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using C,, %0, 0.5], has been used to simulate dynamigressible phases is describeidgisontinuity equation as
cases like rising bubbles (Vachaparambil and Einarsrud, cU 0 @)
2019a), microfluidic T-jurtion (Soh et al., 2016), ’
microchannels (Pavuluri et.aR018), capillary rise (Raeini The momentum equation is written based on a modified
et al, 2012; Vachaparambil and Einarsrud, 2019d)tessure ), definedaspy,, p g x,as

interfacial mass transfer (Maes and Soulaine, 2018), and
bubble growth (Vachaparambil and Einarsrud, 2020)
whereas when modelling static cases, like stationary
millimeter sized bubbleCs, is set equal to 0.98 (Vacha-
parambil and Einarsrud, 2019a). The choice of the value where Fsr is the surface tension modelled based on SSF
used in the simulations is often heuristic and to the besgkescribed in Vachaparamband Einarsrud (2019a) and
knowledge of the authors there has not been a systematigeini et al. (2012). Initiallg, smoothed volume fraction is

attempt to quantify the effect of this user-definedbbtained using a three consecutive smoothing stepsi(
parameter. 2,3) as

In this paper, we investigatee effect of the sharpening s o s 1c s ©®
coefficient used in the SSF model, as developed on P < P f>f'c ‘ 5
OpenFOAM® 6 by Vachaparambil and Einarsrud (2019a)yhere 5= ., Cis equal to 0.5, and , ., repre-

. . . . . . 1

and static cases like millimetend sub-millimeter bubbles. it normal to the smoothed interface is calculated and
All the simulations discussed in this work use th@orrected for the effects of contact angle, see
sharpening coefficient typicallysed in simulating practical Vachaparambil and Einarsrud (2019a). Subsequently an

flow scenarios, i.e0 CQ 05 (@ased on the values jnjtial estimate of curvature is calculated as
used in Raeini et al. (2012), Soh et al. (2016), Maes and

suU
T <, uu <prgh g X <
<, (Y <UT) Fsr 5)

Soulaine (2018), Pavuluri at. (2018), Vachaparambil and N < % @)
Einarsrud (2019a), Vachaparambil and Einarsrud (2020)). 1<l
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2 Governing equations where , defined as1l0® —— ,is used to prevent

The volume fraction (;) used in VOF method is a Scalardenominator_ from becomingzerot The curvature is
field that is zero in gas phase, unity in the liquid phase, aﬁanoothed using a two step procedurel( 2) as

0 , 1 at the interface. The interface dynamics is < w S m)fl
captured based on the advection of as .o 2A, Z\A_)<W—|° 8
clf/fic
S 1

< U <@ Yu) 0 (1) where 7 ,, w A 0001, and A min(l max

(; 0)@ min(l max(, 0))).The final curvature is
whereU is the velocity in both phases and the third term ig5|culated as

the interface compression term that acts in the interfacial

region to prevent excessive smearing usihgwhich is _ W3 oo (9)
defined as el W
U c ‘ . (2) The surface tension is estimated basedFp
Si ] ] < o, where  is
where C , /, S;, andn represent adjustable compression 1 ) C,, Csv Cuo
factor (set equal to unity as recommended by Greenshields =" 1 C_ ‘[tmn(max( 1515 1(10)

(2019)), volumetric flux across the cell face, cell face surface
area, and unit normal to interface respectively (DeshpandéhereCsnis the sharpening coefficient which when equal to

et al., 2012). The fluid properties like density) (and Zero produces , that is equivalent to ,. Due to the
viscosity ( ) are calculated as coupled nature of Eq. (4) and Eq. (5), these equations are

solved by Pressure-Implicivith Splitting of Operators
(PISO) algorithm (Deshpande et al., 2012). PISO algorithm
where , 1 ,. The mass conservation of the incom-involves estimation of a predicted velocity that is used to

11 2 » Where [%o ] 3)
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calculate pressure, using pressure correction equatiofgble 1 Solvers used for the discretized equation (Greenshields,
which is used to update the velocity in an iterative manné®19)

(Deshpande et al.,, 2012). In order to reduce spurious Equation Linear solver Smawtr/preconditioner Tolerance
velocities, the force balance between pressure gradiebgssure correction PCG GAMG 16°
surface tensiomndgravitational force due wiscretization equation

. . . 1 H 10
is ensured by calculating the gradients at cell faces '4dnentum equation smoothSolver  symGaussSeidel 10

described in Deshpande et al. (2012). However the iteratng'gja{;g;“f’” smoothSolver  symGaussSeidel )
procedure used to solvg,, i.e., the PISO algorithm,

converges based on a user defined tolerance (Deshpandgft&ct of grid resolution on éhaccuracy of the capillary rise
al., 2012). This tolerance, required to calculgg, simulations. The boundary conditions used fdp is zero
introduces a force imbalance between surface tensiddfadient at the outlet, Dirichlet condition equal to one at
gravitational force, and pressure gradient which can galet, and zero gradient with a constant contact angle of 45°
reduced by setting a very low convergence criterion, i the side boundaries. The modified pressusg, | uses

10 2 used in Table 1, as recommended by Deshpande%ificmet condition, equal to zero, at inlet and outlet but
al. (2012) ' the side walls are assigned the zero gradient condition. The

boundary conditions fotJ at side boundaries are set as no
slip whereas the inlet and outlet are assigned a pressure-
inlet outlet velocity condition (Greenshields, 2019). The

The governing equations are discretized using first an%lmulatlons are |_n|t|aI|;ed with liquid cplumn ata_he|ght of
- . 8 mm (from the inlet) in the computational domain. These
second order methods in timend space resptively, see

. . simulations are run until 1.5 s which is enough to reach
Vachaparambil and Einarsrud (2019a), and solved base g

hods d ibed in Tabl. Oth ical i Steady capillary rise heighwith maximum time step,
on methods described in - Other numerical settings ., 1ated based on Eq. (11), equal to 3.5 s.

like the sub-cycling of volume fraction equation and In order to model a stationary bubble of radils
momentum predictor, which are relevant in solving thyhich s initialized at the center of a square computational
governing equations, are set based on OpenFOAdlault  Gomain of dimensions4R g4R, gravity is neglected. The

settings/recommendations fomsilating multiphase flows four boundaries are assigned zero gradient conditiotfor
which has also been used in Vachaparambil and Einarsradd , but the p,, employs a Dirichlet condition equal

(2019a). The simulations are run with no under-relaxatiomo the operating pressure (equal to 101,325 Pa). The

3 Computational domain and solver settings

factor and maximum time step is calculated as bubbles modelled in this work are a millimeter sized bubble
1 of radius equal to 2.5 mm and a sub-millimeter bubble of
to > C,%n JC, ¥ &£,° radius equal to 0.25 mm. These simulations are run until
and t 0 maxC, % 1G, ) 11) 0.05 s and the corre_sponding_time step constr_aints based
on the mesh resolution are discussed in Section 4.2 and
where C, 001, C, 10, avg X ,Yand Section 4.3.
e, .
al X)% . ag @Nd -, are defined as the 4 Results and discussions

average dynamic viscosity and density between the phases

and % is the mesh resolution used in the simulationsn order compare the results from the dynamic and static
(Deshpande et al., 2012; Vachaparambil and Einarsrusimulations, spuriousvelocities, denotedy Us, are

2019a). calculated as max( ]). The]time averaging of an arbitrary
The fluid properties used in the both capillary rise angparameter ) and Epurious velocities are represented as
stationary bubble simulations are,= 1000 kg/m, ,=  with an over bar ag) andy . respectively.

1 kg/n®, vi=10 ®m?¥s, v,=1.48u10 °m?s, and = 0.07 _ _
N/m. The capillary rise simulations usg equal to 10 4.1 Capillary rise

m/s? whereas stationary bubkd@nulations neglect gravity For 2D capillary rise, the equilibrium heightir) at which

(Yamamoto et al., 2017; Vachaparambil and Einarsrud, i .
2019a) when gravitational force balance the vertical component of

. . . surface tension force for a liquid column rising between
The computational domain used for the capillary, .
. . . . . two parallel plates can be theoretical calculated as
rise simulations is 20 mml mm and meshed with a

hexahedral grid of 40020. This mesh is chosen based on h, 2 cos (12)
the work by Yamamoto et al. (2017) that investigated the %gt] ]






