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using Csh [0, 0.5]�‰ , has been used to simulate dynamic 
cases like rising bubbles (Vachaparambil and Einarsrud, 
2019a), microfluidic T-junction (Soh et al., 2016), 
microchannels (Pavuluri et al., 2018), capillary rise (Raeini 
et al., 2012; Vachaparambil and Einarsrud, 2019a), 
interfacial mass transfer (Maes and Soulaine, 2018), and 
bubble growth (Vachaparambil and Einarsrud, 2020) 
whereas when modelling static cases, like stationary 
millimeter sized bubble, Csh is set equal to 0.98 (Vacha-
parambil and Einarsrud, 2019a). The choice of the value Csh 
used in the simulations is often heuristic and to the best 
knowledge of the authors there has not been a systematic 
attempt to quantify the effect of this user-defined 
parameter.  

In this paper, we investigate the effect of the sharpening 
coefficient used in the SSF model, as developed on 
OpenFOAM�£ 6 by Vachaparambil and Einarsrud (2019a), 
to model two dimensional dynamic cases like capillary rise 
and static cases like millimeter and sub-millimeter bubbles. 
All the simulations discussed in this work use the 
sharpening coefficient typically used in simulating practical 
flow scenarios, i.e., sh0 0 5C ��� 0 � 0 (based on the values 
used in Raeini et al. (2012), Soh et al. (2016), Maes and 
Soulaine (2018), Pavuluri et al. (2018), Vachaparambil and 
Einarsrud (2019a), Vachaparambil and Einarsrud (2020)).  

2 Governing equations 

The volume fraction (1� ) used in VOF method is a scalar 
field that is zero in gas phase, unity in the liquid phase, and 

10 1�� � � � at the interface. The interface dynamics is 
captured based on the advection of 1�  as  
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where U is the velocity in both phases and the third term is 
the interface compression term that acts in the interfacial 
region to prevent excessive smearing using Ur which is 
defined as  
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where �C , �I , fS , and n represent adjustable compression 
factor (set equal to unity as recommended by Greenshields 
(2019)), volumetric flux across the cell face, cell face surface 
area, and unit normal to interface respectively (Deshpande 
et al., 2012). The fluid properties like density (� ) and 
viscosity (� ) are calculated as  
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where 2 11� �� � � � . The mass conservation of the incom-

pressible phases is described using continuity equation as  
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The momentum equation is written based on a modified 
pressure ( rghp ), defined as rghp p �� � � � � ¸g x , as  
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where FST is the surface tension modelled based on SSF 
described in Vachaparambil and Einarsrud (2019a) and 
Raeini et al. (2012). Initially, a smoothed volume fraction is 
obtained using a three consecutive smoothing steps (i = 1, 
2, 3) as  
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where 1
s� = 1� , C is equal to 0.5, and 1 c f� �l� � � � repre-

sents the interpolation of 1�  from cell center to face. The 
unit normal to the smoothed interface is calculated and 
corrected for the effects of contact angle, see 
Vachaparambil and Einarsrud (2019a). Subsequently an 
initial estimate of curvature is calculated as  
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where ,�  defined as � 	 � 
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denominator from becoming zero. The curvature is 
smoothed using a two step procedure (i=1, 2) as  
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where 1 1
s� ��� , 0 001w A� � � � � �, and min(1 maxA � � � 
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The final curvature is 
calculated as  
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The surface tension is estimated based on ST final��� � � ¸F  

sh,��‹  where sh�  is  
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where Csh is the sharpening coefficient which when equal to 
zero produces sh�  that is equivalent to 1� . Due to the 
coupled nature of Eq. (4) and Eq. (5), these equations are 
solved by Pressure-Implicit with Splitting of Operators 
(PISO) algorithm (Deshpande et al., 2012). PISO algorithm 
involves estimation of a predicted velocity that is used to 
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calculate pressure, using pressure correction equation, 
which is used to update the velocity in an iterative manner 
(Deshpande et al., 2012). In order to reduce spurious 
velocities, the force balance between pressure gradient, 
surface tension, and gravitational force due to discretization 
is ensured by calculating the gradients at cell faces as 
described in Deshpande et al. (2012). However the iterative 
procedure used to solve rgh ,p  i.e., the PISO algorithm, 
converges based on a user defined tolerance (Deshpande et 
al., 2012). This tolerance, required to calculate rghp , 
introduces a force imbalance between surface tension, 
gravitational force, and pressure gradient which can be 
reduced by setting a very low convergence criterion, like 
10 20��  used in Table 1, as recommended by Deshpande et 
al. (2012). 

3 Computational domain and solver settings  

The governing equations are discretized using first and 
second order methods in time and space respectively, see 
Vachaparambil and Einarsrud (2019a), and solved based 
on methods described in Table 1. Other numerical settings 
like the sub-cycling of volume fraction equation and 
momentum predictor, which are relevant in solving the 
governing equations, are set based on OpenFOAM�£ default 
settings/recommendations for simulating multiphase flows 
which has also been used in Vachaparambil and Einarsrud 
(2019a). The simulations are run with no under-relaxation 
factor and maximum time step is calculated as  
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where 1 0 01C � � � �, 2 10C �� , avg�	 � x �� � � % � �, and �	 ��  

3
avg( )� x �� % � �.  avg�  and avg�  are defined as the  

average dynamic viscosity and density between the phases 
and x�%  is the mesh resolution used in the simulations 
(Deshpande et al., 2012; Vachaparambil and Einarsrud, 
2019a).  

The fluid properties used in the both capillary rise and 
stationary bubble simulations are 1� = 1000 kg/m3, 2� = 
1 kg/m3, v1=10 6�� m2/s, v2=1.48�u10 5�� m2/s, and � = 0.07 
N/m. The capillary rise simulations use �_ �_g  equal to 10 
m/s2 whereas stationary bubble simulations neglect gravity 
(Yamamoto et al., 2017; Vachaparambil and Einarsrud, 
2019a). 

The computational domain used for the capillary 
rise simulations is 20 mm�u1 mm and meshed with a 
hexahedral grid of 400�u20. This mesh is chosen based on 
the work by Yamamoto et al. (2017) that investigated the 

Table 1  Solvers used for the discretized equation (Greenshields, 
2019) 

Equation  Linear solver Smoother/preconditioner Tolerance 

Pressure correction 
equation  

PCG  GAMG  10��20 

Momentum equation smoothSolver symGaussSeidel  10��10 

Volume fraction 
equation  

smoothSolver symGaussSeidel  10��10 

 

effect of grid resolution on the accuracy of the capillary rise 
simulations. The boundary conditions used for 1�D  is zero 
gradient at the outlet, Dirichlet condition equal to one at 
inlet, and zero gradient with a constant contact angle of 45° 
at the side boundaries. The modified pressure (rghp ) uses 
Dirichlet condition, equal to zero, at inlet and outlet but 
the side walls are assigned the zero gradient condition. The 
boundary conditions for U at side boundaries are set as no 
slip whereas the inlet and outlet are assigned a pressure- 
inlet outlet velocity condition (Greenshields, 2019). The 
simulations are initialized with liquid column at a height of 
8 mm (from the inlet) in the computational domain. These 
simulations are run until 1.5 s which is enough to reach 
steady capillary rise height with maximum time step, 
calculated based on Eq. (11), equal to 3.5 �s. 

In order to model a stationary bubble of radius R, 
which is initialized at the center of a square computational 
domain of dimensions 4 4R R�q , gravity is neglected. The 
four boundaries are assigned zero gradient condition for U 
and 1�  but the rghp  employs a Dirichlet condition equal 
to the operating pressure (equal to 101,325 Pa). The 
bubbles modelled in this work are a millimeter sized bubble 
of radius equal to 2.5 mm and a sub-millimeter bubble of 
radius equal to 0.25 mm. These simulations are run until 
0.05 s and the corresponding time step constraints based 
on the mesh resolution are discussed in Section 4.2 and 
Section 4.3.  

4 Results and discussions 

In order compare the results from the dynamic and static 
simulations, spurious velocities, denoted by Usc , are 
calculated as max(� ] � ]U ). The time averaging of an arbitrary 
parameter �)  and spurious velocities are represented as 
with an over bar as �)  and scU  respectively.  

4.1 Capillary rise 

For 2D capillary rise, the equilibrium height (hT) at which 
when gravitational force balance the vertical component of 
surface tension force for a liquid column rising between 
two parallel plates can be theoretical calculated as 
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