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Abstract

The probabilities of joint default among companies are one of the major concerns

in credit risk management, mainly because it a�ects the distribution of loan portfolio

losses and is therefore critical when allocating capital for solvency purposes. This

paper proposes a multivariate model with time-varying and correlated Sharpe ratios

and volatilities for the value of the �rms, calibrated to �t sample averages between

and within the rating categories A and Ba. We found that, in the standard Merton

framework, the model performs well with one average A-rated �rm and one average

Ba-rated �rm and with two average Ba-rated �rms when the joint default probabilities

are compared with similar empirical probabilities.
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1 Introduction

Modeling dependence between multiple default events are one of the biggest challenges in

credit risk modeling. The most obvious reason is that it a�ects the distribution of loan

portfolio losses and is therefore critical in determining quantiles or other risk measures used

for allocating capital for solvency purposes. For long term investments, default correlation

can be quite a signi�cant factor if the underlying �rm values are highly correlated. Also, a

bank with large loan portfolios can have signi�cant exposures to a group of related counter-

parties, i.e. �rms in the same economic sector or geographic region. Thus, they need good

performing models for capturing and forecasting the risks associated with its large portfolios.

Empirical results indicate that conventional methodologies for portfolio default losses that

are �typically estimated for meeting bank capital requirements (...) are downward biased by

a full order of magnitude on typical test portfolios� (Du�e, Eckner, Horel and Saita, 2009).

Also, dependence modeling is necessary in trying to understand the risk of simultaneous

defaults by, for example, �nancial institutions. Standard credit risk models cannot explain

the observed clustering of defaults, which is sometimes described as �credit contagion�. A

breakdown in the �nancial system could a�ect the entire economy. Avoiding such breakdowns

are a major motivation behind regulation.

Conventional portfolio loss risk models and default correlations are mainly estimated in two

ways. One method uses historical data and �assumes that borrower-level conditional default

probabilities depend on measured �rm-speci�c or marketwide factors. Portfolio loss distri-

butions are typically based on the correlating in�uence of such observable factors� (Du�e,

Eckner, Horel and Saita, 2009). The second approach �utilizes a particular theoretical struc-

ture of the default process. The most popular structure in practice is based on Merton's

(1974) framework� (Zhou, 2001). Moody's KMV approach to measure the default probabil-

ities for di�erent �rms, which is based on the Merton's framework, is considered as the best

approach in the industry.

Among others, Chen, Collin-Dufresne and Goldstein (2009) found that a univariate model

for the standard Merton model predicted spreads that falls below historical market spreads

when the model was calibrated to match historical default rates, recovery rates, means and

volatilities. They resolved this �credit spread puzzle� by the fact that default rates and

Sharpe ratios are strongly correlated; both are high during recessions and low during booms.

Further, they investigated credit spread implications of the Campbell and Cochrane (1999)

pricing kernel calibrated to equity returns and aggregate consumption data. By identifying

the historical surplus consumption ratio from aggregate consumption data, they found that
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the implied level and time variation of spreads match historical levels well.

Within the lines of Chen, Collin-Dufresne and Goldstein (2009), we propose a multivariate

model with correlated and time-varying means and volatilities, and investigate in a standard

Merton framework its performance with respect to the joint probabilities of default. Using

Monte Carlo simulations, we generate �rm value distributions and investigate how this a�ects

the joint probabilities of default. Further, we compare these probabilities with empirically

default data from Moody's Investors Service. We also compare the performance of a standard

multivariate model which is a model with constant and independent means and volatilities.

The paper proceeds as follows. The next section explains the standard Merton model and

the Moody's KMV approach to measure the default probabilities for di�erent �rms. Section

(3) derives the probabilities of joint default and default correlations. Section (4) outlines the

proposed model and Section (5) explains the Monte Carlo analysis, including the calibration

strategy, the Monte Carlo algorithm and the simulation results. In Section (6), we investigate

the risk management implications and compare the model with empirical data. Finally, we

conclude in Section (7).
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2 The Merton model

2.1 Model overview

The famous framework from Merton (1974) is widely used in credit risk modeling today.

The model employs the general equilibrium theory of option pricing developed by Black &

Scholes in 1973. According to Merton (1974), the value of the corporate debt depends on

three items: the rate of return on the riskless debt (e.g. government bonds that is assumed

to be risk free), the speci�cation of the particular issue, i.e. the maturity date, coupon rate,

seniority in the event of default etc., and the probability that the �rm will be unable to

satisfy some or all of the issued claims on the company. This is de�ned as the probability of

default. The risk free interest rate is thought of as an exogenous variable. Thus, changes in

the value of corporate debt are solely caused by changes in the �rm's probability of default.

The following Black-Scholes assumptions are made to develop the pricing model:

1. There are no transactions costs, taxes, or problems with indivisibilities of assets.

2. There are a su�cient number of investors with comparable wealth levels so that each

investor believes that he can buy and sell as much of an asset as he wants at the market

price.

3. There exists an exchange market for borrowing and lending at the same rate of interest.

4. Short-sales of all assets, with full use of the proceeds, is allowed.

5. Trading in assets takes place continuously in time.

6. The Modigliani-Miller theorem that the value of the �rm is invariant to its capital

structure obtains.

7. The term-structure is ��at� and known with certainty, i.e. the price, P, of a riskless

discount bond which promises a payment of one dollar at time, τ, in the future is

P (τ) = exp(−rτ) where r is the instantaneous annual riskless rate of interest, the

same for all time and exp is the exponential function.

8. The dynamics for the value of the �rm, V, through time can be described by a di�usion-

type stochastic process with the stochastic di�erential equation

dV = [αV − C] dt+ σV dz, (1)
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where α is the instantaneous expected rate of return on the �rm per unit of time, C is

the total dollar payouts by the �rm per unit of time to either the shareholders or the

liabilities-holders, σ2 is the instantaneous variance of the return on the �rm per unit

of time and dz is a standard Brownian motion.

Suppose there exists a security whose market value, Y, at any point in time can be written as

a function of the value of the �rm and time, i.e. Y = F (V, t). The dynamics of this security's

value is

dY = [αY Y − CY ] dt+ σY Y dzY , (2)

where αY , CY , σ
2
Y and zY have similar interpretations as for the �rm dynamics. From Itô`s

lemma, it follows that the process followed by Y is

dY =

[
∂F

∂V
(αV − C) +

∂F

∂t
+

1

2

∂2F

∂V 2
σ2V 2

]
dt+

∂F

∂V
σV dz. (3)

The terms in the equations (2) and (3) can be compared. Then the following will be true:

αY Y =
∂F

∂V
(αV − C) +

∂F

∂t
+

1

2

∂2F

∂V 2
σ2V 2 + CY (4)

σY Y =
∂F

∂V
σV (5)

dzY = dz (6)

The instantaneous returns on Y and V are perfectly correlated. Following the Merton deriva-

tion of the Black & Scholes model, consider forming a three-security portfolio containing the

�rm, the particular security and the riskless debt. The number of dollar invested in the

�rm, the security and the riskless debt, are W1, W2 and W3, respectively. The portfolio is

constructed such that it requires zero net investments, so W3 ≡ −(W1 + W2). Thus, the

instantaneous return to the portfolio, dx, would be1

dx = [W1(α− r) +W2(αY − r)] dt+ [W1σ +W2σY ] dz. (7)

1See Merton (1973)
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If W1 and W2 are chosen such that dz always will be zero, dx would be non-stochastic. To

avoid arbitrage pro�ts, the expected return on the portfolio must be zero. I.e. the following

two equations must be satis�ed:

W1σ +W2σY = 0 (8)

W1(α− r) +W2(αY − r) = 0. (9)

A solution to (8) and (9) exists if and only if

(
α− r
σ

) = (
αY − r
σY

). (10)

Substituting from equations (4) and (5) into equation (10) we �nd

(
α− r
σ

) =
∂F
∂V

(αV − C) + ∂F
∂t

+ 1
2
∂2F
∂V 2σ

2V 2 + CY − rF
∂F
∂V
σV

. (11)

Rearranging and simplifying this equation gives

0 =
1

2

∂2F

∂V 2
σ2V 2 + (rV − C)

∂F

∂V
− rF +

∂F

∂t
+ CY (12)

Equation (12) is the Black-Scholes-Merton di�erential equation. This must be satis�ed by

any security whose value can be written as a function of the value of the �rm and the

time. The particular derivative that is obtained when the equation is solved depends on

the boundary conditions and initial conditions that are used. It is precisely these boundary

condition speci�cations which distinguish one security from another. From equation (12),

there is possible to see that there is only the interest rate, the volatility, the �rm value,

time and the payout policy of the �rm that a�ect the value of the security. However, it

does not depend on the expected rate of return from the �rm or the risk-preferences of the

investor. Two investors with di�erent utility functions would therefore agree on the value of

the security.

In the following, we assume that the company has issued two types of claims: a single, ho-

mogenous class of debt and the residual claim, equity. The bond issue promises to pay D

dollars on a speci�ed calendar date T. If this payment is not met, the bondholders immedi-

ately take over the company. Two further assumptions are made: the �rm cannot issue any
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new claims on the company nor can it pay cash dividends, so C = 0.With those assumptions,

the payo�s to debt, B(T ), and equity, S(T ), at date T are given as

B(T ) = min(D, V (T )) = D −max(D − V (T ), 0), (13)

S(T ) = max(V (T )−D, 0). (14)

As illustrated in Figure (1), in the Merton model the company will default if the �rm value

is less than its liabilities at maturity. If V (T ) < D, then the equity holders receive nothing

and the debt holders get the �recovery� of V (T ) instead of the promised payment D. But

if the �rm value exceeds the debt, the debt holders receive their promised payment and the

equity holders receive the remaining part of the �rm value. One could see from equation

(13) that the debt can be viewed as the di�erence between a riskless bond and a put option

on the �rm's assets and from equation (14) that the equity can be viewed as a call option

on the �rm's assets. Note that in this framework there exist no tax advantages by issuing

debt and no bankruptcy costs. A consequence of this is that at any time t, the relationship

V (t) = B(t) + S(t) should hold.

Figure 1: Default in the Merton model. Source: Giesecke (2004).
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The question is then how the debt and equity are valued prior to the maturity date T. From

the Black-Scholes-Merton di�erential equation (12) with the boundary conditions given by

the equations (13) and (14) it can be shown that the following is true:2 Given the current

�rm level V , the volatility σ of the �rm and the riskless rate r, we let CBS(V,D, σ, r, T − t)
denote the Black & Scholes price of an European call option with strike price D and time to

maturity T − t. Then, at time t

CBS(V (t), D, σ, r, T − t) = V Φ(d1)−Dexp [−r(T − t)] Φ(d2) (15)

where Φ(x;µ, σ) ≡ 1
σ
√
2π
exp

[
−1

2
(x−µ

σ
)2
]
is the normal distribution function and

d1 =
log(V/D) + (r + 1

2
σ2)(T − t)

σ
√
T − t

, (16)

d2 = d1 − σ
√
T − t. (17)

Similarly, the formula for an European put is

PBS(V (t), D, σ, r, T − t) = Dexp [−r(T − t)] Φ(−d2)− V exp [−r(T − t)] Φ(−d1), (18)

where d1 and d2 are given by the equations (16) and (17), respectively. Thus, the value of

equity and debt at time t are

S(t) = CBS(V (t), D, σ, r, T − t), (19)

B(t) = Dexp [−r(T − t)]− PBS(V (t), D, σ, r, T − t), (20)

respectively. Note that since the sum of debt and equity values is the asset value, we can

also write B(t) = V (t)− CBS(V (t), D, σ, r, T − t).

This basic version of the Merton model was extended in a number of ways. One way was to

assume that the �rm will default whenever the asset value falls below a barrier level. This

is called the �Black-Cox Setup�. Default can now occur prior to the maturity of the bond

and it will happen when the level of the asset value hits a lower boundary, modeled as a

2See Black and Scholes (1973).
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deterministic function of time. In the original approach of Black and Cox, the boundary

represents the point at which bond safety covenants cause a default. (Black and Cox, 1976).

Another extension of the Merton model was to allow for stochastic default-free interest rates.

This extension was considered due to the empirical evidence which found that the interest

rates on treasury bonds are stochastic. The model was also extended to allow for jumps in

the asset value (Lando, 2004).

2.2 The probability of default in the Merton model

In the basic version of the Merton model, default will occur if the �rm value at time T , V (T ),

is bellow the face value of the debt, D. The model can therefore produce a probability of

default for each �rm in a sample at any given point in time. Bharath and Shumway (2008)

argues that the distance to default can be calculated as

DD =
log(V/D) + (µ− 1

2
σ2)(T − t)

σ
√
T − t

, (21)

where r is replaced with the expected continuously compounded return on the �rm, µ. This

is due to the fact that this solution is obtained under the true probability measure and

can be compared with empirically observed default probabilities. DD measures the size (in

standard deviations) of the random shock required to induce bankruptcy for a �rm. Then,

the corresponding implied probability, P, of default is

P (V (T ) < D|V (t)) = Φ

[
−
log(V/D) + (µ− 1

2
σ2)(T − t)

σ
√
T − t

]
= Φ [−DD] . (22)

If the Merton model holds, this probability of default should be a su�cient statistic for the

default forecasts. This requires e�cient markets (Lando, 2004). For a given time to maturity,

the probability of default is a function of the �rm's value to debt ratio, its volatility and

its asset return. Therefore, this measure can be both increasing and decreasing with time to

maturity and the evolution of the return and the volatility through time.

For a �rm with asset to debt ratio of 1.5, asset mean of 10% and a volatility of 20%, Figure

(2) shows the probability of default in the Merton model for 10 years to maturity. The

probability of default is increasing with time until a certain point where it peak. This is

because the uncertainty is low for a short horizon when the �rm to debt ratio exceeds 1. For

di�erent calibrations, one may obtain di�erent shapes. If the default probability is 2.5%, the

DD is 1.96. The �nancial interpretation is that the debt value is lower than the asset value

by 1.96 standard deviations.
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Figure 2: Probability of default as a function of time to maturity in the Merton model.
Calibration: µ = 0.1; σ = 0.2; V

D
= 1.5; T − t = 10

Focusing on asset values implies valuing all future cash �ows of the �rm, rather than focusing

on a single period. The classical corporate �nance approach to default is to project future

free cash �ows to see whether they allow the timely repayment of debt, interest and principal.

The relevant cash �ows are then the cash �ows from operations left for the lenders and equity

holders after all economic out�ows required to maintain the operating ability of the �rm are

paid. These future free cash �ows should be high enough to face the future debt obligations.

Using the discounted value of the free cash �ows as the �rm's asset value is an elegant way of

summarizing the information. A short term view of the cash �ows is not a relevant criterion

for solvency. A temporary shortage of cash does not trigger default as long as there are

chances of improvement in the future. Persistent cash �ow de�ciencies make a default highly

likely. Temporary de�ciencies do not, but the market view synthesizes this information.

2.3 The Moody`s KMV (MKMV) approach

Bharath and Shumway (2008) states that the �rst step to empirically implement the Mer-

ton model is to estimate the standard deviation of the equity, σE, either from historical

stock return data or from option-implied volatility data. Further, it can be shown that the

relationship between equity and asset volatility under the Black & Scholes assumptions is

9



σE = (
V

S
)Φ(d1)σ, (23)

where σ is the standard deviation of the �rm's asset value and d1 is given by equation (16).

The second step is to measure the �rm`s liabilities. Crosbie and Bohn (2003) de�ned the

default point as

0.5× long − term debt+ short− term debt, (24)

because MKMV has found that �rms generally do not default when their asset values reaches

the book value of their total liabilities. The debt level triggering a default is unclear since

debt amortizes by fractions according to some schedule. Re�nancing can pull down the

default point and the long-term nature of some of the liabilities provides some breathing

space.

The third step is to collect values of the risk free rate and the market value of the �rm's

equity. After performing these three steps we have values for all variables in the Merton

model except for V. The fourth step in estimating the model is to solve the equations (15)

and (23) numerically for the value of V and σ.

�An actual test of whether this is a good model for default would then look at how well

DD has historically predicted defaults. A simple test would be to group the distances to

default into small intervals, small enough to consider the default probability as a constant

over the interval but large enough to include enough �rms, then the default frequency within

each bucket would be a reasonably accurate estimate of the default probability. This would

produce an empirical curve.� (Lando, 2004). Those measures are found to di�er from the

model. Therefore, the measure of distance to default utilized by Moody`s KMV is slightly

di�erent and is reported in Crosbie and Bohn (2003) as

Distance

to default
=

Market value

of assets
−

Default

point

Market value

of assets
×

Asset

volatility

. (25)

The relevant net worth of the company is the market value of the �rm's assets minus the

�rm's default point. The market measure of net worth must be considered in the context of

the �rm's business risk. The asset risk is measured by the asset volatility and is the standard

deviation of the annual percentage change in the asset value. This measure for the risk of

10



default compares the market net worth to the size of a one standard deviation move in asset

value. The default probability can be computed directly from the distance-to-default if the

probability distribution of the asset is known.

Figure 3: Determination of the default probability in the MKMV approach. Source: Crosbie
and Bohn (2003).

Figure (3) illustrates graphically the MKMV approach. There are six variables that deter-

mine the default probability of a �rm over some horizon, from now until time T:

1. The current asset value

2. The distribution of the asset value at time T.

3. The volatility of the future asset value.

4. The level of the default point.

5. The expected rate of growth in the asset value over the horizon.

6. The length of the horizon T.

Once the values for these variables are obtained, equation (25) is used to �nd the distance

to default. MKMV obtain the relationship between distance to default and the probability

of default from data on historical defaults and bankruptcy frequencies. This distribution

11



has wider tails than the Normal distribution mainly because of uncertainty in calculating

the default point. The shaded area in Figure (3) is the Expected Default Frequency (EDF)

which is de�ned as the probability of default during a given horizon of for example 1 year.

Default is a relatively rare event and there is considerable variation in default probabilities

across �rms. For example, the probability of default for an AAA-rated company is around

0.02% per annum, but the same probability is around 4% for a CCC-rated �rm. Moody's

KMV has implemented an empirical version of the Black-Scholes-Merton model which ac-

tually performs well. Their one year accuracy ratio was on average over 80% between 1983

and 2002 (Cantor and Mann, 2003).

It is important to point out that there are a number of things which di�erentiate the Merton

DD model and the Moody's KMV (Bharath and Shumway, 2008). First of all, the MKMV

allows for various classes and maturities of debt. Second, they use their own large historical

database to estimate the empirical distribution of changes in distance to default and cal-

culate default probabilities based on that distribution. Finally, they also make proprietary

adjustments to the accounting information that they use to calculate the face value of the

debt.

In this paper, we use an extended Merton model to investigate the probabilities of joint

default. Due to the advent of innovative corporate debt products and credit derivatives,

academics and practitioners have shown renewed interest in models that forecast corporate

defaults. Di�erent applications of the Merton model are widely applied in this research and

it is a clever application of classic �nance theory. But it is a unusual forecasting model.

Most forecasting models constructed by econometricians involve posing a model and then

estimating the model with method of moments or maximum-likelihood techniques. The

Merton model replaces estimation with something more like calibration.

How well a model performs in forecasting depends on how realistic its assumptions are.

Among other things, the standard Merton model assumes that the underlying value of each

�rm follows a geometric Brownian motion. If the models strong assumptions are violated,

it should be possible to construct a reduced-form model with more accuracy. The standard

Merton model is known for systematically underestimate default probability when compared

with historical default rates. One explanation of this is that it uses the normal distribution

which not includes the possibility of fat tails. Default correlation can in�uence the asset

value distribution and should be included in a structural model of default.
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3 Default correlation and joint default probability

3.1 De�nitions and applications

Default probabilities are in�uenced by common background variables which can be observable

or unobservable. Firms share a common dependence on the economic environment, which

result in cyclical correlation. Therefore, default events of companies are often correlated.

A risk manager should be concerned about three quantities while measuring the credit risk:

the probability of default for each individual position over various investment horizons, the

joint probability of default between every pair of counterparties over various investment

horizons and the loss given default for each �rm. The most crucial and the most di�cult

part is estimating the joint probability of default.

Zhou (2001) argues that the joint probability of default is important in credit risk analysis

for several reasons. First, there is an increasing market for credit derivatives. For example,

one type of credit derivatives, letter of credit-backed debt, is issued by a �nancial institution

to the buyer of the debt and promises that the seller will receive payment on time and in the

correct amount. Thus, two types of credit events have to occur before the issuer experience

a loss; both the �nancial institution and the buyer have to default. Furthermore, a simple

credit default swap (CDS) can be viewed as default insurance on loans or bonds. The buyer

pays a premium in the form of an annuity until the time of the credit event or until the

maturity, whichever is �rst (Du�e and Singleton, 2003). This insurance will only be valid if

the issuer has not defaulted and loss will happen if both the issuer of the CDS and the debt

default.

Second, �credit clustering� generates greater dispersion in the distribution of credit losses.

This implies greater likelihood of large losses. Constructing a portfolio implies combining

assets/securities of multiple �rms. An increase in the joint probabilities of default could

lead to losses that exceed most of the worst estimates. As an example, collateralized debt

obligations backed by subprime debt have been at the heart of the �nancial crisis that

started in 2007 and lead to a great number of bank failures. Hence, quantifying correctly

the probabilities of joint default in a portfolio of �xed income securities is crucial.

To understand default correlation, it is convenient to de�ne two random variables D1(t) and

D2(t) that describe the default status of �rm 1 and �rm 2 at time T, as in Zhou (2001):

Di(t) =

1 if firm i defaults by T

0 otherwise
, i = 1, 2. (26)
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It is reasonable to assume that when one entity defaults, the other entity have a higher

likelihood of defaulting either because of the pressure from the general economy or because

both �rms belong to the same industry. From the de�nition of the correlation between two

variables and because D1(t) and D2(t) are Bernoulli binomial random variables, we have

that the probability, P, of joint default is

P (D1(t) = 1 and D2(t) = 1) = E [D1(t)]E [D2(t)]+Corr [D1(t), D2(t)]
√
V ar [D1(t)]V ar [D2(t)],

(27)

where E is the expectation operator, Corr [D1(t), D2(t)] is the correlation between the default

status of the two �rms and V ar [Di(t)] is the variance to the default status of �rm i. The

expected default probability and the variance for �rm i are given by

E [Di(t)] = P (Di(t) = 1) (28)

and

V ar [Di(t)] = P (Di(t) = 1)× [1− P (Di(t) = 1)] , (29)

respectively.

Figure 4: The joint default probability of two �rms.
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Figure (4) shows possible �rm value distributions for two companies for a given horizon.

As we see from these distributions, Firm 1 and 2 have di�erent debt levels, volatilities and

expected asset values. In this example, we assume that the default event occur whenever the

asset value gets lower than the debt and that the joint default of a pair of obligors occurs

whenever both of them have asset values bellow the debt values. The joint probability of

default is represented by the area under the left and down rectangle between the origin of

the axes in Figure (4) and the two lines representing the debt levels of two �rms. The joint

probability of default embeds the correlation of default events. If the annual probabilities

of default for �rm 1 and 2 are 1% and 3%, then the annual joint probability of default is

1%·3%=0.03% if they are uncorrelated. But if the correlation equals 0.3, the annual joint

probability of default would increase by 0.3·
√

0.009 · 0.0291=0.51% to 0.54%. This is a huge

increase in the joint probability of default.

Asset value simulations are usually employed when generating correlation between credit

events. Within the option theoretic framework, there is common to use a Monte Carlo

simulation methodology when generating correlated stochastic processes for the asset values.

The random asset values at the horizon depend on common factors and �rm speci�c risk.

The �rst can be generated through a correlation structure in the asset dynamics, the latter

can be generated through the �rm speci�c volatility. A model of two �rms that should

capture the probability of joint default have to generate simulated asset values for both

�rms and assigning default values whenever both the simulated asset values falls below the

default points.

3.2 Default correlation in the standard Merton model

3.2.1 The case of two �rms

In the simplest case of joint default, we consider �rm 1 and �rm 2. With t = 0, the asset

dynamics of �rm i is

dV i(ti)

V i(ti)
= µidt+ σidW

i(ti), V i
0 > 0; i = 1, 2. (30)

(W 1(t1),W
2(t2)) is a two dimensional Brownian motion with correlation ρ, i.e. (W 1(t1),W

2(t2)) ∼
Φ [0,ΣW ] with variance-covariance matrix

ΣW =

(
t1 ρ

√
t1t2

ρ
√
t1t2 t2

)
, (31)
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where ti is the change in time.

Using Itô`s lemma we get

V i(t) = V i
0 exp((µi −

1

2
σ2
i )t+ σiW

i(ti)). (32)

In the classical Merton framework, the joint probability of �rm 1 to default at T1 and �rm

2 to default at T2 is

P (T1, T2) = P (V 1(T1) < D1, V
2(T2) < D2)

= Φ2

[
ρ,− log(V 1/D1)+(µ1− 1

2
σ2
1)T1

σ1
√
T1

,− log(V 2/D2)+(µ2− 1
2
σ2
2)T2

σ2
√
T2

] . (33)

where Φ2 [ρ, x, y] is the bivariate standard normal distribution function, with linear correla-

tion parameter ρ < 1, given by

Φ2(ρ, x, y) =

ˆ a

−∞

ˆ b

−∞

1

2π
√

1− ρ2
exp(

2ρxy − x2 − y2

2(1− ρ2)
)dxdy. (34)

By using results from probability theory, a host of other useful probabilities can be derived.

For example, the probability of default of �rm 1 at time T 1 conditional on the default of

�rm 2 at time T2 is

P (T1 | T2) =
Φ2

[
ρ,− log(V 1/D1)+(µ1− 1

2
σ2
1)T1

σ1
√
T1

,− log(V 2/D2)+(µ2− 1
2
σ2
2)T2

σ2
√
T2

]
Φ
[
− log(V 2/D2)+(µ2− 1

2
σ2
2)T2

σ2
√
T2

] . (35)

Also, the probability of at least one default or survival probabilities can be calculated.

3.2.2 The multiple �rms' case

In the case of many issuers, the computation is a bit more challenging because it involves

the use of the multivariate normal distribution. If the probability that �rm i will default at

time t is de�ned as

P (Vi(T ) < Di|Vi(t)) = Φ

[
−
log(Vi/Di) + (µi − 1

2
σ2
i )(T − t)

σi
√
T − t

]
= Φ [−DDi] , (36)

then for N �rms, the probability of joint default is given by
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P (V1(T ) < D1, V2(T ) < D2, ..., VN(T ) < DN) = ΦN [−DD1,−DD2, ...,−DDN , ρ12, ρ13, ...] ,

(37)

where DDi is de�ned as in equation (36) and ΦN is the Nth dimensional multivariate standard

normal distribution.

3.3 Moody's KMV approach to account for correlation

To create a comprehensive credit portfolio model, Moody's KMV uses, in addition to the EDF

values for each �rm, the joint default frequency (JDF) to determine asset value correlations

(Kealhofer and Bohn, 1993). This measure can be calculated by focusing on the EFDi

measure for the individual �rm i and the correlation between each part of the �rm's market

asset value. Mathematically, this is given by

JDF = Φ2(Φ(−EDF1),Φ(−EDF2), ρA), (38)

where ρA is the correlation between �rm 1 asset return and �rm 2 asset return and Φ is the

standard normal distribution function.
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4 A model of joint default probabilities

4.1 Time-varying and correlated Sharpe ratios and volatilities.

The credit spread puzzle is de�ned as the inability of structural models, when calibrated

to default probabilities, loss rates and Sharpe ratios, to predict spread levels across rating

categories consistent with historical market spreads (Amato and Remolona, 2003). Chen,

Collin-Dufresne and Goldstein (2008) found that the standard Merton model predicted a

four-year Baa-Aaa spread that falls well below historical spreads when they calibrated the

model to match historical default rates, recovery rates, means and volatilities. They in-

vestigated channels through which the predicted spreads could be increased. One of these

channels was modeling time-variation in the Sharpe ratio, which is de�ned as the ratio of

the expected equity premium to the expected standard deviation,

S =
µ− r
σ

. (39)

Time variation in Sharpe ratios has long been recognized as an important channel for ex-

plaining the high risk premium on stocks. It seems therefore natural to investigate how a

model consisting of this time-variation, calibrated to match empirical probabilities of de-

fault, can explain the joint probabilities of default between two companies. In this paper,

we propose a multivariate model to investigate the impact of time varying and correlated

means and volatilities on the probabilities of joint default. The analysis is conducted in the

standard Merton model framework.

It is an empirical fact that the default rates are highest during recessions. �When times are

bad, the default probability is high, (...) and when times are good, the default probability is

low� (Bruche and Gonzalez-Aguado, 2006). A company's ability to pay its liabilities depends

on the ability to generate pro�ts, which may be sharply impaired in a recession. Helwege

and Kleiman (1996) for example investigated the relationship between credit quality and

macroeconomic variables on default rates and found that the model improved signi�cantly

when the GDP growth was included in the regression. High default rates during recessions

are generated in the Merton model through �rm value dropping toward the default point.

Also, changes in equity markets are correlated. Longin and Solnik (1995), among others,

studied the correlation of monthly excess return for seven major countries over 30 years and

found that the correlation matrices where high and unstable over time. Many other papers

have also found similar results. Changes in equity values are tightly linked to changes in

�rm values.
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Time-variation in Sharpe ratio could be understood within the framework developed by

Cochrane (2001). He states that asset prices should equal expected discounted cash �ows.

But empirical evidence found that discount rates vary over time. A signi�cant part of the

variation in prices is due to news. Following Cochrane (2001), we de�ne the price of an asset,

pt, as

pt = E(mt+1xt+1), (40)

where xt+1 is the asset payo� and mt+1 is the stochastic discount factor. If we divide the

payo�, xt+1, by the price, pt, we get the gross return, Rt+1. Thus, equation (40) becomes

1 = E(mt+1Rt+1). (41)

This basic pricing equation should hold for any asset, stock, bond, option, etc. In a standard

asset pricing model, a representative investor chooses how much to save and how much to

consume subject to his budget constraint. Further, we assume that the investor's utility

function, U, is de�ned over current and future values of consumption,

U(ct, ct+1) = u(ct) + βEt [u(ct+1)] . (42)

Here, ct denotes the consumption at date t and β is the subjective discount factor which

capture investor's impatience and aversion to risk. The representative investor is maximiz-

ing utility subject to his budget constraints. The maximization problem delivers the �rst

order conditions for an optimal consumption and portfolio choice. Solving these �rst order

conditions for the prices, pt, gives
3

pt = Et

[
β
u′(ct+1)

u′(ct)
xt+1

]
, (43)

where u′(ct) is the marginal utility at time t. We can now de�ne the stochastic discount

factor as

mt+1 ≡ β
u′(ct+1)

u′(ct)
(44)

which measures the rate at which the investor is willing to substitute consumption at time

t+1 for consumption at time t. By the use of the de�nition of covariance between two

3See Cochrane (2001) for detailed derivations.
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variables and the result that the risk free rate is given by r = 1
E[m]

, the expected excess

return of asset i is

E(Ri)− r = −
cov
[
u′(ct+1), R

i
t+1

]
E [u′(ct)]

. (45)

If an asset has positive correlation with consumption, it will have a negative correlation

with marginal utility if u′′(·) < 0. This is a standard assumption of a utility function. Assets

whose returns covary positively with consumption make consumption more volatile and must

earn return in excess of the risk free rate to induce investors to hold them.

Campbell and Cochrane (1999) explain why a �rm's value drops far more than the drop

in expected dividends through recessions. They explain the drop through a variation in

investors' attitude toward risk. When the economy goes into recessions, investors have fewer

resources to maintain their accustomed living standards and thus are less willing to bear

�nancial risk. To induce them to hold stocks instead of risk free short-term Treasury bills,

for a given level of stock market risk, the expected equity premium must increase. Therefore,

stock prices fall during recessions because dividends are discounted by a higher rate as a result

of the increase in the equity premium. This time-variation in the expected equity premium

can be generated in our model by allowing the gross return of the �rms to change over time,

denoted as the mean, µ.

The expected excess returns are correlated through time and between �rms on the basis of

macro-conditions. Ferson and Harvey (1991) found that the average risk premium of size

and industry-grouped common stock portfolios is associated with their sensitivity to common

economic variables. Among a group of economic variables, the risk premium associated with

a stock market index captures the largest component of the predictable variation in the stock

market return. Other papers, like Lewellen (1997), found that factors like book-to-market

predict economically and statistically signi�cant time-variation in expected stock returns. In

our multivariate model, we therefore also allow the returns (means) to be correlated across

�rms and across time.

The standard Merton model assumes constant asset volatility. However, there is strong

empirical evidence that the volatility of the stock returns are time-varying. For instance,

Schwert (1989) found that asset return are more volatile during a recession. A number of

other features of volatility are observed:4

· Volatility clustering - the tendency for volatility to appear in bunches. Thus large

returns of either signs are expected to follow large returns and vice versa.

4See for example Brooks (2002).
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· Leverage e�ect - the tendency for volatility to rise more following a large price fall

than following a price rise of the same magnitude, i.e. stock volatility is negatively

correlated with stock returns.

This gives good reasons to allow for time-variation in the volatility. There is also good

evidence that volatility is mean-reverting. If standard deviations on equities, T-bills, etc.

had been constant, all lines in Figure (5) have been �at. But the lines indicate that the

uncertainty is lower for the long run than the short run. The annualized standard deviation

of the return on equities is 18% for one year horizon, whereas it is 14% with a horizon of

25 years. This means that the standard deviation on equities has historically been mean

reverting toward a long run mean.

Figure 5: Variability of multi-period asset returns. Quarterly data, 1952(1)-1999(4). Source:
Campbell and Viceira (2002)

The characteristics of the volatility outlined above have been for the univariate time series,

relating the volatility of the series to only information contained in that series' history. But

�nancial asset prices do not evolve independently of the market around them. Other assets

may therefore contain relevant information for the volatility of a series. Such evidence has

been found by for example Engle, Ng and Rothschild (1990). In addition, it is possible that

deterministic events also have an impact on the volatility series. In our model, we therefore

also allow for time-varying volatilities which may be correlated between �rms.

4.2 The proposed model

We consider two �rms and specify the dynamics of �rm i as
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dV i(t)

V i(t)
= µi(t)dt+ σi(t)dB

i(t), V i
0 > 0; for i = 1, 2. (46)

(B1(t), B2(t)) is a two-dimensional correlated Brownian motion with variance-covariance

matrix given by

ΣB =

(
1 ρV

ρV 1

)
, (47)

where ρV is the correlation between the two Brownian motions. The di�erence from the

previous literature approach is that we allow the drift and volatility terms to be time-

varying and correlated. The means in the �rms' dynamics are assumed to follow a bivariate

geometric Brownian motion (GBM)

[
dµ1(t)

dµ2(t)

]
=

(
β1 0

0 β2

)(
µ1(t)

µ2(t)

)
dt+

(
µ1(t) 0

0 µ2(t)

)(
σµ11 σµ12

σµ21 σµ22

) (
dZ1(t)

dZ2(t)

)
.

(48)

(Z1(t), Z2(t)) is a two-dimensional correlated Brownian motion with variance-covariance

matrix given by

ΣZ =

(
1 ρµ

ρµ 1

)
, (49)

where ρµ is the correlation between the two Brownian motions. β1 and β2 are the expected

drift rates per unit of time for µ1 and µ2. Σµ =

(
σµ11 σµ12

σµ21 σµ22

)
is the volatility matrix of the

bivariate process.

The volatilities are assumed to follow a bivariate CIR process

[
dσ1(t)

dσ2(t)

]
=

(
α1 0

0 α2

)[(
θ1

θ2

)
−

(
σ1(t)

σ2(t)

)]
+

( √
σ1(t) 0

0
√
σ2(t)

)(
σσ11 σσ12

σσ21 σσ22

)(
dW 1(t)

dW 2(t)

)
.

(50)

(W 1(t),W 2(t)) is a two-dimensional correlated Brownian motion with variance-covariance

matrix given by
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ΣW =

(
1 ρσ

ρσ 1

)
, (51)

where ρσ is the correlation between the two Brownian motions.

(
θ1

θ2

)
is the long run

mean of the volatility vector. Therefore, the matrix

(
α1 0

0 α2

)
can be interpreted as the

mean rate of reversion to the long run means of the volatility. The size of the parameters

controls how fast the drift coe�cients change. Σσ=

(
σσ11 σσ12

σσ21 σσ22

)
is the volatility matrix of

the bivariate process.

Since we consider the Merton framework, we assume that default happens only at maturity

of the debt if the �rm value is below the default point. The probability of bankruptcy at

time T for �rm i, conditional on the value of assets at time t is

P (V i(T ) < Di|V i(t)) = Φ

[
−
log(V i(t)/Di) + (µi(t)− 1

2
σ2
i (t))(T − t)

σi(t)
√
T − t

]
= Φ [−DDi(t)] .

(52)

The mean, µi, and the volatility, σi, are now assumed to be functions of time and are given

by the equations (48) and (50).

The joint probability of �rm 1 to default at T1 and �rm 2 to default at T2 is

P (T1, T2) = p(V 1(T1) < D1, V
2(T2) < D2)

= Φ2

[
r,− log(V 1(t)/D1)+(µ1(t)− 1

2
σ2
1(t))T1

σ1(t)
√
T1

,− log(V 2(t)/D2)+(µ2(t)− 1
2
σ2
2(t))T2

σ2(t)
√
T2

] , (53)

where r is the correlation coe�cient.

The model can be extended to account for multiple �rms, but in this paper we will only

consider the bivariate case.
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5 Monte Carlo analysis

5.1 Calibration strategy

The benchmark calibration in this paper follows mostly the work in Zhang, Zhou and Zhu

(2009). We calibrate the parameters to �t the sample averages of one �rm with rating

category A (Firm 1) and one �rm with rating category Ba (Firm 2). Both �rm values, V1

and V2, are initially set to 100.

We set the starting value for the volatility process of Firm 1, σ10, to 24.65%, the long run asset

volatility, θ1, to 4.24% and the mean reversion coe�cient, α1, to 0.74. Historical leverage

ratio is 43.29% for A-rated companies. In the original Merton framework, the default point

is set to the face value of debt. However, Leland (2004) argues that the default boundary is

close to 75% of the face value of the debt. This agrees with Moody's KMV. They found that

the default point generally lies somewhere between total liabilities and short term liabilities

(Crosbie and Bohn, 2003). The default point, D1, is therefore set to 32.47. The starting

value for the mean process, µ10, is set to 9%. This re�ects a risk-free rate, r, of 5%, a risk

premium, E(R1)− r, of 6% and a payout ratio, δ1, of 2%.

We set the starting value for the volatility process of Firm 2, σ20, to 30.27%, the long run

asset volatility, θ2, to 4.9% and the mean reversion coe�cient, α2, to 0.8. The historical

leverage ratio is 58.63% for Ba-rated companies. The default point, D2, is therefore set to

75% of the leverage ratio, which is 43.97. The starting value for the mean process, µ20, is

set to 11.5%. This re�ects a risk-free rate, r, of 5%, a risk premium, E(R2)− r, of 8.5% and

a payout ratio, δ2, of 2%.

The basic strategy for the remaining parameters in the model are to calibrate them such that

the Monte Carlo simulations gives approximately 5-year and 10-year default probabilities

that correspond to the empirical default probabilities, as reported by Zhou (2001). The

5-year default probabilities are 0.62% for an average A-�rm and 11.85% for an average Ba-

�rm. The 10-year default probabilities are 1.96% for an average A-�rm and 19.48% for an

average Ba-�rm. By trial and error, the correlations between the �rm values, ρV , means, ρµ,

and volatilities, ρσ, are set to 0.1, 0.1 and 0.2, respectively. The volatility matrices of the

bivariate processes driving the means and the volatilities are set to Σµ =

(
0.2 0.25

0.5 0.2

)
and

Σσ =

(
0.025 0.03

0.03 0.05

)
. The drifts of the mean processes, β1 and β2, are set to 0.77 and 0.3.

Table (1) from the Appendix displays a summary of the benchmark calibration.
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5.2 Monte Carlo algorithm

We used Matlab R2011a for simulation of the model. For an initial calibration, we set the

time to maturity, T, to 10 years and the total number of steps within these 10 years, N, to

100. The number of simulations for each j steps where j=1:N, Nsim, are set to 1,000,000.

The main steps of the Monte Carlo algorithm are as follows:

1. Generate a 2xN matrix for the two-dimensional correlated Brownian motion driving

the �rm values,

2. Generate a 2xN matrix for the two-dimensional correlated Brownian motion driving

the means,

3. Generate a 2xN matrix for the two-dimensional correlated Brownian motion driving

the volatilities,

4. For each j step, generate Nsim means, volatilities and values for each �rm. The pro-

cesses for those are given by (48), (50) and (46) respectively,

5. For each j step, we count for each �rm how many times, out of Nsim simulations, the

�rm value is bellow the default point,

6. For each j step, we count how many times, out of Nsim simulations, both �rm values

are bellow their default points,

7. For each j step, we calculate the probability of default for each �rm and the joint

probability of default by dividing the numbers obtained in steps 5 and 6 by Nsim.

The probabilities are plotted as a function of time to maturity. See the Appendix for the

Matlab code.

5.3 Simulation results

5.3.1 Benchmark calibration

The benchmark calibration matches the sample averages of one �rm with rating category A

and one �rm with rating category Ba. Figure (6) plots the probability of joint default from

the proposed model for a horizon of 10 years to maturity. The joint probability of default

varies signi�cantly over di�erent horizons. One can see that the probability of joint default

is generally very small over the short horizon because quick defaults are rare and nearly
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idiosyncratic. Then it increases and �nally it slowly decreases as it approaches the maturity

date. The decrease in the joint probability of default over longer horizons may be due to

the relationship of the time period being studied to the average business cycle. If the time

period studied covers the entire ebb of the business cycle, the defaults caused by the general

economic conditions average out over the period, thus lowering the default correlation.
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Benchmark calibration

Figure 6: The joint probability of default as a function of time to maturity for the benchmark
calibration.

5.3.2 Two A-rated �rms and two Ba-rated �rms

We can also calibrate the proposed model such that it matches the sample averages of two

A-rated �rms and two Ba-rated �rms. We set both �rm values, V1 and V2, to 100 as before.

For the calibration �Two A-rated �rms�, we set the starting values for the volatilities, σ10

and σ20, to 23% and 26% with both long run asset volatilities, θ1 and θ2, to 4.24% and both

mean reversion coe�cients, α1 and α2, to 0.74. The default points, D1 and D2, are set to

30 and 35. Both starting values for the means, µ10 and µ20, are set to 9% and the drifts of

the asset means, β1 and β2, are set to 0.77. The remaining parameters are similar to the

benchmark calibration.

For the calibration �Two Ba-rated �rms�, we set the starting values for the volatilities, σ10

and σ20, to 29% and 32% with both long run asset volatilities, θ1 and θ2, to 4.9% and both

mean reversion coe�cients, α1 and α2, to 0.8. The default points, D1 and D2, are set to

42 and 45. Both starting values for the means, µ10 and µ20, are set to 11.5% and the drifts

of the asset means, β1 and β2, are set to 0.3. The remaining parameters are similar to the

benchmark calibration.
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Figure (7) shows the probability of joint default from the proposed model for two A-rated

�rms and two Ba-rated �rms. One could see that the probability of joint default is generally

low for A-rated companies. This is mainly due to the fact that when the credit quality

increases, the probability of default decrease. Furthermore, companies with high rating are

more susceptible to company-speci�c problems (Lucas, 1995). Thus, defaults are typically

isolated to the individual company and do not produce so much default correlation.

The probability of joint default for two Ba-rated companies is signi�cantly larger compared

to the benchmark calibration and the case of two A-rated companies. Lucas (1995) argues

that lower rated �rms have asset values closer to their default points and are relatively more

susceptible to problems in the general economy. They are therefore more likely to be pushed

into default because of an economic downturn. As economic conditions a�ect all low-rated

credits simultaneously, defaults among these �rms are more likely to be correlated.
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Benchmark calibration
Two A−rated firms
Two Ba−rated firms

Figure 7: The joint probability of default as a function of time to maturity for two A-rated
�rms and two Ba-rated �rms.

5.4 Sensitivity analysis

To analyze the dynamics of the proposed model, we investigate how increases and decreases

in the values for the parameters of the proposed model impact the probability of joint default.

5.4.1 Changes in D1 and D2

Figures (8) and (9) show the joint probability of default as a function of time to maturity

for di�erent default points for Firm 1 and Firm 2, respectively.
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When the default point of one of the �rms increases (decreases), the joint probability of

default increases (decreases). This is because the �rm's asset value is closer to the default

point and the probability of default increases. Thus the probability of joint default also

increases.

With the same intuition, if one of the �rms asset value increases (decreases), the joint

probability of default decreases (increases).
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Benchmark calibration
Default point Firm 1 = 20
Default point Firm 1 = 50

Figure 8: The joint probability of default as a function of time to maturity for di�erent D1.

0 2 4 6 8 10
0

1

2

3

4

5

6

7
x 10

−3

Time to maturity

Jo
in

t p
ro

ba
bi

lit
y 

of
 d

ef
au

lt

 

 

Benchmark calibration
Default point Firm 2 = 20
Default point Firm 2 = 60

Figure 9: The joint probability of default as a function of time to maturity for di�erent D2.
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5.4.2 Changes in ρV , ρµ and ρσ

Figures (10)-(12) display the joint probability of default as a function of time to maturity

for di�erent correlations between the �rm values, means and volatilities, respectively.

In general, one could see that higher (lower) correlation between the �rm values, the means

or the volatilities implies higher (lower) joint probability of default. If one �rm defaults, it

is more likely that the value of the other �rm also have declined and moved closer to its

default point given that the �rm values, the means or the volatilities are highly correlated.

If the �rm values, means or volatilities are negatively correlated, the probability of joint

default generally decreases. This is because the default correlation and asset level correlation

have the same sign.
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Benchmark calibration
Firm value correlation = 0.3
Firm value correlation = −0.1

Figure 10: The joint probability of default as a function of time to maturity for di�erent ρV .
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Benchmark calibration
Mean correlation = 0.3
Mean correlation = −0.1

Figure 11: The joint probability of default as a function of time to maturity for di�erent ρµ.
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Benchmark calibration
Volatility correlation = 0.6
Volatility correlation = −0.4

Figure 12: The joint probability of default as a function of time to maturity for di�erent ρσ.

5.4.3 Changes in σ10 and σ20

Figures (13) and (14) show the joint probability of default as a function of time to maturity

when di�erent starting values for the volatilities are considered for Firm 1 and Firm 2,

respectively.

One could notice that higher (lower) initial volatility generally implies higher (lower) joint

probability of default. Higher uncertainty for one of the �rms increases the probability that

the �rm will default. This increases the joint probability of default, given the correlation

structure.
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Benchmark calibration
Initial volatility Firm 1 = 0.3
Initial volatility Firm 1 = 0.2

Figure 13: The joint probability of default as a function of time to maturity for di�erent σ10.
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Benchmark calibration
Initial volatility Firm 2 = 0.4
Initial volatility Firm 2 = 0.2

Figure 14: The joint probability of default as a function of time to maturity for di�erent σ20.

5.4.4 Changes in θ1 and θ2

Figures (15) and (16) show the joint probability of default as a function of time to maturity

for di�erent long run means of the volatilities of the two �rms.

Higher (lower) long run volatility implies lower (higher) joint probability of default.
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Benchmark calibration
Long run volatility Firm 1 = 0.06
Long run volatility Firm 1 = 0.02

Figure 15: The joint probability of default as a function of time to maturity for di�erent θ1.
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Benchmark calibration
Long run volatility Firm 2 = 0.06
Long run volatility Firm 2 = 0.02

Figure 16: The joint probability of default as a function of time to maturity for di�erent θ2.

5.4.5 Changes in α1 and α2

Figures (17) and (18) show the joint probability of default as a function of time to maturity

for di�erent mean rate of reversion of the two �rms.

Higher (lower) mean rate of reversion implies lower (higher) joint probability of default.

Higher mean rate of reversion implies that the volatility stabilizes around the long run

volatility faster and thus lowers the joint probability of default.
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Benchmark calibration
Mean rate of reversion Firm 1 = 0.7
Mean rate of reversion Firm 1 = 0.8

Figure 17: The joint probability of default as a function of time to maturity for di�erent α1.
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Benchmark calibration
Mean rate of reversion Firm 2 = 0.9
Mean rate of reversion Firm 2 = 0.7

Figure 18: The joint probability of default as a function of time to maturity for di�erent α2.

5.4.6 Changes in σσ11 and σσ12

Figures (19) and (20) display the joint probability of default as a function of time to maturity

for di�erent σσ11 and σ
σ
12.

One could see that higher (lower) σσ11 and σσ12 implies higher (lower) joint probability of

default. Higher volatility of the volatility process increases the uncertainty and thus increases

the joint probability of default.
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Benchmark calibration
Vol. of vol. 11 = 0.04
Vol. of vol. 11 = 0.01

Figure 19: The joint probability of default as a function of time to maturity for di�erent σσ11.
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Benchmark calibration
Vol. of vol. 12 = 0.06
Vol. of vol. 12 = 0.01

Figure 20: The joint probability of default as a function of time to maturity for di�erent σσ12.

5.4.7 Changes in σσ21 and σσ22

Figures (21) and (22) show the joint probability of default as a function of time to maturity

for di�erent σσ21 and σ
σ
22.

One can notice that higher (lower) σσ21 and σσ22 implies higher (lower) joint probability of

default. Same as above, higher volatility of the volatility process increases the uncertainty

and thus increases the joint probability of default.
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Benchmark calibration
Vol. of vol. 21 = 0.06
Vol. of vol. 21 = 0.01

Figure 21: The joint probability of default as a function of time to maturity for di�erent σσ21.
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Benchmark calibration
Vol. of vol. 22 = 0.1
Vol. of vol. 22 = 0.01

Figure 22: The joint probability of default as a function of time to maturity for di�erent σσ22.

5.4.8 Changes in µ10 and µ20

Figures (23) and (24) show the joint probability of default as a function of time to maturity

when di�erent starting values for the means of Firm 1 and Firm 2 are considered.

Higher (lower) mean implies lower (higher) joint default probability. When the expected

return of one of the �rms increases, there is less likely that the asset value of the �rm will

move toward the default boundary. This implies a lower joint probability of default.
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Benchmark calibration
Mean of Firm 1 = 0.13
Mean of Firm 1 = 0.07

Figure 23: The joint probability of default as a function of time to maturity for di�erent µ10.
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Benchmark calibration
Mean of Firm 2 = 0.13
Mean of Firm 2 = 0.07

Figure 24: The joint probability of default as a function of time to maturity for di�erent µ20.

5.4.9 Changes in β1 and β2

Figures (25) and (26) show the joint probability of default as a function of time to maturity

for di�erent expected drift rates of the mean processes of the two �rms.

One could see that higher (lower) expected drift rates for the mean processes imply lower

(higher) joint probability of default. This is because higher expected drift rate for the

mean process of one of the �rms implies a lower probability of default. This decreases the

probability of joint default.
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Benchmark calibration
Expected drift rate Firm 1 = 0.8
Expected drift rate Firm 1 = 0.7

Figure 25: The joint probability of default as a function of time to maturity for di�erent β1.
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Benchmark calibration
Expected drift rate Firm 2 = 0.4
Expected drift rate Firm 2 = 0.2

Figure 26: The joint probability of default as a function of time to maturity for di�erent β2.

5.4.10 Changes in σµ11 and σµ12

Figures (27) and (28) show the joint probability of default as a function of time to maturity

for di�erent σµ11 and σ
µ
12.

Higher (lower) σµ11 and σ
µ
12 implies higher (lower) joint probability of default. Higher volatility

of the mean process increases the uncertainty and thus increases the joint probability of

default.
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Benchmark calibration
Vol. of mean 11 = 0.4
Vol. of mean 11 = 0.1

Figure 27: The joint probability of default as a function of time to maturity for di�erent σµ11.
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Benchmark calibration
Vol. of mean 12 = 0.4
Vol. of mean 12 = 0.1

Figure 28: The joint probability of default as a function of time to maturity for di�erent σµ12.

5.4.11 Changes in σµ21 and σµ22

Figures (29) and (30) show the joint probability of default as a function of time to maturity

for di�erent σµ21 and σ
µ
22.

Higher (lower) σµ21 and σµ22 implies higher (lower) joint probability of default. As before,

higher volatility of the mean process increases the uncertainty and thus increases the joint

probability of default.
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Benchmark calibration
Vol. of mean 21 = 0.7
Vol. of mean 21 = 0.3

Figure 29: The joint probability of default as a function of time to maturity for di�erent σµ21.
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Benchmark calibration
Vol. of mean 22 = 0.4
Vol. of mean 22 = 0.1

Figure 30: The joint probability of default as a function of time to maturity for di�erent σµ22.

5.4.12 Changes in T

Figure (31) shows the joint probability of default for di�erent T.

In the benchmark calibration, the time to maturity is set to 10 years. One could see that

there is no change in the probability of joint default within these 10 years when the time to

maturity is changed to 5 years or 20 years. Further, the probability of joint default continues

to decrease when the time to maturity exceed 10 years.
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Benchmark calibration
Time to maturity = 5
Time to maturity = 20

Figure 31: The joint probability of default for di�erent T.

5.4.13 Changes in N and Nsim

Figures (32) and (33) show the joint probability of default for di�erent N and Nsim.

A higher number of time steps, N, will decrease the length of each step. One could see

that the number of steps does not impact signi�cantly the shape of the probability of joint

default. Further, increasing the number of simulations for each step, Nsim, will give more

accurate approximations and smoother looking curves because of the central limit theorem.
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Benchmark calibration
N = 10
N = 200

Figure 32: The joint probability of default for di�erent N.
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Benchmark calibration
Nsim = 10000
Nsim = 100000

Figure 33: The joint probability of default for di�erent Nsim.

5.5 Comparison of the proposed model and the standard model

The proposed model incorporates time-varying and correlated processes for the means and

volatilities driving �rm values. To see how this a�ects the probability of joint default, we

compare the proposed model with a standard model which only capture time-varying and

correlated �rm values. Thus, the standard model has constant and independent means and

volatilities. The joint probability of default from the standard model is simulated within the

same Monte Carlo algorithm as in the proposed model.

The standard model is calibrated within the lines of the benchmark calibration. Both �rm

values, V1 and V2, are initially set to 100. The default points, D1 and D2, are set to 32.47

and 43.97. The volatility of the �rms, σ1 and σ2, are set to 24.65% and 30.27%. Finally, the

means, µ1 and µ2, are set to 9% and 11.5%. The correlation between the �rm values, ρV , is

set to 0.1.

In Figure (34), the joint probability of default from the proposed model and the standard

model are plotted. One could see that the joint probability paths from the two models are

signi�cantly di�erent. The standard model delivers a larger joint probability of default at

short horizons, but a lower joint probability of default for longer time horizons. It also has

an earlier peak.

The lower values for the joint probability of default generated by the standard model is

mainly due to lower correlation between the �rms. Because means and volatilities now are

constant, the standard model does not produce so high correlation between the �rm values

and thus lower the probability that both �rms will default simultaneously.
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Further, the proposed model produces means that on average slowly increase over the horizon

because of the positive drift parameters. The standard model has constant means set to the

starting values in the proposed model (µ10 and µ20). Due to this feature, the probabilities of

default are driven down for longer horizons in the standard model as opposed to the proposed

model.

Finally, as one could see in Figure (35) and (36), the proposed model simulate �rm values

that have greater dispersion than the standard model for a horizon of 5 years. This e�ect

leads to a sharply increase in the probability of joint default for the proposed model.
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Proposed model
Standard model

Figure 34: The joint probability of default as a function of time to maturity with the proposed
model and the standard model.

Figure 35: Firm value distribution for Firm 1 with the proposed model and the standard
model for a horizon of 5 years.
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Figure 36: Firm value distribution for Firm 2 with the proposed model and the standard
model for a horizon of 5 years.
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6 The implications and applications of the proposed model

6.1 Risk management implications of the proposed model

The proposed model implies that the joint probability of default is small for short horizons.

Thus, for loan portfolios consisting of short term credit (0-4 years), risk management should

mainly be focused upon default probabilities. But for loan portfolios consisting of long-

term credit (i.e. 5 to 10 years), the joint probability of default can be a signi�cant factor.

Also, the proposed model implies that the joint probability of default is generally large for

portfolios consisting of low-rated companies. Risk management requires models that are able

to capture these e�ects because changes in the joint probability of default will a�ect the loss

distribution for the portfolio.

Since lower correlation between asset values, means or volatilities generally implies a lower

joint probability of default, diversi�cation between regions and industries should lower the

probability of joint default for loan portfolios.

If the default probability of two loans doubles, the probability of joint default can be signi�-

cantly more than double. Because of this dynamic nature of the probability of joint default,

active management is required. Changes in the parameters of the proposed model (volatility,

correlation, default point etc.) can signi�cantly in�uence the joint probability of default.

6.2 The proposed model compared with empirical data

In order to compare the proposed model with empirical data, we need �rm speci�c informa-

tion for two �rms. Due to the lack of readily statistics on �rm-speci�c default correlations,

we use pooled data to see if the proposed model can match average empirical joint default

probabilities between and within the rating categories A and Ba. These are computed using

historical cumulative default rates provided by Moody's Investors Service covering twenty-

four years of annual data from 1970 through 1993 as reported in Zhou (2001). The empirical

joint default probabilities are computed and reported by Lucas (1995) from the same data

set. The annual values are reported in Table (2) in the Appendix.

The cross-sectional diversity of the pool represent over 4 000 issuers, but the time series of

the data is short. Lucas (1995) states that twenty-four time periods are studied for the one-

year default correlation statistic, but only �fteen overlapping time periods for the ten-year

statistic (1970 through 1979, 1971 through 1980,...,1984 through 1993). Thus, this pooled

data could give biased estimates of joint default probabilities.
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Furthermore, this comparison with empirical data depends on the true underlying default

probabilities for each rating category and that the default correlations remain the same over

time. However, this is not a pattern observed in time series.

Also, it is hard to say anything about default correlation among and between speci�c in-

dustries. The statistics used here are based on diversi�ed portfolios, i.e. the whole universe

of Moody's-rated companies. Thus, it can be considered as an estimate of the base default

correlation caused by issuer reaction to the general economy (Lucas, 1995).

For this exercise, the calibration of the model follows mostly Zhang, Zhou and Zhu (2004).

However, some of the parameters are chosen such that the proposed model generates approx-

imately 5-year and 10-year default probabilities that correspond to the cumulative default

rates provided by Moody's Investors Service. Figures (37), (38) and (39) compare the model

simulated joint probability of default with one A-rated �rm and one Ba-rated �rm, two

Ba-rated �rms and two A-rated �rms with the empirical ones.

For the case with one A-rated �rm and one Ba-rated �rm, shown in Figure (37), the model

simulated joint probability of default matches the empirical data well. Also for the case with

two Ba-rated �rms, shown in Figure (38), the model matches the empirical data well.

For the case with two A-rated �rms, shown in Figure (39), the model simulated joint prob-

ability of default falls below the empirical data. There are several potential explanations for

this. In the �rst place, the values for the parameters of the model could be misspeci�ed.

Most of the parameters are tied down to historical values, but some of them are chosen such

that the model generates 5-year and 10-year default probabilities which correspond to the

cumulative default rates. Further, the model itself could be misspeci�ed. We propose a new

way to model the stochastic processes for the assets, but it is possible that the model does

not capture all patterns in the asset dynamics. Finally, default rates are in general very

small for A-rated companies. Thus, the short time period considered in this data set can

give wrong estimates of default probabilities and default correlation.
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Figure 37: Model simulated joint probability of default compared with empirical joint prob-
ability of default for an average A-rated �rm and an average Ba-rated �rm. Source: Lucas
(1995), Zhou (2001).
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7 Conclusion

In this paper, we proposed a multivariate stochastic process for �rm values that �ts better the

observed features of the �nancial data than the di�usion-type stochastic processes assumed

in the standard Merton model. The proposed model incorporates two important features:

the fact that the Sharpe ratios and the volatilities of �rms are time-varying and correlated

over time. Within the standard Merton framework, we calibrated the proposed model to

�t sample averages between and within the rating categories A and Ba. By Monte Carlo

simulations, we investigated the dynamics of the proposed model with respect to the joint

probability of default.

The joint probability of default is important in understanding and predicting the behavior of

credit portfolios. If default events are correlated among �rms, the joint probability of default

can be a signi�cant source of risk for a loan portfolio. Defaults can be more heavily clustered

than envisioned in the default correlation models currently used by �nancial institutions.

The �nancial crisis led to bank failures, mainly because of losses that exceeded the worst

estimates. Consequently, signi�cantly more capital might be required in order to survive

default losses, especially at high con�dence levels as the ones required by regulation. An

understanding of the joint probability of default is also crucial for the rating and risk analysis

of structured credit products, such as letter of credit-backed debt or credit default swaps.

There are also major concerns about the calibrations of portfolio and credit risk models.

�In particular, estimation of default correlations is di�cult because they cannot be directly

measured for speci�c obligors� (Jorion and Zhang, 2009). Current models seem to be unable

to reproduce the actual pattern of correlation among default events. Unlike the standard

model, we found that our proposed model delivers probabilities of the joint default closer to

what is observed in the data.

In this paper we considered only the case of two �rms, but the model could be extended to the

case of multiple �rms. Furthermore, an analysis of how time-varying and correlated means

and volatilities for �rms' values a�ect the loss distributions for typically bank portfolios

consisting of risky debt, would be of high interest. Future work will investigate in these

directions.
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Appendix

Table 1: Benchmark calibration.

Calibrated variables Firm 1 Firm 2 Calibration details/Literature source

Initial asset value V1, V2 100 100 Zhang, Zhou and Zhu (2004)

Initial asset mean µ10, µ20 (%) 9 11.5 Zhang, Zhou and Zhu (2004)

Initial asset volatility σ10, σ20 (%) 24.65 30.27 Zhang, Zhou and Zhu (2004)

Default point D1, D2 (% of �rm value) 32.47 43.97 Zhang, Zhou and Zhu (2004), Leland (2004)

Asset mean: drift β1, β2 0.77 0.3 Calibrated to match historical default probabilities

Vol. of mean Firm 1 σµ11, σ
µ
12 0.2 0.25 Calibrated to match historical default probabilities

Vol. of mean Firm 2 σµ21, σ
µ
22 0.5 0.2 Calibrated to match historical default probabilities

Asset vol.: mean reversion α1, α2 0.74 0.8 Zhang, Zhou and Zhu (2004)

Asset vol.: long-run mean θ1, θ2 (%) 4.24 4.9 Zhang, Zhou and Zhu (2004)

Vol. of vol. Firm 1 σσ11, σ
σ
12 0.025 0.03 Calibrated to match historical default probabilities

Vol. of vol. Firm 2 σσ21, σ
σ
22 0.03 0.05 Calibrated to match historical default probabilities

Risk-free rate (%) 5 5 Zhang, Zhou and Zhu (2004)

Initial equity premium (%) 6 8.5 Zhang, Zhou and Zhu (2004)

Payout ratio (%) 2 2 Zhang, Zhou and Zhu (2004)

Firm values: Correlation ρV 0.1 Calibrated to match historical default probabilities

Means: Correlation ρµ 0.1 Calibrated to match historical default probabilities

Volatilities: Correlation ρσ 0.2 Calibrated to match historical default probabilities
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Matlab code for the Monte Carlo simulation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%% BENCHMARK CALIBRATION %%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Parameters for the Monte Carlo simulation:

T=10;           % the time to maturity

Nsim=1000000;   % the number of simulations for each step considered

N=100;          % the number of steps considered

h=T/N;          % the step size (dt)

l=(0:h:T);      % the vector [0 1h 2h 3h ... Nh] to be used to rescale the x-axis for 

plotting

% The two brownian motions driving the means of the firms' values are

% correlated and consequently we make draws from a multivariate normal:

mumu=[0 0];

varmu=[1 0.1; 0.1 1];

r2=mvnrnd(mumu,varmu,Nsim);

epsZ1=r2(:,1)';

epsZ2=r2(:,2)';

% The two brownian motions driving the volatilities of the firms' values are

% correlated and consequently we make draws from a multivariate normal:

musigma=[0 0];

varsigma=[1 0.2; 0.2 1];

r1=mvnrnd(musigma,varsigma,Nsim);

epsW1=r1(:,1)';

epsW2=r1(:,2)';

% The two brownian motions driving the values of the firms are correlated

% and consequently we make draws from a multivariate normal:

muV=[0 0];

varV=[1 0.1; 0.1 1];

r3=mvnrnd(muV,varV,Nsim);

epsB1=r3(:,1)';

epsB2=r3(:,2)';

% Parameters from Zhang, Zhou and Zhu (2004) and Leland (2004):

V1=100;         % the initial value of firm 1

V2=100;         % the initial value of firm 2

D1=43.29*0.75;  % the initial value of debt in firm 1 times the default boundary

D2=58.63*0.75;  % the initial value of debt in firm 2 times the default boundary

mu1=0.09;       % the initial value for the drift of firm 1

mu2=0.115;      % the initial value for the drift of firm 2

vol1=0.2465;    % the initial value for the volatility of firm 1

vol2=0.3027;    % the initial value for the volatility of firm 2

mvol1=0.0424;   % the long run volatility of firm 1

mvol2=0.049;    % the long run volatility of firm 2

kvol1=0.74;     % the mean reversion coefficient of firm 1

kvol2=0.8;      % the mean reversion coefficient of firm 2
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% Calibrated parameters to fit historical default probabilities:

kmu11=0.2;      % the volatility of the mean 11

kmu12=0.25;     % the volatility of the mean 12

kmu21=0.5;      % the volatility of the mean 21

kmu22=0.2;      % the volatility of the mean 22

kvol11=0.025;   % the volatility of the volatility 11

kvol12=0.03;    % the volatility of the volatility 12

kvol21=0.03;    % the volatility of the volatility 21

kvol22=0.05;    % the volatility of the volatility 22

b1=0.77;        % the drift of the mean for firm 1

b2=0.3;         % the drift of the mean for firm 2

% The Monte Carlo simulation:

jointPD=zeros(N,1);     % make a vector to store the joint probability of default   

probdef1=zeros(N,1);    % make a vector to store the probability of default Firm 1

probdef2=zeros(N,1);    % make a vector to store the probability of default Firm 2

for j=1:N             

    t=h*j;              

    sumjointprobab=0;

    sumprob1=0;

    sumprob2=0;

    for i=1:Nsim       

        

% Generate the time-varying and correlated means:

 mu11=mu1+b1*mu1*t+mu1*(kmu11*sqrt(t)*epsZ1(i)+kmu12*sqrt(t)*epsZ2(i));

 mu21=mu2+b2*mu2*t+mu2*(kmu21*sqrt(t)*epsZ1(i)+kmu22*sqrt(t)*epsZ2(i));

            

% Generate the time-varying and correlated volatilities:

 vol11=vol1+(kvol1*(mvol1-vol1))*t+sqrt(vol1)*(kvol11*sqrt(t)*epsW1(i)+kvol12*sqrt(t)

*epsW2(i));

 vol21=vol2+(kvol2*(mvol2-vol2))*t+sqrt(vol2)*(kvol21*sqrt(t)*epsW1(i)+kvol22*sqrt(t)

*epsW2(i));

            

% Generate the time-varying and correlated firm values:

 V11=V1+mu11*V1*t+V1*vol11*sqrt(t)*epsB1(i);

 V21=V2+mu21*V2*t+V2*vol21*sqrt(t)*epsB2(i);

            

% Count each time firm 1 default:

            

if V11<D1

    sumprob1=sumprob1+1;    

end

            

% Count each time firm 2 default:

            

if V21<D2

    sumprob2=sumprob2+1;

end

            

% Count each time both firms defaults:

            

if V11<D1 

57



if V21<D2

    sumjointprobab=sumjointprobab+1;

end

end

end

% the probability of default for firm 1:

 probdef1(j,1)=sumprob1/Nsim;   

    

% the probability of default for firm 2:

 probdef2(j,1)=sumprob2/Nsim;   

    

% the probability of joint default:

 jointPD(j,1)=sumjointprobab/Nsim;

end

% Adjust the length of the vectors to be consistent with the x-axis:

jointPD;

jointPD=[zeros(1,1);jointPD]; 

probdef1;

probdef1=[zeros(1,1);probdef1];

probdef2;

probdef2=[zeros(1,1);probdef2];

% Make the figure of joint default probability as a function of time to maturity:

figure(1)

plot(l,jointPD,'-k','LineWidth',4);

xlabel('Time to maturity');

ylabel('Joint probability of default');

hleg1 = legend('Benchmark calibration');

grid on
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