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Abstract

Semantic matching is a computational process that aims to automatically
identify the semantic relationship between elements represented in different
graph-like sources. Typically, this is a process that involves human decision-
making when it comes to selecting appropriate matching algorithms, con-
figuring their similarity thresholds, and aggregating their results into a final
alignment. This thesis proposes a more autonomous approach where such
decisions are automatically determined by an analysis of terminological,
structural and lexical features extracted from the ontologies to be matched.

A design science-centred research approach has guided the development. In
several build-and-evaluate loops, matching artefacts have been developed
and evaluated, iteratively improving the artefacts themselves as well as ex-
tracting lessons learned that extend current knowledge. The produced arte-
facts encompass ontology profiling metrics that capture relevant features of
the ontologies to be matched, matching algorithms that automatically com-
pute an alignment holding equivalence and subsumption relations between
concepts of two input ontologies, an alignment combination method that op-
timally combines the results from the ensemble of algorithms, and mismatch
detection techniques that filter out false positive relations caused by onto-
logy mismatches or heterogeneities. These individual artefacts are finally
combined into a prototype semantic matching system.

The individual matching artefacts as well as the prototype system have been
evaluated in three diverse datasets. In general, the evaluation results show
that the proposed approach improves the quality of individual alignments
as well as the combined alignment. Furthermore, the results confirm that
some of the new ideas implemented in the matching algorithms contribute to
the identification of“challenging” relations and that the suggested mismatch
detection techniques can increase alignment precision.

Keywords
Semantic Matching, Ontology Matching, Semantic Interoperability, Semantic
Web, Data Integration, Ontology Engineering



ii



iii

To the memory of my father
Øystein Vennesland

October 8th 1942 – November 28th 2019



iv



v

Preface

This thesis is submitted to the Norwegian University of Science and Tech-
nology (NTNU) for the partial fulfilment of the requirements for the degree
of Philosophiae Doctor.

This doctoral work has been conducted at the Data and Artificial Intel-
ligence group (DART), Department of Computer Science (IDI), Faculty of
Information Technology and Electrical Engineering (IE). The work has been
performed under the supervision of Associate Professor Trond Aalberg. Pro-
fessor Heri Ramampiaro and Professor Jon Atle Gulla were assigned as co-
supervisors.



vi



vii

Acknowledgements

Many people have contributed to shape the work summarised in this thesis,
but I want to start by saying how much I value the support from my closest
family. Tone, my significant other, has been unimaginably patient, and has
offered understanding and care, both in good PhD times and bad. My two
kids, Gabriel and Jesper, have helped me keep focus on the important things
in life and regain energy after having spent way too many hours in front of
the computer. I’m also very grateful to my parents, Gunhild and Øystein,
for giving me a solid foundation in my upbringing.

A great thanks to Dr. Trond Aalberg, my supervisor, who’s always been
willing to offer guidance, but at the same time has given me freedom to
choose my own directions during this work.

From SINTEF, my employer, a number of people have offered their sup-
port during this work. A special thanks to Eldfrid Øvstedal, who made it
possible to take a break from my “day job” at SINTEF to pursue a PhD;
Marit Natvig, who during our many years working together has motivated
my interest for interoperability challenges; Ivonne Herrera, for nice conver-
sations about work as well as the finer things in life (such as good coffee
and food); Joe Gorman, for helping me position semantic matching in the
air traffic management domain and for nice chats about our memories from
Spain; St̊ale Walderhaug and Per Gunnar Auran for encouraging advice and
for offering valuable comments to this dissertation.

During these years I’ve been very fortunate to meet and collaborate with
many friendly and incredibly clever people: Yoan Gutierrez, my local con-
tact and friend at the University of Alicante; Giulio Petrucci (Google), for
insightful discussions on how word embeddings can contribute to semantic
matching; Fabien Duchateau from the University of Lyon, who with his ex-
periences from schema and ontology matching has been a good discussion
partner and helped me scope my work; and Christoph Schuetz (Johannes
Kepler University), Bernd Neumayr (Johannes Kepler University), Eduard
Gringinger (Frequentis), Rich Keller (NASA) and Scott Wilson (Eurocon-
trol) for interesting collaborations related to ontologies in air traffic man-
agement.

Thank you all.



viii



Contents

Abstract i

Preface v

Acknowledgement vii

I Background and Context 1

1 Introduction 3

1.1 Motivation and Problem Outline . . . . . . . . . . . . . . . . 3

1.1.1 Identification of semantic relations beyond equivalence 4

1.1.2 Automated matcher selection, matcher configuration
and alignment combination . . . . . . . . . . . . . . . 5

1.1.3 Dealing with ontology mismatches . . . . . . . . . . . 6

1.2 Objectives and Research Questions . . . . . . . . . . . . . . . 6

1.3 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Major Contributions . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background and Preliminaries 11

2.1 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Aligning Ontologies . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Sub-processes in Ontology Matching . . . . . . . . . . 15

ix



x

2.2.2 The Alignment API . . . . . . . . . . . . . . . . . . . 17

2.2.3 Evaluation of Ontology Alignment . . . . . . . . . . . 18

2.3 Ontology Mismatches . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Conceptualisation Mismatches . . . . . . . . . . . . . 22

2.3.2 Explication Mismatches . . . . . . . . . . . . . . . . . 23

2.4 Semantic Relations . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Equivalence Relations . . . . . . . . . . . . . . . . . . 26

2.4.2 Subsumption Relations . . . . . . . . . . . . . . . . . 27

2.4.3 Meronymy Relations . . . . . . . . . . . . . . . . . . . 27

2.5 Computing Similarity . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 String Similarity . . . . . . . . . . . . . . . . . . . . . 28

2.5.2 Structure-based Similarity . . . . . . . . . . . . . . . . 31

2.5.3 Lexical Similarity . . . . . . . . . . . . . . . . . . . . . 33

2.5.4 Machine Learning Techniques . . . . . . . . . . . . . . 35

3 Related Work 39

3.1 Techniques for Identifying Equivalence Relations . . . . . . . 39

3.1.1 String Processing Techniques . . . . . . . . . . . . . . 40

3.1.2 Structure-based Techniques . . . . . . . . . . . . . . . 42

3.1.3 Instance-based Techniques . . . . . . . . . . . . . . . . 44

3.1.4 Background Knowledge Techniques . . . . . . . . . . . 45

3.1.5 Machine Learning Techniques . . . . . . . . . . . . . . 46

3.2 Techniques for Identifying Subsumption Relations . . . . . . 48

3.2.1 String Processing Techniques . . . . . . . . . . . . . . 49

3.2.2 Structure-based Techniques . . . . . . . . . . . . . . . 51

3.2.3 Logic-based Techniques . . . . . . . . . . . . . . . . . 52

3.2.4 Background Knowledge Techniques . . . . . . . . . . . 53

3.2.5 Natural Language Processing Techniques . . . . . . . 57

3.2.6 Machine Learning Techniques . . . . . . . . . . . . . . 58

3.3 Profiling Ontologies . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Matcher Selection, Matcher Configuration and Alignment Com-
bination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



xi

II Research Approach 69

4 Use of Design Science to Address the Research Objectives 71

4.1 Design as an Artefact . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Problem Relevance . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Design Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . 81

4.5 Research Rigor . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Design as a Search Process . . . . . . . . . . . . . . . . . . . 83

4.7 Communication of Research . . . . . . . . . . . . . . . . . . . 86

III Implementation and Evaluation 87

5 Development of Semantic Matching Artefacts 89

5.1 Ontology Profiling . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1.1 Terminological Analysis . . . . . . . . . . . . . . . . . 91

5.1.2 Structural Analysis . . . . . . . . . . . . . . . . . . . . 92

5.1.3 Lexical Analysis . . . . . . . . . . . . . . . . . . . . . 92

5.2 Equivalence Matchers . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Word Embedding Equivalence Matcher . . . . . . . . 93

5.2.2 Definitions Equivalence Matcher . . . . . . . . . . . . 96

5.2.3 Property Equivalence Matcher . . . . . . . . . . . . . 97

5.2.4 Lexical Equivalence Matcher . . . . . . . . . . . . . . 99

5.2.5 Graph Equivalence Matcher . . . . . . . . . . . . . . . 101

5.3 Subsumption Matchers . . . . . . . . . . . . . . . . . . . . . . 103

5.3.1 Compound Matcher . . . . . . . . . . . . . . . . . . . 103

5.3.2 Context Subsumption Matcher . . . . . . . . . . . . . 106

5.3.3 Lexical Subsumption Matcher . . . . . . . . . . . . . . 106

5.3.4 Definitions Subsumption Matcher . . . . . . . . . . . . 107

5.4 Matcher Selection and Configuration . . . . . . . . . . . . . . 108

5.4.1 Strategy for Selecting Matchers based on Ontology
Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . 110



xii

5.4.2 Strategy for Configuring Matchers based on Ontology
Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5 Mismatch Detection Strategies . . . . . . . . . . . . . . . . . 116

5.5.1 Concept Scope Mismatch Detection . . . . . . . . . . 116

5.5.2 Domain Mismatch Detection . . . . . . . . . . . . . . 119

5.6 Combining Matcher Results . . . . . . . . . . . . . . . . . . . 121

5.6.1 Cut Threshold . . . . . . . . . . . . . . . . . . . . . . 122

5.6.2 Average Aggregation . . . . . . . . . . . . . . . . . . . 123

5.6.3 Majority Vote . . . . . . . . . . . . . . . . . . . . . . . 123

5.6.4 Profile Weight . . . . . . . . . . . . . . . . . . . . . . 123

5.6.5 Merging Equivalence and Subsumption Alignments . . 125

5.7 Use of External Sources . . . . . . . . . . . . . . . . . . . . . 125

5.7.1 Word Embedding . . . . . . . . . . . . . . . . . . . . . 125

5.7.2 WordNet . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.7.3 Software Libraries . . . . . . . . . . . . . . . . . . . . 127

6 Evaluation 129

6.1 Evaluation Protocol . . . . . . . . . . . . . . . . . . . . . . . 129

6.1.1 Evaluation of Individual Matchers . . . . . . . . . . . 130

6.1.2 Evaluation of Alignment Combination Methods . . . . 130

6.1.3 Evaluation of Mismatch Detection Strategies . . . . . 131

6.1.4 Comparison with other Matching Systems . . . . . . . 132

6.2 Dataset 1 - Air Traffic Management . . . . . . . . . . . . . . 134

6.2.1 Dataset Summary . . . . . . . . . . . . . . . . . . . . 134

6.2.2 Evaluation of Individual Matchers . . . . . . . . . . . 138

6.2.3 Evaluation of Alignment Combination Methods . . . . 141

6.2.4 Evaluation of Mismatch Detection Strategies . . . . . 149

6.3 Dataset 2 - Cross Domain . . . . . . . . . . . . . . . . . . . . 150

6.3.1 Dataset Summary . . . . . . . . . . . . . . . . . . . . 150

6.3.2 Evaluation of Individual Matchers . . . . . . . . . . . 151

6.3.3 Evaluation of Alignment Combination Methods . . . . 154

6.3.4 Evaluation of Mismatch Detection Strategies . . . . . 162

6.4 Dataset 3 - OAEI . . . . . . . . . . . . . . . . . . . . . . . . . 163



xiii

6.4.1 Dataset Summary . . . . . . . . . . . . . . . . . . . . 163

6.4.2 Evaluation of Individual Matchers . . . . . . . . . . . 164

6.4.3 Evaluation of Alignment Combination Methods . . . . 167

6.4.4 Evaluation of Mismatch Detection Strategies . . . . . 173

7 Evaluation Results and Discussion 175

7.1 Evaluation Summary . . . . . . . . . . . . . . . . . . . . . . . 175

7.1.1 Summary of evaluation of the Individual Matchers . . 175

7.1.2 Summary of evaluation of the alignment combination
strategies . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.1.3 Summary of evaluation of mismatch detection strategies178

7.2 Validity, Reliability and Credibility of the Research . . . . . . 178

IV Conclusions and Further Work 183

8 Conclusions and Further Work 185

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . 186

8.3 Revisiting the Research Questions . . . . . . . . . . . . . . . 186

8.4 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

V Appendices 193

A Publications 195

Bibliography 197



xiv



List of Figures

2.1 An example ontology illustrating various ontology constructs. . . . 12

2.2 An example of equivalence and subsumption relations between con-
cepts in two ontologies . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Representation of semantic relations in an alignment artefact. . . . 15

2.4 A typical workflow of an ontology matching system (adapted from
Rahm [120]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Different matcher workflow strategies (Rahm [120]). . . . . . . . . . 17

2.6 Measuring correctness of alignments (Euzenat and Shvaiko [35]). . . 19

2.7 Ontology Mismatch Classification (Klein [83]) . . . . . . . . . . . . 22

2.8 Illustration of inheritance of mismatches. . . . . . . . . . . . . . . . 25

2.9 Example on how subsumption relations can lead to identification of
equivalence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.10 Similarity Flooding (adapted from Melnik et al. [95]) . . . . . . . . 32

2.11 Decision Tree Example (adapted from Ngo et al. [102]) . . . . . . . 37

2.12 The Continuous bag-of-words (CBOW) and Skip-Gram models (Miko-
lov et al. [96]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Overview of techniques for detecting equivalence relations. . . . . . 39

3.2 Performance of String Processing Techniques (adapted from Cheatham
and Hitzler [14]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Example illustrating the structural proximity approach. . . . . . . . 43

xv



xvi List of Figures

3.4 Overview of techniques for detecting subsumption relations. . . . . 49

3.5 Overview of techniques for detecting subsumption relations. . . . . 50

3.6 Structure Strategy for inferring subsumption relations. . . . . . . . 51

3.7 Using Lexical Annotation to enhance SCARLET (adapted from Po
and Bergamaschi [114]). . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.8 Similarity matrix (adapted from Mao et al. [91]). . . . . . . . . . . . 68

4.1 Design Science Framework. . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Research Model including Independent and Dependent Variables. . 79

4.3 Tool support for alignment analysis. . . . . . . . . . . . . . . . . . . 80

4.4 Design as a Search Process. . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Ontology Profiling Results. . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 An overview of the semantic matching process. . . . . . . . . . . . . 90

5.2 Input and output from matchers. . . . . . . . . . . . . . . . . . . . 92

5.3 The Word Embedding Matcher computes similarity from name vec-
tors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Each ontology concept is described by name vectors and global vec-
tors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 The Property Equivalence Matcher identifies equivalence relations
using the notion of a core concept combined with relaxed synonym
similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Lexical Equivalence Matcher. . . . . . . . . . . . . . . . . . . . . . . 101

5.7 The Graph Equivalence Matcher computes a similarity score by
taking into account the structural proximity of two concepts . . . . 102

5.8 Input and output from matchers. . . . . . . . . . . . . . . . . . . . 104

5.9 Compound Matcher . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.10 Context Subsumption Matcher. . . . . . . . . . . . . . . . . . . . . 106

5.11 Lexical Subsumption Matcher . . . . . . . . . . . . . . . . . . . . . 107

5.12 Difference between a sigmoid function and a linear function. . . . . 112

5.13 Effect of the sigmoid’s slope parameter. . . . . . . . . . . . . . . . . 113

5.14 Effect of transforming profile weights. . . . . . . . . . . . . . . . . . 114

5.15 Correlation between a confidence value and profile weights with the
sigmoid function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.16 Correlation between a confidence value and profile weights without
the sigmoid function. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.17 Illustration of Concept Scope Mismatch Detection. . . . . . . . . . . 118



List of Figures xvii

5.18 Example of applying WordNet Domains to infer domain (dis)similarity.119

5.19 Illustration of Domain Mismatch Detection. . . . . . . . . . . . . . 122

5.20 Cut Threshold of Matcher Alignments. . . . . . . . . . . . . . . . . 123

5.21 Average Aggregation of Matcher Alignments. . . . . . . . . . . . . . 123

5.22 Majority Vote to determine a final alignment from Matcher Align-
ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.23 Dependencies to external sources and libraries. . . . . . . . . . . . . 126

6.1 Illustration showing how the mismatches derived from the mapping
of ATM ontologies relate to ontology mismatch classification from
literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 Evaluation scores for different equivalence matchers at different con-
fidence thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.3 Evaluation scores for different subsumption matchers at different
confidence thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.4 Precision of Alignment Combination Methods in the ATM dataset. 142

6.5 Recall of Alignment Combination Methods in the ATM dataset. . . 143

6.6 F-measure of Alignment Combination Methods in the ATM dataset. 143

6.7 Illustrations showing how relations from individual matchers are
represented in the combined alignments. . . . . . . . . . . . . . . . 144

6.8 Comparison of Best Individual Equivalence Alignment and Com-
bined Alignments in the ATM dataset. . . . . . . . . . . . . . . . . 145

6.9 Comparison of Best Individual Subsumption Alignment and Com-
bined Alignments in the ATM dataset. . . . . . . . . . . . . . . . . 146

6.10 Comparing systems on precision in the ATM dataset. . . . . . . . . 146

6.11 Comparing systems on recall in the ATM dataset. . . . . . . . . . . 147

6.12 Comparing systems on F-measure in the ATM dataset. . . . . . . . 147

6.13 Comparing systems on semantic precision in the ATM dataset. . . . 148

6.14 Comparing systems on semantic recall in the ATM dataset. . . . . . 148

6.15 Comparing systems on semantic F-measure in the ATM dataset. . . 149

6.16 Evaluation scores for different equivalence matchers at different con-
fidence thresholds in the Cross-Domain dataset. . . . . . . . . . . . 152

6.17 Evaluation scores for different subsumption matchers at different
confidence thresholds in the Cross-Domain dataset. . . . . . . . . . 153

6.18 Precision of Alignment Combination Methods in the Cross-domain
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.19 Recall of Alignment Combination Methods in the Cross-domain
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156



xviii List of Figures

6.20 F-measure of Alignment Combination Methods in the Cross-domain
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.21 Illustrations showing how relations from individual matchers are
represented in the combined alignments. . . . . . . . . . . . . . . . 157

6.22 Comparison of Best Individual Equivalence Alignment and Com-
bined Alignments in the Cross-domain dataset. . . . . . . . . . . . . 158

6.23 Comparison of Best Individual Subsumption Alignment and Com-
bined Alignments in the Cross-domain dataset. . . . . . . . . . . . . 159

6.24 Comparing systems on precision in the Cross-domain dataset. . . . 159

6.25 Comparing systems on recall in the Cross-domain dataset. . . . . . 160

6.26 Comparing systems on F-measure in the Cross-domain dataset. . . 160

6.27 Comparing systems on Semantic Precision in the Cross-domain
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.28 Comparing systems on Semantic Recall in the Cross-domain dataset.161

6.29 Comparing systems on Semantic F-measure in the Cross-domain
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.30 Average evaluation measures for individual equivalence matchers in
the OAEI 2011 datasets . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.31 Average evaluation measures for individual subsumption matchers
in the OAEI 2011 datasets. . . . . . . . . . . . . . . . . . . . . . . . 166

6.32 Precision of Alignment Combination Methods in the OAEI dataset. 168

6.33 Recall of Alignment Combination Methods in the OAEI dataset. . . 168

6.34 F-measure of Alignment Combination Methods in the OAEI dataset.169

6.35 Comparison of Best Individual Equivalence Alignment and Com-
bined Alignments in the OAEI dataset. . . . . . . . . . . . . . . . . 169

6.36 Comparison of Best Individual Subsumption Alignment and Com-
bined Alignments in the OAEI dataset. . . . . . . . . . . . . . . . . 170

6.37 Comparing systems on precision in the OAEI dataset. . . . . . . . . 171

6.38 Comparing systems on recall in the OAEI dataset. . . . . . . . . . . 171

6.39 Comparing systems on F-measure in the OAEI dataset. . . . . . . . 172

6.40 Comparing systems on semantic precision in the OAEI dataset. . . 172

6.41 Comparing systems on semantic recall in the OAEI dataset. . . . . 173

6.42 Comparing systems on semantic F-measure in the OAEI dataset. . 173



List of Tables

2.1 Different types of part-whole relations . . . . . . . . . . . . . . . . . 28

2.2 Different semantic relations in WordNet . . . . . . . . . . . . . . . . 34

3.1 Evaluation of using a hybrid approach of Word Embeddings and
edit distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Contribution of the Background Knowledge Strategy in the evalu-
ation of STROMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Overview of artefacts . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Summary of equivalence matchers . . . . . . . . . . . . . . . . . . . 93

5.2 Summary of subsumption Matchers . . . . . . . . . . . . . . . . . . 103

5.3 Lexico-syntactic patterns. . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 How ontology profiling metrics determine selection and configura-
tion of matcher ensemble . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1 Ontology statistics for the ATM Dataset . . . . . . . . . . . . . . . 135

6.2 Ontology Profiling ATM Dataset . . . . . . . . . . . . . . . . . . . . 142

6.3 Ontology statistics for the Cross Domain Dataset . . . . . . . . . . 151

6.4 Ontology Profiling Cross-domain Dataset . . . . . . . . . . . . . . . 155

6.5 Ontology statistics for the OAEI 2011 Dataset . . . . . . . . . . . . 163

6.6 Ontology Profiling OAEI Dataset . . . . . . . . . . . . . . . . . . . 167

xix



xx List of Tables



Part I

Background and Context

1





1
Introduction

1.1 Motivation and Problem Outline

Semantic matching refers to a process where the relations between semantic-
ally corresponding nodes from two graph-like structures are discovered by
computing [47]. Several application areas, such as data- and information
integration and information retrieval, rely on the ability to automatically
or semi-automatically identify semantic relations among structured models
such as ontologies, schemas, taxonomies or vocabularies. Semantic match-
ing, which encompasses research areas such as schema matching [9], on-
tology matching [35], taxonomy matching [6], and semantic matchmak-
ing [4, 73, 128], aims to identify different semantic relations between hetero-
geneous sources using a variety of automated or semi-automated techniques.

Schema and ontology matching have been active research areas for several
decades, and over time new sub-research areas have also emerged, such as
large-scale matching; user involvement in matching; social and collaborat-
ive matching; benchmarking and evaluation of matching systems; and align-
ment management infrastructure and support, to name only a few [35]. Fur-
thermore, several different research disciplines are involved, primarily com-
puter science, but also mathematics, engineering, social sciences, business-
and management and psychology. A result of this extensive research is that
a large number of matching systems and techniques have been developed
and the performance of such matching systems has improved significantly
over the years. And the research field is still very active.

At present, as ontology engineering is transitioning from basic to applied

3
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research and is becoming a more commonplace activity, a mass of new onto-
logies originate from application domains that traditionally have not been
a part of the semantic web arena. This imposes new levels of complexity
that upholds the momentum of the semantic matching research area. More
recent developments and studies in this area focus on the identification of
semantic relations beyond 1-1 class equivalence, such as property match-
ing [18], subsumption matching [79], and complex matching [147]. This
direction is also recognised by the Ontology Alignment Evaluation Initiat-
ive (OAEI), an annual benchmarking campaign for matching systems. In
2018, the task of computing semantic relations beyond 1-1 equivalence was
again1 put back on the agenda when the “Complex Matching” track was
arranged.

Automated identification of semantic relations is a challenging task due to
different types of heterogeneities or mismatches that exist among the on-
tologies to be matched. A general view is that the task of automatically
identifying semantic relations between ontologies can never be fully auto-
mated. There will always be different conceptual and explication heterogen-
eities that require some form of human intervention. This view is certainly
also shared in this work, but the assumption is that there is still signific-
ant improvement to be made, both with respect to increasing the level of
automation and the scope of functionality for such systems.

In the following, we highlight three inter-related areas where state-of-the-art
can be extended and that represent the core of this thesis.

1.1.1 Identification of semantic relations beyond equivalence

Most current ontology matching systems focus on class equivalence match-
ing, while other semantic relations between the sources to be integrated
are largely neglected, despite being considered an important prerequisite
for a more holistic integration approach [22, 137]. Although a list of equi-
valent elements is helpful, it is only a starting point for a more profound
integration process, where also asymmetric relations such as subsumption
and meronomy need to be considered. Especially when the ontologies to
be matched have different granularity levels or represent partly overlap-
ping scopes, which is often the case, the identification of such asymmetric
semantic relations is particularly useful [137, 22]. Furthermore, their identi-
fication can also inform discovery of additional correct equivalence relations

1In 2011, OAEI arranged a track called Oriented Matching that challenged systems
capable of identifying subsumption relations. This is the same OAEI dataset that is used
in the evaluation in this thesis.
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as well as removal of incorrect ones during the matching process.

One reason why subsumption matching lags behind equivalence matching
is the lack of benchmarks for systems and techniques targeting such rela-
tions [162]. A contribution from this work is the development of two new
datasets that can be used to evaluate techniques for detecting both equi-
valence and subsumption relations. These datasets represent different ap-
plication domains and have different size and complexity. Together with a
dataset from the OAEI, these two datasets are used to evaluate the different
artefacts developed in this work. Evaluating the suggested approach in three
such diverse datasets supports generalisability and helps avoid overfitting
the techniques to a particular context.

1.1.2 Automated matcher selection, matcher configuration and alignment
combination

Due to the diversity of (mostly) humanly engineered models such as onto-
logies, a single matching algorithm will rarely produce a good alignment
on its own [35, 120, 93]. The matching process is therefore normally ap-
proached using an ensemble of matchers or matching algorithms [87]. In
such a setup, each matcher computes a set of relations based on a certain
target characteristic of the ontologies to be matched. Usually, the composi-
tion of the different matchers and their configuration is performed manually,
not only by proficient ontology matching system users but also by domain
experts and ontology engineers. However, configuring and tuning such a
system, with many matchers, combination methods, and individual para-
meter settings, is a task far from trivial, even for experts [93, 56]. Moreover,
even if an ensemble of matching algorithms is employed, you cannot run the
same ensemble of matching algorithms, with the same configuration, for any
pair of ontologies to be matched, as semantic matching is a highly context-
dependent process. In sum, this is a comprehensive effort that could be
alleviated by automated means and this thesis sets out to develop an ap-
proach for making the matching process more autonomous. In the suggested
matching process, matchers are configured and orchestrated automatically
from an analysis of the profile of the ontologies to be matched as well as
capabilities of the available matchers. The overall approach involves three
sub-processes:

1. Perform an analysis of the terminological, structural and lexical char-
acteristics of the ontologies to be matched to establish a set of profiling
metrics of the ontologies.
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2. Select and configure appropriate equivalence and subsumption match-
ers by applying the profiling metrics captured in (1).

3. Combine the alignments from the selected matchers to produce an
optimal final alignment.

1.1.3 Dealing with ontology mismatches

Ontologies to be aligned often include different types of mismatches, also
called heterogeneities [35], caused by different conceptualisations of the do-
main, different development principles and patterns, differing scopes and
underlying standards, different terminology, to name a few. In particular,
this is a precision problem as such mismatches can result in false positive
relations being added to an alignment when the mismatches are not detec-
ted by the matchers. In this work, we review literature related to ontology
mismatches and try to derive heuristics that can be used for automatic-
ally detecting mismatched relations in the post-matching phase. In other
words, the mismatch detection strategies aim to improve the precision of
the produced alignments by filtering out false positive relations contributed
by mismatches.

Furthermore, most matching systems largely rely on some form of syntactic
processing of ontology concept names using one or more string matching
techniques [15]. String matching techniques have the advantage of being
fast and as long as the syntactic equality reflects the semantic equality,
these techniques often yield good results. However, the heterogeneities or
mismatches mentioned above call for a more profound analysis of the onto-
logy concepts than basic string matching algorithms are capable of perform-
ing. In the matcher ensemble used in this work string matching techniques
are replaced by techniques that exploit word embeddings, i.e. words from
the corpus are “embedded” in a vector space. The word-to-vector repres-
entation is based on a semantic analysis since the vectors are a result of a
learning process that, among other aspects, takes into account how a given
word relates to other words in its context. Hence, these embeddings act as
semantic proxies from which semantic relations between words are deduced,
rather than analysing the local structures (i.e. characters) of the words to
be compared.

1.2 Objectives and Research Questions

The main objective of this research is to:
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Develop an approach for semantic matching that uses inherent
characteristics of ontological models to produce an alignment that
includes both equivalence and subsumption relations.

This overall objective encompasses the following sub-objectives:

• Identify metrics that quantitatively define profiles of ontologies to be
matched and that can further be used to select, configure and combine
a set of matching algorithms.

• Develop and evaluate matchers producing both equivalence and sub-
sumption relations between concepts of heterogeneous ontologies.

• Identify strategies for selecting and configuring the most relevant match-
ers based on ontology profiling metrics.

• Identify strategies that in an optimal manner combine the alignments
produced by the relevant matchers based on ontology profiling metrics.

• Identify strategies for detecting ontology mismatches in order to en-
hance the final alignment returned by the matching process.

• Develop and evaluate a proof-of-concept prototype of a semantic match-
ing system that integrates all artefacts emerging from the above sub-
objectives.

Based on the above objectives the following research questions have been
defined:

RQ1: Which ontology characteristics can guide the composition of
a relevant ensemble of matchers in a semantic matching system?
To automatically select a set of appropriate matching algorithms the sys-
tem includes a set of profiling metrics that quantifies and analyses different
characteristics of the ontologies to be matched. In the ontology evaluation
literature, there is a vast amount of metrics that extract quantitative char-
acteristics related to the terminological, structural, and linguistic properties
embedded in ontologies. The position of this work is that these character-
istics can be employed to select a set of optimal matchers from a library
of matchers. Furthermore, once an optimal set of matchers has been ap-
pointed for a given matching task, the matchers have to be configured and
the alignments they produce will have to be combined to return an as op-
timal final alignment as possible. Different matchers all have their strengths
and weaknesses, they focus on different perspectives of the ontologies to be
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matched, and the objective is to have an as complementary set of matchers
as possible. To accomplish this, the matchers have to be tuned with respect
to the confidence assigned to their similarity measurements and how much
weight each matcher should be given when run in an ensemble together with
other matchers.

RQ2: Which techniques can be used to automatically identify sub-
sumption relations?
A wide range of techniques has been proposed for the automatic identifica-
tion of equivalence relations. However, when asymmetric relations, such as
subsumption relations, are to be inferred, different techniques are needed.
Although some work has been done in this area before (e.g. by Giunchiglia
et al. [46] and Arnold and Rahm [7]), it is quite limited compared to that
of equivalence matching. It is therefore assumed that more concentrated
research on subsumption matching can help advance state of the art in se-
mantic matching.

RQ3: Which combination strategies are applicable when combin-
ing semantic relations - produced by an ensemble of equivalence
and subsumption matchers - into a final alignment?
When equivalence alignments are combined this is often based on the“single
marriage” principle, that is, there should be a 1-1 relation between the best
matching relation between two ontology concepts from different ontologies.
Such an approach will clearly not work for subsumption relations, since a
concept in one ontology is likely related to several concepts in the other
ontology, and vice-versa. Investigating candidate combination methods and
evaluating how they perform will shed light on an important component of
a semantic matching system, namely how do we aggregate the best qual-
ity equivalence and subsumption relations from individual alignments while
disregarding those that reduce the quality.

RQ4: Which strategies can be used to automatically detect on-
tology mismatches and ultimately enhance the quality of already
produced alignments?
The quality of the alignment returned from a semantic matching system
is measured by how many correct relations the system is able to identify
and how many false relations the system can avoid. This research ques-
tion relates to different techniques that contribute to the latter. In order to
address it, this work will, supported by existing knowledge on ontology mis-
matches, investigate techniques that can be used to filter out false positive
relations computed by the semantic matching system.
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1.3 Research Method

The guiding research framework used in this work is based on Design Sci-
ence [65, 64]. Design Science prescribes build-and-evaluate loops where arte-
facts are developed through iterative and rigorous evaluation using empirical
evaluation methods. Gold-standard evaluation using evaluating metrics typ-
ically applied in the ontology matching community is used to evaluate the
artefacts developed. Part II describes the research approach for this work
more in detail.

1.4 Major Contributions

This work extends the knowledge base within the area of semantic matching
with the following core contributions:

• Ontology profiling metrics that define ontology characteristics used
for selecting the optimal set of matchers as well as their configuration
and combination.

• A set of matching algorithms that automatically identify equivalence
and subsumption relations.

• A strategy for employing the ontology profiling metrics into a weighted
combination of the alignments produced by the individual matching
algorithms.

• Two mismatch detection techniques that contribute to remove false
positive relations and consequently increase the precision of alignments
produced by the matching algorithms without suffering recall.

In addition, this research has produced two datasets that can be used to
evaluate equivalence and subsumption matching algorithms and systems.

8 papers have been produced during this work and they are all described in
Appendix A.

1.5 Thesis Structure

The remainder of the thesis is structured as follows.

Part I Background and Context.
Chapter 2 introduces some basic concepts relevant to this thesis. The
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chapter begins with a short introduction to ontologies before the funda-
mentals of semantic matching are explained. Further, this chapter presents
the different semantic relations that are most relevant in this work, as well
as various techniques that can be used for their identification.

Chapter 3 starts by presenting an overview of existing approaches for auto-
matically detecting equivalence and subsumption relations. Next, this chapter
describes relevant research related to extracting and measuring ontology
characteristics that can be used for ontology profiling, as well as different
approaches related to matcher selection, matcher configuration, and com-
bination of matcher results.

Part III Research Approach.
Chapter 4 first gives an introduction to the Design Science framework, and
then explains how this framework has guided the development-oriented re-
search in this thesis.

Part IV Implementation and Evaluation.
Chapter 5 describes the development of the different artefacts that together
compose a prototype of a semantic matching system. These artefacts include
ontology profiling metrics, equivalence matchers, subsumption matchers,
alignment combination strategies and mismatch detection strategies.

Chapter 6 describes the evaluation of the developed artefacts in three diverse
datasets.

The most significant results from the evaluation along with a discussion
about the validity, reliability and credibility of the research are presented in
Chapter 7.

Part VI Conclusions and Further Work.
Chapter 8 summarises the main conclusions, the most important contribu-
tions from this work and how they address the research questions, before it
concludes with some ideas for further work.



2
Background and Preliminaries

2.1 Ontologies

This section provides a minimal and practical description of some key as-
pects related to ontologies to prepare for the remainder of this thesis. For
a more detailed explanation of ontologies and their application, the reader
is referred to the “Handbook on Ontologies” [138].

An ontology is a formal definition of the concepts, properties and interrela-
tionships of the entities that exist in some domain of discourse. It provides
a shared vocabulary that can be used to describe the domain, classifying
and categorising the elements contained within it.

Typically, an ontology is formalised using the Web Ontology Language
(OWL)1. OWL is a part of the W3C suite of Semantic Web standards2,
which includes among others Resource Description Format (RDF)3, a frame-
work for representing web data using subject-predicate-object triples, and
the Resource Description Format Schema (RDFS)4, which provides a data-
modelling vocabulary for RDF data. While both OWL and RDFS offer a
vocabulary for describing RDF data, OWL allows for greater expressibility
than RDFS.

In an ontology, classes represent sets of individuals (also called instances or
objects) with similar characteristics and are organised in an specialisation

1https://www.w3.org/TR/owl2-overview/
2https://www.w3.org/standards/semanticweb/
3https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
4https://www.w3.org/TR/rdf-schema/
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hierarchy. This hierarchy is also called a subsumption hierarchy in that a
parent class subsumes its children classes, i.e. any individual that is a mem-
ber of the subsumed (more specific) class is also a member of its subsuming
(more general) class. Figure 2.1 shows the extract of an ontology where
its concepts describe different aspects of a doctoral thesis. The example
includes classes (rectangles), object properties and data properties (ovals),
data types (hexagons), and individuals (in braces). For example, a particu-
lar doctoral thesis being a member of the PhDThesis class is also a member
of the Thesis class. Object properties relate one instance to another in-
stance. author is an example of an object property that relates individuals
in the Thesis class to individuals in the Person class. Data properties map
individuals to literals (such as how the language property states that an
individual of the Thesis class is written in a particular language expressed
using the datatype String). As classes, object and data properties can be
represented in a hierarchy where properties higher in the hierarchy are more
general than their children. Annotation properties are used for providing
different types of annotations to the ontology and its constructs. For ex-
ample, the rdfs:comment annotation property can be used for associating
a natural language definition to a class, as illustrated for the School class.
Another type of annotation property is rdfs:label, which is used to associate
a human-readable label description to a class.

Thing

Entry

MasterThesisPhDThesis

Academic

Thesis

School school

Person

author
domain

range

Organization

domain

String

subClassOf

subClassOf

subClassOfsubClassOf

subClassOf subClassOf

{ «Gabriel», «Jesper»}

«An educational 
institution»

subClassOf

range

language

subClassOf

domain

subClassOf

range

Figure 2.1: An example ontology illustrating various ontology constructs.
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Ontologies come in different levels of generality. Guarino [54] suggests the
following classification:

• Top-level ontologies describe general concepts such as time, space,
events, actions, etc. These concepts are domain-independent and can
be used for most application purposes. Examples of top-level ontolo-
gies are DOLCE [92] and PROTON [135].

• Domain ontologies and task ontologies describe concepts related to a
specific domain or a particular task or activity respectively. These
types of ontologies specialise the concepts introduced in the top-level
ontologies.

• Application ontologies describe concepts that depend both on a par-
ticular domain and a particular task, and may correspond to the roles
played by domain concepts while performing a specific activity.

In practice, many ontologies represent a blend of the generality levels pro-
posed by Guarino, contributing to mismatches that make the task of align-
ing ontologies challenging. The next section describes some key concepts
related to aligning ontologies, while a description of different types of mis-
matches that ontology alignment techniques need to deal with are described
in Section 2.3.

2.2 Aligning Ontologies

The process of computing alignments between heterogeneous ontologies is
often called Semantic Matching, Ontology Matching or Ontology Alignment.
Such alignments support the ability to re-use existing ontologies, one fun-
damental principle in ontology engineering, and more operationally, it sup-
ports interoperability among information systems employing the ontologies
so that data communicated among them can be interpreted unambiguously.
Typically the matching process involves two ontologies to be matched, but
in principle, the matching process may involve more than two (this is com-
monly referred to as multiple matching). The result of a matching process
is an alignment artefact, which consists of a set of semantic relations. In
this work, the focus is on equivalence and subsumption relations, but other
semantic relations exist, such as disjointness and overlap described by e.g.
Euzenat [34].

Figure 2.2 extends the ontology example in the previous section by in-
troducing a second ontology which also includes constructs for describ-
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ing a doctorate thesis (the ontology to the left). The semantic relations
discovered between these two ontologies are represented with dotted ar-
rows. Some of them are quite intuitive, such as the equivalence relations
between Thesis and Thesis′, Organization and Organization′, Mastersthesis
and MasterThesis′, and Phdthesis and PhDThesis′. The two latter equival-
ence relations include some syntactic differences that a basic string match-
ing technique would easily resolve. The equivalence relation between Person
and HumanAgent′ cannot be identified through string patterns. This rela-
tion could be inferred from the fact that both classes have the same indi-
viduals (�Gabriel� and �Jesper�) as members. This is typically called
instance-based matching. Another possibility is to use property patterns to
infer this equivalence relation. Both Person and HumanAgent′are defined
as the range of the object property author which indicates at least some
relatedness between the two classes.

Thing´

Thesis´

Mastersthesis´ Phdthesis´

Thing

Entry

MasterThesisPhDThesis

Academic

Thesis

School

school

Person

author

domain

range

domain

range

Organization´

University´

HumanAgent´ author´

school´

Organization

range
domain

domain

range String

subClassOf

subClassOf

subClassOfsubClassOf

subClassOf subClassOf

subClassOf { «Gabriel», «Jesper»}

{ «Gabriel», «Jesper» }

«An 
educational 
institution»

subClassOf

subClassOf

subClassOf

equivalentTo

equivalentTo

equivalentTo

equivalentTo

equivalentTo
subClassOf subClassOf

range

language

domain

Figure 2.2: An example of equivalence and subsumption relations between con-
cepts in two ontologies

University′ is a subclass of Organization. This relation could be inferred
from a structural analysis since University′ is a subclass of Organization′

and Organization′ is equivalent to Organization. It could also be identi-
fied using external sources of knowledge, such as the WordNet lexicon (see
Section 2.5.3), that states that University has a more specific meaning than
Organization. The same reasoning could be applied to infer that School is
a subclass of Organization′ and that Thesis′ is a subclass of Academic. The
latter relation could also use the annotation property (rdfs:comment) asso-
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ciated with School. Here, the combination of natural language processing
(NLP) techniques and a lexicon could be employed to determine that the
term institution is a more specific term than organization, hence School
should be a subclass of Organization′.

Formally, a semantic relation is expressed as a quadruple < e, e′r, c > where
e and e′ are two aligned entities5 across ontologies, r represents the type
of semantic relation holding between them, and c represents the confidence
of the relation between these two entities. Figure 2.3 shows how semantic
relations are expressed using the Alignment Format (further described in
Section 2.2.2). Each semantic relation is described within the <Cell> ele-
ment, the entities being matched are described in <entity1> and <entity2>,
the relation type (where ’=’ indicates equivalence and ’<’ or ’>’ indicates
subsumption) is described in <relation> and the confidence value determ-
ined by the matcher is defined in the <measure> tag.

Figure 2.3: Representation of semantic relations in an alignment artefact.

2.2.1 Sub-processes in Ontology Matching

There are several sub-processes involved in a complete matching process. A
typical workflow is illustrated by Rahm [120] as shown in Figure 2.4.

The ontologies to be matched are first parsed so that matchers can compute
various types of similarity measures among their concepts. As mentioned
earlier, it is common that an ensemble of matchers is used in the matcher ex-
ecution, where each individual matcher identifies semantic relations among
concepts based on different ontology characteristics and techniques. The
choice of which matchers to include in the matcher ensemble is normally

5An entity usually refers to a class (concept), but can also represent properties (object
and data) in the case of property matching and individuals in case of instance-based
matching.
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O2O1

Pre-
processing

Combination 
of matcher 

results

Selection of 
correspondences

Matcher
Execution

Final 
Alignment

Figure 2.4: A typical workflow of an ontology matching system (adapted from
Rahm [120]).

determined manually. The use of several complementary matchers can po-
tentially compensate for the weaknesses of each other [41], but if this en-
semble is not correctly composed, it can also decrease the overall quality.
Once the appropriate matchers are chosen, they have to be configured and
tuned according to the particular characteristics of the ontologies to be
matched. The matcher configuration typically includes weight assignment
for the different matchers, configuring potential external sources, and decid-
ing a confidence threshold for the resulting alignment. If any of the matchers
use external sources, such as the WordNet lexicon, these sources must be
selected and configured with appropriate parameters.

Fundamentally, matchers are typically run either in sequence, in parallel
or by using some hybrid strategy combining the two, as illustrated in Fig-
ure 2.5 (adapted from Rahm [120]). In the case of a sequential strategy,
a first matcher computes an alignment which is used as input to a second
matcher, and so on. One rationale for using such a strategy is that different
matchers have different complexity and run-time performance. Using a fast
matcher first, for example a string matcher, to produce an initial alignment,
which is then transferred to the more comprehensive (but slower) matchers,
will reduce the overall execution time. This strategy is for example used
in the YAM++ system [102] where a terminological matcher produces an
alignment which is used as input for a structure-based matcher. In the
parallel strategy, all matchers are run independently and their proposed re-
lations are transferred into a final alignment. One benefit of this strategy
is that the matchers can run in a distributed fashion, possibly on multiple
servers or machines. Furthermore, while the sequential strategy puts much
responsibility on the first matcher in the sequence, with the risk of losing
other correct relations, the parallel strategy distributes this responsibility
between the involved matchers. Hybrid approaches combine sequential and
parallel strategies. There are alternative workflows for running matcher en-
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sembles, for example as suggested by Trojahn et al. [148] (also described
in Section 3.4). In this multi-agent approach the semantic relations com-
puted by one matcher are mediated to the other matchers for verification
or counter proposals. This is an iterative approach that runs until there are
no more counter proposals from any of the matchers in the ensemble.

After the matchers have been executed and their alignments are produced,
there are usually several post-processing steps, in particular, combining the
results from individual matchers and selecting the correspondences (i.e. se-
mantic relations) that should be returned in the final alignment.

M2 M3M1 A

M2

M3

M1

A
M2

M3
M1 A

(Hybrid)
(Parallel)

(Sequential)

Figure 2.5: Different matcher workflow strategies (Rahm [120]).

2.2.2 The Alignment API

The Alignment API [23] is a Java API for ontology matching. The API of-
fers an infrastructure supporting the development of matching algorithms,
generating alignments in a standardised format, manipulating existing align-
ments, and evaluating alignments, to name a few. The API includes wrap-
pers for interacting with other programming libraries, such as the OWL-
API [66], Apache JENA6 and SKOS7. It also includes OntoSIM 8, a library
of different similarity techniques.

Tightly coupled with this API, is the Alignment Format9. This format has
become the de facto standard format for describing an ontology alignment
and is used by several matching systems as well as the OAEI evaluation
initiative.

6https://jena.apache.org/
7https://www.w3.org/TR/2008/WD-skos-reference-20080829/skos.html
8http://ontosim.gforge.inria.fr/
9http://alignapi.gforge.inria.fr/format.html

https://jena.apache.org/
https://www.w3.org/TR/2008/WD-skos-reference-20080829/skos.html
http://ontosim.gforge.inria.fr/
http://alignapi.gforge.inria.fr/format.html
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An extension of the Alignment Format is EDOAL (Expressive and Declarat-
ive Ontology Alignment Language)10. EDOAL includes a set of constructors
and operators used for expressing more precise relations between ontology
concepts, such as complex relations (e.g., that a concept in the first ontology
is equivalent to the union of two concepts in the second ontology).

EDOAL enables more precise alignments supported by the ability to [35]:

• use algebraic operators to construct entities from other entities. For
example, in order to express that a union of entities in one ontology
is equivalent to a single entity in the other ontology using the OR
operator.

• put restrictions on entities in order to narrow their scope. For example,
to express that a class in one ontology is equivalent to a class in the
other ontology, but only for values defined using a particular object
property.

• transform property values. For example, property values using differ-
ent encodings or units can be aligned using transformations.

2.2.3 Evaluation of Ontology Alignment

Typically, ontology matching systems and techniques are evaluated using
the evaluation tracks provided by OAEI11. Here, different datasets, both
manually constructed and synthetically constructed, are used in different
evaluation tracks. The datasets normally consists of a set of ontologies for
which a reference alignment (ground truth) holding the correct relations
between pairwise ontologies represent the baseline. The alignments com-
puted by the participating matching systems are then compared with these
reference alignments.

In general, when evaluating the quality of the alignment the evaluation
measures applied are typically precision p, recall r and F-measure f m. These
measures are computed with respect to a reference alignment R that holds
the true set of correspondences and that is normally manually produced.

Figure 2.6 from the book of Euzenat and Shvaiko [35] along with the below
formal descriptions illustrate how these measures are computed.

Precision - Precision p measures the ratio of correct relations in an Align-
ment A (where correctness is determined by the reference alignment R)

10http://alignapi.gforge.inria.fr/edoal.html
11http://oaei.ontologymatching.org/

http://alignapi.gforge.inria.fr/edoal.html
http://oaei.ontologymatching.org/
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False positives
= A - R

False negatives
= R - A

True Positives
= A     R ∩

True negatives = (C x C´ x      ) - (A     R)Θ ∪

(C x C´ x      )ΘA R

Figure 2.6: Measuring correctness of alignments (Euzenat and Shvaiko [35]).

compared to the total number of relations returned by the matching sys-
tem.

p(A, R) =
|A ⋂

R|
|A| (2.1)

Recall - Recall r measures the ratio of correctly found relations in an Align-
ment A over the total number of correct relations in a reference alignment
R.

r(A, R) =
|A ⋂

R|
|R| (2.2)

F-measure - Given a reference alignment R and a number α between 0 and
1, the F-measure of an alignment A is a function f mα : ∧ × ∧ → [0 1]
such that

f mα(A, R) =
p(A, R)× r(A, R)

(1− α)× p(A, R) + α× r(A, R)
(2.3)

If α is 1 the F-measure is equal to precision, if it is 0 it is equal to recall, and
when it is 0.5 then F-measure represents the harmonic mean of precision
and recall [35]. Using an α of 0.5 is common and is also the practice used
for all evaluations in this work.

Euzenat [33] proposed a different approach to precision and recall that better
complies with the reasoning capabilities offered by ontologies. This approach
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is called semantic precision and recall. Here, semantic relations entailed (by
a reasoner) from the merged ontology constructed from a source ontology Os
and a target ontology Ot, as well as a reference alignment RA are considered
in the evaluation of an alignment A [163].

Semantic Precision psem is computed as the number of relations in A that
are entailed from the reference alignment RA divided by all relations in
alignment A.

psem(A, R) =
|A ⋂

Cn(RA)|
|A| (2.4)

Semantic Recall rsem is computed as the number of relations entailed from
alignment A that are included in the reference alignment RA divided by all
relations in a reference alignment RA.

rsem(A, R) =
|Cn(A)

⋂
RA|

|RA| (2.5)

Since such entailments include subsumption inferred from equivalence, se-
mantic precision and recall can be used as measures to compare the per-
formance of matching systems producing only equivalence alignments with
systems producing both equivalence and subsumption relations.

The reference alignments used in the different OAEI datasets are construc-
ted according to different modalities. For example, in the Conference track
of the OAEI 2019 campaign12, three different evaluation modalities were
applied:

• Crisp reference alignments. Here, the confidence value for all relations
in the reference alignment is set to 1.0. Precision, recall and F-measure
(F1) as described above is used as-is to evaluate system performance
in this modality. There are three different versions of the crisp refer-
ence alignments where one is the original (ra1), the second includes
entailments and is coherent (ra2), while in the third (rar2) violations
of consistency and conservativity are resolved using a combination of
tooling and manual assessment.

• Uncertain version of reference alignments. In this version the confid-
ence value of the relations in the reference alignment reflect the degree

12http://oaei.ontologymatching.org/2019/conference/eval.html#
uncertain-ra

http://oaei.ontologymatching.org/2019/conference/eval.html#uncertain-ra
http://oaei.ontologymatching.org/2019/conference/eval.html#uncertain-ra
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of agreement of a manual assessment of each relation performed by a
group of twenty people [17].

• Logical reasoning. Here, violations of consistency and conservativity
principles in the evaluated alignments are taken into account.

Based on these different modalities the matching systems participating in
the evaluation campaign are evaluated using different metrics and principles.
For example, when using the uncertain version of the reference alignments,
the involved systems are evaluated based on discrete and continuous ap-
proaches. The discrete approach considers that any relation in the reference
alignment having a confidence of >= 0.5 to be fully correct, while those with
a confidence lower than 0.5 are considered fully incorrect. Furthermore, rela-
tions in the reference alignment of the discrete approach have been removed
if less than half of the group of people in the manual assessment agreed with
them. The matching systems’s match is considered correct if the confidence
value in the reference alignment is >= to the system’s threshold and incor-
rect otherwise. The continuous approach considers the opinion of the group
of people in that it penalises a matching system more if the system does not
identify a relation which most people in the group agree on than if it does
not identify a relation which has less agreement within the group.

2.3 Ontology Mismatches

Different types of mismatches or heterogeneities make the task of aligning
heterogeneous ontologies challenging. One of the assumptions in this work is
that semantic matching can learn from theories about what are the proper-
ties of different mismatch types and why they occur. If a matching system
includes techniques that can identify such mismatches, this might result
in better quality alignments. Therefore, it is essential to identify the mis-
matches that can be solved by automated means and those that require some
form of human intervention [141]. Many of the matching algorithms applied
are quite naive (e.g., string matching algorithms), and applying principles
learned from theories on ontology mismatches, can help filter out false posit-
ive relations identified by those naive algorithms, and consequently improve
alignment precision.

According to Visser et al. [154] the creation of an ontology involves two sub
processes:

1. Conceptualisation - during this process, decisions are made with re-
spect to classes, relations, instances, functions and axioms that are
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distinguished in the domain, and the outcome is a conceptualisation
that involves these entities. However, the form or appearance of these
descriptions is not considered in this process, this is taken care of in
the explication process.

2. Explication - during this process, the conceptualisation from the pre-
vious process is explicated using some form of ontology language.

These two processes form the conceptual background for much of the liter-
ature describing ontology (and schema) mismatches. Within this literature
there exists different classifications of such mismatches, at varying levels of
detail and with substantial overlap. One classification is from Klein [83],
which is illustrated in Figure 2.7. Klein also distinguishes conceptualisation
mismatches from explication mismatches, where the former includes mis-
matches caused by differing coverage and scope, while the latter refers to
differing terminology, modelling style and encoding.

Ontology Level Mismatches

Concept Scope

Coverage

Homonyms

Synonyms

Terminological Modeling Style

Paradigm

Concept Description

Conceptualisation
Explication

Encoding

Figure 2.7: Ontology Mismatch Classification (Klein [83])

In the next two sub sections we explain the different types of mismatches
included in the classification from Klein. These explanations of mismatches
have informed the development of the mismatch detection strategies imple-
mented in this thesis (see Section 5.5).

2.3.1 Conceptualisation Mismatches

Coverage mismatches refer to that two ontologies cover or emphasise dif-
ferent parts of a domain, or that their level of detail differs. Concept scope
mismatches occur when two classes seem to represent the same concept, but
they do not have exactly the same instances, although they may intersect.

Conceptualisation mismatches, called Conceptual Heterogeneity by Euzenat
and Shvaiko [35], are difficult to identify automatically. Such mismatches
occur when there are two (or more) conceptualisations of a domain, and
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present themselves in how the ontology concepts are distinguished or how
they are related.

Visser et al. [154, 153] further decompose conceptualisation mismatches.
They distinguish class mismatches from relation mismatches, where the
former are mismatches that relate to classes and subclasses distinguished
in the conceptualisation and the latter encompasses mismatches that re-
late to hierarchical relations (the subsumption hierarchy) and assignment of
properties to concepts.

Class mismatches consists of categorisation mismatches and aggregation-
level mismatches. Categorisation mismatches occur when two ontologies
include the same class, but decompose them into different subclasses.
Aggregation-level mismatches occur when both ontologies include the same
concept, but define the concept using classes at different levels of abstrac-
tion.

Relation mismatches include structure mismatches, attribute-assignment mis-
matches, and attribute-type mismatches. Structure mismatches occur when
two ontologies distinguish the same set of classes, but differ in how these
classes are structured through relations. Attribute-assignment mismatches
occur when two ontologies differ in how they relate other classes to the
shared concept through object properties. Attribute-type mismatches relate
to how properties that are associated with a shared concept use different
types.

2.3.2 Explication Mismatches

Explication mismatches relate to how the conceptualisation is specified (ex-
plicated).

According to Klein, Modeling style mismatches include paradigm and concept
description mismatches. Paradigm mismatches refer to how different paradigms
can be used to represent concepts such as time, action, plans, causality, and
propositional attitudes. For example, one ontology might use temporal rep-
resentations based on interval logic, while another might use a representa-
tion based on point [13]. Concept description mismatches occur when two
similar concepts are modelled differently, for example, that the same inten-
tion is modelled through the use of properties in one ontology and by using
distinct subclasses for the same target values in the other ontology [13].

Terminology mismatches include synomym terms mismatches and homonym
terms mismatches. Synonym terms mismatches occur when identical con-
cepts are represented by different terms (e.g. ’Car’ versus ’Automobile’).
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Homonym terms mismatches occur when the meaning of two identical terms
is different (e.g. the term ’Conductor’ has a different meaning in the music
domain than in the electric engineering domain).

Visser at al. [154, 153] present six different types of mismatches that occur
because of different knowledge definitions of the ontologies and their con-
cepts. Here, the definition of knowledge includes three parts: The term (T)
used to denote a concept, the definiens (D) that comprise the body of the
definition (e.g. the property statements), and the underlying concept (C)
itself.

• A Concept Mismatch (C) occurs when the definitions have the same
terms and definiens, but differ conceptually. Whenever such a mis-
match occurs, T is a homonym.

• A Concept and Definiens Mismatch (CD) is when the definitions share
the same term but have different concepts and definiens. As with the
Concept Mismatch, T is a homonym whenever this mismatch occurs.

• A Definiens Mismatch (D) occurs if the definitions have the same
concept and the same term, but different definiens.

• A Term Mismatch (T) is when the definitions share the same concept
and the same definiens, but the terms are different. This mismatch
implies that the two terms are synonymous.

• Concept and Term Mismatch (CT) occurs when the definitions have
the same definiens, but differ in their concepts and terms. In this case,
the two concepts are most likely different.

• Terms and Definiens Mismatch (TD) is when the definitions have the
same underlying concept, but the terms and definiens are different.
As with the Terms Mismatch this mismatch implies that the terms
are synonyms.

Visser at al. [154, 153] stresses that mismatches do not operate in isolation,
but that whenever a mismatch occurs between two concepts, this influences
the surrounding (sub- and super) classes as well, an effect called the inher-
itance of mismatches. Hence, whether two concepts in fact have a certain
semantic relation between them depends in the end on the natural language
description of all terms that directly or indirectly contribute to the meaning
of these two concepts.
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Consider for example the concepts depicted in Figure 2.813. Here, the
concept hierarchies are the same, but the lowermost concept ’Cormorant’
have differing definiens in that the concept on the left-hand side of the fig-
ure refers to a cormorant as a fish-eating, flying and diving bird, while the
cormorant to the right-hand side refers to the two copper bird sculptures
watching over the Mersey river in Liverpool from the Royal Liver Building.

Animal

Bird

Cormorant

Animal

Cormorant

Bird

fish_eating (X), 
flies (X), 
dives (X)

liver_bird (X)

Figure 2.8: Illustration of inheritance of mismatches.

2.4 Semantic Relations

Semantic relations are meaningful associations between two or more con-
cepts, and the underlying meaning of concepts can often be inferred from
the semantic relations associated with them [82]. Different semantic rela-
tions can inform the identification of each other, hence, it is essential for a
matching system to identify a variety of semantic relations. For example, if
a matching system identifies a subsumption relation, it is possible to infer
equivalence relation(s) for related concepts. This is illustrated in Figure 2.9
where the system identifies that the concept Car in ontology O1 is subsumed
by the concept Conveyance in ontology O2, and that Automobile in O2 is
subsumed by TransportMeans in O1. From these relations, there is a strong
likelihood of O1’s TransportMeans being equivalent to O2’s Conveyance and
that Car in O1 is equivalent to Automobile in O2.

It is also important to distinguish among different ’non-equivalent’ relations.
Often, meronymic relations are misinterpreted as subsumption relations [7],
yet the semantic interpretation, as well as the usage, of these types of rela-
tions are different. While subsumption relations define the notion of special-
isation, i.e., that one concept is a specialisation or generalisation of another
concept, meronymic (a.k.a. partonomic) relations defines part-whole rela-
tions, and are typically expressed by object properties in an ontology. If
a system is capable of identifying a part-whole relation (e.g. Component-

13The pictures are taken from Wikipedia
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TransportMeans

Car

Conveyance

Automobile

=

subclassOf subclassOf

O1 O2

=

Figure 2.9: Example on how subsumption relations can lead to identification of
equivalence relations

Integral part of Object), this can rule out equivalence or subsumption rela-
tions involving the same concepts.

Semantic relations play an important role in how knowledge is represented
psychologically, linguistically, and computationally [52]. Semantic relations
can be distinguished as relations between concepts in the mind (conceptual
relations) or relations between words (lexical relations). The semantic rela-
tions involved when knowledge is expressed for computational processing are
usually called lexical-semantic relations. Such relations provide structure to
lexicons, thesauri, taxonomies, and ontologies. The main lexical-semantic
relations are hyponomy (is-a, broader-narrower, subsumption), meronymy
(part-whole), synonymy and antonymy (opposite meaning) [82]. In this
work, we focus on the first three, and they will be described in the follow-
ing. In ontology alignment, the term equivalence is used for representing the
binary relation between synonyms, and subsumption is used for expressing
hyponymy, so these terms will be used here.

2.4.1 Equivalence Relations

An equivalence relation is a binary relation between two concepts that are
considered synonymous, i.e. semantically identical. Most humans, and cer-
tainly a string matching algorithm, would say that two concepts Thesis′ and
Thesis could be considered both syntactically and (at least in most cases)
semantically equal. That said, there could be situations where two syn-
tactically equal concepts are semantically different. Continuing the above
example, the concept thesis can, for example, refer to a student thesis (bach-
elor, master or doctor), a statement in an argument, or a down-beat in a
musical play (in contrast to arsis which is the up-beat or unaccented note).
This is referred to as homonymy, that is, the same word can have multiple
unrelated meanings [84]. Related to homonymy is polysemy. Here, a word
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can also have multiple meanings, but in contrast to homonymy, the mean-
ings are related. For example, a review as a noun and as a verb (to review
something) is a polynom [84]. Hence, it is very much context-dependent
whether or not two concepts are semantically equal or not, and determining
true equivalent concepts among homonyms and polysemes is challenging.

2.4.2 Subsumption Relations

A subsumption relation defines that one concept is a sub-type of another
concept, for example that the concept Car is a sub-type of the more gen-
eral concept TransportMeans. Such relations are also commonly known
as is-a and class inclusion relations [55]. As described in Section 2.1, the
fundamental structure of an ontology is a set of concepts organised in a
subsumption hierarchy, effectively establishing a hierarchy of concepts that
are subsumed by each other, all the way up the root of the ontology (thing).
A concept subsumed by another inherits the properties from the subsuming
concept (and all subsuming concepts up to the root), therefore we say that
a subsumption relation is transitive.

Chaffin et al. (cited in [140]) identified the following kinds of subsumption
relations:

1. Natural Object-Kind (Employee is-a Person)

2. Artefact-Kind (Laptop is-a Computer)

3. State-Kind (Single kind-of Marital Status)

4. Activity-Kind (Consulting kind-of Work)

According to Storey [140], the two first kinds of relations are best repres-
ented as two concepts connected by a subsumption relation, while ’State-
Kind’ and ’Activity-Kind’ are best represented by making the state or activ-
ity a property of an appropriate concept. For example, ’consulting’ could
be an instance of a class Work which is the range of an object property
’typeOfWork’.

2.4.3 Meronymy Relations

A meronymy or part-whole relation models the parts that comprise a whole
concept and are often used to relate different classes in an ontology through
properties [8]. For example, the object property isMadeO f relates instances
of the concept House to instances of the class ConstructionMaterial.



28 Background and Preliminaries

There are different types of part-whole relations, and they have different
characteristics. Winston et al. [157] suggest six different types of part-whole
relations as presented in Table 2.1.

Table 2.1: Different types of part-whole relations

Relation Example

Component / Integral Object handle-cup or punchline-joke

Member / Collection tree-forest or card-deck

Portion / Mass slice-pie or grain-salt

Stuff / Object gin-martini or steel-bike

Feature / Activity paying-shopping or dating-adolescence

Place / Area Everglades-Florida or oasis-desert

2.5 Computing Similarity

2.5.1 String Similarity

String similarity methods have a prominent place in most semantic matching
systems [105, 15, 139]. These methods are normally fast and are in many
situations able to determine that two concepts from different ontologies are
equal or similar based on the string representation of the concepts. Ngo et
al. [105] classifies string similarity methods into the following categories:

• Local terminology-based methods which focus on determining similarity
based on individual entities.

• Global terminology-based methods, which also consider the context (i.e.
neighbouring entities) in which the entities being compared reside or
that combine several local methods.

In the following we will focus on Local terminology-based methods and
describe some of the methods that are commonly used in semantic matching.

Edit-distance based methods measure the distance between two strings S
and T based on counting the number of operations it takes to transform
from S to T, where operations include insertion, replacement and deletion
of characters in the string [35]. Each operation is assigned a cost such that
the distance between the two strings is computed as the sum of the less
costly operations that transforms S to T. The Levenshtein distance [86],
which is one commonly used implementation of edit distance, operates with
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all operations (insertion, substitution, and deletion) being equal to 1. The
Hamming distance [61] is a distance metric that counts the number of po-
sitions where two strings of equal length differ. If the two strings to be
compared are of uneven lengths, one variant is to normalise by the length of
the longest string [35]. The Jaro [72] distance metric considers the number
of matching characters, their sequence, and their length in order to arrive
at how similar (or distant) two strings are. The Winkler [156] extension
consists of adding more weight if the two strings share a common prefix.

A more run-time efficient approach to string matching is the use of sub-
string comparison. The n-gram (q-gram) technique converts strings into
sets of n-sequences of characters composing the string [15]. For example
if n=3 (trigram), the string ’thesis’ is transformed to a set {“the”, “hes”,
“esi”,“sis”}. Especially for longer string comparisons, such as when compar-
ing two comments associated with ontology concepts, substring similarity
techniques such as n-gram can be applied.

ISub [139] is a string matching algorithm targeted for ontology matching.
The algorithm applies three functions in order to find the similarity between
two entity names Cx and Cy and considers both the commonality and dif-
ference between strings when computing a similarity score. The algorithm
proceeds as follows:

ISubSim(Cx, Cy) = comm(Cx, Cy)− di f f (Cx, Cy) + winkler(Cx, Cy) (2.6)

The three functions are:

• The commonality function (comm) is motivated by the substring met-
ric where the biggest common substring between two strings is com-
puted. This process is further extended by removing the common
substring and by searching again for the next biggest substring until
no common substring can be found.

• The difference function (di f f ) is based on the length of the unmatched
strings resulted from the initial matching step (after the common sub-
strings have been identified). The Diff function is given less import-
ance than the commonality function (weight parameter 0.6 is a good
value according to the authors [139]).

• After the commonality and difference between two strings are com-
puted the Winkler algorithm [156] is used for improving the results.
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Another family of string-based similarity techniques bases the comparison
on tokens. Here, concept names and/or other natural language descriptions
of ontology concepts are represented as sets of tokens, also called “bag-of-
words”. These tokens can then be used to compute a set-theoretic similarity
score or represent a basis for a vector-based similarity technique.

One of the commonly used set-theoretic similarity techniques is Jaccard [70].
This technique is also called intersection over union, meaning that the sim-
ilarity between two word sets S and T is computed as:

JaccardSim(S, T) =
S ∩ T
S ∪ T

(2.7)

TF-IDF (Term Frequency - Inverse Document Frequency) is a vector-based
similarity technique that has been extensively used in information retrieval
and commonly also to match ontologies [35]. The TF-IDF weight is a stat-
istical measure that reflects how important a word is to a document in
a collection [126]. Here, a word’s importance increases proportionally to
the number of times a word appears in the document but is offset by the
frequency of the word in the corpus. The TF-IDF weight consists of two
components, TF and IDF. TF measures how frequently a given term occurs
in a document, and is often computed as:

TF(w) =
Number o f times word w appears in a document D

Total number o f words in the document D
(2.8)

IDF measures how important a word is in the whole collection, and is often
computed as:

IDF(w) = log
Total number o f documents D

Number o f documents D with word w in it
(2.9)

The TF-IDF is then computed as the product of these two components.

In the context of semantic matching, the document D can be represented
by a “virtual document” that includes contextual information associated to
each of the concepts being matched, and w can be represented by words that
appear within that context. The context can consist of the label, comments,
properties and instances associated with the concepts being matched [104].
Once the virtual documents has been created for each concept in the on-
tologies to be matched, they can be represented in a vector space model.
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Similarity between the ontology concepts can then be computed using for
example the cosine measure between the vector representations of the virtual
documents. The cosine similarity is a measure that calculates the cosine of
the angle between two vector representations. The formula for computing
it is:

cos(A, B) =
A · B
‖A‖‖B‖ =

∑n
i=1 AiBi√

∑n
i=1 (Ai)2

√
∑n

i=1 (Bi)2
(2.10)

We use the following basic example to explain how the cosine similarity is
computed. Say we want to measure how similar a concept A in ontology
OS is to concepts B in ontology OT, where A and B are “virtual documents”
represented as vectors holding components according to terms describing the
concepts in the respective ontologies. The vectors of the virtual documents
representing A and B are as follows: A = [1, 2, 0], and B = [1, 1, 2] and the
cosine similarity between A and B is given by:

cos(A, B) = 1x1+2x1+0x2√
12+22+02

√
12+12+22 = 0.548

2.5.2 Structure-based Similarity

Structure-based similarity techniques exploit the structural characteristics
of the ontologies to be aligned in order to infer semantic relations between
them. Euzenat and Shvaiko [35] classifies similarity methods falling under
this category as graph-based, taxonomy-based, and model-based techniques.
Graph-based techniques consider the input ontologies as directed, labelled
graphs, and the similarity between concepts is determined by their posi-
tion in the respective graphs and their neighbouring nodes. One example of
a graph-based technique, which is often used in semantic matching, is the
Similarity Flooding algorithm [95], where the ontologies (or other structured
models) are represented as labelled graphs. This technique assumes that
the similarity of two nodes (representing ontology concepts in the graph)
depends on the similarity of adjacent nodes in the graph representation of
two ontologies. As illustrated in Figure 2.10, similarity flooding establishes
a pairwise connectivity graph (PCG) that takes into account similar labels
between nodes in the respective models. In this connectivity graph, nodes
are then represented pairwise according to label similarity. From the con-
nectivity graph, an induced propagation graph is created on the basis of
how many labels the pair of nodes share. For example, as illustrated in the



32 Background and Preliminaries

figure, there is one l2-edge going out from (a1, b) in the pairwise connectiv-
ity graph. In this case the weight coefficient is set to 1.0 since the similarity
of a1 to b contributes fully to that of a2 and b2 (i.e. looking at the two
models, there is an l2 relation from a1 towards a2 and an l2 relation from
b towards b2). In contrast, there are two l1-edges leaving the pair (a, b) in
the connectivity graph, thus, the weight of 1.0 is distributed equally among
(a, b), (a1, b1) and (a, b), (s2, b1).

a
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l1 l1

l2

b

b1 b2

l1 l2

l2

a,b

a1,b1 a2,b1
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Figure 2.10: Similarity Flooding (adapted from Melnik et al. [95])

From the induced propagation graph, the similarity flooding algorithm is
based on an iterative computation of mapping values. The initial map-
ping values can be calculated by e.g. a string similarity technique (see
Section 2.5.1) or with a uniform assignment of 1.0. In every iteration, the
mapping values for a map pair (e.g. a and b in the figure) are incremented
by the mapping values of its neighbour pair in the propagation graph multi-
plied by the weight coefficients on the edges going from the neighbour pairs
back to the map pair (a, b). The iteration stops when the similarities does
not change more than a specified threshold or after a predefined number of
steps.

Taxonomy-based techniques consider the subsumption hierarchy (the tax-
onomy) and assume that concepts that are related via a specialisation rela-
tionship are similar and so are their neighbours. An example of a taxonomy-
based technique is Wu-Palmer [158]. This technique calculates a similar-
ity score by considering the taxonomical depth of the two concepts to be
matched (cs and ct), along with the depth of their least common subsumer
(lcs):

Simwp =
2 ∗ depth(lcs)

(depth(cs) + depth(ct))
(2.11)

Model-based techniques base the similarity computation between two con-
cepts upon model-theoretic semantics assigned to the concepts. In this
category we find techniques that apply propositional logic and description
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logic in order to determine semantic relations between concepts. An ex-
ample of a system that is based on model-based techniques is LogMap [78].
After having indexed, produced extended class hierarchies, and identified
a set of anchor mappings from the indexed entities in the two input on-
tologies, LogMap encodes the class hierarchies and current relations into
propositional logic (based on Horn rules). At this point, a repair process
is performed that tries to solve unsatisfiability from the merger of the two
input ontologies on the basis of the relations identified so far. This repair
process is performed iteratively together with a process for discovering new
relations in the context (extended class hierarchies) of the initially identified
anchor mappings). The discovery of new relations is performed using the
string matching algorithm ISub (described in Section 2.5.1). The output
from running LogMap is an alignment that holds a set of relations that will
not lead to logical errors when the two input ontologies are merged. Fur-
thermore, LogMap outputs a fragment representing the overlapping between
the input ontologies to facilitate manual identification of additional relations
that LogMap might have missed.

2.5.3 Lexical Similarity

Most of the better performing matching systems use some form of lexical
resource to complement the already mentioned similarity techniques [19].
This is especially important when the task is to identify non-equivalent and
asymmetric semantic relations and where the string representation of con-
cepts in many cases cannot serve as an indicator. Many matching systems
rely on the WordNet lexicon [98] and its database of synsets that help to
semantically define and disambiguate concepts. A synset is a grouping of
nouns, verbs, adjectives and adverbs where each describes a distinct concept.
The synsets, of which there are 117.000 in the current version of WordNet,
are interlinked, forming a semantic network that can be queried through a
number of available APIs.

Table 2.2 shows the semantic relations that exist in WordNet.

Different approaches to exploiting the lexical database WordNet have been
proposed. These approaches can be classified into three main categories [89]:

• Edge-based methods. These methods compute the semantic similar-
ity between two words by measuring the distance (the path linking)
of the words and the position of the word in WordNet’s taxonomy.
Examples of methods belonging to this category are Wu-Palmer [158]
and Su [141].
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Table 2.2: Different semantic relations in WordNet

Relation Description Example

Hypernym is a generalisation of motor vehicle is a hypernym of car

Hyponym is a kind of car is a hyponym of motor vehicle

Meronym is a part of lock is a meronym of door

Holonym contains part door is a holonym of lock

Troponym is a way to fly is a troponym of travel

Antonym opposite of stay in place is an antonym of travel

Attribute attribute of fast is an attribute of speed

Entailment entails calling on the phone entails dialing

Cause cause to to hurt causes suffer

Also see related verb to lodge is related to reside

Similar to similar to evil is similar to bad

Participle of is participle of stored is the participle of to store

Pertainym pertains to radial pertains to radius

• Information-based statistics methods. For these methods the basic
idea is that the more information two concepts have in common, the
more similar they are. Examples of methods based on this category
are Resnik [121], Lin [88].

• Hybrid methods. These are methods that combine principles from the
above categories. Examples are Jiang-Conrath [75], Rodriguez [124]
and Petrakis [111].

In an experimental evaluation that measured different WordNet-related sim-
ilarity methods, among them Lin and Resnik mentioned above, Jiang-Conrath
was found to outperform the other methods [12]. Being a hybrid method,
Jiang-Conrath propose a model that uses the information content as a de-
cision factor in a derived edge-based approach. The information content of
a concept derives from the assumption that the more abstract a concept is,
the less information it holds [121], or in other words, a more specific concept
(such as Festival) has more information content than a general concept (such
as Event). The information content is often computed based on how many
times a concept is found in a text corpus. In WordNet, the frequency of a
concept is incremented each time a particular concept is present, and the
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same are the ancestors of that concept. This approach is used since each
occurrence of a more specific concept also implies that the more general
ancestor concept occurs [110].

The Resnik definition of information content is computed as:

IC(c) = −ln(
f req(c)

f req(root)
) (2.12)

where freq(c) and freq(root) represent how many times concept c and the
root occurs in a corpus [159].

Another variant of information content is the so-called intrinsic information
content [130] which does not rely on usage statistics of concepts in a corpus.
The intrinsic information content of a concept c is computed as follows:

IC(c) = 1− log(Sub(c) + 1
log(|C|) (2.13)

where Sub(c) indicates the number of subclasses of the concept c and |C|
represents the total number of concepts in the ontology.

The Jiang-Conrath algorithm [75] is based on finding the information con-
tent of both concepts to be matched as well as the information content of
the least common subsumer (LCS), that is, the lowest node in the hierarchy
that is the parent node of both concepts. The distance function between
two concepts c1 and c2 is calculated as follows:

distancejc(c1, c2) = IC(c1) + IC(c2)− 2 · IC(lcs(c1, c2)) (2.14)

where lcs(c1, c2) is a function for finding the least common subsumer of both
concepts c1 and c2.

The similarity between two concepts c1 and c2 can then be calculated as
follows:

simjc(c1, c2) =
1

distancejc(c1, c2)
(2.15)

2.5.4 Machine Learning Techniques

Machine learning methods are often classified under supervised or unsuper-
vised learning. Supervised learning implies that the computer is presented
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with training data comprising examples of input vectors along with corres-
ponding target vectors [10]. When the task is to distribute the input data
into a finite number of discrete categories (such as match | no match), as is
often the case in ontology matching, this is called a classification problem.
In other words, for two concepts Cs and Ct the task is to learn the map-
ping between the two concepts given a set of correct values provided by a
supervisor (a trained classifier).

Several matching systems use machine learning as part of the matching
process and both supervised and unsupervised strategies are applied. This
section will present a few examples on how such learning techniques can be
applied to aligning ontologies.

In Ngo et al. [102] the authors explain in detail the approach using a su-
pervised Decision Tree learning model. This model aims to learn which
similarity technique combinations and similarity thresholds that should im-
ply a match / non-match decision for an arbitrary relation pair. Resulting
from a training phase using ontologies along with their reference alignment,
a decision tree consists of the involved similarity techniques as non-leaf nodes
and their similarity scores generated from the training as leaf-nodes. First,
similarity scores for each pair of (untrained) relations in the two ontologies
to be mapped are computed by the involved similarity techniques. Then,
each relation pair starts from the top of the decision tree, and depending on
how the score computed in the previous step compares to the score from the
training phase, different paths through the nodes in the decision tree are
taken, resulting in that the relation pair is either a match (score of 1.0) or
non-match (score of 0.0). In the example presented in Figure 2.11, which is
adapted from Ngo et al. [102], the relation Thesis− PhDThesis is considered
a match from passing through these nodes in the tree: [01-03-05-06-08-10].

In unsupervised learning the input vectors have no corresponding target
vectors, hence the challenge is rather to try to identify commonalities in the
data without supervision, for example using a clustering algorithm [3].

Hu et al. [69] uses unsupervised clustering to align ontologies using the
Falcon-AO matching system. The goal of their approach is to match large-
scale ontologies containing thousands of concepts and the clustering tech-
nique is used for partitioning the ontologies to be matched into smaller
blocks to reduce the number of pairwise comparisons needed for producing
an alignment. This approach is based on three overall processes:

1. Partition ontologies into clusters using an agglomerative (bottom-up)
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Figure 2.11: Decision Tree Example (adapted from Ngo et al. [102])

clustering algorithm based on structural proximity parameters (see
Section 3.1.2),

2. Construct blocks from these clusters based on an analysis of how differ-
ent entities take part in RDF sentences, and match the blocks based
on already computed mappings (so-called anchors) by a fast string
matching algorithm (ISub as presented in Section 2.5)

3. Compute alignments between the blocks using a vector-space approach
based on TF/IDF (see Section 3.1.1) and structural matching.

The final example in this machine learning section is word embedding. Word
embedding is an approach that is often considered semi-supervised due to
how it aims to learn associated semantics to words based on their interaction
with other words in a (large) pre-defined corpus. Here, words are represented
with continuous vectors of a fixed embedding size d from some vector space
in Rd. These vectors are called word vectors or words embeddings, since
each word is “embedded” in a lower-dimensional continuous vector space.
This vector space represent a latent feature space and, within this space,
each vector represents the lexical semantics of the corresponding word.

Different approaches have been proposed to efficiently learn the latent fea-
tures space in which such vectors are defined. Mikolov et al. [96] proposed
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two different models to learn such representations for a task of semantic sim-
ilarity, Skip-Gram and Continuous bag-of-words (CBOW). Both of them are
different realisations of the same fundamental idea, that is, if you have two
words that have similar neighbours, then it is likely that these two words
are similar too. The two models are illustrated in Figure 2.12 [97].

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

SUM

w(t) w(t)

w(t-2)

w(t-1)

w(t+1)

w(t+2)

Figure 2.12: The Continuous bag-of-words (CBOW) and Skip-Gram models
(Mikolov et al. [96])

The first model, the Skip-Gram model, has been used to learn distributed
representations of sentences through the composition of atomic word vectors.
The main intuition behind this model is that, given a word w at the k-th
position within a sentence, a neural network is trained to predict the most
probable surrounding context. The second model, Continuous bag-of-words,
differs from the Skip-Gram model in that it tries to predict the current word
from a window of surrounding words.

In the context of ontology alignment, Section 3.1.5 describes some ap-
proaches that use word embeddings to infer semantic relations between on-
tology concepts. Word embedding is also used by two matchers developed in
this thesis and an explanation of their approach is described in Sections 5.2.1
and 5.2.2.



3
Related Work

3.1 Techniques for Identifying Equivalence Relations

Over the last two decades a large number of systems and techniques have
been developed for equivalence matching and comprehensive surveys of such
systems and techniques are well covered in the “Ontology Matching” book
by Euzenat and Shvaiko [35] and literature reviews by Otero-Cordeira et
al. [109] and Anam et al. [5]. In this section we highlight some of the basic
techniques that are used when computing equivalence relations. Figure 3.1
shows a map of these techniques along with a reference to examples of
systems and papers describing different approaches.
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Figure 3.1: Overview of techniques for detecting equivalence relations.
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3.1.1 String Processing Techniques

String processing techniques are almost always represented in a matching
system [15]. This section describes some of the most common techniques,
and in the final part of the section we present a general overview of their
performance in one of the OAEI datasets.

Ngo et al. [103] employs a series of string processing techniques during the
terminological matching of ontology concepts in the YAM++ matching sys-
tem. This matching system distinguishes four different categories of tech-
niques (see Section 2.5.1 for an overview of these techniques): edit-based
techniques, token-based techniques, hybrid techniques that combine edit-
based and token-based techniques, and finally vector-space techniques that
use TF-IDF to compute a similarity based on the context associated with
the concepts being matched. The context in this case is represented by
three different context profiles: (1) the individual profile that concaten-
ates a concept’s name, label and comments, (2) the semantic profile that
combines the individual profile of the concepts being matched with their
respective neighbors’ individual profiles, and finally, (3) the external profile
that combines the textual description of instances that are members of the
concepts being matched. These profiles combined represent each ontology
concept as a “virtual document” that can be represented in a vector space.
A weight that reflect the importance of each word in the virtual document
is computed using TF-IDF.

The AgreementMakerLight (AML) system developed by Faria et al. [39] also
uses a series of string processing techniques to match ontologies. One string-
based matcher used by AML is the Word Matcher, which measures the
similarity between two class names through a weighted Jaccard index (see
Section 2.5.1) between the words present in the class names. An example
of a more complex string matcher used by AML is the Parametric String
Matcher which uses a variety of similarity metrics such as Jaro-Winkler,
Levenshtein and Q-gram1.

LogMap (Jimenez-Ruiz and Grau [78]) computes equivalence relations based
on the iteration of two core processes: map discovery and mapping repair
(described more in detail in Section 2.5.2). From an initial set of anchor
mappings represented in inverted indices, LogMap discovers new mappings
by measuring similarity among entities that are semantically related to entit-
ies represented in the anchor mappings using the ISub [139] string matching
algorithm.

1https://github.com/AgreementMakerLight

https://github.com/AgreementMakerLight
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The RiMOM system (Li et al. [87]) includes two string-based matching
techniques. The first is a strategy that combines the use of Edit-distance
with a technique that exploits the WordNet lexicon [145]. The second tech-
nique is based on creating a vector representation of the context (i.e. the
metadata, properties, sub-classes and instances) associated with ontology
concepts which is considered a document D (see Section 2.5.1 for a general
explanation of the vector-space approach).

A similar vector-based approach is used in the iMapper system. Here, Su
and Gulla [142] used TF-IDF to define feature vectors for representing onto-
logy concepts in a vector space. The ontology concepts are first enriched by
linking them to relevant text documents using a linguistic classifier. Then
in the next step, TF-IDF is used for representing vectors of words in the
documents assigned to each ontology concept. Similarity between pairwise
ontology concepts is calculated using the cosine similarity of their feature
vectors.

Hu and Qu [68] followed a similar approach in the V-doc technique that was
used in the Falcon-AO system. Similar to the abovementioned approach, a
virtual document is created by accumulating the context to a concept. An
adaptation is that the RDF structure associated with the concepts to be
matched is exploited to obtain information from neighbouring entities.

MapSSS (Cheatham and Hitzler) [16]) dynamically chooses a string matcher
based on defined heuristics derived from an experiment of different string
matching techniques and whether precision or recall should be prioritised.
For example, if precision is the priority, and the labels of the concepts to
be matched are represented by less than two words, Jaro-Winkler is used,
however if the priority is recall and the concept’s labels consist of more than
two words and they contain synonyms, Soft TF-IDF is chosen.

It is difficult to state accurate performance measures for the techniques
described above, since they may be subject to modification, they are often
combined with other basic techniques, and their performance is very much
dependent on the datasets they are run on. Nevertheless, having some
sense of their performance is of interest. Cheatham and Hitzler [15] did
a comparative evaluation of some of the most common string processing
techniques, including some of those described above. Figure 3.2, which
is adapted from a report [14] containing more detailed evaluation results
than in [15], shows their F-measure (F1) scores when identifying equivalence
relations among 16 ontologies in the OAEI 2012 Conference dataset.

This illustration also shows the effect of using pre-processing strategies
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Figure 3.2: Performance of String Processing Techniques (adapted from
Cheatham and Hitzler [14]).

before the matchers are run. The scores in blue are obtained using pre-
processing (e.g. tokenisation and normalisation), while the scores in grey
are without any pre-processing involved. As the figure shows, these tech-
niques, when run in isolation, obtain an F-measure of around 0.6, and for
most of them, with some improvement when pre-processing techniques be-
ing applied. In order to see how these techniques compare against more
complete matching approaches, we see that the aforementioned YAM++
and LogMap systems achieve F-measures of 0.75 and 0.68 respectively on
the same dataset.

3.1.2 Structure-based Techniques

The RiMOM system [87] uses a similarity propagation technique similar
to the Similarity Flooding approach described in Section 2.5.2. The sys-
tem includes three different similarity propagation strategies: concept - to -
concept propagation, property - to - property propagation and concept - to -
property propagation. RiMOM was evaluated using the benchmark dataset
of OAEI 2006, where one of the evaluation goals was to see the effect of
the similarity propagation. The evaluation results showed that when using
similarity propagation the F-measure increased from 0.86 to 0.92.

In the Falcon-AO matching system, Hu et al. [69] use a technique called
structural proximity to detect equivalence based on the structural proper-
ties of two concepts to be matched. The result from the structural proximity
computation is then used as input to a clustering-based partitioning process
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that decomposes the input ontologies into different modules to be matched.
Such a decomposition is efficient when matching large ontologies. The struc-
tural proximity between ontology concepts is based on how closely related
these concepts are in the subsumption hierarchy. The structural proximity
between classes ci and cj is computed as follows:

structProx(ci, cj) =
2 · depth(cij)

depth(ci) + depth(cj)
(3.1)

where cij is the (least) common superclass of ci and cj, and depth(ci) and
depth(cj) is the depth of these two concepts in the asserted ontology hier-
archy. With this formula the intuition is that the deeper in the hierarchy
the common superclass is, the semantically closer ci and cj are, and, the
structural proximity of the two classes is stronger the deeper in the hier-
archy they reside. This is illustrated by the example in Figure 3.3 (where
the numbers in parenthesis signify depth). Here, the structural proximity
between ’Man’ and ’Woman’ is 0.67 (2 · 2/3 + 3), whereas the structural
proximity between ’Human’ and ’Animal’ is 0.5 (2 · 1/2 + 2).

Thing

Object

Human Animal

Man Woman

(1)

(2) (2)

(3) (3)

Figure 3.3: Example illustrating the structural proximity approach.

An alternative approach to the structural proximity technique described
above is to use the average distance of the common superclasses of ci and cj
instead of the single least common subsumer as described in Equation 3.1.
This latter approach is used by the Graph Equivalence Matcher (GEM)
implemented in this thesis (see Section 5.2.5).

Hu et al. [68, 67] also implemented another structure-based matching tech-
nique called GMO in the Falcon-AO matching system. This is an iterative
structural technique that uses RDF bipartite graphs to represent ontolo-
gies. GMO infers equivalence relations on the basis of already produced



44 Related Work

alignments provided by other matching techniques. The approach then in-
crementally generates additional alignments by computing structural sim-
ilarities between domain entities and statements (triples) in ontologies by
recursively propagating similarities in the bipartite graphs. GMO was eval-
uated using the benchmark dataset in OAEI 2005. Without any input map-
pings as a basis, GMO obtained an average precision and recall of 0.62 and
0.59 respectively, however as the percentage of input mappings increase, as
does the performance of GMO. One remark made by the authors is that
GMO does not perform well on its own if the two ontologies to be matched
have different structural characteristics. Then the approach relies on addi-
tional input mappings from other matchers.

The structure-based technique applied in the MapSSS system [16] is based
on the direct neighborhood of the concepts to be matched. If all entities
in the direct neighborhood of two classes are mapped to one another, then
those two classes are also mapped. This is done repeatedly until no new
mappings are created.

3.1.3 Instance-based Techniques

Instance-based matching encompasses methods where instance data are used
as a means to identify alignments between ontology concepts. In the Paris
system, Suchanek et al. [143] used a combination of instances, relations
and classes and the functionality of properties to determine whether two
instances (and consequently the classes they are members of) are related.
Functionality in this respect means how indicative the properties are based
on the number of incoming links applying them. For instance, a property
such as hasPassportNumber has high indicative strength as an instance of
a particular person has only one passport number. On the other hand,
bornInCity has low indicative strength as many person instances might be
born in a particular city. The similarity measure used in this study was a
very simple Boolean string comparison; either two strings are identical or
not. The Paris system was evaluated using the Person-Restaurants (PR)
benchmark of the instance matching track in OAEI 2010. This benchmark
consists of three pairs of ontologies populated with instances. Paris ob-
tained an F-measure of 1.0 for the instance-based (class) matching on the
restaurants dataset. However, the focus of this track is to identify equival-
ence among instances (so-called instance matching), and not classes, hence
there is no basis for comparing against the other systems competing in this
track since their reported scores are based on how well they identify equi-
valent instances. In another dataset consisting of the two ontologies Yago
and DBPedia, Paris obtained a precision of 0.94 (where Yago concepts sub-
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sume DBPedia concepts) and 0.84 (where DBPedia concepts subsume Yago
concepts). Since there was no reference alignment for this dataset, recall
could not be measured.

Often, a set-theoretic similarity measure among instances of the two con-
cepts to be matched is applied in instance-based ontology matching. For
example, in Schopman et al. [129] an enrichment strategy combined with
the set-theoretic similarity measure Jaccard (see Section 2.5.1) was used in
the instance-based ontology matching. First, they used the Lucene2 search
engine to match instances from two different ontologies as follows: For each
instance Is in the source ontology Os, the most similar instance It of the
target ontology Ot is automatically classified to the concept in Os having Is
as a member. Next, Jaccard was used to measure the overlap between the
instances of concepts. An evaluation of the precision of the approach was
conducted on a dataset involving two thesauri. The first one, the GTAA
thesaurus, is used for annotating multimedia materials, while the second,
the Brinkman thesaurus, is used to annotate books. 1000 relations produced
by the proposed instance-based matching approach were evaluated manu-
ally. The results showed that the proposed approach obtained a precision
of around 0.72 and an additional insight developed from the evaluation was
that even if two concepts are considered lexically equivalent they often do
not have similar extensional semantics.

3.1.4 Background Knowledge Techniques

Different forms of background knowledge, i.e. external lexical resources or
external ontologies, are often used to support semantic matching. Indeed,
strategies for automating such identification can seldom rely on terminolo-
gical matching techniques alone, but needs to include external sources like
the WordNet lexicon or other external ontologies. For example, a string
matcher would in most cases consider the term ’stable’ to be equivalent
with the term ’table’ (false positive), and not be able to infer that ’chair’
has a semantic relation with ’seat’ (false negative). Both these examples
could be managed with the use of appropriate background knowledge from
external sources.

The MapSSS system [16] uses a background knowledge strategy that involves
google searches to identify equivalence relations. Based on a google search
for the label of a source concept, the technique inspects the snippets on the
first page of results for the label of the target concept. If such a label is
found, a candidate relation is suggested. Then it searches google for the

2https://lucene.apache.org/

https://lucene.apache.org/
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label of the target concept, and if the label of the source concept is located
in the snippets on the first page of this search, the relation is confirmed and
added to the alignment. Due to query limits enforced by the Google API,
this approach does not work well when matching large ontologies.

AgreementMakerLight (AML) [39] uses WordNet, Uberon (an ontology for
anatomy) and Doid (an ontology for human diseases) as background know-
ledge. A fundamental data structure in AML is the Lexicon, which stores
lexical information such as local names, labels, and synonyms associated
with the ontology concepts. The mentioned background knowledge sources
are used when constructing the lexicon, which is used by several of the AML
matchers. In addition, the lexicon includes a provenance weight based on
for example what type of synonymy relation synonyms associated with the
concept have. This provenance weight is used by any matcher that uses the
lexicon data structure in AML.

Cider [49] consults both WordNet and external ontologies in order to rep-
resent the context of ontology concepts. This context includes synonyms,
hypernyms, hyponyms, properties, domains, as well as other information
inferred transitively using a lightweight reasoner. From this context, string
matching- and structural techniques are used for computing a set of sim-
ilarities which are later combined using an approach involving an artificial
neural network (ANN).

3.1.5 Machine Learning Techniques

Over the years a number of different machine learning approaches to se-
mantic matching have been proposed [101]. A more recent introduction in
this area is the use of learned vector representations called word embeddings
(see Section 2.5.4 for an explanation of this concept).

Jiménez-Ruiz et al. [77] experimented with the use of embeddings as sup-
porting means of decomposing the matching of large ontologies into a set
of matching sub-tasks represented by locality-based ontology modules [51].
Following from the ontology representation strategy used by the LogMap
matching system (see e.g. [78]), all entities from two input ontologies are
lexically encoded into an inverted index. In order to make the matching task
less challenging (e.g. with respect to memory constraints and run-time per-
formance), the entities in the inverted index are further divided into smaller
clusters (i.e. matching sub-tasks). In one of their clustering strategies they
used neural embeddings as an attempt to create more accurate clusters, that
is, clusters with less overlap, than an alternative naive approach. The com-
parative evaluation of these two candidate strategies showed that the res-
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ulting clusters were slightly better in terms of both cluster size and cluster
coverage as well as alignment quality (F-measure) when using the neural
embedding approach.

Zhang et al. [161] describe a hybrid approach that combines the use of
edit distance and word embedding. For each pair of ontology entities edit
distance and cosine distance are computed in parallel. Edit distance is com-
puted taking into account names, labels and comments, and cosine distance
between the corresponding embedding vectors is used for the word embed-
ding approach. For each pair of entities the maximum similarity measure
for these two methods then determines which pair of entities belong to a
relation in the computed alignment. The training of the embeddings is not
explained in detail, but they have considered only words that occur less than
5 times in the full Wikipedia corpus, and 50-dimensional embedding vectors
were produced for each word. This approach by Zhang et al. is evaluated
using the OAEI 2013 Conference dataset, where it is compared with other
basic techniques exploiting WordNet (Wu Palmer, Lin and Jiang-Conrath),
a latent semantic analysis (LSA) technique, as well as using only word em-
beddings without the support of edit distance. The evaluation results are
shown in Table 3.1, adapted from [161]. As the table indicates, the ap-
proaches using word embeddings, both when combined with edit distance
and without, obtains good precision, and the hybrid approach performs bet-
ter than when only using the word embeddings. When compared with the
best performing matching system in OAEI 2013, YAM++, the word em-
bedding approach achieves a higher precision. However, the recall is much
lower, resulting in an F-measure well below that of YAM++.

Table 3.1: Evaluation of using a hybrid approach of Word Embeddings and edit
distance

Methods Precision Recall F-measure

WordNet (Wu Palmer) 0.860 0.484 0.618

WordNet (Lin) 0.786 0.469 0.587

WordNet (Jiang-Conrath) 0.770 0.462 0.578

LSA 0.876 0.462 0.605

Word Embeddings 0.872 0.469 0.610

Word Embeddings and Edit 0.875 0.482 0.622

YAM++ 0.80 0.69 0.74



48 Related Work

Prins [119] also used word embeddings for identifying equivalence relations
between ontology concepts. In his work he used an extension of the Skip-
gram model (see Section 2.5.4) that aims to differentiate between different
meanings of the same word (multi-sense embeddings). However, according
to the evaluation results this approach did not improve the results compared
to traditional Word2Vec techniques. The corpus used in his work was gen-
erated from a random walk algorithm that from a graph representation of
the input ontologies retrieves labels from nodes and edges from the input
ontologies whilst iterating them. In the experimental evaluation, datasets
from OAEI 2015 including anatomical and medical ontologies are used and
AgreementMakerLight is used as a baseline matcher. The evaluation results
revealed that even if this approach can obtain higher F-measure scores in
the anatomy dataset than some of the basic matchers of AML when run in
isolation, it is not able to compete with the full ensemble of AML matchers.

Portisch and Paulheim [117] experimented with creating word embeddings
from LOD triples hosted in the WebIsA3 knowledge base and using these
as background knowledge when computing equivalence relations with their
ALOD2Vec Matcher. The WebIsA knowledge base consists of hyponymy
triples (e.g. aircraft skos:broader transportation equipment) extracted from
Common Crawl4, a freely available corpus crawled from the Web. In order
to compute a similarity between two ontology concepts, the two concepts
are first mapped to concepts in the WebIsA knowledge base using string
matching. Then, if mapped concepts are identified, RDF2Vec [122] is ap-
plied to generate embedding vectors for each concept. Finally, the Cosine
measure is used to determine similarity between the vectors to infer equival-
ence relations. Evaluation results show that exploiting the WebIsA data is
challenging due to noisy, subjective and inconsistent facts in the knowledge
base.

3.2 Techniques for Identifying Subsumption Relations

Figure 3.4 shows a classification of techniques often used for the automatic
identification of subsumption relations. These techniques are described in
the sub-sections that follow.

3http://webisa.webdatacommons.org/
4http://commoncrawl.org/

http://webisa.webdatacommons.org/
http://commoncrawl.org/
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Figure 3.4: Overview of techniques for detecting subsumption relations.

3.2.1 String Processing Techniques

Exploiting compound patterns in concept names is a well-known strategy for
inferring subsumption relations, and this technique is used by both Cruz [22]
in the AgreementMaker system and by Arnold and Rahm [7] in their system
called STROMA. A compound is a word W that consists of a compound head
WH that carries the basic meaning of W and a compound modifier WM that
specifies WH. For example, the word ElectronicBook is a compound where
Book is the compound head, and Electronic is the modifier. The general
pattern is that if a source concept Cs is a compound and its compound head
equals the target concept Ct, then Cs represents a specialisation of Ct and
is thus subsumed by Ct.

The STROMA system [7] use the compounding strategy in most of its
matchers, due to its cross-language versatility and effectiveness to identify
subsumption relations. However, they note that the recall obtained by this
strategy can be low because of the different ways an is-a relation can be
expressed. This is also stated by Cruz et al. [22] whose evaluation including
eight Linked Open Data (LOD) ontologies revealed that of the techniques
they applied for detecting subsumption relations, the compound noun ana-
lysis (CNA) technique obtained the lowest recall. The reason for this is
according to Cruz et al. that the extracted compound heads cannot usually
be matched with the target concepts. The evaluation scores for the com-
pound noun analysis technique are shown in Figure 3.5 (illustration taken
from Cruz et al. [22]).

In the Compound Matcher developed in this thesis (see Section 5.3.1), we try
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Figure 3.5: Overview of techniques for detecting subsumption relations.

to circumvent the limitations described above by also considering synonyms
to the head of a compound word.

The Itemization Strategy described in Arnold and Rahm [7] combines string
processing and the use of background knowledge. This technique is used
when a concept name is an itemization, that is, a list of items where an
item is a word or phrase containing commas, slashes or the words “and”
and“or”, such as ′books, ebooks, movies, f ilms, cds′ and ′novels and cds′. This
strategy considers the itemized concept names as separate sets of items, and
first removes synonym or hyponym concepts within each set (e.g. removing
f ilms in the above example since it is synonymous with movies, and ebooks
since it is a hyponym of books). Then synonym pairs between the two item
sets are removed (in the example cds are removed). The final processing step
is removing hyponyms if there exists a corresponding hypernym in the other
set, so novel is removed since this is a hyponym of books. The relation type
is finally determined based on the contents of the remaining sets as follows:

• If both sets are empty, then there is an equivalence relation between
the two concepts.

• If one set is empty while the other is not, the empty set is subsumed
by the non-empty set, hence a subsumption relation.

• If both sets are non-empty, the relation type is undecided.

According to Arnold and Rahm [7], the itemization strategy can identify
the relation type between complex concepts, where other strategies fail.



3.2. Techniques for Identifying Subsumption Relations 51

However, in most ontologies, concept names are normally not expressed as
a list of items, and such a strategy is likely not very relevant when matching
formal ontologies.

3.2.2 Structure-based Techniques

The Structure Strategy by Arnold and Rahm [7] determines a subsumption
relation based on the subsumption hierarchy of the ontologies. If two con-
cepts S and T are to be mapped, this strategy infers that if T is equal to
the superclass of S, then T subsumes S. This approach is illustrated in Fig-
ure 3.6. Here, the concept Convertible in ontology O1 is to be matched with
concept Car in ontology O2. Since the superclass of Convertible, Car is equi-
valent with Car in ontology O2, it is inferred that Convertible is subsumed
by (is a subclass of) Car in O2.

Vehicle

Car

Vehicle

Car

=

subclassOf subclassOf

O1 O2

=

Convertible

subclassOf

Figure 3.6: Structure Strategy for inferring subsumption relations.

The same approach is used by the Equivalence Mappings Extension (EME)
matcher proposed by Cruz et al. [22]. Here, the focus is on mapping Linked
Open Data (LOD) ontologies. According to Cruz et al. matching this type
of ontologies is challenging due to poor textual descriptions, flat taxonomy
structures, cross-domain coverage and imported ontologies and concepts.
In their approach they configured a very high threshold (0.95) for including
equivalence relations in the initial alignment since a wrongly determined
equivalence relation can propagate errors to all inferred subsumption rela-
tions. The performance of the EME approach was evaluated along with
other techniques in [22], and precision, recall and F-measure scores are
shown in Figure 3.5. As the figure shows, the EME approach is the second
best approach in that study, obtaining a precision of around 0.61, a recall
of around 0.23 and an F-measure of around 0.35.
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3.2.3 Logic-based Techniques

S-Match [46, 133, 48] takes a different approach to semantic matching. S-
Match takes two graph structures (e.g. web directories, XML schemas,
lightweight ontologies5) as input. The core idea of S-match is to represent
ontology concepts as well as their context (i.e. a concept along with its path
from the root) as propositional logical formulas. These formulas aim to cap-
ture the intended meaning of the concepts, represent the concepts using a
machine-processable encoding, and thus reduce the matching problem to a
propositional validity problem. The overall process includes a set of match-
ers that on the basis of the logical formulas computes candidate semantic
relations between the ontology concepts which are stored in a matrix. There
are three categories of matchers: String-based matchers that detect equival-
ence relations, and sense-based as well as gloss-based matchers that detect
subsumption- and disjointness relations. The sense-based matchers and the
gloss-based matchers are based on WordNet. In the next step, each relation
in the matrix is then checked for validity by proving that the negation of the
formula representing this relation is unsatisfiable. This step is performed
either by ad hoc reasoning techniques or standard satisfiability solvers.

As part of the S-Match framework, three different algorithms are proposed:

1. The Basic Semantic Matching algorithm, which is a general purpose
algorithm suited for different graph-based structures and application
domains.

2. The Minimal Semantic Matching algorithm, which produces a reduced
set of relations, but from which all other relations can be computed.

3. The Structure Preserving Semantic Matching (SPSM) algorithm, which
distinguishes between structural elements (i.e. functions and vari-
ables) in the input models. This algorithm is targeted towards API
and database schemas.

It should be noted that both Jain et al. [71] and Arnold and Rahm [7] claim
that S-Match suffers from low precision due to a very permissive strategy
with regards to including relations in the finally produced alignment.

5However, the current available implementation of S-Match is not capable of parsing
OWL ontologies, as also noted by [7].
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3.2.4 Background Knowledge Techniques

Some form of external source of knowledge is usually applied when detecting
non-equivalence relations. According to Cruz et al. [22] the use of external
lexical resources such as WordNet is crucial when computing subsumption
relations.

The Background Knowledge Strategy used by Arnold and Rahm [7] in the
STROMA system can use different linguistic resources to infer a semantic
relation between two concepts, but WordNet is the main resource. This
strategy uses the hypernymy sets in WordNet combined with a technique
called Gradual Modifier Removal to infer subsumption relations. A hyper-
nym is a word with a broader meaning and can be exemplified by ’Color’ be-
ing a hypernym of ’Red’. The Gradual Modifier Removal technique is based
on gradually removing compound modifiers in order to determine a sub-
sumption relation. In their paper, Arnold and Rahm [7] used the following
example: when mapping ’US Vice President’ and ’Person’, the former was
not initially not present in WordNet. In the next step of the Gradual Mod-
ifier Removal process, the modifier ’US’ was removed, and ’Vice President’
was found in WordNet. Since WordNet states that ’Person’ is a hypernym
of ’Vice President’ the Background Knowledge Strategy determined that
’US Vise President’ is subsumed by (is-a) ’Person’. An evaluation of this
strategy was performed on 6 different datasets containing web directories
and taxonomies from different application domains. Reference alignments
consisting of different semantic relations (including equivalence and sub-
sumption) were created manually for each dataset. As shown in Table 3.2,
which is adapted from [7], the background knowledge strategy had a positive
contribution to the F-measure scores in most datasets in this evaluation.

Table 3.2: Contribution of the Background Knowledge Strategy in the evaluation
of STROMA

B1 B2 B3 B4.1 B4.2 B4.3

with BK 0.87 0.96 0.87 0.67 0.39 0.43

without BK 0.87 0.94 0.82 0.65 0.31 0.38

As described in the previous section, Giunchiglia et al. [46] include several
techniques that exploit the WordNet lexicon in their semantic matching
system S-Match. The sense-based techniques use the semantic relations
between WordNet synsets to derive equivalence, subsumption or disjoint-
ness between two concepts. This mapping occurs as follows: If a semantic
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relation in WordNet is hyponymy resp. hypernymy this results in a isSub-
sumedBy (<) resp. subsumes (>) relation; if a semantic relation in WordNet
between two concepts is synonymy or the two concepts to be matched be-
long to the same synset this results in an equivalence relation; and finally, if
the two concepts are related by an antonymy relation or they are siblings in
the part-of (meronymy) hierarchy, the two concepts are considered disjoint.

The gloss-based technique is based on the gloss or synset definitions in Word-
Net. The “basic” WordNet gloss matcher in S-Match compares the label(s)
of the first concept Cs with the WordNet gloss of the second concept Ct.
This technique is based on counting the number of occurrences of the labels
of Cs in the gloss of Ct. First, it extracts the labels of the first concepts
from WordNet. If this number exceeds a given threshold, Cs < Ct. Another
variant of the gloss matcher uses the extended gloss in WordNet, i.e. an ag-
gregation of glosses from a concept’s descendants or ancestors. If the gloss
of the descendants is used, and the number occurrences of a concept Cs in
the extended gloss of Ct is above a threshold, then Cs > Ct. Otherwise, if
the gloss of the ancestors is used, and the number of occurrences of Cs in
the extended gloss of Ct is above the threshold, Cs < Ct.

The BLOOMS system developed by Jain et al. [71] is a semantic matching
system that computes equivalence and subsumption relations between on-
tology concepts. Supported by either Wikipedia or WordNet as background
knowledge, BLOOMS represents the concepts to be matched as a set of
trees, where the trees are composed of related terms retrieved from these
external sources. If Wikipedia is chosen as the external source, BLOOMS
uses a Wikipedia web service to query Wikipedia articles using the concept
names as search terms. Each returned article is considered a sense of the
concept name and a tree data structure is constructed where this sense is the
root and Wikipedia Categories associated with the article represent its chil-
dren. Hence, for each concept there exists a forest of trees, where each tree
represents Wikipedia articles and categories related to the concept. When
identifying the relation between two concepts from different ontologies, their
respective trees are compared with respect to their overlap. BLOOMS was
evaluated using the Oriented Matching dataset from OAEI 2009. The eval-
uation results showed that the BLOOMS approach performed very well in
this dataset, with an average precision of 0.84 and an average recall of 0.78
across the three tests.

The BLOOMS system was implemented as one of the semantic matching
systems used in a comparative evaluation in this work (see Section 6.1.4).
Some observations from this implementation are that the system does not



3.2. Techniques for Identifying Subsumption Relations 55

enforce a one-to-one relationship in equivalence relations, the text processing
seems very basic (for example, whenever there is a compound word this is
treated by just adding whitespace between its parts before querying Word-
Net/Wikipedia), and the subsumption relations are one-directional (only
subsumedBy (less general than)).

The SCARLET system developed by Sabou et al. [125] uses external on-
tologies in order to find semantic relations between the concepts of two
ontologies to be matched. This approach used an ontology search engine
such as Swoogle 6 to find relevant external ontologies using the concepts to
be matched as queries. In order to“anchor”the concepts in relevant external
ontologies SCARLET uses strict string matching, but allows for variations
in naming conventions and lexical form (e.g. the lemma associated with
a concept’s label). Depending on the search results, one of two strategies
can be followed: (1) the concepts belong to a semantic relation in one single
external ontology. In this case this relation is used for the current alignment
being computed by SCARLET, or (2) the concepts form an indirect relation
distributed over several external ontologies. In order to detect contradictory
and incoherent relations, SCARLET includes a simple alignment debugging
mechanism. SCARLET was evaluated using two thesauri as input and an
ontology search using Swoogle. A subset of the returned candidate rela-
tions was manually assessed by 9 ontology experts. The semantic relations
discovered by SCARLET were subsumption (both ways) and disjointness.
Some of the key findings from the study were that errors in the anchoring
phased accounted for more than 50 percent of the false positive mappings
and that subsumption relations were wrongly used to describe some other
type of relation between concepts (e.g. part-whole).

Along the same line, Cruz et al. [22] used the fact that ontologies often
import other ontologies as a mechanism to infer subsumption relations in
the AgreementMaker system. Hence, the source for background knowledge
is in this case external linked open data ontologies. This method was called
Global Matching. For each concept Cs in the source ontology, the method
searches across other external ontologies for any candidate concept that has
been defined as subclass of Cs. If any identified candidate concept (being a
subclass of Cs) exist, this concept is compared with the concepts of a target
ontology, and if a concept in the target ontology match, the method return
a subsumption relation stating that Cs subsumes the concept in the target
ontology. This approach works well for Linked Open Data (LOD) ontolo-
gies, that often import multiple other ontologies for describing a particular

6http://swoogle.umbc.edu/2006/

http://swoogle.umbc.edu/2006/
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domain [22]. The evaluation performed by Cruz et al. also confirms this.
The Global Matching approach performed best of the approaches suggested
in this study, with a precision of around 0.65, a recall of around 0.35 and
an F-measure of around 0.45. A chart of the evaluation scores is presented
in Figure 3.5.

Cruz et al. [22] also suggested a technique called Distance-based Polysemic
Lexical Comparison (DPLC) in their extension of the AgreementMaker
matching system. This technique first annotates the ontology concepts with
lexical concepts from WordNet. Then it uses these lexical concepts and how
they are positioned in a hierarchy, as well as associated hypernyms, to infer
subsumption relations. The confidence score of a subsumption relation is
determined on the basis of the path distance between two lexical concepts
that annotate the ontology concepts to be matched. Word Sense Disambig-
uation techniques are applied to maximise the possibility of a lexical concept
being semantically equal to a ontology concept. This approach did not per-
form as well as the Global Matching approach described above. As seen in
Figure 3.5, the DPLC approach obtained a precision of around 0.32, a recall
of around 0.11 and an F-measure of around 0.16.

In a recent paper, Kamel et al. [79] reports on the use of BabelNet, a se-
mantic network that among other sources exploit WordNet and Wikidata, to
identify subsumption relations between ontologies. The approach followed
includes a two-step process. In the first step, the concepts to be matched
are disambiguated by identifying the semantically closer synset in BabelNet.
This is accomplished by first creating a context for the concept and a context
for the associated BabelNet synset. The context for the concept is represen-
ted using the label, super- and subclasses, etc., whereas the context for the
BabelNet synset is constructed using their sense and gloss terms. Then, a
set of tokens (bag-of-words) is created by finding the overlap between these
two contexts, which finally represents the concept. In the second step, the
algorithm looks for subsumption relations between two concepts that are
represented by the set of tokens established in the first step. This is accom-
plished by checking if the tokens representing a source concept reside in the
set of hypernyms of tokens representing the target concept and vice versa.
If so, a subsumption relation between these two concepts is derived. The
approach was evaluated using inferred subsumption alignments from the
equivalence alignments of the OAEI conference dataset. The evaluation res-
ults showed in overall a low performance, with an average precision of 0.29
and an average recall of 0.11 when isolating the scores on three pairs of onto-
logies (edas-ekaw, confOf-edas, and conference-sigkdd). This was according
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to the authors due to lack of coverage in BabelNet and lack of annotations
in the ontologies being matched resulting in sparse context descriptions.

3.2.5 Natural Language Processing Techniques

Various Natural Language Processing (NLP) techniques are used in semantic
matching as supportive means to other techniques.

Po and Bergamaschi [114] enhanced the SCARLET system mentioned in
the previous section by lexically annotating concepts using a combination
of Word Sense Disambiguation (WSD) techniques. This lexical annota-
tion process aimed to improve both precision, in that false positives could
be identified and removed from the resulting alignment, and recall, in that
additional semantic relations could be discovered and included in the result-
ing alignment. Figure 3.7 shows an existing subsumption relation between
concept A in Ontology 1 and concept B in Ontology 2. This relation is de-
rived since SCARLET has identified that (1) A and A′ as well as B and B′

are idenfied as equivalent, and (2) the same subsumption relation is found
to exist between concepts A′ and B′ in the online ontology. Since A and
A′ can be linked to the same WordNet synset (Synset 2) according to the
disambiguation performed, these two concepts are considered semantically
equivalent. However, since concepts B and B′ are linked to separate Word-
Net synsets after having run some disambiguation technique, these two con-
cepts are considered semantically different, and the original subsumption
relation between A and B is therefore considered errouneous.

Ontology 1 Ontology 2

A B

A’ B’

Synset 3
Synset 1

Synset 2 Synset 4

WordNet

⊆

⊆

X

X

Online 

ontology

Figure 3.7: Using Lexical Annotation to enhance SCARLET (adapted from Po
and Bergamaschi [114]).
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The evaluation of the lexical annotation approach showed that the lexical
annotations could improve both precision in that false positive relations
could be omitted and recall since additional true positive relations were
identified.

As Falcon-AO described earlier in Section 2.5.4, TaxoMap [60, 58] targets
large ontologies and uses a partitioning approach that decomposes large
input ontologies into blocks from which semantic relations are computed.
TaxoMap computes alignments consisting of equivalence, subsumption and
semantically related relations. In order to arrive at these relations, Tax-
oMap uses linguistic and structural techniques. Here, we will focus on how
Taxomap uses linguistic techniques to infer semantic relations. These tech-
niques rely on a decision tree tagger [127] that analyses the part-of-speech
(POS) and lemma information of labels. This tagger distinguishes full words
from complementary words based on whether they are nouns or functional
words (verbs, adverbs and adjectives), and how the words are positioned
in the corresponding labels. When identifying subsumption relations, one
of the matchers (Label Inclusion) in Taxomap uses the following heuristics
to determine that cs in ontology OS is subsumed by ct in ontology OT (i.e.
that cs is less general than ct):

• ct is the concept label in OT having the highest similarity value (based
on trigrams) with cs.

• One of the labels of ct is included in the label of cs.

• All the words of label of ct are classified as full words by the tagger.

TaxoMap was evaluated in a dataset involving two ontologies describing
geographical concepts [59]. Equivalence and subsumption relations, as well
as semantic closeness relations, were identified using the abovementioned
techniques and comparing two different partitioning strategies. The results
from the evaluation showed that TaxoMap obtained precision/recall scores
of 0.97 and 0.81 respectively using the best partitioning strategy.

3.2.6 Machine Learning Techniques

The usefulness of machine learning strategies, both supervised and unsu-
pervised strategies, has also been explored when automatically identifying
subsumption relations.

Spiliopoulos et al. [137, 136] used a supervised machine learning scheme
and considered the identification of subsumption relations as a binary clas-
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sification problem. They called this method Classification-Based Learn-
ing of Subsumption Relations (CSR), and it consists of the following steps:
(1) Infer internal subsumption relations within each input ontology using
a reasoner, (2) Generate classifier features from common words, proper-
ties and latent features approximating the intended meaning of concepts,
(3) Generate training examples for the subsumption class and for the non-
subsumption class. For the subsumption class training examples are gener-
ated by considering all subsumption relations inferred in (1) and optionally
from subsumption relations inferred from equivalence relations identified by
equivalence matching. The training examples for the non-subsumption class
are generated from siblings sharing the same subsumer in each ontology, con-
cepts that are explicitly not in a subsumption relation, or inverse pairs of
concepts that are related with a subsumption relation, (4) Train the classi-
fier using the training examples generated in the previous step, (5) Classify
each relation as either a subsumption relation or as a non-subsumption re-
lation. The evaluation of the CSR method was based on two datasets from
OAEI as well as a dataset based on course catalogues from Washington and
Cornell Universities. Since there were no existing datasets for subsumption
matching, subsumption alignments were generated from original equivalence
alignments as follows: (1) Infer subsumption relations from equivalence re-
lations using a reasoner, (2) Extend the set of subsumption relations from
(1) by using common sense based on understanding the “intended meaning”
of the concepts in the input ontologies. The evaluation of the CSR approach
showed that it was able to locate subsumption relations that cannot be in-
ferred from existing equivalence relations using a reasoner, it was able to
discriminate between subsumption relations and equivalence relations, and
that the C4.5 decision tree classifier performed better than the other clas-
sifiers tested (Knn, Naive Bayes and SVM), especially for well-annotated
concepts.

David et al. [74] developed an approach for identifying both equivalence and
subsumption relations using association rules [1] in the AROMA system.
Association rules are typically used in data mining, and a common example
used to explain the association rule paradigm is the “market basket ana-
lysis”. Here, the aim is to discover purchase patterns from transactional
data from supermarkets: From an analysis of these data an association rule
algorithm (e.g. the apriori algorithm [2]) suggests the following association
rule (borrowed from [90]):

Cheese –> Beer [support = 10, confidence = 80].

This rule states that 10 % of the customers buy cheese and beer together,
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and those who buy cheese also buy beer 80 % of the time. Support and
confidence in this example are so-called Interestingness Measures (IMs).

David et al. propose a new interestingness measure based on implication
intensity (e.g. described in [50]) that targets the automated detection of
subsumption relations and equivalence relations. This approach is based on
the assumption that a concept Cs will be more specific or equivalent to a
concept Ct if the vocabulary used to describe Cs, its sub-concepts, and its
instances tend to be included in that of Ct, under some conditions expressed
by the new interestingness measure. Vocabulary in this context means the
name, definitions and instances associated to a concept. The matching
process proceeds as follows:

1. Extract a set of the relevant terms for each concept and property.

2. Discover association rules using an interesting measure based on im-
plication intensity between entities based on the respective sets of
relevant terms.

3. Enhance the proposed alignment by removing redundant correspond-
ences and adding additional relations not discovered by the previous
process. Here, the approach uses the Jaro-Winkler [156] string simil-
arity technique.

AROMA was evaluated using the OAEI benchmark from 2005. The results
of the evaluation showed that the approach favors precision over recall.
Considering the harmonic mean of the three tracks that were included in
the evaluation, AROMA obtained a precision of 0.96, the highest score of all
compared systems. The recall achieved by AROMA (0.6) was however lower
than the results obtained by a basic string matcher based on edit distance.

3.3 Profiling Ontologies

By profiling we mean quantifying certain features from the ontologies that
will guide different steps of the matching process. The profiling can use
criteria and metrics from related research areas ontology analysis and on-
tology evaluation. Existing literature on ontology analysis and ontology
evaluation is extensive, and a number of surveys offering a comprehensive
overview have been conducted on the topic [44, 116, 155, 11].

The typical objective of ontology analysis is to assess the quality of ontolo-
gies for the purposes of reusing- or improving them. On this account, Noy
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and Hafner [106] developed in an early work a framework for comparing on-
tologies according to eight overall characteristics. The characteristics are:
general (i.e. what purpose is the ontology developed for), design process
(i.e. how was the ontology developed), taxonomy (e.g. how is the ontology
structured), internal concept structure and relations between concepts (e.g.
how and to what extent are properties implemented in the ontology), ax-
ioms (e.g. how are the axioms expressed), inference mechanisms (e.g. how
is the reasoning done), applications (i.e. what practical application was
the ontology intended for), and contributions (e.g. is it multilingual, is it
authoritative in its domain, etc.).

Gangemi et al. [43, 42] suggests a framework comprising three types of
measures for analysing ontologies: Structural measures, which considers the
graph-based characteristics of the ontology; functional measures, which as-
sess to what extent the ontology models the purpose for which it was de-
veloped; and usability-profiling measures, which relates to how well the on-
tology and its constructs are described through annotations, metadata, and
other documentation.

In order to analyse the ontology schema, which is most relevant in our ana-
lysis, Tartir et al. [146] propose three metrics: Relationship Richness, which
reflects the diversity and placement of object properties in the ontology;
Attribute Richness, which through computing how many attributes (data
properties) exist for each class gives some insight into how much knowledge
is expressed by classes in the ontology; and Inheritance Richness, which
gives an indication of how well knowledge is grouped into different categor-
ies and subcategories in the ontology.

Some of the metrics suggested by Tartir et al. are implemented in the
OntoMetrics tool [85]. This is an ontology analysis tool comprising a large
number of different metrics for ontology analysis. Another ontology analysis
tool is the Oops validation tool [118]. The Oops tool validates if an ontology
conforms to best practices in ontology engineering by automatically checking
if the ontology has managed to avoid common errors or pitfalls that might
occur when developing ontologies.

When it comes to using ontology features to support matching operations,
the RiMOM system [87] employs two similarity factors that quantitatively
characterise the ontologies to be matched. The first is called Label Similar-
ity Factor and aims to define the similarity between two ontologies based
on entity names. This is computed by taking the sum of number of identical
class labels and the sum of identical property labels over all concepts and
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properties in the two ontologies to be matched. The second measure is called
Structure Similarity Factor and provides a quantified characteristic of both
classes and properties. First, all classes that have subclasses associated with
them are compared. For each pair of classes that have the same number of
subclasses and the same path length to root, the variable #comm nonl conc
is enumerated. The Structure Similarity Factor is normalised by dividing
the #comm nonl conc for ontology Os with the #comm nonl conc for onto-
logy Ot.

Cruz et al. [21] extracts a set of ontology features to be used in supervised
machine learning (described in Section 3.4). These features are:

• Relationship Richness, this metric is defined as the percentage of ob-
ject properties that are different from subClassOf relations.

• Attribute Richness is defined as the average number of datatype prop-
erties per class.

• Inheritance Richness, this metric is a structural characteristic and is
defined as the average number of subclasses per class.

• Class Richness is defined as the ratio of classes having instances as-
sociated with them.

• Label Uniqueness is computed as the percentage of concepts that have
a label that differs from the concept name.

• Average Population, this metric is defined as the number of instances
divided by the number of classes in an ontology.

• Average Depth, this metric captures the average depth of the classes
in an ontology and is calculated as the mean of the depth over all
classes.

• WordNet Coverage is computed as the percentage of concepts with a
label or URI present in WordNet.

• Null Label and Comment, this metric is computed by dividing the
number of concepts that have no comment or label over all concepts
in an ontology.

The three first metrics in the list above are defined by Tartir et al. [146].

In the UFOMe [113] system two profiling metrics are applied in order to
select, configure and combine individual matchers. These metrics are called
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lexical affinity and structural affinity. The lexical affinity basically is the
fraction of lexically similar entities / the total number of concepts in the
smallest ontology. The structural affinity is based on information content
(IC) where the IC of a concept is expressed according to its position in the
class hierarchy. The structural affinity is then calculated as the fraction of
the number of entities having a similar IC / total number of concepts in the
smallest ontology.

3.4 Matcher Selection, Matcher Configuration and Alignment
Combination

This section begins by describing different approaches to automated matcher
selection and configuration. After that, we describe different approaches for
combining multiple candidate alignments into a final alignment. Different
matchers provide different results depending on the characteristics of the
ontologies to be matched [35], and identifying the optimal set of matchers
for a given matching task is considered one of the top challenges of ontology
matching [131, 132]. Furthermore, normally, each matcher in a matching
system can be configured with a threshold that reflects how confident the
matcher is that a given relation in an alignment is correct. This confidence
threshold is usually also used as a weight when alignments from several
matchers are combined. Setting this confidence threshold is thus of critical
importance to the alignment quality as setting it too low will likely result
in false positives, and setting it too high will likely result in false negatives.

Mochol et al. [100, 99] describes how an analysis of metadata associated
with ontologies combined with a description of matchers made by their de-
velopers can guide the selection of relevant ontology matching techniques.
The ontology metadata includes typical ontology statistics (size, formality
level, natural language level, etc.). The matcher descriptions include details
such as specific techniques applied (e.g. string matching), usage charac-
teristics (e.g. if the matcher targets a particular application domain), cost
characteristics (licensing costs) and alignment constraints (e.g. 1-1 class re-
lations). A set of SWRL rules are applied to identify the most appropriate
set of matchers for a given pair of ontologies to be matched. A limitation
of the approach by Mochol et al. is that it assumes a rich and accurate de-
scription of each matcher in order to find a good fit between the ontologies
to be matched and matcher capabilities.

Tan and Lambrix [144] proposed an approach for selecting matchers based
on how they perform on a subset of the ontologies to be matched. This
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semi-automatic approach relies on evaluating the results when an ensemble
of matchers perform a matching of this ontology subset in comparison with
a reference alignment that is already existing or that is evaluated by manual
analysis.

Cruz et al. [21] performs supervised machine learning (k-NN) to select the
optimal matcher configuration from a set of pre-configured composition of
matchers given a profile of the two input ontologies. The profile is estab-
lished by using the set of ontology evaluation metrics described in Sec-
tion 3.3. The resulting alignments produced by the matchers involved in a
particular matching operation are combined by linearly weighting the indi-
vidual alignments. In the learning phase a subset (20 %) of the dataset is
used as training set in order to choose the best matcher configuration for
this dataset. Then the subset is being matched in parallel and the resulting
alignments from the different matcher configurations are compared to the
reference alignment for that particular subset. The approach does not focus
on selecting individual matchers from a library, but selecting a pre-defined
matcher composition from the AgreementMakerLight matching system (see
Section 3.1) given a set of ontologies.

The approach by Cruz et al. requires training data in the form of a set
of correct relations defined by human judgment. This implies that human
effort is required in order to establish the training data for each match-
ing task. Furthermore, they use predefined configuration of the matchers,
that is, the similarity thresholds used by the different matchers are fixed
regardless of the ontology characteristics in each matching task.

The RiMOM matching system [87] extracts terminological and structural
profiles of the ontologies to be matched. These profiles are then used to auto-
matically select the information to be used by the terminological matcher,
how to weight the relations computed by the different matchers and the
similarity propagation strategy used by RiMOM. If for example the profil-
ing of the input ontologies reveals a high structural similarity factor, the
vector-based matcher includes structural information (e.g. number of sub-
concepts) associated with the concepts being used when constructing the
TF-IDF vector, if not, such information is omitted. The thresholds used to
determine whether the lexical similarity factor and the structural similarity
factor should be considered high or low are based on experimentation.

In the following we describe different approaches for combining alignments
produced by multiple matchers into a final alignment. Normally the match-
ing process involves an alignment combination / aggregation step that aims
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to aggregate the optimal relations from alignments produced by the in-
volved matchers into a final, refined alignment. Combining the results from
individual matchers can often improve the final alignment quality [112]. A
large variety of combination methods exist, some are basic and others more
advanced. According to a study by Peukert et al. [112] advanced combin-
ation methods can perform well on some matching tasks, but in general
simpler methods, such as using Average Aggregation (i.e. using the average
confidence score from the individual matchers for each relation in the final
alignment) are more robust. Indeed, some of the best performing matching
systems, such as AgreementMakerLight [39] and COMA [25, 93] utilise quite
basic methods when combining the results from individual matchers.

In this section both simple and advanced combination methods will be de-
scribed. Note that some of the more advanced combination methods use
machine learning techniques, such as the method proposed by Eckert et al.
in [27]. However, since these techniques require training data in the form of
ground truth alignments which are usually not available [120, 112, 91] thus
making these techniques inapplicable, they are not described any further
here.

Of basic methods commonly described in literature we find average, max,
min, threshold and delta. The average method computes an average simil-
arity over all individual matchers that have identified a given relation. This
means that all matchers are considered equally important [25]. The max
method returns, for a given relation, the highest similarity value of any in-
dividual matcher. This is a very optimistic approach since a relation that
is only proposed by one single matcher in an ensemble can make it through
to the final alignment [91]. In the opposite end, the min method chooses
the lowest similarity value for a given relation from any individual matcher,
and is as such considered a very pessimistic approach. There are several
variants of the threshold approach, but in its basic form this implies that
a predefined cut threshold determines which relations will be included in
a final alignment [35]. For example, if a threshold is set to 0.6, only those
relations from the individual matchers that have a confidence value above or
equal to 0.6 will be included in the final alignment. The delta is a variant of
the threshold approach whereby the relations that have the highest confid-
ence value above a predefined threshold are included in the final alignment
as well as the set of relations that have a confidence value that falls within
a predefined distance relative to the top relations [93].

An overview of some more advanced combination methods is provided in the
following. Trojahn et al. [148] suggests a multi-agent approach to ontology
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matcher combination. Here, one agent plays the role of mediator and three
other agents play the role of lexical matcher, semantic matcher and struc-
tural matcher. These agents all compute their separate alignments and after
a negotiation phase a final alignment is produced. During the negotiation,
correspondences not verified by one agent (i.e. the score is below a certain
threshold) are distributed to the other agents by the mediator. The other
agents either confirm the correspondence or make a counter proposal and
the process iterates until the matcher agents run out of counter proposals.

The UFOme [113] matching system includes a Strategy Predictor module
that automatically selects, configures and combines individual matchers
based on terminological and structural ontology characteristics (see Sec-
tion 3.3 for details on how these ontology characteristics, denoted affinity
values in the paper, are defined). UFOme includes four individual matchers,
of which three of them are terminological/lexical matchers and the fourth is
a structural matcher. The affinity values computed in the ontology profil-
ing process are used by the Strategy Predictor to determine the confidence
thresholds and the weights associated with the individual matchers. The
rationale used for determining the confidence thresholds is that if the affin-
ity scores are high, the thresholds should be lower. The rationale used for
setting the weights is that if the affinity score is high, the weight for the as-
sociated matchers should be high. The smoothing factors used to determine
the thresholds and weights were decided through experiments using a subset
of ontologies in the evaluation dataset. Specifically, confidence thresholds of
0.6 and 0.4 were used as parameters for the smoothing factors. The combin-
ation of the individual matching results is based on weighing the individual
alignments and combining them using a weighted sum. The evaluation of
the Strategy Predictor module showed the importance of setting the confid-
ence thresholds and weighting parameters correctly. In the worst case, the
alignment quality decreased by 15% in terms of precision and 20% in terms
of recall when a sub-optimal threshold was applied.

Cruz et al. [20] implemented a method for combining the results from in-
dividual matchers in the AgreementMaker matching system. This method
is called Linear Weighted Combination (LWC). When producing the final
alignment, the relations produced by the individual matchers are combined
by taking into account the weights associated with these matchers. The
weights associated with the individual matchers were assigned automatic-
ally based on the notion of a Local Confidence of a matcher. The Local
Confidence is a measure that basically extracts the average similarity value
of those relations that are not selected (below an arbitrary threshold) from
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the average similarity value of those relations that are selected (above an
arbitrary threshold) from a matrix of relations produced by that matcher.

The Autoweight++ method [56] includes both a matcher configuration and
combination approach. The concept of extracting highest correspondences
from a similarity matrix (see Figure 3.8) is central in this approach. A cor-
respondence between two entities ei and e′j is considered the highest corres-
pondence if it has a higher confidence value than any other correspondence
that includes either ei or e′j. A highest correspondence threshold determ-
ines which of the considered highest correspondences are processed further.
The highest correspondences are first computed for each individual align-
ment. Then, for every alignment produced by all matchers, an importance
coefficient for each highest correspondence is computed. This importance
coefficient considers how many matchers have identified this particular cor-
respondence. So the importance of each particular highest correspondence
is based on how many times this correspondence has been detected as a
highest one across all correspondences from all matchers. If the highest cor-
respondence is identified by all matchers (i.e. all alignments), it is omitted
since it brings no useful and discriminating information.

The matcher weight, which is also used in the combination, is set based on
the importance of the correspondences it produces compared with the other
matchers’ correspondences. So the importance (coefficient) for a matcher is
calculated by summing the importance values of all highest correspondences
produced by that matcher. The weight of a basic matcher is the ratio of
the importance coefficient for that particular matcher and the sum of the
importance coefficient of all matchers. When aggregating all correspond-
ences from all matchers, the aggregated correspondence for two entities is
calculated by multiplying their correspondence strength in each alignment
(from each matcher) with the weighting factor (assigned to the matcher/a-
lignment) and summing up those products.

Similar to Autoweight++, the Harmony-based Adaptive Similarity Aggreg-
ation (HADAPT) method suggested by Mao et al. [91] starts by representing
all relations computed by a single matcher in a similarity matrix. From this
matrix the relations that have the highest similarity value across rows and
columns are used to compute the so-called harmony value of each individual
matcher. This is illustrated in Figure 3.8 where the highest similarity values
in each row is indicated by a cross and the highest similarity value in each
column is indicated with a circle. The harmony value is the ratio between
the number of relations with the highest similarity value and all possible
relations from the two ontologies being matched. In the example there are
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5 suggested relations, and four relations where the similarity value is highest
in both row and column. This yields a harmony value of 0.8 (4

5). When
combining the alignments from all individual matchers, the harmony value
is used to weight the different matchers.

0.3

Composite

Reference

Book Proc Monography Collection

Book

Proceeding

Monograph

Collection

0.11 0 0.22 0.1 0.1

0.22 1 0.2 0.2 0.2

0.18 0.09 0.36 0.09 0.18

0.11 0.22 0.11 0.9 0.1

0.2 0.1 0.1 1

Figure 3.8: Similarity matrix (adapted from Mao et al. [91]).

When combining the results from the individual matchers, STROMA uses
predefined weights for each matcher based on experimental results and a
voting strategy to conclude the type of semantic relation. The Compound
Strategy, Background Knowledge Strategy and Itemization Strategy all have
a weight of 1.0. The Structure-based Strategy has a weight of 0.8, and
the Multiple Linkage Strategy has a weight of 0.5. If all strategies return
“undecided”, the relation type is set to equivalence, while if two or more
matchers propose conflicting semantic relations at the same confidence, a
predefined priority order determines the final relation type. The priority
order is: equivalence, subsumption, meronymy, semantically related.
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4
Use of Design Science to Address the Research

Objectives

The research approach is inspired by principles from Design Science [63].
Design Science involves rigorous and iterative creation and evaluation of
innovative artefacts. These artefacts embody ideas, practices, technical
capabilities, and products seeking to address concrete problems and needs
from the application domain in question. Furthermore, the creation and
evaluation of the artefacts should be conducted rigorously, benefiting from
existing relevant knowledge and offering useful knowledge in return.

Design science fits well with the research conducted in this thesis as it pre-
scribes and guides a rigorous approach to information systems artefact de-
velopment. Although the research challenges dealt with in this thesis are
more positioned in basic research than applied research, they are sufficiently
well-defined (and well-acknowledged) to be supported by the guidelines pre-
scribed by the design science framework. There are several research gaps
within semantic matching worth pursuing and the research conducted in this
thesis aim to cover some of them. Addressing some of these gaps can likely
support a transition to a more applied type of research and higher levels
of the Technology Readiness Level (TRL) scale. The utility of the arte-
facts produced is diverse as semantic matching is relevant in a wide range
of tasks. Many of which today require significant human labour that could
be applied to other core tasks within the software engineering lifecycle.

Figure 4.1 shows the design science framework [65] adapted to the work
in this thesis. From the top-left, problems and opportunities derive from
the environment in question. These problems and opportunities are the
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starting point for the design science research, and they can be sourced from
people, organisations and the technological level. Ideas of artefacts that can
either address the problems or realise the opportunities can emerge when the
problems and opportunities are explicated and understood. This triggers a
build-and-evaluate loop where artefacts are developed and evaluated using
rigorous development- and evaluation methods. The development and eval-
uation activities are supported by existing knowledge in the knowledge base
(to the right). Intermediate and final experiences and results from this cycle
are fed back to the knowledge base as novel research contributions and to the
environment as applications satisfying the initial problems/opportunities.
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▪ Ontology Engineering

▪ Information Retrieval

▪ NLP
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▪ Software developers

▪ Data analysts
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▪ Researchers

People

▪ More focus on core 
         activities
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Figure 4.1: Design Science Framework.

Hevner [63] stresses that a design science research project should be guided
by three interdependent cycles.

1. Relevance Cycle: This cycle puts requirements from the contextual
environment into the research, and as output from the research, it
introduces the research artefact(s) to the environment. This cycle is
represented by the gray arrows in Figure 4.1.
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2. Rigor Cycle: The rigor cycle provides theories and methods along
with domain experience and expertise from the knowledge base into
the research. It adds the new knowledge generated by the research to
the growing knowledge base. This cycle is represented by the white
arrows in Figure 4.1.

3. Design Cycle: Based on input from the other two cycles, the creation,
and evaluation of the artefact(s) is conducted in rapid iterations. This
typically involves generating candidate designs and ideas which are as-
sessed and refined until a satisfactory solution is achieved (Simon [134],
cited in Hevner [65]). This cycle is represented by the black arrows in
Figure 4.1.

The Design Science framework further specifies seven research guidelines
that should be addressed when conducting design science research. These
seven guidelines are presented in the following with an explanation on how
each of them has been addressed by the work in this thesis.

4.1 Design as an Artefact

“Design-science research must produce a viable artefact in the
form of a construct, a model, a method, or an instantiation.”

According to Hevner et al. (2004) [65], there are four categories of artefacts:

• Constructs: This type of artefacts provide the language in which prob-
lems and solutions are defined and communicated.

• Models: This type of artefact use constructs to represent a real-world
situation - the design problem and its solution space. An example
of a model artefact is a system architecture that uses notation and
symbols constructs to describe a particular context.

• Methods: These artefacts define solution processes. They can range
from formal, mathematical algorithms to textual descriptions of best
practice approaches.

• Instantiations: This artefact type shows how to implement constructs,
models, or methods in a working system. They demonstrate feasib-
ility and enable detailed assessment of an artefact’s suitability to its
intended purpose.
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Based on the problems and needs from the environment in which the arte-
facts will be used, and by using relevant existing knowledge, researchers
build theories and artefacts which are evaluated using appropriate evalu-
ation techniques. The evaluation generates feedback that improves the re-
searcher’s understanding of the problem and the artefacts’ ability to address
it. This leads to refinements of the theories and artefacts. This build-and-
evaluate loop is often performed iteratively, improving theories, artefacts as
well as the design processes in each iteration.

In this work, the primary focus is on developing method artefacts and in-
stantiation artefacts. The method artefacts are materialised as matching
algorithms, ontology profiling metrics, strategies for combining alignments,
and strategies for detecting mismatches. Finally, the semantic matching
prototype, which brings together all the other artefacts into a complete sys-
tem, represents an instantiation artefact. An overview of these artefacts
including a short description, which artefact type they represent as well
as how they relate to the research questions in this thesis is presented in
Table 4.1.

4.2 Problem Relevance

“The objective of design science research is to develop technology-
based solutions to important and relevant business problems.”

Having worked as an applied researcher for over a decade, the candidate has
worked closely with interoperability challenges together with the industry.
In very many research projects there is a recurring challenge that in or-
der to realise or demonstrate some innovation there is a cumbersome and
resource-intensive phase that needs to be conducted before-hand. This is the
“mapping-phase” where two, and often more than two, exchange formats,
taxonomies, ontologies, databases, specifications, etc., need to be manually
aligned element-by-element before the core activities can commence. Sup-
portive tools that can reduce this manual effort would allow an increased
focus on the core business and/or research innovations due to time and
resources saved on “mapping-phases”.
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Table 4.1: Overview of artefacts

Artefact Description Artefact Type Addressed
RQ

Ontology Pro-
filing Metrics

These metrics aim to support
the autonomy of the semantic
matching system from an ana-
lysis of the ontologies being
matched.

Method RQ1

Matching Al-
gorithms

Matching algorithms identifying
both equivalence and subsump-
tion relations between ontology
concepts.

Method RQ2

Alignment
Combination
Methods

Methods combining individual
alignments produced by match-
ing algorithms.

Method RQ3

Mismatch
Detection
Strategies

Strategies increasing the preci-
sion of the alignments returned
from the semantic matching sys-
tem.

Method RQ4

Prototype
of Semantic
Matching
System

Prototype integrating all other
artefacts into a semantic match-
ing system.

Instantiation All

As mentioned in the introduction semantic matching as a utility has many
application areas, including semantic interoperability (in general), data in-
tegration, semantic matchmaking and compliance validation. A few busi-
ness cases from European and National research projects that highlight the
actuality of semantic matching are presented in the following.

Semantic Interoperability

Semantic matching techniques can support semantic interoperabil-
ity among interacting information systems through the automated or
semi-automated declaration of similar or related concepts or format
elements in the interacting systems. One concrete example of this
is the EU project Digital Water Citya. In this project, the overall
goal is to digitalise urban water management in Europe. This in-
volves among other things to monitor water quality with a variety of
sensors, couple this data with data from other sources (e.g. weather
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and climate forecasts), distributing this data between a large num-
ber of partners across Europe that likely have different systems and
formats. This is a tremendous interoperability challenge. The pro-
ject develops a semantic interoperability mechanism whereby ontolo-
gies (using multiple ontologies from the water management domain,
but also more general ontologies) constitute a common vocabulary
and can provide “semantic translation”. Semantic matching will be
a valuable utility to identify the relations that exist between this set
of ontologies. However, as the majority of current semantic match-
ing systems only return a list of equivalence relations, there is still
much manual effort required to identify other relevant relations, such
as subsumption relations that is one of the focus areas in this thesis
(RQ2).

ahttps://www.digital-water.city

Data Integration

During data integration an important prerequisite is to map schemas
and data items e.g. to ensure consistency and avoid redundancy. Typ-
ically, such a mapping task is performed manually with a significant
cost. An earlier study reported by Halevy [57] concluded that during
typical data integration projects mapping the data sources repres-
ented over half the effort (sometimes up to 80 %). The Norwegian
research project ReiseNavet aims at developing a National platform
for supporting the construction of Mobility as a Service (MaaS) ser-
vices in Norway. For this to happen, data must be integrated from
numerous sources (transport service providers, added-value service
providers, payment operators, ticketing, etc.). The conceptual and
physical data models must be aligned before such integration of data
can be realized. This alignment process can be supported by semantic
matching.

Semantic Matchmaking

Matchmaking is considered a type of retrieval activity that uses dif-
ferent data properties from different sources to match a request for

https://www.digital-water.city
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something and the best matching result representing this very same
something. Think of matchmaking engines such as match.com that
matches people based on their expressed properties. In the EU pro-
ject MANU-SQUAREa the aim is to develop a marketplace for the
exchange of manufacturing resources (e.g. manufacturing processes
and equipment). Here, customers having a need for a manufactur-
ing service can identify one or more optimal suppliers that may ser-
vice that need. In MANU-SQUARE, ontologies are used for describ-
ing manufacturing concepts such as processes, equipment, materials,
stakeholder types, and so on. The customer request is annotated
using concepts from the MANU-SQUARE ontology and so are the
resources offered by suppliers. As part of the process of matching
customers and suppliers, semantic matching plays an important role.
Often, there is no exact match (equivalence) between the concepts
(e.g. a process) sought by the customer and concepts representing
the offer from suppliers. Hence, a system that is only capable of
identifying equivalence and not asymmetric relations such as sub-
sumption would miss sub-optimal matches that still may be useful
in this case. For example, a customer may be interested in suppliers
that can offer a milling process. The customer's query is formalized
using concepts from ontology OS. Supplier resources are formalized
using concepts from ontology OT. At the moment there are no sup-
pliers that have expressed that they can perform “Milling” in the
marketplace, but there are suppliers that have stated that they offer
“Precision Milling”. “Precision milling” is a sub-class to “Milling” in
OT. A subsumption matcher could identify these suppliers as poten-
tial matches to the consumer query.

ahttps://www.manusquare.eu/

Compliance Validation

The EU project BESTa looked at how semantic technologies could
be used to improve information exchange in Air Traffic Management
(ATM). One of the cases in this project dealt with compliance valid-
ation. Compliance validation is an important task that ensures that
all information exchange formats used in relation to ATM comply
semantically with the standard reference information model in this

https://www.manusquare.eu/
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domain, ATM Information Reference Model (AIRM) [31]. There is
a specification that defines a set of criteria for compliance, and these
criteria include among other:

• Rewritten: it is acceptable for a data element in the informa-
tion exchange format to have another name, but it should be
semantically equal to the corresponding element in AIRM.

• Restriction: it is acceptable for a data element in the inform-
ation exchange format to be more restricted (add additional
qualifiers) than a corresponding element in AIRM.

• Generalised: it is not acceptable for a data element in the in-
formation exchange format to be more general than a corres-
ponding element in AIRM.

The BEST project wanted to see if the compliance validation task
could be automated and developed matching algorithms for this pur-
pose. The AIRM was transformed from its original UML format to
OWL and as were the information exchange standards. Equivalence
matching algorithms were used to detect the “Rewritten” criterium,
while subsumption matching algorithms were used to detect the “Re-
striction” and “Generalised” criteria. Experiences from this work are
reported in Vennesland et al. [150].

ahttps://project-best.eu/

The above examples have described a need for semantic matching from a
business and applied research perspective. From a basic research perspective
Shvaiko and Euzenat [131] elicited what they thought of as the ten topmost
challenges in ontology matching. One of these challenges is “Matcher Se-
lection” and “Self-configuration”. Sub-challenges sorting under this heading
include“Matcher Selection”, “Matcher Combination”and“Matcher Tuning”,
all challenges being addressed as research questions of this thesis.

4.3 Design Evaluation

“The utility, quality, and efficacy of a design artefact must be
rigorously demonstrated via well-executed evaluation methods.”

https://project-best.eu/


4.3. Design Evaluation 79

To evaluate the artefacts developed, an experimental research strategy [107]
was applied. The research model used for the experimental evaluation is
presented in Figure 4.2.

O2

O1

Alignment Quality
Semantic
Matching
Process

Matching Artefacts 

«Dependent Variable»

«Independent Variable»

Figure 4.2: Research Model including Independent and Dependent Variables.

Here, the independent variable, that is, the variable that is experimented
with, is represented by the matching artefacts developed in this work. These
influence to what extent the Semantic Matching Process is capable of pro-
ducing a good quality alignment as a result. The dependent variable, the
variable representing the measured outcome of the experiments, is repres-
ented by the quality of the final alignment holding a set of correct semantic
relations between two ontologies as input.

The performance of all developed matching artefacts (the independent vari-
able) is evaluated using typical evaluation metrics used in the application
domain, namely precision and recall, semantic precision and recall, and F-
measure (see a description of all evaluation measures in Section 2.2.3).

These evaluation measures are applied as follows: When comparing the
performance of the individual artefacts used in the composition of the se-
mantic matching prototype (the instantiation artefact), standard precision,
recall and F-measure is applied as evaluation measures. These evaluation
measures are also used when comparing the performance of the semantic
matching prototype against other semantic matching systems producing
both equivalence and subsumption alignments. This is a valid approach
since there exist complete reference alignments that include both equival-
ence and subsumption relations in all three datasets used in the evaluation.
When comparing the performance of the prototype semantic matching sys-
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tem with other matching systems that only produce equivalence alignments,
semantic precision and recall are applied as evaluation measures. The reason
for using semantic precision and recall is that these measures consider in-
ferred subsumption relations from the closure of the produced equivalence
alignments, something which enables a valid comparison with these systems.

In addition to the statistical measures of quantitative data, a comprehens-
ive manual analysis of the resulting alignment is performed. In this align-
ment analysis the produced alignments are transformed into a more reader-
friendly tabular format. This format better facilitates an analysis of how
relations in the new alignment compares with relations produced by previous
versions of this technique as well as the relations in the relevant reference
alignment. Initially, these alignments are formatted as RDF/XML docu-
ments (as presented to the left in Figure 4.3), in some cases containing tens
of thousands of relations. In order to make such analysis more compre-
hensible, a set of tools were developed that provided a more user-friendly
representation. These simple tools used XSLT-scripts to transform from
the RDF/XML representation to an XML format that could be viewed in
Microsoft Excel for a more approachable analysis. An example is shown in
Figure 4.3.

Figure 4.3: Tool support for alignment analysis.

As described in the Introduction in Chapter 1, a matching system is nor-
mally composed of a set of individual matchers. Ultimately, the quality
of the matching system is based on a combination of the performance of
the individual matchers and the strategy used for combining their results.
Therefore, a two-step evaluation cycle is required to properly evaluate the
impact of a changed technique.

1. Evaluate the local impact of a re-configuration. Here, the alignment
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produced by an individual matcher is evaluated against alignments
produced by earlier versions of the matcher and the reference align-
ment in order to verify impact with respect to statistical scoring.

2. Evaluate the global impact of a re-configuration. Here, the con-
sequences of the re-configuration are evaluated at the “global” level,
i.e. how the new set of relations and their confidence values produced
by the individual matcher affect the aggregation of relations from the
ensemble of individual matchers.

4.4 Research Contributions

“Effective design-science research must provide clear and verifi-
able contributions in the areas of the design artifact, foundations,
and/or methodologies.”

The results from this thesis contribute by delivering artefacts that can have
a positive impact at the business level and by delivering knowledge that can
extend the existing knowledge base. From a business-level perspective, the
artefacts, as well as ideas generated from their development, have been ap-
plied (the BEST project) and are currently applied (the MANU-SQUARE,
Digital Water City and ReiseNavet projects) in research projects that aim
to solve concrete problems and needs. From a knowledge foundation per-
spective, the extensions to the state-of-the-art are described in papers and
presented at international research conferences (see a full list of papers pro-
duced during this work in Appendix A).

One objective of this work has been to assure that the research is conducted
in a transparent, reproducible and reliable way. This is important to make
a substantial contribution to the application environment as well as to the
“knowledge base”. This includes making available all source code for all
developed artefacts, declaring all dependencies to reused source code and
libraries, and ensuring traceability of the research and its evaluation by
publishing the following material on GitHub1.

• All source code related to the different artefacts developed along with
documentation (Javadoc).

• A dependency diagram illustrating all external source code libraries
and APIs.

1https://github.com/audunven

https://github.com/audunven
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• Material related to the three datasets. This includes the ontologies
being matched and the reference alignments holding the correct set of
semantic relations.

• Alignments produced by the matching artefacts from this work.

• Alignments as well as related source material from the semantic match-
ing systems BLOOMS [71], S-MATCH [46], STROMA [7], Agreement-
MakerLight [39] and LogMap [78] that were used in a comparative
analysis (see Section 6.1.4).

4.5 Research Rigor

“Design-science research relies upon the application of rigorous
methods in both the construction and evaluation of the design
artefact, and [...] rigor must be assessed with respect to the
applicability and generalizability of the artefact.”

Before and during the construction of the artefacts, searches were conducted
to identify both relevant literature and relevant sources that could support
development of the artefacts. Relevant literature was found in general digital
libraries, workshop proceedings and other sources of information from events
related to the application domain. A synthesis of the literature search is
presented in Chapter 3.

Other relevant sources included standards, miscellaneous resources (e.g.
WordNet [98]), programming libraries and APIs (e.g. OWL-API [66] and
Alignment API [23]), and open source code repositories for existing semantic
matching systems. An overview of such external resources is provided in
Section 5.7.

The evaluation focused both on the applicability and generalizability of the
artefacts. Applicability was determined by comparing the results obtained
from the artefacts with other comparable semantic matching systems (see
Section 6.1.4). Generalisability was determined by evaluating the artefacts
in three different datasets. These datasets represent different application
domains and scope, as well as different complexity.

A discussion of the validity, reliability and credibility of the research is
presented in Section 7.2.
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4.6 Design as a Search Process

“Design is essentially a search process to discover an effective
solution to a problem.”

Although the interdependency between the artefacts in this thesis is very
strong, the approach followed a staged development process as illustrated
in Figure 4.4.

Build
candidate

Evaluate

Matching Algorithms

Evaluate

Combination MethodsEvaluate

Mismatch Detection
Strategies

Evaluate

Profiling Metrics

Evaluate

Semantic Matching
Prototype

Build
candidate

Build
candidate

Build
candidate

Build
candidate 1

2

3

4

5

Figure 4.4: Design as a Search Process.

The first stage involved searching for candidate matching algorithms. Sup-
ported by solutions and ideas from existing literature, APIs (notably the
Alignment API) and open source code repositories candidates that could
represent satisfactory solutions (Simon [134] cited in Hevner [65]) were de-
veloped and evaluated in “build and evaluate loops”. The evaluation be-



84 Use of Design Science to Address the Research Objectives

nefitted from the benchmark datasets offered by the Ontology Evaluation
Alignment Initiative (OAEI)2. Initially, for both the subsumption matchers
and the equivalence matchers, datasets from the OAEI campaign in 20163

were used for the evaluation. These datasets included reference alignments
containing only equivalence relations, so reference alignments holding sub-
sumption relations has to be developed by the candidate. In later develop-
ment phases this dataset was replaced by the dataset from the “Oriented
Matching” track from 20114.

In stage 2, the focus was on identifying a set profiling metrics that quantitat-
ively describe relevant features from the ontologies to be matched. Existing
literature describing related efforts within semantic matching was consul-
ted and new ideas formulated. A broader literature search was conducted
within the ontology engineering research area, specifically focusing on liter-
ature related to ontology evaluation metrics (e.g. Brank et al. [11] and Tartir
et al. [146] ). Ideas of candidate metrics were conceived from the specific
properties of the matchers. For example, the Compound Ratio (described in
Section 5.1.1), which is a measure of the ratio of concept names in the two
input ontologies that are compounds, is closely related to the Compound
Matcher (described in Section 5.3.1). The Compound Matcher determines
a subsumption relation based on whether either of the two concept names
are represented as a compound head of the other. A desktop analysis us-
ing the matching algorithms from the previous stage was used to test the
candidate metrics. The same OAEI datasets as used in stage 1 were used
in the evaluation and in addition a second evaluation a dataset containing
both equivalence and subsumption relations was developed. This dataset
included subsumption and equivalence relations between concepts from the
Biblio ontology5 and the BIBO ontology6.

Scenarios in the desktop analysis were of the kind:

Statement: The terminological analysis returns a profiling score of 0.22,
the structural analysis returns a profiling score of 0.5, while the lexical
analysis returns a profiling score of 0.71 (biblio-bibo dataset in Figure 4.5).

Hypothesis: The terminology-based matchers will return alignments with
a low F-measure score, the structure-based matchers will return alignments

2http://oaei.ontologymatching.org/
3http://oaei.ontologymatching.org/2016/
4http://oaei.ontologymatching.org/2011/
5http://www.cs.toronto.edu/semanticweb/maponto/ontologies/Biblio.

owl
6http://purl.org/ontology/bibo/

http://oaei.ontologymatching.org/
http://oaei.ontologymatching.org/2016/
http://oaei.ontologymatching.org/2011/
http://www.cs.toronto.edu/semanticweb/maponto/ontologies/Biblio.owl
http://www.cs.toronto.edu/semanticweb/maponto/ontologies/Biblio.owl
http://purl.org/ontology/bibo/
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with higher F-measure scores, while the lexical matchers will return align-
ments with the highest F-measure score.
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Figure 4.5: Ontology Profiling Results.

With the aim of establishing a good correlation between profiling score and
matcher performance (in terms of precision, recall and F-measure of the
produced alignment) a number of iterations between matcher development
and profiling metric took place in this stage. Moreover, to judge the applic-
ability of the profiling metrics when alignments from individual matchers
were combined, some basic combination methods were experimented with
at this stage. The evaluation of these methods also called for going back to
the “drawing board” and re-designing both matchers and profiling metrics.

Experiences drawn from this stage were reported in Vennesland [151].

In stage 3, the focus was on developing suitable alignment combination
methods considering that we had a fairly stable set of matchers and pro-
filing metrics in place from stage 1 and 2. While some papers cover such
methods as their core contribution (e.g. CroMatcher and Harmony (see
Section 3.4 for a description of both approaches), and some describe quite
basic methods (such as the cut method), many papers reveal few details on
how the alignment combination is performed. The majority of the relevant
papers on this topic describe how to combine equivalence alignments, while
how to combine subsumption relations, or equivalence and subsumption re-
lations, is mostly uncovered ground. This stage was the most extensive of
all development stages, requiring many revisits to stages 1 and 2 and a large
number of candidate methods. The supporting analysis tools described in
Section 4.3 were valuable contributions to the evaluation of the many can-
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didate solutions for alignment combination methods. The datasets used
in the evaluation described in Chapter 6 were developed during this stage.
The development of these datasets is described in Vennesland et al. [152],
Vennesland and Aalberg [149], and Gringinger et al. [53].

4.7 Communication of Research

“Design-science research must be presented effectively both to
technology-oriented as well as management-oriented audiences.”

As mentioned in Section 4.4, all source code and evaluation material for
all artefacts developed in this thesis are made available on-line on GitHub.
This should enable technology-oriented audiences to both understand the
processes by which the artefacts were both constructed and evaluated. With
respect to management-oriented audiences, a different kind of presentation
is needed. Explaining the utility of the artefacts in terms of how they impact
on organizational roles and processes, as well as the concrete benefits such as
increased revenue, cost savings, and increased efficiency are more convincing
arguments here.
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5
Development of Semantic Matching Artefacts

This chapter describes the artefacts that have been developed in this work.
These include equivalence- and subsumption matchers, ontology profiling
techniques, mismatch detection strategies and alignment combination tech-
niques.

Figure 5.1 illustrates the entire matching process. The process begins by
profiling the ontologies to be matched according to the metrics described in
Section 5.1. The results from the ontology profiling process are used both
to select the most appropriate set of individual matchers and for dynam-
ically configuring the confidence value each matcher assigns its identified
semantic relations. This matcher selection and configuration is described
in Section 5.4. Once the individual matchers have been selected and con-
figured, the Matcher Execution consists of running the selected equivalence
and subsumption matchers in parallel. The equivalence matchers are de-
scribed in detail in Section 5.2 and the subsumption matchers are described
in Section 5.3. A number of mismatches contributed by differing concep-
tualisation and explication factors (see Section 2.3) can significantly reduce
the quality of ontology alignment. In order to mitigate the negative effect
of ontology mismatches, two mismatch detection techniques have been de-
veloped in this work. These techniques try to identify mismatches in the
equivalence alignments and filter them out of the produced alignment. The
mismatch detection techniques are described in Section 5.5. Finally, in or-
der to produce a final alignment that is returned to the user, the alignments
produced by the individual equivalence and subsumption matchers are com-
bined in the alignment combination process. This process includes different
strategies for aggregating an optimal set of relations from the individual

89
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alignments. The alignment combination methods experimented with in this
work are presented in Section 5.6.
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Figure 5.1: An overview of the semantic matching process.

Finally, in Section 5.7 the most significant external sources and software
libraries used in the development of the artefacts are described.

5.1 Ontology Profiling

First, after the input ontologies have been pre-processed and parsed to an
appropriate representation, a set of metrics that characterise the input onto-
logies are computed in the ontology profiling. These metrics characterise the
terminological, structural and lexical profile of the input ontologies and are
computed as an average metric for both ontologies. The ontology profiling
metrics are used in two separate processes:

1. To determine whether or not a certain matcher should be included in
the matcher ensemble used to match the input ontology. This process
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is called Matcher Selection.

2. As a weight parameter that together with the initial similarity score
determined by the matcher is used for computing a confidence value
for each semantic relation in the alignment returned by the matcher.
This task is called Matcher Configuration.

These two processes are described more in detail in Section 5.4. The metrics
included in the ontology profiling step are described in the following sections.

5.1.1 Terminological Analysis

There are three metrics included in the terminological analysis. These are
named Compound Fraction, Corpus Coverage and Definition Coverage.

The Compound Fraction metric is based on an analysis of whether a concept
name represents a compound or not. A compound is a word that consists
of at least two constituent words, such as PhDThesis. Here, the head of the
compound is Thesis, while PhD is a modifier that further specifies the type
of thesis. Compound Fraction is computed using the number of compound
class names as numerator and the number of classes in both input ontologies
as denominator. If the Compound Fraction, that is, the representation of
compounds, is high, this suggests that a matcher capable of exploiting such
linguistic structures should be included in the ensemble of matchers.

The Corpus Coverage metric analyses how many individual tokens from the
two input ontologies reside in a corpus representing word embeddings. The
set of individual tokens are extracted from class names, labels, and natural
language definitions of the two input ontologies. The corpus representing
the word embeddings is a file that includes a word and associated vectors
on each line. The Corpus Coverage metric is computed as the fraction of
ontology tokens extracted from the input ontologies that are represented as
words in the word embedding file over all ontology tokens extracted from
the input ontologies.

The Definition Coverage metric aims to capture how well defined the con-
cepts in the input ontologies are. It is calculated by measuring the fraction
of concepts that have a natural language definition in each of the two onto-
logies, and the minimum of the two fractions is used to define the Definition
Coverage. The reason for this is that even if one of the ontologies have no
definitions, while the second one has all concepts annotated the Definition
Coverage measure would be fairly high at 0.5 if an average across both on-
tologies was applied. As some ontologies may include very short definitions,
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not revealing much of the semantic intention of the concept being annotated,
a minimum of 10 words (after stopword removal) is required.

5.1.2 Structural Analysis

In order to capture the structural characteristics of the input ontologies
two metrics are used. The Property Fraction measures the extent to which
the input ontologies include properties (data- and object properties). The
Property Fraction is computed as the fraction of classes that are associated
with data- or object properties over the total number of classes in the two
ontologies. The other metric in the structural analysis, Structural Profile,
considers the coverage of subclasses and superclasses in the two ontologies,
and is computed as the fraction of classes that have sub- or superclasses
associated with them over all classes in both ontologies.

5.1.3 Lexical Analysis

The lexical analysis consists of a single metric called Lexical Coverage. Lex-
ical Coverage measures the percentage of class names present in the Word-
Net lexicon [98]. If the class name happens to be a compound, we break
the compound down to its compound parts, and consider a match if any of
its parts reside in these lexicons. A similar metric (WordNet Coverage) was
used in Cruz et al. [21], however then disregarding the compound parts of
a word.

5.2 Equivalence Matchers

This section describes matchers developed for computing equivalence re-
lations between ontology concepts. All equivalence matchers perform a
pairwise similarity computation of all concepts from the respective input
ontologies. The result from each matcher’s computation is an alignment
holding a set of equivalence relations with an associated confidence value
determined by the matcher. This is illustrated in Figure 5.2.
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Figure 5.2: Input and output from matchers.
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Several of these matchers either re-use or extend techniques developed by
others. Table 5.1 provides an overview of all implemented matchers along
with a description of knowledge re-use and novelty.

Table 5.1: Summary of equivalence matchers

Matcher Description

Word Embedding
Matcher

Others have applied Word Embedding as a means for matching
ontologies [119, 161, 77, 117], however the approach of extracting
and processing embedding vectors for compound concept names
and combine these individual vectors into a single name vector
is to the best of our knowledge novel.

Definitions Equival-
ence Matcher

This matcher averages the embedding vectors associated with
the concept name and embedding vectors associated with other
natural language descriptions (i.e. annotations in the form of
rdfs comments) tied to the ontology concepts.

Property Equival-
ence Matcher

This matcher employs the Core Concept technique from
Cheatham et al. [18] in order to match properties, but extends it
by performing a more comprehensive lexical analysis afterwards.

Lexical Equivalence
Matcher

Using synonym sets retrieved from WordNet is a well-known
technique for computing equivalence and is for example de-
scribed in [89]. However, we are not aware of earlier works that
conduct the same compound analysis nor the same set similarity
technique.

Graph Equivalence
Matcher

This matcher is inspired by the Structural Proximity method
proposed by Hu et al. [69]. However, an adapted variant based
on the average distance to common superclasses is used by this
matcher (see a description in Section 3.1.2). Furthermore, this
matcher uses the ISub string matching algorithm [139] instead
of string equality to determine similarity between parent nodes.

5.2.1 Word Embedding Equivalence Matcher

We start by explaining how the word embedding approach is used for the
two matchers Word Embedding Matcher and the Definitions Equivalence
Matcher. Using Word2Vec and the Skip-Gram model (described in Sec-
tion 2.4), a word-to-vector representation has been obtained from two large
natural text corpora, namely Wikipedia and Skybrary. Wikipedia repres-
ents general knowledge irrespective of application domain, whereas Sky-
brary contains knowledge targeted for the air traffic domain. Section 5.7.1
describes additional details on how these two corpora have been processed.

As a preparation for the matching, the word-to-vector representation for
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each corpus is represented as a hashmap where each word in the corpus
is mapped to its vectors generated from the Word2Vec process. During
each matching operation each ontology to be matched is represented as a
separate word-to-vectors hashmap where all concept names and words in
annotations (i.e. rdfs:comments) are represented as key and the associated
vectors are represented as value (see Figure 5.3). In order to match two
ontology concepts the Word Embedding Equivalence Matcher retrieves a
vector representation of their class name, and computes similarity using the
Cosine metric.

Airport

Name vector:

Aerodrome

Name vector:

cossim (Airport, Aerodrome) = 0.57

[-0.35482404 -1.142213 …] [0.3039825 -0.96281093 …]

Figure 5.3: The Word Embedding Matcher computes similarity from name vec-
tors.

There are three types of vector representations:

• Name vector: A name vector is represented by the extracted set
of vectors associated with the concept name of an ontology concept.
Very often concept names are represented as compounds. If that is the
case, we decompose the compound into its parts, retrieve the vectors
for each part and average the vector components into a single vector
representation.

• Comment vector: A comment vector is established from the set of
vectors for each token associated with the natural language description
(i.e. annotations in the form of rdfs:comments) related to a concept.
The comment vector is pre-processed by removing stopwords from
the annotations. We then extract vectors related to each remaining
individual word (token) represented in the annotation and average
all of these into a single vector representation for each annotation
(comment).

• Global vector: A global vector represents the averaged vector from
a name vector and a comment vector.

The Word Embedding Equivalence Matcher only considers the name vector
and computes a similarity score based on that.
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The Word Embedding Equivalence Matcher operates as described in Al-
gorithm 1.

Algorithm 1 Word Embedding Matcher

Input: Vector hashmap VHM, source ontology Os, target ontology Ot
Output: Alignment produced by Word Embedding Matcher AWEM
1: function computeWEMAlignment(VHM, Os, Ot)
2: Sname, Tname, SVHM, TVHM, AWEM ← ∅
3: WEMsim ← 0
4: for all cs ∈ Os do
5: Sname ← getNameVectors(cs, VHM)
6: if Sname 6= ∅ then
7: SVHM ← SVHM ∪ addNameVectors(cs, Sname)
8: end if
9: end for

10: for all ct ∈ Ot do
11: Tname ← getNameVectors(ct, VHM)
12: if Tname 6= ∅ then
13: TVHM ← TVHM ∪ addNameVectors(ct, Tname)
14: end if
15: end for
16: for all cs ∈ Os do
17: for all ct ∈ Ot do
18: if contains(SVHM, cs) and contains(TVHM, ct) then
19: WEMsim ← computeCosSim(getVectors(SVHM, cs), getVectors(TVHM, ct))
20: else
21: WEMsim ← 0
22: end if
23: AWEM ← AWEM ∪ addRelation(cs, ct, =, WEMsim)
24: end for
25: end for
26: return AWEM
27: end function

In lines 4-15 word-to-vector hashmaps (SVHM and TVHM) are construc-
ted for the two ontologies to be matched (Os and Ot). These hashmaps
contain a key representing each concept (represented by its concept name)
and the name vector extracted from the vector hashmap as described in the
following. We extract the name vector for each concept cs from ontology Os
on line 5. The getNameVectors method extracts the name vector associated
with concept cs from the vector hashmap VHM. The same operation is
performed for concept ct on line 11. The pairwise matching of the concepts
in the two ontologies begins on line 16. On line 18 we check if both concepts
being matched are represented in the respective word-to-vector hashmap.
If so, we extract the vectors associated with these concepts and compute a
similarity score using the cosine measure on line 19. If either of the concepts
are not represented in the respective hashmap, the similarity is set to 0 (line
21). Once the similarity computation has finished, the relation (cs and ct) is
added to the alignment AWEM along with the similarity score computed for
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this relation on line 23. The method returns a complete alignment AWEM
on line 26.

5.2.2 Definitions Equivalence Matcher

The Definitions Equivalence Matcher identifies equivalent concepts by us-
ing the cosine similarity between global vectors, see Figure 5.4. How-
ever, if a concept being matched does not have a definition in terms of
an rdfs:comment (i.e. there is no comment vector), we use the name vector
to represent it during the matching operation.

A facility where regularly-scheduled aircraft arrive and depart.

Airport

facility 
regularly 

scheduled
aircraft 
arrive 
depart

[0.5500807 -0.093754105 …]

[0.7721597 -0.4574459 …]

[0.46895882 -0.23070875 …]

[1.5563283 0.56182355 …]

[0.1524737 -0.055235263 …]

[0.050093103 -0.019611666 …]

Global vector: [0.11842917 -0.5956842 …]

Comment vector: [0.59168239 -0.0491554 …]

Name vector: [-0.35482404 -1.142213 …]

Figure 5.4: Each ontology concept is described by name vectors and global vec-
tors.

Algorithm 2 shows how the Definitions Equivalence Matcher produces an
alignment. This approach is very similar to the Word Embedding Equival-
ence Matcher approach described in Section 5.2.1, except for that instead
of name vectors global vectors are used by Definitions Equivalence Matcher
(indicated in red in the algorithm).

In lines 4-15 word-to-vector hashmaps (SVHM and TVHM) are constructed
for the two ontologies to be matched (Os and Ot). These hashmaps contain
a key representing each concept (represented by its concept name) and the
value for each key is represented by the corresponding global vector. We
extract the global vector for each concept cs from ontology Os on line 5.
The getGlobalVectors method extracts the name vector and the comment
vector for each token in the definition (i.e. rdfs:comment) associated with
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Algorithm 2 Definitions Equivalence Matcher

Input: Vector hashmap VHM, source ontology Os, target ontology Ot
Output: Alignment produced by Definitions Equivalence Matcher ADEM
1: function computeDEMAlignment(VHM, Os, Ot)
2: Sglobal , Tglobal , SVHM, TVHM, ADEM ← ∅
3: DEMsim ← 0
4: for all cs ∈ Os do
5: Sglobal ← getGlobalVectors(cs, getDe f inition(cs), VHM)
6: if Sglobal 6= ∅ then

7: SVHM ← SVHM ∪ addGlobalVectors(cs, Sglobal)
8: end if
9: end for

10: for all ct ∈ Ot do
11: Tglobal ← getGlobalVectors(ct, getDe f inition(ct), VHM)
12: if Tglobal 6= ∅ then

13: TVHM ← TVHM ∪ addGlobalVectors(ct, Tglobal)
14: end if
15: end for
16: for all cs ∈ Os do
17: for all ct ∈ Ot do
18: if contains(SVHM, cs) and contains(TVHM, ct) then
19: DEMsim ← computeCosSim(getVectors(SVHM, cs), getVectors(TVHM, ct))
20: else
21: DEMsim ← 0
22: end if
23: ADEM ← ADEM ∪ addRelation(cs, ct, =, DEMsim)
24: end for
25: end for
26: return ADEM
27: end function

concept cs from the vector hashmap VHM and creates a global vector that
is set to the Sglobal variable. The same operation is performed for concept
ct on line 11. The pairwise matching of the concepts in the two ontologies
begins on line 16. On line 18 we check if both concepts being matched are
represented in the respective word-to-vector hashmap. If so, we extract the
vectors associated with these concepts and compute a similarity score using
the cosine measure on line 19. If either of the concepts are not represented
in the respective hashmap, the similarity is set to 0 (line 21). Once the
similarity computation has finished, the relation (cs and ct) is added to the
alignment ADEM along with the similarity score computed for this relation
on line 23. The method returns a complete alignment ADEM on line 26.

5.2.3 Property Equivalence Matcher

The Property Equivalence Matcher measures the similarity of the properties
associated with the concepts to be matched and uses that to infer concept
similarity. Both object properties and data properties where the concepts to
be matched represent the domain or range class are collected into single sets
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Cxprop and Cyprop and compared with Jaccard. However, property names are
challenging to process for a number of reasons. First of all, there is a large
variety of conventions used when naming a property. For example, should a
prefix be added to the property name to distinguish its intended meaning,
for example -is or -has, or should the property name consist of a single
word aiming to capture the relationship defined by the property? Another
challenge is that property names are often compounds with multiple parts,
and it can be difficult to determine which of its parts to use to capture the
semantic essence of the property.

In order to match properties the Property Equivalence Matcher tries to
identify the core concept of each property, inspired by the works of Cheatham
et al. [18], which focuses on equivalence matching of properties. The core
concept is either the first verb in the label that is greater than 4 characters
or, if no such verb exists, the first noun in the label, together with any ad-
jectives that qualify that noun. A Part-of-Speech (POS) tagger is used for
differentiating verbs, nouns and adjectives in a property name. Currently,
the POS tagger from the Stanford CoreNLP API1 is used.

The Property Equivalence Matcher extends the approach from Cheatham
as follows:

• Once the core concepts are extracted, potential synonyms of them
are retrieved from WordNet. Both nouns and verbs are retrieved.
As the example illustrated in Figure 5.5 shows, the object property
between Thesis and Person is isAuthorO f , where the core concept
is ‘author’. In the other ontology, the object property writer links
Dissertation to HumanAgent, and the core concept is ‘writer’. The
synonyms retrieved for‘author’ are ‘writer’, ‘poet’ and ‘correspondent’,
‘authoress’ and ‘co-author’ whereas for ‘writer’ synonyms are ‘author’,
‘poet’, and ‘diarist’ and ‘essayist’.

• The similarity of the two respective synonym sets is calculated using
Jaccard, but with a change in that the similarity score is increased if
the respective sets include the core concept of the opposite property.
Take the example in Figure 5.5. Here, the set of synonyms for ‘author’
include ‘writer’ and the set of synonyms for ‘writer’ includes ‘author’
as one of the synonyms. This should be “rewarded” somehow as it
strengthens the belief that these properties have a strong similarity.
This reward is accomplished by moving them out of the union set and

1https://stanfordnlp.github.io/CoreNLP/api.html
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into the intersection set. The result of this is that a score of 0.33 (3
9) is

returned instead of a score of 0.11 (1
9). In case the nominator (i.e. the

cardinality of the intersection set) is greater than the denominator
(i.e. the cardinality of the union set), we set an upper bound of 1,
so the returned score is in the range [0..1]. Furthermore, in order to
have some flexibility with respect to naming differences we do not use
exact string equality, but the ISub string matcher (see Section 2.5)
with a similarity threshold of 0.7. This threshold was determined
experimentally.

poetcorrespondent

writer author

authoress
diaristauthor

writer

DissertationThesis

Person HumanAgent

isAuthorOf writer

{ writer, poet, correspondent, 
authoress, co-author }

{ author, poet, 
diarist, essayist}

co-author essayist

Figure 5.5: The Property Equivalence Matcher identifies equivalence relations
using the notion of a core concept combined with relaxed synonym similarity

5.2.4 Lexical Equivalence Matcher

The Lexical Equivalence Matcher uses WordNet as a lexical resource for
computing equivalence relations between ontology concepts. It is well-
known that the use of WordNet in ontology matching is a double-edged
sword [36]. While it can be a very valuable resource and capture relations
that other techniques would miss, it can also reduce the overall quality of
a matching process due to its low coverage of domain specific concepts as
well as a sparse amount of compound words. In this matcher, we try to
tackle the shortcomings of WordNet by using an approach that combines
de-compounding with the use of a semantic similarity measure and an ana-
lysis of synonyms associated with de-compounded parts from the concepts
to be matched. The equivalence relations computed by this matcher is based
on a combination of the semantic similarity measure Jiang-Conrath [75] and
Jaccard [70] set similarity (see Section 2.5.1 for a description of both Jiang-
Conrath and Jaccard).

The procedure performed by the Lexical Equivalence Matcher is as follows:

1. If none of the concepts are compounds, we retrieve the sets of WordNet
synonyms for both concepts and measure their similarity using Jaccard
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similarity of sets. This is illustrated in Figure 5.6(a).

2. If both concepts are compounds, we split them and separate their com-
pound heads and compound modifiers. The similarity score between
these two concepts is a composite score. For the compound heads
we measure their similarity using Jiang-Conrath as we want to assure
that they have some semantic relatedness in the first place. For the
compound modifiers we retrieve their WordNet synonyms and measure
their similarity using Jaccard. If a compound modifier is a compound
itself, we split its constituent parts, retrieve synonyms for each part
into a joint set of synonyms for each concept, and compute a similarity
score using Jaccard. The final similarity score is based on weighting
the Jiang-Conrath score with 75 % and the Jaccard score with 25 %,
basically giving more priority to similar compound heads than similar
modifiers. However, if only the compound heads are similar, but there
are no WordNet synonyms for the respective compound modifier(s),
we return a score of 0 since similarity between the compound heads
is not sufficient grounds for saying that the two concepts are similar.
This sub-procedure is illustrated in Figure 5.6(b).

3. If only one of the concepts is a compound while the other concept is
an “atomic” word, it is considered less likely that the two concepts
form an equivalence relation. However there are situations where such
a pattern may occur, for example WeatherPerson = Meteorologist or
ComicStrip = Cartoon. In such situations, the Lexical Equivalence
Matcher returns a similarity score by computing the Jiang-Conrath
score between the compound modifier(s) of the compound concept
and the full name of the other concept, and the Jaccard set similar-
ity between the synonyms of the compound head of the compound
concept and synonyms of the full name of the other concept. These
two scores are evenly weighted in the final score. We have included
two clauses here though: (1) If the compound head of the compound
concept equals the full name of the other concept (e.g. MasterThesis
vs. Thesis), we return a score of 0 since in such a case it is more likely
a subsumption relation than an equivalence relation. (2) If either of
the compound modifiers of the compound concept equals the full name
of the other concept (e.g. BookPage vs. Book) we return a score of
0 because in this case it is more likely a meronymic relation than an
equivalence relation. This sub-procedure is illustrated in Figure 5.6(c).
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AuthorWriter =

0.68

Jaccsim ( SynSet( {Writer} ), Synset ( {Author} )) = 0.58

Jaccsim ( SynSetWriter , SynSetAuthor ) = 0.68

(a) Lexical Equivalence Matcher when
none of the concepts are compounds.

DocumentAuthorReportWriter =

0.385

Jaccsim ( SynSetReport , SynSetDocument ) = 0.1

JCsim (Writer, Author) = 0.48

(b) Lexical Equivalence Matcher when
both concepts are compounds.

ProducerMovieMaker =

0.325

Jaccsim ( SynSetMaker , SynSetProducer ) = 0.58

JCsim (Movie, Producer) = 0.07

(c) Lexical Equivalence Matcher when
one of the concepts is a compound.

Figure 5.6: Lexical Equivalence Matcher.

5.2.5 Graph Equivalence Matcher

An ontology is a labelled Rooted Directed Acyclic Graph (RDAG), with
a single root (thing), concepts represent nodes and the edges between the
nodes are relationships (either is-a or object properties). Such a graph
representation enables the utilisation of algorithms that exploit the graph
structure in order to compute similarity between concepts from different
ontologies.

Inspired by the Wu-Palmer algorithm (described in Section 2.5.2) this matcher
identifies the structural proximity of two nodes using the following steps:

1. Calculate the distance (number of edges) from the two nodes n1 and
n2 (ontology concepts to be matched) to their root (thing) as n1dist
and n2dist respectively.

2. Identify the set of ancestor nodes to n1 and n2 with similarity above
a certain threshold.

3. Calculate the distance from each pair of ancestor nodes to the respect-
ive graph’s root and calculate the average distance avgAncdist.

Then, when the above distances have been retrieved, compute the equival-
ence score between two nodes as follows:
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GraphSim(n1, n2) =
(2 ∗ avgAncdist)

(n1dist + n2dist)
(5.1)

The rationale of this matcher is to factor in the collective (lexical) simil-
arity of the parent nodes of n1 and n2 and use that to approximate simil-
arity between the two nodes (concepts) being matched. Different from the
Wu-Palmer algorithm, the matcher does not consider the lowest common
subsumer (LCS), but rather the average distance of parent nodes that have
a lexical similarity above a given threshold.

Figure 5.7 illustrates how the Graph Equivalence Matcher operates.

Publication Published

Entry

ThingThing

Resource

iSubSIM= 0.72

Article

GEMSIM = 0.625

Article

Academic
Resource

Academia
iSubSIM= 0.64

iSubSIM= 0.0

(1) (1)

(2) (2)

(3) (3)

(4) (4)

Figure 5.7: The Graph Equivalence Matcher computes a similarity score by taking
into account the structural proximity of two concepts

Here, the two concepts (nodes) to be matched are Article in ontology 1 and
Article in ontology 2. The distance from both nodes to the root is 4 (as
indicated by numbers in parenthesis), so n1dist and n2dist are both 4. The
ISub similarity (see Section 2.5.1) between the ancestors Publication and
Published is 0.72, at the level above the similarity between AcademicResource
and Academia is 0.64, while the similarity is 0.0 for ancestors Resource and
Entry. From these computations we consider the ancestor pairs {Publication,
Published} and {AcademicResource, Academia} similar using a similarity
threshold of 0.6. Next, the matcher computes an average distance avgAncdist
considering the distance of each ancestor node in these pairs up to the root
node (Thing). The average distance from the similar ancestors to the root
is 2.5. From this, the computation of the Graph Similarity is:

GraphSim(Article, Article) =
(2 ∗ 2.5)

(4 + 4)
= 0.625 (5.2)
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5.3 Subsumption Matchers

Four subsumption matchers have been developed in this work. Table 5.2
describes how their development is inspired from previous work and what
are new contributions to semantic matching.

Table 5.2: Summary of subsumption Matchers

Matcher Description

Compound Matcher The Compound Matcher is inspired by the Compound Strategy
described in Arnold and Rahm [7]. Their strategy is extended
in that the Compound Matcher also considers synonyms of the
compound head retrieved from WordNet.

Context Subsump-
tion Matcher

The surrounding class structure of two concepts to be matched
is also used by Arnold and Rahm [7]. However, from the ap-
proach described in their paper, it seems they only consider the
superclasses of two ontology concepts when determining a sub-
sumption relation, not their subclasses.

Lexical Subsumption
Matcher

The Lexical Subsumption Matcher uses an approach that com-
bines two techniques in order to identify a subsumption rela-
tion. The first technique, where WordNet hyponyms are used
to indicate subsumption relationship is also used in Arnold and
Rahm [7]. The other technique, which is used to sharpen the
precision of the hyponym set, uses the Resnik similarity met-
ric [121] to qualify the subsumption relation by considering the
information content of the source and target concepts.

Definitions Sub-
sumption Matcher

The Definitions Subsumption Matcher uses Lexico-Syntactic
Patterns [62] to detect subsumption, and a similar approach
performed by others has not been identified.

As with the equivalence matchers presented in Section 5.2, the subsumption
matchers perform a pairwise computation of all concepts from the respective
input ontologies in order to derive semantic relatedness. The result from the
computation is an alignment holding a set of subsumption relations with an
associated confidence value determined by the matcher. This is illustrated
in Figure 5.8.

5.3.1 Compound Matcher

The Compound Matcher identifies subsumption relations between entities
reusing principles from the compound strategy from Arnold and Rahm [7]
and the compound noun analysis used by Cruz et al. [22]. Here, compounds
in entity names are identified and employed as an indicator of a subsump-
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A’

B’ C’

B C

A

AlignmentMatcherOntology S

Ontology T

A vs A’
A vs B’
A vs C’
B vs A’

…

Source Target Relation Confidence

A A’ > 0.6

A B’ > 0.4

A C’ > 0.5

B A’ < 0.2

B B’ < 0.4

B C’ < 0.3

C A’ < 0.7

C B’ < 0.1

C C’ > 0.8

Figure 5.8: Input and output from matchers.

tion relation (e.g. Research − Project is subsumed by Project). Different
strategies for detecting compound parts were experimented with during the
development of this matcher, for example using a list of all English nouns
as a basis for detecting if several of these were included in a single concept
name. This strategy proved very error-prone as many of the words in the list
were accidentally considered words when being simply substrings, resulting
in that may concept names that were not compounds were considered as
such. For example, Content, where both ten and tent are listed as separate
nouns in the word lists. De-compounding, as this process is often termed,
is a very challenging task, and open sourced and efficient compound split-
ting software for the English language is difficult to come by. However, for
the purposes of this matcher a quite naive implementation worked pretty
well. Here, the compound parts are identified using a regular expression as
follows:

( ? < ! ( ˆ | [A−Z ] ) ) ( ? = [A−Z ] ) | ( ? < ! ˆ ) ( ? = [A−Z ] [ a−z ] )

This regular expression extracts all parts of a string that begins with an
upper-cased letter and works well for camel-cased and Pascal-cased concept
names, both notations that are typically used for concept names in on-
tologies. This means that for the concept name AcademicResearchProject
the following set of constituent compound parts is extracted: {‘academic’,
‘research’, ‘project’}.
Note that a concept with fewer compound modifiers is considered a stronger
indication of a direct subsumption relation than a concept with more com-
pound modifiers, and this is acknowledged by the scoring function of this
matcher (see below). The rationale is that it is likely that Research −
Project is an intermediary concept in between AcademicResearchProject and
Project.

We extend the compound strategy by also considering synonyms to the
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head of a compound word. This is illustrated in Figure 5.9. With this
extension, the concept ResearchProject can be considered a subclass of the
concept Project, but also Undertaking (where Undertaking is synonymous
with Project) according to WordNet, and similarly, Research-Undertaking
can be considered a subclass of Project.

{ task, labor, undertaking }

Research Project Project

{ task, labor, undertaking }

[ ]

Figure 5.9: Compound Matcher

The scoring function of the Compound Matcher is as follows:

• If the source concept is a compound, its compound head equals the
full name of the target concept and the source concept consists of only
one compound modifier: source < target and the confidence value is
1.0, or vice versa.

• If the source concept is a compound, its compound head equals the
full name of the target concept and the source concept consists of two
compound modifiers: source < target and the confidence value is 0.75,
or vice versa.

• If the source concept is a compound, its compound head equals the full
name of the target concept and the source concept consists of three or
more compound modifiers: source < target and the confidence value
is 0.50, or vice versa.

• If the source concept is a compound, a synonym of its compound head
equals the full name of the target concept and the source concept
consists of one compound modifier: source < target and the confidence
value is 0.75, or vice versa.

• If the source concept is a compound, a synonym of its compound head
equals the full name of the target concept and the source concept con-
sists of two compound modifiers: source < target and the confidence
value is 0.50, or vice versa.

• If the source concept is a compound, a synonym of its compound head
equals the full name of the target concept and the source concept
consists of three or more compound modifiers: source < target and
the confidence value is 0.25, or vice versa.
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5.3.2 Context Subsumption Matcher

The Context Subsumption Matcher identifies a subsumption relation between
two concepts based on their context, i.e. their parent classes and child
classes.

An example that illustrates the approach taken by the Context Subsump-
tion Matcher is provided in Figure 5.10. Here, in the example illustrated
in Figure 5.10(a), the Context Subsumption Matcher concludes that the
source concept PhdThesis (white) should be a subclass of the target concept
Thesis in ontology 2 (grey), since this latter class is equivalent with the
Thesis concept in ontology 1 (white). Alternatively, as exemplified in Fig-
ure 5.10(b), the Context Subsumption Matcher derives that the target
concept PhdThesis (grey) should be subsumed by the source concept Thesis
(white) since the latter has a subclass that is equal to the target concept.

A similar approach is also used by the STROMA matching system [7], which
is described in Section 3.2. In STROMA this is called the Structure Strategy.

Thesis Thesis
=

subclassOf
subclassOf

PhdThesis

(a) Deriving a subsumption relation
from a parent’s equivalence relation to
a target concept.

Thesis PhdThesis

=
subclassOf

subclassOf

PhdThesis

(b) Deriving a subsumption relation
from a parent’s equivalence relation to
a target concept.

Figure 5.10: Context Subsumption Matcher.

5.3.3 Lexical Subsumption Matcher

This matcher is based on the combination of two features: hyponyms in
WordNet and information content (see Section 2.5.3). The first feature is
the dominant feature of the two, and is represented by hyponyms retrieved
from WordNet. If the term used to express the source concept is present
in the hyponyms of the term used to express the target concept, the source
concept is subsumed by the target concept. This approach is similar to the
Background Knowledge Strategy of Arnold and Rahm [7] and it is illustrated
in Figure 5.11 where the concept Article matches one of the hyponyms
associated with Publication.

The second feature is a qualifying feature that aims to filter out falsely
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determined hyponym relations between two concepts on the basis of their
information content. As described in Section 5.2.4, using WordNet can of-
ten lead to a large number of false positives. Hence, we want to strengthen
the belief that two concepts are in fact semantically related using the Res-
nik [121] semantic similarity measure.

PublicationArticle

subclassOf

{book, report, brochure, article}

Figure 5.11: Lexical Subsumption Matcher

The similarity score of this matcher is determined by the following rule:
If a source concept Cs is present in the hyponym set of a target concept
Ct and the Resnik similarity score is above a defined threshold T (in our
experiments we have used 0.75): source < target with a confidence of T;
and vice versa.

5.3.4 Definitions Subsumption Matcher

The Definitions Subsumption Matcher combines lexico-syntactic patterns
and lexical processing of definitions associated with ontology concepts. This
approach is based on Hearst’s work on automatically identifying hyponymy
relations from unstructured texts [62].

First, the natural language definitions (i.e. rdfs:comments) for the two
concepts to be matched are extracted if they contain any of the defined
lexico-syntactic patterns. These definitions are pre-processed by remov-
ing stopwords and other non-alphabetic characters. Then the definitions
are tokenized and each token is lemmatized using the Stanford SimpleNLP
API2. Next, using the patterns described in Table 5.3, the matcher infers
hyponym or hypernym relations between two concepts Cs and Ct as follows:

If the natural language definition of a source concept Cs contains either of
these patterns and the name of the target concept Ct equals a noun that
follows a pattern the matcher concludes that there is a subsumption relation
source > target between these two concepts (and vice versa).

A challenge with these lexico-syntactic pattern is that although they can
automatically identify subsumption relations, they can also falsely intro-

2https://stanfordnlp.github.io/CoreNLP/api.html
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Table 5.3: Lexico-syntactic patterns.

Pattern Example

Including... type of book including monograph, collection, proceeding...

Includes... a part of an aircraft, this includes the engine, wheels, etc.

Such as... organization such as sports organization, governmental organization, etc.

E.g.... different events, e.g. sports events, academic events, etc.

For example... a report, for example a research report, technical report, etc.

duce meronymic relations. The challenge of distinguishing subsumption
from meronymy is also mentioned in Arnold and Rahm [7]. For example,
the natural language definition for the concept Airport could include the
phrase “Airports often have facilities to store and maintain aircraft, and a
control tower. An airport often includes adjacent utility buildings
such as control towers, hangars and terminals”. This would from
the patterns above lead to the following subsumption relation: Airport >
Terminal. However, the correct semantic interpretation of these two con-
cepts would be that a terminal is a part of an airport (not a type/kind
of airport), hence these two concepts belong to a meronymic relation (see
Section 2.4.3). Therefore, this matcher includes a post-matching operation
that checks if the subsumed concept in the candidate subsumption relation
belongs to the set of meronyms associated with the subsuming concept. If
so, the candidate subsumption relation is discarded. The sets of meronyms
are retrieved from WordNet.

5.4 Matcher Selection and Configuration

This section describes how matchers are automatically selected and con-
figured based on the ontology profiling process described in chapter 5.1.

We start with a recap of the ontology profiling described in the previous
section. Table 5.4 illustrates how the different ontology profiling metrics
determine the selection and configuration of the different matchers. If a
matcher is listed in the Matcher Selection column of the table, the measure-
ment of the associated ontology profiling metric determines if the matcher
is included in the matcher ensemble or not. If a matcher is listed in the
Matcher Configuration column of the table, the measurement of the associ-
ated ontology profiling metric is used as a weight parameter to the confidence
value each matcher computes for any semantic relation it identifies.
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An example is used to explain Table 5.4: The Definition Coverage is cal-
culated by measuring the fraction of concepts in the two input ontologies
that have a natural language definition associated to them. The Definition
Equivalence Matcher and the Definition Subsumption Matcher both exploit
such natural language definitions to infer either equivalence or subsumption
relations between ontology concepts. If the ontology profiling determines
that the score for the Definition Coverage metric is 0.0, meaning that there
are no natural language definitions that can be exploited by the Defini-
tion Equivalence Matcher or the Definition Subsumption Matcher, these
two matchers should be omitted from the ensemble of matchers run for this
particular task. Hence, the ontology profiling metric Definition Coverage is
a determinant for the matcher selection process.

Table 5.4: How ontology profiling metrics determine selection and configuration
of matcher ensemble

Ontology Profiling Metric Matcher Selection Matcher Configuration

Compound Fraction Compound Matcher Compound Matcher

Definition Coverage
Definition Equivalence Matcher

Definition Subsumption Matcher
Definition Subsumption Matcher

Corpus Coverage Word Embedding Matcher
Word Embedding Matcher

Definition Equivalence Matcher

Property Fraction Property Equivalence Matcher Property Equivalence Matcher

Structural Profile
Graph Equivalence Matcher

Context Subsumption Matcher

Graph Equivalence Matcher

Context Subsumption Matcher

Lexical Coverage
Lexical Equivalence Matcher

Lexical Subsumption Matcher

Lexical Equivalence Matcher

Lexical Subsumption Matcher

Furthermore, the Definition Subsumption Matcher uses the natural lan-
guage definitions directly (i.e. without any external support) to arrive to
a conclusions on whether two concepts belong to a subsumption relation.
Hence, if the Definition Coverage score is 0 or very low, this matcher should
be penalised by reducing the confidence measure associated with the rela-
tions in the alignment it produces. Therefore we also use the Definition
Coverage score as a means for configuring the matcher (i.e. as a weight
parameter associated with the confidence of the matcher).

The Definition Equivalence Matcher, however, is based on two sources of
input. One is the natural language definition associated with ontology con-
cepts, and the other is the word embeddings generated from the Word2Vec
process (see explanation in Section 5.2.1). For each word in the definition
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of a concept, the Definition Equivalence Matcher does a look-up in the list
of word embeddings, and computes a Global Vector that averages the vec-
tors for each individual word in addition to the concept name (label). This
means that even without any natural language definitions associated with
the ontology concepts to be matched, the Definition Equivalence Matcher
can still produce an alignment based on the vectors of the concept names
(i.e. a Label Vector as described in Section 5.2.1). From this, it is better
to use the Corpus Coverage metric to determine the weight for the confid-
ence value associated with the Definition Equivalence Matcher, and not the
Definition Coverage ontology profiling metric.

5.4.1 Strategy for Selecting Matchers based on Ontology Profiling

A matching system’s ability to select the most relevant matchers from a
possibly large ensemble of matchers is crucial for leveraging a good quality
alignment. Recall from Section 5.1 that the result from the ontology profil-
ing process is a set of scores that define the terminological, structural and
lexical characteristics of the input ontologies. Similarly, the matchers (both
equivalence and subsumption) are also classified as terminological matchers,
structural matchers and lexical matchers.

The ontology profiling returns a score normalised between 0 and 1. This
score is compared against a predefined matcher selection threshold that de-
termines whether a matcher should be included in the matching process or
not. In the evaluation described in Chapter 6 we use 0.5 as such a threshold.
This means that if a matcher is assigned a score of 0.5 or above, it is included
in the ensemble, otherwise it is omitted from the ensemble.

5.4.2 Strategy for Configuring Matchers based on Ontology Profiling

Most approaches for configuring matchers rely on manual intervention or
some supervised machine learning method [24, 120, 41]. Configuring or tun-
ing matchers normally requires both domain expertise and in many cases
in-depth familiarity with the matching system, hence manual configuration
is not always feasible. With regards to supervised learning approaches, these
use previously solved matching tasks as training to find effective choices for
matcher selecting and configuration [26]. Thus, such an approach require
an substantial amount of training data for each individual matching task,
something that might be difficult to acquire [120]. Therefore, in this work,
the matcher selection and configuration is based on data that can be ob-
tained by profiling the ontologies to be matched.

Initially, the weighting formula in this work is based on the assumption
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that the higher the profile score, the better are the operating conditions
for a matcher that exploits the characteristics for which the profile aims to
measure. Based on this assumption, we want to put more trust in matchers
that can benefit from “good operating conditions”, and lower the trust in
matchers that have to cope with “bad operating conditions”. A straightfor-
ward approach would be to simply multiply the confidence value with the
profiling score in order to get a weighted confidence value. However, that
would result in a too significant reduction of a confidence value assigned by
a matcher given a relatively high profile score. In some way we should be
able to preserve the best relations (i.e. those with the highest confidence
value) even if a matcher is demoted based on the profile score.

Let us illustrate with an example: a confidence value of 0.8 is intuitively
considered a relatively high value. But if the matcher that produced this
relation was given a weight of 0.73 from the score obtained in the ontology
profiling (which also, intuitively, seems fairly high), this would reduce the
confidence value from 0.8 to 0.58. Using the default cut threshold in e.g.
the AgreementMakerLight system [39], which is 0.6, this would disregard
this relation from the output alignment if a fixed cut-off value was to be
used.

Instead, we want a function that leads to a more relaxed demotion of high-
confidence relations such that these can be preserved during the alignment
combination – even if the matcher is assigned a reduced weight as a result
from the ontology profiling. A possible solution to this is the mathematical
function sigmoid. The sigmoid function creates a curve shaped as an s,
in contrast to a linear line, as illustrated in Figure 5.12. Here, we see in
Figure 5.12(a) that an initial confidence value of 0.2 (x-axis) is transformed
into a weighted confidence value of 0.03 (y-axis) using the sigmoid function,
whereas an initial confidence value of 0.6 gets an increase to 0.7. With a
linear function as illustrated in Figure 5.12(b) the initial confidence value of
0.2 is reduced to 0.16 and also the initial confidence value of 0.6 is reduced
(to 0.48).

The general sigmoid function is defined as described in equation 5.3.

σ(x) =
L

1 + e−a(x−x0)
(5.3)

where e is the natural logarithm base, x0 is the sigmoid’s midpoint along
the x-axis, L is the curve’s maximum, and a is called the slope parameter
which defines the steepness of the curve.
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1.0

1.00.6

0.48

0.2

0.16

Initial confidence value

W
e

ig
h

te
d

 c
o

n
fi

d
e

n
c

e
 v

a
lu

e

(b) Weighting using a linear function.

Figure 5.12: Difference between a sigmoid function and a linear function.

Depending on how we want to shape the s curve, the function can demote
confidence values considered low and promote confidence values considered
high. In other words, using this function enables us to “manipulate” the
weight configuration used for transforming an initial confidence value asso-
ciated with a semantic relation to a weighted confidence value. A similar
idea was applied by Ehrig and Sure [28] when they used a fixed midpoint (x0)
of 0.5 to reinforce confidence values above 0.5 and weaken those confidence
values below 0.5.

As an attempt to preserve the semantic relations produced under “good
operating conditions” quantified using the profile score, as described further
above, we modify the original sigmoid function as follows:

σ(x) =
1

1 + e−a(x− f (PS)))
(5.4)

where in addition to the aforementioned parameters f is a transformation
function that transforms the initial profile score (PS) in the range [0.0, ...
, 1.0] into some refined range [x, ... , y]. Hence, different from Ehrig and
Sure, we have a dynamic midpoint value (x0) determined by the profile
score. This transformation function proceeds as follows:

f (x) = (x− b)
e− d
c− b

+ d (5.5)
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where b is the minimal confidence value, c is the maximal confidence value,
d is the minimal value in the output range and e is the maximal value in
the output range.

In the following we describe the effect of manipulating the sigmoid paramet-
ers. First we focus on the slope parameter a. The choice of slope parameter
has an effect on how we discriminate between low vs. high confidence val-
ues when combined with the profile score. This is illustrated in Figure 5.13,
where we see how initial confidence values are transformed into revised con-
fidence values according to different profile scores. If the slope parameter is
set closer to 1 (as indicated by the straight lines in the chart), this has the
effect that the transformed confidence from 0.1-1.0 centres in the middle of
the y-axis (around 0.5), regardless of which ontology profile score a matcher
is assigned. However, if the slope parameter is 20 (as indicated by the dotted
lines in the chart), all confidence values below 0.5 are moved very close to
zero confidence, while all confidence values above 0.5 are moved very close
to confidence 1.0.
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Figure 5.13: Effect of the sigmoid’s slope parameter.

Next, we focus the attention on the midpoint parameter x0 for which we use
a transformation function f (PS) to factor in the profile score. The choice
of range used for transforming the initial profile score PS is important in
order to differentiate between revised confidence scores. This is illustrated
in Figure 5.14 where the effect of choosing a range of 0.5 - 0.6 versus 0.5 - 0.7
is demonstrated. Note how an initial confidence value of 0.5 declines more
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along the x-axis if the initial profile scores are transformed to the range 0.5
- 0.7 (indicated by dotted line in the chart) than if they are transformed to
the range 0.5 - 0.6 (indicated by straight line). In this example the slope
parameter a is held constant at 12.
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Figure 5.14: Effect of transforming profile weights.

Now that we have explained the effect of manipulating the slope parameter
and the midpoint value based on the initial profile score we explain how
this will help preserve those relations that fulfil “good operating conditions”.
As an attempt to operationalise such conditions three fixed thresholds are
applied as input requirements for determining which slope parameter a and
which transformation range we should use in the transformation function
f (PS). These thresholds are explained in the following.

• Initial Confidence Threshold : The initial confidence value associated
with the relation should be above some confidence threshold. There
is no absolute requirement for what such a threshold should be, as
this depends on a number of different aspects (e.g. how the similar-
ity/relatedness scores are computed by a basic matcher). Here, we
decided to use the same value as the default confidence threshold in
the AgreementMakerLight system, namely 0.6, as our threshold.

• Profile Score Threshold : The profile score associated with the matcher
should be above a minimum threshold. As mentioned in Section 5.4.1,
the matcher selection threshold is set to 0.5, meaning that match-
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ers given a profile score of 0.5 are included in the matcher ensemble.
It thus makes sense to use the same threshold as the profile score
threshold.

• Weighted Confidence Threshold : Finally, the revised confidence value
computed using the Sigmoid function should be above threshold. Here,
we set 0.5 as our threshold.

An experiment was run to investigate which slope parameter a and trans-
formation range combination would fulfil the requirements posed by the
abovementioned thresholds. In this experiment a series of different slope
parameters and parameters for the transformation function were used as
input.

The results from this experiment are illustrated in Figure 5.15 and Fig-
ure 5.16. As Figure 5.15 illustrates, when using a slope parameter of 3 and
a transformation range of 0.5-0.7, a relation having an initial confidence
value of >= 0.6 would be preserved if it has a profile score of >= 0.5 and a
weighted confidence score of >= 0.5. This combination of slope parameter
and transformation range fulfils all required thresholds and is therefore used
in the prototype semantic matching system in this thesis.
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Figure 5.15: Correlation between a confidence value and profile weights with the
sigmoid function.

Figure 5.16 illustrates the effect of not using the sigmoid function and the
profile score transformation. Here, the profile score associated with the
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matcher in question is simply multiplied with the initial confidence score.
In such a scenario, only the relations with an initial confidence value of 1.0
would be included using the same thresholds as described above.
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Figure 5.16: Correlation between a confidence value and profile weights without
the sigmoid function.

5.5 Mismatch Detection Strategies

This section describes two strategies, that inspired by mismatch classifica-
tion theories (see Section 2.3), aim to automatically detect mismatches that
have not been identified as such by matching techniques and therefore are
considered true positives. The primary objective of these strategies is to
improve the precision of computed equivalence alignments without suffering
recall. In the following sub-sections the strategies are explained, and their
use is described by two experiments. In these experiments a state-of-the-art
matching system, AgreementMakerLight [39] produces an initial alignment
from which false positive relations are filtered out using the two strategies.

5.5.1 Concept Scope Mismatch Detection

The Concept Scope Mismatch detection strategy (see Algorithm 3) filters
out concept scope mismatches by trying to determine if the matched classes
are unlikely to be equivalent because they are in a subsumption or part-
whole relationship to one another:
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1. Part-whole pattern. The part component of the part-whole relation-
ship includes the name of its whole as its compound modifier. For ex-
ample, an Aircra f tEngine represents a part of Aircra f t. This is clas-
sified as a ‘component/integral object’ relation in Winston et al. [157].

2. Subsumption pattern. The relation is considered a subsumption re-
lation if the compound head in one concept equals the full name of
the other (e.g. Location - Re f erenceLocation). This strategy is also
described in Arnold and Rahm [7].

Algorithm 3 starts by iterating over all relations a in the already computed
alignment Ainput (line 3).

Algorithm 3 Technique for filtering out Concept Scope Mismatches

Input: Input alignment Ainput produced by an ontology matching system.
Output: Alignment Aoutput where relations considered Concept Scope Mismatches are removed.

1: function removeConceptScopeMismatches(Ainput)
2: A f iltered ← ∅
3: Aoutput ← ∅
4: for all a ∈ Ainput do
5: if isCompound(aci) then
6: modi f ieraci ← getCompoundModi f ier(aci)
7: compoundHeadaci ← getCompoundHead(aci)
8: if modi f ieraci .equals(acj) or compoundHeadaci .equals(acj) then
9: A f iltered ← A f iltered ∪ a

10: end if
11: end if
12: if isCompound(acj) then
13: modi f ieracj ← getCompoundModi f ier(acj)

14: compoundHeadacj ← getCompoundHead(acj)

15: if modi f ieracj .equals(aci) or compoundHeadacj .equals(aci) then

16: A f iltered ← A f iltered ∪ a
17: end if
18: end if
19: end for
20: return Aoutput ← Ainput - {A f iltered}
21: end function

The isCompound method on line 4 checks if the label of the first class in
the relation (aci) represents a compound. If so, both the compound modifier
and the compound head is added to variables modi f ier and compoundHead
respectively (lines 5 and 6). Then the method checks if the label of the other
class in the relation (acj) equals the compound modifier or the extracted
compound head. If so, this relation is considered a part-whole relation or
a subsumption relation, not an equivalence relation, and is added it to the
alignment A f iltered which holds all detected concept scope mismatches (line
8). Lines 11-17 follow the same pattern but in the opposite direction to see
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if the second class in the relation (acj) represents a part to the whole of the
first class in the relation (aci). Finally, once all relations a are iterated, the
detected mismatches are extracted from the input alignment and a refined
alignment is returned on line 19.

In order to illustrate the capability of the Concept Scope Mismatch De-
tection, an experiment was conducted using the AgreementMakerLight [39]
ontology matching system. The ontologies from which an alignment has
been produced are ATMONTO and AIRM-O, the same two ontologies that
are used in the ATM dataset, one of the datasets used for the evaluation in
this thesis (see Section 6.2).

Figure 5.17 illustrates how the Concept Scope Mismatch Detection strategy
filters out false positive relations from an alignment returned by the Agree-
mentMakerLight system. The relations with dark grey background indicate
true positive relations, and the relations that have strike-through text are
relations filtered out by the mismatch detection strategy. The result of the

AML Initial After Concept Scope Mismatch

Figure 5.17: Illustration of Concept Scope Mismatch Detection.

mismatch detection in this preliminary experiment was that the precision
increased from 0.44 to 0.63 and without any reduction in the recall, the
F-measure increased from 0.4 to 0.44.
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5.5.2 Domain Mismatch Detection

Ontology matching systems often rely on some string-based similarity tech-
nique for computing similarity between ontology concepts [15]. Unfortu-
nately, the emphasis on string representation of concept names, without
any additional semantic analysis, often bring false positive relations in their
computed alignment [114], resulting in sub-optimal alignments that pos-
sibly propagate errors to the remaining ontology matching workflow. This
is a problem that typically increases for ontologies that only partially de-
scribe the same domain. Hence, in order to optimise the quality in ontology
matching it is therefore important to reduce the number of false positives
from string matching operations.

The approach suggested here is based on an assumption that if two concepts
are semantically similar, the domains they are associated with ought to
be similar too. Following the example illustrated in Figure 5.18, let us
say that a string matcher computes with 96 percent confidence that the
entity ’Content’ in ontology 1 is equivalent with ’Continent’ in ontology 2,
which is obviously incorrect to the human eye. Such a false positive relation
can be filtered out if the similarity between their domains ({Metrology and
Photography} vs. {Geography}) is below a given threshold.

Ontology 1 Ontology 2

…

Content

…

Continent
Sim: .96

=

Ontology 1 Ontology 2

…

Content

…

Continentx
Domains Domains«Metrology»

«Photography»
«Geography»

Figure 5.18: Example of applying WordNet Domains to infer domain
(dis)similarity.

In this approach WordNet Domains [45], a lexical resource that offers a
domain classification of Wordnet synsets (i.e. sets of synonyms for every
distinct concept), is applied to determine domain dissimilarity between two
concepts. This domain classification is used to verify if the two concepts,
or the pre-processed version of them, represent the same domain. If not,
the relation holding these two concepts is filtered out of the alignment. The
domain dissimilarity is computed using Jaccard similarity of sets on the
domains returned as there can be several domains listed for each concept
and some domains are used quite generically (e.g. factotum). Of course, the
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threshold value used for the Jaccard similarity influences on the final result.
Experiments using an independent dataset showed that using a similarity
threshold of 0.6 and above gave the best results.

The proposed approach to identify false positive relations is illustrated in
Algorithm 4. Each relation in this original alignment is processed in a
sequence of operations.

Algorithm 4 Technique for detecting Domain Dissimilarity Mismatches

Input: Input alignment Ainput holding a set of relations ai, minJaccard a threshold for Jaccard
set similarity in the range [0, 1]

Output: An alignment Acorrected holding relations where the source concept and target concept
are associated with the same domains.

1: function removeDomainMismatches(Ainput)
2: Acorrected ← ∅
3: for all ai ∈ Ainput do
4: if ai .c1.equals(ai .c2) then
5: Acorrected ← Acorrected ∪ ai
6: else if compareConceptNamesDomains(ai .c1, ai .c2, minJaccard) then
7: Acorrected ← Acorrected ∪ ai
8: else if f ullWordRep( f ullWord(ai .c1), f ullWord(ai .c2), minJaccard) then
9: Acorrected ← Acorrected ∪ ai

10: else if compoundHead(compoundWord(ai .c1), compoundWord(ai .c2), minJaccard) then
11: Acorrected ← Acorrected ∪ ai
12: else if compareAllParts(compareAllParts(ai .c1), compareAllParts(ai .c2), minJaccard) then
13: Acorrected ← Acorrected ∪ ai
14: end if
15: end for
16: return Acorrected
17: end function

The first operation (line 4) compares the two concept names for string-
based equality and there is no interaction with WordNet Domains in this
operation. If the concepts are equal, they are added to the revised alignment
Acorrected without further processing. If they are not, the second operation
is initiated.

In operation 2 (compareConceptNamesDomains) on line 6, the domains as-
sociated with the concept names as they are represented in the ontology
are identified, without any text processing involved. So for instance, if one
relation includes the source concept “Classification” and the target concept
“Class”, the sets of domains associated with these two classes are retrieved.
Next, these two sets of domains are compared using Jaccard similarity of
sets. If the Jaccard score is equal to or above the minJaccard parameter,
the function considers that the two concepts represent the same domain.

Often a concept name is represented as a compound, for instance“TableOfCon-
tents”. In operation 3 (fullWordRep) on line 8, a compound is split before
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the interaction with WordNet Domains is performed. So instead of retriev-
ing domains for “TableOfContents” from WordNet Domains, any domains
associated with “Table Of Contents” are retrieved. The remaining part of
this step is similar to operation 2.

In operation 4 (compoundHead) on line 10, the compounds are also split.
However, in this step only the compound head (the part that carries the
basic meaning of the whole compound) of the concept names is considered.
Hence, only domains associated with the compound heads are retrieved,
and if the Jaccard score is equal to or above the minJaccard threshold, the
relation is added to the corrected alignment.

Finally, operation 5 (compareAllParts) on line 12 retrieves the domains of
all “atomic” words from a compound. So, if for example, a relation includes
the source concept “MusicNotation” and the target concept “MusicCompos-
ition”, the domains for “Music” and “Notation” are retrieved for the source
concept, and the domains for “Music” and “Composition” are retrieved for
the target concept. Then the sets for each concept are merged and compared
using Jaccard as in the previous operations.

As with the Concept Scope Mismatch Detection presented in the previous
sub-section, an experiment using the AgreementMakerLight [39] ontology
matching system was conducted. This time the ontologies being matched
were from the second dataset used for the evaluation in this thesis, Bibframe
and Schema.org. These two ontologies form the Cross-Domain dataset which
is presented in detail in Section 6.3.

Figure 5.19 illustrates the effect of this mismatch detection strategy. The
relations with dark grey background indicate true positive relations, and
the relations that have a strike-through text are relations filtered out by the
Domain Mismatch Detection strategy.

In this experiment the precision increased from 0.4 to 0.54, and without any
expense of recall, the F-measure increased from 0.54 to 0.65.

5.6 Combining Matcher Results

Four different alignment combination methods have been implemented in
order to aggregate relations from alignments produced by the individual
matchers presented in previous chapters. Three of them represent a non-
weighted approach, i.e. they do not consider any weighted confidence values
for the aggregation of relations from the individual alignments. The fourth
uses a weighted aggregation approach in that the profile scores computed
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AML Initial After Domain Similarity Mismatch

Figure 5.19: Illustration of Domain Mismatch Detection.

in the Ontology Profiling process are used to weight the confidence values
assigned by the matchers.

The combination methods based on a non-weighted aggregation approach
are Cut Threshold, Average Aggregation, and Majority Vote. The weighted
aggregation approach is named Profile Weight. In this chapter all methods
are described in detail, and all of them will later be evaluated in Chapter 6.

5.6.1 Cut Threshold

The Cut Threshold combination method is based on only allowing the rela-
tions from the individual alignments having a confidence value at or above a
given threshold access to the final alignment. As the example in Figure 5.20



5.6. Combining Matcher Results 123

shows, only the relations from the individual alignments having a confidence
value over 0.6 are included in the final alignment to the right.

Concept 1 Concept 2 Confidence
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Figure 5.20: Cut Threshold of Matcher Alignments.

5.6.2 Average Aggregation

The Average Aggregation combination method averages the confidence of
relations where the two concepts involved are the same across all alignments.
As the example in Figure 5.21 shows, this method adds all relations that
are included in the individual alignments, and creates a final confidence
score based on the average confidence of the individual alignments. This
computation is done regardless of the type of relation that holds between
the two concepts in a relation.
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Figure 5.21: Average Aggregation of Matcher Alignments.

5.6.3 Majority Vote

This combination method implements a voting strategy for determining the
final alignment from a set of alignments produced by individual matchers.
Here, the relations that are represented in the majority of the individual
alignments are included in the final alignment as illustrated in Figure 5.22.

5.6.4 Profile Weight

When aggregating the semantic relations computed by the different match-
ers into a final alignment the ProfileWeight strategy takes a weighted ag-
gregation approach. This strategy is similar to the alignment aggregation
methods by Mao et al. [91] and Gulic et al. [56] described in Section 3.4 in
that a part of the strategy involves extracting the “highest relations” from
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Figure 5.22: Majority Vote to determine a final alignment from Matcher Align-
ments.

a similarity matrix. However, the commonly used principles for alignment
combination used in equivalence matching are not transferable into a setting
where subsumption alignments are to be combined. The reason for this is
that these principles operate under the condition that from the set of in-
dividual alignments a single best 1-1 relation should be extracted from the
individual alignments and be represented in a final alignment.

Contrary to Mao et al. and Gulic et al., the computation of the final align-
ment is not based upon how many “highest correspondences” there are over
all computed relations by each matcher, but rather the profiling weights im-
posed by the ontology profiling process. Hence, in the Profile Weight com-
bination strategy the set of “highest correspondences” are extracted based
on the confidence score in each row and each column of a similarity mat-
rix, then from this set of relations the weights from the ontology profiling
(according to the description presented in Section 5.4) are imposed before
computing the final alignment.

Furthermore, while 1-1 relations are enforced when computing the equival-
ence alignments, that constraint is removed in the aggregation of subsump-
tion relations since it is highly likely that a single concept in one ontology
can be related to multiple concepts in the other ontology. For the equival-
ence alignments, the Naive Descending Extraction algorithm [94] is applied
to enforce 1-1 relations, however this is not performed for the subsumption
alignments.

The procedure is described in pseudocode in Algorithm 5. The input to the
procedure is a set of alignments R holding relations computed by individual
matchers. For each alignment a similarity matrix M is created (Line 4).
The set of highest relations (those relations having the highest confidence
value row-wise and column-wise) are extracted into set H (Line 5). Finally,
the highest relations in H are unionised into a final alignment Apw. If
the alignments hold equivalence relations, the method en f orceSM ensures
that non 1-1 relations are removed using the Naive Descending Extraction
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algorithm.

Algorithm 5 Pseudocode for the Profile Weight Combination Method

Input: R, a set of alignments produced by individual matchers where the confidence of each
relation is weighted based on the scores from the ontology profiling.

Output: A final alignment Apw holding the highest relations from the individual matchers.
1: function Pro f ileWeight(Os, Ot)
2: Apw ← ∅
3: for all A ∈ R do
4: M ← createSimMatrix(A)
5: H ← extractHighestRelations(M)
6: end for
7: return Apw ← H - {en f orceSM(H)}
8: end function

5.6.5 Merging Equivalence and Subsumption Alignments

As the computation of equivalence relations and subsumption relations is
performed separately for the purpose of a more detailed evaluation, the final
alignments must be merged in order to finally return a complete alignment
holding both equivalence and subsumption relations. This merging process
basically takes the union of all relations in the equivalence alignment and
subsumption alignment and puts the relations in a merged equivalence and
subsumption alignment. However, conflicts can occur if an equivalence rela-
tion and a subsumption relation have the same source and target concepts.
In such a case the merging process retains the relation with the highest con-
fidence value. If both conflicting relations have the same confidence value,
we leave both relations in the final alignment (e.g. for human evaluation).

5.7 Use of External Sources

A number of external sources and libraries are used to support the matching
operations. An overview of how the different matchers (described in detail
in Sections 5.2 and 5.3) depend on these sources and libraries is presented
in Figure 5.23. The OWL API and the Alignment API have been left out
of the illustration since they are used by all matchers.

5.7.1 Word Embedding

As described in Section 2.5.1, Word Embedding represents a set of tech-
niques where words (or phrases) are mapped to vectors represented by real
numbers. The implementation in this work is based on the Skip-Gram
model proposed by Mikolov et al. [96] which aims at predicting surrounding
words given a target word. It does so by training a neural network using
a large-scale corpus containing sentences of words. Early experiments with
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Figure 5.23: Dependencies to external sources and libraries.

the Skip-Gram and the Continuous Bag of Words (CBOW) architectures
revealed little difference in performance, and the rationale for using Skip-
Gram over CBOW is mainly that Skip-Gram allegedly performs better on
lower-sized corpora. Especially one of the corpora used in this work (the
Skybrary corpus described next) has a relatively small initial size (around
40MB).

Two different corpora have been prepared for the Word Embedding Matcher
and the Definitions Equivalence Matcher in this work:

• SKYbrary Corpus. This corpus is extracted from a wiki called SKY-
brary. SKYbrary is an electronic repository of safety knowledge re-
lated to flight operations, air traffic management (ATM) and aviation
safety in general.

• Wikipedia Corpus. This is a more general corpus represented by a
complete dump of Wikipedia3.

For the Wikipedia Corpus we used a dump of the English Wikipedia offered
by WikiMedia4. For the SKYbrary Corpus the SKYbrary wiki was scraped
using the open source tool Dumpgenerator5. Both these dumps are repres-
ented in large XML files. From thereon, both corpora were transformed to
plain text using the WikiExtractor tool6 and pre-processed by removing all

3This corpus was prepared by preprocessing the Wikipedia dump of 18 October 2018.
4https://dumps.wikimedia.org/
5https://github.com/WikiTeam/wikiteam/blob/master/dumpgenerator.py
6https://github.com/attardi/wikiextractor

https://dumps.wikimedia.org/
https://github.com/WikiTeam/wikiteam/blob/master/dumpgenerator.py
https://github.com/attardi/wikiextractor
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XML/HTML tags, punctuation, and stopwords; lowercasing all words, and
finally tokenizing the text into sentences.

For training the neural network we used a vector dimension of 300, a
window-size of 5, and a minimum word count of 2. The Skip-gram algorithm
was run for 5 iterations, resulting in a text file holding every word in the
initial corpus mapped to a 300-dimensional vector positioning (embedding)
this word in a vector space.

5.7.2 WordNet

WordNet [98] is a lexical database where nouns, verbs, adjectives and ad-
verbs are grouped into sets of synonyms (synsets) expressing distinct con-
cepts. The synsets are interlinked by lexical-semantic relations forming a
network of related words and concepts. A more comprehensive description
of WordNet is provided in Section 2.5.3. WordNet is applied by the Lex-
ical Equivalence Matcher, the Lexical Subsumption Matcher, the Property
Equivalence Matcher and the Compound Matcher.

5.7.3 Software Libraries

The software development involved when developing the artefacts described
in this chapter has benefited from several existing software APIs and librar-
ies.

The OWL API [66] is a Java reference implementation for creating, manipu-
lating and serialising ontologies in the OWL format. This API has primarily
been used for parsing and extracting various features from the ontologies
to be matched, both in the ontology profiling process and when performing
the actual semantic matching.

The Alignment API [23], which is also described in detail in Section 2.2.2,
offers a programming infrastructure for ontology matching and a standard-
ised format for expressing and evaluating alignments. Related to the Align-
ment API is the OntoSim7 library which offers various types of similarity
techniques especially targeted for semantic matching.

Stanford’s Simple CoreNLP8 is an API for natural language processing.
This API is used for Part Of Speech (POS) tagging, sentence tokenisation of
ontology concept definitions and lemmatisation of ontology concept names.
CoreNLP is used by the Property Equivalence Matcher and the Definitions
Subsumption matcher.

7http://ontosim.gforge.inria.fr/
8https://stanfordnlp.github.io/CoreNLP/simple.html

http://ontosim.gforge.inria.fr/
https://stanfordnlp.github.io/CoreNLP/simple.html
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Two different libraries are used for programmatically accessing the WordNet
lexicon. Java WordNet Library (JWNL)9 offers access to the core services
offered by WordNet (e.g. retrieving synonyms and hyponyms) while Word-
Net Similarity for Java (WS4J)10 provides a set of similarity techniques that
employ the lexical-ontological organisation of concepts offered by WordNet.

The Neo4J 11 graph database is used by the Graph Equivalence Matcher.

9https://sourceforge.net/projects/jwordnet/
10https://code.google.com/archive/p/ws4j/
11https://neo4j.com/

https://sourceforge.net/projects/jwordnet/
https://code.google.com/archive/p/ws4j/
https://neo4j.com/


6
Evaluation

The artefacts, that is, profiling metrics, matchers, alignment combination
methods, mismatch detection strategies and the resulting prototype, are
evaluated using three diverse datasets. These datasets involve pairs of on-
tologies representing different application domains, size, and complexity.
The evaluation is conducted according to the research approach and more
general evaluation guidelines specified in Part II.

6.1 Evaluation Protocol

All evaluations are run on a machine with Intel Core i7-7567U processor
(3.5 GHz, dual-core) and 16 GB of RAM memory.

As described in the Research Approach in Part II material from the exper-
iments run in the evaluation is made available on-line.

The evaluation metrics precision and recall, semantic precision and recall,
and F-measure, as they are described in Section 2.2.3, are used to evaluate
artefacts.

Although optimalisation of run-time performance is clearly an important
quality of semantic matching systems, this has not been a priority in this
work, and is not considered in the evaluation. But in general terms, onto-
logy matching is a problem of quadratic complexity if it involves comparing
all concepts in one ontology with all concepts in the other [37], as done in
this work. By reducing the search space for the matching process through
decomposing the matching task (i.e. the input ontologies) into smaller sub-
tasks (modules) this can reduce the complexity. This is considered out of

129
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scope in this work, but for the interested reader we refer to Jiménez-Ruiz
et al. [76], who implemented a modularisation approach combining locality
modules and neural embeddings, and Hu et al. [69] who implemented an ap-
proach that partitions the input ontologies into clusters based on structural
characteristics in the Falcon-AO matching system.

6.1.1 Evaluation of Individual Matchers

In each dataset we first evaluate how the individual matching algorithms
perform against the ground truth represented by the reference alignments.
No matcher weight is applied on these alignments, but 1-1 relations is en-
forced for equivalence alignments using the Naive Descending Extraction
algorithm [94]. The performance of the individual matching algorithms
is evaluated using precision, recall and F-measure at different confidence
thresholds in order to get a good overview of their performance. Moreover,
the complementarity of the different matching algorithms is determined
based on an analysis of how many and which of the true positive relations
each of them has identified.

6.1.2 Evaluation of Alignment Combination Methods

When evaluating the combination of the alignments produced by the indi-
vidual matchers, we compare a weighted approach against a non-weighted
approach. In order to properly compare the weighted and non-weighted ap-
proach, the exact same process is used for producing a final alignment which
is then evaluated. As with the evaluation of the individual matchers, the
different alignment combination methods are evaluated on precision, recall
and F-measure at different thresholds.

For the weighted approach we evaluate both how the ontology profiling
influences the quality of the returned alignment with matcher selection and
without matcher selection. The objective here is to see if there is any quality
improvement from omitting matchers whose associated profile score (see
Section 5.4) is below a selection threshold. A selection threshold of 0.5 is
used in all datasets.

Weighted Approach

The weighted approach uses the profile scores as follows:

• Transform initial confidence. The profile weight relevant for a given
equivalence or subsumption matcher is transformed to the range 0.5
- 0.7 according to the function described in Section 5.4.2. A constant
slope parameter a of 3 is used together with the function described
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above to transform the initial confidence value to a final confidence
value for each relation computed by each matcher.

• Combine alignments using Profile Weight. Once all equivalence and
subsumption alignments are computed they are separately combined
using the Profile Weight combination method described in Section 5.6.4.
This is performed in parallel since the relation aggregation for equi-
valence and subsumption relations requires different handling as de-
scribed in Section 5.6.4. The result of this process is one combined
alignment file holding equivalence relations and another alignment file
holding subsumption relations.

• Merge equivalence and subsumption alignments. As a final step the
equivalence alignment and the subsumption alignment are merged into
a final alignment holding both types of relations.

Non-Weighted Approach

The non-weighted approach to which the weighted approach described above
is compared against follows the following steps:

• Non-weighted variants of the equivalence and subsumption alignments
produced by the individual matchers are combined using the combina-
tion methods Cut Threshold, Average Aggregation and Majority Vote.
These methods are described in Section 5.6. As earlier mentioned,
except for the weighting, the alignments are produced in exactly the
same manner (including the enforcement of 1-1 relations and mis-
match detection of the equivalence alignments and the conflict resolu-
tion of the subsumption alignments) as for the weighted combination
approach described above.

• Once merged according to the approach described in Section 5.6.5, the
combined alignments produced by the combination methods described
in the previous step are evaluated at all thresholds from 0.11 to 1.0 in
order to identify the best configuration.

6.1.3 Evaluation of Mismatch Detection Strategies

The mismatch detection strategies (see Section 5.5) are evaluated on the
basis of the improvement they achieve on the combined equivalence align-

1Evaluating alignments cut at threshold 0.0 does not make sense due to way too many
false positives resulting in a very low precision.
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ments. Specifically, since the mismatch detection strategies target improve-
ment of precision on equivalence relations (ideally without any compromise
in recall), the change of F-measure by running them on the combined equi-
valence alignment produced by the Profile Weight combination method is
measured.

The mismatch detection strategies are run in the following order:

1. Concept Scope Mismatch Detection

2. Domain Mismatch Detection

6.1.4 Comparison with other Matching Systems

To see how the Profile Weight approach performs in the context of other
matching systems, this section include two evaluations. The first evalu-
ation compares the performance of systems that output both equivalence
and subsumption relations in their alignments. Here, the results from the
Profile Weight approach is compared with the results from S-Match [46],
STROMA [7], and BLOOMS [71]. For this evaluation traditional precision,
recall and F-measure scores are used to indicate the performance of the
systems. Since the confidence scoring may vary and the optimal confidence
thresholds are not known for all compared systems, the evaluation scores
are computed and presented at all confidence thresholds 0.1 - 1.0 to give an
as complete view as possible.

The second evaluation includes, in addition to those systems described
above, two matching systems that only return alignments holding equival-
ence relations, namely AgreementMakerLight [39] and LogMap [78]. In this
evaluation we also include only the equivalence component of Profile Weight.
This will give an indication on how the equivalence matchers described in
Section 5.2 and their combination using the Profile Weight combination ap-
proach perform relative to state-of-the-art matching systems. Furthermore,
this will also indicate how the performance of the subsumption matchers
included in Profile Weight compares to simply inferring such relations using
a reasoner. For this evaluation semantic precision, recall and F-measure
scores which consider inferred relations from the alignments, the reference
alignments, and the input ontologies, are used to measure system perform-
ance. Semantic precision and recall are computed according to Euzenat’s
definitions described in Section 2.2.3, while F-measure computes a score
that harmonises the two, as with traditional precision and recall. The im-
plementation of Euzenat’s semantic precision and recall provided by the
Alignment API is used to compute the scores.
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There are a few aspects related to some of these systems that should be
mentioned:

• S-Match does not come with a parser for OWL ontologies. Therefore,
the ontologies used in these three datasets had to be converted into
a format accepted by S-Match (basically a text file that maintained
the subsumption hierarchy represented in the ontologies) before the
matching operations were run.

• As described in Section 3.2 there are three different configurations
of S-Match. In this evaluation we have used the Minimal Semantic
Matching feature. The main reason for choosing this configuration is
that it returns direct subsumption relations (from which other trans-
itive subsumption relations later can be derived). This is important
in order to have a similar baseline for comparison. Both the subsump-
tion matchers developed in this work as well as reference alignments
for all three datasets are based on direct subsumption relations.

• As described in Section 3.2, STROMA is a system that on the basis
of an already produced equivalence alignment identifies subsumption,
meronymy or “relatedness” relations. A natural equivalence matching
system to use in order to produce equivalence alignment is COMA,
which is developed by the same research group that has developed
STROMA. However, COMA was not able to complete the equival-
ence matching in the ATM dataset since it ran out of memory when
parsing the AIRM-O ontology. For the ATM dataset the Agreement-
MakerLight [39] system was used to compute the equivalence align-
ment used as input to STROMA. We used the following configuration
settings of AgreementMakerLight: A similarity threshold of 0.5, all
available matchers and the Obsolete Filter, the Cardinality Filter, and
the Coherence Filter. It should be noted that in the paper describing
STROMA [7]), the authors stress that STROMA can work with dif-
ferent matching systems producing the initial equivalence alignment.

• The BLOOMS system does not come with a Graphical User Interface
as the other two systems, but its source code is openly available. Some
of its source code had to be slightly re-factored in order for the system
to work. However, when examining its source code some of its post-
processing functionality, after the alignment files are produced, relies
on web search using a deprecated version of the Bing search frame-
work. As a result of this, there are some reliability concerns with
respect to the results from BLOOMS in this evaluation.
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• When running LogMap the latest version found on GitHub at https://
github.com/ernestojimenezruiz/logmap-matcher was used. Further-
more, the configuration file“parameters.txt”was edited to not consider
property matching and instance matching in order to be consistent
with the other systems.

• AgreementMakerLight was run using the latest version found on Git-
Hub at https://github.com/AgreementMakerLight and the default con-
figuration option was used.

6.2 Dataset 1 - Air Traffic Management

This dataset includes two ontologies from the Air Traffic Management (ATM)
domain. It partly originates from a research project called BEST (Achiev-
ing the BEnefits of SWIM by making smart use of Semantic Technologies)2

which is also described in the research approach in Part II.

The development of this dataset is described in Gringinger et al. [53] and
Vennesland et al. [152].

6.2.1 Dataset Summary

The first ATM ontology in this dataset is the NASA Air Traffic Management
Ontology (ATMONTO) [81, 80]. ATMONTO supports semantic integration
of ATM data being collected and analysed at NASA for research and devel-
opment purposes. It includes a wide range of classes and properties covering
aspects of flight and navigation, aircraft equipment and systems, airspace
infrastructure, meteorology, air traffic management initiatives, and other
areas.

The second ontology in this dataset is called AIRM-O, which was developed
in the European Project BEST [151]. This OWL ontology was transformed
from a semantic reference model for the ATM domain called AIRM (ATM
Information Reference Model) according to transformation rules specified by
the Object Management Group (OMG) [108]. AIRM provides a common
reference for the operational terminology and the data models that have
been developed and will continue to be developed to ensure a modern ATM
system. It is derived from multiple information exchange models that have
been established as standards for the global aviation community:

• The Aeronautical Information Exchange Model (AIXM) [29] stand-

2http://www.project-best.eu/

https://github.com/ernestojimenezruiz/logmap-matcher
https://github.com/ernestojimenezruiz/logmap-matcher
https://github.com/AgreementMakerLight
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ardises exchange of data pertaining to relatively static aeronautical
infrastructure resources, including air routes, airspaces, aerodromes,
etc.

• The Flight Information Exchange Model (FIXM) [30] standardises
exchange of flight information between ATM systems.

• The ICAO Meteorological Information Exchange Model (IWXXM) [32]
is a model that standardises weather information exchange between
ATM systems.

The AIRM-O ontology was used in combination with semantic reasoning
for supporting retrieval and filtering of ATM information in order to fa-
cilitate improved information exchange as envisioned by the System Wide
Information Management (SWIM)3 concept in ATM.

Table 6.1 describes some key metrics related to the ATMONTO and AIRM-
O ontologies.

Table 6.1: Ontology statistics for the ATM Dataset

Classes Object Properties Data Properties Axioms

ATMONTO 157 126 189 2483

AIRM-O 915 1761 494 28408

In order to develop a reference alignment between these two ontologies a
panel of five persons, all with experience from the ATM domain and se-
mantic technologies, collaboratively produced a mapping between the two
ATM ontologies. Each person was asked to match each of the 157 classes in
ATMONTO to corresponding classes in the larger AIRM-O, making use of
their domain knowledge as well as all available input including descriptive
class and property annotations in the ontologies plus any other informative
web resources. In addition to identifying equivalent classes, each person
also indicated less/more general relationships between concepts as well as
potential mismatches of varying degree. This activity resulted in a detailed
classification of mismatch types with the following mismatch types:

• Differing level of abstraction: The matched classes intersect, but some
instances fall outside the intersection.

3https://www.eurocontrol.int/swim

https://www.eurocontrol.int/swim
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• Differing scope: No matching class is present because the class in the
source ontology is outside the defined scope of the target ontology.

• Differing level of detail : One class is modeled in more depth and with
greater fidelity than the other.

• Differing representation: The matched classes represent the same
concept, but are modeled differently across ontologies and implemen-
ted using different representational approaches.

• Differing intended use: The matched classes are modeled using signi-
ficantly different properties and relationships reflecting differences in
how the classes are to be used in the context of a domain application.

• Differing standards: The matched classes have similar names but
define different versions of the concept based on differing technical
standards adopted by ontology developers, e.g., by FAA4 and EURO-
CONTROL 5.

• Abstract concept : The class in the source ontology represents a highly
abstract notion that is unlikely to map to a similar class in the target
ontology.

• Differing word senses: The classes have an exact or close lexical match,
but the two classes correspond to two different word senses.

• Ill-conceived class: Due to lack of information, time, or resources, not
all ontology classes will be properly designed and therefore difficult to
match.

These mismatch types emerged independently from the ontology mismatch
classifications presented in Section 2.3, but as illustrated in Figure 6.1, which
is an adaptation of Klein’s [83] original classification presented in section 2.3,
there is a close correspondence between most of the mismatch categories.

After the initial matches were compiled, two of the five persons in the panel
reviewed the matches for each ATMONTO class and produced a consensus
mapping holding equivalence relations between classes from these two onto-
logies. During this activity, a substantial amount of the previously identified

4The Federal Aviation Administration (FAA) regulates all aspects of civil aviation in
the U.S.

5Eurocontrol is the central organisation for coordination and planning of air traffic
control for all of Europe.
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Figure 6.1: Illustration showing how the mismatches derived from the mapping
of ATM ontologies relate to ontology mismatch classification from literature.

equivalence relations were considered a “light match” instead of an “exact
match”. In these cases, an equivalent relation was deemed too strong, and
often the result of the two concept names being equal in effect of their string
representation. Identical naming, however, was no guarantee of a correct
match between two classes. In fact, in approximately 25 percent of the
identified exact match pairs, the two class names did not have any words in
common, while in approximately 40 percent of the identified “light match”
pairs, the class names did have words in common.

The result of this activity was a set of exact match relations including truly
equivalent concepts, and with this as a starting point, the equivalence and
subsumption reference alignments were developed using the following ap-
proach:

1. Develop equivalence reference alignment based the set of“exact match”
relations described above. This was accomplished by transforming this
set of relations to an alignment formatted as RDF/XML according to
the Alignment Format6.

2. Infer subsumption relations from equivalence relations in (1) to obtain
a subsumption alignment. Here, the same procedure as in OAEI 2011
was followed: The two source ontologies were merged into one single
ontology using the ontology editor Protégé7. Then equivalentClass
axioms consistent with the mapping described above were manually

6http://alignapi.gforge.inria.fr/format.html
7https://protege.stanford.edu/

http://alignapi.gforge.inria.fr/format.html
https://protege.stanford.edu/
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added between the corresponding classes in the merged ontology. A
reasoner (HermiT8) was run to classify the classes in the merged on-
tology in order to infer the subsumption relations. In addition, those
less/more general relations that were indicated in the manual map-
ping process, but not identified by the reasoner, were included in the
reference alignment.

3. Manually evaluate the complete reference alignment holding both equi-
valence relations and subsumption relations

Only direct subsumption relations were considered in the subsumption ref-
erence alignment.

6.2.2 Evaluation of Individual Matchers

The individual matchers evaluated in this section are run without any weight
from the ontology profiling.

Evaluation of Individual Equivalence Matchers

Figure 6.2 shows the precision, recall and F-measure scores for the indi-
vidual equivalence matchers. The best performance is achieved by the Lex-
ical Equivalence Matcher (LEM) which at confidence threshold 0.9 obtains
an F-measure of 0.44. The alignment produced by LEM includes a total
of 13 relations, of which 10 are correct. 1 of the 3 false positives is a
subsumption relation (InternationalAirport < Aerodrome) while the other
two are wrongly included based on similarity in the compound heads (e.g.
AirspaceRouteSegment = RouteSegment).

The Word Embedding Matcher (WEM) and the Definition Equivalence
Matcher (DEM) both obtain an F-measure above 0.3 at confidence threshold
0.5. WEM obtains a high precision, returning an alignment that includes
7 relations, of which 6 are correct. The false positive relation is between
the concepts STAR and DME which from the embedding vectors associated
with these concepts yield a cosine score of 0.57.

DEM includes the same correct relations as WEM, but gets a lower precision
due to additional false positives.

The Property Equivalence Matcher (PEM) obtains its highest performance
in the lower thresholds (< 0.5) and then declines. At confidence threshold
0.1 its alignment includes 36 relations, with 6 true positive ones. 5 of these

8http://www.hermit-reasoner.com/

http://www.hermit-reasoner.com/
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are not discovered by any of the other equivalence matchers, hence the con-
tribution from PEM is important once all relations are aggregated into a
final alignment. An observation worth noting is that several of the true
positive relations from this matcher are given low confidence values. For
example, the true positive relation DeicingPad = DeicingArea is given a
confidence value of 0.16. One implication of this is that if alignment com-
bination methods such as Cut Threshold (see Section 5.6.1) are used, this
would likely disregard these relations when a final alignment is computed.

The Graph Equivalence Matcher (GEM) does not identify any true positive
equivalence relations in this dataset and only includes a false positive in
its alignment. This false positive relation (RadialRoute = HoldingArea) is
wrongly inferred from the high string similarity between these two concepts’
parents (AirspaceRoute and Airspace).
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Evaluation of Individual Subsumption Matchers

Figure 6.3 presents the precision, recall and F-measure scores of the sub-
sumption matchers in the ATM dataset. The scoring functions of these
matchers are, contrary to the equivalence matchers, based on boolean prin-
ciples - a candidate relation is either a subsumption relation, and given a
high confidence (0.75 or 1.0), or not given any confidence at all (0) - see
Section 5.3 for details.

The reference alignment includes 83 relations in total, and only the Context
Subsumption Matcher (CSM), Compound Matcher (CM) and Definition
Subsumption Matcher (DSM) are able to identify any correct relations in
this dataset. CSM produces an alignment containing 21 relations and man-
ages to avoid any false positive ones. In terms of F-measure this is also the
subsumption matcher that obtains the highest F-measure (0.4) as seen in
Figure 6.3(c).

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sc
or

e

Confidence threshold

Precision

CM CSM DSM LSM

(a) Precision at different confidence
thresholds for subsumption matchers.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sc
or

e

Confidence threshold

Recall

CM CSM DSM LSM

(b) Recall at different confidence
thresholds for subsumption matchers.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sc
or

e

Confidence threshold

F-measure

CM CSM DSM LSM

(c) F-measure at different confidence
thresholds for subsumption matchers.

1 %

4 %

20 %

4 %1 %
70 %

Matcher Complementarity

CSM, CM

CSM, DSM

CSM

CM

DSM

Not identified

(d) Complementarity of the different
subsumption matchers.

Figure 6.3: Evaluation scores for different subsumption matchers at different
confidence thresholds



6.2. Dataset 1 - Air Traffic Management 141

CM returns an alignment holding 34 relations, of which 4 are correct. When
examining the false positives, most of them are based on the assumption that
if two class names are syntactically equal their semantics are the same as
well. However, in this dataset there are several occurrences of two classes
sharing similar lexical properties, but where there is a more or less subtle
deviation in their intended meaning. As described in the dataset summary
(Section 6.2.1), 40 percent of the relations considered a “light match” con-
sisted of class names with words in common. Furthermore, several of the
relations returned by CM are in fact equivalence relations even if they fall
under the compound head pattern applied by this matcher. Examples of
this are Aircra f tCapacity = Capacity and Aircra f tEngine = Engine.

Examining the alignment produced by the Definition Subsumption Matcher
(DSM), it identifies 4 correct relations, of which one is not identified by any
other subsumption matcher. Several of the false positive relations intuitively
seemed correct, such as MeteorologicalCondition > Wind and SkyCondition
> Cloud, however they are not present in the reference alignment. This is
a good example of a conceptualisation mismatch (see Section 2.3) caused
by different scope. MeteorologicalCondition and WeatherPhenomenon, the
parent class of Wind, have different scope in the sense that Meteorological−
Condition has a focus on the meteorological conditions at an airport, while
WeatherPhenomenon considers the meteorological conditions of the whole
airspace (and includes the subclass VolcanicAshCloud, among others).

Around 25 percent of all relations in the subsumption reference alignment
included ATM-specific acronyms in one or both of the class names. Without
any structural criteria or natural language definition that could be used to
deduce a relation involving these classes, the identification of these relations
is a challenge.

6.2.3 Evaluation of Alignment Combination Methods

Table 6.2 shows the ontology profiling scores used to weight the different
equivalence and subsumption matchers in the weighted variant of the align-
ment combination methods. Definition Coverage (DC) is marked in red,
bold text since it is below the matcher selection threshold of 0.5. This results
in that the matchers Definition Equivalence Matcher (DEM) and Definition
Subsumption Matcher (DSM) will be omitted in the matcher ensemble when
we evaluate the Profile Weight combination method with matcher selection.
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Table 6.2: Ontology Profiling ATM Dataset

Ontology Profiling Metric Measurement

Terminological Analysis

Compound Fraction (CF) 0.93

Corpus Coverage (CC) 0.84

Definition Coverage (DC) 0.29

Structural Analysis
Property Fraction (PF) 0.78

Structural Profile (SP) 0.58

Lexical Analysis Lexical Coverage (LC) 0.72

Figure 6.4, Figure 6.5 and Figure 6.6 show evaluation scores in terms of
precision, recall and F-measure (respectively) in the ATM dataset. The
Profile Weight configurations do not rely on any specified threshold (all
relations in the final alignment are considered equally valid), hence the
evaluation scores are constant across all confidence thresholds.
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Figure 6.4: Precision of Alignment Combination Methods in the ATM dataset.

Profile Weight with matcher selection obtains the highest F-measure score
in this dataset, with an F-measure of 0.41. The second highest F-measure
is obtained by Profile Weight without matcher selection (0.38), followed by
Average Aggregation (0.35 at confidence threshold 0.8) and Cut Threshold
(0.34 at confidence thresholds ≥ 0.8). When combining the alignment using
Majority Vote, 9 relations are preserved from the individual alignments, of
which 5 are equivalence relations and 4 are subsumption relations. All of
these 9 are correct, something which yields a precision of 1.0, but with a
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Figure 6.5: Recall of Alignment Combination Methods in the ATM dataset.
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Figure 6.6: F-measure of Alignment Combination Methods in the ATM dataset.

low recall of 0.08, the F-measure obtained by this combination method is
0.15. Profile Weight manages to balance the trade-off between precision and
recall better than the other three combination methods although at some
thresholds they obtain either higher precision (at higher thresholds) or the
same recall (at lower thresholds) as Profile Weight.

Furthermore, as illustrated in Figure 6.7, the alignment produced by the
Profile Weight methods includes more relations from the best performing
equivalence matchers Lexical Equivalence Matcher and Word Embedding
Matcher than the Cut Threshold method at its best performing confidence
threshold (≥ 0.8). For the subsumption relations, and when examining
the alignments in detail, Profile Weight excludes more of the false posit-
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ive relations from the Compound Matcher while preserving the same true
positive relations from the Context Subsumption Matcher as the other two
combination methods.

The Profile Weight alignment with matcher selection obtains a higher pre-
cision than without matcher selection (0.52 and 0.41 respectively), partly
because many of the false positive relations brought in by the Definition
Subsumption Matcher are omitted.
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(a) Matcher representation in Profile
Weight (w/ matcher selection) align-
ment.
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(b) Matcher representation in Profile
Weight (w/o matcher selection) align-
ment.
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(c) Matcher representation in Cut
Threshold alignment.
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(d) Matcher representation in Average
Aggregation alignment.

Figure 6.7: Illustrations showing how relations from individual matchers are
represented in the combined alignments.

An ensemble of individual matchers is used with the intuition that they
collectively produce a higher quality alignment than what they are capable
of on their own. The F-measure of the alignment combination methods
is therefore compared against the alignments produced by the best indi-
vidual equivalence and subsumption matchers. Figure 6.8 and Figure 6.9
show the results from the comparison. The best individual equivalence
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matcher in this dataset is the Lexical Equivalence Matcher which at con-
fidence threshold 0.9 obtained an F-measure of 0.44. When applied on
the alignments produced by the individual equivalence matchers, the Pro-
file Weight combination method (both with and without matcher selection)
obtains an F-measure of 0.52, so this combination method enhances the
individual alignments. When combining the individual alignments using
Average Aggregation the highest F-measure is 0.48. For the Cut Threshold
combination the highest F-measure achieved is 0.43 at confidence threshold
0.1 and 0.3. The Majority Vote combination method returned an equival-
ence alignment with an F-measure of 0.27 at all confidence thresholds.
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Figure 6.8: Comparison of Best Individual Equivalence Alignment and Combined
Alignments in the ATM dataset.

The best individual subsumption matcher in this dataset is the Context
Subsumption Matcher (CSM) obtaining an F-measure of 0.4. The Profile
Weight combination method, when applied on the individual subsumption
matchers, achieves an F-measure of 0.37 when the matcher selection is ap-
plied (precision 0.51 and recall 0.29), and an F-measure of 0.32 without
matcher selection. The Cut Threshold method returns its best F-measure
of 0.33 at confidence thresholds 0.8 and upwards, while Average Aggregation
returns an alignment with an F-measure of 0.33 at confidence threshold 0.8.
Here, the subsumption alignment produced by the Majority Vote method
obtained an F-measure of 0.09 across all confidence thresholds. So for the
subsumption matching we experience a reduction of alignment quality when
applying the combination methods in this dataset.
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Figure 6.9: Comparison of Best Individual Subsumption Alignment and Com-
bined Alignments in the ATM dataset.

Figure 6.10, Figure 6.11 and Figure 6.12 show the comparison with the other
existing matching systems that return alignments holding both equivalence
and subsumption relations. BLOOMS with its WordNet configuration in-
cludes only true positive relations in its alignment, but scores low on recall.
STROMA achieves 100 percent precision at confidence threshold 0.9. All
true positives identified by these two systems are equivalence relations. S-
Match suffer from very low precision due to extensive alignments with many
false positives. S-Match’s alignment includes 453 relations, of which only
two are correct. BLOOMS (WIKI) returns an alignment composed of 10
relations, of which 3 are correct.
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Figure 6.10: Comparing systems on precision in the ATM dataset.
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The highest F-measure is obtained by Profile Weight with matcher selection,
followed by Profile Weight without matcher selection.
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Figure 6.11: Comparing systems on recall in the ATM dataset.
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Figure 6.12: Comparing systems on F-measure in the ATM dataset.

Figures 6.13, 6.14 and 6.15 show the evaluation scores when considering
semantic relations inferred from a reasoner. Here, semantic precision, recall
and F-measure are computed for alignments extracted from an initial align-
ment at each confidence interval. The systems that initially only return
equivalence relations in their alignments are presented with dotted lines in
the chart.

In general the scores are higher here than when using traditional preci-
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sion and recall measures as presented in the previous evaluation. LogMap
and BLOOMS (WIKI) obtain the highest semantic precision, while Profile
Weight (including both equivalence and subsumption relations) achieve the
highest recall.
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Figure 6.13: Comparing systems on semantic precision in the ATM dataset.
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Figure 6.14: Comparing systems on semantic recall in the ATM dataset.

Looking at the F-measure scores in Figure 6.15, we see that the Profile
Weight variant which includes both equivalence and subsumption relations
in its alignment obtains the highest score. If we compare with the initial
alignment produced by Profile Weight (as used in the previous evaluation),
28 new correct relations were inferred, contributing to a significant increase
in recall. The Profile Weight variant that only includes equivalence relations
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does also perform relatively well, and identifies more correct relations than
the other systems that rely on inferred subsumption relations.

AgreementMakerLight, STROMA and LogMap identified 3 relations that
were not captured by Profile Weight. These three relations were: SID =
StandardInstrumentDeparture, SID < Procedure, and SIDSTAR > Stand-
ardInstrumentDeparture. The reason for this is that SID = StandardIn-
strumentDeparture was identified by AgreementMakerLight and LogMap
when computing their equivalence alignments, while this relation was not
identified by any of the equivalence matchers proposed in this work. The
other two relations were inferred from SID = StandardInstrumentDepar-
ture. As the equivalence alignment from AgreementMakerLight was used
to bootstrap the subsumption matching in STROMA, these three relations
were also included in the STROMA alignment in this evaluation.

43 relations (16 equivalence and 27 subsumption relations) included in the
reference alignment were not identified by any of the systems involved.
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Figure 6.15: Comparing systems on semantic F-measure in the ATM dataset.

6.2.4 Evaluation of Mismatch Detection Strategies

The mismatch detection strategies are described in Section 5.5. When run-
ning the mismatch detection on the Profile Weight combination method,
this increased the F-measure of the equivalence alignment from 0.32 to 0.52.
The precision increased from 0.25 to 0.58 while the recall remained stable
at 0.47.

The Domain Mismatch Detection strategy made the strongest contribution
as it filtered out 34 relations from the initial alignment, all of which were
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false positives. The Concept Scope Mismatch Detection strategy filtered
out one relation, however this was incorrectly filtered out.

6.3 Dataset 2 - Cross Domain

This dataset involves the two ontologies BIBFRAME9 and Schema.org10.
These ontologies are of different generality level, BIBFRAME is a domain
ontology for bibliographic information, while Schema.org is a general pur-
pose ontology, typically used as a vocabulary for web resources. The refer-
ence alignments in this dataset are developed by the author. The process
of developing the reference alignments is conducted as follows:

1. Generate a candidate equivalence reference alignment by producing
alignments using the three ontology matching systems Agreement-
MakerLight [39], LogMap [78] and YAM++ [102].

2. Correct and extend the candidate reference alignment by manually
inspecting the BIBFRAME and Schema.org ontologies. This inspec-
tion included an analysis of classes, associated properties as well as
neighbouring classes.

3. Transform the resulting reference alignment into the Alignment Format 11.

4. Create a subsumption reference alignment by following the approach
described in Section 6.2.1.

6.3.1 Dataset Summary

Table 6.3 describes some statistics of the two ontologies in this dataset.
Schema.org is larger than BIBFRAME in terms of classes, object proper-
ties and data properties, and is more general in scope than its bibliographic
counterpart. In both ontologies the entities are annotated with natural lan-
guage definitions. Compared to the ontologies in the ATM dataset, the
terminology used in these two ontologies is more general and in the equival-
ence reference alignment 11 of the 16 relations are exact string matches. In
the remaining relations both the source and target concepts have words in

9http://id.loc.gov/ontologies/bibframe.html
10https://schema.org/docs/schemaorg.owl
11This step included removing some of the meta-data tags from the alignment pro-

duced by AgreementMakerLight as well as converting the skos:exactMatch relation type
produced by YAM++ to “=”.

http://id.loc.gov/ontologies/bibframe.html
https://schema.org/docs/schemaorg.owl
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common (e.g. MusicFormat = MusicReleaseFormatType). The subsump-
tion reference alignment contains a large number of relations where a single
class in one ontology is related to many classes in the second ontology.
One example is how the class Event in BIBFRAME subsumes 19 specific
events (e.g. TheaterEvent and Festival) described in Schema.org. In the
majority of cases the compound pattern strikes in, meaning that the sub-
suming class is represented in the compound head of the subsumed class,
e.g. Organization > SportsOrganization. Contrary to the ATM dataset,
most class names consist of commonly used words that are covered in lex-
ical resources such as WordNet or BabelNet. However, the representation
of compounds is high, so some pre-processing of the words is required.

Table 6.3: Ontology statistics for the Cross Domain Dataset

Classes Object Properties Data Properties Axioms

BIBFRAME 188 132 63 2199

Schema.org 670 916 491 9171

6.3.2 Evaluation of Individual Matchers

Evaluation of Individual Equivalence Matchers

Figure 6.16 shows the precision, recall and F-measure scores for the equi-
valence matchers in this dataset. Overall, the best performing matchers
are the Word Embedding Matcher (WEM) and the Definition Equivalence
Matcher (DEM) which both obtain an F-measure of around 0.82 at con-
fidence levels 0.7 and 0.8. Both matchers have a perfect precision at these
thresholds with no false positives. The relations in the reference alignment
these two matchers did not identify do all have concepts with words in com-
mon (e.g. BookFormat = BookFormatType or Audio = AudioObject). The
Lexical Equivalence Matcher (LEM) obtains an F-measure of around 0.7
at confidence threshold 0.6 and higher. This matcher discovered many of
the same relations as WEM and DEM. The Property Equivalence Matcher
(PEM) achieves its best F-measure (0.17) at confidence value 1.0. PEM dis-
covers two correct relations that are missed by the other matchers and thus
makes a contribution to the complementarity of the matchers. The Graph
Equivalence Matcher (GEM) does not identify any true positive equivalence
relations in this dataset.

Looking at the matcher complementary chart in Figure 6.16(d) we see that
81 % (13 of 16) of all relations were identified by one or more matchers.
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The three that were not identified all have naming patterns that suggest
another relation type than equivalence. Audio = AudioObject and Media
= MediaObject suggest meronomy whereas IntendedAudience = Audience
suggest subsumption as per the analysis described in Section 5.5. Further
we see that 56 % of all relations in the reference alignment are identified by
3 (i.e. the majority) of the matchers.
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Figure 6.16: Evaluation scores for different equivalence matchers at different
confidence thresholds in the Cross-Domain dataset.

Evaluation of Individual Subsumption Matchers

Figure 6.17 shows the evaluation scores for the individual subsumption
matchers for this dataset. The Context Subsumption Matcher (CSM) which
is based on the contextual similarity with respect to similar super- and sub-
classes perform the best also in this dataset, obtaining an F-measure of 0.8
at all confidence thresholds. As mentioned in the summary of the dataset in
Section 6.3.1, the reference alignment contains a large number of relations
where one class in the source ontology subsumes many classes in the target
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ontology if it is equivalent to the superclass of these classes in the target
ontology, so this dataset fits CSM well.
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Figure 6.17: Evaluation scores for different subsumption matchers at different
confidence thresholds in the Cross-Domain dataset.

The second best matcher is the Compound Matcher (CM) that for the con-
fidence thresholds 0.8 and above obtains an F-measure of around 0.33. CM
produces an alignment consisting of 42 relations, of which 22 are correct. All
of the correct relations identified by CM are also identified by the sub- and
superclass pattern used by CSM, so in terms of contribution to the matcher
complementarity CM is not very useful in this dataset. The false positive
relations identified by CM are a result of identification of transitive sub-
sumption relationships (e.g. CM suggest that the source class Organization
subsumes the target class MedicalOrganization, but the taxonomy on the
target side is Organization > LocalBusiness > MedicalOrganization), dif-
fering scope of classes (e.g. CM suggests that Object > AudioObject whereas
Object has a disjoint sibling Audio which is equivalent to AudioObject), and
simply that the syntactics does not match the semantics (e.g. CM suggests
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that IntendedAudience < Audience but according to definition and context
these are equivalent classes).

The Definition Subsumption Matcher (DSM) identifies two correct sub-
sumption relations, none of which are identified by any other matcher. These
are Agent > Person and Agent > Organization. Both these relations are
captured by the “Such as...” lexico-syntactic pattern. Many of the false
positive relations produced by DSM suggest some other type of semantic
relatedness between the concepts than subsumption. For example, the rela-
tion Publication - PublicationIssue suggests a meronymic relation (as in a
publication has an issue), and Place - PropertyValue (here, PropertyValue
is a structured value at the same level as a quantitative value or a price
specification).

The Lexical Subsumption Matcher (LSM) identifies one correct relation
which is also identified by CSM, namely Organisation > NGO (acronym
for Non-Governmental Organization). The false positive relations sugges-
ted by LSM are mostly due to misinterpretation of the semantics of a class.
For example, the concept Work in BIBFRAME is defined as a “Resource re-
flecting a conceptual essence of a cataloging resource”, whereas in WordNet,
which the LSM uses as a lexical resource, Work is defined as an“Activity dir-
ected toward making or doing something”. On this basis LSM produces the
subsumption relations Work > Service and Work > Action where Service
and Action are hyponyms of Work in WordNet - which both are wrong in
this context.

6.3.3 Evaluation of Alignment Combination Methods

Table 6.4 shows the scores from the ontology profiling of the BIBFRAME
and Schema.org ontologies.

The most noticeable differences are that compared with the ATM dataset,
the Compound Fraction is lower in this dataset (0.91 in the ATM dataset),
the Property Fraction is lower (0.78 in the ATM dataset), and the Struc-
ture Profile is significantly higher (0.58 in the ATM dataset). The Corpus
Coverage, Definition Coverage, and Lexical Coverage scores are more or less
the same as in the ATM dataset (respectively 0.84, 0.29, and 0.72 in the
ATM dataset).

Since the Definition Coverage (DC) and the Property Fraction (PF) scores
are below the threshold used for determining which matchers should take
part in the matcher ensemble, these are marked in red, bold text in Table 6.4.
The consequence of this is that the Definition Equivalence Matcher (DEM),
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the Definition Subsumption Matcher (DSM) and the Property Equival-
ence Matcher (PEM) are omitted in one of the Profile Weight combination
method configurations.

Table 6.4: Ontology Profiling Cross-domain Dataset

Ontology Profiling Metric Measurement

Terminological Analysis

Compound Fraction (CF) 0.65

Corpus Coverage (CC) 0.83

Definition Coverage (DC) 0.27

Structural Analysis
Property Fraction (PF) 0.41

Structural Profile (SP) 0.91

Lexical Analysis Lexical Coverage (LC) 0.75

Figures 6.18 (precision), 6.19 (recall) and 6.20 (F-measure) show the per-
formance of the different alignment combination methods in the ATM data-
set.
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Figure 6.18: Precision of Alignment Combination Methods in the Cross-domain
dataset.

As illustrated in Figure 6.20, the Profile Weight method obtains an F-
measure that is higher than the other three combination methods at all
thresholds lower than 0.8 – both when applying matcher selection and not.
This is primarily contributed by a lower number of false positives, hence
a higher precision, in the Profile Weight alignments, with the exception of
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Figure 6.19: Recall of Alignment Combination Methods in the Cross-domain
dataset.
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Figure 6.20: F-measure of Alignment Combination Methods in the Cross-domain
dataset.

Majority Vote, which has a perfect precision, but has a much lower recall
than the other methods Cut Threshold and Average Aggregation obtain a
slightly higher F-measure at confidence threshold 0.8, which is maintained
by the Cut Threshold method at confidence thresholds 0.9 and 1.0.

Figure 6.21 illustrates how the relations from the individual equivalence and
subsumption matchers are represented in the alignment produced by Profile
Weight and in the alignments produced by the other methods at their op-
timal confidence thresholds (0.8 for all of them). The alignment produced
by Profile Weight includes many relations that have low confidence values,
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most of which are false positive relations, especially when not using the
matcher selection. For example, in this alignment there are 20 relations
produced by the Definition Subsumption Matcher (DSM), of which only 2
are correct. When using the matcher selection, this is corrected since due
to low Definition Coverage (see Section 5.1) the Definition Subsumption
Matcher is omitted in this configuration. Cut Threshold and Average Ag-
gregation disregard the DSM relations with the lowest confidence value, and
only accept 12 relations from this matcher into the final alignment, and the
two correct relations are preserved. Furthermore, there are 21 relations in
the Profile Weight alignment produced by the Compound Matcher (CM),
and all are incorrect. Cut Threshold and Average Aggregation include 43
and 42 relations from the Compound Matcher (CM) respectively and in
both alignments 22 of them are true positives.
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(a) Matcher representation in Profile
Weight (w/matcher selection) align-
ment.
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(b) Matcher representation in Profile
Weight (w/o matcher selection) align-
ment.
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(c) Matcher representation in Cut
Threshold alignment.
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(d) Matcher representation in Average
Aggregation alignment.

Figure 6.21: Illustrations showing how relations from individual matchers are
represented in the combined alignments.



158 Evaluation

When comparing the performance of the combination methods with the in-
dividual matcher, the best performing equivalence matchers were Word Em-
bedding Matcher (WEM) and Definition Equivalence Matcher (DEM), both
achieving an F-measure of 0.81 at confidence thresholds 0.7 and 0.8. When
isolating the equivalence relations, Profile Weight obtains an F-measure of
0.65 when matcher selection is applied, and 0.73 when it is not, as shown in
Figure 6.22. The best Cut Threshold alignments returns an F-measure of
0.83 at confidence thresholds 0.5-0.9 for the equivalence alignment. Average
Aggregation produces a combined equivalence alignment that at confidence
thresholds 0.7 and 0.8 get an F-measure of 0.79. Majority Vote produces an
F-measure of 0.81 at confidence thresholds range 0.1-0.9. Hence, several of
the combination methods achieve a higher score than Profile Weight with
matcher selection when only equivalence relations are considered.
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Figure 6.22: Comparison of Best Individual Equivalence Alignment and Com-
bined Alignments in the Cross-domain dataset.

For the subsumption matching, the best individual matcher was Context
Subsumption Matcher (CSM) which at all confidence thresholds obtained an
F-measure of 0.8. As Figure 6.23 illustrates, when combining all alignments
from the individual subsumption matchers, Profile Weight with matcher
selection gets an F-measure of 0.69, while Profile Weight without matcher
selection yields an F-measure of 0.64. Average Aggregation produces a
combined subsumption alignment that at confidence thresholds 0.8 gets an
F-measure of 0.68. Cut Threshold returns a combined subsumption align-
ment obtaining an F-measure of 0.67 at confidence thresholds 0.8, 0.9 and
1.0. The Majority Vote alignment obtains an F-measure of 0.41 across all
confidence thresholds.
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Figure 6.23: Comparison of Best Individual Subsumption Alignment and Com-
bined Alignments in the Cross-domain dataset.

We see the same patterns in this dataset when comparing the best individual
alignments with the combined alignments. For the equivalence matching
the combination of the alignments produced by the individual matchers
enhances the quality in terms of F-measure, whereas for the subsumption
matching the alignments produced by the best individual matchers achieve
higher F-measure scores.

Figure 6.24, Figure 6.25 and Figure 6.26 show the comparison on preci-
sion, recall and F-measure respectively with other systems producing both
equivalence and subsumption relations in the cross-domain dataset.
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As in the ATM dataset, Profile Weight (Profile Weight EQ-SUB) obtains
higher F-measure scores than the other systems producing both equival-
ence and subsumption relations. Both BLOOMS configurations obtain a
higher precision than Profile Weight, but experience a low recall. S-Match’s
optimal alignment (at confidence threshold 0.0) is very extensive also in
this dataset. Out of a total of 619 returned relations there are only 6 true
positives.
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Figure 6.25: Comparing systems on recall in the Cross-domain dataset.
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Figure 6.26: Comparing systems on F-measure in the Cross-domain dataset.
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Figure 6.27, Figure 6.28 and Figure 6.29 illustrate the results from the
second evaluation in this dataset where semantic precision and recall eval-
uation measures are applied. 18 (out of 109) relations in the reference
alignment were not found by any of the systems. 14 of these relations were
subsumption relations, while 4 were equivalence relations.

AgreementMakerLight performs best in this evaluation with an F-measure
of 0.82 at confidence thresholds 0.0-0.7. Profile Weight obtains the second
highest F-measure of 0.76 (with a semantic precision of 0.72 and a semantic
recall of 0.79), with BLOOMS (WIKI) close behind at 0.74.
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Figure 6.27: Comparing systems on Semantic Precision in the Cross-domain
dataset.
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Figure 6.28: Comparing systems on Semantic Recall in the Cross-domain dataset.
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Figure 6.29: Comparing systems on Semantic F-measure in the Cross-domain
dataset.

Compared to the initial alignment holding equivalence and subsumption
relations produced by Profile Weight, 3 new correct relations are inferred
(Agent > Person, Agent > Organization and IntendedAudience < Intan-
gible). When comparing the inferred Profile Weight alignment (with matcher
selection) with the inferred alignment from AgreementMakerLight, we see
that there are 3 correct relations not included in the Profile Weight align-
ment: Person = Person, BookFormat = BookFormatType and BookFormat
< Enumeration. In the Profile Weight alignment Person = Person was pro-
posed by the Word Embedding Matcher with a confidence of 0.801, but was
overridden when merging the equivalence and subsumption alignments by
Person > Person from the Context Subsumption Matcher with a confidence
of 0.809. BookFormat = BookFormatType was suggested by the Property
Matcher, however when applying the matcher selection this matcher was not
included in the ensemble since the Property Fraction metric was too low.
BookFormat < Enumeration was not identified by any of the subsumption
matchers.

6.3.4 Evaluation of Mismatch Detection Strategies

The mismatch detection increased the F-measure of the equivalence align-
ment produced by the Profile Weight method (with matcher selection) from
0.30 to 0.65 thanks to the Domain Mismatch Detection strategy. This
strategy filtered out 41 relations and all of them were false positive rela-
tions, increasing the precision from 0.19 to 0.67. The recall was not affected
by the Domain Mismatch Detection strategy. The Concept Scope Mismatch
Detection did not filter out any relation from the initial alignment.
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6.4 Dataset 3 - OAEI

This dataset is based on the ’Oriented Matching’ track from the Ontology
Alignment Evaluation Initiative in 2011. This is the latest OAEI campaign
containing subsumption relations in the reference alignment12.

6.4.1 Dataset Summary

This dataset consists of 4 ontologies that all describe conference organ-
isation. These ontologies are distributed into 6 sub-datasets representing
possible permutations from these four ontologies. For each sub-dataset a
combined equivalence and subsumption reference alignment is constructed.
As seen in the ontology statistics presented in Table 6.5, the ontologies in
this dataset are smaller than in the two previous datasets. Most classes are
represented by non-technical and common terminology and in only one of the
sub-datasets (301304) the classes include natural language definitions. Each
individual ontology is slightly modified from sub-dataset to sub-dataset, as
indicated by the number of classes listed for each ontology. For example,
ontology 301 includes an additional class in sub-dataset 301302 compared
to how this ontology is represented in sub-datasets 301303 and 301304.

Table 6.5: Ontology statistics for the OAEI 2011 Dataset

Sub-dataset Classes Object Properties Data Properties Annotation Properties Axioms

301302-301 16 0 40 12 323

301302-302 16 6 25 2 169

301303-301 15 0 40 12 269

301303-303 54 72 0 2 569

301304-301 15 0 40 12 269

301304-304 36 40 11 10 437

302303-302 16 6 25 2 173

302303-303 53 72 0 2 561

302304-302 16 6 25 2 163

302304-304 35 40 11 10 431

303304-303 56 72 0 2 580

303304-304 41 40 11 10 467

12In OAEI 2009 there was also an Oriented Matching track that included subsumption
relations in addition to equivalence relations in the reference alignments.
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6.4.2 Evaluation of Individual Matchers

Evaluation of Individual Equivalence Matchers

Figure 6.30 shows evaluation scores obtained by averaging the results of the
individual equivalence matchers in each dataset. As the figure shows there is
a clear separation between the three best performing matchers Lexical Equi-
valence Matcher (LEM), Word Embedding Matcher (WEM) and Definition
Equivalence Matcher (DEM), and the Property Equivalence Matcher (PEM)
and Graph Equivalence Matcher (GEM). The overall best performing equi-
valence matcher is LEM which at confidence thresholds 0.2 - 0.5 achieves an
F-measure of 0.82. This followed by WEM obtaining an F-measure of 0.73
at confidence threshold 0.7 and above. DEM achieves an F-measure of 0.69
(at confidence threshold 0.6).
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Figure 6.30: Average evaluation measures for individual equivalence matchers in
the OAEI 2011 datasets

There is significant overlap between the alignments produced by LEM,
WEM and DEM. Out of all true positive relations identified in all 6 sub-
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datasets, 76 % of them are identified by all three matchers as illustrated
in Figure 6.30(d). When analysing the alignments in each sub-dataset in-
dividually, a recurring pattern is that WEM and DEM obtain the highest
F-measure at high confidence thresholds (0.7 and higher) whereas LEM
scores higher at lower thresholds (0.5 and below). This is also illustrated in
the chart in Figure 6.30(c).

The Property Equivalence Matcher (PEM) and the Graph Equivalence Matcher
(GEM) identified one correct relation each in all sub-datasets and none of
them were identified by any of the other matchers. PEM identified Entry
= Publication in sub-dataset 301303 while GEM identified PhDThesis =
PhdThesis. The first relation is identified by PEM since these two classes
have many data property names in common, while the second is identified
by GEM since these two classes have the same parent class (Thesis).

A basic string matcher based on edit distance or n-grams would also identify
the PhDThesis = PhdThesis and this applies to many of the false negative
relations (those relations in the reference alignment that are not identified
by a matcher) in the OAEI 2011 dataset. In fact, about 55 % (6 out of
the 11 relations not identified across all sub-datasets) of all false negative
relations are exact string matches, but with differing capitalization. Hence,
in this dataset a basic string matcher could make a strong contribution.

Evaluation of Individual Subsumption Matchers

Figure 6.31 shows average precision, recall and F-measure scores for align-
ments produced by the subsumption matchers for the OAEI 2011 dataset.

The Context Subsumption Matcher (CSM) obtains the highest F-measure
score of the subsumption matchers in this dataset, with a score of 0.46
(at all confidence thresholds). The Compound Matcher (CM) achieves an
F-measure of 0.14 and the Lexical Subsumption Matcher (LSM) achieves
an F-measure of 0.07 from 0.1-0.6 that drops to 0.06 in higher thresholds.
The Definition Subsumption Matcher (DSM) does not identify any correct
relations in the OAEI dataset. Given the lack of natural language definitions
in all sub-datasets except for 301304, that is not surprising.

In five of the sub-datasets CSM obtains the best F-measure of the individual
subsumption matchers. However, in one of the sub-datasets (301303) it
does not identify any correct subsumption relations. Ontology 301 has a
flat structure with only one taxonomic level below the root, and as long as
there is no equivalent class in ontology 301 is matched against, which there
is in 301302 and 301304, CSM does not have any “anchor” from which it
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can infer a subsumption relation.
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Figure 6.31: Average evaluation measures for individual subsumption matchers
in the OAEI 2011 datasets.

A matcher complementarity map is shown in Figure 6.31(d). This map
shows that more than half of the relations in all reference alignments were
not identified by any subsumption matcher. Since these ontologies have sev-
eral common classes, many of the false negative relations take part in more
than one sub-dataset. Several of the false negative relations include class
names that have a particular bibliographic reference, such as Incollection,
Inproceedings and Inbook. In some of the ontologies they are also written
as InCollection, InProceedings and InBook, that is, with a pascal case nota-
tion. These specialised terms are not included in WordNet, so the Lexical
Subsumption Matcher is of no use here.

Furthermore, when the pascal case convention is used, the Compound Matcher
splits these names into a compound modifier and a compound head, and thus
infers that they are subsumed by a target concept that equals the compound
head. For example, InCollection < Collection. Other false negative rela-
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tions include two concepts which have different levels of abstraction, such
as Publication > Composite or Misc < Publication.

6.4.3 Evaluation of Alignment Combination Methods

Table 6.6 shows the profile scores for each ontology pair in the OAEI 2011
dataset. Compared with the other two datasets there are some differences.
There are fewer compound class names in these ontologies, hence the Com-
pound Fraction is overall much lower than in the other datasets. Of the
ontology pairs only 301-304 includes natural language definitions for both
ontologies (otherwise the Definition Coverage (DC) is set to zero). Several
of the ontology pairs includes few object- and data properties, so overall the
Property Fraction is quite low compared to the other datasets. This results
in that all profiling scores for these metrics are below the matcher selection
threshold, and that the following matchers are not included in the matcher
ensemble in the configuration of Profile Weight when matcher selection is
enforced:

• Definition Equivalence Matcher (DEM)

• Definition Subsumption Matcher (DSM)

• Property Equivalence Matcher (PEM)

• Compound Matcher (CM)

The ontologies use a quite common terminology, using class names (or com-
pound parts) represented in the WordNet lexicon, hence the Lexical Cover-
age (LC) is on average higher here than in the other to datasets.

Table 6.6: Ontology Profiling OAEI Dataset

Ontology Profiling Metric 301-302 301-303 301-304 302-303 302-304 303-304

Terminological

Analysis

Compound Fraction (CF) 0.25 0.22 0.14 0.40 0.32 0.34

Corpus Coverage (CC) 0.80 0.86 0.80 1.0 0.84 0.86

Definition Coverage (DC) 0.00 0.00 0.03 0.00 0.00 0.00

Structural

Analysis

Property Fraction (PF) 0.19 0.00 0.33 0.16 0.48 0.30

Structural Profile (SP) 0.78 0.61 0.51 0.72 0.51 0.78

Lexical

Analysis

Lexical Coverage (LC) 0.72 0.73 0.68 0.90 0.85 0.89

Figure 6.32, Figure 6.33 and Figure 6.34 show the evaluation scores for the
alignment combination methods in this dataset. The two Profile Weight
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variants compute the exact same alignments in this case, hence no positive
contribution from the matcher selection. As the illustrations show, Profile
Weight, Cut Threshold and Average Aggregation on average obtain similar
precision, recall and F-measure scores until confidence threshold 0.7 when
the F-measure of the Average Aggregation alignment gets reduced. Majority
Vote has a higher precision than the other combination methods, but lags
behind in recall and thus F-measure.
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Figure 6.32: Precision of Alignment Combination Methods in the OAEI dataset.
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Figure 6.33: Recall of Alignment Combination Methods in the OAEI dataset.
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Figure 6.34: F-measure of Alignment Combination Methods in the OAEI dataset.

As illustrated in Figure 6.35, the best performing individual equivalence
matcher in this dataset is the Lexical Equivalence Matcher (LEM) which
obtains an F-measure of around 0.82 at confidence thresholds 0.2 - 0.5. The
average F-measure when aggregating relations from all equivalence align-
ments using the Profile Weight method is 0.85 (from a precision of 0.89 and
a recall of 0.81).
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Figure 6.35: Comparison of Best Individual Equivalence Alignment and Com-
bined Alignments in the OAEI dataset.

When using Cut Threshold to aggregate relations from the individual equi-
valence alignments, the best F-measure of 0.87 (precision 0.93 and recall
0.81) is obtained at confidence threshold 0.7. This is also the case for the
Average Aggregation method. For the Majority Vote the highest F-measure
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on the final equivalence alignment is 0.75 (precision 0.91 and recall 0.63),
which decreases from threshold 0.7 and onwards.

For the subsumption matching the best performing individual matcher on
average is the Context Subsumption Matcher (CSM) with an F-measure of
0.46, see Figure 6.36.
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Figure 6.36: Comparison of Best Individual Subsumption Alignment and Com-
bined Alignments in the OAEI dataset.

Here, the Profile Weight method obtains an F-measure of 0.51 (a precision
of 0.56 and a recall of 0.47) when averaging the F-measure across all sub-
datasets. Cut Threshold and Average Aggregation obtain an F-measure of
0.52 (0.58 in precision and 0.48 in recall) at all confidence thresholds. In
this dataset, as with the other datasets, Majority Vote returns significantly
lower scores in the subsumption alignment since it in most sub-datasets
preserves mostly equivalence relations from the majority of the individual
alignments.

So in this dataset, contrary to the other two datasets, the combination
methods get a higher F-measure than the best individual alignments, both
for the equivalence- and subsumption matching.
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Figure 6.37, Figure 6.38 and Figure 6.39 show precision scores, recall scores
and F-measure scores respectively, and illustrate how the matching systems
returning both equivalence and subsumption relations compare on the OAEI
dataset.
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Figure 6.37: Comparing systems on precision in the OAEI dataset.

STROMA obtains the highest precision (0.83) at confidence threshold 0.6.
The evaluation scores for the two Profile Weight combinations are identical,
so no contribution from the matcher selection in this dataset.
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Figure 6.38: Comparing systems on recall in the OAEI dataset.
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Figure 6.39: Comparing systems on F-measure in the OAEI dataset.

Figure 6.40 (semantic precision), Figure 6.41 (semantic recall) and Fig-
ure 6.42 (semantic F-measure) report the evaluation scores for the com-
pared matching systems when using a semantic evaluation approach. In
this evaluation three matching systems returning only equivalence align-
ments leverage the highest F-measures. AgreementMakerLight obtains an
F-measure of 0.71 at confidence 0.9, LogMap achieves an F-measure of 0.68
at confidence 0.5, while the equivalence alignment configuration of Profile
Weight obtains an F-measure of 0.62.
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Figure 6.40: Comparing systems on semantic precision in the OAEI dataset.
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Figure 6.41: Comparing systems on semantic recall in the OAEI dataset.
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Figure 6.42: Comparing systems on semantic F-measure in the OAEI dataset.

6.4.4 Evaluation of Mismatch Detection Strategies

As with the other evaluation measures we conclude the contribution of the
mismatch strategies in this dataset based on average measures. The aver-
age F-measure score of the equivalence alignment produced by the Profile
Weight combination method, and across all sub-datasets, was 0.72 prior to
running the mismatch detection strategies. After running the mismatch de-
tection strategies, the F-measure score ended up at 0.85, so a significant
increase in F-measure. There was no reduction in recall in any of the sub-
datasets, so the mismatch detection removed only false positive relations.
The largest effect was in the sub-dataset 302304, where the initial equi-
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valence alignment obtained an F-measure of 0.59, and after the mismatch
detection had removed 5 false positive relations, the F-measure ended up at
0.83. As in the other datasets it is only the Domain Mismatch Detection
that makes a positive contribution.



7
Evaluation Results and Discussion

7.1 Evaluation Summary

This section summarises the key findings from the evaluation presented in
the previous section.

The artefacts developed in this work has been evaluated in three diverse
datasets. The first dataset, which includes two ontologies from the Air
Traffic Management domain, involves technical and domain-specific termin-
ology and fairly large ontologies. The second dataset, the Cross-Domain
dataset, includes two ontologies with different focus and granularity.
Schema.org is a more general ontology used as vocabulary for web resources
and Bibframe includes concepts used for describing bibliographic resources.
The third dataset consists of six pairs of OAEI ontologies that all use quite
generic terminology. All six ontologies are fairly small-sized and the richness
in terms of properties and natural language definition varies.

7.1.1 Summary of evaluation of the Individual Matchers

The Lexical Equivalence Matcher was the equivalence matcher that per-
formed best across all datasets, followed by the two matchers based on word
embeddings, the Word Embedding Matcher and the Definition Equivalence
Matcher. It is quite surprising that the Lexical Equivalence Matcher com-
puted the best quality alignment in the ATM dataset despite the challenging
terminology of this dataset. However, the word processing on the concept
names contributed to overcome the limitations of WordNet with regards to
limited coverage of compound words. This matcher splits compounds and
uses a combination of the Jiang-Conrath semantic similarity technique and
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a synonym analysis in order to infer similarity between two concepts.

None of the equivalence matchers are based solely on string matching in
this work, which is rather unusual. An earlier evaluation of the ATM and
Cross-domain datasets suggested that using the learned word embeddings
as semantic proxies from which equivalence relations could be deduced out-
performed a set of string matchers tested due to an improvement in preci-
sion. The string matchers used in these experiments included ISub, n-gram,
and Edit distance. However, when analysing the false negative relations
in the OAEI reference alignment we see that a string matcher would prob-
ably identify about 60 % of the false negative relations since they are exact
string matches, though with some variation of capitalizing of letters (e.g.
Phdthesis - PhDThesis or Inbook - InBook). A lesson learned from this is
that a string matcher could, based on its performance properties (i.e. fast
execution), be included in a matcher ensemble, but it should probably be
given less confidence than other more reliable matchers.

The Property Equivalence Matcher and the Graph Equivalence Matcher
make only minor contribution in all three datasets, however the Property
Equivalence Matcher identifies correct relations in the ATM and Cross-
domain datasets that are not identified by any of the other matchers.

The structure-based Context Subsumption Matcher performs best of the
subsumption matchers across all datasets. This matcher, which identifies
subsumption relations between two concepts based on their context (parents
and children), performs best in all three datasets. One can argue why there
is a need for a matcher such as the Context Subsumption Matcher when the
same results could be obtained by running a reasoner. The simple answer is
to maintain applicability of the proposed artefacts in circumstances where
using reasoning services is not feasible (e.g. schema matching scenarios).
That said, as revealed by the evaluation where semantic precision and re-
call are used as evaluation measures, a strategy of simply using a reasoner
to infer subsumption relations from equivalence relations can perform well.
Of course, provided that the equivalence relations proposed in the candid-
ate alignment are correct. The second best subsumption matcher is the
Compound Matcher. Especially in the cross-domain dataset this matcher
performs well. The Definition Subsumption Matcher and the Lexical Sub-
sumption Matcher produce significantly lower F-measure scores than the
other two matchers, however both capture subsumption relations that are
not discovered by any other matcher.
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7.1.2 Summary of evaluation of the alignment combination strategies

Profile Weight was the combination method that performed the best across
all three datasets. At some confidence thresholds, the Cut Threshold and
Average Aggregation methods obtained a higher F-measure in the Cross-
Domain datasets, and in the OAEI 2011 dataset, these three combination
methods achieved similar F-measure scores across all thresholds. The Ma-
jority Vote combination method achieved high precision in all datasets, but
due to low recall it did not obtain the same level of F-measure as the other
combination methods.

An important quality of the Profile Weight method is that it requires no
manual configuration of a confidence threshold. It returns a combined align-
ment that is based on the weights assigned from the ontology profiling pro-
cess. This in contrast to the Cut Threshold and Average Aggregation meth-
ods, where the quality of the combined alignment returned depends on a
fixed cut threshold.

Intuitively, one would think that an ensemble of complementary matchers
would obtain better quality alignments than each matcher on its own. For
the equivalence matching the combination of individual alignments obtained
higher F-measure scores than achieved by any of the individual matchers.
But this was not the case for the subsumption matching. Here, the Con-
text Subsumption Matcher obtained higher F-measure scores both in the
ATM dataset and in the Cross-domain dataset. In the OAEI 2011 dataset,
however, all combination methods except for Majority Vote, returned align-
ments with higher F-measure than the best subsumption matcher (Context
Subsumption Matcher).

The matcher selection based on the ontology profiling had a positive effect on
the quality of the combined alignments in the ATM and Cross-domain data-
sets. In the ATM dataset, using matcher selection for the Profile Weight
gave an F-measure of 0.41 compared with an F-measure of 0.38 without
matcher selection. In the Cross-domain dataset the matcher selection con-
figuration of the Profile Weight obtained an F-measure of 0.68 compared to
an F-measure of 0.65 when not selecting matchers on the basis of the pro-
filing scores. For the OAEI dataset, the matcher selection did not have any
effect. The reason for this is that the few relations identified by the match-
ers omitted in the matcher selection were identified by other matchers in
the remaining ensemble.
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7.1.3 Summary of evaluation of mismatch detection strategies

The mismatch detection strategies improved the precision in all three data-
sets. In the ATM dataset, running the mismatch detection strategies in-
creased the F-measure on the equivalence alignment in the Profile Weight
combination method from 0.32 to 0.52. In the Cross-Domain dataset, the
strategies increased the F-measure from 0.30 to 0.65. And in the OAEI
2011 dataset, the average F-measure across all six sub-datasets increased
from 0.72 to 0.85.

However, it is only the Domain Mismatch Detection strategy that contrib-
utes to this increase in F-measure, the Concept Scope Mismatch Detection
is not able to identify any false positives in any of these three datasets.
This contradicts the results from the experiments on these strategies repor-
ted in Section 5.5. Here, the Concept Scope Mismatch Detection filtered
out 8 of the 15 false positive relations from the initial alignment produced
by AgreementMakerLight when run on the ATM dataset.

The main reason for this discrepancy is the use of string matching. Agree-
mentMakerLight uses, among other techniques, string matching techniques
in its computation of equivalence relations. For example, the Word Matcher
in AgreementMakerLight uses words shared by the source concept and the
target concept as (partial) evidence of equivalence. This results in that
for example Aircra f tFlow and Flow are considered equivalent. Further-
more, most string matchers would give a high similarity score between the
two concepts TRoute and Route. Since the implementation proposed in
this thesis does not include a string matcher, but have replaced this with
matchers based on word embeddings, relations such as these have not been
included in the returned alignments. And this also results in that relations
such as those returned by AgreementMakerLight, and which represent pat-
terns detected by the Concept Scope Mismatch Detection technique, are not
present.

7.2 Validity, Reliability and Credibility of the Research

Validity is concerned with the question of how the conclusions might be
wrong, i.e. the relationship between conclusions and reality. Often, valid-
ity is distinguished in internal validity and external validity [123]. Internal
validity relates to whether it is the treatment that actually causes the out-
come, or if other external factors influence the outcome. In this research, the
outcome is an alignment holding a set of correct semantic relations between
concepts of two ontologies. The treatment is a semantic matching system
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that is capable of identifying these correct semantic relations. There are
mainly two aspects to consider in this regard:

1. Whether the proposed semantic matching system, and its constituent
artefacts, is actually capable of improving the quality of the produced
alignment compared to if another system was used.

2. Whether using ontology profiling to automatically configure the match-
ing system yields better quality alignments than when not using this
approach.

With respect to the first aspect, the evaluation (see Chapter 6) compares the
alignment quality produced by the proposed approach with the quality of
alignments produced by five other semantic matching systems. Two differ-
ent evaluations were performed for each of the three datasets. The first eval-
uation was based on “syntactic” evaluation measures, namely precision and
recall as they are applied in the evaluation of information retrieval systems.
In this evaluation the prototype developed in this work is compared with
other semantic matching systems that compute alignments holding both
equivalence- and subsumption relations. In order to also include systems
that only output equivalence alignments, the second evaluation analysed
evaluation scores with respect to “semantic” evaluation measures according
to semantic precision and recall. Here, the proposed prototype is evaluated
relative to two state-of-the-art matching systems AgreementMakerLight and
LogMap in addition to the systems included in the first evaluation.

The conclusion from the first evaluation, using “syntactic” evaluation meas-
ures, is that with the proposed approach, the alignment quality is higher in
terms of F-measure than all three compared systems. However, in order to
produce alignments from these systems, they either had to be re-factored
(BLOOMS and S-Match) or their prescribed workflow had to be changed
(STROMA). From this, there is a threat to the internal validity in that such
a re-factoring has resulted in changes in parameter settings or other changes
that may have affected their results.

The conclusion from the second evaluation, using “semantic” evaluation
measures, is that the proposed approach performs well even if the state-
of-the-art system AgreementMakerLight obtains a higher F-measure in the
Cross-domain dataset and the OAEI dataset.

With respect to the second aspect, we compare the quality of the align-
ment produced by the proposed approach with the quality of the alignment
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produced by the same set of matchers, but not using the results from the
ontology profiling process to weigh confidence of the matchers and influence
the alignment combination process. The evaluation shows that the approach
using ontology profiling scores in general yields higher alignment quality in
terms of F-measure than when not using this approach. In both the ATM
dataset and the Cross-domain dataset the matcher selection contributes to
a higher F-measure, while in the OAEI dataset the matcher selection did
not have any effect. Based on these results, there is a strong indication that
the proposed treatment (i.e. the matching artefacts developed in this work)
has a positive effect on the semantic matching process and the outcome (the
alignment quality).

External validity refers to the ability of generalising the results, that is, can
the results be transferred to a wider setting outside the particular context
of the study? To evaluate this, three diverse datasets were used in the ex-
perimental evaluation in order to establish an as varied and realistic context
as possible. These datasets were different in terms of application domain
and scope, level of generality, terminological complexity, and ontology size.
The results from all datasets suggest that the proposed approach can posit-
ively contribute to alignment quality beyond a particular context. There is
however a validity threat related to the ATM and the Cross-domain data-
sets since they, in contrast to the OAEI dataset, have not been validated
by a larger community. The ATM dataset was developed in a collabor-
ation that included experts from the ATM domain as well as researchers
working in the area of semantic technologies. Following a rigorous mapping
process that resulted in a manual mapping between the ATM ontologies
NASA’s ATMONTO and Eurocontrol’s AIRM (AIRM-O), reference align-
ments holding subsumption- and equivalence relations were derived. Fur-
thermore, the Cross-Domain dataset was developed by the author himself
following a procedure whereby an initial equivalence alignment was gener-
ated by the AgreementMakerLight system. The author himself inspected
this initial alignment, and from an analysis of the ontologies involved (Bib-
frame and Schema.org), the alignment was refined by adding additional
equivalence relations as well as removing relations that were considered in-
correct. The creation of subsumption relations for both datasets followed
the same procedure as used by the Ontology Alignment Evaluation Initiative
(OAEI).

With respect to the reliability of the research, this relates to the stability
or consistency with which we measure something [123]. In the experiments
de facto standard statistical measures have been used as parameters for



7.2. Validity, Reliability and Credibility of the Research 181

determining the quality of an alignment produced by the individual artefacts
and the prototype matching systems: precision, recall and F-measure. In
order to have a valid evaluation that could put the performance of the
prototype matching system in context with other relevant state-of-the-art
systems semantic precision and recall were applied as evaluation metrics.

Hence, the evaluation results measured using these measures can be used in
comparison with other related research.

Credibility refers to giving sufficient detail of the study to allow other re-
searchers to replicate it [123]. In addition to describing the approach in a
detailed manner, all source code and evaluation data from all experiments,
including the alignments produced by these mentioned systems, are made
available on-line so that the evaluation results can be traced and reproduced.
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8
Conclusions and Further Work

8.1 Conclusions

The main objective of this thesis has been to: “Develop an approach for
semantic matching that uses inherent characteristics of ontological models
to produce an alignment that includes both equivalence and subsumption
relations”.

In order to fulfil this objective, and its underlying research questions, sev-
eral artefacts have been developed and evaluated in an iterative approach
guided by the Design Science research paradigm. In sum, these artefacts
form a prototype semantic matching system that derives inherent charac-
teristics from the ontologies to be matched using a set of generic ontology
profiling metrics that quantitatively describe terminological, structural and
lexical features. Based on the derived characteristics the system selects the
most relevant equivalence- and subsumption matchers to be represented in
a complementary ensemble of matchers, configures the confidence threshold
for the included matchers, and combines individual alignments into an op-
timal final alignment holding both equivalence and subsumption relations.
Furthermore, a set of mismatch detection strategies have been developed to
filter out false positive relations from the equivalence alignments produced
and contribute to increase the precision of the final alignments returned
from the system.

Evaluation results show that the proposed approach is highly competit-
ive with state-of-the-art matching systems. Especially in one of the data-
sets, where the terminology used to describe the ontologies is technical
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and domain-specific, the approach achieves higher precision, recall and F-
measure than other comparable systems.

8.2 Summary of Contributions

Building on existing knowledge from semantic matching (including schema
matching and ontology matching systems research) the artefacts developed
as part of this thesis include:

• Six ontology profiling metrics, which all return a quantitative score
normalised between [0..1], and that are used in the weight formulation
of the individual matchers.

• Five equivalence matchers, which all represent new ideas with respect
to automatically identifying equivalence relations among ontology con-
cepts.

• Four subsumption matchers, which mixes existing techniques with new
ideas on how to capture subsumption relations.

• One combination method, the Profile Weight method, which com-
bines equivalence and subsumption alignments produced by individual
matchers and which considers the weight imposed from the profiling
metrics.

• Two Mismatch Detection Techniques, that based on research on on-
tology mismatches have the capability of enhancing the precision of
returned alignments without reducing the recall.

• An instantiation of all above artefacts represented as a prototype of a
semantic matching system.

All source code related to these artefacts as well as all evaluation results,
including the source material from which evaluation results are derived from,
is made available on-line1.

8.3 Revisiting the Research Questions

The research questions formulated in Section 1.2 are answered in the fol-
lowing:

1https://github.com/audunven

https://github.com/audunven
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RQ1: Which ontology characteristics can guide the composition of
a relevant ensemble of matchers in a semantic matching system?
During a number of iterations involving definition, testing and evaluation
of numerous metrics, the ontology profiling process finally includes these
metrics:

• Compound Fraction, which represents the fraction of how many concept
names are compounds over all concept names in the two input onto-
logies.

• Corpus Coverage, which analyses how many individual tokens from the
two input ontologies reside in a corpus representing word embeddings.

• Definition Coverage, which represents the fraction of concepts that
are annotated by a natural language definition in each of the two
ontologies

• Property Fraction, representing the fraction of classes that are associ-
ated with data- or object properties over the total number of classes
in the two ontologies

• Structural Profile, computed as the fraction of classes that have sub-
or superclasses associated with them.

• Lexical Coverage, which measures the ratio of class names present in
the WordNet lexicon.

These profiling metrics correlate well with the equivalence- and subsumption
matchers developed in this work, which is an assumption for the suggested
matching process. The scores computed by the ontology profiling metrics are
used for selecting matchers in an ensemble as well as determining the weights
that influence the confidence values assigned to the semantic relations re-
turned by the matchers, and consequently the combination of individual
alignments.

The results from the evaluation suggests that these ontology characteristics,
which encompass terminological, structural and lexical aspects, are appro-
priate for guiding the selection, configuration and combination of matchers.

RQ2: Which techniques can be used to automatically identify sub-
sumption relations?
Four different subsumption matchers are implemented in this work. The
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Compound Matcher, Context Subsumption Matcher and Lexical Subsump-
tion Matcher are based on ideas from previous works (notably Arnold &
Rahm [7]), while the Definition Subsumption Matcher is to the best of our
knowledge new. The Definition Subsumption Matcher is based on lexico-
syntactic patterns, which are commonly used to identify hyponym relations
in ontology learning [62].

An analysis of the complementarity of the matchers shows that even if
the Context Subsumption Matcher and the Compound Matcher make the
strongest contribution in all datasets, all four techniques contribute by
identifying subsumption relations that the other matchers are not able to
identify.

From the evaluation of semantic precision and recall in all datasets it is
clear that inferring subsumption relations from high quality equivalence
alignments can contribute to identify correct subsumption relations – also
relations beyond those identified by the abovementioned matchers.

RQ3: Which combination strategies are applicable when combin-
ing semantic relations - produced by an ensemble of equivalence
and subsumption matchers - into a final alignment?
A large number of alignment combination strategies are proposed in the
semantic matching literature. Many of them are based on the assumption
that the single highest one-to-one relation should be extracted from each
alignment produced by individual matchers. Clearly, such a strategy does
not work for subsumption alignments, where a concept in one ontology may
be related to several concepts in the other ontology.

Four different combination methods have been evaluated in this work, all
applicable for combined alignments consisting of both equivalence and sub-
sumption relations. These combination methods are:

• Cut Threshold [25], which on the basis of a defined cut-off threshold
only allows relations above this threshold into the final alignment.

• Average Aggregation [25], which computes the average confidence value
from all involved matchers for each relation.

• Majority Vote [35], which only includes those semantic relations com-
puted by a majority of the involved matchers into the final alignment.

• Profile Weight, representing a weighted combination approach, using
the scores from the ontology profiling process as weights for the con-
fidence value assigned by each individual matcher.
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The Profile Weight combination method performs well across all datasets
and without relying on specific confidence thresholds – all relations in the fi-
nal alignment are considered equally valid. The Cut Threshold and Average
Aggregation combination methods sometimes outperform Profile Weight,
but only at certain confidence thresholds. The Majority Vote method res-
ults in high precision, but low recall, due to the strict requirement that
the majority of the involved matchers should propose a relation for it to be
included in the final alignment.

RQ4: Which strategies can be used to automatically detect on-
tology mismatches and ultimately enhance the quality of already
produced alignments?
Two mismatch detection strategies have been proposed in this work, Concept
Scope Mismatch Detection and Domain Mismatch Detection. Only the
Domain Mismatch Detection was able to detect mismatches in the three
datasets, despite promising performance by both strategies in preliminary
experiments. The Domain Mismatch Detection improved the F-measure of
the input equivalence alignments significantly. For example in the Cross-
Domain dataset, the F-measure went up from 0.30 to 0.65, affecting only
the precision as no true positive relations were removed in the process.

8.4 Further Work

There are several avenues for further work from the research conducted in
this thesis:

• Different artefacts taking part in the semantic matching process have
been described and evaluated in this thesis. In order to rigorously eval-
uate each artefact their performance has been evaluated in isolation,
not considering some of the synergies that could be obtained with
a stronger integration between the artefacts throughout the match-
ing process. For example, the discovery of a subsumption relation
could also inform the discovery of novel equivalence relations and vice
versa. Identifying potential synergies between the different artefacts
and evaluating their effect is considered an important further work
item.

• The use of word embeddings was central to the equivalence matching
and replaced basic string matching techniques in this work. When
inspecting the equivalence alignments produced by the two embed-
ding matchers, we see that several of the false positives indicate some
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form of semantic relatedness, but other relations than equivalence.
Some are subsumption relations (e.g. Carrier < Vehicle), while oth-
ers have some other form of lexical-semantic relation (e.g. meronyms
such as: Family has-a Residence). Some work has been done on auto-
matic detection of hyponyms in natural text using word embeddings,
e.g. [160, 40, 115] and investigating how embeddings could infer sub-
sumption relations and other lexical semantic relations would be a
natural extension to the work proposed.

• One line of work in semantic matching has been automated identific-
ation of background knowledge [38]. One interesting idea would be to
automatically identify appropriate natural text corpora that could be
used to derive word embeddings.

• In this work WordNet was used as an external lexical resource. Us-
ing other lexical resources, such as the semantic network BabelNet2

and the related BabelFy3 which performs multilingual word sense dis-
ambiguation and entity linking, should be investigated. BabelNet in-
cludes semantic description of concepts from various sources, includ-
ing WordNet. Some small experiments were conducted as part of this
work, but the conclusion from these experiments is that using some
of the other lexical resources included in BabelNet (e.g. Wikidata)
introduces additional false positives and longer run-time. However,
BabelNet appears to be a more active development than WordNet,
hence increased functionality, possibly useful for semantic matching, is
expected. Furthermore, and as briefly introduced in the Related Work
in Section 3.1, WebIsA is a knowledge base of hyponym relations ex-
tracted from Common Crawl4, a freely available corpus crawled from
the Web. Investigating to what extent this knowledge based can be
used in subsumption matching would be an interesting future work
item.

• One of the subsumption matchers, the Definition Subsumption Matcher,
used lexico-syntactic patterns in the natural language definition of the
ontology concepts to infer subsumption relations between them. Five
different patterns were applied, and these patterns helped to detect
subsumption relations that were not discovered by any other matcher.
However, an analysis of other relevant pattern could be performed,

2https://babelnet.org/
3http://babelfy.org/
4http://commoncrawl.org/

https://babelnet.org/
http://babelfy.org/
http://commoncrawl.org/
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and techniques for enriching concepts that are sparsely documented
in definitions would be a feasible way forward.

• A more sophisticated way of de-compounding could possibly enhance
the results of the Compound Matcher as well as other matchers using
the properties of compounds as part of the matching process. De-
compounding is challenging for several reasons (see Section 5.3.1) and
techniques with more accuracy and reliability should be developed.

• Within this work, run-time performance has not been an issue, and
most, if not all, matchers could most likely be made more efficient in
that regard. This is something that should be addressed by future ex-
tensions of the individual matchers and the proposed matching system
prototype. Especially when even larger ontologies are to be matched,
the run-time performance of the current matchers could represent a
bottleneck. Large-scale ontology matching is an active sub-research
area to ontology matching, and despite the fact that many techniques
for making the matching process more efficient has been proposed,
this is still considered a general issue in matching [35].
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Publications

This thesis is supported by 8 publications that are presented in the follow-
ing. Of these 3 are CORE-B papers, 2 are CORE-C papers, 1 is a PhD
symposium paper in a CORE-A conference, 1 is a workshop paper (The
Ontology Matching Workshop) and 1 paper was in an applied conference.
See http://portal.core.edu.au/conf-ranks/.

• Vennesland, A., e-Document Standards as Background Know-
ledge in Context-Based Ontology Matching. In European
Semantic Web Conference (pp. 806-816). Springer, Cham,
2015. The work described in this paper investigated how external
background knowledge can be used to detect correct equivalence rela-
tions between ontology concepts. The source of background knowledge
was the e-Document standard Universal Business Language (UBL)
from the transport logistics domain. This experiences from this work
triggered the exploration of using word embeddings as a more soph-
isticated background knowledge source for automated detection of se-
mantic relations between ontology concepts.

• Vennesland, A., Matcher composition for identification of
subsumption relations in ontology matching. In Proceed-
ings of the International Conference on Web Intelligence (pp.
154-161), ACM, 2017. This paper describes how ontology profil-
ing can contribute to automate matcher selection and combination
when aligning ontologies. The focus in this paper is on subsumption
matching.
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ity. In International Conference on Theory and Practice of
Digital Libraries (pp. 344-348), Springer, Cham, 2018. This
paper describes how the WordNet Domains classification can be ap-
plied to detect domain dissimilarity between ontology concepts and
thereby rule out false positive semantic relations in already produced
alignments. The dataset used in the work described by this paper
is the Cross-domain dataset (equivalence relations only) used in the
thesis.

• Vennesland, A., Gorman, J., Wilson, S., Neumayr, B., Schuetz,
C.G., Automated Compliance Verification in ATM using Prin-
ciples from Ontology Matching. In Proceedings of the 10th
International Joint Conference on Knowledge Discovery, Know-
ledge Engineering and Knowledge Management (KEOD) (pp.
39-50), 2018. This paper received the ’“Best Paper in Confer-
ence Award” at KEOD 2018. This paper emerged from the BEST
EU project, where one objective was to develop a prototype software
tool for assisting human users in checking compliance between ex-
change models in ATM and the ATM Information Reference Model
(AIRM) which is the standard information model for information ex-
change in the ATM domain. The paper also describes the AIRM-O
ontology, one of the ontologies used in the ATM dataset, which was de-
veloped in this research project. Furthermore, this work investigated
how the results from the ontology profiling could impact on selecting
the most appropriate matchers for a given ontology matching task, and
some of the techniques used by the matchers in this thesis originate
from this work.

• Gringinger, E., Keller, R.M., Vennesland, A., Schuetz, C.G.,
Neumayr, B. A Comparative Study of Two Complex Onto-
logies in Air Traffic Management. The 38th AIAA/IEEE Di-
gital Avionics Systems Conference (DASC), 2019. This paper
describes the analysis performed when identifying semantic relations
between the AIRM-O and ATMONTO ontologies (the ATM data-
set in this thesis). The focus of the paper is on the human effort of
identifying the semantic relations as well as categorising the ontology
mismatches that exist between the two ATM ontologies.

• Vennesland, A., Keller, R.M., Schuetz, C.G., Gringinger, E.,
Neumayr, B. Matching Ontologies for Air Traffic Manage-
ment: A Comparison and Reference Alignment of the AIRM
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ternational Workshop on Ontology Matching co-located with
the 18th International Semantic Web Conference (ISWC 2019)
Auckland, New Zealand (pp. 1-12), 2019. This paper focuses
on the development of the ATM dataset used in this thesis. The pa-
per describes the development of the reference alignment, which holds
both equivalence and subsumption relations, between the AIRM-O
and ATMONTO ontologies.

• Decourselle, J., Vennesland, A., Aalberg, T., Duchateau, F.,
and Lumineau, N. A novel vision for navigation and enrich-
ment in cultural heritage collections. In East European Con-
ference on Advances in Databases and Information Systems
(pp. 488-497), Springer, Cham, 2015. This paper describes an
approach for developing thematic knowledge bases (TKB) for cultural
heritage information. The approach is based on gathering informa-
tion about a particular topic (e.g. an actor) from different sources
(both linked open data sources and natural text repositories). Se-
mantic matching (ontology- and entity matching) is used to identify
additional sources of information to enrich the existing TKB and to
de-duplicate the knowledge residing in the TKB.

• Vennesland, A., de Man, J.C., Halland Haro, P., Arica, E.,
Oliveira, M., Towards a semantic matchmaking algorithm
for capacity exchange in manufacturing supply chains, In
Proceedings of the 11th International Joint Conference on
Knowledge Discovery, Knowledge Engineering and Know-
ledge Management (KEOD), 2019. The MANU-SQUARE pro-
ject aims to deploy a marketplace for the matchmaking of offer and
demand of manufacturing resources. A fundamental component in
this marketplace is a semantic matchmaking algorithm that based on
an ontology describing manufacturing resources is capable of finding
the best supplier given an explicit resource demand. This paper re-
ports on an evaluation of four different semantic similarity techniques
to use for this algorithm.
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