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Abstract. The rapid development of IoT (Internet of Things) systems and cloud 
techniques has paved the way for recommender systems to facilitate the daily 
life of users. However, the accompanying cybersecurity risks, such as environ-
mental attacks and software attacks, must not be ignored. Thus, the security 
problem in recommender systems becomes a serious challenge for cloud-based 
IoT services. Moreover, most of existing collaborative recommendation algo-
rithms mainly focus on user-item interaction relationships but seldom consider 
user-user or item-item co-occurrence relationships, which may affect prediction 
accuracy. To overcome the above shortcomings, this paper proposes a security-
driven hybrid collaborative recommendation method to deal with the large-scale 
IoT services accessible by clouds in a more scalable and secure manner. Our 
proposal integrates the factorization-based latent factor model with the neigh-
bor-based collaborative model to mine not only user-service interaction rela-
tionships but also user-user and service-service co-occurrence relationships. 
Moreover, the local sensitive hash (LSH) technique is adopted to speed up the 
neighbor searching and preserve users’ sensitive information for security con-
cerns based on hash mapping. Finally, experiment results demonstrate that the 
proposed method can improve prediction accuracy while guaranteeing infor-
mation security. 
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1. Introduction 

Recently, the ubiquity and density of IoT (Internet of Things) systems are increas-
ing rapidly, which can be found in broad range of commercial and industrial applica-
tions, such as smart cities and healthcare applications. With the advancement of IoT 
systems and cloud techniques, large-scale candidate cloud-based IoT services are 
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provided by increasing IoT nodes [1-2]. Besides, rapid development in big data pro-
cessing techniques also allows diverse user-related information to be collected form 
the IoT sensors. How to find appropriate IoT services from massive candidates and 
handle the humongous sensor data in an efficient, economical, smart and secure man-
ner becomes a critical task [3-4]. Recommender systems have been proved effective 
in dealing with information overload. More and more users, research institutions, 
businesses, hospitals and industry companies wish to benefit from recommender sys-
tems, since it can be used to improve user experience, engagement, and revenue [5-7].  

While IoT systems and cloud-based techniques has powered up the implementation 
of recommender systems and help users in their daily life, they also may bring cyber-
security risks and threats to users and put users in a complex and insecure network 
environment [8-9]. The diverse user-related information (such as presence, observed 
rating values, location information) collected form the IoT sensors may involve users’ 
activity patterns, emotions, behaviors or health condition [10]. It may be stolen for 
illegal use or even resold to unauthorized parties for profits, putting users at risk. Thus, 
developing effective recommendation algorithms with security concerns becomes 
necessary for cloud-based IoT services to provide users with intelligent recommenda-
tions tailored to their needs. 

A number of recommendation algorithms have been put forward in the literature, 
among which the collaborative filtering (CF) recommendation technique is one of the 
most effective ones. There are two effective CF recommendation models: neighbor-
based (including user-based CF and item-based CF) CF model and factorization-based 
CF model [5]. Neighbor-based CF aims to capture the similarity relationships and 
make predictions according to the previous behaviors of similar neighbors. However, 
to find the nearest neighbors of the target user and IoT services, the similarity between 
all pairs should be calculated, which is time-consuming. In addition, neighbor-based 
CF algorithms are not applicable to dealing with spare rating data. Data sparsity prob-
lem is more likely to impact the prediction performance, thus becoming a hot topic in 
recommendation studies [11-12]. Factorization-based CF algorithms, including matrix 
factorization (MF) and high-order factorization, are effective in solving the data sparsi-
ty problem [13-15]. However, the traditional factorization-based collaborative model 
usually mines user-item relationships by simple inner product and makes predictions 
directly from matrix rating patterns. It only captures user-item interaction relationships 
but ignores user-user and item-item co-occurrence relationships, which may miss 
some important information. Inspired by the Pennington’s algorithm in references [16-
17] where word embedding vectors are learned based on the word-word co-occurrence 
in documents, we use the MF technique to mine user and service embedding vectors in 
this work. Then similar neighbors of the target users (or the target IoT service) can be 
obtained based on the extracted embedding vectors. 

In addition, the security problem is a serious challenge to be addressed in complex 
cyber networks including IoT-based recommender systems [18]. Most existing rec-
ommendation models seldom consider the security risks related to collected data and 
the possible inferences from the collected data, which lack secure ways to manage 
and analyze the sensitive information of IoT users [19]. Hash mapping techniques 
have been proved to be effective tools to protect sensitive information by mapping the 
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original real data into fuzzy hash values [20]. Therefore, in this paper, a hash tech-
nique named Local sensitive hash (LSH) is adopted to process privacy-related infor-
mation of IoT users, where user-related information and inference data will be 
mapped into low-dimensional hash values. Then the hash values, rather than the origi-
nal user-related information, are input for neighbor searching. In this way, the sensitive 
information of IoT users is blurred and protected. Besides, the LSH mechanism is ef-
fective in similarity searching, which can be employed to accelerate the neighbor 
searching in traditional collaborative recommendation approach.  

Based on the above observations, in this paper, we propose a security-driven hybrid 
collaborative recommendation method (abbreviated as SHCR) for cloud-based IoT 
services. It integrates the factorization-based latent factor model with the improved 
neighbor-based CF model for hybrid collaborative recommendation. Moreover, to 
improve recommendation efficiency and protect users’ privacy information, the LSH 
mechanism is employed to speed up neighbor searching with security concerns. The 
main contributions of this paper are presented as follows: 

l Firstly, the factorization-based latent factor model is adopted to extract the fea-
ture representations of users and IoT services, where user-user and service-
service co-occurrence embedding vectors are learned with the factorization 
technique. 

l To reduce security risk and handle massive data, the LSH mechanism is used 
to realize fast neighbor searching under security concerns. Then the final pre-
diction is performed by the improved neighbor-based CF recommendation al-
gorithm. 

l Finally, external experiments are designed and conducted to validate the effec-
tiveness of our method. Experimental results show that our method could im-
prove the recommendation efficiency while protecting users’ privacy infor-
mation. 

The remainder of this paper is organized as follows: Related studies are reviewed in 
Section 2. Section 3 describes the system model of our proposal, as well as the key 
techniques used. Section 4 presents the security-driven hybrid collaborative recom-
mendation method. Experiments are designed and analyzed in Section 5, followed by 
the conclusion and future work in Section 6. 

2. Related Work 

Recently, with the advancement of cloud techniques and IoT technology, the rec-
ommendation models for cloud-based IoT services have been researched in many 
literatures [21-24]. Saleem et al. [22] introduce a scheme for the exploitation of the 
social IoT for recommendations among large-scale IoT applications. The authors in 
[23] also propose a hyper-graph-based service recommendation model and study the 
performance of typical recommendation algorithms on IoT service recommendation. 
The research [24] provides a health-centric recommendation model, which supports 
travelers with long-term diseases and followers of strict diet. In addition, Artificial 
Intelligence (AI) technology has been emerged as a dynamic and fast-growing research 
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area in recent years, which is also applied in recommender systems to improve predic-
tion accuracy and provide intelligent services [17, 25-29]. The authors in [25] propose 
a neural network-based CF recommendation model where a multi-layer perceptron is 
adopted to learn the user-item interaction relations. In reference [26], the deep learning 
technique and the time-aware CF model are tightly coupled with the consideration of 
cold start, where the deep neural network is applied to learn the features of items. Fu et 
al. [17] also propose a deep-learning-based CF recommendation approach where pre-
diction is made based on the factorization-based CF model and a multi-view feedfor-
ward neural network. Ebesu et al. [28] present a deep collaborative memory network 
model to integrate neighbor-based CF model and factorization-based CF model to 
find user-item specific neighbors so as to improve recommendation performance. 
However, most of existing deep-learning-based recommendation algorithms and rec-
ommendation algorithms for IoT services mainly focus on improving the recommen-
dation accuracy but pay little attention to the security problem. 

CF recommendation model is the most widely used recommendation technique, 
which mainly focuses on mining user-item interaction relationships and making pre-
dictions based on the behaviors (such as ratings, tags, comments) of previous users 
[30]. There are mainly two well-known CF recommendation models, i.e., neighbor-
based CF model and factorization-based CF model. Bu et al. [31] propose a Mul-
ticlass Co-Clustering model to mine user-item, user-user, item-item relations, and 
then integrate typical CF recommendation approach with subclusters to improve rec-
ommendation accuracy. The authors in [32-34] focus on integrating big data analysis 
technique into collaborative recommendation algorithm to improve the effectiveness 
of recommendation performance. Lian et al. [35] provide a scalable implicit-
feedback-based CF recommendation model on semantic content, which establishes 
the relationships of users and items with graph Laplacian regularized matrix factoriza-
tion for location recommendation.  

Factorization-based CF recommendation techniques attract more attentions since 
the Netflix Prize in 2006. Pan et al. [36] provide a transfer learning model for collabo-
rative recommendation based on generic mixed factorization mechanism to mine 
heterogeneous explicit feedbacks. He et al. [37] propose a recommendation algorithm 
based on the fast MF mechanism where the element-wise Alternating Least Squares 
(ALS) technique is adopted to optimize the MF model. Besides of the MF scheme, 
high-order tensor factorization scheme is also applied in CF recommendation algo-
rithms to mine deeper relationships among users, items and other factors. In our pre-
vious studies [5, 38], CP (Canonical Polyadic) decomposition model is adopted to 
mine the relationships among users, items, time and location information for context-
aware recommendation. Wang et al. [39] introduce a tensor-based big-data-driven 
routing recommendation model where a tensor matching approach integrates the con-
trolling tensor, seed tensor and orchestration tensor for efficient routing paths recom-
mendation. However, most existing factorization-based recommendation methods 
adopt the factorization technique to predict the target ratings directly, which only 
mine the interaction relationships between users and items. While in our proposal, we 
will apply the factorization-based latent factor model to extract the embedding vectors 
of users and IoT services (not predicting ratings directly), which reflect the co-
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occurrence features of users and IoT services. In our method, we consider not only the 
interaction relationships but also the co-occurrence relationships between users and 
IoT services. 

To deal with the security problem and protect users’ sensitive information in dy-
namic and complex network environment, security concerns should be considered in 
recommendation algorithms. The studies [40-41] focus on the security-aware recom-
mendation mechanisms for online social networks. Meng et al. [40] propose a priva-
cy-preserving social recommendation method under personalized privacy settings 
where previous behaviors of users and social relationships are modeled in a secure 
manner. Li et al. [41] introduce a user group-based security-aware recommendation 
algorithm in online social communities. Some researchers also integrate the machine 
learning techniques into recommendation algorithms under security concerns [42-43]. 
The literature [42] presents a security-ware factorization-based recommendation 
method under local differential privacy where a dimensionality reduction mechanism 
and a novel binary scheme based on sampling are employed to reduce high dimen-
sionality. Shu et al. [43] provide a privacy-preserving recommendation model for 
crowdsourcing where a key derivation method based on the MF technique is proposed 
for multi-keyword task-worker matching while protecting both the privacy of users 
and workers. The hash mapping technique is an effective technique for privacy 
preservation by hash mapping. The LSH mechanism is a well-known dimensionality 
reduction mechanism, which can be to realize fast similarity searching and privacy 
preservation in conventional CF recommendation models [44-45]. Based on LSH, the 
original user-related information and the inference data will be mapped into low-
dimensional hash values. Then the hash values, rather than the original rating data of 
users, are input for the neighbor searching. Thus the sensitive information of IoT users 
will be blurred and protected. Therefore, in this paper, we employ the LSH mecha-
nism to accelerate the neighbor searching in collaborative recommendation under 
security concerns. 

3. System Overview 

3.1 System model 

In this paper, the two CF-based models, i.e., neighbor-based CF model and factori-
zation-based latent factor model are combined to improve the prediction accuracy of 
recommender systems. First of all, the MF technique is used to learn the embedding 
vectors of users and IoT services instead of predicting ratings directly. Afterward, the 
LSH mechanism is adopted to cluster similar users (or IoT services) based on hash 
mapping, which not only speeds up similarity searching but also preserves users’ pri-
vacy information by hash mapping. To be more specific, the neighbor searching is 
based on the hash values, rather than the observed rating data, which protects the sensi-
tive information in users’ rating data. Then the nearest neighbors of the target user can 
be determined as similar users are mapped into the same bucket by hash mapping. 
Finally, predictions and recommendations are made based on the improved neighbor-
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based collaborative recommendation model. Fig. 1 shows the framework of our securi-
ty-driven recommendation model.  

 
Fig. 1 Framework of security-driven hybrid collaborative recommendation model. 

Feature extraction based on factorization: Firstly, the MF technique is used to 
learn embedding vectors of users and IoT services based on the user-user and service-
service co-concurrence matrices mined from the user-service rating matrix. This pro-
cess transforms original rating information into user-user and service-service co-
occurrence embedding vectors. 

Security-driven collaborative recommendation based on LSH: Once the feature 
vectors of users and IoT services are obtained through the above step, user vectors (or 
service vectors) are grouped by the LSH mechanism under security concerns. Then the 
nearest neighbors of the target user (or the target service) can be selected by the LSH-
based hash mapping technique. At last, recommendations are put forward based on the 
improved neighbor-based CF recommendation model. 

3.2 Factorization techniques 

The MF technique is demonstrated effective in mining the latent factors among us-
ers and items. In traditional MF, users and items are mapped as vectors associated with 
a joint latent factor space [13], as defined below: 

𝑅 = 𝑃! ∙ 𝑄 = &𝑝"#, 	𝑝"$,…,𝑝"'	*
! ∙ (𝑞(#, 𝑞($, … , 𝑞(')																								(1) 
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where R is the user-item rating matrix, P and Q respectively represent the feature vec-
tors of users and items, and k is the number of implied factors related to users and 
items. Moreover, apart from user-item interaction relationships, biases associated with 
users and items should also be considered into predictions. Then Equation (1) can be 
rewritten as:  

�̂�"( = 𝑏" + 𝑏( +4𝑝"' ∙ 𝑞('
'

																																														(2) 

where 𝑏" and 𝑏( 	denote the rating biases of user u and item i, respectively. Biases indi-
cate the effects associated with either users or items, which are independent of user-
item interaction relations. 

In the MF model, parameters can be learned by minimizing the loss function in 
Equation (3), i.e, the squared error function between the real rating value (𝑟"() and the 
predicted rating value (�̂�"(), where Train is the training rating pairs for 𝑟"(. 

𝑚𝑖 𝑛 4 (𝑟"( − �̂�"()$
(",()∈!,-(.

																																																(3) 

Minimization can be achieved by many learning algorithms in machine learning, 
such as Stochastic Gradient Descent (SGD), Alternating Least Squares (ALS), and 
Coordinate Descent (CD) [46].  

MF is usually used to deal with a two-dimensional matrix. Also, some high-order 
factorization techniques such as the CP decomposition model, Tucker model, high-
order SVD, and so on are available.  

3.3 Local Sensitive Hash Mechanism 

The LSH mechanism is a well-known machine learning technique effective in pro-
tecting sensitive information by hash mapping, which is also effective for the fast 
query and dimensionality reduction when dealing with massive data [47]. It can also be 
used in similarity searching, in which similar items will be mapped into the same 
bucket of the hash table. In this paper, it is applied to neighbor determination, which 
not only accelerates neighbor searching without investigating every pair, but also 
realizes the preservation of privacy information by hash mapping. The main scheme 
of LSH is described in the following, and more details can be found in reference [47]. 

In LSH, a collection of hash functions is called a hash function family. A hash fami-
ly 𝐻 = {ℎ#, ℎ$, … ℎ/}	is said to be (𝐵#, 𝐵$, 𝑝#, 𝑝$)-sensitive if each hi in H satisfies: 

(1) If 𝑑(𝑥, 𝑦) < 𝐵#, then 𝑃(ℎ((𝑥) = ℎ((𝑦)) > 𝑝# 

(2) If 𝑑(𝑥, 𝑦) > 𝐵$ then 𝑃(ℎ((𝑥) = ℎ((𝑦)) < 𝑝$ 

where x and y represent the original data points, 𝑑(𝑥, 𝑦) is the distance between the 
data points x and y, 	𝐵# < 𝐵$, 	𝑃(∙) is a probability function, ℎ((𝑥) and ℎ((𝑦) respec-
tively indicate the hash value of x and y after hash mapping, and 𝑝# and 𝑝$(0 < 𝑝# <
𝑝$ < 1)	are two constants of the probability thresholds. In LSH, the setting of the hash 
function should satisfy: (1) the probability that  ℎ((𝑥) equals to ℎ((𝑦) is bigger than P1 
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when (𝑥, 𝑦) < 𝐵#; (2) the probability that  ℎ((𝑥) equals to ℎ((𝑦) is less than P2 when 
𝑑(𝑥, 𝑦) > 𝐵$, as illustrated in Fig. 2 [47]. Obviously, it can be observed that the prob-
ability 𝑃(ℎ((𝑥) = ℎ((𝑦)) decreases with the rising distance between the original points 
x and y. Thus after hash mapping, users mapped with the same hash value (i.e., located 
in the same bucket) are mostly originally adjacent (similar).  

 
Fig. 2  (𝐵!, 𝐵", 𝑝!, 𝑝")-sensitive hash function. 

4. Security-Driven Hybrid Collaborative Recommendation 
Method 

In this work, a security-driven  hybrid collaborative method for cloud-based IoT 
services is proposed. It integrates the factorization-based latent factor model and the 
LSH mechanism into the neighbor-based CF recommendation model to improve the 
prediction accuracy while considering the security issue in the meantime. Our pro-
posal consists of two phases, i.e., feature extraction with the factorization technique 
and security-driven collaborative recommendation with the LSH mechanism, as de-
tailed below. 

4.1 Feature Extraction based on the Factorization Technique 

Inspired by the idea of references [16] and [17], user and service embedding vec-
tors can be extracted by the MF technique according to the co-occurrence relation-
ships mined from the rating matrix. 

Given a user set U and an IoT service set I, assume that the number of users and 
IoT services are M and N, respectively. 𝑅0×2 = F𝑟(3G0×2 is the user-service rating 
matrix, where 𝑟(3 is the rating of user i on service j. Suppose there are D kinds of rat-
ings. The generation of user and service embedding vectors are respectively described 
in detail as follows. Firstly, the original rating matrix 𝑅0×2 will be transformed into 
the service co-occurrence matrix (or user co-occurrence matrix). Then embedding 
vectors can be learned from the co-occurrence matrix based on the MF scheme. 

 

B1 B2

p1

p2

d(x,y)

P(hi(x)=hi(y))
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1) Generation of the co-occurrence matrix 
Usually, IoT services with more same ratings are more similar. Additionally, ser-

vices with different ratings may also reflect some implicit information. Therefore, 
when generating the co-occurrence matrix, we consider both the impact of the same 
ratings and different ratings. Fig. 3 presents an example of the generation of a user set 
for each service on each kind of rating. The left part of Fig. 3 shows a rating matrix 
with 4 users (u1, u2, u3, u4) and 4 IoT services (t1, t2, t3, t4). There are 3 kinds of ratings, 
i.e., {1, 3, 5}, and “0” indicates that the user didn’t rate on the service. Firstly, the 
user set of each service can be obtained according to the ratings from users, as shown 
in the right part of Fig. 3, where 𝑋34 = {𝑖|𝑟(3 = 𝑑, ∀	𝑗 ∈ 𝑈} represents the set of users 
that rated the service i with the rating d. 

 
Fig. 3 Example of generation of the user set for services. 

Based on the user set for each service generated in the above step, the co-
occurrence values for services on different ratings can be calculated to construct the 
service co-occurrence matrix. Fig. 4 shows the generation of the service co-
occurrence matrix for the example in Fig. 3. It is a 𝑊 ×𝑊  matrix, denoted as 
𝐼𝑅5×5	(𝑊 = 𝐷 ×𝑀), which is constructed with the co-occurrence value  𝑌(6

37 =
T𝑋(

6 ∩ 𝑋37T. The co-occurrence values for the same IoT service (the diagonal values of 
the co-occurrence matrix) are meaningless and not input into the co-occurrence ma-
trix. 
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Fig. 4 Generation of the service co-occurrence matrix for the example in Fig. 3. 

2) Learning embedding vectors with the factorization technique 
After obtaining the service co-occurrence matrix, we use the MF technique to learn 

the service embedding vectors. In the conventional MF-based CF model, the rating 
matrix is factorized into inner products of a user-related matrix and an service-related 
matrix in a joint factor space 𝑅 = 𝑃!Q. Similarly, in our proposal, the service co-
occurrence matrix IR is factorized into the inner products of two different service 
embedding matrices, i.e. 𝐶̅	and 𝐶X, which denote the latent feature information of ser-
vices. 

𝐼𝑅 = 𝐶!𝐶X = [(𝑐#̅#, 𝑐#̅$	, … 𝑐#̅8), (𝑐$̅#, 𝑐$̅$	, … 𝑐$̅8), … (𝑐0̅# , 𝑐0̅$ 	, … 𝑐0̅8)]!	 

∙ [(�̃�##, �̃�#$	, … �̃�#8), (�̃�$#, �̃�$$	, … �̃�$8), … (�̃�0# , �̃�0$ 	, … �̃�08)]															(4) 

where 𝑐(̅4 and �̃�(4 (1 ≤ 𝑑 ≤ 𝐷) respectively represent the embedding vectors of service 
i with d rating in matrix 𝐶̅	and 𝐶X. Then the overall embedding vector for service i is 
represented as 𝑐( = [(𝑐(̅#, 𝑐(̅$	, … 𝑐(̅8),	(�̃�(#, �̃�($	, … �̃�(8)].  
𝑌(6
37 denotes the co-occurrence value between service i and service j  where  service 

i is with rating g and service j is with rating h. It can be obtained from the co-
occurrence matrix for IoT services, and 𝑌(6

37 = (𝑐(̅
6)!�̃�37 . Then 𝑐(̅

6  and �̃�37  can be 
learned by minimizing the loss function between the real occurrence value 𝑌(6

37 and 
the predicted value (𝑐(̅

6)!�̃�37 . Herein, log	𝑌(6
37  is used to replace the original co-

occurrence value 𝑌(6
37  for smoothing the co-occurrence value and reducing over-

fitting. Then the factorization function can be rewritten as: 

log	𝑌(6
37 = (𝑐(̅

6)!�̃�37																																																					(5) 

Moreover, biases that indicate the observed deviations of service i and j (denoted 
as bi and bj) are employed to improve the prediction accuracy of the service embed-
ding vectors.  

log	𝑌(6
37 = 𝑏( + 𝑏3 + (𝑐(̅

6)!�̃�37																																							(6) 

Afterward, to learn the embedding vectors 𝑐(̅
6 and �̃�37, we minimize the squared er-

ror between the real co-occurrence value and the predicted co-occurrence value, ex-
pressed as: 

min
9,(,3

𝐿: = min 4 (𝑏( + 𝑏3 + (𝑐(̅
6)!�̃�37 − log	𝑌(6

37)$

((,3)∈:,	<!"
#$=>

																(7) 

where 𝐼 is the set of services, and (𝑖, 𝑗) ∈ 𝐼 is the service-service pairs. In our method, 
the SGD technique is adopted to solve Equation (7) and learn the service embedding 
vectors, which can be calculated as: 

∂𝐿:
∂𝑐(̅

6 = 2𝜌�̃�37,
∂𝐿:
∂�̃�37

= 2𝜌𝑐(̅
6,

∂𝐿:
∂𝑏(

= 2𝜌,
∂𝐿:
∂𝑏3

= 2𝜌																		(8) 
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where 𝜌 = 𝑏( + 𝑏3 + (𝑐(̅
6)!�̃�37 − log	𝑌(6

37 . Then the parameters 𝑏( , 𝑏3 , 𝑐(̅
6	and �̃�37  can 

be modified based on the following updating equations.  

𝑏( ← 𝑏( − 2	𝜆𝜌,			𝑏3 ← 𝑏3 − 2	𝜆𝜌	 

𝑐(̅
6 ← 𝑐(̅

6 − 2	𝜆𝜌�̃�37,			�̃�37 ← �̃�37 − 2	𝜆𝜌𝑐(̅
6																																		(9) 

where 𝜆	is the learning rate. It is employed to update the parameters by a magnitude 
proportional in the opposite direction of the gradient. 

Similarly, the user embedding vectors also can be obtained by the above steps. 
Firstly, the user co-occurrence matrix 𝑈𝑅?×? 	(𝐹 = 𝐷 × 𝑁)  is got from the user-
service rating matrix. Then the user co-occurrence matrix 𝑈𝑅 is represented as: 

𝑈𝑅 = 𝑆!𝑆X = [(�̅�##, �̅�#$	, … �̅�#8), (�̅�$#, �̅�$$	, … �̅�$8), … (�̅�2# , �̅�2$ 	, … �̅�28)]! 

∙ [(�̃�##, �̃�#$	, … �̃�#8), (�̃�$#, �̃�$$	, … �̃�$8), … (�̃�2# , �̃�2$ 	, … �̃�28)]												(10) 

where �̅�(4 and �̃�(4 respectively represent the embedding vectors of user i on d rating in 
matrix 𝑆̅	and 𝑆X. Then the overall embedding vector for user i can be represented as 𝑠( 
= [(�̅�(#, �̅�($	, … �̅�(8),	(�̃�(#, �̃�($	, … �̃�(8)]. 

The embedding vectors �̅�(
6 and �̃�37 of users are learned by minimizing the following 

loss function: 
min
9,(,3

𝐿@ = min 4 (𝑏s( + 𝑏s3 + (�̅�(
6)!�̃�37 − log	𝑌s(6

37)$

((,3)∈@,	<A!"
#$=>

												(11) 

where 𝑈 is the set of users, and (𝑖, 𝑗) ∈ 𝑈 is the user-user pairs. 	𝑌s(6
37 denotes the co-

occurrence value between user i and user j  where  user i is with rating g and user j is 
with rating h. It can be obtained from the co-occurrence matrix for users. The updat-
ing equations are listed as: 

𝑏s( ← 𝑏s( − 2	𝜆𝜑,			𝑏s3 ← 𝑏s3 − 2	𝜆𝜑	 

�̅�(
6 ← �̅�(

6 − 2	𝜆𝜑�̃�37,			�̃�37 ← �̃�37 − 2	𝜆𝜑�̅�(
6																															(12) 

where 𝜑 = 𝑏s( + 𝑏s3 + (�̅�(
6)!�̃�37 − log	𝑌s(6

37. 

4.2 Security-Driven Collaborative Recommendation based on LSH 

(1) Nearest-Neighbor Searching based on LSH 

In our work, the LSH mechanism is used to realize fast neighbor searching with pri-
vacy preservation, where users (represented by user embedding vectors) mapped with 
the same hash values (i.e., located in the same bucket) are mostly originally similar. 
In LSH, the setting of the hash functions corresponds to the distance measurement, 
which can be referred to [47]. A collection of hash functions is called a hash family. 
The original point mapped by a hash family with m hash functions will generate m 
hash values, which can be formulated as an m-dimensional vector denoted as the user 
index. Then users with the same index (hash value) will be mapped into the same 
bucket and considered more similar. 
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Section 4.1 has obtained the embedding vectors of users and services. The embed-
ding vector of a user s is represented as 𝒔 = (𝑠#, 𝑠$, … 𝑠.), 𝑛 = 𝐷 × 𝑁, where 𝑠(  = 
[(�̅�(#, �̅�($	, … �̅�(8),	(�̃�(#, �̃�($	, … �̃�(8)]. 

In the neighbor-based CF recommendation model, PCC (Pearson correlation coef-
ficient) is commonly used to find the similarities between users. Here, it is also se-
lected as the similarity measurement in our method. Then a hash function family ℎ =
(ℎ#, ℎ$, … , ℎ/) corresponding to the PCC distance can be defined as follows: 

ℎ((𝒔) = v 1,						𝒔 ∙ 𝐀( ≥ 0
		0,						𝒔 ∙ 𝐀( < 0																																														(13) 

where s is the embedding vector of user s, vector 𝐀𝑖 =	(𝑎1, 𝑎2, … 𝑎𝑛) (𝑎𝑖 ∈ [−1,1]) is 
generated randomly and independently, and each		ℎ((𝒔) corresponds to a different 
random 𝐀𝑖 . Based on the hash function family 	ℎ  with m hash functions, the n-
dimensional user embedding vector s is mapped into m hash values, which can be 
formulated as an m-dimensional binary vector [ℎ#(𝒔), ℎ$(𝒔), … , ℎ.(𝒔)] denoted as the 
user index where ℎ𝑖(𝒔) ∈ {0,1} . Then the original n-dimensional user embedding 
vector is transformed into an m-dimensional vector (usually, 𝑚 ≪		n). One hash fami-
ly corresponds to a hash table where users are mapped into the corresponding bucket 
and users in the same bucket are more similar. To improve the effectiveness of hash 
mapping, L hash families are used to generate L hash tables. As the hash tables only 
stores the binary hash values of users, instead of inference feature data or the original 
rating data, hence, the sensitive information of users is preserved. 

Based on the definition of LSH, users with the same hash values (i.e., the same in-
dex) are more similar and mapped to the same bucket. L hash families correspond to L 
hash tables. In each hash table, the target user belongs to one bucket. Thus, for the 
target user s, its similar neighbor set is the union set of similar users in all L hash ta-
bles. 

For example, as shown in Fig. 5, the red user ur is the target IoT user. We intend to 
find the similar neighbors of user ur based on the LSH mechanism. Based on the hash 
function families 𝐻 = (𝐻#, 𝐻$, … , 𝐻F	), L hash tables can be generated (here, L=3). In 
each hash table, the target user ur and its similar neighbor users belong to the same 
bucket. For instance, in Hash Table 1, user ur and its similar user ug are mapped into 
the same bucket (bucket1r), i.e., {𝑏𝑢𝑐𝑘𝑒𝑡#,} = F𝑢, , 𝑢6G . Similarly, {𝑏𝑢𝑐𝑘𝑒𝑡$,} =
F𝑢, , 𝑢6G, and {𝑏𝑢𝑐𝑘𝑒𝑡G,} = F𝑢, , 𝑢H, 𝑢9G. Then the neighbor user set (similar user set) 
of the target user ur is expressed as: 

																𝑁𝑒𝑖𝑔𝑏𝑜𝑟(𝑢, , 𝐻) = {𝑏𝑢𝑐𝑘𝑒𝑡#,} ∪ {𝑏𝑢𝑐𝑘𝑒𝑡$,} ∪ {𝑏𝑢𝑐𝑘𝑒𝑡G,} − {𝑢,} 

																																											= F𝑢, , 𝑢6G ∪ F𝑢, , 𝑢6G ∪ F𝑢, , 𝑢H, 𝑢9G − {𝑢,} = F𝑢6, 𝑢H, 𝑢9G 
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Fig.  5 Generation of hash tables based on LSH 

(2) Prediction with LSH-based collaborative method 

After determining the neighbor user set of the target user based on the above hash 
mapping mechanism, we can find the nearest neighbors of the target user s based 
PCC-based similarity scheme and a threshold	𝛿, as defined below: 

𝑠𝑖𝑚(𝑠, 𝑣) =
(𝒔 − 𝑵𝒆�𝒔������) ∙ (𝒗 − 𝑵𝒆�𝒗�������)
‖𝒔 − 𝑵𝒆�𝒔������‖ ∙ ‖𝒗 − 𝑵𝒆�𝒗�������‖																							(14) 

where s is the m-dimensional embedding vector of the target user s, 𝑵𝒆𝒊𝒔%%%%%%	is the aver-
age vector of users in 𝑁𝑒𝑖𝑔𝑏𝑜𝑟(𝑠, 𝐻), and 𝑁𝑒𝑖𝑔𝑏𝑜𝑟(𝑠, 𝐻)	is neighbors of user s ob-
tained by LSH.  

Then users in 𝑁𝑒𝑖𝑔𝑏𝑜𝑟(𝑠, 𝐻) whose similarity 𝑠𝑖𝑚(𝑠, 𝑣)	with user s is bigger than 
𝛿 are included in the nearest neighbor set of the target user s, denoted as 𝑁𝑁(𝑠). Once 
the nearest neighbor set of the target user is determined, the rating prediction of the 
target user s on service i can be predicted based on the following equation: 

𝑃𝑟K( = 𝑟L� +
∑ (𝑟M( − 𝑟L�) ∙ 𝑠𝑖𝑚(𝑠, 𝑣)M∈22(K)∩2O(()

∑ |𝑠𝑖𝑚(𝑠, 𝑣)|M∈22(K)∩2O(()
																																(15) 

where 𝑟𝑖& 	is the average rating of the rating for service i, 𝑁𝑁(𝑠) is the nearest neighbor 
set of user s, NR(i) is the set of users rated on service i, and 𝑟𝑣𝑖 is the rating of user v 
on service i.  

The ratings of the target user on other services can also be predicted through the 
above steps. Finally, the services (or Top-K services) with the highest predicted rat-
ings will be recommended to the target IoT user. 

...
...

bucket1r

Hash Table 1
...

...

bucket2r

Hash Table 2

...
...

bucket3r

Hash Table 3

User Set

ur

ug ub
uy
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5 Experiments 

In this section, experiments are designed and carried out to evaluate the efficiency of 
our method. Experimental settings are presented firstly and then experimental results 
are demonstrated with detailed analysis.  

5.1 Experimental  Settings 

1) Experimental Dataset 
MovieLens dataset is employed to evaluate the performance of our proposal. Mov-

ieLens refers to the movie rating datasets collected from the MovieLens website 
(http://movielens.org) and hosted by the GroupLens website. It is probably one of the 
most popular datasets for personalized recommendation research and social psycholo-
gy. MovieLens datasets have various sizes, such as 100K, 1MB and so on. Herein, 
two kinds of 1M MovieLens datasets are selected. One is the “ml-latest-small” dataset 
(1 MB) with 100000 rating records from 600 users on 9000 movies; the other is the 
“ml-1m” dataset (6MB) with 1 million ratings from 6000 users on 4000 movies. In 
these two datasets, each user rated at least 20 movies and the ratings range from 1 to 
5.  The five-fold cross validation approach is used to evaluate the recommendation 
accuracy. The data in MovieLens datasets are divided into two parts, i.e., training data 
and test data, which account for 80% and 20% respectively. 

2) Comparative Approaches:  
To evaluate the recommendation accuracy of our method (SHCR), we compare it 

with three other recommendation approaches, i.e., IPCC, MF, and PUIPCC. IPCC is a 
typical neighbor-based CF recommendation approach, MF is a commonly used factor-
ization-based latent factor model for collaborative recommendation, and PUIPCC is a 
privacy-aware CF recommendation approach. More details are given below. 

IPCC [48]: an item-based CF recommendation method relying on the PCC similar-
ity scheme.  

MF [13]: a prediction algorithm based on the BiasSVD technique, which makes 
predictions by mining the latent factors from the rating matrix.  

PUIPCC [49]: a CF-based prediction algorithm using a generic security-aware 
framework with data obfuscation schemes, which make predictions by integrating the 
similarity between users and that between items.  

3) Performance Metrics:  
To validate the effectiveness of SHCR in recommendation accuracy, three widely 

used evaluation metrics, i.e., Mean Absolute Error (MAE), Root-Mean-Square Error 
(RMSE), Precision and Recall [38] are applied.  

MAE and RMSE are to measure the statistical accuracy performance of recommen-
dation algorithms, defined as: 

 
Train

rPr
MAE Trainji ijijå Î= ),(

-
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where (i, j) are rating pairs for rij in the training dataset, rij is the real rating value and 
Prij is the predicted rating data. 

 

The lower the MAE and RMSE values are, the more accurate the prediction is. Pre-
cision and Recall are defined as. 

 

 

where 𝑇Q" is the total item set in training dataset and 𝑅Q" is the predicted Top-K recom-
mendation item set. 

Moreover, to evaluate the impact of LSH on our recommendation algorithm, we an-
alyze the prediction accuracy and the runtime consumption of SHCR under different 
parameter settings. 

5.2 Experimental Evaluation 

1) Recommendation Accuracy 
In this section, to evaluate the prediction accuracy of SHCR, we compare it with the 

other three methods (IPCC, MF, and PUIPCC) in MAE, RMSE, Precision and Recall. 
The experimental results are shown in Fig. 6-Fig 8, which are conducted on the “ml-
latest-small” dataset. 

Comparison in MAE&RMSE: Fig. 6 provides the prediction performance in 
MAE and RMSE of the four methods. Here, the number of hash functions (m) is set as 
4 and the number of hash tables (L) is set as 8 (the optimal setting). In SHCR, to pre-
serve privacy information of IoT users, we use the LSH mechanism to speed up the 
neighbor searching, which may affect the prediction accuracy since not all the similari-
ty pairs are calculated. To address this shortcoming, the factorization-based latent fac-
tor model is integrated with the LSH-based neighbor CF model to improve the predic-
tion accuracy. As the lower MAE and RMSE means the better prediction performance, 
it can be found that our method outperforms the other three methods and has the lowest 
MAE and RMSE. Specifically, MAE of SHCR is 13.46% lower than that of IPCC, 
5.00 % lower than that of MF, and 7.51% lower than that of PUIPCC. And the RMSE 
of SHCR is 12.01%, 6.66%, and 7.97% lower than that of IPCC, MF, and PUIPCC 
respectively. Thus compared with three other comparative methods, the proposed 
method, i.e., SHCR, is the optimal recommendation policy for IoT services with the 
consideration of security concerns. 
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Fig. 6 Recommendation accuracy in MAE&RMSE. 

Comparison in Precision and Recall: Fig. 7 and Fig. 8 show the performance of 
the four methods in Top-K prediction accuracy. Here, the number of hash functions 
(m) in each hash family and the number of hash tables (L) are fixed as 4 and 8 respec-
tively. Fig. 7 presents Top-K (K=5, 10, 15) recommendation performance in the pre-
cision, and Fig. 8 presents Top-K recommendation performance in the recall. Clearly, 
with the increase of K, the precision of the four methods decreases and the recall in-
creases. Therefore, smaller K means higher Top-K prediction accuracy. Moreover, in 
terms of the Top-N recommendation, SHCR outperforms the other three comparative 
methods in both precision and recall, further demonstrating that SHCR has better 
prediction accuracy under security concerns. 

 
Fig. 7 Top-K recommendation accuracy on precision.  
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Fig. 8 Top-K recommendation accuracy on recall.  

2) Parameter Impact on Recommendation Efficiency 
This section is aimed to analyze the impact of parameters m (the number of hash 

functions) and L (the number of hash labels) on the performance of recommendation 
accuracy. The simulation is conducted on the “ml-1m” dataset which has a larger 
scale than the “ml-latest-small” dataset. Fig. 9 presents the MAE value of our method 
with the change of m and L, where m varies from 2 to 8 with a step of 2 and L varies 
from 4 to 10 with a step of 2.  

 
Fig. 9 Impact of the number of hash functions (m) and the number of hash labels (L) on rec-
ommendation accuracy (MAE).  
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From Fig. 9, we can see that as m grows, the MAE value of SHCR decreases first 
(2 ≤ 𝑚 < 4) and then increases (4 < 𝑚 ≤ 8). It indicates that the prediction accura-
cy of our method is promoted with the increase of m (2 ≤ 𝑚 < 4) and then degrades 
with the increase of m (4 < 𝑚 ≤ 8). Similarly, with the increase of L, the prediction 
accuracy of SHCR is improved first (4 ≤ 𝑚 < 8) and then degrades (8 < 𝑚 ≤ 10). 
As shown in the 3D map in Fig. 9, the optimal setting of m and L for the best predic-
tion performance is at the point where m is 4 and L is 8. Thus the settings of m and L 
have an impact on prediction accuracy. Therefore, appropriate settings for the number 
of hash functions and hash tables should be made to get the best performance.  

3) Parameter Impact on Runtime Efficiency 
This section presents the runtime of SHCR with the change in the numbers of hash 

functions (m) and the number of hash tables (L). In Fig. 10, when m is small (such as 
m = 2), the runtime of SHCR almost remains unchanged with the increase of the 
number of hash tables L. When L is big (such as L=10), our method still keeps stable 
with the change in the numbers of hash functions m. Overall, the change in runtime 
consumption of SHCR is not obvious with the change of m and L. It indicates that the 
change of the numbers of hash functions and hash tables in LSH have a slight influ-
ence on the efficiency of SHCR in runtime, guaranteeing the scalability of SHCR. 
Thus the LSH technique is an effective tool to ensure both recommendation efficiency 
and security concerns. 

  
(a)                                                              (b) 

Fig. 10 Impact of the number of hash functions (m) and the number of hash labels (L) on 
runtime.  

4) Security Analysis 
Privacy preservation is crucial to IoT-service recommender systems, such as IoT-

based diagnostic recommender systems and IoT-based food recommender systems, 
where user-related sensitive information needs to be preserved. In this paper, to protect 
the privacy information of IoT users, the LSH mechanism is adopted to blur users’ 
specific information through the mapping technique. To be more specific, in neighbor 
searching, the original user-related information and the inference feature data are 
mapped into low-dimensional hash values. And the hash values, rather than the origi-
nal rating data or feature data, are applied to neighbor searching. Thus the sensitive 
rating information of IoT users in rating data is protected. From the experimental re-
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sults in Fig.6-Fig.9, we can see that our proposal can achieve improved prediction 
accuracy under security concerns. 

6 Conclusions 

In this paper, we propose a security-driven hybrid collaborative recommendation 
method for cloud-based IoT services. It integrates the factorization-based latent factor 
model with the neighbor-based CF model to improve the recommendation perfor-
mance. Moreover, the LSH mechanism is employed to process privacy-related infor-
mation of IoT users and speed up the neighbor searching. Firstly, the MF technique is 
used to learn the embedding vectors of users and IoT services firstly. Afterward, the 
LSH technique is used for fast similarity searching and the determination of the target 
user’s nearest neighbors under security concerns. Final predictions are made based on 
the nearest neighbors determined by hash mapping as well as the improved neighbor-
based CF recommendation algorithm. Experimental results show that our proposed 
method achieves improved prediction accuracy while considering the security issues 
in the meantime. In our further work, we plan to combine the knowledge graph tech-
nology and AI techniques with the CF recommendation algorithm to learn the interac-
tion features between users and items, hoping to further improve the recommendation 
accuracy further. 
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