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Abstract
In this article, we construct a portfolio of commodity futures which mimics the Dow
Jones Commodity Index and perform an extensive stress testing exercise with a focus
on hybrid scenarios. The increased volume of investments in commodities as financial
instruments over the last decades underline the importance of a more thorough frame-
work for stress testing of related portfolios. Our study is the first to show comparatively
the marginal impact of the model choice for portfolio components versus the marginal
role of tail dependence on the portfolio profit and loss in stress testing exercises. We
model the distribution of returns of portfolio components with an asymmetric AR-
GARCH model combined with Extreme Value Theory for extreme tails, and employ
multivariate copula functions to model the time-varying joint dependence structure.
Our study reveals that indeed, for a realistic stress test, a special attention should be
given to the tail risk in individual commodity returns as well as to tail correlations.
We also draw conclusions about parameter risk persistent in stress testing exercises.
Finally yet importantly, in line with Basel IIIb, the study highlights the importance of
using forward-looking hybrid and hypothetical scenarios over historical scenarios.

Keywords Stress testing · Commodity futures · Risk measures · Extreme value
theory · Copula functions

1 Introduction

Financial investments in commodities have grown rapidly over the last decades and
became an important asset in portfolios of institutional investors such as pension funds,
insurance companies, and hedge funds. The risk associated with weather, storage etc.
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led to the rise of commodity indices in the early 2000s, providing a hedge opportunity
for commodity producers. The volumes of exchange-traded derivatives became 20
to 30 times higher than the physical production of many commodities (Silvennoinen
and Thorp 2013; Paraschiv et al. 2015). The vivid interest in this asset class might
be attributed to the perceived opinion that commodities show low correlation with
traditional assets, and thus, provide diversification benefits in a mixed-asset portfo-
lio (Bhardwaj et al. 2015; Gorton and Rouwenhorst 2006; Paraschiv et al. 2015). The
empirical analyses in Silvennoinen and Thorp (2013) andDaskalaki and Skiadopoulos
(2011) show increased integration of commodity and financial markets, with higher
correlation, especially in bearish times (Cheung and Miu 2010). In Tang and Xiong
(2012), it is shown that the increasing presence of index investors has exposed com-
modity prices to market-wide shocks, such as shocks to the world equity index, the
US dollar exchange rate, and shocks to other commodities, such as oil. Furthermore,
Adams andGlück (2015) show that the risk spillovers to commodities observed during
the financial crisis were persistent over time and the volatility in commodity markets
increased during the past decade (Tang and Xiong 2012; Basak and Pavlova 2016).
These changes in commodity characteristics are often referred to as the financialization
of commodity markets (Cheng and Xiong 2014) and lead to the need for an approach
to measure and manage the associated risks in related financial investments.

A common tool for risk management is stress testing. European Banking Authority
(2017, p. 28) points out in their new guidelines under development that “Institutions
should ensure that the scenario analysis is a core part of their stress testing programme”.
Implementing stress testing is nowmandatory for banks, due to regulations fromBasel
III formed in the post crisis environment (Basel Committee on Banking Supervision
2009).

An example in this sense is the study of Koliai (2016) which analyses existing
risk models for stress testing purposes. The study presents a semi-parametric copula-
GARCH risk model for equity indices, exchange rates and commodity prices, to
perform stress testing on hypothetical portfolios, where the marginal distributions
of returns are specified using EVT. Results show that different risk models produce
significantly different results in terms of corresponding stress scenarios and impact on
the portfolios.

The analysis in Paraschiv et al. (2015) is to our knowledge the only example of stress
testing methodology applied to a portfolio of commodities which takes into account
specific events that impacted this class of assets over time. It shows the importance
of using forward-looking scenarios to enable the simulations of extreme quantiles,
providing a better understanding of risk.

In this article, we apply stress testing techniques in line with the regulatory require-
ments fromBasel III (Basel Committee on Banking Supervision 2017, 2018; Baudino
et al. 2018) to a portfolio of commodity futures. The existing literature on stress test-
ing of commodity portfolios is scarce, despite their popularity gained in practice. We
update the analysis in Paraschiv et al. (2015), keeping the same procedure for con-
structing the stress portfolio as in the original study. However, we innovate in several
directions. We extend the data set by including several new historical shocks, among
which the oil price drop in 2014. Secondly, we enrich the spectrum of stress testing
scenarios, focusing more on the forward-looking ones. The analysis in Paraschiv et al.
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(2015) is limited to show the effects of a reoccurring financial crisis on the portfolio
profit and loss. Our study shows the importance of combining historical estimations
of model parameters with more flexible forward-looking scenario construction. Fur-
thermore, this is the first study in the literature where we disentangle the effect of
individual model components on the portfolio profit and loss.

For our portfolio construction we mimic the dynamics of Dow Jones Commodity
Index. The DJCI is a broad commodity index consisting of 24 commodities in three
major sectors: energy, metals and agriculture & livestocks. The weights are based on
the traded volume, ensuring a liquid index.

For the marginal distributions of commodity returns, we use an asymmetric AR-
GARCH process and model the tails by Extreme Value Theory. We further describe
the joint dynamics of portfolio components by employing a copula function. Finally,
we simulate the portfolio profit and loss distributions under different scenarios in a
stress testing framework.

Our results are twofold. First we find that the simulated profit and loss distribution
of the portfolio is highly sensitive to the choice of the modelling approach for the
marginal distribution of portfolio components. In particular, a correct identification
of tail risk is of great importance for the stress testing purpose. The marginal role
of correlations/dependence structure among portfolio components seems, however, to
have a less obvious impact for the stress test results. Secondly, we find the construction
of hybrid scenarios to be a relevant tool to combine both historical information and
the flexibility of forward looking approaches in line with the requirements from Basel
III (Basel Committee on Banking Supervision 2009).

The remainder of this article is structured as follows. Section 2 offers an overview
of the most relevant literature for our study. In Sect. 3 we will provide an introduction
of our data, focusing on the characteristics of the portfolio. In Sect. 4 we show the
theoretical background of the different methodologies applied. Section 5 shows details
of the implementation of the methodology for our data set and of the simulation
procedure. Finally, in Sect. 6 we will explain and apply stress testing and display our
analysis.

2 Review of literature on stress testing

2.1 Regulatory requirements for Stress testing

As defined in Lopez (2005), stress testing is a risk management tool used to evalu-
ate the potential impact on portfolio values of unlikely, although plausible events or
movements in a set of financial variables. The recent financial crisis led the attention
of banks and authorities to the insufficient methods of risk management and the need
for more accurate stress testing became obvious, since financial institutions were not
prepared to deal with the crisis. One main concern was that the scenario selection and
simulation were carried out by separate units for each business line and for particular
risk types (Basel Committee on Banking Supervision 2009). This indicates that the
stress testing was isolated and did not provide a complete picture on the firm level.
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Seemingly the most recent development in the methodology for stress testing of
portfolios is the use of Extreme Value Theory (EVT) and copulas as input to the
analysis. EVT was first introduced in Embrechts et al. (1997) to better model the tail
distribution of risk factors. Extreme Value Theory focuses on shaping the tails rather
than the whole distribution of returns, providing more rigorous estimates of risk for
financial portfolios. InMcNeil et al. (2015) the authors suggested using a combination
of GARCH and EVT. This methodology is popular in recent literature, with the largest
proportion of new studies focusing on stock markets or single commodities (Ghorbel
and Souilmi 2014; Liu 2011; Wang et al. 2010; Aepli 2011).

2.2 Types of stress tests

Stress tests can be conducted with several methodologies. One can firstly differentiate
between univariate and multivariate stress tests. Univariate stress tests aim at identify-
ing the isolated influence of stressing or shocking one single risk factor of a portfolio
(Aepli 2011, p. 4). This makes the univariate stress tests simple to apply, but very lim-
ited, since they do not take dependencies between the returns of portfolio components
into account. Multivariate stress tests overcome this drawback. In Basel Committee on
Banking Supervision (2009) we find a classification of stress test methodologies for
financial institutions. One can consider different scenarios when running stress tests,
historical, hypothetical and hybrid. The need for hypothetical scenarios was high-
lighted after the crisis, since risk managers mostly performed historical stress testing
under Basel II (Basel Committee on Banking Supervision 2006). The European Bank-
ing Authority (2017, p. 28) pointed out that “the design of stress test scenarios should
not only be based on historical events, but should also consider hypothetical scenarios,
also based on non-historical events”. Forward-looking scenarios are now required for
European banks according to Basel Committee on Banking Supervision (2009). In
Aepli (2011) the authors propose an extensive framework for complex stress testing
for portfolios of futures that is in agreement with the regulations fromBasel III formed
in the post crisis environment.

2.2.1 Historical scenario

Historical scenarios are based on actual, realised data stemming from a historical
episode of financial stress. This makes them realistic and easy to access. The profit
and loss distribution in the historical scenario is simply given by the realised empirical
distributions. In Lopez (2005), it is pointed out that historical scenarios are developed
more fully than other scenarios since they reflect an actual stressed market environ-
ment that can be studied in great detail, therefore requiring fewer judgements by risk
managers.

Onemajor drawbackwith historical scenarios is the assumption that passedfinancial
crises will reoccur with the same consequences on portfolio losses. This makes them
unable to capture risks linked to new products that may have significant impact on
the outcome of a crisis. The worst observed loss in the past might not reflect the
worst possible outcome in the future. This drawback was proven to be essential in
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the financial crisis of 2007 and resulted in the underestimation of the risk level and
interaction between risks (Basel Committee on Banking Supervision 2009, p. 5).

Another drawback in historical scenarios is the sample size. Due to the limited num-
ber of observations, computing risk metrics in the higher confidence levels becomes
problematic. This is a considerable drawback as the most extreme losses are of great
interest in stress testing exercises.

2.2.2 Hypothetical scenario

Hypothetical scenarios are, unlike the historical scenarios, forward looking. Scenar-
ios can be constructed in multiple ways, for example by shocking model parameters
arbitrarily, based on own experiences of market movements. Hypothetical scenarios
have the advantage of being more flexible and forward looking, making them more
informative if conducted correctly. More focus on hypothetical stress testing scenar-
ios allows the institution to be both well prepared for potential extreme unexpected
outcomes, and lay the foundation to overcome these potential losses.

An extensive analysis has to be in place before constructing hypothetical scenarios,
which can be both time consuming and difficult. In Basel Committee on Banking
Supervision (2009, p. 5) it is pointed out that banks had implemented hypothetical
scenarios prior to the financial crisis, but it was difficult for risk managers to obtain
the support of the senior management, since the scenarios were extreme or innovative,
and oftenwere considered as implausible. Extremes that have not yet been experienced
are often difficult to imagine and to be taken seriously.

In the financial regulatory frame from Basel Committee on Banking Supervision
(2018) we note that during stress testing exercises consideration should be given to
both historical and hypothetical events. This is to take into account new information
and emerging risks in the foreseeable future. Furthermore, “when conducting stress
tests it is important to be aware of the limitations of the scenarios (BIS 2018, p. 4).
This also emphasizes the need to use several scenarios for a more correct result.”

2.2.3 Hybrid scenario

Hybrid scenarios combine the knowledge found in historical scenarios with the flex-
ibility of hypothetical scenarios, making them a suitable alternative in stress testing.
Hybrid scenarios are also easier to implement than more extensive forward-looking
scenarios, as they are anchored in actual experienced market conditions. Hybrid sce-
narios are constructed by using historical data during times of financial distress to
calibrate the process of risk factor evolution, but allow extrapolation beyond experi-
enced events.

Even though hybrid scenarios allow the construction of new possible scenarios,
they are still somewhat backward looking in the sense that they do not fully explore
the risk of shifting market conditions or risk associated with new products. However,
Lopez (2005) points out that risk managers always face a trade-off between scenario
realism and comprehensibility; that is, more fully developed scenarios generate results
that are more difficult to interpret. The benefits from implementing hybrid scenarios
should not be neglected as they balance this trade-off.
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3 Data selection and description

3.1 Choice of commodity indices

Commodity indices have become quite popular in the last decades and several com-
modity indices have been developed, among which S&P Goldman Sachs Commodity
Index (S&P GSCI) and the Dow Jones Commodity Index (DJCI).

The S&P GSCI consists of 24 commodities and the weights are based on trading
volume. It is therefore often seen as a benchmark for investment performance in
commodities. The trading volume in energy commodities is higher than any other
commodity sector so this index is heavily based in energy (60% of the total weight
in 2017 S&P Dow Jones Indices 2018). To get a more balanced portfolio across
different commodity sectors the DJCI will be the focus in this article. It consists
of 24 commodities divided into three major sectors: metals, energy and livestock &
agriculture. Theweights are basedon the total volume traded, but unlike theS&PGSCI,
the DJCI has constraints on total weight allocated in each sector and commodity. By
not allowing any of the three sectors to obtain more than 35% of the weight, and no
single commodity to constitute less than 2% or more than 17% of the total index, the
DJCI becomes well diversified. These restrictions also provide continuity and high
liquidity for potential investors. The weights are rebalanced annually. See S&P Dow
Jones Indices (2017) for a detailed methodology.

To select the risk factors (commodities) for our analysis we apply the method
introduced in Paraschiv et al. (2015). We take the ten commodities with the largest
weights for 2017 in the DJCI, and form our test portfolio. This is done to get a more
time efficient portfolio and to make the analysis more practical. The ten commodities
add up to 76% of the DJCI, providing a good proxy for the movements of the entire
index. To form our test portfolio we scale up the weights, proportionally to 100%.
The weights of the ten commodities can be seen in Table 1. Our selection leaves us
with three portfolio components in energy, three in metals and four in agriculture &
livestocks.

3.2 Descriptive statistics

We extracted daily data from 1996 to 2017 from Thomson Reuters Eikon for con-
tinuous series of futures with approximately one year to maturity for the ten selected
commodities. This leaves uswith 5741 observations for each commodity.Details about
the data extraction are found in Table 2.

As for our data, the rolling overwas done byEikon. Theirmethodology can be found
in Thomson Reuters (2012). For monthly futures data roll over is done by jumping to
the nearest future contract with a switch over following in the last trading day. They use
the nearest contract month to form the first values of the continuous series, and when
the contract expires, the next point of data is the next one year to maturity contract.
They do not adjust for price differentials when adjusting the data, but we found this
methodology to be sufficient for our analysis especially as our futures have one year
to maturity.
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Table 1 Portfolio weights scaled up from the weights in DJCI 2017. Source: S&PDow Jones Indices (2016)

Commodity Weight in index (%) Weight in test portfolio (%)

Wheat 3.2 4.2

Corn 7.1 9.3

Soybeans 11.9 15.6

Live cattle 2.7 3.5

Copper 10.3 13.6

Gold 10.2 13.4

Aluminium 4.6 6.1

WTI 9.7 12.7

Brent 8.8 11.6

Natural gas 7.3 9.6

Sum 76.1 100

Figure 1 shows the historical price movements of commodities measured in a rel-
ative index value. We observe a general co-movement especially in the 2000s, when
the commodity markets experienced a uniform rise in prices until the financial crisis.

We observe several structural breaks across commodities especially during the
financial crisis in 2007–2009 that heavily affected commodity markets. The European
Central Bank Delle Chiaie et al. (2017) brings evidence supporting that global activity
has clear implications for the commodity markets. Their analysis shows that since the
year 2000 the price drivers of oil have fundamentally changed, and during the time
of the financial crisis global activity strongly affected the oil price. The acute drop in
oil price in 2014 was driven by several factors, among which the increased supply of
unconventional oil and a significant shift in OPEC policy (Baffes et al. 2015). What
differentiates the price drop in 2014 from previous collapses in oil price is, according
to Baffes et al. (2015), that the fluctuation could not be explained by a weakened
demand or expansion of supply in isolation, but rather a combination of the two.

While during the financial crisis all commodity sectors were affected, the price drop
in 2014 to a lesser degree showed spillover to non-energy sectors. This indicates the
decoupling of oil price from other commodities in agriculture and metals. According
to Erdős (2012) the co-integration of oil and natural gas ended in 2009 after an increase
in shale gas production. We observe that the commodities in non-energy sectors in
more recent years do not necessarily follow the oil price as closely as in the past
decade, potentially affecting the dynamics of the commodity markets.

Table 3 shows the daily descriptive statistics of our time series. McNeil, Frey and
Embrechts (2015, p. 117) present six stylized facts of financial returns that can be
observed, which also apply to our data: (1) Return series are not i.i.d.; (2) Series of
absolute or squared returns show profound serial correlation; (3) Conditional expected
returns are close to zero; (4) Volatility appears to vary over time; (5) Return series are
leptokurtic or heavy-tailed; (6) Extreme returns appear in clusters.
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Fig. 1 Historical daily price movements from 1996 to 2017 for the ten commodities in relative value

We can also see graphically that the returns show autocorrelation, in line with the
stylized fact (2) (see Fig. 2). From the probability plot we see that the returns follow
the t distribution better than the Normal distribution, but the data deviates from the t
distribution in the tails (see Fig. 3). This indicates heavy tailed returns. Additionally,
ARCH-GARCH tests show evidence of conditional heteroscedasticity, in line with
stylized fact (4). We performed the test for lags 5, 10, 15 and 20. We also tested for
stationarity. Augmented Dickey-Fuller test, Phillips Perron test and KPSS test show
that the returns of all commodities are stationary.

4 Methodology

4.1 Motivating the choice of modeling approach

As a result of the return characteristics for the ten commodities, as shown in Sect.
3, we model the conditional volatility with a GARCH process. A GARCH process
can be extended in various ways, depending on the purpose. For commoditiy markets
it has been shown that volatility tends to increase more after large negative returns
than after large positive returns (Nyström and Skoglund 2002b). We therefore see it as
an appropriate choice to extend to a GARCH-GJR model (Alexander 2008a), which
includes a leverage parameter to capture this asymmetry.

Since the focus of our study is on stress testing, extreme returns are of special
interest. We have shown the deviations from the normal and student t distribution for
the returns, especially in the tails. ExtremeValue Theory with the Peak over Threshold
method has been employed in earlier studies (Aepli 2011; Paraschiv et al. 2015; Wang
et al. 2010) showing a good modeling performance in shaping heavy tails. This is in
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Fig. 2 Sample autocorrelation plot of the returns and squared returns forWTI, aswell as the daily logarithmic
returns and a quantile–quantile plot. Corresponding graphs for all commodities are available upon request
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Fig. 3 Probability plot for WTI return versus standard normal and − t distribution. Corresponding graphs
for the other commodities are available upon request
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line with the regulatory requirements for stress testing that point out the need to give
a special attention to tail risk in asset returns.

Due to the commonbust and boomcycles and co-integration of commoditymarkets,
is important to model the dependence structure between returns in a realistic way.
In Aepli et al. (2017) the authors show the importance of modelling time-variation
and asymmetries in the dependence structure between the risk factors of a portfolio
of commodity futures. In support of Basel III critics on over-reliance on historical
correlations, the authors introduce multivariate dynamic copula models as a superior
alternative. There exist a numerous amount of copulas to choose from, and the best
choice is dependent on the aim of the analysis and the data. Analysis in Paraschiv et al.
(2015), Aepli (2011) and McNeil et al. (2015) find the t copula to be superior over the
Gaussian copula in the context of modelling multivariate financial return data. For our
purpose, we therefore prefer a t copula over the more common Gaussian copula. The
asymmetry of our data would probably be better modelled by an asymmetric copula,
but as the t copula keeps the analysis tractable and allows a direct comparison across
stress tests we find it suitable for this analysis. The subsequent subsections show the
technical specification of the models employed.

4.2 GARCH

A simple autoregressive AR(p) process is a simple way to capture the autocorrelation
between the individual commodity returns:

yt = μ +
p∑

i=1

φi yt−i + εt (1)

where εt is i.i.d. with mean zero and variance σ 2.
The residuals from AR(q) models can be decomposed such that:

εt = ztσt (2)

where zt is i.i.d. with unit variance and σt is the conditional variance.
The generalized autocorrelation conditional heteroscedasticity model (GARCH) is

then used to capture the volatility change and clustering of returns over time.
The symmetric normal GARCH assumes that the dynamic behaviour of the condi-

tional variance is given by:

σ 2
t = ω + αε2t−1 + βσ 2

t−1, εt |It−1 ∼ N (0, σ 2
t ). (3)

The parameters of the GARCH model are estimated by maximising the value of the
log likelihood function (see Alexander 2008a, p. 137).

Empirical evidence suggests that positive (negative) innovations to volatility corre-
late with negative (positive) innovations to returns (Nyström and Skoglund 2002a, p.
5). The rational behind is that negative impacts on returns have a tendency to increase
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volatility, which is accounted for as the “leverage” effect (McNeil et al. 2015), since
a fall in equity value causes a rise in the debt-to-equity ratio (leverage) of a company,
therewith making the stock more volatile. The leverage effect is captured by extending
the classical specification of the GARCH model (Eq. (3)) by an extra parameter, the
leverage parameter λ. The GARCH-GJR can be written from the GARCH(1,1) model
above, including the extra parameter (Alexander 2008a, p. 150):

σ 2
t = ω + αε2t−1 + λ1(εt−1<0)ε

2
t−1 + βσ 2

t−1 (4)

where the indicator function 1(εt<0) = 1 if εt < 0. Thus, in addition to the specification
in Eq. (3), an additional shock to volatility for negative residuals is added to volatility
to account for the asymmetry. The sign of λ is naturally expected to be positive.

In Nyström and Skoglund (2002a, pp. 10–12) the authors discuss which distribution
should be assumed for the standardized residuals zt for financial data, and find that
using normal distribution as approximation for the high quantiles might lead to a sig-
nificant underestimation. Related literature suggests the t distribution as an alternative
distributional assumption, which might be more accurate in capturing fat tails, but
unable to capture asymmetry. In Nyström and Skoglund (2002a), they use Extreme
Value Theory to account for both the fat tails and the skewness and asymmetry of
financial data. In this paper, we will apply this combined method.

4.3 Extreme value theory

Extreme value theory (EVT) is the study of improbable, but extreme events. EVT is
more commonly used in weather and insurance, but has over the past decade become
more popular also in financial studies. InEmbrechts et al. (1997) the authors introduced
a full framework for the analysis, and they argue that EVT should be given more
attention in risk management for financial institutions. In McNeil et al. (2015) it is
proposed a combination of GARCH-EVT models where the GARCH standardized
residuals are used as input to EVT, since EVT requires the residuals to be i.i.d.

The theoretical framework for Extreme Value Theory is extensively shown in Nys-
tröm and Skoglund (2002b) and Embrechts et al. (1997).

The generalised Pareto distribution (GPD) is introduced for any ξ ∈ R, β ∈ R+:

GPξ,β(x) = 1 −
(
1 + ξ

x

β

)− 1
ξ

+
, x ∈ R (5)

where 1/ξ is the tail index and x represent exceedances of standardized residuals zt
over the threshold that delimitates the extreme tail.

There are two practical methods in the literature for locating the threshold beyond
which we define the tail of extreme values. The first is the block maxima method. In
this approach we define blocks in the data, and then extract the maxima (maximum
loss) in each block. There are several drawbacks of this approach. The local maxima
in a block might not capture the actual maximas in the time series, and the second
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and third maxima in a block might be of significance to the investor but will not be
captured by the block maxima approach.

The second method, the Peak over threshold, focuses on the events that exceed a
specified, high threshold. Here the observations over the threshold are asymptotically
described by the generalised Pareto distribution. The Peak over threshold is the pre-
ferred method for practitioners as it makes better use of the data, and so we will use
this approach. Determining the optimal threshold is challenging, and there are several
methods which can be used. However, Nyström and Skoglund (2002b) argue that the
threshold should be between 5 and 13% of the data.

ξ̃ and β̃ are parameter estimates of the generalised Pareto distribution. To estimate
the parameters in the GPD we use maximum likelihood. This is the preferred method
as it provides estimates of the parameters that are consistent and asymptotically normal
as n → ∞ given that ξ > −1/2. When using the maximum likelihood it is nearly
invariant to the level of the threshold given that the threshold is within a reasonable
limit.

Kernel smoothed interior
The data between the lower and upper tail thresholds are fitted by a Gaussian

Kernel estimator. A kernel estimator is a function that derives a smooth curve from
the observed data that is the best possible representation of the probability density.

4.4 Dependence structure

The GARCH-GJR-EVT process focuses on modelling the distribution of individual
risk factors by modelling the conditional volatility, asymmetric adjustment and fat
tails. However, this is done by modelling each risk factor in isolation, and it does not
contain information about the dependence structure, which is a very important part of
stress testing.

A copula allows for modelling the underlying joint distribution of two or more
assets by only specifying the marginals. In Alexander (2008a), it is pointed out that
one of the advantages of using a copula is that it isolates the dependence structure from
the structure of the differentmarginal distributions. The theoretical background behind
copulas was introduced in 1959 by Sklar. The use of copulas to measure dependence
became more popular in the literature in the end of the 1990s, but only in the recent
decade copula became a popular method employed in financial applications.

We will only focus on the theoretical background of the symmetric t copula. For
a more detailed and complementary background of copulas we refer the reader to
Alexander (2008a) or McNeil et al. (2015).

The multivariate t copula can be derived from the multivariate t distribution, and
is defined as (Alexander 2008a, p. 268):

Cv(u1, . . . , un;�) = tv(t−1
v (u1), . . . , t

−1
v (un)), (6)

where tv and tv are multivariate and univariate Student t distribution functions. v is
the degrees of freedom, and � is the correlation matrix.
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5 Estimation procedure

In this section, we give an overview of technical details concerning the calibration of
modeling approaches specified in Sect. 4 and show estimation results.

5.1 Application of the GARCH-GJR

To find the appropriate lag structure for the GARCH(p, q) process we estimate models
with q and p ranging from 1 to 6. To select the best model for the data we perform
Akaike (AIC) and Bayesian (BIC) information criteria (Box et al. 2015, p. 193). These
criteria are the preferred ones for selecting the best GARCH fit for the data because it
penalises models for additional parameters estimated.

AIC = −2(logL̂) + 2NumParams

B IC = −2(logL̂) + NumParams ∗ log(n)

The process which minimises these criteria is considered to be the best specification.
Table 4 shows the results from the AIC and BIC criterion tests for lags from 1 to 2.
We tested up to 6 lags, but the results show insignificant parameters, and higher AIC
and BIC criterion than the displayed models. The table indicates that the GARCH(1,
1) is the optimal choice overall, and we will continue with this specification. Similar
results are found in Paraschiv et al. (2015) and Aepli (2011).

Table 5 displays the estimated GARCH-GJR parameters. The parameters closely
align with previous empirical results for financial assets. Following Alexander (2008a,
p. 137), the β is a measurement of the persistence in conditional volatility regardless of
what happens in themarket. Large β, above 0.9, indicates that high volatility following
market stress will persist for a long time which is true for all of our commodities. α
measures the reaction of conditional volatility to shocks in the market. The sum of the
two parameters is the rate of convergence, for our risk factors the sum is close to 1,
indicating high persistence and a relatively flat term structure of volatility forecasts.
From the table we see that the estimated ARCH and GARCH coefficients, α̂ and
β̂, are significantly different from zero for all commodities. We found a significant
leverage effect in the returns of oil products, copper and live cattle. Empirical evidence
shows that after 2008 holding crude oil as financial asset gave higher returns than
holding it as commodity, given the reduction in convenience yields and a change from
backwardation to contango (seeKolodziej et al. 2014).We did not find evidence for the
expected leverage effect in agricultural commodities and metals (excluding copper)
though. In this case, negative impacts on returns are associated to negative shocks to
volatility.

Figure 4 displays the filtered residuals and thefiltered conditional standard deviation
of WTI, as given in Eq. (2). The other commodities show similar results, and are
available upon request. We observe that the GARCH process models realistically the
volatility clustering pattern in commodity returns.

To be able to apply EVT to the tails we need to standardise the filtered residuals
from each return series. The standardised residuals are calculated by dividing the
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Fig. 4 Filtered residuals and filtered conditional standard deviation for WTI. Corresponding graphs for the
other commodities are available upon request

-0.2

-0.1

0

0.1

0.2

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample ACF of Standardized Residuals

0 2 4 6 8 10 12 14 16 18 20
Lag

-0.2

-0.1

0

0.1

0.2

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample ACF of Squared Standardized Residuals

0 2 4 6 8 10 12 14 16 18 20
Lag

Fig. 5 Sample autocorrelation plot of standardised and squared standardised WTI residuals, showing that
the residuals are now i.i.d. Corresponding figures for the other commodities are available upon request
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Table 6 Comparison of upper tail parameters (ξ ) for different thresholds

Commodity Upper tail (ξ ), Threshold = u

u = 7% u = 10% u = 11% u = 12%

Wheat 0.0822 0.0223 0.0082 0.0063

Corn 0.1885 0.1775 0.1554 0.1320

Soybeans 0.0816 0.0504 0.0430 0.0356

Live cattle 0.2781 0.2854 0.2702 0.2714

Copper − 0.0069 − 0.0290 − 0.0572 − 0.0555

Gold 0.2011 0.1450 0.1485 0.1413

Aluminium − 0.0368 0.0022 0.0117 − 0.0278

WTI 0.0646 0.0101 − 0.0049 − 0.0158

Brent − 0.0021 0.0086 − 0.0101 0.0006

Natural gas 0.1583 0.0728 0.0688 0.0871

The rest of the parameters from the different thresholds are found in Table 13

filtered residuals with the conditional variance zt = ε
σt

to obtain mean zero and unit
variance. The standardised residuals are plotted in Fig. 5. We can now see graphically
that the residuals are i.i.d. for WTI. The other commodities show similar results and
are available upon request. The residuals are now applicable to be modelled by EVT.

5.2 Application of EVT

5.2.1 Estimation of the semi-parametric cumulative distribution functions

To locate the threshold, we have fitted the Generalized Pareto distribution (GPD) to
the standardized residuals testing for parameter stability for different threshold values
between 5%and 15%. This allows us to find a thresholdwhere the tail indexes stabilise.
In Table 6 we display the 7%, 10%, 11% and 12% thresholds upper tail index. The
rest of the parameters from the different thresholds are located in Table 13. Notice
that the tail index naturally becomes smaller as the threshold allows for more data in
the extreme tail. However, generally speaking, the value of “ξ” observed at the 10%
threshold has a similar value at subsequent thresholds.

We will therefore define the lower/upper tails in all commodity returns as starting
at the 10% and 90% quantiles respectively. Previous studies (Aepli 2011; Paraschiv
et al. 2015) have chosen a 10% threshold.We see the advantage of choosing a standard
threshold as it gives us the opportunity to compare directly parameter estimates among
commodity returns.

The next step is to fit the generalised Pareto distribution to the exceedances over
threshold by using maximum likelihood. By optimising the log-likelihood function
we estimate the tail indexes ξ and scale parameters β.

The estimated parameters for our risk factors are listed in Table 7. We have ξ > 0
for nine of the ten risk factors. This case coincides with the Fréchet distribution,
which is characterized by a lower bound and gives an indication of an extreme tails in
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Table 7 Maximum likelihood estimators for the generalized Pareto distribution parameters

Commodity ξ β

Upper tail Lower tail Upper tail Lower tail

Wheat 0.0223 0.0822 0.6163 0.4942

Corn 0.1775 0.1561 0.5396 0.5081

Soybeans 0.0504 0.1014 0.5595 0.5924

Live cattle 0.2854 0.2509 0.4534 0.5704

Copper − 0.0290 0.1178 0.5818 0.5654

Gold 0.1450 0.1003 0.5203 0.6121

Aluminium 0.0022 0.1003 0.5551 0.5197

WTI 0.0101 0.0926 0.5166 0.5805

Brent 0.0086 0.0664 0.5152 0.5965

Natural gas 0.0728 0.0714 0.6126 0.5191

Threshold (u)=10%

Fig. 6 Generalized Pareto upper
tail of the standardised residuals
fitted versus empirical.
Corresponding figures for the
other commodities are available
upon request
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commodity returns. Only copper shows a negative sign for “ξ” (Weibull distribution,
having an upper bound). The lower tails show a positive sign of ξ for all commodities.
This suggests both fat upper and lower tails, and furthermore tail asymmetry. The
findings are consistent with the theory and empirical results for financial time series
(Nyström and Skoglund 2002b; Embrechts et al. 1997).

In Fig. 6 we display the empirical cumulative distribution function of the upper tail
of the standardised residuals for WTI. The fitted distribution follows the empirical
exceedances closely, and so the chosen distribution is well suited to estimate the tails
for the commodities.

The last step is to combine the parametric generalized Pareto tails for each
commodity with the corresponding Kernel smoothed interior to obtain the entire semi-
parametric cumulative distribution function. Figure 7 displays the semi-parametric
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Fig. 7 Semi-parametric empirical cumulative distribution function of WTI. Corresponding figures for the
other commodities are available upon request

empirical cumulative distribution function of WTI standardized residuals. The piece-
wise distribution object allows interpolation within the interior of the CDF, displayed
in black, and extrapolation in each tail, displayed in red and blue for the lower and
upper tail, respectively. The extrapolation allows for estimation of quantiles outside
the historical record, and is therefore important for the stress testing exercise.

5.3 Application of the t copula and simulation steps

We fit a t copula to the standardized residuals of portfolio return series. Estimates
of the degrees of freedom for the baseline scenario are given in Table 9. Given the
parameters of the t copula (the correlationmatrix
 and the degrees of freedom param-
eter) we simulate jointly dependent portfolio returns. This is done by first simulating
the corresponding dependent standardised residuals. We transform the dependent uni-
form variates obtained from fitting the t copula to standardised residuals through the
inversion of the semi-parametric marginal cumulative distribution function of each
risk factor. We therefore extrapolate into the generalized Pareto tails, and interpolate
into the smoothed interior. This gives simulated standardized residuals consistent with
those obtained from the GARCH-GJR(1, 1) filtering process described in Sect. 5.1.
Residuals show no autocorrelation and are i.i.d. with unit variance.

5.4 Risk metrics

To compare the implications of various stress scenarios on the portfolio profit and loss
profile, the use of Value at risk (VaR) and conditional value at risk (CVaR) is common.
These risk metrics provide an indication of the quantile losses. VaR is the amount of
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maximumpotential loss at a given percentage. This riskmetric is criticized because it is
not coherent and ignores extreme values beyond the value at risk. CVaR corrects for the
limitations of VaR (Alexander 2008b). For our analysis we include both risk metrics at
various quantiles. This is in line with European Banking Authority (2017, p. 28): “The
institutions should stress the identified risk factors using different degrees of severity
as an important step in their analysis to reveal nonlinearities, threshold effects, i.e.
critical values of risk factors beyond which stress responses accelerate”.

5.5 Simulation steps

Based on the technical specifications given in Sect. 4, we simulate the profit and loss
distribution of our portfolio of commodity returns at the end of the given time horizon
as realistically as possible without and with the impact of stress. Generally speaking,
in each type of stress scenario the technical simulation steps are outlined here:

1. To simulate jointly dependent equity returns with the parameters of the t copula
one first of all has to generate the corresponding dependent standardized residuals.
This is done by simulating dependent uniform variates based on the estimated
degrees of freedom parameter and correlation matrix.

2. We transform them by inversion of the according share’s semi-parametricmarginal
cumulative distribution function (Pareto tails and Gaussian kernel smoothed inte-
rior). The result are standardized residuals consistent with the ones obtained
from the filtration of zt in the GARCH model, namely i.i.d. with variance 1.

3. These simulated standardized residuals are then employed as the i.i.d. noise pro-
cesses of the GARCH model. We simulate the asymmetric GARCH model to
reestablish the heteroscedasticity and the autocorrelation of the original commod-
ity returns. We use as seed for the GARCH model the last observed values of the
data set and according volatilities.

4. The weights of the portfolio are held constant over the simulation horizon. We
calculate the maximum simulated profit and loss (P&L distribution), the VaR
(value at risk) and the expected shortfall (ES)

6 Stress testing and simulation results

In this section, we will perform stress tests on our portfolio of commodity futures.
By definition, stress testing is a risk management tool used to evaluate the potential

impact on portfolio profit and loss profile of unlikely, although plausible historical or
hypothetical events or movements in the portfolio risk factors. We will shock at one
time various components of the model and assess which ones have the highest effect
on the simulated profit and loss. Shocks are linked to stress scenarios as explained in
this section.

For comparison purposes, we simulate a baseline scenario by calibrating the model
on the entire data set and compare the profit and loss profile with others derived
from stress scenarios as derived below. For each scenario we run 20,000 simulations
over a 22 days horizon, which represent the average number of working days per
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month. Note that the portfolio weights are held fixed over the risk horizon and that
the simulation ignores any transaction costs required to re-balance the portfolio (the
daily re-balancing process is assumed to be self-financing).

6.1 Stress test scenarios

We limit the study mostly to hybrid scenarios, where we calibrate the model for the
risk factors or the copula to the restricted financial crisis data set versus the entire
data set, and shock them simultaneously or one at a time. Besides hybrid, hypothetical
scenarios could have been implemented. Examples could be a scenario with recession
in China, which would decrease the demand for aluminium, oil, copper, soybeans
and natural gas, and look at the change in dependence structure and volatility. Other
scenarios could be natural disasters that affect crops or diseases that affect grains or
livestocks. This is however out of the scope of this article. We refer the reader to Aepli
(2011) for stress testing with hypothetical scenarios.

Our analysis consists of seven different scenarios. Underneath follows a brief
description of the scenarios before the analysis is conducted.

Baseline scenario:
The baseline scenario is a default scenario simulation with the t copula and GARCH-
GJR process calibrated on the entire data set, the historical time period from 1996
to 2017. None of the parameters are stressed in the baseline scenario. The baseline
scenario is constructed to be a reference for normal times to assess the effect of stressing
parameters compared to the steady state.

Historical scenario:
For the historical stress scenariowe use the years 2007 and 2008 to observe the severity
of losses in the financial crisis. This time period is known for high market stress with
high return volatility and captures the simultaneous price drop during the financial
crisis (see Sect. 3 for discussion). The historical scenario is a scenario that stems from
the empirical distribution of returns during the financial crisis.We refer to the empirical
profit and loss distribution as observed between 2007 and 2008. Unfortunately, due
to the limited number of observations when resuming ourselves to observed returns,
extreme loss quantiles are hard to estimate.

Hybrid scenarios:
Due to the limitations of the historical empirical scenario, we construct five hybrid
scenarios. Hybrid scenarios allow extrapolation beyond realized returns, and are there-
fore appropriate to estimate extreme quantiles and events that have not yet occurred.
The focus in our hybrid scenario construction is to examine which of the estimated
parameters challenge mostly the portfolio profit and loss distribution in stress testing
exercises. The parameters that changed between the different scenarios are the depen-
dencies between risk factors, measured in Degrees of Freedom and correlations, and
the GARCH-GJR coefficients. The parameters of the GARCH-GJR process and the t
copula are here re-calibrated on the stress horizon, following the same procedure as in
Sect. 4. The re-estimated tails from the generalized Pareto distribution parameters can
be found in Table 14. To isolate the effect of various parameters, we compare scenar-
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Table 8 Description of input parameters for simulation in hybrid scenarios

Scenario Marginal distribution Correlations Degrees of freedom

Risk factor stress Stress Baseline Baseline

Dependency stress Baseline Stress Stress

Full stress Stress Stress Stress

DoF shock Baseline Baseline Stress

Risk factor stress without EVT Stress Baseline Baseline

Baselinemeans the parameters from entire dataset 1996–2017 are used as input. Stressmeans the parameters
are re-calibrated on our chosen time of financial distress, years 2007–2008

ios by mixing parameters from the baseline with those during the period of financial
distress. The hybrid scenarios are described in Table 8.

Risk factor stress scenario aims to show the impact of stressing themodel parameters
describing the marginal distributions of the risk factors on the portfolio profit and loss
distributions, without a change in the dependence between the risk factors.

Dependence stress scenario isolates the effect of stressing the dependence between
the returns of portfolio components on the profit and loss distribution,without changing
the parameters for the individual factors model (GARCH-GJR model).

Full stress scenario aims to simulate the effects of a recurring financial crisis on the
portfolio. All model parameters refer to the financial crisis period

In the degrees of freedom shock we shock only the degrees of freedom of the
copula, leaving all other parameters unchanged.

Risk factor stress without EVT highlights how the application of Extreme Value
Theory to model the tails of portfolio components returns affect the profit and loss
distribution of the portfolio. The risk factor distributions are here not modelled with
EVT, but with a Student t distribution (see Sect. 4.1).

6.2 Comparative analysis of simulated profit and loss distributions

6.2.1 Baseline scenario versus historical scenario

Figure 8 displays the simulated profit and loss (P&L) distribution for the returns
in the baseline scenario versus the empirical distribution of P&L in the historical
scenario. The simulated returns deviate in both the upper and lower tails. This can be
further viewed in Table 9, where the maximum simulated loss is significantly larger
for the historical returns than the simulated baseline, respectively. These results might
be linked to the symmetry of the t copula. The baseline scenario represents normal
market conditions while with the historical scenario we get an indication of its profit
and loss profile assuming that a similar crisis will reoccur. This result highlights
the importance of implementing forward-looking scenarios, both to simulate extreme
returns in comparison to the baseline and to simulate beyond the profit and loss profile
empirically observed.
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Fig. 8 Portfolio returns simulation, baseline versus historical scenario

Table 9 Simulation metrics for baseline scenario and historical scenario CDF

Metric Baseline Historical scenario

Degrees of freedom 15.28 N/A

Max. simulated loss − 12.72% −34.01%

Max. simulated gain 13.38% 17.08%

Simulated 90% VaR − 3.09% −4.26%

Simulated 95% VaR − 4.17% −6.01%

Simulated 99% VaR − 6.13% −12.47%

Simulated 90% CVaR − 4.48% −7.38%

Simulated 95% CVaR − 5.39% −9.75%

Simulated 99% CVaR − 7.30% −17.82%

Simulated 99.9% CVaR − 10.10% N/A

Simulated 99.99% CVaR − 12.55% N/A

The previous statement is further substantiated when we look at very high con-
fidence levels displayed in Table 9. The historical scenario is limited to already
experienced events so there are not enough observations in the data set to calculate
the expected shortfall at very high confidence levels. This emphasizes the discussion
about the scenarios in Sect. 2.1 and the drawback of using historical scenarios high-
lighted in Basel Committee on Banking Supervision (2009). In addition, the historical
scenario neglects the dependence structure between the risk factors, which is highly
relevant in stress testing. In European Banking Authority (2017, p. 24), it is stated that
stress tests should take into account changes in correlations between risk types and
risk factors and that correlations tend to increase during times of economic or financial
distress. This statement and its implications for stress testing exercises will be further
investigated in the next subsection where we analyse the hybrid scenarios.
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Fig. 9 Simulated one-month portfolio returns CDF for baseline versus hybrid scenarios: risk factor stress,
dependency stress and full stress

6.2.2 Hybrid scenarios

Table 10 shows the riskmetrics over the 5 sets of hybrid scenarios. The tail dependence
for the simulated returns is measured in the degrees of freedom parameter from the t
copula. From the entire data set the DoF is 15.28, while during the stressed period they
shift to 13.78. Our decrease in DoF signals that the tail dependence in the commodity
portfolio is increasing during times of stress. Lower degrees of freedom indicate a
higher tendency of extreme events to occur jointly across risk factors (Paraschiv et al.
2015), which is in line with our simulation result.

Risk factor stress versus dependency stress

Figure 9 shows the baseline scenario, the scenario where we stress the dependen-
cies between the risk factors, the full stress scenario and the scenario where the
individual risk factors are stressed. Starting from the baseline we can see that by
only stressing the dependencies, the simulation displays more severe losses (green
vs. red). The correlation matrix and the decrease in DoF show that the dependen-
cies between the risk factors increase in times of stress (see Table 11), which leads
to larger simulated losses for the portfolio overall. However, by stressing only the
GARCH-GJR-EVT parameters for the individual risk factors the effect on the port-
folio P&L is even stronger (red vs. light blue). This result indicates that stressing
the model parameters describing the marginal distributions of portfolio returns has
a larger impact on the profit and loss distribution than stressing the dependencies
between the risk factors. This shows that shocks in returns of portfolio components
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is of higher impact on the profit and loss than the shifts in their dependence structure
and correlations.

We compare further the mentioned scenarios with the full stress scenario. Naturally
this stress scenario simulates the largest tail losses since both the dependencies and the
individual parameters are stressed (black line). Comparing the risk metrics in Table 10
we see that the risk factor stress scenario simulates the second largest losses, after the
full stress scenario, which substantiates the previous result.

The full stress scenario in Paraschiv et al. (2015) gives more severe losses over-
all. Our study replicated the methodology for modeling the marginal distributions of
portfolio components and dependence structure, allowing for a direct comparison of
results. The difference between the results might be explained by: (i) The difference in
weights of the test portfolio where our study uses weights from 2017 while Paraschiv
et al. (2015) use the weights from 2013. (ii) Our extended data sample. We include
the years 1996–1998, and 2011–2017 beyond the original data set. (iii) Differences
might be due partially to the randomness in the scenario generation.

In Paraschiv et al. (2015) natural gas makes 15.11% of the portfolio, while for our
portfolio it is 9.6%. From the descriptive statistics natural gas is by far themost volatile
commodity and we observe that natural gas has performed poorly over the last decades
compared to most of the other commodities. Several structural breaks in natural gas
prices are also included in our data set, examples being the supply shortfall in Libya
2011 and the Russian export stop in 2012 (Nick and Thoenes 2014). Weighting more
the natural gas the portfolio might therefore be one of the main reasons of the more
severe simulated loss in the original study.

Soybean is the second commodity with the most deviating weight from Paraschiv
et al. (2015). In our portfolio soybeanmakes 15.66% of the total weight, in comparison
to 6.89% in Paraschiv et al. (2015). Over our time period soybean returns showed low
volatility. We expect that the increased allocation in soybean in our portfolio provides
the same consequences as the down-scaling of natural gas.

DoF Shock Versus Dependency Stress

In Fig. 10 we compare the scenario where both correlation and DoF are stressed
(green line), with the scenario where only the DoF are shocked from 15.28 for the
baseline to 13.78 for the financial crisis (purple line). For both scenarios the parameters
of the GARCH-GJR-EVT model are calibrated on the entire data set. By doing so we
can discuss the impact of correlations as a driver of losses in isolation.

From Fig. 10 we observe that a small shock to degrees of freedom does not provide
a significant stress scenario. The baseline scenario and the DoF shock scenario do
not deviate much from each other (red vs. purple), although the DoF shock scenario
simulates larger extreme losses in the lower quantiles (see Table 10). Furthermore, we
see that the scenario where both the correlations between the risk factors as well as
the DoF are shocked displays the largest simulated loss. This indicates that shocking
the DoF in isolation is a limitation in a stress testing exercise.

For more forward-looking hypothetical scenarios the implementation of more
severe shocks to DoF might be of interest. We therefore tested by including a set
of hypothetical scenarios where several more substantial downward changes to DoF
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Fig. 10 Simulated one-month portfolio returns CDF for baseline versus hybrid scenarios: dependency stress
and DoF shock

Table 12 Risk metrics from different DoF shock scenarios

Metric DoF

5 7 10 13.78 15.28 17

Max. simulated loss − 16.72% − 17.25% − 13.85% − 16.53% − 12.72% − 15.88%

Max. simulated gain 15.28% 15.47% 14.05% 13.82% 13.38% 16.77%

Simulated 90% VaR − 3.08% − 3.11% − 3.12% − 3.08% − 3.09% − 3.11%

Simulated 95% VaR − 4.12% − 4.18% − 4.20% − 4.12% − 4.17% − 4.19%

Simulated 99% VaR − 6.18% − 6.32% − 6.31% − 6.13% − 6.13% − 6.15%

Simulated 90% CVaR − 4.50% − 4.55% − 4.55% − 4.49% − 4.48% − 4.53%

Simulated 95% CVaR − 5.46% − 5.52% − 5.50% − 5.42% − 5.39% − 5.47%

Simulated 99% CVaR − 7.57% − 7.64% − 7.48% − 7.38% − 7.30% − 7.47%

Simulated 99.9% CVaR − 11.14% − 11.28% − 10.36% − 10.63% − 10.10% − 10.54%

Simulated 99.99% CVaR − 14.44% − 17.13% − 12.81% − 15.00% − 12.55% − 14.20%

DoF 15.28 is from the baseline (1996–2017), andDoF 13.78 is from the time of financial stress (2007–2008).
The other DoF are hypothetical shocks

are included. The results can be found in Table 12. We used the degrees of freedom
from the financial crisis period and also the one corresponding to the baseline sce-
nario and then we added more extreme values at both ends. For our data we found that
extreme shocks to DoF yield no substantial increase in simulated tail losses.

Impact of EVT

In Fig. 11we display two hybrid scenarios to highlight the importance of implementing
EVT for modelling extremely large return changes of portfolio components before
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Fig. 11 Simulated one-month portfolio returns CDF for baseline and hybrid scenarios: risk factor stress
and scenario without modelling with EVT

running the actual stress test. For both scenarios the correlation matrix and the DoF
parameter are calibrated on the entire data set, so the difference between them comes
from how the individual risk factors are modelled. In the risk factor stress scenario
the tail distributions are modelled with EVT where the tail indexes are calibrated on
the financial crisis data, and the other scenario with a Student t distribution. One can
see that the scenario where EVT is implemented estimates more severe losses, where
simulated 99.99% CVaR is −35.79% in comparison to −33.72% for the scenario
without EVT. Overall, the profit and loss distribution in the stress test excluding EVT
is shifted to the right. Applying EVT strengthens the accuracy and understanding of the
most extreme, potential losses. In light of this, we conclude that the risk is potentially
underestimated when the individual risk factor distributions disregard extreme events
(Embrechts et al. 1997).

7 Conclusion

In this study,weupdate the analysis inParaschiv et al. (2015)with amore extensive data
set, and a more detailed focus on stress testing. In particular, hybrid and hypothetical
scenarios are explored, in line with the regulatory requirements for stress testing call-
ing for forward looking scenarios. Our stress testing exercise are based on rearranging
arbitrarily shocks linked to specific extreme events or time to reveal the importance of
correlations, tail correlations, or extreme movements in portfolio components on the
profit and loss distribution. This is the first study in the literature that clearly illustrates
the marginal impact of the model assumed for the individual portfolio components
versus themarginal role of tail dependence and correlations on the portfolio risk profile.

Wemimic the DJCI, by forming a portfolio of ten commodities. We use a GARCH-
GJR approach to model stylized facts observed in commodity return data, and

123



F. Paraschiv et al.

implement Extreme Value Theory to model the tails accurately. To account for the
dependence structure we apply a t copula. We then stress test the portfolio with dif-
ferent scenarios, examining the drivers of the profit and loss distribution.

Our study revealed three main results. First, we bring empirical evidence showing
the importance of hybrid (forward-looking) scenarios for comprehensive stress testing.
In addition, we show the value added of forward looking over historical scenarios and
show numerically the drawbacks of the latter. We confirm the stress testing require-
ments from Basel III accordingly to which different stress testing approaches cannot
be used in isolation, but combined, for a comprehensive picture. Our second finding
is that, before implementing a stress test, a special attention should be given to an
accurate model identification for the evolution of returns of portfolio components and
dependence structures. In addition, our third finding enhanced the previous findings in
Paraschiv et al. (2015) by disentangling the effects of stressing at one time the model
parameters for the individual portfolio components versus their correlations and tail
dependence. We found clear evidence that the first accounts more than the latter while
stress testing the portfolio profit and loss profile. At the same time, our analysis rep-
resents an integration of the “model risk” concept into stress testing exercises, highly
relevant for portfolio managers. Special attention should be given to extreme tails, in
line with the regulatory frame on stress testing.

Our analysis is bounded by the number of stress scenarios and simulations based on
the random number generator. Stress scenarios display tendencies, and the numbers
generated cannot be transferred directly to risk management. On the other hand, the
simulations can form expectations and contribute to an overall understanding of stress
testing for capital requirements. For further analysis it would be interesting to update
our analysis with asymmetric copulas to better capture the dependence structure. In
addition, a more extensive use of hypothetical shocks to a commodity portfolio would
be of interest.
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Appendix

See Tables 13, 14, 15 and 16.
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Table 13 Comparison of ML estimators for the GPD parameters for different thresholds (u) for years
1996–2017

Commodity ξ β

Upper tail Lower tail Upper tail Lower tail

u=7%

Wheat 0.082 0.114 0.566 0.477

Corn 0.188 0.233 0.564 0.456

Soybeans 0.082 0.071 0.540 0.645

Live cattle 0.278 0.313 0.516 0.560

Copper − 0.007 0.116 0.551 0.591

Gold 0.201 0.124 0.488 0.609

Aluminum − 0.037 0.148 0.592 0.494

WTI 0.065 0.075 0.466 0.624

Brent − 0.002 0.109 0.527 0.562

Natural gas 0.158 0.123 0.531 0.473

u=10%

Wheat 0.022 0.082 0.616 0.494

Corn 0.178 0.156 0.540 0.508

Soybeans 0.050 0.101 0.559 0.592

Live cattle 0.285 0.251 0.453 0.570

Copper − 0.029 0.118 0.582 0.565

Gold 0.145 0.100 0.520 0.612

Aluminum 0.002 0.100 0.555 0.520

WTI 0.010 0.093 0.517 0.581

Brent 0.009 0.066 0.515 0.597

Natural gas 0.073 0.071 0.613 0.519

u = 11%

Wheat 0.008 0.092 0.632 0.480

Corn 0.155 0.152 0.557 0.504

Soybeans 0.043 0.098 0.564 0.591

Live cattle 0.270 0.253 0.454 0.553

Copper − 0.057 0.102 0.620 0.577

Gold 0.148 0.103 0.507 0.602

Aluminum 0.012 0.089 0.546 0.528

WTI − 0.005 0.098 0.534 0.568

Brent − 0.010 0.063 0.535 0.597

Natural gas 0.069 0.062 0.614 0.529

u = 12%

Wheat 0.006 0.075 0.634 0.493

Corn 0.132 0.138 0.580 0.514
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Table 13 continued

Commodity ξ β

Upper tail Lower tail Upper tail Lower tail

Soybens 0.036 0.096 0.571 0.588

Live cattle 0.271 0.266 0.440 0.525

Copper − 0.056 0.097 0.621 0.578

Gold 0.141 0.073 0.508 0.636

Aluminum − 0.028 0.070 0.587 0.549

WTI − 0.016 0.077 0.547 0.588

Brent 0.001 0.044 0.523 0.621

Natural gas 0.087 0.060 0.586 0.528

Table 14 Recalibrated Maximum Likelihood estimators for the generalized Pareto distribution parameters
for the time of financial distress, years 2007–2008

Commodity ξ β

Upper tail Lower tail Upper tail Lower tail

Wheat 0.0452 0.0021 0.4820 0.6991

Corn − 0.1141 − 0.0896 0.4715 0.5985

Soybeans − 0.0309 − 0.1642 0.5149 0.7738

Live cattle 0.2708 0.2140 0.4478 0.5416

Copper − 0.5240 − 0.0681 0.9359 0.5994

Gold 0.1864 − 0.0017 0.3939 0.7062

Aluminium 0.1976 − 0.1715 0.4346 0.6775

WTI − 0.1542 − 0.1232 0.5696 0.5557

Brent − 0.1876 − 0.1805 0.5822 0.5868

Natural gas 0.1348 0.0107 0.5633 0.5841

Threshold: 10%
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