
Learning Image Relations with
Contrast Association Networks

Yao Lu
ANU, Data61, ACRV

yaolubrain@gmail.com

Zhirong Yang
NTNU

zhirong.yang@ntnu.no

Juho Kannala
Aalto University

juho.kannala@aalto.fi

Samuel Kaski
Aalto University

samuel.kaski@aalto.fi

Abstract—Inferring the relations between two images is an
important class of tasks in computer vision. Examples of such
tasks include computing optical flow and stereo disparity. We
treat the relation inference tasks as a machine learning problem
and tackle it with neural networks. A key to the problem
is learning a representation of relations. We propose a new
neural network module, contrast association unit (CAU), which
explicitly models the relations between two sets of input variables.
Due to the non-negativity of the weights in CAU, we adopt
a multiplicative update algorithm for learning these weights.
Experiments show that neural networks with CAUs are more
effective in learning five fundamental image transformations than
conventional neural networks.

I. INTRODUCTION

Neural networks, especially convolutional neural network
(CNN) [26], have been successfully applied in many computer
vision tasks such as object recognition [6], [25]. A key to this
success is that the neural networks allow appearance repre-
sentation which is invariant of several image transformations
such as small translation.

Another important class of tasks in computer vision is the
inference of relations between two images. Two images can
be related by object motion, camera motion or environmental
factors such as lighting change. For these problems, instead
of aiming for invariance of appearance changes, we want to
detect and estimate appearance changes. For example, given
two consecutive video frames, we want to infer the movement
of each pixel from one image to the other (optical flow). For
another example, given two images taken by a camera on a
moving robot, we want to infer the ego-motion of the robot
(visual odometry).

The traditional approach to perform the relation inference
tasks is knowledge-based. By acquiring knowledge of a task
and making reasonable assumptions for simplification, one
designs an algorithm to perform the inference. A classic
example is the Horn-Schunck algorithm for computing optical
flow [13]. However, in situations where we lack sufficient
knowledge or the assumptions fail, the knowledge-based ap-
proach may not perform well. For example, the Horn-Schunck
algorithms assumes brightness constancy of the moving pixels.
This assumption can be violated by many factors such as
occlusion, shading and noise.

An alternative approach to solve the relation inference
problem is learning-based [29]. From a collection of training

data, we aim to learn a function

z = F (x,y) (1)

such that given two images x and y as inputs, the function
will output their relation variables z. The relation variables
can be rotation angle, motion field, affine transformation pa-
rameters, etc. Compared to the knowledge-based approach, the
learning-based approach does not require sufficient knowledge
or assumptions but a large amount of training images with
ground-truth relation variables. When it is difficult to obtain
the ground-truth for real world images, one can often resort to
synthetic images rendered by graphics engines. An example
is the Sintel dataset for learning optical flow [4]. Recently,
the learning-based approach has been adopted to compute
optical flow [7], [17], [34], [40], stereo disparity [28], camera
motion [41] and visual odometry [23]. Some of the results
are competitive to the knowledge-based methods. Note that
relation learning can also serve as supervision for learning
appearance representation, as demonstrated in learning ego-
motion [2], [18] and robot actions [32].

Additionally, there are methods combining knowledge-
based and learning-based approaches [3], [37], [43], [44]. In
these methods, a neural network is trained to match two image
patches and a knowledge-based post-processing is applied on
the matching results to output the relation variables. In this
paper, we focus on the pure learning-based approach, that is,
neural networks are trained in an end-to-end manner, given
raw images as inputs and ground-truth relation variables as
targets. Although a relation learning model can also be trained
unsupervisedly [22], [30], [42], we restrict our discussion
mainly to supervised learning.

While both object recognition and relation inference can be
treated as supervised learning tasks, the two tasks have much
difference in nature. Object recognition aims for invariance
of several image transformations (e.g. translation, rotation and
scaling) but relation inference aims for equivariance of these
transformations. For example, the conventional CNN with a
pooling operation is known to be invariant of small translation.
This property is suitable for object recognition but not for
motion detection, whose goal is to estimate the translation.
This difference should be kept in mind when designing a
relation learning model.

In this paper, we propose a new relation unit, contrast
association unit (CAU). We show that CAUs are suitable

ar
X

iv
:1

70
5.

05
66

5v
2 

 [
cs

.C
V

] 
 1

1 
M

ar
 2

01
9



x y

z

f(·) f(·)

R(·, ·)

g(·)

Fig. 1: Neural network architecture for relation learning

for relation learning tasks with analysis and experiments. We
adopt a multiplicative update algorithm for learning the non-
negative weights in CAUs. The multiplicative update algorithm
is compatible with gradient descent algorithms for uncon-
strained weights. The whole neural network can be trained
in an end-to-end manner.

Next, in Section II, we outline the general neural network
architecture for relation learning. In Section III, we introduce
our proposed relation unit CAU. In Section IV, we present the
multiplicative update algorithm for learning the non-negative
weights in CAUs. In Section V, we discuss models related to
CAU. In Section VI, we present the experiments on the five
relation learning tasks.

II. ARCHITECTURE

As illustrated in Figure 1, the general neural network
architecture of many relation learning models [2], [7], [30]
can be described as

a = f(x), h = R(a,b),

b = f(y), z = g(h), (2)

where x and y are the inputs (images), z are the targets
(relation variables), f(·) is the feature extraction units, R(·, ·)
is the relation units and g(·) is the decoding units. f(·) and
g(·) can be parametric functions such as neural networks.
When the relation of two images is on the pixel-level (e.g.
affine transformation), f(·) can be the identity function such
that the relation units can directly apply on the image pixels.
When the relation units R(·, ·) can directly output relation
variables instead of a hidden representation, g(·) can also be
the identity function. For example, in [30], both f(·) and
g(·) are the identity function. For another example, in the
simple version of FlowNet [7], f(·) is the identity function
and g(·) is a CNN while in the complex version, both f(·) and
g(·) are CNNs. The main focus of this paper is the relation
units R(·, ·). A suitable relational representation can reduce the
sample complexity and model complexity of learning g(·). We
present two common types of relation units in below.

A. Concatenation Units

Concatenation units are defined as

h = [a b]. (3)

For this simple representation, g(·) is solely responsible for
learning the relations between a and b. Concatenation units
have been used in learning optical flow [7] and ego-motion
[2].

B. Bilinear Units

Bilinear units have been previously proposed and developed
[12], [31], [39]. They are defined as, for the k-th unit,

hk =
∑
ij

Wijkaibj = aTWkb, (4)

where Wk is the parameters to be learned. A bilinear unit
models the pair-wise multiplicative intersection between two
sets of input variables. It is equivalent to inner product when
Wk is the identity matrix and equivalent to outer product since
(4) can be written as hk = vec(Wk)

T vec(abT ), where vec(·)
denotes vectorization. Bilinear units have been used in learning
image transformations [30], [35].

III. CONTRAST ASSOCIATION UNITS

We propose a new relation unit, contrast association unit
(CAU), which associates two sets of input variables. CAUs
are defined as, for the k-th unit,

hk =
1

2

∑
ij

Wijk(ai − bj)2, (5)

where Wijk ≥ 0. Each CAU can be interpreted as a weighted
sum of mismatches between a and b. The non-negative
constraint on the weight matrices is indispensable since the
mismatches should be non-negative to be accumulated. Oth-
erwise, positive mismatches and negative mismatches would
cancel each other.

Compared to concatenation and bilinear units, CAUs have
two advantages: (1) as the name suggests, CAUs model the
contrast between two sets of variables such that R(a+ c,b+
c) = R(a,b), where c is a scalar applied on each element
of a vector. This property is desirable for relation inference.
For example, when a and b are the raw pixels, their relations
should not be affected by their absolute pixel intensity level.
(2) CAUs represent relations more explicitly. Each CAU stands
for the matching error of a certain relation encoded by the
weight matrix. An example is given in Section III-B. This
interpretablity also inspires the use of competition among
CAUs as described below.

A. Competition

We apply a competition mechanism among CAUs. The
competition encourages the unit standing for the minimum
matching error to pop out. As a result, the relation represen-
tation can be more easily read-out by the decoding units. A
classic competition mechanism is the winner-take-all (WTA),
defined as

h′k =

{
1, if hk = min(h),

0, otherwise.
(6)



WTA is of conceptual interest, which is demonstrated in
Section III-B. However, WTA is not differentiable and dis-
cards too much information. In practice, we can use softmin
competition, defined as

h′k =
e−hk∑
i e
−hi

. (7)

In all our experiments, adding the softmin competition signif-
icantly improves the results of neural networks with CAUs.

B. Example

To understand how neural networks with CAUs represent
relations, let us consider a simple example of translation
detection. Let

a = (c1, c2, c3, c4, c5), (8)
b1 = (c2, c3, c4, c5, c6), (9)
b2 = (c1, c2, c3, c4, c5), (10)
b3 = (c0, c1, c2, c3, c4), (11)

where {ci} are arbitrary numbers. Let z ∈ {−1, 0, 1} be the
translation variable and

b =


b1, if z = −1,
b2, if z = 0,

b3, if z = 1.

(12)

Denote by D(a,b) the matrix of pair-wise squared differences
of the elements in a and b. The element of index (i, j) in
D(a,b) is (ai − bj)2. Then we have∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗
∗ 0 ∗ ∗ ∗
∗ ∗ 0 ∗ ∗
∗ ∗ ∗ 0 ∗


︸ ︷︷ ︸

D(a,b1)

,

0 ∗ ∗ ∗ ∗
∗ 0 ∗ ∗ ∗
∗ ∗ 0 ∗ ∗
∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ 0


︸ ︷︷ ︸

D(a,b2)

,

∗ 0 ∗ ∗ ∗
∗ ∗ 0 ∗ ∗
∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗


︸ ︷︷ ︸

D(a,b3)

(13)

where ∗ denotes the element whose value we do not care about.
We construct three CAUs (h1, h2, h3) with the following
weight matrices,0 0 0 0 0

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


︸ ︷︷ ︸

W1

,

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

W2

,

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0


︸ ︷︷ ︸

W3

(14)

respectively. If b = bi, then hi = 0 and hj 6=i > 0 except
for some special cases. With WTA competition, h′i = 1 and
h′j 6=i = 0. The translation variable z can be inferred with
simple decoding units g(h′) = (−1, 0, 1) · h′ = z.

C. Low-rank Approximation

If Wk is large, we can approximate it in the following way.
For rank-one approximation, let Wk = ukv

T
k , where uk and

vk are a row of non-negative matrices U and V, respectively.

Then the right side of (5) can be written in the matrix form
as

h∗ =
1

2

[
(V1) ◦U(a)2 + (U1) ◦V(b)2

]
− (Ua) ◦ (Vb),

(15)

where 1 is a vector of ones, ◦ is the element-wise multiplica-
tion and (·)2 is the element-wise square. The derivation can
be found in Appendix. To obtain CAUs of higher ranks, we
can apply sum-pooling over h∗. That is, divide h∗ into non-
overlapping groups of equal size and sum the units in each
group.

IV. LEARNING

To learn the non-negative weights in CAUs (Wk for full
rank or U and V for rank-one), the conventional gradient
descent based algorithms are not suitable because the non-
negativity of weights cannot be maintained after each update.
Simply projecting weights onto the space of the nonnegative
matrices after each update performs poorly in our experiments,
where the learning converges at an extremely low speed or
even diverges in many cases.

To address the above problem, we adopt a multiplicative
update algorithm for the non-negative weight matrices in a
neural network, which was originally used for non-negative
matrix factorization [27]. For a non-negative matrix W in
a neural network and loss function E, we decompose the
gradient into two positive parts ∂E

∂W = ∇+ −∇−, where the
two positive matrices ∇+ and ∇− can be computed by

∇+ =
1

2

(
abs
(
∂E

∂W

)
+

∂E

∂W

)
+ ε, (16)

∇− =
1

2

(
abs
(
∂E

∂W

)
− ∂E

∂W

)
+ ε, (17)

where abs(·) is the element-wise absolute value and ε is a
small positive scalar applied to each element of a matrix. The
multiplicative update algorithm is defined as

W←W ◦
(
∇−

∇+

)η
, (18)

where η is the learning rate hyperparameter and the division
and the exponentiation are both element-wise. If W is initial-
ized to be positive, the updated matrix will remain positive
since all factors on the right hand side are positive.

In practice, the multiplicative update algorithm can be
used in a stochastic (or mini-batch) manner. Such use has
been demonstrated in non-negative matrix factorization [36].
Note that the multiplicative update still requires the gradients
calculated by back-propagation. The gradient calculation for
CAU can be found in Appendix.

V. RELATED WORK

A classic model related to the proposed CAU is the energy
model for motion detection [1] and stereo disparity [8]. Each
unit of the energy model computes the sum of squares of two
Gabor filter outputs. No learning is involved in the energy
model. There are models which compute the sum of squares



of learnable filter outputs such as adaptive-subspace self-
organized maps (ASSOM) [21] and independent subspace
analysis (ISA) [16]. Similar to CAU, ASSOM also has a
competition mechanism (WTA). However, the goal of both
ASSOM and ISA is to learn appearance features which are
invariant of image transformations, as different from our goal.
There is a line of research on relation learning based on
Boltzmann machines [15], [30], [38]. While Boltzmann ma-
chines allow a probabilistic formulation of relation inference,
the training of Boltzmann machines is much more expensive
compared to their non-probabilistic counterpart. Non-negative
weights have appeared in sum-product networks [33], multi-
layer perceptrons [5] and natural image statistics models [9],
[14]. Our derivation of the low-rank approximation of CAUs
follows from the low-rank approximation of bilinear units [19],
[30].

VI. EXPERIMENTS

We consider five fundamental image transformations for the
relation learning tasks. For image x, its transformed image
y is synthetically generated with ground-truth transformation
parameters (or relation variables) z. For each task, neural
networks are trained in a supervised manner, given x and y
as inputs and z as targets. We describe the details below.

A. Tasks

The five image transformations are: translation, rotation,
scaling, affine transformation and projective transformation.
They are called geometric transformations and can be unified
as follows [10]. An image can be transformed (or warped) by
changing its coordinates. For each point of an image with
homogeneous coordinates p = (p1, p2, 1), the transformed
point is p′ = Hp with homography matrix

H =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 . (19)

The type of the transformation depends on the parametrization
of H. Note that translation, rotation and scaling are spe-
cial cases of affine transformation and affine transformation
is a special case of projective transformation. We list the
parametrization in each task and the range of the transfor-
mation parameters below.

• Translation. z ∈ [−5, 5]2 and H =1 0 z1
0 1 z2
0 0 1

 .
Images are translated by z1 pixels horizontally and z2
pixels vertically.

• Rotation. z = z ∈ [−45, 45], θ = radian(z) and H =cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 .

Images are rotated by z degrees.

• Scaling. z ∈ [0.5, 2]2 and H =z1 0 0
0 z2 0
0 0 1

 .
Images are scaled by z1 horizontally and z2 vertically.

• Affine. z ∈ [−0.5, 0.5]4 and H =1 + z1 z2 0
z3 1 + z4 0
0 0 1

 .
To simplify the problem, we discard translation such that
h13 and h23 are zero.

• Projective. z ∈ [−0.5, 0.5]4 × [−0.01, 0.01]2 and H =1 + z1 z2 0
z3 1 + z4 0
z5 z6 1

 .
z5 and z6 are much more sensitive than the other vari-
ables. Hence, their range is set to be smaller. Larger range
will cause extremely distorted images. To simplify the
problem, we discard translation such that h13 and h23
are zero.

B. Data

We generate training image patches from the gray-scaled
CIFAR-10 dataset1 [24]. For each task and for each image in
CIFAR-10, we apply an image transformation with z randomly
sampled from uniform distributions to obtain an image pair.
Then we crop an image patch of size 11×11 at the center of
each image of the image pair. Repeat the process 10 times.
With this procedure, we obtain a training set of size 500,000
and a testing set of size 100,000 for the relation learning tasks.

C. Models

We test three neural network models, each of which uses
a different type of relation units: concatenation, bilinear and
CAU. For all the models, f(·) is the identity function and
g(·) is a multi-layer perceptron. We call the three neural net-
work models, concatenation network (CTN), bilinear network
(BLN) and contrast association network (CAN), respectively.
For BLN and CAN, we use low-rank approximation of the
bilinear units and CAUs, as described in Section III-C. In
BLN, we apply l2 normalization, which empirically performs
better than softmax (or softmin), on the outputs of bilinear
units. We also experimented with the non-negative constraint
on the bilinear units but found it performs poorly and therefore
discarded it. For fairness of the comparison, all three models
are set to have essentially the same size in each task. To test the
generality, all models are set to have the same size in different

1https://www.cs.toronto.edu/∼kriz/cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html


(a) Translation

(b) Rotation

(c) Scaling

(d) Affine

(e) Projective

Fig. 2: Sample image patches. For (a)-(e), the first row contains
the original image patches x and the second row contains the
corresponding transformed image patches y.

tasks, except that the last layer depends on the dimensionality
of the targets z in the task. The models are specified in Table
I.

D. Settings

All image patches are of size 11×11 and are reshaped to
vectors of size 121. The numerical range of each element
of the vectors is normalized from [0, 255] to [−0.5, 0.5] by
dividing 255 and then subtracting 0.5. This normalization
significantly accelerates the training.

We use the mean-squared-error (MSE) as the loss function.
All the parameters of all models are initialized randomly

according to uniform distributions. We use the multiplicative
update algorithm (described in Section IV) for non-negative
weights (U and V) and Adam [20] for unconstrained weights.

For all models in all tasks, we use the same training hyper-
parameter setting. The initial learning rates are η = 0.005
(multiplicative update) and α = 0.005 (Adam). Both are
multiplied by 0.95 for every 500 mini-batch updates. The

TABLE I: Model specification. The size of each layer is
on the right, if applicable. Concat denotes concatenation.
Linear denotes fully connected layer. PReLU denotes the
parametric ReLU activation function [11]. * denotes rank-one
approximation. The sum-pooling pools every 4 elements of a
vector. dim(z) denotes the dimensionality of z.

CTN BLN CAN
Concat Bilinear*, 1200 CAU*, 1200

Linear, 1200 Sum-Pooling, 300 Sum-Pooling, 300
PReLU l2 Norm Softmin

Linear, 300 Linear, 100 Linear, 100
PReLU PReLU PReLU

Linear, 100 Linear, 100 Linear, 100
PReLU PReLU PReLU

Linear, 100 Linear, dim(z) Linear, dim(z)
PReLU

Linear, dim(z)

size of each mini-batch is 100. There are 200,000 mini-batch
updates in total. ε = 10−20 in the multiplicative update.

We use MATLAB2 for generating the data and Torch3 for
neural network training and testing.

E. Results

We use two measures of error to evaluate our results.

• Parameter error. It is defined as the MSE between the
ground-truth transformation parameters z and the inferred
parameters ẑ, that is, ‖z−ẑ‖2. An advantage of parameter
error is interpretability. For example, in inferring the
rotation between two images, it is desirable that the
inference error is measured in degrees. A disadvantage
is that it is difficult to compare the inference error
across tasks since different tasks have different range of
transformation parameters.

• Transformation error. Define four points with homoge-
neous coordinates

p1 = (0, 0, 1), p2 = (1, 0, 1),

p3 = (1, 1, 1), p4 = (0, 1, 1).

Let p′i = Hpi be the transformed point with the
ground-truth homography H and let p̂′i = Ĥpi be the
transformed point with the inferred homography Ĥ. The
transformation error is defined as∑4

i=1 ‖p′i − p̂′i‖2∑4
j=1 ‖p′j‖2

. (20)

It is scale-invariant in the sense that the error is un-
changed if we multiply H and Ĥ by a non-zero constant.
Therefore it is more suitable to compare this inference
error across different tasks.

2https://www.mathworks.com/
3http://torch.ch/

https://www.mathworks.com/
http://torch.ch/


The results are listed in Tables II and III, with errors
averaged over the testing sets. We can see that CAN achieves
the lowest errors in every task. From Table III, we can see that
the transformation error of CAN goes up when the complexity
of the tasks is increased.

TABLE II: Mean parameter error on testing sets.

Task CTN BLN CAN
Translation 0.773 1.893 0.049
Rotation 9.854 5.925 3.518
Scaling 0.018 0.025 0.017
Affine 0.014 0.020 0.010
Projective 0.030 0.032 0.030

TABLE III: Mean transformation error on testing sets.
Task CTN BLN CAN
Translation 0.198 0.322 0.014
Rotation 0.025 0.018 0.014
Scaling 0.056 0.065 0.055
Affine 0.084 0.100 0.072
Projective 0.160 0.166 0.158

VII. DICUSSION

In our present work, the experiments are limited to small
image patches and to simple image transformations. It is
not clear how well CAUs perform on whole images and
more complex tasks. Future work includes extending CAUs to
handle whole images and more complex tasks such as three-
dimensional transformations.

APPENDIX

Rank-One Approximation of CAU

Since Wk = ukv
T
k , we have

hk =
1

2

∑
ij

Wijk(ai − bj)2 (21)

=
1

2

∑
ij

Wijk(a
2
i + b2j )−

∑
ij

Wijkaibj (22)

=
1

2

[
1TWT

k (a)
2 + 1TWk(b)

2
]
− aTWkb (23)

=
1

2

[
1Tvku

T
k (a)

2 + 1Tukv
T
k (b)

2
]
− aTukv

T
k b. (24)

In matrix form

h =
1

2

[
(V1) ◦Ua2 + (U1) ◦Vb2

]
− (Ua) ◦ (Vb). (25)

Gradients of CAU

∂E

∂a
=
∑
k

∂E

∂hk

∂hk
∂a

,
∂E

∂b
=
∑
k

∂E

∂hk

∂hk
∂b

, (26)

∂hk
∂a

= (WT
k 1) ◦ a−Wkb, (27)

∂hk
∂b

= (Wk1) ◦ b−WT
k a, (28)

∂E

∂Wk
=

∂E

∂hk

∂hk
∂Wk

, (29)

∂hk
∂Wk

=
1

2

[
(a2)1T + 1(b2)T

]
− abT . (30)

For Wk = ukv
T
k ,

∂E

∂uk
=

∂E

∂hk

∂hk
∂uk

,
∂E

∂vk
=

∂E

∂hk

∂hk
∂vk

, (31)

∂hk
∂uk

=
1

2

[
(vTk 1)a

2 + (vTk b
2)1
]
− (vTk b)a, (32)

∂hk
∂vk

=
1

2

[
(uTk 1)b

2 + (uTk a
2)1
]
− (uTk a)b. (33)

REFERENCES

[1] E. H. Adelson and J. R. Bergen. Spatiotemporal energy models for the
perception of motion. JOSA A, 1985.

[2] P. Agrawal, J. Carreira, and J. Malik. Learning to see by moving. ICCV,
2015.

[3] C. Bailer, K. Varanasi, and D. Stricker. Cnn-based patch matching for
optical flow with thresholded hinge loss. arXiv, 2016.

[4] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic
open source movie for optical flow evaluation. ECCV, 2012.

[5] J. Chorowski and J. M. Zurada. Learning understandable neural
networks with nonnegative weight constraints. IEEE TNNLS, 2015.

[6] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural
networks for image classification. CVPR, 2012.

[7] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov,
P. van der Smagt, D. Cremers, and T. Brox. Flownet: Learning optical
flow with convolutional networks. ICCV, 2015.

[8] D. J. Fleet, H. Wagner, and D. J. Heeger. Neural encoding of binocular
disparity: energy models, position shifts and phase shifts. Vision
Research, 1996.

[9] M. U. Gutmann and A. Hyvärinen. A three-layer model of natural image
statistics. Journal of Physiology-Paris, 2013.

[10] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. 2003.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. ICCV,
2015.

[12] G. F. Hinton. A parallel computation that assigns canonical object-based
frames of reference. IJCAI, 1981.

[13] B. K. Horn and B. G. Schunck. Determining optical flow. Artificial
Intelligence, 1981.

[14] P. O. Hoyer and A. Hyvärinen. A multi-layer sparse coding network
learns contour coding from natural images. Vision research, 2002.

[15] Y. Huang, W. Wang, and L. Wang. Conditional high-order boltzmann
machine: A supervised learning model for relation learning. ICCV, 2015.

[16] A. Hyvärinen and P. Hoyer. Emergence of phase-and shift-invariant
features by decomposition of natural images into independent feature
subspaces. Neural Computation, 2000.

[17] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox.
Flownet 2.0: Evolution of optical flow estimation with deep networks.
arXiv, 2016.

[18] D. Jayaraman and K. Grauman. Learning image representations tied to
ego-motion. ICCV, 2015.

[19] J.-H. Kim, K.-W. On, J. Kim, J.-W. Ha, and B.-T. Zhang. Hadamard
product for low-rank bilinear pooling. ICLR, 2017.



[20] D. Kingma and J. Ba. Adam: A method for stochastic optimization.
ICLR, 2014.

[21] T. Kohonen. Emergence of invariant-feature detectors in the adaptive-
subspace self-organizing map. Biological Cybernetics, 1996.

[22] K. Konda and R. Memisevic. Unsupervised learning of depth and
motion. arXiv, 2013.

[23] K. R. Konda and R. Memisevic. Learning visual odometry with a
convolutional network. VISAPP, 2015.

[24] A. Krizhevsky and G. Hinton. Learning multiple layers of features from
tiny images. 2009.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. NIPS, 2012.

[26] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 1998.

[27] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix
factorization. NIPS, 2001.

[28] W. Luo, A. G. Schwing, and R. Urtasun. Efficient deep learning for
stereo matching. CVPR, 2016.

[29] R. Memisevic. Learning to relate images. IEEE TPAMI, 2013.
[30] R. Memisevic and G. E. Hinton. Learning to represent spatial trans-

formations with factored higher-order boltzmann machines. Neural
Computation, 2010.

[31] B. A. Olshausen, C. H. Anderson, and D. C. Van Essen. A neurobio-
logical model of visual attention and invariant pattern recognition based
on dynamic routing of information. Journal of Neuroscience, 1993.

[32] L. Pinto, D. Gandhi, Y. Han, Y.-L. Park, and A. Gupta. The curious
robot: Learning visual representations via physical interactions. ECCV,
2016.

[33] H. Poon and P. Domingos. Sum-product networks: A new deep
architecture. NIPS, 2011.

[34] A. Ranjan and M. J. Black. Optical flow estimation using a spatial
pyramid network. arXiv, 2016.

[35] I. Rocco, R. Arandjelović, and J. Sivic. Convolutional neural network
architecture for geometric matching. CVPR, 2017.

[36] R. Serizel, S. Essid, and G. Richard. Mini-batch stochastic approaches
for accelerated multiplicative updates in nonnegative matrix factorisation
with beta-divergence. MLSP, 2016.

[37] A. Shaked and L. Wolf. Improved stereo matching with constant
highway networks and reflective confidence learning. arXiv, 2016.

[38] J. Susskind, G. Hinton, R. Memisevic, and M. Pollefeys. Modeling the
joint density of two images under a variety of transformations. CVPR,
2011.

[39] J. B. Tenenbaum and W. T. Freeman. Separating style and content with
bilinear models. Neural Computation, 2000.

[40] J. Thewlis, S. Zheng, P. H. Torr, and A. Vedaldi. Fully-trainable deep
matching. BMVC, 2016.

[41] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg, A. Dosovitskiy,
and T. Brox. Demon: Depth and motion network for learning monocular
stereo. arXiv, 2016.

[42] J. J. Yu, A. W. Harley, and K. G. Derpanis. Back to basics: Unsupervised
learning of optical flow via brightness constancy and motion smoothness.
arXiv, 2016.

[43] S. Zagoruyko and N. Komodakis. Learning to compare image patches
via convolutional neural networks. CVPR, 2015.

[44] J. Zbontar and Y. LeCun. Stereo matching by training a convolutional
neural network to compare image patches. JMLR, 2016.


	I Introduction
	II Architecture
	II-A Concatenation Units
	II-B Bilinear Units

	III Contrast Association Units
	III-A Competition
	III-B Example
	III-C Low-rank Approximation

	IV Learning
	V Related Work
	VI Experiments
	VI-A Tasks
	VI-B Data
	VI-C Models
	VI-D Settings
	VI-E Results

	VII Dicussion
	References

