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The thesis uses market data to investigate irrational investors in the financial markets. Traditional 
finance theory states that irrational investors do not influence asset prices. The analysis confirms this 
statement. The thesis also looks into the survival of irrational investors. The analysis shows that 
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1. Introduction 
The emergence of technology can be traced back to the spear and arrow.  Hunter-gatherers 

developed these basic tools to enhance the physical labor needed in procuring food. The 

creation of the machine, such as the tractor, introduced the next stage in the evolution of 

technology.  These complex tools allowed for the substitution of physical labor and 

permitted humans to exceed physical limitations. This resulted in a tremendous increase in 

production.  Technology, in essence, has always been developed to increase efficiency and 

productivity.   

At this day in age, most things in society are being mediated by automated machines.  Unlike 

their predecessors, these multifaceted machines do not need an operator to control its 

functions. Instead, automatic algorithms replace human control.  One such machine that is 

used in our daily lives in more ways than one is the computer.  

The advances in robotics enable computers to take over human tasks and increase efficiency 

and productivity by eliminating human weakness. However, human nature in general 

renders imperfections.  There will always be differences in levels of quality and cost. More 

often than not, humans are considered expensive and lacking in speed and accuracy.  To 

cope with a complex and dynamic world, humans adopt certain survival techniques and 

short cuts called heuristics to overcome the enormous amounts of information they are 

bombarded with every day. Our limitations make our decision making flawed.  

The financial markets today focus primarily on speed. Investment companies move closer to 

the physical location of the market place, preferably in the same house, to reduce the time it 

takes to send and receive information. The majority of the “traffic” is not carried out by 

human investors, but advanced computer programs that follow a preprogrammed set of 

rules. As more of the market movements are performed by computer programs, reducing 

the influence of educated investors, one can assume that the dynamics of the markets will 

inevitably change.   

Norwegian media has focused heavily on the issue of fairness in the market place. Do the 

computers follow the same rules and regulations as normal investors? Human beings do not 

possess the same mental processing capacity that computers do. Put simply, computers are 

faster. They can handle larger amounts of information and have a better problem solving 
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capability.   This means that computers can act on information before the traditional 

investors see the opportunity. Does this mean that computers take advantage of human 

weakness? This man vs. the machine dilemma is an emerging problem in the Norwegian 

financial markets. It was not until April 2010 that the OSE1 decided to upgrade their 

computer trading system by increasing its speed and consequently claiming the benefits of 

HFT2.  The OSE has so far put little regulation on the use of algorithm trading, and it may be 

too early to clearly predict the effects of this change in the market. 

The growth of the internet combined with the use of an electronic trading platform opened 

up the possibility of online trading of financial products in the financial markets.  Well into 

the 1990’s an investor had to contact an investment bank to execute transactions. Now 

anyone can trade shares from their living room through online investment banks.  

Traditional finance theory assumes rational investors (Bodie, Kane & Marcus, 2009). These 

theories do not account for investors displaying human weakness. One may argue that an 

educated financial advisor is as rational as an investor can be. They possess expert 

knowledge of the financial markets and the market mechanisms. In 1985 De Bondt and 

Thaler published an article called “Does the stock market overreact?” The article looked 

closely at the reaction pattern of investors to dramatic news and events. Their interest in the 

combination of “market behavior and the psychology of individual decision making” (De 

Bondt & Thaler, 1985) was the beginning of modern behavioral finance.  With the possibility 

of online investment banks another group of investors can directly influence the market. 

These investors may not have deep knowledge about the financial markets. Investors that 

act on hunches instead of fundamental values are not accounted for in traditional finance 

theory. Behavioral finance tries to use the knowledge of psychology to see how psychology 

influences the investors’ behavior and subsequently the financial markets (Sewell, 2010). 

With an educational background from both psychology and finance it was tempting to fuse 

these academic disciplines to test some of the hypotheses originating from behavioral 

finance theory. There has been an increased awareness about algorithm and HFT since 

strange occurrences has happened in the financial markets. The focus of thesis is not on the 

potential good or bad consequences stemming from algorithm and HFT; it only looks upon 
                                                           
1 Oslo Stock Exchange will now be referred to as OSE  
2 High Frequency Trading will now be referred to as HFT 
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them as ultra-rational investors with a large investment capacity. Rather, it is their influence 

on the market place dynamics, which is of an interest. This means that the introduction of 

HFT works as a major increase in the amount of rational investors present in the market.  

This thesis attempts to enlighten the role of the irrational agent through quantitative 

exploration of real world data. This is not done without difficulties. How does one 

differentiate between rational and irrational investors in publicly available aggregate data? 

In such volatile times, is it possible to single out the true effects of HFT? 

 There are two hypotheses that are put to the test: 

1. Can irrational investors survive in the financial markets? 

2. Do irrational investors have an impact on asset prices? 

The first hypothesis looks closer at the survival of the irrational investor. Financial theory 

states that these investors will “buy high, and sell low” (De Long, Shleifer, Summer & 

Waldmann, 1991) and in the end run out of the financial strength needed to stay in the 

markets. HFT increases the number of rational investors that can exploit the mispricing of 

the irrational investors. The effect should be reflected in the number of transactions 

performed by the different groups of investors.  

The second hypothesis looks closely at the influence of the irrational investors on the 

financial markets. Financial theory states that irrational investors do not have an impact on 

asset prices (Friedman, 1953), (Fama, 1965). Our society charges taxes and fees that 

increases the risk associated with exploiting the mispricing caused by irrational investors, 

thereby increasing the likelihood of their influence. We also live in a society where financial 

news can be accessed by anyone. This could lead to irrational investors’ unconsciously 

becoming more rational. Assuming that irrational investors have an influence on asset 

prices, and that this influence is reduced by the introduction of HFT, it should be revealed in 

the volatility of OSE. 
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2. Theory 
The theory section of this thesis begins by explaining the arguments of the classical finance 

theorists. This will then be followed by a detailed presentation of relevant behavioral finance 

theories. These theories contain the elements that this thesis aims to test and are also the 

source of the null and alternative hypothesis. Lastly, a short introduction to HFT (HFT) will be 

given. 

2.1 Price formation/ Asset pricing 

There are several ways to approach asset pricing. To keep a relatively similar system between 

the theoretical models, a consumption based asset pricing model will be used in describing 

the price formation. The model is described in Cochrane (2005, ch.1).  

Cochrane (2005) presents a two period model with two types of investors; young and old. 

When the investors are young they have to decide between consumption now (period t), 

and consumption later (period t+1). This means that the investor will, in period t, invest the 

cash that is not used for consumption. The investor will invest in a stock (or asset with 

uncertain cash flow). This will yield the following base for consumption in period t+1 as the 

investors will use all assets for consumption: 

Eq(1)     1 1 1t t tx p d  

Where pt+1 represent the price of the stock at time t+1, and dt+1 is the dividend payout 

received. These quantities are unknown at time t, so xt+1 is a stochastic variable (Cochrane, 

2005).  

The motivation behind the investments is for the investors to maximize their expected utility 

over their life time. Over the two periods their utility function is given by: 

Eq(2)     1 1( , ) ( ) ( )t t t t tU C C u C E u C , 

is the investors’ subjective discount factor that captures the investors’ impatience.  

Eq(3)    1
1
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 is the time preference of money. It is assumed that people prefer money now rather than 

later. 

The utility function is maximized given the following budget constraints: 

Eq(4), Eq(5)    
1 1 1

t t t

t t t

C e p
C e x

 

te , 1te is exogenous income in t and t+1 (Cochrane, 2005).  

The utility function comes with a set of assumptions that creates a frame for our analysis. 

These assumptions can be seen in figure 1 below: 

                    

 

Figure 1: Assumptions for utility function 

When the utility function is optimized with regards to   it yields the following first order 

conditions, known as the pricing equation: 

Eq(6)    1
1

(́ )
(́ )
t

t t t
t

u Cp E x
u C

 

The pricing equation can be simplified to: 

Assumptions 
about the 
individual 

Rational and 
forward 
looking  

Maximizing 
behavior 

Maximize 
expected 
utility 

Assumption 
about the utility 

time 
seperabel 

state 
separabel 
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Eq(7)    1 1t t t tp E m x  

Eq(8)    1(́ )
(́ )
t

t
t

u Cm
u C

 

Where 1tm is the stochastic discount factor for time t+1. 

This pricing formula can be generalized from a two period model by assuming the following: 

 power utility function (CRRA) 

 lognormal distributed consumption growth 

 joint distribution of asset returns and consumption growth is lognormal. 

This yields the following pricing equation (Cochrane, 2005): 

Eq(9)    1
1 1

[ ] ( , )
1
t t

t t t tf
t

E xp Cov m x
r

 

The asset price is dependent on three factors: a) the risk free interest rate, b) the rational 

investors’ expectation to next year’s return, and c) the stochastic discount factor.  

 

The key in this mathematical formula lies in the assumptions that are associated with the 

utility function. They postulate the existence of only rational investors. A rational investor is 

an individual who seeks to maximize his or hers expected utility through maximizing his or 

her consumption with regards to the risk associated with the investment opportunities 

(Cochrane, 2005).  

We can draw lines from the theory of price formation to the theory of random walk (asset 

price movements). If irrational investors do exist, their faulty views will be eliminated by the 

rational investors.  The rational investors fight with each other for the newest and best 

information available. New information will automatically be reflected in the stock price. The 

only powers that can move the stock price are unforeseen shocks and events. This means 

that the likelihood of a price going up or down is dependent on the probability distribution 

of the random events. In finance, it has been assumed that the economical shocks that 

influence the prices are normally distributed with a mean of zero (Fama, 1965) 
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Eq(10)    2(0, )
t t

u

p u
u N 2(0, )2uN

 

An investor cannot, consistently, achieve returns that are in excess of the market return. 

Malkiel (2003) states that, “efficient financial markets do not allow investors to earn above-

average returns without accepting above-average risks.”  An investor (with a large portfolio) 

cannot achieve higher returns than the market without taking on additional risk. This theory 

is in accord with the Efficient Market Hypothesis which looks into the degree of information 

reflected in the stock price.  

2.2 Efficient Market Hypothesis (EMH)  

According to Fama (1970) “the primary role of the capital markets is allocation of ownership 

of the economy’s capital stock”. Fama formed the efficient market hypothesis stating that “a 

market in which prices always fully reflect all available information is called efficient” (Fama, 

1970). The definition, however, of an efficient market is rather vague. It does not specify the 

exact definitions of the terms “available information” and “fully reflect”.  

 

Instead of a single definition, Fama used Samuelson’s (1965) taxonomy that identifies three 

forms of market efficiencies: weak-form, semi strong-form, and strong form: 

     

 The weak form hypothesis states that all information that can be derived from 

historical prices, trading volumes or short interest cannot be used to generate return 

excess of the market return. 

 Semi strong-form hypothesis states that all publicly available information is already 

reflected in the stock prices.  

 Strong- form hypothesis states that all information, public and private, are reflected 

in the stock prices.  

By creating a theory that allows for different states of informational availability, he created a 

more dynamic theory that covers a wider specter of the world.  

These efficiency theories assume that there are no costs associated with the collection of 

information. In the real world the price of information is connected to its importance, and 

speed of its delivery. This could create a situation with informational asymmetry, but this is 
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not accounted for in these theories. The simplification makes it easier to use the definitions 

of EMH in empirical testing. EMH is based on the following assumptions (Shleifer, 2000): 

 The investors are independent, rational, profit maximizing individuals 

 All information is free but is randomly available  

 There are no taxes or transaction costs in the market 

2.3 Behavioral finance 
As a reaction to the efficient market hypothesis and traditional financial theory, which 

assume that all investors are rational individuals that invest in a homogenous way, 

economists influenced by psychological theory began arguing that investors are not rational 

beings and therefore the financial markets are inefficient. Their arguments against rational 

investors were founded on the psychological research on heuristics.  Heuristics are cognitive 

methods employed to simplify the world. Heuristics are used to “reduce the complex task of 

assessing probabilities and predicting values to simpler judgmental operations. In general, 

these heuristics are quite useful, but sometimes they lead to severe and systematic errors” 

(Tversky & Kahneman, 1974). These short cuts hinder investors from always behaving 

rational.  

Traditional financial theory that is based on the EMH and the assumption of rational investor 

cannot satisfyingly explain all of the actual market movements (De Bondt & Thaler, 1984). De 

Bondt and Thaler (1984) looked closer at the overreaction of stock markets. They found that 

prior “looser” stocks had a tendency to outperform prior “winner” stocks and therefore 

proving a degree of predictability in the market. Other market movements that cannot be 

explained are irrational bubbles, sudden market crashes, and the equity premium puzzle 

(EPP) among others.  The EPP stems from the equity premium (excess return of a risky asset 

over a riskless) found in the US stock markets. This premium is greater than what “can be 

rationalized in the context of the neoclassical paradigm of financial economics” (Mehra, 

2003).   Behavioral finance theorists argue that including human imperfections in the 

financial models will make the models better describe the observed phenomena.  

Because of its psychological roots behavioral finance theorists tend to focus on psychological 

shortcuts that remove our rational being. Most critics say that behavioral finance is a study 

of anomalies rather than a theory of the markets as a whole and that this is their 
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shortcoming. The following section will present two behavioral finance theories which will 

form the basis of this thesis’ two research questions.  

2.4 Limits of Arbitrage Model 
The limits of Arbitrage model looks into a situation where rational agents cannot eliminate 

all of the influence that irrational agents have on asset prices. The mispricing caused by the 

irrational agent creates added risk to the rational agent thereby reducing their willingness to 

exploit the mispricing (Matsen, 2011). In this model, the assumption of the rational 

homogenous agent is relaxed.  These agents would normally guarantee that the financial 

markets are efficient (market fully reflects all available information).  

Even if there is a situation where irrational agents are present in the market, one can still 

have efficient markets if: 

 the irrational agents act in a random manner 2(0, )I N 2(0, )2N  so that their irrationality 

is cancelled out by other irrational agents, or 

 the irrational agents deviate in a systematic way, which leads to a mispricing of the 

asset that the rational investors can eliminate with opposite position. This eliminates 

the irrational agents influence on the asset price.  

(Matsen, 2011) 

If the markets are efficient it means that the irrational agents do not influence the asset 

price, and therefore do not influence the market volatility.  

Limits of arbitrage argue that these irrational (outside investors) agents can influence the 

market price of an asset through the unwillingness of rational (arbitrageurs) investors to 

take on the added risk created by the irrational agents. (Matsen, 2011).  

The limits of arbitrage model consist of rational and irrational agents. The rational agents 

trade on fundamental values whereas the irrational agents trade on noise. Black (1986) 

labels noise as information without any informational value (without real fundamental 

value). In financial markets a rational agent will face the fundamental risk that stems from 

the uncertainty about future fundamental values. However, they also face the possibility 

that the noise traders’ influence can get stronger making their positions worse off. This risk 

arises from the possibility that the already mispriced asset will become even more mispriced 
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at a later time; since most rational investors have short investment horizon they may not be 

able to wait for the mispricing to disappear. This added risk reduces the rational agents’ 

thirst of exploiting the irrational agents’ mispricing (Gromb & Vayanos, 2010).     

The mathematical model for cross asset arbitrage was introduced by Gromb and Vayanos 

(2010).  

2.4.1 Cross asset arbitrage (Gromb & Vayanos, 2010) 
The cross asset arbitrage model has two foundations on which it explains the dynamics of 

the financial market. Limits of arbitrage are normally considered as the first “building block 

needed to explain anomalies. The other building block is demand shocks experienced by 

investors other than arbitrageurs” (Gromb & Vayanos, 2010). The demand shocks move 

asset prices away from fundamental values. Limits of arbitrage prohibit the arbitrageurs to 

correct the mispricing.  

The model consists of two types of investors. The first type of investor is the traditional 

rational investor. They are competitive, risk averse and utility maximizing. Gromb and 

Vayanos referred to these investors as the arbitrageurs. The second type of investor is called 

the outside investor. These agents are the irrational investors in this model. Their 

irrationality is represented by an inelastic demand (u) for the risky asset A. u is the demand 

shock that moves asset prices away from fundamental values (Gromb & Vayanos, 2010). 

It is a two period model that has two risky assets (A and B). These assets have payoff dA and 

dB. , , , ,A B A Bd d  represents the mean payoff for A and B, standard deviation for A and B 

and the correlation between the payoff of A and B. Since arbitrageurs are rational their 

payoff is equal to the mean payoff B Bd d . We assume that dA and dB are jointly normal 

distributed to simplify the calculations. 

The model describes a shock driven economy. The economy only consists of the arbitrageurs 

and outsiders so their total demand makes up the total demand of the economy. To simplify 

the model Gromb and Vayanos (2010) normalized the demand for asset A to zero. In a 

model such as this the actual demand in number of units is not interesting. It is the effect of 

a demand shock that is of an interest. By setting the net demand to zero the model will 

clearly display these effects, and be simpler mathematically.  In the instance of a demand 
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shock ( 0u ) asset prices will move away from fundamental values and arbitrageurs will try 

to exploit the mispricing (Gromb & Vayanos, 2010).  

In period one, the arbitrageurs have to choose their investment in asset A (XA) and in asset B 

(XB) to maximize their expected utility: 

Eq(11)    1 exp( 2)E W  

This function is subject to the budget constraint: 

Eq(12)    2 1 ( ) ( )A A A B B BW W x d p x d p  

Where = risk aversion of arbitrageurs. By inserting the budget constraint into the formula 

for expected utility, using the assumption of normality, and the assumption of B Bp d . 

Optimizing Xe will  be equivalent to maximizing the mean variance objective function, 

where one tries to minimize the outcome:  

Eq(13)     2 2 2 2( ) ( 2 )
2A A A A A B B A B A Bx d p x x x x  

 

This gives the following optimal investments in asset A and B (Gromb & Vayanos, 2010): 

Eq(14)     2 2(1 )
A A

A
A

d px
 

Eq(15)    2

( )
(1 )

A A
B

A B

d px  

If we take into account that asset A is in zero net supply:  

Eq(16)    0Ax u . 

We get the following equilibrium price for asset A: 

Eq(17)    2 2(1 )A A Ap d u  
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As we can see from the equation, the price of asset A, pA, will increase when there is a 

demand from outside investors. This excess demand will drive the price above fundamental 

value. The price of asset A will be higher: 

 the higher the risk aversion of the arbitrageurs,  

 the higher the volatility of asset A, 2
A  

 the lower the correlation between asset A and B (due to the poor hedging 

possibility),   

 the higher the demand from outside investors, u  

There are two types of risk associated with asset A. First there is fundamental risk which 

stems from the uncertainty of the assets future value (dividend stream). The second source 

of uncertainty is called non fundamental risk. In the model Gromb and Vayanos (2010) a 

third period (period 0) where , ,A Bd d u  are stochastic is introduced. The asset price depends 

“on the realization of u” (Gromb & Vayanos, 2010), which is unknown and stochastic. From 

the pricing formula we can find the equation for the non fundamental risk in period 0 

created by the outside investors (Gromb & Vayanos, 2010). By taking the variance of the 

price of asset A, then taking the square root of the variance (Matsen, 2011): 

2 2

2 2 4 2 2 2

2 2 2 2 2 2

( ) ( (1 ) )

( ) (1 )

( ) (1 (1 ) )

A A A

A A A u

A A A u

VAR P VAR d u
VAR P
VAR P

 

Taking the square root of the final expression above leads to equation for non fundamental 

risk. 

Eq(18)     2 2 2 2 21 (1 )pA A A u  

The presence of outside investors will increase the volatility of asset A through
2 2 2 2 2(1 )A u . When there is high uncertainty in the market, either represented through 

the variance of asset A or the demand shock u, it leads to a larger mispricing of the asset.  

Alpha represents the level of risk aversion inherent in the arbitrageur. This coefficient 

reports how accepting an investor is to uncertainty. A high value of the coefficient means 

that the investor is not willing to take on a lot of risk. The investor will then be less willing to 
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exploit arbitrage opportunities, thereby letting the outside investors influence the asset 

price which leads to increased volatility in the price of the asset. This will lead to a situation 

where the outside investors can permanently influence the price and volatility of the asset. 

The non fundamental risk can be reduced through hedging opportunities if asset A or asset B 

is highly correlated.  

2.5 Noise Trader Model 
The second model that is introduced is called the noise trader model. The theory stated in 

this section is taken from the article “Noise trader risk in financial markets” (1990) by De 

Long, Shleifer, Summers, and Waldmann. 

As stated earlier the “unpredictability of noise traders’ beliefs creates a risk in the price of 

the asset that” (De Long, Shleifer, Summers & Waldmann, 1990) will deter the rational 

investors from seeking to exploit the mispricing. This means that according to noise trader 

theory irrational investors have a permanent impact on the price of an asset.  

The theory uses an overlapping generation model. There are two types of investors in 

model: the rational investors and the irrational investors (called noise traders). The economy 

lasts forever, but the individual agent will only live for two periods. The initial investment 

will occur in the first period, and the wealth will be consumed in the second period. There 

are two assets present, one risk free and one risky. The risk free asset pays an interest rate r, 

is in elastic supply and has a price of 1.  The risky asset pays a dividend of d, is in inelastic 

supply normalized to one unit, and has an unknown price pt. In this model d=r. The total 

demands for the risky asset is given by the demand from the rational investors R  , and the 

demand from the irrational investors I (De Long, Shleifer, Summers & Waldmann, 1990). 

Since the rational and the irrational investors make up the entire population of investors it is 

easier to work with normalized values. This means that the total amount of investors equal 1 

(100%). The rational investors will make up 1 of the population, and the irrational 

investors will make up . 

The model assumes that the rational investors are risk averse with short investment 

horizons. The irrational investors have faulty expectations about future asset prices. This 
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mispricing ( t ) is comprehensive for all noise trade and is normally distributed with a mean 

of * and variance of 2  (De Long, Shleifer, Summers & Waldmann, 1990) 

* 2( , )t N *( *N( ,,N . 

t is the “expectational error in period t regarding the price in period t+1” (Matsen, 2011).  “

* is a measure for the average “bullishness” of the noise traders” (De Long, Shleifer, 

Summers & Waldmann, 1990). 2  represents the variance of the “misperceptions of the 

expected return per unit of the risky asset” (De Long, Shleifer, Summers & Waldmann, 1990). 

The noise traders will therefore optimize their investments based on faulty expectations.  

Both investors utility is represented through a constant absolute risk aversion (CARA) 

function: 

Eq(20)    (2 )wU e . 

W is the initial wealth of the investor and is the coefficient of absolute risk aversion (De 

Long, Shleifer, Summers & Waldmann, 1990). The investors will maximize their expected 

utility  

Eq(21)    (2 )( ) w
tE U E e  

“With normally distributed returns to holding a unit of the risky asset, maximizing the” (De 

Long, Shleifer, Summers & Waldmann, 1990) utility is the same as maximizing the mean 

variance objective function: 

Eq(22)    1 1 1( ) var ( )t t t t tE U E w w  

2.5.1 Demand functions 
Wealth in time t+1 is the following for the investors: 

Eq(23/24)   1 1

1 1

( )(1 ) ( )

( )(1 ) ( )

R R R
t t t t t t
I I I
t t t t t t

w w p r p r
w w p r p r  

Where tw is the initial wealth at time t, tp  is price of the risky asset at time t, and 1tp  is 

price of the risky asset at time t+1. 
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This will give the rational agent a demand for the risky asset equal (Matsen, 2011): 

Eq(25/26/27)   
1 1

2
1 1

1

1

( )(1 ) ( )

( ) ( ) ( )

(1 )
2 ( )

R R R R
t t t t t t t t

R R
t t t t t

R
t t tR

t
t t

E w w p r E p r

Var w Var p
r E p r p

Var p

 

 

The irrational agents demand for the risky asset (Matsen, 2011): 

Eq(28/29/30)   

1 1

1 1

2
1 1

1

1 1 1)

( )(1 ) ( )

( )(1 ) ( )

( ) ( ) ( )

(1 )
2 ( ) 2 ( ) 2 (

I I I I
t t t t t t t t

I I I R
t t t t t t t t t

I I
t t t t t

R
t t tI Rt t

t t
t t t t t t

E w w p r E p r

E w w p r E p r

Var w Var p
r E p r p

Var p Var p Var p

 

The irrational agents’ demand is equal to the demand of the rational agents plus the 

inherent misperception of the expected return of the risky asset. In this model the investors 

can have a negative demand, which means they are allowed to take short positions in the 

assets (De Long, Shleifer, Summers & Waldmann, 1990).  When the irrational agents are 

“bullish” they will have a higher demand for the risky asset then the rational investors; 

therein driving the price of the risky asset above its fundamental values. The opposite is true 

when the irrational investors are “bearish”. 

2.5.2 Equilibrium price 
In equilibrium, the demand must equal the supply. Earlier the supply of the risky asset was 

normalized to one unit. This means that the total demand of the rational investors and the 

total demand of the irrational investor must sum to one: 

Eq(31)    (1 ) 1I R
t t  

This means that the price of the risky asset is given by: 

Eq(32)    1 1
1 2 ( ) *
1

R
t t t t tp r E p Var p

r
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De long et al. focused on a world with steady state equilibriums in their paper. In 

mathematical terms one can rewrite the conditional expectation on the price in t+1 to the 

unconditional expectation of price in t, because they will be identical. Therefore the pricing 

equation in steady state will be: 

Eq(33)    
2 2

2

2( *) *1
1 (1 )
t

tp r r r r  

The price of the risky asset will be driven above or below fundamental values depending on 

the “bullishness” of the irrational investors. In this analysis it is assumed that the noise 

trader risk is systematic (Matsen, 2011). That means that noise traders are bullish and 

bearish as a group. When these investors are bullish they will drive the prices higher, yet 

they will continue to invest in the asset. If they are bearish they will drive the prices down 

below fundamental values and keep selling. This partly fits with Friedman’s (1953) opinion 

that noise traders cannot survive in the financial markets. He claimed that these investors 

buy when prices are high, and sell when the prices are low and will therefore lose all their 

wealth. In essence this means that all irrational agents that enter the financial markets will 

exit the markets when all their wealth is consumed. In the long run there would be no 

irrational agents left in the market.
 

2.6 HFT  
In the 80’s investment companies began using electronic trading platforms. Along with the 

enhancement of computer technology came steady improvements in the speed, capacity 

and accuracy of the trading platforms and its software.  Some of the benefits with HFT are 

that computers have a higher processing capacity than humans; they do not get sick, and 

have faster reaction (Aldridge, 2010).  Along with with reduced brokerage fees this savings 

opportunity is tempting. However, HFT cannot only be cost saving it also has to create profit.  

HFT is based on a complex set of algorithms that dictate what the computer is allowed to do. 

The algorithms are the rules, and the information it receives from the financial markets are 

the input. With all the data at hand the computer uses its vast capacity to find investment 

opportunities (Aldridge, 2010). “Trading software incorporates optimal execution algorithms 
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for achieving the best execution price within a given time interval through timing of trades, 

decisions on market aggressiveness, and sizing orders into optimal lots” (Aldridge, 2010).  

The computers do not use fundamental values to find investment opportunities. Instead, 

they follow the principles of EMH which claim that the information is reflected in the market 

price. With all the information available the computers look for irregularities in the market 

that may be profitable. Therefore the HFT computers will only need to look at the market 

values of the assets to pick up market wide or company specific changes. The information 

appears faster in the data then it does through the traditional news channels. Therefore the 

computer will have an informational advantage compared to human investors ("HFT," 2010). 

“At the heart of HFT is a simple idea that properly programmed computers are better traders 

than humans” (Aldridge, 2010). 

For HFT to be of any interest “two requirements must be met: the ability to quickly move in 

and out of positions and sufficient market volatility to ensure that changes in prices exceed 

transaction costs” (Aldridge, 2010). In Norway one such market is the OSE (equity market). It 

has the market liquidity that is needed, though it is a small market, and in April 2010 it 

upgraded its computer platform making it fast enough to benefit HFT.  

HFT software has different trading strategies but they all break down to exploiting small 

opportunities through informational advantage. “High-frequency trading opportunities 

range from microsecond price moves allowing a trader to benefit from market-making 

trades, to several minute-long strategies that trade on momentum forecasted by 

microstructure theories, to several-hour-long market moves” (Aldridge, 2010).  
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3. Methodology 
 

3.1 Data collection 
This thesis takes a closer look into the dynamic world of financial markets with a behavioral 

finance frame of mind. It is crucial to be able to differentiate between rational institutional 

investors and irrational private investors. It is assumed that investors that influence the 

markets through an investment bank consisting of financial advisors with the relevant 

education within finance (or similar) and working in an environment where they share and 

possess expertise knowledge of the financial markets are rational investors. On the other 

hand, it is assumed that investors that influence the financial markets directly through 

internet investment banks without consulting financial advisors are irrational investors. In 

this definition of irrational investors there may be individuals who are rational that are 

grouped in with the irrational investors; but hopefully there will only be a few. The rational 

investor will receive advice based on fundamental values, where as the irrational investors 

will trade on information found in the media. This information may have aspects of 

fundamental value, but it is very likely that they are opinion based views and therefore 

considered noise. The Norwegian equity markets can be accessed through traditional 

investment banking contacts, but also directly through internet (investment) banking. Most 

finance institutions offer services to both of these customer groups making it difficult to 

differentiate between rational and irrational investors in the publicly available cumulative 

data.   

3.1.1 Data for the first hypothesis 
There were attempts to obtain differentiated data from the investment banks themselves 

during the data collection part of this thesis. However, due to the secret nature of this 

industry, none were willing to disclose detailed information. As such, publicly available 

information from the OSE was used. In order to obtain an in-depth look at the difference 

between rational and irrational investors, two samples representing the two groups were 

created. Theoretically, a rational investor has been defined, among others, as a rational 

being with optimizing behavior and utility maximizing. This definition acts as a basis for the 

slightly more superficial definition used in this thesis.  As a sample for the rational investors, 

investment banks that do not offer internet banking are used. In this scenario, the customer 

must contact trained, rational, financial advisors before making an investment. In this 
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situation an investor cannot participate in the market without taking the advice of an expert. 

This makes them the rational sample. The second sample consists of the investment banks 

that only offer internet transactions. The customers of such investments banks do not have 

contact with any of the banks’ employees before making an investment. They may invest on 

hunches or news on the internet, but there is no guarantee that fundamental values are the 

basis for their investment. This makes them the irrational sample. There is a chance that 

rational investors are grouped into the irrational sample group. This can influence the 

analysis, but it is assumed that they would be in a minority and would not significantly 

influence the analysis. The sample groups are: 

 Rational investors: 

o SEB 

o Arctic 

o Carnegie 

 

 Irrational investors: 

o Skandiabanken 

o Nordnet 

o Netfunds 

This thesis looks upon the number of transactions performed by these banks to see if 

irrational investors can survive in the market place. Another choice could have been to look 

at turnover, but that would have made the analysis complicated due to the interconnection 

between turnover and the overall economy. Even though the economy changes, the number 

of transactions may not alter as much as the average size (turnover) of the transactions 

thereby giving a more accurate measure of the number of participants in the market. The 

two samples used account for roughly thirty percent of the transactions at the OSE 

(Appendix A): 

  



23 
 

Market share of Transactions (Average 2008-2012) 

Skandiabanken 1,61 SEB 8,51 

Nordnet 8,69 Artic 1,98 

Netfonds 3,6 Carnegie 2,4 

Total Irrational 13,90 Total Rational 12,89 

Table 1: The average market share (transactions) for the sample groups from 2008-2012 

thereby, hopefully giving a good representation of the market as a whole. One negative 

aspect of this data sample is the length of the sample period. The data is monthly (number 

of transactions per month), and goes back less than five years. Therefore, there will only be a 

small sample prior to the computer upgrade and an even smaller one afterwards. The 

sample may be too short to display the effects of HFT. Another problem may be that some 

or all of these rational investment banks may themselves use HFT and therefore not 

represent a sample of traditional rational investors. This thesis attempts to determine 

whether or not traditional investors would be influenced or unaffected by HFT, but they may 

have adopted the practice.  

3.1.2 Data for the second hypothesis 
To investigate the second research question, a sample to find the market volatility was 

needed. As there are almost 11 years of market data available, the daily adjusted value of 

OSE to calculate the historical market volatility was used. The historical volatility was 

determined by first calculating the continuous return in the adjusted (data corrected for 

dividends and splits) value of OSE through: 

Eq(34)    
1

ln t

t

V
V

 

Then the continuous return value (data over 30 days) to calculate the volatility over a thirty 

day period was used: 

Eq(35)    30( : )* 365t tSD V V  

In the formula above the volatility is scaled to annualized historical volatility by multiplying 

with the square root of 365. It does not have to be the number of days in the year. It could 

also have been scaled by number of trading days per year.  
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The historical volatility for visual inspection was utilized.  The data was acquired at 

yahoo.finance.com. The volatility was calculated over a thirty day period. The period from 

2008-today has been subject to an extremely volatile macro economy.   

In the analysis, some of the effects of the most extreme market movements have been 

controlled by introducing a variable of the VIX index. The VIX index is the volatility index of 

Chicago Board Options Exchange. It is considered a good measure of the market volatility, or 

market fear ("The CBOE volatility," 2009). Since the economical unrest is a global matter 

more than a regional Norwegian matter, the volatility that is captured in the VIX can be a 

good proxy for the unrest that influences the Norwegian markets. The data of the VIX index 

was acquired from yahoo finance. 

It is important to note that there is no guarantee that HFT was introduced directly after the 

computer upgrade. It is more likely that companies began developing and introducing the 

software over a time period after April 2010. This will make it more difficult to find clear 

results in either of my hypotheses, but we may be able to see the beginning of a trend. 

3.2 Testing 
 

3.2.1 Testing of hypothesis 1 
In hypothesis one, evidence that could prove or disprove whether irrational investors can 

survive in the financial markets is sought after. Number of transactions per month measures 

the activity/health of the institution. According to traditional finance theory an investor who 

trades on noise will lose their money to rational investors and cannot survive in the market 

place. Over time they will lose all their wealth and exit the market. This leads to the 

following hypothesis: 

 0 :H  irrational investors can survive in the market place 

 1 :H  irrational investors cannot survive in the market place 

I run a test with total amount of irrational transactions as a Y variable, and a dummy variable 

for the transactions performed after April 2010 in order to determine whether there has 

been a significant decline of irrational investors. Oxmetrics6 is the statistical program used 

where PcGive is chosen. Under categories, time series data is selected, and single equation 
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modeling using PcGive. The software then aids me in selecting a model by choosing 

automatic model selection. PcGive then runs several models picking the model that fits my 

data sample the best.  

Under the same hypothesis I investigate the effects of the upgrade on the rational sample. 

Rational investors trading on fundamental values will not change their investment 

philosophy despite the irrational investors being present or not. However, one can argue 

that the noise traders’ behavior influence how rational investors act since rational investors 

try to exploit the mispricing caused by the noise traders. My view is that the rational 

investors will base their investment decisions on the fundamental values of the assets 

regardless of whether noise traders are present or not.  Therefore, I would not expect a 

significant change in the number of transactions performed by the rational investors. 

However, it is important to note that the rational investors may have begun using HFT. My 

definition of rational investor emphasizes that it is investment banks that are rational. 

Internationally, it is these institutions that are using HFT. Therefore, it is not unlikely that 

some of the investment banks in the rational sample have engaged in the practice. If this is 

the case, an increase in the number of transactions performed by the rational sample may 

be seen. 

 2 :H  rational investors are not affected by the upgrade 

 3 :H  rational investors are affected by the upgrade 

On both of my tests I look for changes in the coefficients.  

The last test under hypothesis 1 looks at the total number of transactions in the market as 

endogenous variable (Y).  As explanatory variables I have total transactions for both 

irrational and rational and dummy variables (for transactions after April 2010) for both 

irrational and rational investors. This test is performed to understand the market rather than 

to test a hypothesis based on a theoretical framework. It is natural to assume that all parties 

involved (the rational and irrational samples) will have a positive impact on the total amount 

of transactions. In other words, an increase in the transaction amount for the irrational or 

rational will lead to an increase of the total number of transactions.  
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3.2.2 Testing of Hypothesis 2 
Hypothesis 2 attempts to determine whether or not the volatility of the OSE has changed 

after the computer upgrade in April 2010. “It is unlikely in the context of financial time series 

that the variance of the errors will be constant over time” (Brooks, 2008). It is more likely 

that the variance will be influenced by its preceding values. This is one of several features 

inherent in the volatility of financial markets that promotes a non linear model. The other 

elements are leptokurtosis (fat tail distributions in asset returns), volatility clustering 

(tendency for volatility to appear in groups), and leverage effects (tendency for volatility to 

increase more after negative shocks). Financial data needs a model that allows it to “follow 

different processes at different points in time” (Brooks, 2008).  

In Oxmetric6, one can test the null hypothesis that the variance of the errors is constant 

(homoscedastic) as they are in the classical linear models (Brooks, 2008). If we reject the null 

hypothesis and find that the variance is not constant (heteroscedastic) normal regression 

models will not suffice. This means that the volatility data is best described by a GARCH (1, 1) 

model. (GARCH stands for generalized autoregressive conditionally heteroscedastic.)  

In this test the hypothesis would be: 

 5 :H  the market variance is not influenced by the computer upgrade 

 6 :H  the market variance is influenced by the computer upgrade 

I used a dummy variable (volatility data after April 2010) to test for any effects that may 

have come from the computer upgrade. In an effort to control for the market volatility I have 

included a variable for the VIX index. The macroeconomic turbulence that has been moving 

through the financial markets since 2008 does not have its origin in Norway. Norway has 

only been affected because of the interconnected economies. Therefore, it is not unlikely to 

assume that the VIX index, which is considered to measure the volatility in the US market, 

can model the external volatility influencing the Norwegian financial markets. 
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4. Tests and models used  
There are a large variety of diagnostic tests and statistical models that can be used in this 

analysis. The next section provides a brief overview of the tests and model that I will be 

utilizing. The specification tests that I use look at aspects that are associated with time series 

analysis, and ordinary least squares analysis.  

4.1 ARCH – Heteroscedasticity 
The arch test looks for “ARCH effects” in the residuals. With ARCH effects I mean that the 

value of the error term is influenced by the squared value of the preceding error terms 

(Wooldridge, 2009). To test for ARCH effects one can run a normal regression:  

Eq(36)    1 2 2 3 3t t t ty x x u  

 Save the residual ût, than square them and run a regression on q of its own lags: 

Eq(37)    
2 2 2 2

0 1 1 2 2 ...t t t q t qu u u u  

The test statistic is defined as TR2. This is the number of observations multiplied with the 

statistic of the goodness of fit of the model for the previous regression (Brooks, 2008). The 

statistic has chi square distribution 2 ( )q . The null hypotheses states that the gamma values 

(except 0 ) equals zero, which means that the variance of the error terms are constant. The 

alternative hypothesis states that at least one of the gamma values is not equal to zero, so 

the variance of the error terms is time varying.  

4.2 Normality test/ Asymptotic test 
The normality test assumes that the error term is independent of the explanatory variable. It 

tests to see if the data is well modeled by the normal distribution. The null hypothesis will 

state that the data has a normal distribution. The alternative hypothesis will state that the 

data does not have a normal distribution. Its difference is measured in the data’s kurtosis 

and skewness. The asymptotic test examines the same hypothesis, but with a slightly 

transformed test statistic (PcGive). OxMetrics reports the test statistic which is a 2  

distribution.  

It is also possible to perform a visual analysis by plotting the data’s density function against 

the probability density function of the normal curve.  
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4.3 Autocorrelation (ACF - Correlogram) 
The autocorrelation function visually describes the correlation between values of a variable 

and its preceding values. This means that rt (correlation coefficient) is the correlation 

between variables xt and xt-1. The correlogram shows whether shocks introduced to the 

system will fade or if they will persist. If shocks persist in the data it is a non stationary 

process. This instability will make it difficult to estimate or forecast future values.  

4.4 GARCH (1, 1) 
The GARCH (1, 1) model is given by: 

Eq(38)    0t t ty Dupgrade VIX u  

Eq(39)     
2(0, )t tu N 2(0, )2t(0,N  

Eq(40)    
1

2 2 2
0 1 1 tt t tu Dupgrade VIX  

This “model allows the conditional variance to be dependent upon” (Brooks, 2009) its 

previous lags. This means that the conditional variance is influenced by the error term of the 

previous period ( 2
1 1tu ), in addition to its own previous value (

1

2
t

), and a long term 

average ( 0 ) (Brooks, 2009). Because of the non linear nature of the model it uses 

maximum likelihood estimation instead of ordinary least squares. Maximum likelihood will 

find the parameter values that optimize the equation. 
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5. Analyses 
 

5.1 Hypothesis one 

The first hypothesis investigates Freidman’s (1953) statement of the survival of noise 

traders. Friedman claimed that noise traders (irrational investors) would die out because 

they will buy when the prices are high, and sell when the prices are low. The rational 

investors will take advantage of their mispricing. If I were to estimate what would happen 

based on this theory, I would expect that the amount of irrational investors to decline after 

April 2010, but that the amount of rational investors stay the same or increase.  As the 

irrational investors are losing money they will soon run out of funds and motivation to 

invest. The rational investors will take advantage of the irrational investors, but they are not 

dependant on their survival. HFT is another form of rational investing, but I do not know if 

my sample group contains companies that actively pursue this form of trading. If they do not 

use HFT I would expect their level of transactions to remain, relatively, unchanged by the 

event of April 2010. If they use HFT, I would expect their level of transactions to increase 

significantly.  

Looking at the data we can see from figure 2 that the irrational investor group has had a 

declining market share since early 2009. This is before the computer upgrades that lead to 

HFT. It is therefore difficult to conclude anything specific from a visual analysis. The rational 

investors have had a stable market share all through the time series. Figure 2, on the next 

page, shows a declining market share for the irrational investors, but that does not mean 

that the total number of transactions is declining. If the total amount of transactions in the 

market increases drastically, the irrational investors may still have an increasing amount of 

transactions. 
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Figure 2: The samples share of the total amount of transactions (in percent) 

 

If we look at the actual number of transactions the image changes only slightly. 

 

 
Figure 3: The total amount of transactions of the two sample groups 
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Figure 3 shows the actual amount of transactions the two sample groups have performed 

between January 2008 and April 2012. The irrational sample clearly performed more 

transactions than the rational investors up to April 2010. From April 2010 till January 2011 it 

was a period of analogous transaction amounts, but from then on the rational investors have 

performed more transactions than the irrational. These graphs do not prove or disprove 

anything, but they give a visual confirmation of my expectations. To check whether the 

changes have been significant I must apply statistical measures. The null hypothesis states 

that there is no significant difference in the data after April 2010. The alternative hypothesis 

states that the data after April 2010 is significantly different than from before April 2010.  

Before selecting a model a closer look at the data sample is needed to outline its underlying 

characteristics.  

First I look at the autocorrelation functions to see if there are signs of autocorrelation. I look 

at the total sample and both sub sample to see if the sample groups display different 

tendencies then the market as a whole. This is done because classical finance theories claim 

that irrational investors behave in a different manner than rational investors. If this is true, 

this should be displayed in the characteristics of the data. 

  

 
Figure 4: Correlogram showing the ACF for the entire sample 

 

The total sample data (number of transactions at OSE) is clearly auto correlated. Figure 4 

shows a dying autocorrelation function. If a shock is introduced to the model it will 
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eventually die out. It is interesting that the data does not decline smoothly. The irregular 

occurrence of the”spikes” in the ACF speaks against seasonality. It may be caused by the 

volatile nature of the financial markets and the macro economy.   

 

 
Figure 5: Correlogram showing the ACF for the rational sample 

 

Figure 5 displays the ACF for the rational sample. The movement of the ACF for the rational 

sample is similar to the movements of the ACF of the total sample, showing clear 

autocorrelation. Figure 7 displays the ACF for the irrational sample group. This ACF is clearly 

different than the previous ones.  

 
Figure 6: Correlogram showing the ACF for the irrational sample 

 



33 
 

The ACF is declining, but has high peaks around periods 8, 9, and 12. After period 14 it 

becomes negative, and then increases in negativity. Due to a limited data sample it is unclear 

how the ACF behaves over a longer period of time. From the sample it is difficult to tell 

whether a shock would disappear or not. It is clear that the ACF for the irrational investors 

are different than the ones for the market and the rational investors. The rational and total 

sample clearly shows that shock will die out, where as the irrational ACF do not show clear 

signs of shocks dying out. This could mean that irrational investors have a harder time 

adapting to shocks. It is difficult to specify how their behavior changes. It seems that the 

effects of a shock lingers on, which could mean that they overreact and therefore prolong 

the shock themselves.  

Next I look at the probability density distribution of the sample data. In these graphs the 

actual sample is compared to a normal distribution curve. This can give a good illustration of 

whether the data is well modeled by a normal distribution. Classical linear regression 

assumes that the error terms are normally distributed. If the data shows clear signs of 

skewness or kurtosis it can create difficulties with the analysis (Wooldridge, 2009).  

 

 

 
Figure 7: The distribution of the total sample compared to the normal curve (skewness & kurtosis) 

 

Figure 7 show that the total sample has a positive skewness. This means that the distribution 

has a thicker tale on the right hand side. This demonstrates that there is a higher probability 

of achieving higher values in the real world then it is in a normal distribution.  
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Figure 8: The distribution of the rational sample compared to the normal curve (skewness & kurtosis) 

 

Figure 8 show that the rational sample has similar traits as the total sample. The only 

difference is a larger kurtosis.  

 
Figure 9: The distribution of the irrational sample compared to the normal curve (skewness & kurtosis) 
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Again, it is the irrational sample group that differs. The irrational investors have a density 

function that is very similar to the normal distribution. It is interesting to see the distinction 

of the irrational sample. This could mean that the irrational investors act in a more random 

manner than their rational counterparties. As the rational investors and the market as a 

whole have similar characteristics it is natural to assume that the market is predominately 

rational. 

 

 
Table 2: Correlation matrix for the sample groups, and the whole population 

From table 2 it can be seen that there is high correlation between the rational sample and 

the total sample group. The irrational sample has a low correlation with both the total 

population and the rational sample group. The rational sample and the total population have 

an almost perfect correlation. In financial theory, it is assumed that the markets are rational. 

This data seems to support that notion. It is very interesting to see that the total irrational 

sample is almost unrelated to the rational sample. This could support the notion that noise 

traders act on information without any fundamental value. It may lead support to the notion 

that they act in a random manner.  

The data has several characteristics that make it difficult to choose an appropriate model. 

Oxmetrics automatic model selection was used to choose the model. 
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Modeling Total Irrational by OLS 

The estimation sample is: 1 - 51 

Coefficient  

 

Std.Error t-value t-prob 

Constant 462134 1,66E+04 27,80 0 

Total irrational/bin -0,191408 0,06477 -2,96 0,0048 

AR 1-2 test:      F(2,47)   = 3,7970 [0,0296]*   sigma 89006,7 

ARCH 1-1 test:    F(1,49)   3,7820 [0,0576] R^2 0,151285 

Normality test:   Chi^2(2) 0,77121 [0,6800] Adj,R^2 0,133965 

Hetero test:      F(2,48)  = 1,0177 [0,3691] no, of bservations 51 

Hetero-X test:    F(2,48) = 1,0177 [0,3691] mean(Y) 429628 

RESET23 test:     F(2,47)  14,236[0,0000]** RSS        3,8818771+011 

Hetero test:      F(2,48)  = 1,0177 [0,3691] F(1,49) =     8,734 [0,005] 

Hetero-X test:    F(2,48)    1,0177 [0,3691] log-likelihood -652,566 

RESET23 test:     F(2,47)  14,236[0,0000]** no, of parameters 2 

      se(Y) 95643,4 

Table 3: Test scores of irrational investors with dummy 

Table 3 shows the result of the regression of the irrational investors. I try to determine 

whether there has been a significant change in the behavior of the irrational investors after 

April 2010. The table reports the test scores of the variables and the results of several tests 

on the data. I will comment on the most important findings of these tests. The t-probability 

test score shows that both the constant and the dummy variable are significant. The dummy 

coefficient tells us that the irrational agents significantly reduced the number of transactions 

after April 2010. The test also shows that the data for the irrational sample is normally 

distributed. The normality test has a p-value of 0, 68 which means we will keep the null 

hypothesis of normal distribution. The ARCH test shows slight (not significant on a 5% level) 

heteroscedasticity but that is to be expected since the number of transactions is influenced 

by the economical and financial situation. 
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Modeling Total Rational by OLS 

       The estimation sample is: 1 - 51 

Coeff Std.Error t-value t-prob Part.R^2 

Constant 346541 1,34E+04 26 0 0,9322 

Totrat/bin 0,284927 0,04206 6,77 0 0,4836 

sigma 72047,1 RSS 2,54E+1 AR 1-2 test:   F(2,47) 5,5435[0,0069 

R^2 0,483598 F(1,49) = 45,89[0,0 ARCH 1-1 test: F(1,49) 0,625[0,4325 

Adj,R^2 0,473059 log-likelihood -641,785 Normality:Chi^2(2) 10,149[0,0063 

no, of obs 51 no, of paramet 2 

Hetero test:      

F(2,48) 

5,1714 

0,0092] 

mean(Y) 405771 se(Y) 99251,1 

Hetero-X test:    

F(2,48) 

5,1714 

0,0092] 

        

RESET23 test:     

F(2,47) 

28,778 

0,0000] 

Table 4: Test scores of rational investors with dummy 

Table 4 shows the test of the rational sample and the effects of a dummy variable for the 

transactions after April 2010. There is a significant change for the rational sample after the 

introduction of the computer upgrade. There is an increase in the number of transactions 

after the upgrade. The normality test shows that the data is not normally distributed. 

The last test that I performed under hypothesis one looks at the relationship between the 

sample groups and the total market. The total transactions are the endogenous variable. The 

total rational and total irrational plus their dummy variables are the explanatory variables.   
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Table 5: The analysis of the total market with the sample groups as explanatory variables 

From the analysis displayed above it is clear that neither the total irrational sample nor the 

total rational dummy is significant in explaining the total number of transactions. This would 

mean that these variables have moved in a random manner through their sample periods, 

and cannot explain the overall movements of the transaction markets.   

 

Table 6: The adjusted analysis of the total market with the sample groups as explanatory variables 

In the final analysis, displayed in table 6, OxMetrics has removed the rational dummy. The 

three remaining variables are significant in explaining the total number of transactions in the 
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market.  If the markets are rational it would be logical to assume that the samples of the 

rational investors are significant in explaining the market. Since the total sample of rational 

investors is significant, but the dummy variable is not, could mean that the rational investors 

have not been influenced by the introduction of HFT and have not changed their behavior 

dramatically after April 2010.   

This section will outline the conclusion of hypothesis 1. It is clear from the first analysis that 

the irrational investors have been significantly less active after the computer upgrade. This 

could mean that the introduction of HFT has a negative effect on the irrational investors. It is 

difficult to draw a definite conclusion because of the economical turbulence that is reflected 

in the data samples. However, if it was the macroeconomic conditions that caused the 

relationship it is curious that the rational investors significantly increased their activity level 

after the computer upgrade since it was expected that the rational investors would remain 

unaffected by it. The increase could be a consequence of the adoption of HFT by any of the 

three rational investors. It is difficult to confirm this because most companies do not 

proclaim their involvement with HFT. It is important to note that the two tests involving the 

rational dummy led to two different conclusions. This could mean that the data is borderline 

significant, which would make it difficult to draw conclusions.  With the limited time series 

data that I have available it seems that the irrational investors are being squeezed out of the 

financial markets. This is just an interpretation of the data up to this point, how it will evolve 

is another matter.   

5.2 Hypothesis two 
In the second hypothesis I attempt to discover whether irrational investors can survive in the 

market place. If irrational investors have an influence on the asset price they will increase 

the market volatility. If the introduction of more arbitrageurs (rational investors) through 

HFT reduces the market volatility it can be proof of the irrational investors influence. I run a 

test to see if there have been any significant changes to the volatility after the introduction 

of the new computer system in April 2010. The sample period has been very volatile, this 

should have (theoretically) reduced the willingness of rational investors to exploit the 

mispricing, and increased the irrational investors influence on the asset price.  
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The variable in this analysis is the volatility of the stock market. Volatility is known to be 

serially correlated (Brooks, 2008). Figure 10 shows the daily percentage change in total value 

of OSE. This figure displays periods of both high and low levels of change in the market.  

 

Figure 10: Daily percentage change in the value of OSE (2001-2012) 

Figure 11 shows a similar graph, but it displays the first difference of the actual volatility of 

the OSE.  As we can see from both of the graphs below, periods of high volatility tends to 

follow periods of high volatility, and periods of low levels of volatility also tends to follow 

each other.  

 

Figure 11: First difference of the volatility of OSE 
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Visual analysis shows that periods with large changes tend to group together. This is called 

volatility clustering and is common in financial data (Brooks, 2008). There are four-five 

periods of large and frequent changes in the sample. Both graphs can be seen as evidence 

that the data set is serially correlated.

 

Figure 12: VIX index distribution 

The control variable for the economical unrest in the market (VIX) displays a similar pattern 

as the OSE. There are five periods with high levels of unrest. This could mean that the 

incorporation of the VIX index may be able to control for the macroeconomic noise 

influencing OSE. 

 

Figure 13: Correlogram showing the Auto correlation function for the volatility 
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Figure 14: Correlogram showing the Auto correlation function for the residual of the adjusted closing price of OSE 

The auto correlation function (figure 13) shows that the volatility process will adjust to 

shocks very slowly. This means that the volatility data seems significantly auto correlated. In 

classical regression analysis, autocorrelation creates problems because it breaches an 

assumption for ordinary least squares regression. If auto correlation is present in the data it 

means that the error terms in the GARCH analysis will be correlated. The correlation in the 

error terms leads to an underestimating of the standard errors which leads to overestimated 

t-scores (Brooks, 2008).  Figure 14 shows the correlogram for the residuals of the adjusted 

closing price. This ACF shows that shocks introduced to the system will disappear, but it will 

take a long time for the effects of the shock to die out.   

Looking at the historical volatility data it is natural to expect that the density function of the 

historical volatility to be of a non normal form. Volatility tend to appear in clusters and be 

serially correlated which makes it natural with a non normal density distribution. Figure 15 

shows the density function of the historical volatility compared to the normal density 

function. 
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Figure 15: Shows the kurtosis and skewness of the volatility data’s probability distribution 

The kurtosis describes how the data’s probability distribution creates a peak, instead of the 

traditional bell shaped normal curve. Figure 15 shows a significant kurtosis in the data 

sample. This means that the residuals from the linear regression are not normally 

distributed. If they are not normally distributed there are certain tests that cannot be 

utilized on the data. It also shows significant positive skewness.  

Visual inspections are always prone to fault. A closer look at the descriptive statistics in 

Oxmetrics gave the following information: 

Observations 2700 

Mean 298.85 

Std.Devn. 119.30 

Skewness -0.0060737 

Excess Kurtosis -1.3235 

Minimum 98.570 

Maximum 524.37 

Asymptotic test:  Chi^2(2) 197.07 [0.0000] 

Normality test:   Chi^2(2) 372.65 [0.0000] 

ARCH 1-2 test:    F(2,2691) 18.470 [0.0000] 

Table 7: Descriptive statistics for the OSE adjusted closing value 
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In the normality test and the asymptotic test the null hypothesis states that the data 

samples error terms are normally distributed, where as the alternative hypothesis states 

that the data samples error terms are not normally distributed. From this analysis we can 

clearly see in the asymptotic test (p-value = 0), and the normality test (p-value = 0) that the 

data does not possess normally distributed error terms. The ARCH test is a test for 

autocorrelation. The test shows that the error terms has a non linear pattern (p-value = 0). A 

non linear pattern means that the values of the error terms are influenced by its preceding 

values. 

The characteristics that the data displays are normal when dealing with financial time series. 

To analyze my data further I use a model that can handle the non linear character inherent 

in the data.  One such model is the GARCH (1, 1).  

The GARCH analysis examines whether the volatility of OSE has changed significantly after 

April 2010. The test yielded the following results: 

 
Table 8: Modeling volatility with a GARCH (1, 1) model 

Table 8 displays the results from the GARCH analysis investigating the volatility of OSE. Alpha 

0 is a constant. The variable Bin price is the dummy variable for the adjusted price level to 

see if the prices have significantly changed after April 2010. The VIX variable is the control 

variable that will control for the macroeconomic noise that has been significant in the 
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sample period. Alpha 1 is the coefficient for the first order autocorrelation, and beta is the 

coefficient of the first order auto regression. The table also shows other statistics relating to 

descriptive statistics and model fit.  The analysis shows that the adjusted prices are not 

significantly different after the computer upgrade. The control variable for the macro 

economy is significant (p-value = 0) in describing the price movements. It is surprising that 

the volatility is not significantly dependant on its lagged values (p=0,089). With volatility 

clustering present in the data I would have expected this parameter to be significant. The 

effect of the lagged shock is significant. It is surprising that the lagged values of the volatility 

is not significant, but that could be an effect of the unique macroeconomic situation. Since 

2008 the economy has been thrown back and forth from constant economical shocks. These 

frequent and significant shocks may have caused such movements in the volatility that the 

previous values became less important predictors. This could mean that the volatility over 

this period has been shock driven (mainly influenced by u). The financial markets have been 

extremely volatile in the sample period. This makes it impossible to determine whether the 

relationship is a normal phenomenon or caused by the extreme conditions. 

If I assume that there is nothing wrong with the data or the analysis it would mean that the 

introduction of HFT has had no effect on the volatility of the stock market. There are certain 

difficulties associated with the data sample. The biggest problem is the amount of 

macroeconomic noise that has influenced the markets since 2008. There have been periods 

of extreme volatility. I believe I have been able to remove most of the influence of these 

factors from my analysis by adding the VIX as a control variable, but this period of time has 

been unique so the results may have been different with longer data samples.  

Another issue is that I have assumed that HFT robots act rationally. In the sample period, 

there is evidence of at least one trading robot acting irrationally in a case where two 

investors were charged with market manipulation. The robot observed movements in stocks 

with low liquidity and treated it as a stock where the investor interest increased 

dramatically. The investors triggered the robots interest and then reversed their position for 

a profit. In this instance, the computer was taken advantage of because of its simple trading 

behavior (Steinsland and Dahl, 2012). If enough robots act in an irrational manner it can 

remove the foundation that this thesis is built upon.  
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6. Conclusion 
It is not easy to distinguish between irrational and rational investors in aggregated data. In 

my first hypothesis I looked into Friedman’s (1953) claim of the survival of irrational 

investors. The analysis shows that the numbers of transactions performed by the irrational 

investors were significantly reduced after April 2010. This is not evidence proving that the 

irrational investors will die out. It only demonstrates that the irrational investors have been 

less active. It is therefore acceptable to conclude that the introduction of HFT has had a 

negative effect on irrational investors which could lead to their extinction (if the trend 

continues).  

The second hypothesis investigated the power of irrational investors’ influence on asset 

prices. The analysis showed that the volatility of OSE had not changed significantly after April 

2010 when controlled for the macroeconomic volatility. This supports the notion that 

irrational investors do not have an influence on the asset price. Aspects of the sample data 

from hypothesis 1 illustrated that the irrational sample was well modeled by the normal 

distribution. These results could support the idea of random behavior among irrational 

investors therein nullifying their own price effect.  

It is interesting to see from the data under hypothesis 1 that the irrational sample clearly 

showed different characteristics than the rational sample and the market data. This could be 

seen as evidence for a rational market and that the irrational investors act in a random 

manner. It would be interesting to perform deeper enquiries in these topics.  However, 

detailed information would need to be obtained from the investment banks on their rational 

and irrational investors. At the moment there is too much information that is withheld to 

fully understand the relationship between irrational and rational investors. 

To conclude H0 is rejected, and H1 is accepted. Irrational investors cannot survive in the 

financial markets. H2 is rejected, and H3 is accepted. Rational investors had an increase in 

activity after April 2010 which could be explained by their adoption of HFT.  H5 is accepted. 

The market volatility is unaffected by the introduction of HFT proving that irrational 

investors do not have an influence on asset prices.   
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8. Appendix A 
 

Dataset used in hypothesis 1, acquired from OSE.no. 

 
Transaction (Market share) 

Skandiabanken Nordnet Netfonds Total 
irrational SEB Artic Carnegie Totalt 

rational 
Total 

sample size 

jan.08 1,61 9,46 4,95 16,01 7,65 1,63 3,35 12,64 28,65 
feb.08 1,74 10,11 5,23 17,08 7,43 1,88 3,48 12,79 29,87 

mar.08 1,86 9,98 5,06 16,89 7,54 1,65 3,09 12,28 29,17 
apr.08 1,57 9,66 4,79 16,03 7,27 1,89 3,19 12,36 28,39 
mai.08 1,72 9,51 4,37 15,60 8,17 1,83 2,59 12,59 28,19 
jun.08 1,16 8,80 3,61 13,57 8,38 2,08 2,45 12,91 26,47 
jul.08 1,07 7,40 3,37 11,83 9,16 1,74 2,26 13,16 24,99 

aug.08 1,12 8,46 3,71 13,29 8,93 2,29 2,19 13,41 26,69 
sep.08 1,27 9,35 3,56 14,18 9,19 1,87 1,88 12,95 27,13 
okt.08 1,98 10,81 4,42 17,21 10,29 1,95 1,97 14,21 31,42 
nov.08 2,30 13,36 5,24 20,90 9,51 1,81 1,49 12,81 33,71 
des.08 2,36 12,96 5,15 20,47 8,83 2,18 1,55 12,56 33,03 
jan.09 2,26 13,01 5,44 20,71 8,68 2,44 1,75 12,87 33,57 
feb.09 2,14 12,64 4,89 19,68 9,01 2,06 1,81 12,89 32,57 

mar.09 1,99 12,72 4,80 19,52 9,08 2,16 1,58 12,83 32,35 
apr.09 2,12 12,23 4,81 19,16 8,67 2,22 2,55 13,45 32,61 
mai.09 2,33 12,95 5,01 20,28 8,14 2,12 2,27 12,53 32,81 
jun.09 2,08 12,74 4,74 19,56 8,58 1,99 2,34 12,90 32,46 
jul.09 1,91 9,94 3,92 15,78 11,20 1,94 2,12 15,26 31,03 

aug.09 1,85 11,21 4,17 17,24 10,30 2,25 2,49 15,04 32,28 
sep.09 1,83 11,66 3,97 17,46 8,45 2,58 2,56 13,59 31,05 
okt.09 1,88 11,02 4,03 16,92 8,55 2,45 2,48 13,48 30,40 
nov.09 1,94 11,97 4,39 18,29 7,83 2,18 2,00 12,01 30,30 
des.09 1,86 10,96 4,31 17,12 8,28 2,21 1,98 12,47 29,60 
jan.10 1,89 11,44 4,21 17,54 7,57 2,39 2,41 12,37 29,91 
feb.10 1,58 10,91 3,59 16,08 7,96 2,31 2,02 12,30 28,37 

mar.10 1,94 10,50 3,82 16,27 8,51 2,13 2,60 13,24 29,51 
apr.10 1,85 8,97 3,39 14,21 7,46 2,08 2,43 11,97 26,17 
mai.10 1,51 8,46 3,00 12,97 8,26 1,68 1,92 11,85 24,82 
jun.10 1,42 8,09 2,89 12,40 8,08 1,79 2,34 12,20 24,60 
jul.10 1,37 6,90 2,64 10,90 8,22 1,13 1,87 11,22 22,12 

aug.10 1,48 8,13 3,15 12,76 8,14 2,23 1,88 12,26 25,02 
sep.10 1,53 8,19 3,17 12,89 7,69 2,11 2,30 12,09 24,98 
okt.10 1,52 7,70 2,94 12,15 7,25 1,97 2,14 11,36 23,52 
nov.10 1,93 7,89 3,19 13,00 7,10 2,06 2,41 11,58 24,58 
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des.10 2,03 7,72 3,35 13,10 7,92 1,74 3,36 13,01 26,11 
jan.11 1,82 7,02 2,97 11,81 7,60 2,13 3,23 12,96 24,77 
feb.11 1,81 6,46 2,84 11,11 7,80 1,62 2,98 12,39 23,50 

mar.11 1,40 5,75 2,52 9,67 7,67 1,30 2,76 11,72 21,39 
apr.11 1,27 5,36 2,51 9,14 8,64 1,84 2,96 13,44 22,58 
mai.11 1,22 5,37 2,40 8,98 9,97 1,74 2,92 14,62 23,60 
jun.11 1,07 4,98 2,10 8,14 10,33 1,05 2,45 13,84 21,98 
jul.11 1,17 4,92 2,08 8,17 10,40 1,30 2,47 14,17 22,35 

aug.11 1,33 5,24 2,53 9,09 10,44 1,31 2,29 14,05 23,14 
sep.11 1,05 5,20 2,37 8,61 9,95 1,50 2,18 13,64 22,25 
okt.11 1,26 5,46 2,72 9,44 9,35 1,58 2,70 13,63 23,07 
nov.11 1,17 5,40 2,45 9,02 8,26 1,56 2,90 12,73 21,75 
des.11 1,33 5,05 2,74 9,11 7,58 1,55 1,85 10,98 20,10 
jan.12 1,38 5,25 2,95 9,58 7,00 1,69 1,96 10,66 20,23 
feb.12 0,98 4,50 2,59 8,07 8,10 3,61 2,41 14,12 22,19 

mar.12 0,80 4,56 2,31 7,67 7,77 3,22 2,67 13,66 21,33 
apr.12 0,72 3,79 1,91 6,42 8,17 3,03 2,71 13,90 20,32 

Average 1,61 8,69 3,60 13,91 8,51 1,98 2,40 12,88 26,79 
 

 

Total number of transactions 
Skandia-
banken Nordnet Netfonds Total 

Irrational SEB Artic Carnegie Total 
Rational Totalt 

01.01.2008 54977 323424 169306 547707 261779 55703 114663 432145 3420128 
01.02.2008 45851 267008 138159 451018 196195 49629 91874 337698 2640068 
01.03.2008 37614 202334 102573 342521 152842 33516 62561 248919 2027454 
01.04.2008 40776 250936 124465 416177 188877 49076 82893 320846 2596456 
01.05.2008 44388 245289 112801 402478 210764 47181 66852 324797 2580320 
01.06.2008 28134 213831 87744 329709 203710 50498 59439 313647 2430182 
01.07.2008 28104 194926 88726 311756 241501 45945 59482 346928 2635336 
01.08.2008 25966 196896 86194 309056 207670 53180 51027 311877 2326288 
01.09.2008 46099 338079 128810 512988 332502 67792 68152 468446 3617330 
01.10.2008 80757 441222 180433 702412 419960 79411 80413 579784 4080656 
01.11.2008 69730 404865 158619 633214 287954 54921 45190 388065 3029418 
01.12.2008 54784 300190 119254 474228 204608 50471 35960 291039 2316652 
01.01.2009 60005 345428 144322 549755 230334 64786 46548 341668 2655038 
01.02.2009 50437 297331 115027 462795 212007 48545 42676 303228 2352040 
01.03.2009 49346 315060 118774 483180 224881 53551 39243 317675 2475938 
01.04.2009 47409 272892 107273 427574 193587 49650 56846 300083 2231724 
01.05.2009 67548 376033 145354 588935 236225 61571 66048 363844 2903688 
01.06.2009 55627 341553 127049 524229 229843 53268 62778 345889 2680314 
01.07.2009 45198 234711 92637 372546 264486 45773 49953 360212 2361152 
01.08.2009 47035 285119 106087 438241 261989 57139 63356 382484 2542692 
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01.09.2009 52887 337136 114906 504929 244416 74550 74076 393042 2891904 
01.10.2009 59513 349602 127805 536920 271401 77661 78612 427674 3173402 
01.11.2009 54624 337718 123760 516102 220964 61612 56342 338918 2821546 
01.12.2009 44617 263191 103596 411404 198917 53150 47573 299640 2402442 
01.01.2010 61230 370331 136203 567764 245113 77447 77932 400492 3237370 
01.02.2010 49485 342532 112562 504579 249947 72566 63396 385909 3138698 
01.03.2010 57278 309254 112622 479154 250508 62876 76613 389997 2945076 
01.04.2010 58324 283005 107034 448363 235388 65524 76691 377603 3155794 
01.05.2010 55636 311212 110270 477118 303739 61682 70687 436108 3678908 
01.06.2010 50820 288951 103381 443152 288599 64068 83508 436175 3573882 
01.07.2010 42976 216843 82934 342753 258559 35387 58789 352735 3143806 
01.08.2010 43971 242320 93934 380225 242595 66569 56167 365331 2979824 
01.09.2010 45435 242623 93795 381853 227748 62391 68135 358274 2962702 
01.10.2010 47416 240598 91886 379900 226597 61686 66878 355161 3125922 
01.11.2010 66872 273980 110852 451704 246676 71722 83804 402202 3473608 
01.12.2010 56409 214116 93070 363595 219710 48236 93111 361057 2775240 
01.01.2011 64976 250277 106035 421288 270946 76095 115313 462354 3566860 
01.02.2011 63273 225982 99240 388495 272602 56483 104012 433097 3495988 
01.03.2011 53019 217940 95593 366552 290870 49206 104548 444624 3792216 
01.04.2011 33758 142300 66516 242574 229294 48940 78579 356813 2654650 
01.05.2011 42787 188068 83971 314826 349314 60886 102345 512545 3505172 
01.06.2011 35039 163533 68930 267502 339308 34594 80620 454522 3284260 
01.07.2011 36730 154057 64973 255760 325286 40813 77380 443479 3128618 
01.08.2011 73237 288578 139217 501032 575044 72416 126334 773794 5508920 
01.09.2011 46967 233296 106146 386409 446627 67467 97917 612011 4487308 
01.10.2011 54444 235507 117437 407388 403674 68057 116653 588384 4316530 
01.11.2011 53457 245988 111388 410833 376392 71208 132107 579707 4555214 
01.12.2011 43703 166546 90278 300527 249897 51198 61112 362207 3297630 
01.01.2012 55292 209571 117846 382709 279802 67676 78187 425665 3994950 
01.02.2012 62673 243271 119099 425043 386437 93961 103880 584278 4670294 
01.03.2012 53061 213907 103068 370036 328693 75288 97282 501263 4283174 

 

 

 


