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1. Introduction 

The degree of interdependence between stock markets has been examined in many empirical 

studies in the last few decades [Kasa (1992), Richards (1995), Chen, Firth and Meng Rui 

(2002), Jeon and Chiang (1991)]. This interest is mainly because of the increase in capital 

flow across countries, opportunities for portfolio diversification and potential predictability of 

stock data. One aspect of such interdependence is cointegration. Cointegration between stock 

markets has become a topic of interest and states that markets tend to move together over the 

long-run (Engle and Granger, 1987). The mentioned studies have all showed that stock 

markets around the world are not as independent anymore. It has become quite plausible to 

expect that they share a common trend. This implies that stock indices are linked closely and 

that movements in one market affect other stock markets immediately (Lee and Jeon, 1995)  

 

Cointegration has many implications both for financial theory and for portfolio management 

of the individual investor. Cointegration is important in theory of finance due to the fact that 

if the efficient market hypothesis holds, it should not be possible to predict stock indices using 

indices from other stock markets. However, if markets move together in the long-run, this 

hypothesis will not hold (Shleifer, 2000). Cointegration has also implications on the 

individual investor – in order to hedge risk, investors diversify their portfolios by investing in 

assets traded in different stock markets. If cointegration between markets is present, their 

indices will behave in a similar way in the long-run and give similar returns, leading to the 

potential reduction of gains from international diversification [Kasa (1992), French and 

Poterba (1991), Richards (1995)].  

 

The purpose of this research is to examine whether there is evidence for cointegration among 

stock markets in Scandinavia. Stock markets of Norway, Sweden, Denmark and Finland are 

included in this analysis. The main reason for choosing Scandinavian stock markets is 

because of their historical, political and regional close relation in addition to the small amount 

of attention that these developing markets have received in previous cointegration research. 

The United States market was included mostly because of the global significance of the US 

economy and empirical findings the US market is an international source of common 

stochastic trends [Masih and Masih (2001), Hassan and Naka (1996)]. Data was gathered 
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using a sample period from February 1993 to February 2013. This research is unique because 

of the recent sample period it uses, as many empirical studies use data from the 1980s and 

1990s only. In addition, Scandinavian stock markets have not been in the focus of many 

cointegration studies. Most studies about cointegration in Scandinavia are based only on 

pairwise analysis and usually performed before 2000s.  

 

Both the long-run and short-run linkages between stock markets are examined in this 

research, with a focus on the long-run concept of cointegration. For the long-run relationship, 

we test whether the stock markets are pairwise cointegrated over the sample period by using 

the Engle–Granger test as well as the Johansen method. The Johansen method is also used to 

examine cointegration among stock markets as a system. In terms of short-run relations, the 

Granger causality test is performed. For every test the full 20-year sample period is divided 

into two equal subsamples to check if the results are stable. The result suggest no strong or 

stable evidence for cointegration among these stock markets over this sample period, which is 

consistent with results of many similar research in Scandinavia [Booth, Martikainen and Tse 

(1997), Malkamäki, Martikainen, Perttunen and Puttonen (1993), Pynnönen and Knif (1998)]. 

Causality tests showed some short-run pairwise relations between the analyzed stock markets.  

 

This thesis is divided into seven chapters. Chapter 1 is the introduction. Chapter 2 contains a 

theoretical introduction to cointegration and discusses its importance. Chapter 3describes the 

empirical background with focus on the concept of stationarity. A description of the data used 

in this thesis is given in Chapter 4. Chapter 5 presents the various econometric tests and 

methods used to examine cointegration. The results of these tests are presented in Chapter 6. 

Chapter 7 concludes this research. 

1.1 Previous empirical work 

Many studies around possible cointegration between international stock markets have been 

performed earlier. However, the results are quite conflicting and show no consensus on 

cointegration, even between the major international markets.  

 

Corhay, Rad and Urbain (1993) examine the largest stock markets of Europe from 1975 

to1991 and find evidence for cointegration between them. The same conclusion is found for 

stock markets in Latin America by Chen, Firth and Lui (2002), using the indices of six major 
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stock markets in Latin America and data from 1995 to 2000. Kasa (1992) gives the strongest 

rejection of no cointegration hypothesis. In this research, testing for cointegration is 

performed between the major stock markets of USA, Japan, England, Germany and Canada 

using both monthly and quarterly data from 1974 to 1990. Strong evidence for one single 

cointegrating vector is found for these markets. This conclusion is partially at odds with other 

work in this area which suggests little or no cointegration between stock markets. 

 

Richards (1995) criticizes the work of Kasa (1992) and finds little empirical evidence for 

cointegration of stock market indices using data for 16 international stock markets. Kanas 

(1998) tests for pairwise cointegration between the US stock market and six major European 

markets using daily data from 1983 to 1986. The results suggest that the US market is not 

pairwise cointegrated with any of the European markets.  

 

The major, leading stock markets which include USA, UK, Japan, Germany etc., have 

received most attention in earlier cointegration analyses. However, empirical evidence for 

cointegration in Scandinavia is various. Booth et.al (1997) find no evidence for cointegration 

in Scandinavian markets using a sample period from 1988 to 1994. Some evidence for price 

and volatility spillovers was found. Pynnönen and Knif (1998) focus on the Finnish and the 

Swedish stock market in their research, covering a very large sample period from 1920 to 

1994. No pairwise cointegration or fractional cointegration was found in this research. A 

similar analysis was performed by Malkamäki et.al (1993), where the lead-lag causality 

relationships between the stock markets in Sweden, Denmark, Finland and Norway were 

examined. Even with this research there is little or no evidence for cointegration among these 

markets, although some causality relations were detected and the Swedish market was found 

to be the leading one in the region. However, Knif and Pynnönen (1999) in their later research 

manage to find fractional cointegration between Scandinavian markets. One of the few recent 

studies performed by Zhang (2012) also suggests two cointegrating vectors among 

Scandinavian stock markets in the last decade. 

 

The results from previous work about cointegration among Scandinavian markets are 

obviously inconsistent and mixed. In general, cointegration results depend widely on the 

choice of stock markets, the chosen sample period, frequency of the data and the model 

specification. 
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2. Theoretical background 

The empirical concept of cointegration will be presented and discussed in chapter 3.2 but for 

understanding the implications of cointegration, it is important to introduce the essence of the 

concept. The main idea behind cointegration is that variables have a tendency to move 

together in the long run – there is an equilibrium relationship between them. Short-term 

deviations from the equilibrium are possible, but in the long-run the variables will return back 

to equilibrium relation due to the error or equilibrium correction model (Engle and Granger, 

1987). 

2.1 Factors contributing to stronger interdependence 

Trading and investing across different countries and markets has increased in the past few 

decades. One of the reasons is certainly liberalisation of the markets. Another reason is the 

globalisation of world economy which has made it much easier to instantly make investments 

in any stock market of the world (Corhay et al. 1993).  

 

One of the many motives behind investing abroad is diversifying the portfolio to hedge risk 

and increase expected return from stocks. Increased international trading has in great extent 

led to stronger dependence among stock markets. From the point of view of involved 

countries, stronger interdependence has also resulted in increased competition within the 

markets, positive capital flow across borders etc. This flow of capital can especially be 

noticed from the developed to developing countries (Bessler and Yang, 2003). 

 

The process of globalisation is a relevant factor that contributed to a more interdependent 

world. Globalisation in the economic perspective means increased interdependence among 

national economies, which led to opening of the national economies to foreign trading, 

liberalization of the markets and increased capital flow across countries. Most of the 

developed countries removed restrictions about foreign trading during the 1980s and 1990s 

(Henry, 2000). 

 

Factors that have the strongest impact on this process are deregulation of the economies, 

multinational corporations and their activities over the globe and coordination of national 

policies. These are economic growth factors that not only increase the economic 
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interdependence among countries, but also between their stock markets (Phengpis and 

Apilado, 2004).  

 

One of the most important factors to strengthen the linkages between stock markets, is the 

development of communications technology and computerized systems. It is impossible to 

imagine the stock markets today without advanced technology that shortens the time between 

trades being initiated and trades being completed. More relevant for our discussion about 

globalisation is the information that has become more available and allowed institutions, as 

well as individuals, over the world to buy or sell stocks rather quickly at lower transaction 

costs. These factors have as well had a significant impact on increased capital flow among 

countries and a more interdependent financial world (Blackman, Holden and Thomas, 1994).  

 

Phengpis and Apilado (2004) analyzed in their work how stronger economic interdependence 

among the countries contributes to cointegration among them. The five largest stock markets 

in Economic and Monetary Union (EMU) were considered using a sample period from 1979 

to 2002. EMU is a good example in this case, as the union promotes strong economic 

interdependence and harmonization of the economic policies of the members. The results 

indicated strong cointegration over the full sample for EMU-members. The same analysis for 

five non-EMU countries showed no cointegration among them. In their work the conclusion is 

that strong economic interdependence between countries is crucial for cointegration and 

common stochastic trends between stock markets.  

 

The findings from Phengis and Apilado’s work suggest that cointegration could theoretically 

be found between the Scandinavian stock markets, as their economic interdependence has 

certainly increased in the past decade. Although the process of their integration started earlier, 

the NASDAQ OMX1 group was formed in May 25, 2007 containing Stockholm, Helsinki, 

Copenhagen and four other stock markets. This was a significant step towards stronger 

interdependence among the Scandinavian markets.  

 

 

 

 

                                                
1 NASDAQ OMX merger press release 
http://www.nasdaqomx.com/newsroom/pressreleases/pressrelease/?messageId=760059&displayLanguage=en 
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2.2 Economic implications of cointegration 

The cointegration results have significant implications in the world of economics. The degree 

of international stock market cointegration is important for investor’s investment strategy and 

stock market portfolio. We will discuss these implications in detail. 

 

2.2.1 Investment strategy - Diversification 

The cointegration results can be helpful towards decisions about the investment strategy. 

Aside from the positive impacts on the capital flows, stronger interdependence among stock 

markets leads to diversification problems for the individual investor. In order to reduce the 

risk and achieve higher returns, investors often tend to invest in foreign stock markets (French 

and Poterba, 1991). This technique is called international diversification of the portfolio. The 

analogy behind this is that loss in one market is compensated with the gain in another market, 

but these benefits will hold only if the stock markets are not perfectly correlated. Therefore 

investors are constantly seeking for stocks that do not correlate with each other and hence 

provide better opportunities for hedging the risk. Analogously, if international stock markets 

are strongly correlated in the long-run, the positive effects of diversification will be 

diminished or excluded (Brooks, 2008).  

 

If the cointegration analysis of stock markets shows that they follow their own different 

patterns, investors can fully achieve the benefits of international diversification. However, if 

cointegration between markets is detected, it will imply that a common trend brings these 

stock markets together. Any market by itself will represent the behavior of the whole group of 

markets gathered around a common trend. The problem is that this could reduce or even 

remove the gains from international diversification. Loss in one stock market will mean loss 

in another market as well, since they move together over time. Investing in a group of 

cointegrated markets at the same time will not hedge the risk of investment. However, it does 

not mean that short-run profits and gains are excluded. 

 

When cointegration is present between stock markets, it indicates that fewer assets are 

available for diversification of the portfolio. Therefore, cointegration may force investors to 

reconsider allocation of their capital when investing in foreign stock markets. It is advisable to 
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invest in stock markets that are not cointegrated to maximize the benefits of diversification 

(Kasa, 1992).  

 

2.2.2 Market efficiency 

The efficient market hypothesis (EMH) is one of the central hypotheses in financial theory. In 

efficient markets, all relevant information about stocks is free and available for all rational 

investors. Therefore, the stock prices already contain and fully reflect all available and 

relevant information (Shleifer, 2000). There are different forms of market efficiency based on 

the degree of information that is available. The mainly observed and examined form is the 

weak form of market efficiency, which claims that all past, historical information about prices 

is reflected in today’s price [Fama (1991), Gilson and Kraakman (1984)]. 

 

The EMH excludes the possibility for investors to outperform the market and earn extra profit 

since the same information is available for all investors. This way of earning excess profit is 

known in economic theory as arbitrage opportunity. Arbitrage is a way of making a profit by 

simultaneously buying and selling same or similar assets at different prices (Shleifer and 

Vishny, 1997). This is possible only if markets are inefficient as the prices of same or similar 

asset deviate from each other and this difference can be exploited.  

 

How is the EMH linked to cointegration? A simple example of a plausible cointegrating 

relation is between the spot and future price of an asset. The only difference between these 

two prices is in the timing of the payment and delivery, but they are both prices for the same 

asset. If these prices start to differ from each other due to new information in the market, an 

arbitrage opportunity would occur. Rational investors will exploit this opportunity to earn 

extra profit and this will briefly bring the prices back to equilibrium again. Hence markets 

where arbitrage is possible could be cointegrated (Dwyer and Wallace, 1992). 

 

Due to this, testing for cointegration is in many studies performed in order to test the efficient 

market hypothesis. Hakkio and Rush (1989) for instance, use cointegration methods to test for 

market efficiency between spot and future rates in Germany and United Kingdom.  

 

Moreover, the definition of efficient markets in weak form is that, based on available 

information, it is not possible to predict future price movements. Price movements do not 
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follow any trend or pattern. This unpredictable pattern of the price movement can be called a 

'random walk'. However, cointegration implies that stock market indices follow the same 

common pattern in the long run (Richards, 1995). Thus any known fact about one stock price 

index should provide valuable information about the common trend between them. This will 

make it possible to predict the behavior of the stock prices in other countries (Hakkio and 

Rush, 1989). 

 

In summary, stock market cointegration could contradict the weak-form market efficiency as 

the movements in one market can be used to predict movements in another market. 

 

2.2.3 Arbitrage 

As the stock markets are becoming more approachable for all investors over the world due to 

factors mentioned in 2.1, it can be easier to exploit mispricings in different markets. Due to 

increased integration of markets, investors now have better opportunities to simultaneously 

buy and sell assets if they believe that one market is underpricing the asset. This means that 

when the stock markets are closely linked, arbitrage opportunities could be more available 

and more easily exploited.  

 

The concept of statistical arbitrage is based on cointegration. If prices of two assets move 

largely together (are cointegrated), it does not mean that they move in the same direction 

every trading day. The general idea is that the spread between the prices is mean-reverting – 

in the long-run manner, the spread always returns back to its mean value. Let us illustrate this 

with an example, where the prices of stock A and stock B cointegrate over the long-run. 

When the price of stock A increases relatively to the price of stock B, the strategy is to short-

sell stock A and buy stock B. This is a typical example of statistical arbitrage based on 

cointegrated stock prices. When investors are then exploiting this chance, the deviating prices 

are pushed back to their equilibrium relation. When the price spread again returns to 

equilibrium, this strategy results in an excess profit. Every time the spread between the prices 

of stocks widens, an arbitrage opportunity occurs as investors can predict how the spread will 

behave in the long-run [Shleifer and Vishny (1997), Alexander (2001)]. 

 

An important distinction between correlated and cointegrated stock prices can be drawn here. 

If the prices constantly move in the same direction even in short periods as days, we say that 
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they are correlated. There may never be a widening in the spread between them. Even if a 

spread occurs in some way, it will not return to its mean value as the stocks are not 

cointegrated in the long-run, but correlated. Thus there will be no arbitrage opportunity to 

exploit and no chance to earn extra profit.  

 

Arbitrage opportunities are thus possible to find and exploit in cointegrated markets, but 

arbitrage is not unlimited. The definition of arbitrage does not take into account that such an 

opportunity is highly risky and requires capital. Economists believe that identical assets must 

be traded at identical prices because of the effects of arbitrage pushing them back to 

equilibrium. However, this is not the case when irrational investors are present in the market. 

A good example of differing prices is the case of American Depositary Receipts (ADR). They 

represent securities of a foreign stock trading in the US stock market, so they are actually 

identical assets. Still, the ADR have different prices in the USA than the original stocks have 

in their local markets (Shleifer, 2000).   

  

The theory of limits of arbitrage could explain why prices of equal or similar assets differ. 

The model consists of rational investors (arbitrageurs) and irrational investors (noise traders). 

A rational investor is faced with additional risk when irrational investors are present in the 

market - the non-fundamental, noise trader risk. It is the risk that irrational noise traders will 

become more extreme, making the difference between prices even worse. In that case, the 

spread between the prices will not return to equilibrium and rational investors will loose on 

their investment (De Long et al. 1990). 

 

The risk of this happening makes the rational investors more careful when it comes to 

exploiting arbitrage. Therefore the very important effects of arbitrage in pushing the prices 

back to equilibrium are limited and prolonged. A direct consequence is that prices of equal 

assets may differ and not be cointegrated as we would expect them to be. 

 

Based on our discussion about arbitrage and investment strategies, examining cointegration 

between stocks and stock markets can be useful for the international investor in many ways.  

Yet, the very general idea is that existing cointegration between stock markets will imply that 

arbitrage opportunities are available by strategically investing in these markets. On the other 

hand, non-cointegration between stock markets will mean opportunities for international 

diversification of portfolios and possibilities for risk hedging. 
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3. Empirical background 

3.1 Stationarity/Non-stationarity 

It is important to distinguish between stationary and non-stationary time series, as well as 

weak and strict stationarity. This is relevant for cointegration analysis between stock markets, 

as we expect stock prices to be non-stationary (Richards, 1995).   

 

A time series is considered strictly stationary if the probability distribution of its values does 

not change over time (Brooks, 2008): 

 

1 1(y ,y ,..., ) ( , ,..., )t t T t k t k T kf y f y y y+ + + + +=                                        (0.1) 

The concept of strict stationarity implies that all higher-order moments are constant, including 

mean and variance. However, strict stationary time series are rarely found in practice. 

Therefore we will focus on weakly stationary processes in our further analysis. Conditions 

and assumptions of weakly stationary processes are sufficient to be regarded as stationary. A 

time series is considered weakly stationary when mean, variance and autocovariance are 

constant over time (Enders, 2008).  

 

On the other hand, the properties of non-stationary time series change over time. For this type 

of time series, mean and variance have different values at different time-points. Its variance 

will increase as sample size goes toward infinity (Harris and Sollis, 2003).  

 

There are several reasons why it is important to distinguish between stationary and non-

stationary series. We will show this by using a simple autoregressive (AR) process: 

 

 1t t ty y uµ ρ −= + +   (0.2) 

 

where the current value of variable y depends on the constant term µ, value of the variable y 

from last period t-1 and an error term ut . It is the value of ρ that we are particularly interested 

in, because it will indicate whether the process is stationary or non-stationary. There are three 

possible cases that could occur, or three possible values of ρ (Brooks, 2008): 
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1. │ρ│< 1; a shock to the system in current time period t is temporary; it will die away 

over time and this series is stationary – it has constant mean, variance and 

autocovariance. A stationary time series will return to its mean value in the long run 

(‘Mean reversion’). 

 

2. ρ = 1; a shock in time period t will not die away over time, it will be permanent. Its 

variance will approach infinity over time. This time series is regarded non-stationary, 

better known as the unit root case – the variable y contains a unit root. 

 

3. ρ > 1; a shock in time period t will explode over time and this sort of time series is 

also non-stationary. There is no mean reversion to its true value over time.  

 

The best way to understand this concept is to show it graphically. Figure 1a) plots a non-

stationary I(1) process with non-zero mean (ρ = 1) and Figure 1b) shows a stationary process 

where │ρ│< 1. 

 

Figure 1: Stationary / Non-stationary process2 

 

             a) Non-stationary I(1) process                                b) Stationary I(0) process    

 

Using a model with non-stationary variables can lead to false interpretation of the results. The 

standard ordinary least squares3 (OLS) estimation method of a model with non-stationary 

variables will give misleading results, also known as spurious regression results (Granger and 

Newbold, 1984). Spurious regression results show a relation between two independent, 

                                                
2 Brooks (2008) 
3 OLS is a method used for estimation of unknown coefficients in a regression model. It minimizes the sum of 
squared residuals to fit a function of data (Brooks, 2008).  
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random variables, based on high value of the coefficient of determination4 R2. In reality there 

is no meaningful economic relationship between these variables, while the coefficient R2 

shows otherwise. The t-ratios do not follow the t-distribution, meaning that standard theory of 

inference cannot be used.  

 

A stationary variable is integrated of order 0, denoted yt ~ I(0), while non-stationary variables 

are integrated of order d, where d ≥ 1:  yt ~ I(d). In the rest of the thesis, only values d = 0 and 

d = 1 will be considered.  

 

Non-stationary variables can be transformed into stationary variables by taking the difference 

one or more times5. If a time series contains one unit root (the time series is integrated of 

order one) then taking the difference once will make the time series variable stationary. 

Analogous to that, taking the difference d-times from a non-stationary variable that contains d 

unit roots (integrated of order d), will transform this variable to a stationary variable.  

 

3.2 Concept of cointegration 

The concept of cointegration has its roots in the work of Engle and Granger (1987). Two 

variables are cointegrated if they share a common stochastic trend in the long-run.  

 

The general rule when combining two integrated variables is that their combination will 

always be integrated at the higher of the two orders of integration. The most common order of 

integration in time series is either zero or one (Brooks, 2008); 

1.) if y t ~ I(0), and xt ~ I(0), then their combination (axt + byt) will also be I(0), 

2.) if y t ~ I(0), and xt ~ I(1), then their combination (axt + byt) will now be I(1), because 

I(1) is higher order of integration and dominates the lower order of integration I(0), 

3.) if y t ~ I(1), and xt ~ I(1), then their combination (axt + byt) will also be I(1), in the 

general case. 

 

However, if there exists such linear combination of non-stationary variables I(1) that is 

stationary, I(0), cointegration between those variables exists .  

                                                
4 Coefficient of determination shows the goodness of fit of a regression. It shows how much of the variation in 
the dependent variable is explained by the independent variable(s) (Enders, 2008) 
5 The proof can be found in Enders, 2008. 
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The following regression model includes two I(1) non-stationary variables yt and xt: 

 

 t t ty x uµ β= + +   (0.3) 

 

If the OLS estimate β is such that the linear combination of yt and xt stationary, these two 

variables are cointegrated. The error term between them is then constant over time 

(stationary): 

 t t tu y xβ= −   (0.4) 

 

In order for two variables to be cointegrated they need to be integrated of the same order. For 

example if one variable is I(0) and the other one is I(1), they cannot be cointegrated. The 

highest order of integration of the two variables will dominate and cointegration will not 

exist.  

 

Stock market indices, which are the focus of this research are usually characterized as non-

stationary I(1) variables (Bollerslev, Chou and Kroner, 1992) However, if there is a linear 

combination of the stock indices that is stationary, cointegration between them exists.  
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4. Data 

This chapter describes the data that is used for tests for stationarity, cointegration and other 

econometric methods. In this thesis the focus is on five stock markets: USA, Norway, 

Sweden, Denmark and Finland. The time period of the analysis is from February 1993 to 

February 2013. Monthly data is used, creating 240 observations. This sample period is 

divided into two subsamples to check the consistency of the results and methods. The national 

stock price indices are collected for each of these stock markets using the Thomson Reuters 

DataStream database. By using price indices, dividends are excluded from this analysis. All 

series are expressed in terms of local currencies. For level series, all stock indices are 

converted into natural logarithms to smooth the financial data. In order to get monthly returns, 

first differences of log stock indices are taken. 

 

The original thought was to take an even longer sample period to examine cointegration, since 

it is a long-run concept. By increasing the length of the sample period, tests would be more 

powerful and provide better discrimination among hypotheses. However, increasing the 

frequency by choosing weekly or daily observations in comparison to monthly observations in 

the same sample period would not contribute to more exact results. A large number of 

observations due to a longer time period rather than high frequency of data captures the 

cointegrating relation more efficiently (Hakkio and Rush, 1991).  

 

The sample period of twenty years is chosen mostly because of restricted access to data 

further back in time. Another contribution for choosing this time period in this thesis is 

because it is well-known from literature that deregulations and liberalizations of stock market, 

as well as the informational boom that influenced comovement of stock markets, did not 

happen before the middle of the 1980s. The stock markets could also previously have been 

cointegrated, but these circumstances made a significant contribution to the cointegration 

between them [Corhay et al. (1993), Phengpis and Apilado (2004)]. 

 

The following national price indices present the stock market data used in our analysis: 

• the S&P 500 index for the U.S. market 

• the OBX Price Index for Norway 

• the OMX Stockholm 30 Index (OMXS30) for Sweden 
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• the OMX Copenhagen 20 Index (OMXC20) for Denmark 

• the OMX Helsinki 25 Index (OMXH25) for Finland  

 

Stock market indices are generally good examples of I(1) series (Bollerslev et.al, 1992). 

Although only statistical tests can provide proof, a graphical representation can give some 

indication about the time series properties of the stock market indices. Figure 2 represents the 

levels of the stock market indices for each market, while the first differences of the logs 

(monthly returns) are presented in Figure 3.  

 

Figure 2: Stock markets in log-levels 
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Figure 3: Stock markets in first differences (returns) 
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The suggestion is that stationarity can possibly be achieved when taking first differences of 

the logs of these indices. This is a visual indication that stock market indices in levels could 

be non-stationary I(1) processes, while taking the first differences transforms them into 

stationary variables. However, formal statistic tests for stationarity need to be performed.  

 

Table 1 contains basic descriptive statistics for the first difference in log levels of these five 

indices. Highest average return in the sample period is detected in the Finnish stock market, 

while the lowest is in the US market. According to the standard deviation values, Finland has 

also the most volatile return, followed by Norway. By looking at Figure 2 that shows the price 

index from Oslo Stock Exchange, strong oscillations can be noticed for the Finnish stock 

market which indicates a high volatility. From excess kurtosis values, we notice that first 

differences in log price indices have a highly non-normal distribution. The negative numbers 

of skewness show that stock index returns have a left-skewed distribution, indicating that 

there are relatively few low values. Mass of the distribution is on the right side of the 

distribution figure.  

 

Table 1: Descriptive statistics for monthly returns (Feb 1993 – Feb 2013)   

 DLUSA DLNOR DLSWE DLDEN DLFIN 

Mean 0,005250 0,006560 0,007610 0,007714 0,008006 

Median 0,011307 0,018500 0,013656 0,011037 0,020273 

Maximum 0,119906 0,146680 0,188461 0,148999 0,274402 

Minimum -0,288490 -0,462991 -0,297831 -0,298270 -0,303907 

Std.Dev. 0,049173 0,070779 0,063057 0,058803 0,083116 

Skewness -1,5666 -1,8755 -0,982184 -1,064026 -0,44763 

Kurtosis 6,1197 11,01215 5,9057 6,64699 4,25246 

Note: DLUSA is a variable name which shows that the first difference has been taken of the logs, in 
order to get monthly returns. This is true for DLNOR, DLSWE, DLDEN and DLFIN as well. 
 

Table 2 shows simple correlation coefficients between returns from these five stock markets. 

Generally, the correlation coefficient can have values from -1 to +1. A coefficient more close 

to 1 means relatively strong correlation between variables. All coefficient values from Table 2 

show mostly strong, positive correlation between national stock indices, where the correlation 

with value of 77,59% between Sweden and Finland appears to be the strongest one. The 

weakest correlation among these markets is between Denmark and Finland, only 58,1%. 

However, all of the markets indicate high mutual interdependence. 
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Table 2: Correlation matrix, monthly returns 

 DLUSA DLNOR DLSWE DLDEN DLFIN 

DLUSA 1,0000 -                      -  - - 

DLNOR 0,742606 1,0000 - - - 

DLSWE 0,729137 0,764841 1,0000 - - 

DLDEN 0,653075 0,770528 0,716926 1,0000 - 

DLFIN 0,605948 0,606462 0,775859 0,580999 1,0000 

Note: All correlations are statistically significant at the 5% and 1% level.  
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5. Methodology 

5.1 Testing for stationarity 

After discussing the concept of stationarity, the next step is to show how stationarity can be 

tested. Many empirical papers concerning cointegration start with using either DF test or 

Phillips-Perron test6 for stationarity of the original stock market data [Kasa (1992), Richards 

(1995), Chen et al. (2002)]. 

 

We test whether there are one or more unit roots in the data - whether the individual series are 

I(1). As stated earlier, performing such tests at the beginning of any analysis is necessary 

because of the possibility of getting misleading results if non-stationary variables are 

included. There are various ways to test for stationarity, but the most commonly used test is 

the Dickey-Fuller test (DF) (Dickey and Fuller, 1979). To show how this test works, we start 

with the simplest case, using an AR(1) model, which was introduced in chapter 3.1: 

 

 1t t ty y uβ −= +   (2.1) 

 

where ut is the error term - a white noise process.7 

By differentiating the equation above once, we obtain: 

 

 1 1 1t t t t ty y y y uβ− − −− = − +   (2.2) 

or 

 1t t ty y uρ −∆ = +   (2.3) 

 

where ρ = (β-1). The DF test tests the value of ρ; if │ρ│< 1, variable y is stationary. Since ρ = 

(β-1), the restriction on ρ being less than 1 implies that also β, the coefficient at the lagged 

value of variable y, is less than 1. In this case, the time series will be stationary. 

 

                                                
6 Phillips–Perron (PP) test is similar to the DF test, but here a correction is implemented to the DF procedure 
allowing for autocorrelated residuals. The DF tests perform better than the PP tests in small samples (Davidson 
and MacKinnon, 2001).  
7 The error term is a white noise process if it has a zero mean, constant variance and zero autocovariances 
(Brooks, 2008).   
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The hypotheses that we want to test with a Dickey-Fuller test are: 

 0 : 0 ( 1)

: 1 ( 0)A

H

H

ρ β
ρ β

= =
< <

  (2.4) 

The null hypothesis H0 claims that the time series is non-stationary and contains at least one 

unit root. Performing the DF test on levels reveals whether the time series is stationary or not; 

whether at least one unit root is included or not. Performing the same test on first differences 

will help us to determine the order of integration. In order to test for cointegration, as 

previously stated in chapter 3.2, variables have to be integrated of the same order. 

 

The null hypothesis is tested against the alternative hypothesis HA, which states that the time 

series is stationary. An OLS procedure has to be performed on the equation (4.3) in order to 

get the estimated value for coefficient ρ. 

 

The test statistics used in a DF test for stationarity is (Brooks, 2008): 

 

 
ˆ

ˆ( )
test statistic

SE

ρ
ρ

=   (2.5) 

 

where �� is the OLS estimated coefficient, and SE(��)is the standard error of ��. The test 

statistics does not follow a normal distribution, neither the usual t-distribution, but rather a 

non-standard ‘Dickey-Fuller’ distribution, skewed to the left (Dickey and Fuller, 1979). 

Therefore, the critical values used for comparison with the computed test statistics are special 

DF critical values. These values are much larger in absolute values than the standard critical 

values from t-distribution. This implies that the null hypothesis in a DF test is harder to reject, 

than for a standard t-test. The null hypothesis is rejected whenever the test statistic is higher in 

absolute terms than the DF critical value. 

 

There are several practical issues that have to be considered before performing the DF test for 

stationarity. One of them is whether to include deterministic terms as intercept and linear 

trend into the basic equation (4.3). This decision is important since it implies different critical 

values, depending on which deterministic terms are included. There are three possible options 

to model the equation (4.3) (Enders, 2008): 
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1. A model with no intercept and no trend 

2. A model with an intercept, but no trend 

3. A model with an intercept and a linear trend 

The test procedure is the same regardless of the chosen model, but the DF critical values are 

different for each model. Tables can be found in Davidson and Mackinnon (2001).  

 

It is important to determine which model to use before proceeding with testing, because 

adding irrelevant terms into the equation will increase the DF critical values in absolute terms 

and make the null hypothesis harder to reject. Harris and Sollis (2003) suggest examining the 

figures of the series. A constant should be included if the plot of the data does not start from 

zero, as can be observed in Figure 2. A trend should be added if the plot of the data shows an 

upward or downward trend. 

 

Another practical issue is that the DF test presented above is valid only if the error term ut is a 

white noise process; ut  ~ IID (0,σ2), but in most financial series this is not the case. When 

there is autocorrelation in the dependent variable ∆yt, the error term will also be 

autocorrelated, because the omitted lags of ∆yt will be a part of it. To control for the possible 

autocorrelation, the basic equation for this test (4.3) has to be expanded with p lags of the 

dependent variable ∆yt (Enders, 2008): 

 

 1 1

p

t t i t i ti
y y y uρ α− −=

∆ = + ∆ +∑   (2.6) 

 

By including lags of the dependent variable, its potential autocorrelation is absorbed, the error 

term is a white noise process and usual DF test statistics and critical values can be used. This 

test is known as the Augmented Dickey-Fuller (ADF) test and will be used further in the 

cointegration analysis of the included stock markets, to ensure that the error terms are white 

noise processes. The hypotheses, test statistics and DF critical values are exactly the same as 

for the simple DF test.  

 

Expanding the basic equation with lags of the dependent variable also leads to the issue of the 

number of lags to include. Including too few lags can result in some of the autocorrelation to 

remain in the model. On the other hand, choosing too many lags will unnecessarily use up 

degrees of freedom and thus reduce the power of the test (Cheung and Lai, 1995). There are 
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various methods to choose the optimal number of lags. Such methods include different 

information criterion which will be discussed later. For the ADF test, the Akaike information 

criterion (AIC) will be used. The number of lags that minimizes the AIC value is the optimal 

lag length, where AIC is: 

 2
log ˆ k

AIC
T

= Σ +   (2.7) 

where ∑� is the variance-covariance matrix of residuals, T is the number observations and k is 

the number of coefficients in equation (Davidson and MacKinnon, 2001). 

 

5.2 Testing for cointegration 

Cointegration tests should reveal whether the stock markets move together over a longer time 

period. There are several methods to test for cointegration between two or more variables 

(Engle and Granger, 1987). First it is important to distinguish between the univariate and the 

multivariate approach:  

 

The univariate approach to cointegration implies a pairwise analysis of the five stock market 

indices. The Engle-Granger single-equation method is applied to perform pairwise analysis of 

the stock indices presented in chapter 4. It allows only for one endogenous and one exogenous 

variable. We will also apply the Johansen method for pairwise cointegration to check the 

consistency of the results achieved with the Engle-Granger method (Kühl, 2010).  

 

The multivariate approach to cointegration tests whether there is cointegration in a system of 

more than two variables. The Johansen method is widely used to perform this analysis 

(Juselius, 2006). It improves some of the drawbacks with the Engle-Granger method (Brooks, 

2008), which will be discussed later. The Johansen method allows for all variables to be 

endogenous and makes it possible to determine all cointegrating relationships between the 

stock markets. Both methods will be explained in details in this chapter. 

 

5.2.1 The Engle-Granger test 

The Engle-Granger test is a single-equation method used to determine whether there is a 

cointegrating relationship between two variables (Engle and Granger, 1987). The precondition 

to examine cointegration is that the variables are both non-stationary and integrated of the 
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same order. The Engle-Granger (EG) method can be performed by following the next four-

step procedure: 

 

Step 1: Perform the ADF test as explained in chapter 5.1 to pretest for the order of integration. 

If the variables are both I(1), cointegration is theoretically possible and we can proceed to step 

2. If the variables are of different order, the conclusion is that cointegration is not possible as 

explained in chapter 3.2.  

 

Step 2: Estimate the long-run, static relationship or equilibrium by running the OLS 

regression on the general equation: 

 t t ty x uβ= +   (2.8) 

 

This equation can be expanded with a constant term or a constant term and a time trend, but 

this issue will be discussed later. If the variables are cointegrated, an OLS regression will give 

a “super-consistent” estimator, denoted as ��, implying that the coefficient β will converge 

faster to its true value than using OLS on stationary variables, I(0) (Dolado et al, 1990). If 

there is a linear combination of variables yt and xt that is stationary, the variables are said to be 

cointegrated. This linear combination of the variables can then be presented with the 

estimated error term �� t: 

 ˆ ˆ
t t tu y xβ= −   (2.9) 

 

Step 3: Store the residuals �� t and examine whether they are stationary or not. Here an ADF 

test, as explained earlier, is performed on the saved residuals from every regression [equation 

(2.3)]. The hypotheses for the EG test for cointegration are: 

  

0

A

ˆH : (1) -non-stationary residualand nocointegration between variables

ˆH : (0) - stationary residual and cointegration between variables
t

t

u I

u I

∼
∼

  (2.10) 

 

If the null hypothesis is rejected, the variables from the model are cointegrated. The test 

statistics is the same as the one used for the ADF test, but the critical values are different. 

Since the Engle-Granger method includes testing on estimated residuals �� t instead of the 

actual values, the estimation error will change the distribution of the test statistics. Therefore 

the critical values used in an Engle-Granger approach will be larger in absolute value, or more 
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negative compared to those used in a DF or ADF test. This means that the magnitude of the 

test statistics must be much larger in order to reject the null hypothesis, compared to the usual 

DF critical values. Davidson and Mackinnon (2001) provide appropriate critical values for 

residual-based cointegration testing, depending on whether and which deterministic terms are 

included in the model.   

 

Step 4: If cointegration is found between the variables, estimate an error-correction model. 

However, this will not be part of our analysis, since we are interested only in detecting 

cointegration. 

 

Drawbacks with the Engle-Granger method 

The Engle-Granger cointegration test is very popular mostly because it is easy to estimate the 

regression using OLS and the error correction model provides valuable information about the 

speed of adjustment to equilibrium. Therefore it is often used when testing for pairwise 

cointegration [Richards (1995), Jang and Sul (2003)].   

 

However, there are several problems with this method. One of the drawbacks with using OLS 

regression in general is that it can identify only one cointegrating vector even when there are 

many variables in the system (Dolado et al., 1991). On the other hand, the Johansen method 

makes it possible to detect all cointegrating relationship in a system of variables.  

 

Other problems with the EG tests are linked to the usual small sample problems and unit root 

testing (Harris and Sollis, 2003): 

• Lack of power in stationarity tests, which is a typical ADF test problem 

• Standard inference cannot be used, as the included variables are non-stationary 

• Potentially biased results, which usually occurs if a variable that belongs to the model 

is omitted from the regression 

 

Also, a challenge that usually arises is whether to include deterministic terms into the model. 

Including unnecessary terms can lower the power of the test (Harris and Sollis, 2003). 

Generally, including a time trend in the ADF test on residuals, will result in loss of power or 

to be more specific, will lead to under-rejecting the null hypothesis of no cointegration when 

it is false.  
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5.2.2 The Johansen method 

There could be more than one cointegrating vector in a system of variables and the Johansen 

method can discover all such cointegrating relations [Juselius (2006), Johansen and Juselius 

(1990), Kasa (1992)]. The Johansen method relies on a vector autoregression (VAR) model. 

A VAR is a system regression model which includes more than one dependent variable. Every 

variable is regressed on a combination of its own lagged values and lagged values of other 

variables from the system. Here, the simplest form is presented, where k denotes the number 

of lags included (Brooks, 2008): 

 

 1 1 2 2 ...t t t k t k ty y y y uβ β β− − −= + + + +   (2.11) 

 

To use the Johansen test, the VAR model needs to be transformed into a vector error 

correction model (VECM), by differentiating: 

 

 1 1 2 2 1 ( 1)...t t t k t k tt k
y y y y y u− − − − −−

∆ = + Γ + ∆ + Γ ∆ + + Γ ∆ +∏   (2.12) 

 

where there are g variables in the model and k-1 lags of the dependent variables. Γ is the 

coefficient matrix for every lagged variable and Π is the long-run coefficient matrix. 

 

This VECM is estimated by Maximum Likelihood8 estimation process, not OLS estimation as 

for the Engle-Granger method. The Johansen test is a multivariate case of an ADF test for unit 

root. The focus in this method is on the Π matrix - we test the rank (r) of this matrix. The rank 

is equal to the number of characteristic roots (eigenvalues, denoted λ), that are significantly 

different from zero. That means that the rank (r) will give us the number of cointegrating 

vectors in a system of variables. 

 

There are three possible cases, based on the rank of the Π matrix (Johansen and Juselius, 

1990): 

• full rank (r = g) - all eigenvalues are significantly different from zero, implying that 

the original variables are stationary and therefore cointegration is not possible.      

                              

                                                
8 Explanation of the maximum likelihood estimation procedure can be found in Johansen and Juselius (1990). 
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• rank is zero (r = 0) – none of the eigenvalues are significantly different from zero, 

implying that there are no linear combinations of variables that are I(0), and thus no 

cointegration. 

 

• reduced rank (0 < r < g) – there are r linear combinations of variables that are I(0), 

meaning that cointegration exists in this system, with r cointegrating vectors.  

 

For example, if g > 2 and resulting r = 2, there are two linear combinations of non-stationary 

variables that are stationary, or two cointegrating vectors in the model. 

 

In the Johansen method, two tests are used to detect cointegration and the number of 

cointegrating vectors r (Enders, 2008): 

 

1. The Trace test: 

 
1

ln ( )ˆ( 1)
g

tra ice i r
r Tλ λ

= +
−= − ∑   (2.13) 

The null hypothesis of r or less than r cointegrating vectors is tested against the alternative of 

more than r cointegrating vectors. 

 

2. The Maximum eigenvalue test (the Max test): 

 1max
ˆ( , 1) ln )(1 rr r T λλ ++ = − −   (2.14) 

The null hypothesis of exactly r cointegrating vectors is tested against the alternative of r+1 

cointegrating vectors. 

 

r is the number of cointegrating vectors, ��i  is the estimated eigenvalue of order i from the Π 

matrix, and T is the number of observations. The distribution of the two test statistics is not 

standard and the critical values depend on the value of (g – r) and the deterministic terms 

included (Johansen and Juselius, 1990). If the test statistics is larger than the appropriate 

critical value, the null hypothesis of no cointegration is rejected.   

 

If we detect a reduced rank and we find cointegration with r cointegrating vectors, the Π 

matrix can be defined as a product of two matrices: 

 αβ′=∏   (2.15) 
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where α is a (g x r) matrix and β is a (r x g) matrix. The β matrix shows the cointegrating 

vectors while the matrix α shows the amount of each cointegrating vector in the VECM, or 

the adjustment coefficients.  

 

The critical values of the Johansen method are sensitive to the lag length and the number of 

deterministic terms in the VECM. Therefore it is important to choose the optimal lag length 

and whether a constant term and/or a time trend should be included. This will be discussed in 

the model specification in chapter 6.3. 

 

5.3 Granger causality test 

Cointegration indicates existence of a long-run relationship between variables. Even when the 

variables are not cointegrated in the long-run, they might still be related in the short-run. In 

order to understand short-run interdependence among stock markets, Granger causality tests 

will be performed.  

 

Granger causality test is based on a standard F-test which seeks to determine if changes in one 

variable cause changes in another variable. A variable X is said to ‘Granger cause’ variable Y, 

if the previous values of X could predict the current value of Y. Let us start with a simple 

VAR model: 

 1 1 2 2 1 1 2 2... ...t t t k t k t t q t q ty y y y x x x uβ β β α α α− − − − − −= + + + + + + + +   (2.16) 

                        

If all α - coefficients on lagged values of X are significant in this equation, then ‘X Granger 

causes Y’. If X Granger causes Y and not vice versa, it is called unidirectional causality. If the 

causality goes both ways from X to Y and from Y to X, then this is called bidirectional 

causality (Brooks, 2008).  

 

After estimating the VAR, restrictions are imposed and the following hypotheses are tested in 

a Granger causality test: 

 

 0 1 2 p

A

H :α = α = ...=α = 0 ("X does not Granger cause Y")

H :at least one ofα - coefficients 0 ("X does Granger cause Y")≠
  (2.17) 
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The test statistic follows a χ2 distribution, with p degrees of freedom under the null 

hypothesis. p is the optimal number of lags. 

 

The term ‘causality’ should not be wrongly interpreted – it does not mean that changes in one 

variable cause changes in the other variable. It simply means that there is a correlation 

between the current value of one variable and the previous values of another variable.  

We will use Granger causality tests to examine the lead-lag relationships among stock 

markets.  

 

However, these tests can only provide information of whether a significant impact exists 

between stock markets, but nothing about the sign of the impact or how long it will last. An 

impulse response analysis could give us answers regarding this, but as cointegration between 

the stock markets is the focus of this thesis, we will leave this as a suggestion for further 

research.  
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6. Empirical results 

6.1 ADF stationarity tests 

A requirement for cointegration is that the stock markets are integrated of the same order. The 

visual impression from the figures in chapter 4 is that the stock markets are all integrated of 

order one, since their first differences appear to be integrated of order zero. However, the 

ADF test, described in 5.1 will be used to formally test for stationarity and order of 

integration.  

 

The optimal lag length must be selected for each stock market index. This is a precondition 

for performing the ADF test. The Akaike information criteria (AIC) will be used to select the 

lagged terms by using a regular t-test. As suggested by Brooks (2008), we start with 12 lags 

since the data is monthly. The optimal number of lags is the one that minimizes the value of 

the Akaike information criterion.  

 

The null hypothesis is non-stationarity in series, while the alternative hypothesis is 

stationarity. The null hypothesis of non-stationarity is rejected in favor of the alternative 

hypothesis, if the test statistics is more negative than the critical values. The optimal lag 

lengths as well as the ADF test results obtained from the software package EViews are 

presented in Table 3: 

 

Table 3: ADF test results (log-levels, Feb 1993 – Feb 2013) 

Stock 

market 

Number of 

lags 

Test statistics ADF 

(constant) 

Test statistics ADF 

(constant + trend) 

LUSA 0 -2,024 -1,907 

LNOR 1 -1,784 -2,820 

LSWE 1 -2,436 -2,394 

LDEN 5 -1,533 -2,820 

LFIN 1 -2,603 -2,012 

Note: A constant term and/or a trend are included, as some of the series indicated a trend but this is not 

absolutely obvious from the figures in chapter 4. A constant should be included anyways, as the plots 

of data do not begin from the origin. Hence, the ADF test was performed for these two cases.  
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When only a constant is included, the critical Dickey-Fuller (DF) values are -3,46 and -2,88 at 

1% and 5% significance level, respectively (Davidson and Mackinnon, 2001). When a 

constant and trend are included, the critical DF values are -3,99 (1%) and -3,42 (5%). The 

table shows that none of the test statistics are larger than the critical values in absolute value 

in order to reject the null hypothesis. Therefore, the null hypothesis of non-stationarity cannot 

be rejected. The stock market indices contain a unit root and are considered non-stationary. 

 

As the ADF test is sensitive to the chosen lag length, a sensitivity analysis was performed for 

different lag lengths. The test results showed no sensitivity to the chosen, optimal lag length. 

If we increase or reduce the lag length, the results will still show non-stationarity of stock 

markets. 

 

An ADF test on first differences is additionally performed to determine the order of 

integration of the stock markets as they have to be integrated of the same order to perform 

cointegration tests. If the ADF results show stationarity, I(0), for the first differences, this will 

imply that stock market indices in levels are integrated of order one, I(1). Again, the null-

hypothesis of non-stationarity (unit root) is tested against the alternative hypothesis of 

stationarity. The results are presented in Table 4. 

 

Table 4: ADF test results (first differences, Feb 1993 – Feb 2013) 

Stock market 

 

Number 

of lags 

Test statistics ADF 

(constant) 

DLUSA 0 -15,961 **  

DLNOR 0 -13,467 ** 

DLSWE 0 -13,425 ** 

DLDEN 0 -14,285 **  

DLFIN 0 -12,641** 

Note: Only a constant term is included, as the plots of data for returns (Figure 3) do not show an 

upward or downward trend. (*) denotes rejection of the null hypothesis at 5% significance level, and 

(**) at 1% significance level.  

 

The critical values are the same: -3,46 and -2,88 at 1% and 5% significance level respectively. 

All of these test statistics are also larger in absolute value than the critical values, and the null-

hypothesis of non-stationarity is rejected at all significance levels. The first differences of 
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stock market indices seem therefore to be stationary, I(0). The same results are obtained for 

two sub-samples and the results are shown in Appendix A.  

 

Since differentiating the stock indices once converts them into stationary variables, the 

conclusion is that stock markets are initially integrated of order one, I(1).This finding 

confirms the results of many other studies. Although there is little consensus concerning the 

cointegration between stock markets, almost every study confirms that stock markets are non-

stationary I(1) variables, including Kasa (1992), Richards (1995) and Pynnönen and Knif 

(1998) for the Scandinavian markets. Cointegration is hence theoretically possible and we can 

perform the cointegration tests. 

 

6.2 The Engle–Granger pairwise test 

Using the Engle-Granger test for cointegration, a pairwise analysis of the five stock markets 

can be performed as described in chapter 5.2.1. We will test whether a linear combination of 

two stock market indices is stationary. If it is found to be stationary, the two stock markets are 

cointegrated. Table 5 presents the results from this test obtained by using EViews.  

The equation (2.8) is formulated for every pair of stock markets. As an example, the first pair 

from the table LNOR – LUSA can be used. A constant term is included in the regression and 

OLS is used for its estimation: 

 

 0 1t t tLNOR LUSA uβ β= + +   (3.1) 

   

Ten possible pairs of stock markets are formulated. From the table, the first variable in every 

pair is the dependent one, while the second is the independent variable. In the pair LNOR – 

LUSA for example, the Norwegian stock market index is the dependent variable (Y), while 

the US market is the independent variable (X). Table 5 shows the estimated values of the 

constant term β0 and the coefficient on the independent variable β1 for each market pair.  

 

An ADF test is performed on the saved residuals from every regression, where the hypotheses 

for the Engle-Granger cointegration test are: 
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 0 ˆ: (1) non-stationary residual;nocointegration betweenstock markets

ˆ: (0) stationary residual;cointegration betweenstock markets
t

A t

H u I

H u I

−
−

∼

∼

  (3.2) 

 

The optimal lag lengths chosen by the AIC as well as test results are shown in Table 5 for 

every pair of market. 

 

Table 5: Regressions and Engle-Granger test for cointegration (Feb 1993 – Feb 2013) 
 

Pair Constant 

β0 

Coefficient 

β1 

Number 

of lags 

ADF test statistics  (on 

residuals) 

LNOR – LUSA -1,898031 1,029637 4 -1,356464 

LSWE – LUSA -2,417344 1,296199 3 -3,223982 + 

LDEN – LUSA -3,611066 1,320097 3 -1,346232 

LFIN – LUSA -2,834791 1,649799 0 -2,094409 

LSWE – LNOR 1,630582 0,940994 1 -2,280216 

LDEN – LNOR -0,141671 1,083538 0 -2,132605 

LFIN – LNOR 3,094888 1,048671 1 -1,607205 

LFIN – LSWE 0,537029 1,227686 2 -0,744119 

LDEN – LFIN -0,452743 0,696251 11 -0,979091 

LDEN - LSWE -1,074423 1,007010 0 -1,911824 

Note: Only constant is included, in ADF tests on residuals, as the plots of the residuals showed no 
trend.  
+ rejection of the null hypothesis at 10% significance level 
 

When only a constant is included, the EG critical values are -4,00, -3,37 and -3,07 at 1%, 5% 

and 10% significance level, respectively (Davidson and Mackinnon, 2001).  

 

Based on the regression coefficients, in order to have cointegration, the constant term β0 needs 

to be close to 0, while the coefficient β1 should be close to 1. It is easy to notice that none of 

the coefficients from the table have these required values, except of the pair Denmark – 

Norway. 
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The results from Table 5 indicate cointegration between Sweden and USA at 10% 

significance level. The ADF test statistics of -3,224 is larger in absolute value than the critical 

value of -3,04. The coefficient estimate β1 indicates that if the US stock market increase by 

1%, then the Swedish stock market will increase by 1,29%. However, the null hypothesis of 

no cointegration is rejected only at 10% significance level, which is not a very strong proof of 

cointegration. At more strict significance levels like 5% or 1%, no cointegration is found 

between Sweden and USA. This result is not sensitive to the chosen lag length. Random lag 

lengths from 1 to 12 were tested and cointegration between Sweden and USA is still found at 

10% significance level.  

 

For the other pairs, the ADF test statistics are below the critical values, so we fail to reject the 

null hypothesis of a unit root in the residuals. The residuals are I(1).The graphs for the 

residuals are presented in Appendix B, indicating that they are non-stationary processes.  

 

This pairwise analysis shows no cointegration between the other pairs of stock markets in the 

full sample from February 1993 to February 2013. There is no long-run relationship between 

stock markets and equation (3.1) is spurious, without any economic meaning. This is quite 

surprising, as the stock index figures showed similar patterns, for instance between Denmark 

and Norway. 

 

However, when deterministic terms are excluded from the regressions, the conclusions about 

cointegration are quite different. For several pairs, the null hypothesis of no cointegration is 

rejected at 5% and 10% significance level. Since it is essential for the outcome of the tests 

whether deterministic terms are included in the model or not, a standard t-test is used to test 

the statistical significance of the constant in every regression. The test statistics were various 

but in every case statistically significant. This means that constant terms need to be included 

in the ADF equations. 

 

We will now look at the Engle–Granger test results from two subsamples, before making a 

conclusion about pairwise cointegration.  
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6.2.1 Test for cointegration in subsamples 

The full sample period from February 1993 to February 2013 is divided into two subsamples 

to check the consistency and stability of the results: 

• Subsample 1; from February 1993 to February 2002 

• Subsample 2; from March 2002 to February 2013 

The results for the two subsample periods are presented in Table 6 and 7. The test procedure 

is identical; the only difference with regards to the full sample test is that the critical values 

are slightly higher in absolute values as the number of observations is smaller.  

 

Table 6: Regressions and Engle-Granger test for cointegration (Feb 1993 – Feb 2002) 

Pair Constant 

��0 

Coefficient 

��1 

Number 

of lags 

ADF test on residuals 

LNOR – LUSA 0,741700 0,616270 9 -3,4483 * 

LSWE – LUSA -2,21598 1,264128 3 -3,3176 + 

LDEN – LUSA -1,63746 1,003960 8 -3,0793 + 

LFIN – LUSA 0,67125 0,213261 0 -1,9101 

LSWE – LNOR -2,44878 1,787256 0 -2,1093 

LDEN – LNOR -1,97671 1,451046 0 -2,3239 

LFIN – LNOR -3,53932 2,412186 0 -1,5906 

LFIN – LSWE -0,60223 1,408294 11 -1,2989 

LDEN – LFIN 0,70037 0,535002 6 -2,6428 

LDEN - LSWE 0,18419 0,784353 0 -1,6449 

**rejection of the null hypothesis at 1% significance level       
 * rejection of the null hypothesis at 5% significance level       
 + rejection of the null hypothesis at 10% significance level 
    Critical values: -4,01 (1%), -3,39 (5%) and -3,04 (10%). 
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Table 7: Regressions and Engle-Granger test for cointegration (Mar 2002 – Feb 2013) 

Pair Constant 

β0 

Coefficient 

β1 

Number 

of lags 

ADF test on residuals 

LNOR – LUSA -7,63509 1,85705 0 -2,0197 

LSWE – LUSA -2,60316 1,32412 0 -1,7887 

LDEN – LUSA -4,59262 1,47643 3 -1,8309 

LFIN – LUSA 2,30733 0,92389 0 -1,0537 

LSWE – LNOR 2,96787 0,68990 0 -3,2741 + 

LDEN – LNOR 1,81473 0,73367 0 -1,9580 

LFIN – LNOR 6,58123 0,41099 0 -1,8454 

LFIN – LSWE 5,33359 0,51872 0 -1,3566 

LDEN – LFIN -0,02072 0,663702 0 -2,3647 

LDEN - LSWE -1,10250 1,02809 5 -3,1687 + 

Note: Only a constant is included in every ADF equation, as the plots of the saved residuals did not 
indicate a trend. 
**rejection of the null hypothesis at 1% significance level       
 * rejection of the null hypothesis at 5% significance level       
 + rejection of the null hypothesis at 10% significance level 
    Critical values: -4,01 (1%), -3,39 (5%) and -3,04 (10%). 
 

Dividing the full sample into two subsamples, the results become more various. In subsample 

1, we find proof for cointegration between Norway and USA at 5% significance level. Also, 

USA seems to be cointegrated with Denmark and Sweden at 10% significance level. At the 

downside, the results are extremely sensitive to the lag length, probably because this is a 

small sample with only 109 observations. The ADF test has a tendency to under-reject the 

null hypothesis when it is false and to over-reject it when it is true in small samples (Harris 

and Sollis, 2003). The AIC chosen lag length for Denmark – USA is 8. If we try to select the 

lag length of 7 or 9 lags in the ADF regression, we find no cointegration between Denmark 

and USA. A similar outcome is detected for the pair Sweden – USA. The pair Norway – USA 

shows cointegration for higher lags as well and it is in some degree robust to different lag 

lengths, probably because cointegration is found at a higher significance level. This 
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cointegrating relationship appears to be more stable. For the rest of the pairs in subsample 1, 

the null hypothesis of no cointegration cannot be rejected. 

 

In subsample 2, Sweden – Norway and Denmark – Sweden seem to be cointegrated at 10% 

significance level. No cointegration is detected at 5% level. However, these pairs show strong 

sensitivity to the chosen lag length. The reason is once again probably the small sample size 

of 132 observations, which will strengthen the negative sides of an ADF test. 

 

The results from 1990s show stronger cointegration of the Nordic countries with USA which 

is not detected in the past 10 years. In 2000s, Sweden indicates some cointegration to Norway 

and Denmark, but the evidence for this is neither strong nor stable over time.  

 

The general conclusion based on Engle - Granger cointegration test is that Sweden and USA 

show a weak cointegration relationship at 10% significance level. This was stronger in the 

1990s than in the 2000s. This is consistent with the findings by Knif and Pynnönen (1999), 

who also detected cointegration between the US and Swedish stock market using data from 

1990s. However, before taking any strong conclusion, we have to keep in mind that this 

detected cointegrating relationship is weak and not stable over the two subsamples. We will 

verify these results using a Johansen pairwise cointegration test.  

 

6.3 Formulating the VAR model for the Johansen test 

The test results of the Johansen method are affected by the selected lag length in the model 

and the included deterministic terms. We will now show how to formulate a VAR model and 

determine this before performing the Johansen test.  

6.3.1 The optimal lag length 

Two common procedures can be used to determine the optimal lag length (Enders, 2008):   

1. Likelihood ratio (LR) test  

2. Using an information criterion  

A likelihood ratio test implies estimating an unrestricted VAR. One should begin with the 

longest lag length that seems reasonable and then test if it can be shortened. The null 

hypothesis is that the coefficients on this highest lag are jointly zero. If rejected, that lag is the 
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optimal one. If we fail to reject, we continue to the next lag length, until the null hypothesis is 

rejected. Enders (2008) provides the test statistic for every lag length: 

 

 ( )( log log )LR T c r u= − Σ − Σ   (3.3) 

where ∑ denotes the variance–covariance matrix of residuals for the restricted model (r) and 

for the unrestricted model (u), T is the sample size and c is the number of parameters in the 

unrestricted model. The test statistics has a χ
2 distribution with degrees of freedom equal to 

the number of coefficient restrictions.  

 

The LR test requires that the errors from each equation are normally distributed (Brooks, 

2008). However, this is not likely to hold for stock market data, as the descriptive statistics in 

Table 1 showed. Therefore, a suggestion is to concentrate on an information criterion when 

selecting the lag length. 

 

We are familiar with the information criterion process, as it was used to determine the lag 

length for the ADF stationarity test. The Akaike information criterion was presented in 

chapter 5.1, but since this is an important matter for the Johansen test, the other information 

criteria will also be presented here (Brooks, 2008): 

 

1. Schwarz - Bayesian criterion (SC):       ˆlog log
k

SC T
T

= Σ +                                 (3.4) 

2. Hannan – Quinn criterion (HQ):          2ˆlog log (log )
k

HQ T
T

= Σ +                         (3.5) 

3. Akaike criterion (AIC):                        2ˆlog
k

AIC
T

= Σ +                                          (3.6) 

where ∑� is the variance – covariance matrix of residuals, T is the number of observations and 

k is the number of parameters in all equations.  

 

The values of the criteria are calculated for different lags from 0 to k lags, and the optimal 

number of lags is the one that minimizes the value of the information criteria.  

Monte Carlo studies showed that the Schwarz–Bayesian (SC) criterion could be the better 

selection criterion to use than the AIC when dealing with small samples (Koehler and 

Murphree, 1988). We will therefore focus on this criterion when selecting lag length for the 

Johansen test.  
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6.3.2 Deterministic terms – the Pantula principle 

After choosing the appropriate lag length, the next step is to specify which deterministic terms 

will be included in the VECM or in the cointegrating relation; a constant term and/or a trend. 

Based on the deterministic terms included in the model, Harris and Sollis (2003) suggest the 

following models: 

 

• Model 1: There are no deterministic terms in the data or in the cointegrating relations. 

There is little or almost no possibility that this model is the optimal one, as the 

constant term is usually necessary to account for different units of measurement of the 

variables. 

• Model 2: Only a restricted constant term is included in the cointegrating relation, 

implying that the equilibrium mean is not zero. There are no linear trends in the levels 

of data, which implies that the returns as first-differenced data have zero means. 

• Model 3: Two constant terms are included; in the short-run model and in the 

cointegrating relation, which are combined to form only an unrestricted constant term 

in the short-run model. There are no linear trends included. This model should be used 

if all trends seem to be stochastic (Juselius, 2006). 

• Model 4: There is a linear trend (restricted) in the cointegrating relation, but no trend 

in the VECM. This model should be chosen if we believe some of the variables are 

trend-stationary in levels. 

• Model 5: Linear trends are present both in the cointegrating relation and in the model. 

Similar as for model 1, this case occurs rarely in practice. 

 

Since models 1 and 5 are not likely to occur often in practice, we will consider only models 2 

– 4 as possible (Juselius, 2006). It is not easy to decide which model to use in the Johansen 

method and this must be done carefully. Critical values and the asymptotic distribution of the 

cointegration test will depend on the chosen model. If the model is not specified well, the 

results can be misleading and biased.  

 

One possibility is to look at the figures of stock indices in levels and in returns, but this will 

only provide an indication. Juselius (2006) suggests the Pantula principle to choose the 

appropriate model. The idea behind this principle is to first estimate the VAR model for the 

three plausible cases. The results should be ordered from the most restrictive case (model 2), 
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to the least restrictive case (model 4). Starting from the most restrictive model, we compare 

the test statistics for that model with the critical values. If we fail to reject the null hypothesis 

of a unit root, we can stop the process there. If we reject the null hypothesis, we move on to 

the next most restrictive model and so on until the null hypothesis is not rejected. First non-

rejection of the null hypothesis indicates the appropriate model for the data. It is possible to 

use the Pantula principle in EViews and let the software package determine which of the five 

models is appropriate to use and which deterministic terms should enter the model. 

 

Enders (2008) suggests the use of an intercept term outside the cointegrating relation to 

capture the effects of an increasing or decreasing tendency of variables. A suggestion is also 

to avoid including a trend term unless there is a good reason to do so. 

 

6.4 Testing pairwise cointegration using the Johansen method 

Although the Johansen method is best known as a multivariate approach to cointegration 

testing, it can also be used to test for cointegration between a pair of variables (Johansen, 

1991). The results can also be used to check the consistency with the Engle - Granger test 

results. All variables are in log-levels. The pairs of stock markets are the same as in the Engle-

Granger procedure. A VAR model is formulated for every pair of markets. 

 

The optimal lag length for each pair will be determined first. Table 8 shows the Schwarz – 

Bayesian lag length criterion considering up to 5 lags and estimating a VAR for each lag 

length. 

 

Table 8: The selection of lag length for pairwise analysis using SC 

Pair VAR(1) VAR(2) VAR(3) VAR(4) VAR(5) 

LNOR - LUSA -6,3296 * -6,3019 -6,2256 -6,1769 -6,1328 

LSWE – LUSA -6,5796 * -6,5517 -6,4720 -6,4079 -6,3397 

LDEN - LUSA -6,4897 * -6,4619 -6,4173 -6,3653 -6,2894 

LFIN – LUSA -5,7307 -5,7345 * -5,6482 -5,5648 -5,4786 

LSWE – LNOR -5,9273 * -5,9103 -5,8218 -5,7520 -5,6619 

LDEN – LNOR -6,0957 * -6,0288 -5,9474 -5,8687 -5,7850 
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LFIN – LNOR -4,9499 -4,9637 * -4,8831 -4,8055 -4,7179 

LFIN – LSWE -5,6719 * -5,6429 -5,5769 -5,5058 -5,4342 

LDEN – LFIN -5,2786 * -5,2653 -5,1820 -5,1191 -5,0334 

LDEN – LSWE -6,1791 * -6,1293 -6,0612 -6,0011 -5,9111 

*indicated lag order selection by SC information criterion 

 

SC clearly indicates the use of 1 lag for most of the pairs of stock markets. Exceptions are 

Finland – USA and Finland - Norway with 2 as the optimal lag length. The other information 

criteria such as the Akaike and Hannan – Quinn criterion were evaluated as well. HQ did not 

seem to differ much from the SC chosen lag length, but AIC suggested higher lags than 1 and 

2. As mentioned earlier, this information criterion tends to overfit the model, so the SC 

suggested lag length will be used.  

 

The deterministic terms that will be included in the VECM are specified by applying the 

Pantula principle, which performs a joint test for cointegration and deterministic terms. A 

VAR with the chosen lag length is estimated for model 2, 3 and 4. The testing starts with the 

most restrictive model, which is model 2, and move rightwards to the least restrictive model; 

model 4. Using EViews, Trace and Max test statistics are obtained for model 2 and we 

compare them to the given critical values. The first time we reject the null hypothesis 

indicates the correct model to use. This test will show us which model fits the data best, but 

also which model detects cointegration.  

 

The results from this joint test are presented in Table 9, with the test statistics for every model 

and the critical values in brackets. The results show no cointegration between any of the pairs. 

For every pair the test statistics is lower than the critical value so the null hypothesis of no 

cointegration cannot be rejected. This is valid both for the Trace and Max test. 
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Table 9: Joint test for pairwise cointegration and deterministic terms (full sample) 

 

 

Pairs 

No. of 

coint. 

vector 

Model 2 Model 3 Model 4 

Trace 

statistics 

(critical 

value) 

Max 

statistics 

(critical 

value) 

Trace 

statistics 

(critical 

value) 

Max 

statistics 

(critical 

value) 

Trace 

statistics 

(critical 

value) 

Max 

statistics 

(critical 

value) 

LNOR - LUSA None 8,89(20,3) 6,97(15,9) 6,18(15,5) 4,28(14,3) 11,15(25,9) 8,23(19,4) 

At most 

1 

1,91(9,16) 1,91(9,16) 1,91(3,8) 1,91(3,84) 2,93(12,5) 2,93(12,5) 

LSWE – LUSA None 15,2(20,3) 9,80(15,9) 12,3(15,5) 8,67(14,3) 14,17(25,9) 10,40(19,4) 

At most 

1 

5,46(9,16) 5,46(9,16) 3,70(3,8) 3,70(3,84) 3,77(12,5) 3,77(12,5) 

LDEN - LUSA None 11,4(20,3) 7,49(15,9) 7,66(15,5) 4,41(14,3) 17,38(25,9) 13,33(19,4) 

At most 

1 

3,87(9,16) 3,87(9,16) 3,24(3,8) 3,24(3,84) 4,05(12,5) 4,05(12,5) 

LFIN – LUSA None 16,7(20,3) 14,7(15,9) 13,9(15,5) 12,7(14,3) 18,7 (25,9) 13,74(19,4) 

At most 

1 

1,98(9,16) 1,98(9,16) 1,25(3,8) 1,25(3,84) 

 

4,96(12,5) 4,96(12,5) 

LSWE – LNOR None 13,6(20,3) 9,92(15,9) 10,9(15,5) 7,49(14,3) 15,61(25,9) 9,26(19,4) 

At most 

1 

3,71(9,16) 3,71(9,16) 3,36(3,8) 3,36(3,84) 6,36(12,5) 6,36(12,5) 

LDEN – LNOR None 13,8(20,3) 8,77(15,9) 9,79(15,5) 7,24(14,3) 14,35(25,9) 9,28(19,4) 

At most 

1 

5,05(9,16) 5,05(9,16) 2,55(3,8) 2,55(3,84) 5,07(12,5) 5,07(12,5) 

LFIN – LNOR None 9,66(20,3) 8,07(15,9) 7,90(15,5) 6,57(14,3) 15,7 (25,9) 9,08 (19,4) 

At most 

1 

1,59(9,16) 1,59(9,16) 1,33(3,84) 1,33(3,84) 6,57(12,5) 6,57(12,5) 

LFIN – LSWE None 13,1(20,3) 11,5(15,9) 10,5(15,5) 9,22(14,3) 18,27(25,9) 9,33(19,4) 

At most 

1 

1,66(9,16) 1,66(9,16) 1,25(3,8) 1,25(3,8) 8,94(12,5) 8,94(12,5) 

LDEN – LFIN None  10,9(20,3) 8,56(15,9) 7,25(15,5) 6,74(14,3) 16,5(25,9) 10,8(19,4) 

At most 

1 

2,34(9,16) 2,34(9,16) 0,51(3,8) 0,51(3,8) 5,70(12,5) 5,70(12,5) 
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LDEN – LSWE None 18,6(20,3) 11,2(15,9) 14,7(15,5) 11,2(14,3) 22,83(25,9) 11,67(19,4) 

At most 

1 

7,39(9,16) 7,39(9,16) 3,55(3,84) 3,55(3,84) 11,17(12,5) 11,17(12,5) 

*denotes rejection of the hypothesis at 5% significance level 
 
 
The results from Table 9 indicate that model 2 fits the stock market data best. Let us 

demonstrate this for the first pair, Norway – USA. The Pantula principle suggests starting 

with model 2. The test statistics is 8,89 which is less than the critical value 20,3 at 5% 

significance level. The null hypothesis of no cointegration cannot be rejected and this is the 

first non-rejection of the null. Therefore we do not continue to the next model, but rather 

conclude that model 2 is appropriate for the Johansen test. The same thing can be concluded 

for every pair.   

 

The Johansen test results in Table 9 from the full sample do not detect the cointegrating 

relation found between Sweden and USA in Engle–Granger testing. However, the Johansen 

test in EViews uses 5% significance level and these values are valid at that level. We 

remember that Sweden and USA showed cointegration at 10% significance level in the Engle 

– Granger testing, but not at 5%. It was also detected that this relation was no consistent over 

the two subsample periods. 

 

There is no strong evidence of cointegration between any of the pairs of stock markets, when 

the full sample from Feb 1993 to Feb 2013 is considered. The investors could theoretically 

diversify their portfolios and achieve gains from diversification by investing in these pairs of 

stock markets.  

 

Subsamples 

We will now test for cointegration in the two subsamples. The EG results indicated 

cointegration between some pairs of markets in the subsamples and we will see whether the 

Johansen method will detect the same cointegrating relations. The lag lengths and the 

appropriate model used for the full sample in the previous section are valid for the subsamples 

as well. The results of the Johansen test for subsample 1 are presented in Table 10.  
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Table 10: Pairwise cointegration using Johansen method (subsample 1) 

 

Pair 

Number of 

cointegrating 

vectors 

 

Trace 

 

Max 

LNOR – LUSA 

 

None * 20,36 (20,26) * 15,98 (15,89) * 

At most 1 4,44 (9,16) 4,44 (9,16) 

LSWE – LUSA 

 

None  19,55 (20,26) 16,05 (15,89) * 

At most 1 3,50 (9,16) 3,50 (9,16) 

LDEN – LUSA 

 

None * 20,66 (20,26) * 18,89 (15,89) * 

At most 1 1,77 (3,84) 1,77 (3,84) 

LFIN – LUSA 

 

None 19,70 (20,26) 18,28 (15,89)* 

At most 1 1,42 (9,16) 1,42 (9,16) 

LSWE – LNOR 

 

None  13,31 (20,26) 8,81 (15,89) 

At most 1 4,50 (9,16) 4,50 (9,16) 

LDEN – LNOR 

 

None * 23,31 (20,26) * 18,22 (15,89) * 

At most 1 5,10 (9,16) 5,10 (9,16) 

LFIN – LNOR 

 

None 9,74 (20,26) 6,37 (15,89) 

At most 1 3,37 (9,16) 3,37 (9,16) 

LFIN – LSWE 

 

None 11,23 (20,26) 7,77 (15,89) 

At most 1 3,47 (9,16) 3,47 (9,16) 

LDEN – LFIN 

 

None 11,39 (20,26) 7,22 (15,89) 

At most 1 4,17 (9,16) 4,17 (9,16) 

LDEN – LSWE 

 

None 19,46 (20,26)  13,87 (15,89)  

At most 1 5,59 (9,16) 5,59 (9,16) 

*  denotes rejection of the null hypothesis at 5% significance level 
Model 2 is used for all pairs. Number of observations is 109. 
 
Cointegration is suggested for several pairs of markets. In subsample 1, which includes the 

period from February 1993 to February 2002, cointegration is detected for: 

• Norway – USA  

• Denmark – USA 

• Denmark – Norway 
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The indication is that there is one cointegrating vector in each of these 4 pairs at 5% 

significance level. Both Trace and Max test confirm this conclusion. Denmark is pairwise 

cointegrated with USA and Norway, while Norway is also pairwise cointegrated with USA. 

The null hypothesis was not rejected for any of these pairs. If this happened, it would indicate 

two cointegrating vectors (full rank), and the original stock market variables would be 

stationary.  

 

Comparing the results from subsample 1 to the ones from EG testing, similar cointegrating 

pairs are found. Cointegration between Norway and USA at 5% significance level is 

confirmed by both methods. It is interesting that the pair Sweden – USA seems to be 

cointegrated according to the Max test, but not to the Trace test. In small samples, it is not 

rare to get different conclusions for these two tests. However, Juselius (2006) claims that the 

power of the Trace test is larger than the one for the Max test, which means the Trace test 

results could be more reliable. With the EG method, we found cointegration between Sweden 

and USA, but only at 10% significance level. Although the results for 10% level are not 

reported here, the Johansen method shows cointegration between them at 10% level as well. 

 

Denmark and USA are cointegrated at 10% significance level according to the EG method, 

but the Johansen test shows that this cointegrating relation is more stable (5%). 

 
 
 
Table 11: Pairwise cointegration using Johansen method (subsample 2) 

 

Pair 

 

Number of 

cointegrating 

vectors 

 

Trace 

 

Max 

LNOR – LUSA  None 6,07 (20,26) 4,25 (15,89) 

At most 1 2,82 (9,16) 2,82 (9,16) 

LSWE – LUSA None 7,40 (20,26) 4,90 (15,89) 

At most 1 2,50 (9,16) 2,50 (9,16) 

LDEN – LUSA None 10,71 (20,26) 8,43 (15,89) 

At most 1 2,28 (9,16) 2,28 (9,16) 

LFIN – LUSA None 7,08 (20,26) 5,68 (15,89) 

At most 1 1,40 (9,16) 1,40 (9,16) 
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LSWE – LNOR None  12,94 (20,26) 8,69 (15,89) 

At most 1 4,24 (9,16) 4,24 (9,16) 

LDEN – LNOR None 7,08 (20,26)  4,85 (15,89)  

At most 1 2,23 (9,16) 2,23 (9,16) 

LFIN – LNOR None 7,50 (20,26) 5,04 (15,89) 

At most 1 2,46 (9,16) 2,46 (9,16) 

LFIN – LSWE None 10,16 (20,26) 8,57 (15,89) 

At most 1 1,59 (9,16) 1,59 (9,16) 

LDEN – LFIN None 9,42 (20,26) 7,53 (15,89) 

At most 1 1,89 (9,16) 1,89 (9,16) 

LDEN – LSWE  None * 21,08 (20,26) * 16,32 (15,89) * 

At most 1 2,07 (9,16) 2,07 (9,16) 

*denotes rejection of the null hypothesis at 5% significance level. 
Note: Model 2 is used. Number of observations is 132. 
 
In subsample 2 (period March 2002 – February 2013) the only cointegrating pair we find at 

5% significance level is Denmark – Sweden, which confirms the same result from EG testing. 

However, at the same level, no cointegration is detected between Sweden and Norway, while 

EG test found this relation. We will now examine cointegration for these two pairs as EG test 

suggested, but only at 10% significance level. The results are shown in Table 12.  

 

Table 12: Pairwise cointegration at 10% significance level (subsample 2) 

 

Pair 

Number of 

cointegrating 

vectors 

 

Trace 

 

Max 

LSWE – LNOR  None * 15,31 (13,43) * 13,75 (12,30) * 

At most 1 1,55 (2,71) 1,55 (2,71) 

LDEN – LSWE None * 18,09 (13,43) * 16,32 (12,30) * 

At most 1 1,77 (2,71) 1,77 (2,71) 

* denotes rejection of the null hypothesis at 10% significance level 

 

We see that both Trace and Max test confirm cointegration between Sweden – Norway and 

Denmark – Sweden at 10% significance level during the 2000s. These are the same results as 

in the EG tests. The null hypothesis of at most one cointegrating vector is rejected for all 
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pairs. This suggests one cointegrating relation in every pair. Again, this is confirmed by both 

Trace and Max test at 10% significance level. The other pairs do not show cointegration in 

subsample 2 at 5% or 10% level.  

 

Cointegration between Sweden - Norway and Denmark – Sweden was detected in period 

2002 – 2013, but not before that or in the full sample. This could suggest that these pairs have 

become cointegrated over the past 10 years. Subsample 2 gives us some interesting results. It 

makes sense that the Scandinavian stock markets show more cointegration in the 2000s, as 

their financial interdependence deepened during these years, when they became a part of 

OMX Group. For both subsamples, the Johansen method confirms most of the results of the 

EG results at least at 10% level of significance. This indicates consistency of the used 

methods to some degree.  

 

However, a downside is that all these potential cointegrating pairs are extremely sensitive to 

the chosen lag length, except Denmark – USA in the first subsample. This is not unusual 

when dealing with small samples. When interpreting these results, we have to keep in mind 

that the samples are very small, only 109 and 132 observations, respectively. Choosing higher 

frequency of data (daily or weekly) is not very helpful, as we discussed earlier in chapter 4. 

 

The general conclusion about pairwise cointegration between these stock markets is that no 

stable cointegrating relation is found. Neither method managed to detect a stable cointegrating 

relation over the full sample period. However, there are some indications about pairwise 

cointegration between the mentioned Nordic stock markets in the past 10 years. This finding 

confirms the results of Zhang (2012) where using a short sample period from 2001 to 2011 

showed that Scandinavian stock markets are cointegrated to some extent in 2000s, but not 

before.  

 

6.5 The Johansen multivariate test 

6.5.1 Lag length selection 

After performing the pairwise analysis of stock markets, we will now consider the markets of 

USA, Norway, Sweden, Denmark and Finland as a system. We will examine whether there is 
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cointegration between these five stock markets together using the Johansen method once 

again.   

 

A VAR model will be formulated with all five markets together. We will determine the 

optimal lag length of the model, as the Johansen test is sensitive to this. Since there are many 

restrictions on LR test, only the information criteria used to choose the lag length will be 

presented here. A VAR model was estimated for every lag from 1 to 6. Three different 

information criteria are reported for each VAR. Table 13 presents the results.   

 

Table 13: Lag length selection (full sample) 

 VAR(1) VAR(2) VAR(3) VAR(4) VAR(5) VAR(6) 

AIC -17,065 -17,099* -17,087 -17,065 -16,967 -16,888 

HQ -16,886* -16,773 -16,612 -16,442 -16,196 -15,968 

SC -16,623* -16,289 -15,909 -15,519 -15,053 -14,606 

*denotes indicated lag order by different information criteria 

 

In the multivariate approach, the AIC suggests two lags, while the HQ and SC suggest only 

one lag. In general, Juselius (2006) recommends the use of two lags when dealing with a 

system of variables. In the Juselius example, the information criteria also indicated using only 

one lag, but it is argued for the use of rather two lags as a starting point, because even in small 

samples, two lags can cover a very rich dynamic structure. We will follow this example in our 

analysis, and use the lag length of 2 for the system of five stock markets. 

 

6.5.2 Deterministic terms 

The same joint test for cointegration and deterministic terms as described in chapter 6.3.2 will 

be performed for the system of stock markets.  

 

All three plausible models are estimated with a lag length of 2 and the results are presented in 

Table 14 and 15 from the most restrictive alternative (model 2) to the least restrictive (model 

4). We move from model 2 to model 4, until the null hypothesis cannot be rejected. As in any 

test, we compare the test statistics with the critical value. There can be at most four 

cointegrating vectors in the model, as there are five variables (stock markets) included in the 
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VAR. The results for the Trace test are shown in Table 14, and those for the Max test are in 

Table 15. The critical values are given in brackets. 

 

Beginning with model 2, the Trace test statistics is 63,78 which is less than the critical value 

76,97 at 5% significance level. This means that we cannot reject the null hypothesis of no 

cointegrating vectors. This is the first time that the null hypothesis cannot be rejected and we 

will therefore conclude that model 2 is the best model to describe the given data. The Max test 

confirms this result. 

 

Table 14: Trace test for cointegration and deterministic terms (full sample) 

Number of 

cointegrating vectors 

 

Model 2 

 

Model 3 

 

Model 4 

None 63,78 (76,97) * 58,90 (69,82) 80,99 (88,80) 

At most 1 35,44 (54,08) 33,33 (47,86) 52,19 (63,88) 

At most 2 19,53 (35,19) 17,74 (29,80) 29,54 (42,92) 

At most 3 7,20 (20,26) 5,44 (15,49) 15,51 (25,87) 

At most 4 2,19 (9,16) 0,60 (3,84) 3,63 (12,52) 

* denotes the first time the null hypothesis cannot be rejected. 
Lag length of 2 is used. 
Endogenous variables are LUSA, LNOR, LSWE, LDEN and LFIN. 
 

Table 15: Max test for cointegration and deterministic terms (full sample) 

Number of 

cointegrating vectors 

 

Model 2 

 

Model 3 

 

Model 4 

None 28,34 (34,81)* 25,58 (33,88) 28,80 (38,33) 

At most 1 15,91 (28,59) 15,59 (27,58) 22,65 (32,12) 

At most 2 12,33 (22,30) 12,30 (21,13) 14,03 (25,82) 

At most 3 5,01 (15,89) 4,84 (14,26) 11,89 (19,39) 

At most 4 2,19 (9,16) 0,60 (3,84) 3,63 (12,52) 

* denotes the first time the null hypothesis cannot be rejected. 
Lag length of 2 is used. Endogenous variables are LUSA, LNOR, LSWE, LDEN and LFIN. 
 
 
The results from Table 14 and 15 suggest that there is no cointegrating vector in the system. 

This assumes that we have specified the right model and used the optimal lag length. We will 

check how sensitive these results are to the chosen lag length and model. All five models will 
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be considered, as well as a lag length up to 6. The maximum lag length of 6 is chosen as 

Enders (2008) suggests starting with a lag length of approximately T1/3 where T is the number 

of observations, which is 241 in our analysis. Table 16 shows the number of cointegrating 

vectors in the system.  

 

Table 16: Sensitivity analysis of cointegration results to selected lag length and model 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Lag length 1      

Trace 0 0 0 0 0 

Max 0 0 0 0 0 

Lag length 2 
Trace  0 0 0 0 0 

Max 0 0 0 0 0 

Lag length 3 
Trace  0 0 0 0 0 

Max 0 0 0 0 0 

Lag length 4 
Trace  0 0 0 0 1 

Max 0 0 0 0 0 

Lag length 5 
Trace  0 0 0 0 0 

Max 0 0 0 0 0 

Lag length 6 
Trace  0 0 0 0 1 

Max 0 0 0 0 0 

 
It is clear that no cointegration vectors are found for the system of stock markets, regardless 

of the assumptions made. The results are robust to the selected lag length as well as to the 

included deterministic terms.  

 

Pynnönen and Knif (1998) suggest in their research to test the use of up to 12 lags in 

cointegration analysis. This was tested for the full system, however the results are not 

reported here but no cointegration was found even at very high lag lengths. Choosing the 

significance level of 10% did not change the results.  
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The conclusion is that when the stock markets of USA, Norway, Sweden, Denmark and 

Finland are all included in the VAR, no cointegration is detected among them in the full 

sample.   

 

6.5.3 The Johansen multivariate test: Subsamples 

The full sample will once again be divided into two subsamples to check the consistency of 

the results. So far the results did not show cointegration for the system of stock markets. The 

model formulation as well as the testing procedure is the same as for the full sample. 

 

Subsample 1: 

Table 17 shows the results from the Johansen multivariate test for subsample 1, containing 

109 observations. Critical values are in brackets. We see that the Trace test suggests two 

cointegrating vectors in the system, while the Max test does not confirm this result, when lag 

length 2 is used. A sensitivity analysis of the model assumptions was performed and the 

numbers of cointegrating vectors for different models and lags are presented in Table 18.  

 

Table 17: Trace and Max test for cointegration at 5% significance level (subsample 1) 

Number of 

cointegrating vectors 

 

Trace test statistics 

 

Max test statistics 

None* 90,09 (76,97)* 32,94 (34,81) 

At most 1* 57,15 (54,08)* 23,60 (28,59) 

At most 2 33,55 (35,19) 20,12 (22,30) 

At most 3 13,44 (20,26) 9,85 (15,89) 

At most 4 3,58 (9,16) 3,58 (9,16) 

* rejection of the null hypothesis 
Lag length of 2 is used. Endogenous variables are LUSA, LNOR, LSWE, LDEN and LFIN.  
 

It is difficult to come to a conclusion based on this sensitivity analysis, as the numbers of 

cointegrating vectors are very various. This means that the results are very sensitive to chosen 

lag length, which is not unusual for cointegration analyses. Many cointegration studies such 

as those from Kasa (1991) and Ahlgren and Antell (2002) showed mixed results when 

concluding about the number of cointegrating vectors. 
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Table 18: Sensitivity analysis of cointegration results (subsample 1) 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Lag length 1      

Trace 0 0 0 0 0 

Max 0 0 0 0 0 

Lag length 2 
Trace  1 2 3 0 0 

Max 1 0 0 0 0 

Lag length 3 
Trace  1 1 2 0 0 

Max 1 1 0 0 0 

Lag length 4 
Trace  2 3 5 2 3 

Max 1 1 1 0 1 

Lag length 5 
Trace  2 3 5 2 2 

Max 1 2 1 0 0 

Lag length 6 
Trace  2 5 5 2 2 

Max 1 1 1 1 1 

 

It is possible to observe from Table 18 that some models and lag lengths indicate no 

cointegrating vectors, while others indicate a full rank. Trace test for higher lag lengths 

suggests a full rank, meaning that the stock markets are stationary, which is not the case9. The 

results for one lag length suggest no cointegration. However, as mentioned earlier, Juselius 

(2006) argues against the use of only one lag in systems of variables as it cannot capture the 

dynamic structure well. We will therefore not pay much attention to this lag length.  

 

Unlike the Trace test, the Max test results are quite robust to the main lag and model 

assumptions, indicating mostly one cointegrating relation.  

 

From the results in Table 18, we can see that even in a small sample like this one, 

cointegration is found to some extent. It would probably be wrong to make a strong 

conclusion about two or three existing cointegrating vectors in the system, but the results 
                                                
9 This may be due to low power of cointegration tests or a misspecified VAR model. 
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indicate one for sure, when the optimal assumptions are considered. As stated, this is detected 

only for the period Feb 1993 – Feb 2002. 

 

Subsample 2: 

This subsample contains 132 observations and includes period from March 2002 to February 

2013. Table 19 present the results from Johansen multivariate test in this sample period. 

Critical values are in brackets. There is no cointegrating relation in the system of stock 

markets, under the assumptions of 2 lags and model specification 2. The results from 

changing these assumptions are given in Table 20. Even for higher lags and different models, 

no evidence for cointegration is found in period 2002 – 2013.  

 

Table 19: Trace and Max test for cointegration at 5% significance level (subsample 2) 

Number of 

cointegrating vectors 

 

Trace test statistics 

 

Max test statistics 

None  50,96 (76,97) 20,20 (34,81) 

At most 1 30,76 (54,08) 15,80 (28,59) 

At most 2 14,95 (35,19) 10,25 (22,30) 

At most 3 4,70 (20,26) 3,54 (15,89) 

At most 4 1,16 (9,16) 1,16 (9,16) 

* rejection of the null hypothesis 
Lag length of 2 is used. Endogenous variables are LUSA, LNOR, LSWE, LDEN and LFIN. 
 
 
Table 20: Sensitivity analysis of cointegration results (subsample 2) 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Lag length 1      

Trace 0 0 0 0 0 

Max 0 0 0 0 0 

Lag length 2 
Trace  0 0 0 0 0 

Max 0 0 0 0 0 

Lag length 3 
Trace  0 0 0 0 0 

Max 0 0 0 0 0 
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Lag length 4 
Trace  0 0 0 0 0 

Max 0 0 0 0 0 

Lag length 5 
Trace  0 0 0 0 0 

Max 0 0 0 0 0 

Lag length 6 
Trace  1 1 1 2 2 

Max 0 0 1 1 1 

 

The general conclusion for the multivariate analysis of cointegration is that no stable 

cointegrating relation is detected between the five stock markets from Feb 1993 to Feb 2013. 

In other words, long – run equilibrium does not exist between them.  

 

However, the results from the two subsamples are different – at least one cointegrating vector 

is found in period 1993 – 2002, while the later period shows no cointegration. The plots of the 

first potential cointegrating relations are shown in Appendix C for the full sample and for the 

two subsamples. The figures indicate non-stationarity, except the relation in subsample 1 

which looks stationary to some degree.  

 

Similar result of one cointegration vector existing among Nordic stock markets during the 

1990s is found in the research of Mangeloja (2001). No cointegration was detected among the 

five stock markets in the recent 10 years, which is unusual concerning the constantly higher 

integration of stock markets around the world and in Scandinavia as well. 

 

6.6 Granger causality analysis 

In the long run, there is no cointegration between the US, Norwegian, Swedish, Danish and 

Finnish stock market. However, short-run relations among them could exist. We will try to 

detect short-term lead-lag relations among the five stock markets by using the Granger 

causality test. This causality test is also based on a VAR model. Since the results can be 

misleading when more than two variables are included, we will perform a pairwise causality 

analysis here. A requirement for the causality test is that the variables are stationary, so we 

have to use the first differenced data (monthly returns) in this test.  
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The general rule is that if cointegration is detected between two stock markets, then there 

must be Granger causality between them in at least one way. However, if there is causality in 

one or both ways between two stock markets, it does not have to mean that they are 

cointegrated (Granger, 1988). This could hopefully be a useful test for validity of our 

cointegration results.  

 

Table 21 presents the results from the Granger causality test for the full sample. The decision 

whether to reject of not reject the null hypothesis is based on the p-values from the table.  

 

Table 21: Granger causality test (Feb 1993 – Feb 2013) 

Null hypothesis df Chi-squared 

test statistic 

p-value Conclusion 

Norway does not Granger cause USA 

USA does not Granger cause Norway 

5 

5 

3,7331 

7,0820 

0,5884 

0,2146 

 

 

Sweden does not Granger cause USA 

USA does not Granger cause Sweden 

2 

2 

12,077 

1,8545 

0,0024* 

0,3956 

SWE → USA 

Denmark does not Granger cause USA 

USA does not Granger cause Denmark 

4 

4 

3,9959 

13,572 

0,4066 

0,0088* 

 

USA → DEN 

Finland does not Granger cause USA 

USA does not Granger cause Finland 

2 

2 

10,812 

2,2833 

0,0045* 

0,3193 

FIN  → USA 

Sweden does not Granger cause Norway 

Norway does not Granger cause Sweden 

2 

2 

4,6899 

4,0507 

0,0958 

0,1319 

 

Denmark does not Granger cause Norway 

Norway does not Granger cause Denmark 

1 

1 

0,1662 

4,1056 

0,6835 

0,0427* 

 

NOR → DEN 

Finland does not Granger cause Norway 

Norway does not Granger cause Finland 

2 

2 

1,8527 

4,3608 

0,3960 

0,1130 

 

Finland does not Granger cause Sweden 

Sweden does not Granger cause Finland 

2 

2 

5,7202 

1,0660 

0,0408* 

0,5868 

FIN → SWE 

Denmark does not Granger cause Finland 

Finland does not Granger cause Denmark 

2 

2 

3,7983 

6,4241 

0,1497 

0,3617 

 

 

Denmark does not Granger cause Sweden 

Sweden does not Granger cause Denmark 

2 

2 

3,5146 

13,864 

0,1725 

0,0010* 

 

SWE → DEN 

*denotes significance at 5%. Note: The degrees of freedom are denoted df. 
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The conclusions from Granger causality tests at 5% significance level are: 

• Finland ‘Granger causes’ USA and Sweden 

• Sweden ‘Granger causes’ USA and Denmark 

• Norway ‘Granger causes’ Denmark 

• USA ‘Granger causes’ Denmark 

 

No bidirectional Granger causality is found in the sample period, only unidirectional 

causality. As we can notice, more short-term relations are found between the analyzed stock 

markets than long-run. The results indicate that Finland and Sweden are the most influential 

markets in this sample, which is interesting given that the US market is present in the 

analysis. 

 

The cointegration detected by the EG test between Sweden and USA is supported with the 

Granger causality test. This means that previous values of Sweden can be used to predict US 

stock market index. We would not expect the causality to go in the direction from, for 

example Finland or Sweden to USA, as it is not highly plausible that an investor from USA 

can predict movements in the US stock index by observing the movements in the Swedish or 

Finnish stock market and earn extra profit. Both markets are relatively small in order to 

predict changes in a large market as the US. However, causality is a purely statistical result 

and cannot say much about realistic economic relations.  

 

Pynnönen and Knif (1998) surprisingly detected weak short – term causality from Finland to 

Sweden, which is consistent with our findings. This indicates that current value of Swedish 

stock market index is correlated to the past values of the Finnish stock index. However, 

because of the lack of cointegration between the markets, we cannot draw strong conclusions 

about predictability here. The predictive power of stock market returns depends on the 

volatility of returns as well and this has to be examined before making conclusions about 

predictability and violation of the weak form of market efficiency (Pesaran and Timmermann, 

1995).  

 

In the other cases, the absence of Granger causality implies that the short-run differences 

between the markets are sufficient for investors to achieve gains by portfolio diversification. 
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6.7 Misspecification tests 

After estimating the VAR model, assumptions of its residuals should be checked. The 

assumption is that error terms are i.i.d. Gaussian random variables with zero mean and 

variance-covariance matrix ∑. Among many diagnostic tests, it is most important to check for 

normality, autocorrelation and heteroscedasticity (Juselius, 2006). We will also check the 

stability of the VAR model. 

 

All of these diagnostic tests were performed in EViews and details about the procedures will 

not be explained here10. The summary of the performed tests is given in Table 22. The tests 

are performed for subsamples as well, since subsample 1 gave different results than the full 

sample.  

 

Stability of the VAR model 

The estimated VAR is stable if all roots have modulus smaller than 1. They will then lie 

inside the unit circle, and we can say that the VAR model is stable. Performing an AR roots 

test in EViews shows that all roots are inside the unit circle, and the VAR satisfies the 

stability condition. This is valid for both subsamples as well.  

 

Normality of residuals 

The null hypothesis is that the residuals are multivariate normal. We used the Jarque–Bera 

residual normality test (Johnston and Dinardo, 1997) and the results are presented in Table 22. 

The p-values in brackets indicate rejection of the null hypothesis of normality. The residuals 

are not normally distributed in any sample. In small samples non–normality is often a 

problem, as it takes a very large sample to get skewness and kurtosis asymptotically normal 

(Juselius, 2006). A quick look at the excess kurtosis and skewness values for the residuals 

indicates a left-skewed distribution with fat tails. 

 

A possible solution to remove non-normality could be to re-specify the model; include 

dummy variables to account for reforms, crisis and any significant event that could affect the 

variables. This was also attempted by dividing the full sample in two parts, based on the 

global financial crisis and merging in Nordic stock markets in year 2008. The results are not 

reported here but the residual tests for those two subsamples did not indicate better results.  

                                                
10 Details about diagnostic tests are available in Johnston and Dinardo (1997). 
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Autocorrelation of residuals 

The null hypothesis is no autocorrelation in residuals. Using the Portmanteau test, we can see 

if there is significant correlation left in the residuals. The reported Q-statistic is adjusted for 

small samples. Still the null is clearly rejected and autocorrelation is present in the residuals. 

Autocorrelation can come from a wrongly specified model or omission of some important 

variables (Brooks, 2008). It usually warns us that our model contains some unnecessary 

variables or that important variables are not included. As we are analyzing cointegration of all 

five stock markets, it is possible that some of them do not belong to the model. A suggestion 

is to use exclusion tests to check if one of the stock markets can be excluded from the model. 

Another possible solution to remove autocorrelation from the error term could be to add more 

variables to the model – include more than only 2 lags in the VAR. However, this did not 

seem to work for lags up to 8.   

 

Heteroskedasticity  

According to the p-values obtained from the White heteroskedasticity test, variances of the 

error terms are not constant. This implies that results of hypothesis tests could be wrong. To 

remove heteroskedasticity, Mackinnon and White (1985) suggest the use of a modified 

version of heteroskedasticity-consistent covariance matrix estimator - HC3, which performs 

well when the sample size is less than 250. As this option is not available for a cointegrating 

VAR model in software packages, we will not utilize this method in our research.  

 

Table 22: Misspecification tests on residuals 

 Test Full sample Subsample 1 Subsample 2 

Stability AR root test Stable Stable Stable 

Normality Jarque – Bera  501,417 [0,0000] 42,261 [0,0000] 233,919 [0,0001] 

Autocorrelation Portmanteau  76,517 [0,0000] 73,402 [0,0000] 51,782 [0,0013] 

Heteroskedasticity White test 415,075 [0,000] 371,129 [0,0145] 385,786 [0,0006] 

 

Juselius (2006) argues that cointegration tests are highly sensitive to autocorrelation and non-

normality of residuals, as this can lead to over-rejecting the null hypothesis of no 

cointegration. Further, Juselius (2006) argues that heteroskedastic residuals are not such a big 

issue in the Johansen test. Unfortunately, diagnostic tests of our VAR model are not 

encouraging. None of the assumptions about the multivariate error term is fulfilled, which 
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generally indicates a misspecified model. There is relevant information left in the residuals 

and we probably need to include more variables. These could be dummy variables to control 

for significant events during the sample period or simply including more lags on dependent 

variables. Selecting higher frequency of data is probably not a good solution, as the 

autocorrelation and non-normality tests could show even worse results. We tried to include up 

to 8 lags in the VAR model, which did not improve the diagnostic test results much. We will 

not estimate another VAR model, as it is rarely a good idea to include more lags than 

necessary and as two lags are usually enough to capture the dynamics. Specifying an over-

parameterized VAR model is more harmful for the results than accepting autocorrelation to 

some degree (Juselius, 2006). However, interpretation of all cointegration results must be 

done with extra care. 
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7. Conclusion & further work 

As the degree of economic interdependence deepens due to world-wide globalisation and 

financial liberalisation, it is important to examine the effects it has on the stock markets 

relations. In this research we examined long-run cointegration between the stock markets of 

USA, Norway, Sweden, Denmark and Finland. We also tested whether short-term relations 

between these markets exist.  

 

The sample period from February 1993 to February 2013 was used. Price indices in local 

currencies were collected from every stock market and adjusted to fit the analysis. The figures 

showing the development of stock market indices indicated comovement between some 

countries. Before starting with cointegration testing, we pre-tested the stock market indices 

for stationarity using an ADF test. After confirming the indications that the stock markets are 

integrated of order one, long-run cointegration between pairs of stock markets was tested by 

using the Engle–Granger and the Johansen method. The latter method was also used to test for 

cointegration in a system of all five stock markets together. Further, Granger causality tests 

were performed to examine the short-run linkages between the markets.  

 

As in many previous studies, the results of pairwise cointegration are mixed. The Engle-

Granger test indicates cointegration between Sweden and USA. This could possibly indicate 

that there are reduced diversification opportunities when investing pairwise into these stock 

markets. The Johansen bivariate test did only confirm this for subsample 1 (Feb 1993 – Feb 

2002). Therefore this detected cointegrating relation is very weak and we cannot make any 

strong conclusions. Other pairs of stock markets did not show cointegration over the full 

sample. 

 

The full sample of 20 years was divided into two equal subsamples to check the consistency 

and stability of the results. Cointegration was then detected between more stock markets, but 

these results were very sensitive to the chosen lag length and hence weak and unstable. 

 

The full system of all five stock markets together was also examined, but no proof for 

cointegration was found in the full sample. However, the Johansen test revealed at least one 

cointegrating vector between the five markets in the period from 1993 to 2002.  
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The specification of the VAR model used in the Johansen test was also examined, but the test 

results were not reassuring - the residuals were not i.i.d.Gaussian random error terms. This 

indicates that our model could be misspecified and give biased results.  

 

In summary, although the financial integration of Scandinavian stock markets is more than 

obvious, there is little or no proof for cointegration between them in the past decade. The 

results reveal cointegration at earlier points in the sample from year 1993 to 2002, but not 

later. The reason for this lack of long-run relationship between them could be in some barriers 

remaining in the markets with regards to international investments or even behavioral-based 

reasons as preferring investments in the home market. Other reasons could be purely 

statistical, as true economic integration of stock markets does not mean their statistical 

integration, which we are examining in this analysis.  

 

From the perspective of individual investors, the overall long-run analysis of cointegration 

implies that long-run benefits from portfolio diversification can be achieved by combining 

investments in the five stock markets of USA, Norway, Sweden, Denmark and Finland. The 

stock indices of these markets seem to move at separate patterns in the long run. As no stable 

cointegrating relation was detected, the weak-form market efficiency is not violated as the 

price movements across stock markets cannot be predicted in the long run. However, short-

term analysis reveals return spillovers between several pairs of stock markets. This indicates 

that opportunities for diversification by investing in these pairs of market in the short run 

could probably be diminished.  

 

This research could be expanded in the several ways. A longer time period could be examined 

for cointegration between the same stock markets. Also the stock markets could be tested for 

cointegration during a financial crisis as the markets usually tend to move together more 

closely during turbulent periods. Examining the volatility spillovers by formulating a GARCH 

– BEKK model can be a natural extension to our Granger causality analysis. 
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Appendix A: ADF test results for subsamples 

 

Table 23: ADF test results, log-levels (Feb 1993 – Feb 2002) 

Stock 

market 

Number of 

lags 

Test statistics ADF 

(constant) 

Test statistics ADF 

(constant + trend) 

LUSA 0 -1,431 -0,128 

LNOR 0 -2,177 -2,036 

LSWE 1 -1,798 -1,018 

LDEN 6 -0,993 -2,837 

LFIN 2 -1,329 -2,828 

 

Table 24: ADF test results, first differences (Feb 1993 – Feb 2002) 

Stock 

market 

Number of 

lags 

Test statistics ADF 

(constant) 

DLUSA 0 -10,728**  

DLNOR 0 -9,859**  

DLSWE 0 -8,697**  

DLDEN 5 -4,912**  

DLFIN 1 -7,305**  

** rejection of the null hypothesis at 1% significance level.  
Critical values constant only: -3,51 (1%) and -2,89 (5%)  
Critical values constant + trend: -4,04 (1%) and -3,45 (5%) 
 

 

Table 25: ADF test results, log-levels (Mar 2002 – Feb 2013) 

Stock 

market 

Number of 

lags 

Test statistics ADF 

(constant) 

Test statistics ADF 

(constant + trend) 

LUSA 6 -2,148 -2,233 

LNOR 1 -1,519 -1,981 

LSWE 0 -1,037 -2,061 

LDEN 6 -1,658 -2,154 

LFIN 6 -1,764 -1,804 
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Table 26: ADF test results, first differences (Mar 2002 – Feb 2013) 

Stock 

market 

Number of 

lags 

Test statistics ADF 

(constant) 

DLUSA 5 -5,165**  

DLNOR 0 -9,394**  

DLSWE 0 -10,039**  

DLDEN 5 -5,122**  

DLFIN 0 -5,168**  

** rejection of the null hypothesis at 1% significance level.  
Critical values constant only: -3,51 (1%) and -2,89 (5%)  
Critical values constant + trend: -4,04 (1%) and -3,45 (5%) 
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Appendix B:  Residuals from the Engle-Granger 

test for cointegration 
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Appendix C: Potential cointegrating relations 

from Johansen multivariate test 

 
Full sample (Feb 1993 – Feb 2013): 

 

Subsample 1 (Feb 1993 – Feb 2002): 
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Subsample 2 (Mar 2002 – Feb 2013): 

 


