is more harmful for thaulssthan accepting autocorrelation to
some degree (Juselius, 2006). However, interpostati all cointegration results must be

done with extra care.
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7. Conclusion & further work

As the degree of economic interdependence deepentdvorld-wide globalisation and
financial liberalisation, it is important to exaraithe effects it has on the stock markets
relations. In this research we examined long-runtegration between the stock markets of
USA, Norway, Sweden, Denmark and Finland. We adstetd whether short-term relations

between these markets exist.

The sample period from February 1993 to Februafyd2@as used. Price indices in local
currencies were collected from every stock marketadjusted to fit the analysis. The figures
showing the development of stock market indicegcatéd comovement between some
countries. Before starting with cointegration tegtiwe pre-tested the stock market indices
for stationarity using an ADF test. After confirrgithe indications that the stock markets are
integrated of order one, long-run cointegratioaetn pairs of stock markets was tested by
using the Engle—Granger and the Johansen methedaftar method was also used to test for
cointegration in a system of all five stock marketgether. Further, Granger causality tests

were performed to examine the short-run linkagéwden the markets.

As in many previous studies, the results of paievasintegration are mixed. The Engle-
Granger test indicates cointegration between SwaddrnJSA. This could possibly indicate
that there are reduced diversification opportusitiden investing pairwise into these stock
markets. The Johansen bivariate test did only oontis for subsample 1 (Feb 1993 — Feb
2002). Therefore this detected cointegrating rexais very weak and we cannot make any
strong conclusions. Other pairs of stock markedsndit show cointegration over the full

sample.

The full sample of 20 years was divided into two@cubsamples to check the consistency
and stability of the results. Cointegration wasitdetected between more stock markets, but

these results were very sensitive to the choselefagih and hence weak and unstable.
The full system of all five stock markets togethas also examined, but no proof for
cointegration was found in the full sample. Howevke Johansen test revealed at least one

cointegrating vector between the five markets enghriod from 1993 to 2002.
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The specification of the VAR model used in the Ja®m test was also examined, but the test
results were not reassuring - the residuals weteirdbGaussian random error terms. This

indicates that our model could be misspecified gind biased results.

In summary, although the financial integration oa8dinavian stock markets is more than
obvious, there is little or no proof for cointegoat between them in the past decade. The
results reveal cointegration at earlier pointshim sample from year 1993 to 2002, but not
later. The reason for this lack of long-run relagbip between them could be in some barriers
remaining in the markets with regards to intermalanvestments or even behavioral-based
reasons as preferring investments in the home mabkieer reasons could be purely
statistical, as trueconomidntegration of stock markets does not mean ttaiistical

integration, which we are examining in this analysi

From the perspective of individual investors, tierall long-run analysis of cointegration
implies that long-run benefits from portfolio digéication can be achieved by combining
investments in the five stock markets of USA, Nojw@&weden, Denmark and Finland. The
stock indices of these markets seem to move ataepaatterns in the long run. As no stable
cointegrating relation was detected, the weak-foranket efficiency is not violated as the
price movements across stock markets cannot bécprddn the long run. However, short-
term analysis reveals return spillovers betweerrsg\pairs of stock markets. This indicates
that opportunities for diversification by investimgthese pairs of market in the short run

could probably be diminished.

This research could be expanded in the several.walsger time period could be examined
for cointegration between the same stock markdsn the stock markets could be tested for
cointegration during a financial crisis as the negskusually tend to move together more
closely during turbulent periods. Examining theatiity spillovers by formulating a GARCH

— BEKK model can be a natural extension to our Gearcausality analysis.
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Appendix A:  ADF test results for subsamples

Table 23: ADF test results, log-levels (Feb 1993Feb 2002)

Stock Number of | Test statistics ADF | Test statistics ADF
market lags (constant) (constant + trend)
LUSA 0 -1,431 -0,128
LNOR 0 -2,177 -2,036
LSWE 1 -1,798 -1,018
LDEN 6 -0,993 -2,837
LFIN 2 -1,329 -2,828

Table 24: ADF test results, first differences (Fei993 — Feb 2002)

Stock Number of | Test statistics ADF
market lags (constant)
DLUSA 0 -10,728¢
DLNOR 0 -9,859%*
DLSWE 0 -8,697*
DLDEN 5 -4,912*
DLFIN 1 -7,305*

** rejection of the null hypothesis at 1% significze level.
Critical values constant only: -3,51 (1%) and -2(8%)

Critical values constant + trend: -4,04 (1%) and535%)

Table 25:; ADF test results, log-levels (Mar 2002 Feb 2013)

Stock Number of | Test statistics ADF | Test statistics ADF

market lags (constant) (constant + trend)
LUSA 6 -2,148 -2,233
LNOR 1 -1,519 -1,981
LSWE 0 -1,037 -2,061
LDEN 6 -1,658 -2,154
LFIN 6 -1,764 -1,804
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Table 26: ADF test results, first differences (Mar2002 — Feb 2013)

Stock Number of | Test statistics ADF
market lags (constant)
DLUSA 5 -5,165*
DLNOR 0 -9,394*
DLSWE 0 -10,03%
DLDEN 5 -5,122*
DLFIN 0 -5,168*

** rejection of the null hypothesis at 1% signifizze level.
Critical values constant only: -3,51 (1%) and -2(8%)
Critical values constant + trend: -4,04 (1%) and535%)



Appendix B:

test for cointegration

Residuals LNOR - LUSA
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Appendix C: Potential cointegrating relations

from Johansen multivariate test

Full sample (Feb 1993 — Feb 2013):
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Subsample 2 (Mar 2002 — Feb 2013):
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