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Abstract

The coastal Highway Route E39 aims to build a continuous road connection along
the west coast of Norway. Floating bridges are planned to replace the ferries at seven
major fjords along the route. These innovative floating structures require compre-
hensive understanding of the wave fields in the fjords. Currently, the information
on the wave fields can only be obtained from discrete field measurements. However,
the measurements cannot represent the entire domain due to the limited number of
wave gauges. Therefore, numerical wave modelling is needed in order to obtain an
extensive understanding of the wave propagation and transformation in the entire
domain of interest.

Phase-resolved wave models are able to represent most of the wave transformation
phenomena and provide time domain information for further engineering analysis.
However, the special coastal conditions in Norway limit the validity of many existing
phase-resolved wave models. The deep water conditions and strong variation of
the bathymetry created by the fjords go beyond the limits of many shallow water
wave models. The irregular coastline challenges the grid generation and boundary
treatments of many existing potential flow wave models. The large domain of
interest in the fjords makes the usage of computational fluid dynamics (CFD) models
impractical because of their high-demand of computational resources. Therefore, a
new phase-resolved numerical wave model is required for an accurate and efficient
simulation of large-scale wave propagation in the Norwegian fjords.

The first development for the new model is based on the improvement of depth-
averaged shallow water modelling technique. A quadratic non-hydrostatic pressure
profile is used to improve the ability of representing water waves in deeper water
conditions. The numerical model is implemented in the open-source hydrodynamics
framework REEF3D. The resulting wave model REEF3D::SFLOW inherits the high-
order discretisation schemes and parallel computation algorithm from the framework.
Comprehensive verification and validation of the model are performed through a
series of test cases. The tests show speed-up factors in the scale of 10 to 100 in
comparison to the CFD model REEF3D::CFD. This enables the model to be used
for large-scale simulations over a longer duration. The model demonstrates accurate
representations of wave propagation and transformation including wave breaking.
However, significant wave phase differences are observed during the de-shoaling
process in the test of wave propagation over a submerged obstacle. This is due to the
emerging short waves in the de-shoaling process resulting in deepwater conditions.
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The best performance of the model is found to be within a water depth to wavelength
ratio up to 0.25. As a result, the model is not recommended for the wave modelling
in the deepwater Norwegian fjords.

Further development of a fully nonlinear potential flow (FNPF) model is con-
ducted. The resulting model REEF3D::FNPF solves the Laplace equation together
with the boundary conditions on a σ-coordinate grid. The model also inherits the
high-order discretisation schemes and parallel computation algorithm. In some
simulations, the model is 800 times as fast as REEF3D::CFD for achieving the
same accuracy. The model is also validated through a large variety of test cases.
It is found that the accuracy of the model is not compromised by the water depth
conditions, for example the free surface elevations during the de-shoaling process
show a good agreement with the experimental measurements. The model is then
used to investigate relevant phenomena regarding the floating bridges inside the
fjords, including the evolution of rogue waves and the high-fidelity reproducing of
three-hour irregular sea states with different severity of wave breaking.

In order to address the irregular coastline, a novel coastline algorithm is developed
in REEF3D::FNPF. This algorithm provides a universal solution for the inclusion of
coastlines and boundary treatments. The model is then used to simulate full-scale
wave propagation in Mehamn harbour in northern Norway. The significant wave
heights Hs inside the harbour after the strong wave diffraction around the peninsulas
and breakwaters show a good agreement with experimental measurements. This
confirms the effectiveness of the coastline algorithm and the ability of the model of
representing strong wave diffraction. Further studies of the wave fields in Sulafjord
and Barørnafjord using REEF3D::FNPF provide insights on the wave frequency
transition inside the fjords. A maximum simulation time to real time factor of 10 is
also found for the large-scale simulations with tens of millions of cells.

The two new models REEF3D::SFLOW and REEF3D::FNPF are compared with
the original CFD model REEF3D::CFD through several test cases to highlight the
differences among them as well as their special features and area of applications.
REEF3D::FNPF is an ideal model for large-scale wave propagation over varying
bathymetry. REEF3D::SFLOW is a fast model for wave modelling in shallow to
intermediate water depth and a model to study swash zone dynamics and sediment
transport. REEF3D::CFD is the only model within the framework that is able
to represent the overturning wave breaker and an ideal model to study local wave
impacts and wave interaction with structures.

In conclusion, REEF3D::FNPF is suggested as the phase-resolving numerical
model for the wave analysis in the fjords for the E39 project. The model is seen
to be computationally efficient, phase-resolved, accurate and flexible. Developed as
part of the open-source numerical framework REEF3D, the model is freely available
to users. Future works of model coupling, inclusion of wind and current effects are
also summarised in the end.
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Chapter 1

Introduction

1.1 Background

As part of the National Transport Plan (NTP) for 2014-2023, the coastal highway
route E39 is a major coastal infrastructure project in Norway. It aims to build a
continuous road connection between Kristiansand and Trondheim across 5 counties
and covering 1000 km along the west coast of Norway (Dunham (2016)). The route
of the E39 coastal highway is illustrated in Fig. 1.1. The 5 counties along the
route represent 40% of the total Norwegian population (Statistics Norway (2020))
and include the commercial shipping centre and second largest city Bergen, the
research hub and third largest city Trondheim and the offshore industry base and
fourth largest city Stavanger. Therefore, a road connection in this area will bring
tremendous benefits to society as well as commerce, industry and research. Currently,
there are seven major ferry-crossings along the road, as shown in Fig. 1.1. This
makes traveling and transport discontinuous and leads to much of the travelling
time being spent on waiting for the next ferry. The E39 project plans to replace
the ferry connections with permanent bridge connections. It is estimated that these
planned permanent connections will nearly halve the travel time along the complete
route from Kristiansand to Trondheim from the current 21 hours to merely 13 hours
(Dunham (2016)). This dramatically shortened traveling time will greatly boost the
movement of the population as well as the transport and distribution of cargo and
goods. The continuous ferry-free E39 route is thus expected to have significant social
and economic impact on both the local regions as well as the entire nation.

The key engineering challenge of the E39 project is the fjord-crossings. In contrast
to rivers, the fjords were formed when ancient glaciers glided into the ocean, carving
deep trenches in its wake. As a result, the fjords are usually extremely wide and deep
and have strong variations in water depth. The width of the seven fjords along the
route E39 varies between 1.6 km to 5 km and the depth has a range from 400 m to
1300 m (Dunham (2016)). If a traditional suspension bridge is to be built for a 5 km
span in the fjords, the bridge length is about twice that of the Golden Gate Bridge
(2.7 km) in California, United States. It is a tremendous engineering challenge to
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Figure 1.1: Overview of the E39 coastal highway route (Vegvesen (2019)). The seven major
ferry-crossings to be replaced with permanent floating bridges are: Halsafjord, Jusundet, Sulafjord,
Vartdalsfjord, Nordfjord, Sognefjord, Bjørnafjord-Langenuen. Subsea tunnels are planned for
Romsdalfjord and Boknafjord in stead of floating structures (Dunham (2016)).

design and build a suspension bridge of such a long span. With the technology from
the Norwegian offshore industry and engineering experience of construction and
maintaining large moored floating platforms, alternative and innovative designs of
floating structures have been proposed for the fjord-crossings. There are so far three
main concepts of floating structures: a floating bridge with tension-leg platform (TLP)
type supporting structures, a floating bridge with multiple supporting pontoons and
a floating submerged tunnel-bridge. Those concepts are illustrated in Fig. 1.2.

The TLP floating bridge concept is inspired by the offshore industry. The deck of
the bridge is supported and connected by a few platforms with a tension-leg mooring
system that resembles the TLP platforms for offshore oil exploitation. Instead of
using ground based bridge towers, the floating TLP platforms serve as bridge towers
and carry the weight of the bridge. TLP platforms are usually used for deepwater
operations and therefore the concept is well suited for the water conditions inside
the fjords. The concept of the multi-pontoon bridge is based on existing bridges
of the same type in Norway, such as the Bergsysund bridge in the county of Møre
and Romsdal. Here, the weight of the bridge is distributed on a series of floating
pontoons rather than on bridge towers. This concept can be used together with a
tall bridge tower in a more shallow region to rise the height of the bridge in order for
ships to pass. The submerged tunnel-bridge has a similar supporting structure as
the multi-pontoon bridge. However, the road is located inside the submerged tunnel
connected to the pontoons, as seen in Fig. 1.2c. Fig. 1.2c shows how vehicles drive
through the enclosed structure beneath the water surface. The submerged design
allows ships to pass over the tunnel-bridges and thus avoid collision.

One of the main design concerns of these novel floating structures are the envi-
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(a) TLP type floating bridge (Statens Veg-
vesen (2019))

(b) Multi-pontoon floating bridge (Statens
Vegvesen (2019))

(c) Submerged tunnel-bridge (Statens Veg-
vesen (2019))

(d) Interior of a submerged tunnel-bridge
(Eidem (2018))

Figure 1.2: Concepts of floating structures for the permanent connections at Norwegian fjords along
the E39 coastal highway.

ronmental loads. Since these structures are usually moored to the bottom of the
fjords instead of having a ground based foundation, their motions are much more
influenced by wind, waves and current. In spite of the differences in the concepts,
all floating bridges have floating supporting structures such as TLP platforms or
pontoons at the free surface of the water. Therefore the influence of surface water
waves is one of the key design considerations to ensure the structural integrality and
limit the structure motion for the safety of passengers and vehicles.

The wave field is complicated inside the fjords. First, there is usually a mixture
of both ocean swell from the offshore area and local wind generated waves (Cheng
et al. (2019); DHI (2016)). These two wave systems tend to propagate in different
directions with different dominating frequencies. The relative importance of the two
wave systems also varies from fjord to fjord and changes over time in the same fjord.
The varying and interacting wave systems make the wave fields more unpredictable.
Second, the strong variation of the water depth inside the fjords and the irregular
coastlines creates strongly non-linear wave transformations, including shoaling, re-
fraction, diffraction, refraction and wave breaking. These wave transformations often
take place simultaneously and the joint effects are hard to calculate with analytical
formulations made for each individual phenomenon. As a result, the wave fields
inside the fjords are not stationary in time and not homogeneous in space. The
inhomogeneity can be significant even within the span of a bridge (Cheng et al.
(2019); Dai et al. (2020)), resulting in different wave loads for each pontoon. The
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understanding of the complicated wave field is the first step in the design process.

1.2 Motivation and objectives

So far, the only reliable source for the wave field information are in-situ measurements
that have been ongoing in the past years at several fjords. For example, both floating
buoys and acoustic wave gauges have been used to measure wave height time series
as well as directionality in Bjørnafjord from January 6, 2015 to April 30, 2019 (DHI
(2016)). Measurements at four wave gauges at Sulafjord have also started gradually
since 2016 (Fergstad et al. (2018)). However, the duration of the measurements
is not yet adequate to obtain long-term wave statistics at the time of writing the
thesis. It is also hard to obtain the comprehensive information of the waves in the
entire domain of interest due to the limited number of wave gauges that can be
deployed. In spite of these limitations, the field measurements provide valuable
short-term wave information at several locations under various wave conditions.
There have been extensive experimental investigations on coastal waves at many
facilities around the world. An alternative to the physical experiments are numerical
simulations. Many numerical wave models have been developed in the past decades
due to the progress in numerical methods and computational hardware. Numerical
wave models are usually less expensive as they do not require the time and material
for the construction and execution of the physical tests. The cost of numerical wave
models further reduces as many open-source wave models have been developed, such
as the spectral wave model SWAN (Booij et al. (1999)), the non-hydrostatic wave
model SWASH (Zijlema et al. (2011a)) and the hydrodynamics framework REEF3D
(Bihs et al. (2016)). Meanwhile, the efficiency of numerical wave models has been
further improved in recent years as high performance computation (HPC) facilities
become increasingly available. Numerical models are also less restricted to physical
limitations of facilities. Thus, it is possible to conduct full-scale investigations and
perform several numerical simulations simultaneously. Due to these practical features,
numerical models become increasingly important in coastal engineering. However,
the numerical simulation of waves near the Norwegian coast faces several challenges
because of the unique coastal topography in Norway.

The coastal area in Norway is special in comparison to most coasts along the
North Sea. Usually, the coastal area has shallow water conditions with mild changes
of bathymetry. For example, the bathymetry near Haringvliet, the Netherlands (Ris
et al. (1999); Navionics) is shown in Fig. 1.3a. The water depth near the shore is
typically below 10 m even 7 km away from the shoreline and the variation of the
water depth contours is moderate. In contrast, the Norwegian coastal area mostly
has deep water conditions and strong variations of bathymetry due to the fjords.
As an example, the bathymetry of Sulafjord is shown in Fig. 1.3b. Here, the water
depth quickly reaches 200 to 500 m inside the fjord within a short horizontal distance.
The red circle in Fig. 1.3b shows an area where water depth increases to 200 m only
211 m away from the nearest shoreline, creating a near 45◦ underwater slope. In
addition to the special bathymetry, the islands and archipelagos outside the fjords
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also increase the complexity of the coastlines. Moreover, the domain of interest at
the Norwegian coast extends to several tens of kilometres in each horizontal direction
due to the dimensions of the fjords. These Norwegian coastal conditions and the
associated challenges in numerical modelling are briefly summarised as the following:

4.5 m

10 m

(a)

445 m

254 m

(b)

Figure 1.3: Comparison of coastal topography between a typical northsea coast (Haringvliet, the
Netherlands (Ris et al. (1999); Navionics)) and Norwegian fjord (Sulafjord (Navionics (2020)).

• Deep water conditions. The extraordinary water depths in the Norwegian
fjords limit the application of many shallow-water equation based numerical
wave models where shallow water assumptions are made and the flow properties
in the vertical direction are considered as depth-averaged.

• Significant bathymetry variations. The strong variations of the under
water topography limit the usage of wave models that are based on the as-
sumption of small seabed slope variations, such as e.g. elliptic mild slope or
spectral wave models..

• Irregular coastlines. With the presence of the complex geometry of the
coastlines, it is challenging to generate a boundary-following horizontal grid
and treat the boundary conditions efficiently.

• Large domain of interest. The large simulation domains require high
computational efficiency of numerical models. As a result, the widely used
computational fluid dynamics (CFD) models are seen to be impractical for the
coastal wave modelling due to their high demand of computational resources.

Currently, most existing numerical wave modelling studies in the Norwegian
fjords have been using spectral wave models with phase-averaging (Aarnes (2019);
Fergstad et al. (2018)). In the phase-averaged approach, the wave field is often
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represented as the distribution of wave energy in terms of the significant wave height
Hs. Such an approach cannot provide time-domain information and has limited
capability of representing some of the strongly non-linear wave transformations
such as diffraction ((Thomas and Dwarakish, 2015)). In contrast, a phase-resolved
approach represents the wave phase information and free surface elevations. This
enables the phase-resolving wave models to provide time series of wave properties
and represent most of the highly non-linear wave transformation phenomena. As
an example, a comparison of phase-averaged and phase-resolved results is shown
in Fig. 1.4. In order to provide comprehensive wave information, a phase-resolved
approach is preferred for Norwegian coastal wave modelling. However, there are
few attempts of phase-resolved wave modelling of the Norwegian fjords. Wang
et al. (2017) performed a phase-resolved CFD modelling of a Norwegian fjord for
only a short period due to the time consumption of the CFD model for the large
computational domain.

(a) (b)

Figure 1.4: Illutstration of the difference between phase-averaged and phase-resolved simulation
results from wave modelling at Mehamn harbour in Norway. (a) significant wave height distribution
produced by SWAN (Booij et al. (1999)), (b) Wave surface eelevation produced by REEF3D::SFLOW
(Wang et al. (2020)).

In summary, the Norwegian coastal conditions present several challenges for
numerical wave modelling and there is a lack of an effective phase-resolving model
to address these challenges. Therefore, the Ph.D. candidate is tasked with the
development of such a numerical wave model for the Norwegian coast. Considering
the engineering challenges as well as the social impact of the E39 project, the new
model should fulfil the following criteria:

• Efficient. The model should be computationally efficient for large-scale sim-
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ulations (tens of kilometres) over long durations (typically three-hours for
short-term wave statistics (DNV-GL (2018)) with currently available computa-
tional resources and reasonable time consumption.

• Phase-resolved. The model is supposed to provide phase-resolved results to
reveal the details of the wave field, represent all wave transformations and
provide time domain information.

• Accurate. The model should be verified and validated to ensure that wave
propagation and transformation are represented correctly.

• Flexible. The model is expected to simulate waves at all water depth condi-
tions, different coastal bathymetry and various irregular coastlines. The model
should also reproduce a wide range of wave inputs in the fjord.

• Open-source. The model will keep the source-code freely available to ensure
technical transparency and to maximise the impact on the industry and society.

1.3 Scope and limitations

The study focuses on the development of a wave propagation model for the Norwegian
coast that fulfils the criteria defined in section 1.2. As a wave propagation model,
the model uses wave parameters as input to investigate the wave propagation and
transformation in the fjords. The effects of wind and current on waves are not within
the scope of the project. The mechanism of wave generation from wind fields is also
not included.

The specific scope of the study is summarised as follows:

• Examine and evaluate the current phase-resolved numerical wave models and
choose a strategy for wave modelling in the Norwegian fjords.

• Implement new numerical wave models in the numerical framework REEF3D
(Bihs et al. (2016)).

• Improve the performance and include new utilities in the numerical models to
meet the challenges presented by the Norwegian coastal wave conditions.

• Verify and validate the numerical models for their performance and accuracy
with benchmark cases.

• Apply the numerical models to large-scale engineering scenarios and evaluate
its readiness for industrial applications.
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1.4 Organisation of the thesis

This thesis is submitted as a collection of seven international journal papers. The
structure of the thesis is as follows:

• Chapter 1: description of the research topic presented by the E39 coastal
highway project.

• Chapter 2: state-of-the-art development of coastal wave investigations and
numerical wave modelling.

• Chapter 3: description of the numerical wave models that have been developed
and used during the current research.

• Chapter 4: summary of major results from the Ph.D. research.

• Chapter 5: conclusion and the suggested future work for further development.

• Chapter 6: seven appended research articles produced during the Ph.D.
period.

The appended research articles follow the work flow of the wave model development
as well as the research progress to address the challenges presented by the Norwegian
coast. The wave model development, research progress and the sequence and topics
of each article are summarised in Fig. 1.5.
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2. REEF3D::SFLOW

1. REEF3D::CFD

Model description Paper 1

Paper 2

Paper 3

Paper 4

Paper 5

Paper 6

Paper 7

Model description 

Rogue wave 

Irregular sea-states 

E39 scenarios 

Solution to the coastal 
wave modelling in Norway

Model development Research progress

2D Non-hydrostatic model

CFD wave modelling

Fully non-linear 
potential flow model

Deepwater modelling 
relevant to floating bridges

Coastline algorithm 

A wave model toolbox

3. REEF3D::FNPF

4. Hydrodynamics framework

Model comparison

Figure 1.5: Structure of the thesis and correlation between the appended publications and numerical
model development and research progress.
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Chapter 2

Background and State-of-the-Art

The investigation of water surface waves has been carried out for a long time due
to its significance for shipping, navigation, ocean engineering, offshore activities
and coastal processes. Prior to the fast advances of computer technology, the
investigations on surface waves were primarily carried out in physical laboratories.
There were a series of significant developments of physical experiments in the 19th
century. Some of the milestones are, for example, the development of hydraulic
scaling criterion by Ferdinand Reech in 1852 (Rouse and Ince (1957)), the ship towing
experiments conducted by William Froude in 1870’s (Ivicsics (1980)) and the first
moveable-bed model test performed by Louis Fargue in 1875 (Ivicsics (1980)). Many
prominent coastal engineering experimental facilities have been established since late
19th century and during the 20th century. For example, the Franzius Institute was
founded in Germany in 1914, the University of Iowa hydraulic laboratory was founded
in the United States in 1918 and the Delft hydraulics laboratory was established
in the Netherlands in 1927. The development of numerical wave models occurred
much later in comparison. Some operational numerical wave models started to show
their significance around 1990, for example, the spectral wave model WAM (The
Wamdi Group (1988)) and Madsen’s Boussinesq model (Madsen et al. (1991)). Since
1990, there have been a rapid development of numerical methods for representing
surface waves as well as a significant advance in computational infrastructure. Today,
there is a large variety of numerical wave models to simulate ocean waves digitally
using modern computing infrastructures. In this chapter, some of the experimental
activities for coastal waves in Norway, the various wave modelling techniques and
the current wave field investigation in the Norwegian fjords are summarised.

2.1 Laboratory investigations

Experimental studies were the main method for the analysis of a certain wave field
before the numerous numerical wave models were developed in the recent decades.
Physical wave basins and wave flumes have been used world wide for a large variety
of research on marine hydrodynamics, design of ships and offshore platforms and
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coastal development. In comparison to field measurements, the laboratory studies
show a few advantages. For example, the small size of the model allows for easier data
collection and the experimental environment offers much higher degree of control
over the wave field. In Norway, there have been several notable experimental studies
on coastal waves. For example, a customised wave basin was used by the SINTEF
Coast and Habour Research Laboratory for optimising the breakwater design at
Mehamn harbour in northern Norway (Vold and Lothe (2009)). Here, a replicate of
the topography at the harbour was constructed in a model scale of 1:80, as shown in
Fig. 2.1. The wave propagation and transformation into the harbour is well visualised
and the time series of the surface elevations are collected at the nine wave gauges
near the coastlines. There are also reports of physical experiments for the Norwegian
fjords. For example, Lindstrøm et al. (2014) used a physical model with a scale of
1 : 500 to investigate the landslide generated waves in Storfjord. The model test
examined the maximum run-up at the nearby settlements, Hellesylt and Geiranger.
These experiments provide data sets of great value for the assessment of numerical
wave models for similar phenomena. However, as pointed out by Hughes (1993),
physical models are in general more expensive to operate than numerical models.
Thus if a numerical model is validated against the experimental data and provides
reliable results with engineering accuracy, then a numerical model is often the tool
of choice.

Figure 2.1: Laboratory setup for the breakwater optimisation at Mehamn harbour (Vold and
Lothe (2009)). 9 wave gauges are deployed, 8 of them are arranged inside the harbour behind the
breakwater to provide time domain measurements of the free surface elevations.

2.2 Phase-averaged wave modelling

2.2.1 Spectral wave models

Some of the most used wave models are spectral wave models. This type of model
describes the wave field in terms of wave energy density, wave action density (defined
as energy over frequency) and wave propagation directions. As a result, the governing
equation is the spectral action balance equation that describes the evolution of the
wave action density. Some of the notable spectral waves models are WAM (The
Wamdi Group (1988)), WAVEWATCH III (Komen et al. (1994)), STWAVE (Massey

12



et al. (2011)), MIKE 21 SW (DHI (2017b)) and SWAN ((Booij et al., 1999)). The
spectral wave models are very computationally efficient and they are often used for
large-scale wave modelling from the offshore area to the nearshore coastal waters.
Though the phase-averaging approach of spectral wave models has limited capability
of representing some of the nonlinear phenomena such as strong diffraction and
reflection ((Thomas and Dwarakish, 2015; SWAN, 2016)), the simulation results
provide valuable input wave conditions for other wave models that are more accurate
in the near shore to surface zone area with the presence of complex coastlines. It
is also straightforward to include the effects of wind and wave-wave interaction as
source terms in these models. In some Norwegian fjords, the dominating waves are
the local wind generated waves. In this case, the spectral models can be used for
the study on wind wave generations. In general, the combined use of a spectral
wave model and a phase-resolved wave model is beneficial for the balance between
accuracy and computational efficiency.

2.3 Phase-resolved wave modelling

Phase-resolved wave models are able to present the wave phase information and
free surface. The transient wave field can be visualised in the simulations as can be
observed in nature and the time history of the flow information can be recorded. In
comparison to the phase-averaged approach, phase-resolved models represent the
nonlinear wave transformations such as diffraction around large obstacles with higher
accuracy. Therefore, the phase-resolving approach is preferred near the complex
coastal geometry of a fjord or a harbour. In the following sections, the various
phase-resolved models are briefly introduced and discussed.

2.3.1 Mild-slope wave models

Within the framework of linear wave theory, an improvement to the ray theory was
introduced and developed by Eckart (1952) and Berkhoff (1972, 1976) to combine
the effects of both refraction and diffraction. This leads to the elliptic mild-slope
equation (EMSE). From the EMSE, one can solve for the free surface elevations
in terms of the horizontal coordinates. In order to specify boundary conditions
along land boundaries, which are essential for solving the elliptic-type equation,
the parabolic approximation (PA) is introduced based on the assumption that the
percentage changes of depth within a typical wavelength are small compared to the
wave slope (Demirbilek and Panchang (1998)). One of the notable EMSE model
with the PA assumption is CGWAVE (Demirbilek and Panchang (1998)). The model
is reported to be able to simulate wave refraction over a submerged dune as well as
wave diffraction around breakwater in harbours. However, the model’s validity is
limited by the bottom slope. An accurate calculation is usually found with a bottom
slope up to 1 : 3 (Demirbilek and Panchang (1998)). Therefore, such models are
usually used for very long waves over slowly varying bottom, for example storm surge
and wave-current interaction (Chen et al. (2005)).
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2.3.2 Shallow water equation based wave models

Most coastal areas have shallow water conditions (typically defined as water depth
to wave length ratio d/λ 6 0.05) with moderate variations of bathymetry. For
long waves in shallow waters, the wave dispersion relation is less important and the
variation of particle motions in the vertical direction is insignificant (Mei et al. (2005)).
Therefore, it is assumed that the flow information in the vertical direction is depth-
averaged. Consequently, the computational domain is essentially two-dimensional
(2D) and this greatly increases the computational speed. The depth-averaging of
the mass and momentum conservation equations for an incompressible flow leads to
the shallow water equations (SWE), from which the depth-averaged velocities and
pressure can be solved. Two SWE based wave models, Boussinesq-type models and
2D non-hydrostatic models are discussed in this section.

Boussinesq wave models

The classical Boussinesq equations were developed by Peregrine (1967) as 2D depth-
averaged shallow water equations in terms of depth-averaged velocity components
for non-dispersive linear wave propagation. Abbott et al. (1984) introduced a third-
order accurate finite difference scheme for modelling the Boussinesq equations in
two dimensions. Since then, continuous efforts have been made to improve the
Boussinesq models for a better representation of nonlinearity and the frequency
dispersion in intermediate to deep water. Madsen et al. (1991) introduced a new
form of Boussinesq equations that improved the dispersion relation and made it
possible to simulate the wave propagation in deep water where the water depth
to wavelength ratios is 0.6. Madsen and Sørensen (1992) further included the first
derivatives of the sea bed and allowed for the simulations over varying bathymetry.
Nwogu (1993) derived another form of the Boussinesq equations by using the velocity
at an arbitrary distance from the still water level instead of the depth-averaged
velocity, making the model applicable to a wider range of water depths. Further
development by Wei et al. (1995) improved the dispersion relation for deeper water
and enabled the model for strong non-linear interactions. This development was
then incorporated into the wave model FUNWAVE (Kirby et al. (1998)). Madsen
and Schäffer (1998) achieved very good dispersion accuracy up to dimensionless
wave number kd = 6 with their high-order derivations. Similarly, a fourth-order
polynomial is used in the model developed by Gobbi et al. (2000) and a faithful
representation of linear dispersion is achieved up to kd = 6. These methods result in
up to fifth-order spatial derivatives in an extremely complex equation system, which
increases the risk of numerical instabilities. Madsen et al. (2002) applied multiple
expansions at various vertical levels of the water column with high-order polynomial
approximations and managed to represent the dispersion relation accurately up to
kd = 40. This polynomial multiple expansion, on the other hand, also results in a
large set of equations and more unknowns (Lynett and Liu (2004)). Taking a different
approach, Lynett and Liu (2004) divided the vertical water column into a finite
number of layers with quadratic polynomials and matched them at the interfaces.
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This multi-layer approach shows good representation of linear dispersive properties
up to kd = 8 with two layers. In addition, only 3rd-order spatial derivatives are
needed even with three or four layers. This method is incorporated into the wave
model COULWAVE (Lynett et al. (2008)). Some commercial software of this type
can also be found, for example MIKE 21 BW (DHI (2017a)). These developments
and achievements have improved the Boussinesq wave models greatly, enabling them
to simulate more non-linear waves at deeper waters.

2D non-hydrostatic wave models

In the non-hydrostatic (NH) approach, the pressure is split into hydrostatic and non-
hydrostatic components. The non-hydrostatic pressure is described implicitly in the
momentum equations. As a result, the high-order spatial derivatives for the explicit
expression of the non-hydrostatic pressure in a Boussinesq-type model is avoided.
Stelling and Duinmeijer (2003a) introduced a Keller-Box scheme (Lam and Simpson
(1976)) for the approximation of the vertical gradient of the non-hydrostatic pressure.
This scheme is edge-based for the non-hydrostatic pressure instead of cell-centred.
This way, even with only one vertical layer, the numerical model is able to represent
frequency dispersion with a similar accuracy as the Boussinesq model from Peregrine
(1967) (Stelling and Duinmeijer (2003a)). When multiple layers are used, the vertical
information is much better represented, which leads to 3D non-hydrostatic models
that will be discussed in section 2.3.3. Jeschke et al. (2017) presented an alternative
approach for non-hydrostatic representation by introducing a quadratic pressure
assumption. This way, the model can achieve at least a good equivalence to a
second-order Boussinesq model ((Jeschke et al., 2017)). The effectiveness of such a
method for simulating wave propagation over varying bathymetry is also proved by
Wang et al. (2020). The quadratic approach for the non-hydrostatic pressure leads
to one of the models developed during the current Ph.D. study, REEF3D::SFLOW,
the details of which can be found in Paper 1.

2.3.3 3D non-hydrostatic wave models

In the 3D non-hydrostatic approach, the method of decomposing the pressure into
hydrostatic and non-hydrostatic components is also applied. Stansby and Zhou (1998)
and Zhou and Stansby (1999) used the non-hydrostatic approach to solve the 3D
Non-hydrostatic Reynolds-averaged Navier-Stokes (RANS) equations with a surface
and bottom following σ-coordinate grid in the vertical direction and a Cartesian
grid in the horizontal directions. The non-hydrostatic pressure is solved from the
Poisson equation with a conjugate gradient method. The model represents the free
surface with a single-valued function. Here, the free surface is the upper boundary
of the computational domain with appropriate dynamic boundary conditions on
normal and tangential stresses at the top and bottom interfaces (Ma et al. (2012)).
Though the single-valued approach does not allow for a geometric representation of
an overturning wave breaker, this type of model can represent most details in the
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flow field, including the effects of viscosity and turbulence with less assumptions.
Some notable models of this type are NHWAVE (Ma et al. (2012)) and MIKE 3
Flow Model FM (HD) (DHI (2017)). It is reported that such models are able to
simulate deepwater waves as well as approximate wave breaking in the surface zone
(Ma et al. (2012)).

Instead of using a σ-coordinate grid, Stelling and Duinmeijer (2003a) recom-
mended a Keller-Box scheme (Lam and Simpson (1976)) for the representation of the
vertical gradient of the non-hydrostatic pressure, as discussed in section 2.3.2. Based
on the continuous development by Stelling and Duinmeijer (2003a), Zijlema and
Stelling (2005) and Zijlema and Stelling (2008), Zijlema et al. (2011a) introduced the
operational multi-layer non-hydrostatic wave model SWASH. Though the governing
equations of SWASH are the non-hydrostatic depth-averaged shallow water equations,
the approximation of the vertical gradient of the non-hydrostatic pressure enables the
model to represent the flow information in a vertical water column with fewer vertical
layers. This essentially gives the model a three-dimensional (3D) representation of
the flow field and lets the model simulate waves at a large range of water depth. For
example, the model exhibits accurate wave dispersion for up to kd≈16 with only three
non-equidistant vertical layers for linear progressive waves (Zijlema et al. (2011a)).
With only two layers, the model is still able to represent wave proportion accurately
for kd≤3 (Zijlema et al. (2011a)). Wave propagation at deeper water condition can
be better represented with more vertical layers. However, it is also noticed that
the increase of vertical layers leads to a significant increase in computational costs
(Monteban (2016)).

2.3.4 Potential flow wave models

Assuming that water is inviscid and that the water flow is irrotational, the incom-
pressible water flow is considered as potential flow. Mathematically, the particle
velocity vector can then be expressed as a gradient of the scalar velocity potential.
With this assumption, the mass conservation equation in the Navier-Stokes equation
becomes the Laplace equation. The Laplace equation is an elliptic type partial
differential equation (PDE) and its solution is a boundary-value problem. Various
methods have been designed to solve for the velocity potential from the Laplace
equation and they are referred to as potential flow wave models.

Boundary element potential flow wave models

The early development to solve the boundary value problem is the Boundary Element
Method (BEM). The use of BEM transforms the elliptic Laplace equations into a
boundary integrated equation and significantly reduces the number of unknowns (Li
and Fleming (1997)). Grilli et al. (1994) introduced a BEM model for wave shoaling
over a slope. Since then, many efforts have been made to model highly non-linear
waves. For example, Grilli and Horrillo (1997) demonstrated successful simulations
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of severe wave shoaling and approximation of wave breaking. After a continuous
development, a fully non-linear model for three-dimensional wave propagation over
arbitrary bottoms was presented and a severe breaking wave was investigated (Grilli
et al. (2001)). In this study, the free surface is represented with a higher-order
three-dimensional BEM and a mixed Eulerian-Lagrangian time updating and a 3D
approximation of an overturning breaking wave is made((Grilli et al., 2001)). The
BEM models are computationally efficient but mathematically demanding. The
fully populated unsymmetrical matrix in a BEM model means that it is difficult to
implement high-order numerical schemes and parallel computation techniques and
thus there are only few attempts to use a BEM model for large-scale wave modelling
(Li and Fleming (1997)).

Finite difference potential flow wave models

A solution for the Laplace equation together with the boundary conditions using a
finite difference method (FDM) also exists. Li and Fleming (1997) presented a three
dimensional fully nonlinear potential flow model with a finite difference method and
a multi-grid solver. A σ-coordinate grid is used to place the boundary conditions
at the free surface and the bottom precisely even with varying bathymetry (Li and
Fleming (1997)). The model is able to simulate nonlinear wave phenomena over
the complete range of water depths though it lacks the capability of representing
breaking waves. Based on the method, Bingham and Zhang (2007) applied higher-
order numerical schemes which further improved the model’s ability for representing
waves of increasing nonlinearity with increasing accuracy tolerance. In a further
development, Engsig-Karup and Bingham (2009) introduced a general purpose flexible
order 3D fully nonlinear potential flow (FNPF) model OceanWave3D. The model is
capable of simulating different wave transformations over arbitrary bathymetry. In
addition, a GPU (Graphic Processing Unit)-accelerated version of OceanWave3D
was developed ((Engsig-Karup et al., 2012; Glimberg et al., 2013)), which further
improved the computational efficiency of the model. An adaptive curvilinear grid
is also introduced in the horizontal plane, which offers flexibility with regards to
coastal geometry. However, a more general curvilinear boundary-fitted mesh in the
horizontal directions is yet to be implemented for efficiency and flexibility (Engsig-
Karup and Bingham (2009); Engsig-Karup et al. (2013)). In order to include the
irregular boundaries along the coastlines more efficiently, a novel coastline algorithm
is thus introduced to the FDM FNPF model REEF3D::FNPF, of which more details
can be found in Paper 5.

High-order spectrum wave models

A different technique to solve for the velocity potential is the high-order spectral
(HOS) method, where the Laplace equation is solved analytically, so that only the free
surface boundary conditions needs to be time-integrated. In addition, the use of Fast
Fourier Transform (FFT) further increases the computational efficiency dramatically.
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The method was initially develop by West et al. (1987) and Dommermuth and Yue
(1987). Following this methodology, several operational HOS models have been
developed, such as the HOS-NWT and HOS-Ocean models ((Ducrozet et al., 2012;
Bonnefoy et al., 2006a,b)). The models are highly effective for large-scale wave
modelling with constant water depth. However, the inclusion of varying bathymetry
is an intrinsic challenge for HOS models due to the inherent limitations from the
Taylor expansions and that periodic boundary conditions are required in order to
efficiently apply FFT ((Fructus et al., 2005)). In spite of the challenges, Gouin et al.
(2016) presented an improved method that allow HOS models for wave propagation
over varying water depth by considering two different orders of nonlinearity at the
bottom and the surface (Guyenne and Nicholls (2008)). In other efforts, a finite
difference model based on the HOS method, Whisper3D, was developed ((Raoult et al.,
2016; Yates and Benoit, 2015)). Derived from the Laplace equation and boundary
conditions, the Zakharov equations (Zakharov (1968)) are solved in Whisper3D and
a Chebyshev polynomial is used to represent the vertical velocity potential. The
model is also seen to show flexibility with irregular topography and the capability of
modelling nonlinear steep waves and approximating breaking waves ((Raoult et al.,
2016; Zhang et al., 2019; Simon et al., 2019)). At the current status, an algorithm
that allows the inclusion of irregular boundaries in the horizontal plane is yet to be
developed, which will make HOS models more applicable for coastal wave modelling.

Spectrum element wave models

The use of spectral element method (SEM) to model hydrodynamic problems is
first developed by Patera (1984). Here, the Laplace equation and the boundary
conditions are solved on nodal finite elements with Lagrange polynomials. This
modelling technique combines some of the best properties of spectral methods and
finite element methods and thus obtain high accuracy and flexibility in the spatial
representation of domains (Engsig-Karup et al. (2016a)). As a result, the SEM models
enable the use of unstructured grids of triangular or arbitrary shape while keeping
high-order discretisation schemes (Engsig-Karup et al. (2016a)). One prominent
example of the SEM type model is MarineSEM (Engsig-Karup et al. (2016b)), which
has been introduced for simulations of dispersive and non-linear waves over varying
bottoms as well as wave-structure interactions (Monteserin et al. (2018); Engsig-
Karup and Eskilsson (2019)). The MarineSEM model shows great potential for
the modelling of complex coastal waves. As stated by Engsig-Karup and Eskilsson
(2019), the ongoing work is to extend the model for freely floating structures and
to implement the method in C++ to allow for large-scale simulations using high
performance computing.

2.3.5 Computational fluid dynamics wave models

The computational fluid dynamics (CFD) models solve the 3D incompressible
Reynolds-Averaged Navier-Stokes (RANS) equations for particle velocities and pres-
sure in the fluids. The interface between water and air is tracked or captured using
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different techniques. After the early development of the marker-and-cell method
(MAC) (Harlow and Welch (1965)) method, the currently most commonly used
techniques for the free surface are the volume-of-fluid (VOF) method (Hirt and
Nichols (1981)) and level-set method (LSM) (Osher and Sethian (1988)). In the
VOF method, the interface is captured by a discontinuous fraction function. The
cells filled with water phase are assigned values of 1, the cells filled with air phase
are assigned with the values 0 and the cells at the interface with mixed water and air
are assigned with values in between 0 and 1. This way, the free-surface is not defined
sharply, instead it is distributed over the height of a cell. Therefore, large number
of cells per wave height are usually needed to capture the free surface sufficiently.
Examples of existing VOF CFD models are waves2Foam(Jacobsen et al. (2012)) and
IHFOAM (Higuera et al. (2013)) in the OpenFOAM (OpenFOAM (2019)) frame-
work, ReFRESCO(Vaz et al. (2009)) and the commercial software ANSYS-Fluent
(OpenFOAM (2019)) and Star CCM+ (Siemens (2019)). In contrast to the VOF
method, LSM uses a continuous signed-distance function across the interface and
thus requires less number of cells near the free surface for a given accuracy. As an
example, REEF3D::CFD (Bihs et al. (2016)) is a CFD model with the LSM free
surface capturing technique. Since viscosity and turbulence are inherently included
in the governing equations, CFD models provide the most detailed information in
the wave field with few assumptions and they are able to simulate complicated highly
non-linear free surfaces such as overturning breaking waves (Alagan Chella et al.
(2019)). However, this type of model often requires a large number of cells with small
time steps for accuracy and thus they tend to be computationally demanding.

2.3.6 Smooth-particle hydrodynamics wave models

In stead of using a computational grid to solve for the flow information, mesh-free
methods have also been used for wave modelling. Smooth-particle Hydrodynamics
(SPH) (Gingold and Monaghan (1977)) is one of the most used technique to solve
the Navier-Stokes equations in Lagrangian form for particle velocities and pressure
using a mesh-free method. In the SPH method, the continuum property of the
fluid is represented by locally smoothed quantities at discrete Lagrangian locations
(Zhang et al. (2018)), and this gives SPH advantages of a straightforward modelling
of free surface and complex and moving boundaries in comparison to the mesh-based
methods (Altomare et al. (2017)). An open-source SPH model SPHysics (Crespo
et al. (2007b,a)) has been developed and tested on various hydrodynamic studies on
sloshing, wave breaking and air-entry Gomez-Gesteira et al. (2012b,a). Domnguez
et al. (2013) introduced GPU-based computation and Crespo et al. (2015) officially
presented the GPU-based parallel version DualSPHysics writer in C++ and CUDA.
Altomare et al. (2017) further included various wave generation and absorption
algorithms. However, SPH is computationally expensive, a large number of particles
are often needed for many hydrodynamics studies (Dickenson (2009)).
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2.3.7 Numerical wave model coupling

As discussed, there are various numerical wave modelling techniques, and each has
its own advantages and disadvantages. Therefore, it is intuitive to apply a combined
usage of different models and utilise the advantages of each model to achieve the
best result. This is especially beneficial for studies where both the large-scale wave
field and near-field phenomena are important. Several studies have been carried out
for the numerical coupling between a computationally demanding, detail-revealing
near-field model such as a CFD model or a SPH model with a computationally
efficient wave propagation model such as a shallow water model or a potential flow
model. There are two main types of coupling: 1) one-way coupling, where the flow
information is transferred from one model to another but not vice versa; 2) two-way
coupling, where the two wave models exchange flow informations, and thus the flow
field from the two coupled models influence each other. Paulsen et al. (2014) used a
one-way coupling technique to couple the FDM FNPF model OceanWave3D with
the VOF CFD model using the waves2Foam library from OpenFOAM to investigate
wave interaction with a surface-piercing circular cylinder. Kim et al. (2010) applied
a two-way coupling method for a combined simulation of wave propagation using
a BEM potential flow model and a VOF CFD model. Several couplings between
other models can also be found, for example, the coupling between a HOS model
and a CFD model (Gouin et al. (2018)), the coupling between the Boussinesq model
FUNWAVE and the SPH model SPHysics (Narayanaswamy et al. (2010)) and the
coupling between the SPH model DualSPHysics and the 3D non-hydrostatic model
SWASH (Altomare et al. (2014)). However, various numerical models solve for
different flow quantities, store the quantities on different grids and use different
discretisation schemes. Therefore, there are no coupling algorithms for a universal
application and the optimisation of the interface between models reply on case-based
solutions.

2.4 Wave analysis in the Norwegian fjords for the E39 project

Currently, the information of the wave field inside the Norwegian fjords rely on
the in-situ measurements. For example, extensive reports of wave measurements
in Bjøranfjord and Sulafjord have been reported by DHI (2016) and Fergstad et al.
(2018). Wind and wave measurements have also been gradually conducted at
multiple fjord-crossing locations in the past years, including Vartdalsfjord, Breisun-
det, Halsafjord, etc. Some of the measurement data are also made public as can
be accessed at https://thredds.met.no/thredds/catalog/obs/buoy-svv-e39/

catalog.html. Several numerical analyses have also been conducted with the phase-
averaged wave model SWAN. Aarnes (2019) performed a comprehensive analysis
with SWAN in Bjornafjord. The authors divided the simulation domain so that the
simulations do not include strong diffraction. Simulation results obtained from the
computational domain before the diffraction are then used as input to the compu-
tational domain after the diffraction. This way, the numerical simulation achieved

20



fairly good agreement with the in-situ measurements at most of the investigated
locations. However, it is still reported that the SWAN simulation tends to under-
estimate the Hs inside the fjords. There are few efforts on phase-resolved wave
modelling in the Norwegian fjords so far. Wang et al. (2017) used a CFD model to
perform phase-resolved numerical simulation at Sulafjord and confirmed that the
phase-averaged simulations tend to underestimate the significant wave height. How-
ever, the simulation is only for a short duration as the CFD model has high demand
on computational resource and computation time. In this thesis, the phase-resolved
wave modelling with REEF3D::FNPF in Bjøranfjord and Sulafjord are among the
first attempts of such, and the details can be found in Paper 6.

2.5 Summary of numerical wave modelling

In summary, there are currently numerous numerical wave models that solve various
governing equations for various quantities using various numerical schemes. As a
result, these numerical models also have various strengths, validities and practicalities
for different scenarios. In the context of coastal wave modelling in Norway, these
numerical models also face different challenges. The applicabilities of the EMSE
models and SWE based models in the Norwegian coast are limited by the deep water
conditions. In spite of the developments that enable Boussinesq models to simulate
waves at relatively deep water, it can still be challenging for some scenarios, for
example high frequency wind generated waves in great water depth. The irregular
coastlines create strong diffraction that may exceed the capacity of spectral wave
models. It is also difficult for potential flow models to include the irregular boundaries
in the horizontal plane effectively. For computationally demanding numerical models
such as the CFD models and SPH models, the large domain of interest in the
Norwegian fjords is the main challenge. The 3D non-hydrostatic models present
themselves as effective and flexible candidates for coastal wave modelling. However
their computational efficiency and compatibility with HPC are still to be explored.
The SEM models also show potentials as coastal wave modelling candidates. However
the SEM technique is still under development, more computationally efficient codes
with new features are expected in the future. The challenges of the various numerical
models due to the Norwegian coastal conditions are summarised in Fig. 2.2. These
challenges also provide various research opportunities to improve existing approaches
for the coastal wave modelling in Norway.

Finally, some of the most commonly used numerical wave models are categorised
and summarised in Table. 2.1 as an overview.
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EMSE model

Spectral wave model

3D NH wave model

SEM model

CFD model

Numerical models Norwegian coastal conditions

SWE based model

Irregular coastlines

Strong bathymetry variations

Deepwater conditions

Large domain

SPH model

Potential flow model

Figure 2.2: The wave modelling techniques and their respective challenges for the coastal wave
modelling in Norway. The dashed lines indicate that these challenges may be solved with further
developments.
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Chapter 3

Present Numerical Models

3.1 REEF3D

In the current study, REEF3D is the main tool for the research and all numerical
models are developed within this framework. REEF3D was developed as an open-
source CFD code before the Ph.D. study. High-order spatial and temporal schemes
are used for discretisation, the fully parallelized BiCGStab algorithm of the HYPRE
library (van der Vorst (1992)) is used to provide the solution for pressure from the
Poisson equation, a Message Passing Interface (MPI) and ghost cell based approach
enables parallel computations with multi-core hardware. The source code of REEF3D
is available at http://www.reef3d.com and is published under the GPL license, version
3. REEF3D is written in an object-oriented C++ structure which enables a modular
design. This led to the development of several extensions of the main code for a large
range of applications. For example, overturning breaking waves and their interactions
with various structures were investigated using REEF3D by Alagan Chella et al.
(2019) and Aggarwal et al. (2019), the morphological module in REEF3D was used to
simulate the scouring process around piles (Ahmad et al. (2018)), the environmental
module was adapted for vegetation and coastal protection (Arunakumar et al. (2019)),
a six degree-of-freedom (DOF) floating algorithm was introduced in REEF3D by
Bihs and Kamath (2017) and a mooring model based on finite elements (Martin et al.
(2019)) was added which improves the capabilities of the model for the simulation of
moored-floating structures in waves (Martin et al. (2018)).

With several new implementations during the Ph.D. period, REEF3D has evolved
into an open-source hydrodynamics framework. Currently REEF3D is consisted of
four models: the CFD model REEF3D::CFD that solves the Navier-Stokes equation
(Bihs et al. (2016)), the shallow water equations model REEF3D::SFLOW (Wang et al.
(2020)) that solves the depth-averaged shallow water equation with a quadratic non-
hydrostatic pressure profile (introduced in Paper 1), the fully non-linear potential
flow model REEF3D::FNPF (Bihs et al. (2020)) that solves the Laplace equation
(introduced in Paper 2) and the three-dimensional non-hydrostatic Navier-Stokes
solver REEF3D::NSEWAVE (Bihs et al. (2018)). The first three models are included
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in the thesis, the development of these models and the corresponding papers are
summarised in Fig. 3.1. Among these three models, REEF3D::CFD is inherited
from the original REEF3D code while REEF3D::SFLOW and REEF3D::FNPF are
developed during the Ph.D. study in search for a solution for the wave modelling in
the Norwegian fjords for the E39 project. In this section, the key numerical schemes
and algorithms of these models are described.

REEF3D::CFDREEF3D::CFD

REEF3D

2015 2018 

(Paper 1)
2019 

(Paper 2-6)

 (Paper 7)Open-source Hydrodynamics Framework

Focus of the thesis

REEF3D::SFLOW REEF3D::FNPF

Figure 3.1: Numerical model development and the associated publications.

3.2 REEF3D::CFD

3.2.1 Governing equations

Mass and momentum are conserved for an incompressible fluid by solving the
continuity and Reynolds-averaged Navier-Stokes (RANS) equations

∂ui

∂xi

= 0, (3.1)

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂p

∂xi

+
∂

∂xj

[
(ν + νt)

(
∂ui

∂xj

+
∂uj

∂xi

)]
+ gi, (3.2)

with ui the velocity vector, ρ the fluid density, p the pressure, ν and νt the
kinematic and turbulent viscosity, and gi the gravity acceleration vector.

The Boussinesq hypothesis is used to calculate νt from the turbulent kinetic
energy k and its specific rate of dissipation ω according to
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νt =
k

ω
. (3.3)

In REEF3D::CFD, the two-equations k-ω turbulence model (Wilcox (1988)) is
applied to propagate the turbulence properties in space and time. Wall functions
are taken into account to approximate the boundary layer flow. A limiter for νt is
introduced to account for eventual overproduction of turbulence in highly strained
flows outside the boundary layer (Durbin (2009)):

νt = min

(
k

ω
,

√
2

3

k

|S|

)
(3.4)

Special attention is paid to the correct turbulence modelling near the free surface
as the turbulent length scales in the water are reduced in its proximity. Standard two-
phase RANS turbulence models do not account for this which can lead to increased
ω and damped fluctuations normal to the surface as they are redistributed to the
ones parallel to the interface. Additionally, standard RANS turbulence closure will
incorrectly predict the maximum turbulence intensity at the free surface because the
mean rate of strain S can be large especially in the vicinity of the interface between
water and air (Kamath et al. (2019)). A more realistic representation of the free
surface effect on the turbulence can be achieved through the replacement of the
original equation for ω in the vicinity of the surface by the empirical formula (Naot
and Rodi (1982); Kamath et al. (2019)):

ωs =
c−0.25
µ

κ
k0.5

(
1

y′
+

1

y∗

)
, (3.5)

with cµ = 0.07 and κ = 0.4. The virtual origin of the turbulent length scale y′ is
empirically found to be 0.07 times the mean water depth (Hossain and Rodi (1980)).
y∗ is the distance from the nearest wall. Hence, a smooth transition from the free
surface value to the wall boundary value of ω is ensured.

3.2.2 Free surface representation

The location of the free surface is represented implicitly by the zero level set of a
smooth signed distance function φ which can be expressed with the Eikonal equation
|∇φ| = 1. The simple advection equation

∂φ

∂t
+ uj

∂φ

∂xj

= 0, (3.6)
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is applied for propagating the function in space and time. The level set function
has to be reinitialized regularly in order to keep its signed distance property. The
PDE-based reinitialization algorithm by Sussman et al. (1994) is executed after each
time step. By solving

∂φ

∂τ
+ S(φ)

(∣∣∣∣
∂φ

∂xj

∣∣∣∣− 1

)
= 0, (3.7)

with ∆τ being an artificial time step, the original properties of φ can be retained.
S(φ) is the smoothed sign function Peng et al. (1999).

The material properties of the two phases are determined for the whole domain
in accordance with the continuum surface force model of Brackbill et al. (1992). The
properties are defined at any location in the domain as

ρi = ρwH(φi) + ρa(1−H(φi)), (3.8)

νi = νwH(φi) + νa(1−H(φi)), (3.9)

with w indicating water and a air properties. H is the smoothed Heaviside step
function

H(φi) =





0 if φi < −ε
1
2

(
1 + φ

ε
+ 1

π
sin
(
πφi

ε

))
if |φi| ≤ ε

1 if φi > ε,

(3.10)

Typically, the thickness of the smoothed out interface is chosen to be ε = 2.1∆x
on both sides of the interface. The density is generally determined directly at the
cell faces in order to avoid spurious oscillations at the interface (see Bihs et al. (2016)
for details).

3.2.3 Numerical schemes

The numerical discretisation of the governing equations is achieved using finite
difference methods on rectilinear grids. The coupling of pressure and velocity during
the solution of (3.2) is ensured by employing a staggered grid. A fifth-order accurate
weighted essentially non-oscillatory (WENO) scheme (Jiang and Shu (1996)) adapted
to non-uniform cell sizes is applied for the convection terms. In (3.6), the convection
term is discretised by the fifth-order accurate Hamilton-Jacobi WENO method of
Jiang and Peng (2000). Diffusion terms are discretised using second-order accurate
central finite differences.
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The solution process follows the projection method for incompressible flows of
Chorin (1968). In the predictor step, the conservation equation for momentum (3.2)
is solved without considering the pressure gradients

u
(∗)
i − u

(n)
i

∆t
= −uj

∂ui

∂xj

+
∂

∂xj

(
ν ·
(
∂ui

∂xj

+
∂uj

∂xi

))
+ gi. (3.11)

Thus, an intermediate velocity field u
(∗)
i is obtained. Here, the time derivatives

are solved by applying the third-order accurate Total Variation Diminishing (TVD)
Runge-Kutta scheme (Shu and Osher (1988)). The same time discretisation is
also used in (3.6) and (3.7). Turbulence time advancement is solved using implicit
methods due to its source term driven character. The general time-stepping is
controlled adaptively under consideration of the CFL condition (see Bihs et al.
(2016)). Diffusion terms are treated implicitly to overcome their restrictions on this
condition. The insertion of the predicted velocities into the continuity equation leads
to the Poisson equation

∂

∂xi

(
1

ρ(φ̂n+1)

∂p(n+1)

∂xi

)
=

1

∆t

∂u
(∗)
i

∂xi

. (3.12)

for the pressure of the new time step. It is solved by the fully parallelized
BiCGStab algorithm of the HYPRE library (van der Vorst (1992)) with the geo-
metric multigrid PFMG pre-conditioner (Ashby and Flagout (1996)) to enhance the
performance. As the final step, the divergence-free velocity field of the new time step
is obtained following

u
(n+1)
i = u

(∗)
i − ∆t

ρ(φ̂n+1)

∂p(n+1)

∂xi

. (3.13)

High-performance computations are enabled in REEF3D::CFD by applying the
Message Passing Interface (MPI) and ghost cells as the parallelisation strategy. Three
layers of ghost cells are added to each sub-domain as required by the fifth-order
accurate WENO scheme. Similarly, the directional ghost cell immersed boundary
method (GCIBM) of Berthelsen and Faltinsen (2008) is implemented to handle
complex solid geometries. Here, the domain is virtually extended into the geometry,
and the values at these ghost cells are found through extrapolation and under
consideration of the wall boundary condition. Thus, the numerical discretisation of
the fluid domain does not need to account for the boundary conditions explicitly.
Instead, they are incorporated implicitly. Simple geometries such as boxes, cylinders
or prisms can be generated directly through user input. Otherwise, STL files can be
generated. Then a level set function, with the zero level set representing the solid
boundary, is generated using a ray-tracing algorithm as presented in Yang and Stern
(2013), see above. In the same way, natural bathymetries can be incorporated in a
straight forward manner.
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3.2.4 Wave generation and absorption

Typical inlet boundary conditions for free surface flow applications are of Dirichlet
type. When generating waves at the inlet, the free surface is in constant motion and
the flow direction is changing periodically. As a result, simple Dirichlet type wave
generation does not necessarily deliver waves of the highest quality. In REEF3D,
waves are generated with the relaxation method, which is presented in Mayer et al.
(1998) and extended for CFD models in Jacobsen et al. (2012). Here, the wave
generation takes place in a relaxation zone with a typical size of one wavelength.

The values for the velocities and the free surface are ramped up from the compu-
tational values to the values obtained from wave theory (Eq. (3.14)). The waves are
generated without any disturbances occurring at the interface. In addition, reflected
waves that travel back towards the inlet are absorbed with this method. At the
outlet of a wave flume, the waves need to be dissipated in order to avoid reflections
that can negatively impact the numerical results. This can also be achieved with
the relaxation method. In the numerical beach relaxation zone, the computational
values for the horizontal and vertical velocities are smoothly reduced to zero, the
free surface to the still water level and the pressure is relaxed to the hydrostatic
distribution for the still water level. Thus, the wave energy is effectively absorbed
and reflections are prevented.

u(x̃)relaxed = Γ(x̃)uanalytical + (1− Γ(x̃))ucomputational

w(x̃)relaxed = Γ(x̃)wanalytical + (1− Γ(x̃))wcomputational

p(x̃)relaxed = Γ(x̃)panalytical + (1− Γ(x̃))pcomputational

φ(x̃)relaxed = Γ(x̃)φanalytical + (1− Γ(x̃))φcomputational

(3.14)

The relaxation function presented in Jacobsen et al. (2012) is used. The wave
generation zone has the length of one wavelength, the numerical beach extends over
two wavelengths.

Γ(x̃) = 1− e(x̃
3.5) − 1

e− 1
for x̃ ∈ [0; 1] (3.15)

The coordinate x̃ is scaled to the length of the relaxation zone. Several wave
theories are implemented in REEF3D: linear waves, 2nd-order and 5th-order Stokes
waves, 1st-order and 5th-order cnoidal waves, 1st-order and 5th-order solitary waves
and first and second-order irregular and focused waves. As an example, the equations
used in the case of linear waves for general water depths, the horizontal and vertical
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velocities u and w and the level set function φ for the free surface location are
prescribed over the water domain in the model as:

u(x, z, t)analytical =
πH

T

cosh [k (z + d)]

sinh (kd)
cosθ

w(x, z, t)analytical =
πH

T

sinh [k (z + d)]

sinh (kd)
sinθ

φ(x, z, t)analytical =
H

2
cosθ − z + d

(3.16)

The wave number k and the wave phase θ are defined as follows:

k =
2π

L
θ = kx− ωt

(3.17)

where H is the wave height, L the wavelength, T the wave period, ω the angular
wave frequency and z the vertical coordinate with the origin at the still water level d.
In the wave generation zone, the pressure is not prescribed in the current numerical
model, in order not to over define the boundary conditions. At the numerical beach,
the pressure is always set to its hydrostatic values based on the still water level d,
independent of the wave input.

In order to generate higher order waves, the equations for velocities and the free
surface are calculated in the wave generation zone using the relevant wave theories
such as the 2nd-order Stokes wave theory Dean and Dalrymple (1991), the 5th-order
Stokes theory Fenton (1985), the 5th-order cnoidal wave theory Fenton (1999) and
3rd-order solitary wave theory Grimshaw (1971), to name a few. The classification of
waves based on the wave height, wave period and water depth given by Le Méhauté
Le Méhauté (1976) is used to determine the wave theory to generate the desired
wave type. In this way, the relaxation method employs different wave theories to
generate different waves based on the wave type selected by the user.

In addition, wavemaker motions of piston type and flap type (Dean and Dalrymple
(1991)) can also be used for wave generation in REEF3D. A wave reconstruction
method is also introduced, especially for irregular wave generation, as described by
Aggarwal et al. (2018).
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3.3 REEF3D::SFLOW

3.3.1 Governing equations

The mass and momentum conservation for an incompressible inviscid flow leads to
the continuity and Euler equations in three dimensions:

∂U

∂x
+

∂V

∂y
+

∂W

∂z
= 0, (3.18)

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
+W

∂U

∂z
= −1

ρ

∂PT

∂x
, (3.19)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+W

∂V

∂z
= −1

ρ

∂PT

∂y
, (3.20)

∂W

∂t
+ U

∂W

∂x
+ V

∂W

∂y
+W

∂W

∂z
= −1

ρ

∂PT

∂z
− g. (3.21)

where U , V and W are velocities in x, y and z directions, ρ is the constant density,
PT represents the total pressure and g is the gravitational acceleration. Additional
source terms such as bottom friction and turbulent stresses are omitted here but are
straightforward to include if needed.

The water depth h = d + ζ consists of two parts: the still water depth d and
the free-surface elevation ζ, as displayed in Fig. 3.2. Defining the horizontal velocity
vector as U = (U, V ), the kinematic boundary conditions at the free-surface and the
bottom are:

W |ζ =
∂ζ

∂t
+ U |ζ · ∇ζ, (3.22)

W |−d = −U |−d · ∇d. (3.23)

z
x,y

d

Linear
Bottom

Still water level

Quadratic

h=d+

Figure 3.2: Basic definitions in the shallow water model: the water depth h, the still water depth
d, the free-surface elevation ζ, the coordinates system and the schematics of the assumed linear
pressure profile and quadratic pressure approximation

The shallow water assumption, i.e. the horizontal acceleration is much greater
than the vertical acceleration, implies a hydrostatic pressure. In order to get a
hydrodynamic pressure correction, the total pressure PT is assumed to consist of
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a hydrostatic part P and a hydrodynamic part Q. The pressure and its boundary
condition at the free-surface is given by:

PT = P +Q = ρg(ζ − z) +Q, (3.24)

PT |ζ = P |ζ = Q|ζ = 0. (3.25)

The velocities and the dynamic pressure are depth-averaged by integrating over the
water depth:

u = (u, v) =
1

h

∫ ζ

−d

U d z; w =
1

h

∫ ζ

−d

W d z; q =
1

h

∫ ζ

−d

Q d z (3.26)

In contrast to previous models (Zijlema et al. (2011b)), where the dynamic
pressure is solved at the bottom, the proposed model consists of only depth-averaged
quantities. A relation between the depth-averaged pressure q and the pressure at the
bottom Q|−d needs to be defined in order to close the system. If the linear pressure
profile (Stelling and Duinmeijer (2003a); Zijlema et al. (2011b)) is assumed, the
pressure at the bottom is simply twice the depth-averaged pressure, or:

Q|−d = 2q. (3.27)

Consequently, the governing equations with only depth-averaged variables are:

∂ζ

∂t
+
∂hu

∂x
+

∂hv

∂y
= 0, (3.28)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g

∂ζ

∂x
− 1

ρh

(
∂hq

∂x
− 2q

∂d

∂x

)
, (3.29)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g

∂ζ

∂y
− 1

ρh

(
∂hq

∂y
− 2q

∂d

∂y

)
, (3.30)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
= − 2q

ρh
. (3.31)

Jeschke et al. (2017) replaces the linear assumption with a quadratic vertical
pressure profile as shown in Eqn. (3.32).

Q|−d =
3

2
q +

1

4
ρhΦ, (3.32)

Φ = −∇d · (∂tu+ (u · ∇)u)− u · ∇(∇d) · u. (3.33)

Following the quadratic assumption, the governing equations with depth-averaged
variables become:

∂ζ

∂t
+

∂hu

∂x
+

∂hv

∂y
= 0, (3.34)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g

∂ζ

∂x
− 1

ρh

(
∂hq

∂x
−
(
3

2
q +

1

4
ρhΦ

)
∂d

∂x

)
, (3.35)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g

∂ζ

∂y
− 1

ρh

(
∂hq

∂y
−
(
3

2
q +

1

4
ρhΦ

)
∂d

∂y

)
, (3.36)

∂w

∂t
+u

∂w

∂x
+ v

∂w

∂y
=

1

ρh

(
3

2
q +

1

4
ρhΦ

)
. (3.37)
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3.3.2 Numerical schemes

The governing equations with the boundary conditions are solved on a structured
staggered grid using a finite difference method (FDM). Chorin’s projection method
(Chorin (1968)) is applied for the solution of the velocities. The 5th-order conservative
finite difference Weighted-Essentially-Non-Oscillatory (WENO) scheme proposed
by Jiang and Shu (1996) is used for the discretisation of convective terms for the
velocities u,v and w. The Total-Variation-Diminishing (TVD) 3rd-order Runge-
Kutta explicit time scheme developed by Shu and Osher (1988) is employed for time
discretisation. It involves the calculation of the spatial derivatives and the dynamics
pressure three times per time step. The information containing the pressure is solved
using the Poisson equation:

hp

ρ

(
∂2q

∂x2
+

∂2q

∂y2

)
+

2q

ρhp

=
1

∂x∂t

(
−hp

(
∂u

∂x
+

∂v

∂y

)
− 2w − u

∂d

∂x
− v

∂d

∂y

)
(3.38)

Here, the parameter hp denotes the water level in the centre of the cell. In a staggered
grid arrangement, this is where the dynamic pressure q, the vertical velocities w and
the free surface location ζ are solved. The horizontal velocities are solved at the faces
of the cells. The high-performance solver library HYPRE (hypre (2015)) is employed
to solve the Poisson pressure equation using the PFMG-preconditioned BiCGStab
algorithm (Ashby and Flagout (1996)). The dynamic pressure q is then used to
correct the velocities in a correction step. Hence, the corrections of the velocities
with the quadratic pressure approximation are

un+1 = u∗ +∆t

(
3

2

qn+1

ρhp

∂d

∂x
+

1

4
Φ
∂d

∂x

)
, (3.39)

vn+1 = v∗ +∆t

(
3

2

qn+1

ρhp

∂d

∂y
+

1

4
Φ
∂d

∂y

)
, (3.40)

wn+1 = w∗ +∆t

(
3

2

qn+1

ρhp

+
1

4
Φ

)
. (3.41)

where u∗, v∗, w∗ are intermediate-step velocities with only hydrostatic pressure.

The term Φ on the right-hand side of Eqn. (3.35) to Eqn. (3.37) is treated with
a procedure following the principles of the fractional step method of Le and Moin
(1991). Assuming the dynamic pressure does not change significantly within one
Runge-Kutta sub-step, the intermediate velocities u∗, v∗, w∗ are corrected with the
dynamic pressure gradients of the previous sub-step:

u∗∗ = u∗ − ∂qn,rk

∂x
, (3.42)

v∗∗ = v∗ − ∂qn,rk

∂y
, (3.43)

w∗∗ = w∗ − ∂qn,rk

∂z
, (3.44)
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where qn,rk is the dynamic pressure from the previous Runge-Kutta sub-step. The
spatial derivatives of Φ are updated with the corrected velocities u∗∗, v∗∗ and w∗∗

in equation Eqn. 3.33, which is then inserted into Eqn. (3.39) to Eqn. (3.41) to
obtain the velocities at the new time step. The time derivative term inside Φ is then
calculated with simple finite differences:

∂tu =
u∗∗ − un,rk

α∆t
, (3.45)

∂tv =
v∗∗ − vn,rk

α∆t
, (3.46)

∂tw =
w∗∗ − wn,rk

α∆t
, (3.47)

(3.48)

where α is the increment factor of the corresponding Runge-Kutta sub-step and
un,rk, vn,rk, wn,rk are the velocities from the previous Runge-Kutta sub-step.

The location of the free-surface ζ is determined based on the divergence of the
depth-integrated horizontal velocities as given in Eqn. (3.34). The free-surface is
reconstructed using the 5th-order WENO scheme (Jiang and Shu (1996)). The
solutions of the stencils are weighted, i.e. a coefficient or weight is assigned to the
solution of each stencil. The scheme assigns the largest weight to the smoothest
solution and can therefore handle large-gradient free-surface changes caused by the
varying bathymetry. As an example, the discretised form of Eqn. (3.34) in x-direction
is presented in Eqn. (3.49).

ζn+1
i − ζni
4t

+
ĥn
i+1/2u

n+1/2
i+1/2 − ĥn

i−1/2u
n+1/2
i−1/2

4x
= 0, (3.49)

where ĥi+1/2 is the water level at the cell face i + 1/2. ĥi+1/2 is reconstructed
with the WENO procedure:

ĥ±
i+1/2 = ω±

1 ĥ
1±
i+1/2 + ω±

2 ĥ
2±
i+1/2 + ω±

3 ĥ
3±
i+1/2. (3.50)

The ± sign indicates the upwind direction. The nonlinear weights ω±
n are

calculated for each ENO stencil based on the smoothness indicators (Jiang and Shu
(1996)). For the upwind direction in the positive i-direction, the three possible ENO

stencils ĥ1, ĥ2 and ĥ3 are:

ĥ1−
i+1/2 =

1

3
hi−2 −

7

6
hi−1 +

11

6
hi, (3.51)

ĥ2−
i+1/2 = −1

6
hi−1 +

5

6
hi +

1

3
hi+1, (3.52)

ĥ3−
i+1/2 =

1

3
hi +

5

6
hi+1 −

1

6
hi+2. (3.53)
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3.3.3 Wave generation and absorption

Wave generation and absorption are carried out with the relaxation method as
described in Bihs et al. (2016) and section 3.2.4. Here, the depth-averaged horizontal
velocities u, v, the surface elevation ζ and the pressure p are increased to the analytical
values in the wave generation zone and reduced to zero or initial still wave values in
the wave energy dissipation zone following the relaxation function. All types of wave
theories as well as wavemaker inputs in REEF3D::CFD code are also applicable to
the shallow water model as well.

3.3.4 Breaking wave algorithm

A breaking wave criterion is introduced (SWASH developers (2017)) to represent the
wave breaking process. The wave breaking is initialised when the vertical velocity of
the free-surface exceeds a fraction of the shallow water celerity:

∂ζ

∂t
> α

√
gh. (3.54)

At the same time, the dynamic pressure is neglected and remains so at the front of
the breaker. For the persistence of the wave breaking, the coefficient β (0 < β < α)
is introduced in Eqn. (3.84) instead of α to stop the wave breaking process. The
computations become non-hydrostatic again when the vertical velocity of the free-
surface falls out of the range of the criterium. α = 0.6 and β = 0.3 are recommended
as they work well with most of the waves (SWASH developers (2017)). By introducing
the wave breaking criterion and removing the dynamic pressure during breaking,
the momentum is well conserved, the energy dissipation is well represented and the
asymmetry and skewness of non-linearity are respected (SWASH developers (2017)).

3.3.5 Wetting-drying algorithm

Wetting and drying are handled by setting the velocities in cells below a certain
user-defined threshold of the water level to zero:

{
u = 0, if ĥx < threshold,

v = 0, if ĥy < threshold.
(3.55)

The default threshold is set to be 0.00005 m, which is used throughout the
presented work. The approach tracks the variation of the shoreline accurately and
avoids numerical instabilities by ensuring non-negative water depth (Stelling and
Duinmeijer (2003b); Zijlema and Stelling (2008)).
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3.4 REEF3D::FNPF

3.4.1 Governing equations

The governing equation for the proposed fully nonlinear potential flow model is the
Laplace equation:

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0. (3.56)

Boundary conditions are required in order to solve for the velocity potential φ
from this elliptic equation, specifically at the free surface and at the bed. The fluid
particles at the free surface should remain at the surface where the pressure in the
fluid should be equal to the atmospheric pressure. These conditions must be fulfilled
at all times and they form the kinematic and dynamic boundary conditions at the
free surface respectively:

∂η

∂t
=− ∂η

∂x

∂φ̃

∂x
− ∂η

∂y

∂φ̃

∂y
+ w̃

(
1 +

(
∂η

∂x

)2

+

(
∂η

∂y

)2
)
, (3.57)

∂φ̃

∂t
=− 1

2



(
∂φ̃

∂x

)2

+

(
∂φ̃

∂y

)2

− w̃2

(
1 +

(
∂η

∂x

)2

+

(
∂η

∂y

)2
)
− gη. (3.58)

where η is the free surface elevation, φ̃ = φ(x, η, t) is the velocity potential at the
free surface, x = (x, y) represents the location at the horizontal plane and w̃ is the
vertical velocity at the free surface.

At the bottom, the component of the velocity normal to the boundary must be
zero at all times since the fluid particle cannot penetrate the solid boundary. This
gives the bottom boundary condition:

∂φ

∂z
+

∂h

∂x

∂φ

∂x
+

∂h

∂y

∂φ

∂y
= 0, z = −h. (3.59)

where h = h(x) is the water depth measured from the still water level to the
seabed.

The Laplace equation, together with the boundary conditions are solved on a
σ-coordinate system. The σ-coordinate system follows the water depth changes and
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offers flexibility for irregular boundaries. The transformation from a Cartesian grid
to a σ-coordinate is expressed as follows:

σ =
z + h (x)

η(x, t) + h(x)
. (3.60)

The velocity potential after the σ-coordinate transformation is denoted as Φ.
The boundary conditions and the governing equation in the σ-coordinate are then
written in the following format:

Φ = φ̃ , σ = 1; (3.61)

∂2Φ

∂x2
+

∂2Φ

∂y2
+

(
∂2σ

∂x2
+

∂2σ

∂y2

)
∂Φ

∂σ
+ 2

(
∂σ

∂x

∂

∂x

(
∂Φ

∂σ

)
+

∂σ

∂y

∂

∂y

(
∂Φ

∂σ

)
+

((
∂σ

∂x

)2

+

(
∂σ

∂y

)2

+

(
∂σ

∂z

)2
)

∂2Φ

∂σ2
= 0 , 0 ≤ σ < 1;

, (3.62)

(
∂σ

∂z
+

∂h

∂x

∂σ

∂x
+

∂h

∂y

∂σ

∂y

)
∂Φ

∂σ
+

∂h

∂x

∂Φ

∂x
+

∂h

∂y

∂Φ

∂y
= 0 , σ = 0. (3.63)

Once the velocity potential Φ is obtained in the σ-domain, the velocities can be
calculated as follows:

u (x, z) =
∂Φ (x, z)

∂x
=

∂Φ (x, σ)

∂x
+

∂σ

∂x

∂Φ (x, σ)

∂σ
, (3.64)

v (x, z) =
∂Φ (x, z)

∂y
=

∂Φ (x, σ)

∂y
+

∂σ

∂y

∂Φ (x, σ)

∂σ
, (3.65)

w (x, z) =
∂Φ (x, z)

∂z
=

∂σ

∂z

∂Φ (x, σ)

∂σ
. (3.66)

3.4.2 Numerical schemes

The Laplace equation is discretized using second-order central differences and solved
using a parallelized geometric multigrid preconditioned conjugated gradient solver
provided by Hypre (van der Vorst (1992)).

The gradient terms of the free-surface boundary conditions are discretized with
the 5th-order Hamilton-Jacobi version of the weighted essentially non-oscillatory
(WENO) scheme (Jiang and Shu (1996)). The WENO stencil consists of three local
essentially non-oscillatory (ENO)-stencils based on the smoothness indicators IS
(Jiang and Shu (1996)). A large IS means a non-smooth solution in a local stencil.
The scheme is designed such that the local stencil with the highest smoothness
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(smallest IS) is assigned the largest weight ωi and therefore contributes the most
significantly. In this way, the scheme is able to handle large gradients up to shock
with good accuracy. The WENO approximation for Φ is a convex combination
of the three possible ENO approximations. For example, in the x-direction, the
discretisation is formulated as the following:

Φ±
x = ω±

1 Φ
1±
x + ω±

2 Φ
2±
x + ω±

3 Φ
3±
x . (3.67)

The three stencils are defined as:

Φ±
x =

1

3
q±1 − 7

6
q±2 +

11

6
q±3 ,

Φ±
x = −1

6
q±2 +

5

6
q±3 +

1

3
q±4 ,

Φ±
x =

1

3
q±3 +

5

6
q±4 − 1

6
q±5 .

(3.68)

with

q−1 =
Φi−2 − Φi−3

∆x
, q−2 =

Φi−1 − Φi−2

∆x
, q−3 =

Φi − Φi−1

∆x
,

q−4 =
Φi+1 − Φi

∆x
, q−5 =

Φi+2 − Φi+1

∆x

(3.69)

and

q+1 =
Φi+3 − Φi+2

∆x
, q+2 =

Φi+2 − Φi+1

∆x
, q+3 =

Φi+1 − Φi

∆x
,

q+4 =
Φi − Φi−1

∆x
, q+5 =

Φi−1 − Φi−2

∆x

(3.70)

The weights are written as

ω±
1 =

α±
1

α±
1 + α±

2 + α±
3

, ω±
2 =

α±
2

α±
1 + α±

2 + α±
3

, ω±
3 =

α±
3

α±
1 + α±

2 + α±
3

(3.71)

and

α±
1 =

1

10

1
(
ẽ+ IS±

1

)2 , α±
2 =

6

10

1
(
ẽ+ IS±

2

)2 , α±
3 =

3

10

1
(
ẽ+ IS±

3

)2 (3.72)
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with the regularisation parameter ẽ = 10−6 and the following smoothness indica-
tors:

IS±
1 =

13

12
(q1 − 2q2 + q3)

2 +
1

4
(q1 − 4q2 + 3q3)

2 ,

IS±
2 =

13

12
(q2 − 2q3 + q4)

2 +
1

4
(q2 − q4)

2 ,

IS±
3 =

13

12
(q3 − 2q4 + q5)

2 +
1

4
(3q3 − 4q4 + q5)

2 ,

(3.73)

For time treatment, a 3rd-order accurate total variation diminishing (TVD)
Runge-Kutta scheme (Shu and Osher (1988)) is used. Adaptive time stepping is used
by controlling a constant time factor as an equivalence to the Courant-Friedrichs-
Lewy (CFL) condition:

cu =
dx∣∣max(umax, 1.0
√
9.81 ∗ hmax)

∣∣ ,

cv =
dx∣∣max(vmax, 1.0
√
9.81 ∗ hmax)

∣∣ ,

ctot = min(cu, cv),

dt = ctotCFL.

(3.74)

where umax, vmax are the maximum particle velocities in x and y directions at the
free surface, hmax is the maximum water depth.

The model is fully parallelised following the domain decomposition strategy where
ghost cells are used to exchange information between adjacent domains. These ghost
cells are updated with the values from the neighbouring processors via Message
Passing Interface (MPI). The parallel computation enables the model to simulate
large-scale scenarios.

3.4.3 Vertical grid arrangement

In the model, the vertical coordinates follow a stretching function so that the grid
becomes denser close to the free surface:

σi =
sinh (−α)− sinh

(
α
(

i
Nz

− 1
))

sinh (−α)
, (3.75)

40



where α is the stretching factor and i and Nz stand for the index of the grid
point and the total number of cells in the vertical direction.

Th vertical stretching further reduces the computational cost. A correct arrange-
ment of the stretching is important to an accurate representation of the dispersion
relation and phase information for deep water waves. In order to chose an appropriate
vertical grid arrangement for a correct representation of the phase information, a
constant-truncation error method is introduced.

As an example, a general description of a progressive Airy wave can be expressed
as:

η(x, z, t) = A(z)B(z)Γ(t). (3.76)

And function A(z) follows:

A(z) = Cekz. (3.77)

Which is governed only by the wave number k, which can be defined by the linear
dispersion relationship to the wave angular frequency:

ω2 = gk. (3.78)

where g is the gravity acceleration.

A correct representation of the phase velocity depends on the correct representa-
tion of the wave number. This is especially true for deep water where the dispersion
relation is very important. The new method is based on the assumption that a
constant absolute truncation error at every vertical location can preserve the correct
shape of the function f(z) and yield the correct wave number. Function f(z) is a
Taylor expansion of free surface over the depth:

f(z) =f(η) +
df(η)

dz
(z − η) +

1

2

d2f(η)

dz2
(z − η)2 +

1

6

d3f(η)

dz3
(z − η)3

+
1

24

d4f(η)

dz4
(z − η)4 +O((z − η)5)

(3.79)

If the absolute error is set to a constant E for every vertical location and the
functionf(z) and its derivatives are known, one can find a maximum cell size
∆z(η) = z − η at every location (Pakozdi et al. (2019b)):

E(z, η) = f(z)−
(
f(η) +

df(η)

dz
(z − η) +

1

2

d2f(η)

dz2
(z − η)2

)
(3.80)

0 = E − f(η +∆z) +

(
f(η) +

df(η)

dz
(z − η) +

1

2

d2f(η)

dz2
(z − η)2

)
(3.81)
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3.4.4 Wave generation and absorption

The relaxation method for wave generation and absorption as described in section 3.2.4
are also used in REEF3D::FNPF. Here, the free surface velocities potential φ̃ and the
surface elevation η are increased to theoretical values in the wave generation zone
and reduced to zero or initial still water values in the wave energy dissipation zone.

Waves can also be generated at the inlet using a Neumann boundary condition
where the spatial derivatives of the velocity potential are defined. In this way, the
velocity potential at the boundary is calculated using the desired analytical horizontal
velocity:

φi−1 = −u(x, z, t)4x+ φi. (3.82)

where u(x, z, t) is the analytical horizontal velocity.

All types of wave theories and wavemaker inputs available in REEF3D::CFD and
REEF3D::SFLOW are applicable to the potential flow model as well.

3.4.5 Breaking wave algorithm

In the presented potential flow model, the free surface is represented by a single
value, therefore it is not possible for the model to represent an over-turning breaker
as in a CFD simulation (Bihs et al. (2016)). However, a correct detection of wave
breaking events and energy dissipation can be achieved with an effective breaking
wave algorithm. The proposed model aims to address both steepness-induced deep
water wave breaking and depth-induced shallow water breaking.

The depth-induced shallow water wave breaking criterion is the same as deployed
in REEF3D::SFLOW. A wave breaking is initialised when the vertical velocity of
the free-surface exceeds a fraction of the shallow water celerity (SWASH developers
(2017)):

∂η

∂t
≥ αs

√
gh. (3.83)

αs = 0.6 is recommended as it works well with most of the waves (SWASH
developers (2017)).

Deepwater steepness-induced breaking is initialised with a steepness criterion:

∂η

∂xi

≥ β. (3.84)

42



After a wave breaking is detected, two methods are available to represent the
energy dissipation during the wave breaking process. The first method is a geometric
filtering algorithm that smoothens the free surface for energy dissipation (Jensen et al.
(1999)). Here, an explicit scheme is used and therefore there is no CFL constraint.
Another method is to introduce a viscous damping term in the free surface boundary
conditions locally around the breaking region (Baquet et al. (2017)). When wave
breaking is detected, the free surface boundary conditions Eqn. 3.57 and Eqn. 3.58
then become:

∂η

∂t
=− ∂η

∂x

∂φ̃

∂x
− ∂η

∂y

∂φ̃

∂y
+ w̃

(
1 +

(
∂η

∂x

)2

+

(
∂η

∂y

)2
)

+ νb

(
∂2η

∂x2
+

∂2η

∂y2

)
, (3.85)

∂φ̃

∂t
=− 1

2



(
∂φ̃

∂x

)2

+

(
∂φ̃

∂y

)2

− w̃2

(
1 +

(
∂η

∂x

)2

+

(
∂η

∂y

)2
)


− gη + νb

(
∂2φ̃

∂x2
+

∂2φ̃

∂y2

)
.

(3.86)

where νb is the artificial turbulence viscosity. νb is calibrated from the comparison
of the potential flow model simulations with model test data and the CFD simulations.
As a result, the value of νb is recommended to be 1.86 (Baquet et al. (2017)) for the
offshore deep water conditions and 0.0055 for shallow water breaking in the proposed
model. In the new free surface boundary conditions Eqn. 3.85 and Eqn. 3.86, the
newly introduced diffusion term is treated with an implicit time scheme while the
rest of the terms are treated with explicit time schemes. This way, there is no extra
constraint on time step sizes.

The two wave breaking methods can also be used in combination for challenging
wave breaking scenarios. In this manuscript, the combination of the two methods is
used for shallow water breaking for a sufficient energy dissipation at very shallow
areas and swash zones in the simulations of the large-scale engineering scenarios.

3.4.6 Coastline algorithm

Handling the complex coastline has been a challenge when applying a potential
flow model in the coastal area. The first difficulty is an efficient grid generation
around the complex boundaries. The curvilinear grid presented in OceanWave3D
(Engsig-Karup and Bingham (2009)) provides one solution. However, the generation
of a curvilinear grid is difficult and time consuming when complex coastlines are
present. The second difficulty is possible numerical instability during the wave run-up
process in the swash zone. The derivatives of velocity potential over the water depth
in Eqn. 3.62 indicate a possible numerical instability when the water depth becomes
infinitesimal. In order to address these two difficulties, an efficient and flexibility
coastline algorithm is introduced.
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First, the computational cells are identified as wet cells and dry cells following a
relative-depth criterion. The local water depth h is defined as a sum of still water
level d and the free surface elevation η:

h = η + d (3.87)

η is the surface elevation, d is the still water level measured from the bottom.
The relationship among h, d and η is illustrated in Fig. 3.3.

d

Bottom

Still water level

Coastal relaxation zone

h=d+

Coastline    <

Figure 3.3: Illustration of the still water level h, local water depth d, free surface elevation η and
coastline detection algorithm.

If the local water depth h is smaller than a threshold ĥ, then the local cell is
identified as a dry cell:

{
u = 0, if h < ĥ,

v = 0, if h < ĥ.
(3.88)

When a cell is identified as a dry cell, the velocities in the cell is set to be zero.
The default threshold is set to be 0.00005 m, however it can be customised based on
the specific conditions.

After the wet and dry cells are identified, the wet cells are assigned with a value
+1 and the dry cells are assigned with a value −1. With the signed initial values, the
coastline is captured using a two-dimensional level-set function (Osher and Sethian
(1988)):

φ(~x, t)





> 0 if ~x ∈ wet cell

= 0 if ~x ∈ Γ

< 0 if ~x ∈ dry cell

(3.89)

Γ indicates the coastline, and the Eikonal equation |∇φ| = 1 holds valid in the
level-set function. The distance perpendicular to the coastline is also calculated
based on the level-set method. From the initial values, the correct signed distance
function is obtained by solving the following Partial Differential Equation (PDE)
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based reinitialisation function (Sussman et al. (1994)). This equation is solved until
convergence and results in the correct signed distance away from the coastline in the
whole computational domain. The excact coastline location is the zero-contour of
the level set function.

∂φ

∂t
+ S (φ)

(∣∣∣∣
∂φ

∂xj

∣∣∣∣− 1

)
= 0 (3.90)

where S(φ) is the smoothed sign function (Peng et al. (1999)).

Using this level-set method, the computational grid remains a uniform structured
grid in the horizontal plane even though complex topography is included in the
computational domain. Therefore, the coastline is accurately captured without extra
efforts and costs on the grid generation. This also gives the model great flexibility,
as there is no need to generate a new set of grid every time there is a change in
the topography. Thus, the model is able to simulate all kinds of topography with a
straightforward, efficient and consistent grid generation.

Relaxation zones are applied along the the wet side of the coastline covering a
given distance from the coastline. This way, the extreme run-ups are avoided and
therefore numerical instabilities in the free surface boundary conditions at extreme
shallow regions are eliminated. In addition, the reflection property of the coastline
can be customised by adjusting the strength or size of the coastal relaxation zones.
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Chapter 4

Summary of Major Results

The major results from the research are summarised as a collection of excerpts
from the journal papers produced during the course of the Ph.D. study. The new
numerical models developed during the study are introduced in Paper 1 and Paper
2, where the numerical details of the models are described, verification and validation
are performed and the numerical performances are evaluated. The performance
of REEF3D::SFLOW is found to be limited by water depth conditions and thus
REEF3D::FNPF is considered to be a more suitable solution for the task of deep
water wave propagation. In Paper 3, REEF3D::FNPF is used to investigate rogue
wave evolution for the extreme design condition of the floating bridges. It is found
that an increasing nonlinearity delays the wave focusing point dramatically using
the current wave focusing techniques. Several other parameters are also discussed,
such as the wave directional spreading properties. In Paper 4, REEF3D::FNPF
is used to study irregular wave propagation over three hours for the operational
conditions of the floating bridges. A working procedure for reproducing a high-quality
irregular wave field is introduced and the importance of wave crest distribution as
an evaluation criterion is stressed. In Paper 5, a novel coastline algorithm is
introduced to REEF3D::FNPF that makes the inclusion of complicated shorelines
straightforward and versatile. The new algorithm solves the difficulty in shoreline
treatment in the potential flow modelling approach and its effectiveness is validated
from a series of test cases. It is concluded that REEF3D::FNPF with its coastline
algorithm is the solution for wave modelling in the Norwegian condition. Therefore,
full-scale wave simulations in Sulafjord and Bjørnafjord are performed in Paper 6
with REEF3D::FNPF. The studies confirm the computational efficiency and several
detailed findings on the wave fields are discussed. Finally, in Paper 7, the different
wave models within the REEF3D framework are compared in an objective manner
to evaluate their features and suggestions for their field of application are given. The
workflow and the topics of the papers can be seen to in Fig. 1.5. The locations of the
large-scale wave simulations at the Norwegian coast in Paper 5 and Paper 6 are
summarised in Fig. 4.1, including the harbour at Mehamn, the fish farm site near
Flatøya and Sulafjord and Bjørnafjord along the E39 coastal highway.
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Figure 4.1: Locations of the engineering applications presented in the thesis.

4.1 REEF3D::SFLOW model description and applications

4.1.1 Paper 1: An improved depth-averaged non-hydrostatic shallow
water model with quadratic pressure approximation

It is challenging for depth-averaged shallow water wave models to represent deepwater
dispersion relation without sacrificing numerical performance. Jeschke et al. (2017)
proposed a quadratic vertical pressure profile that enables the shallow water models
to achieve at least a good equivalence to existing fully non-linear weakly dispersive
Boussinesq models. This method presents itself as an attractive alternative for
modelling shallow water waves, while potentially avoiding the numerical instabilities
due to higher-order terms in a Boussinesq-type model and the increased computational
costs from a larger number of vertical layers in a multi-layer non-hydrostatic model.
Following the quadratic pressure profile assumption, REEF3D::SFLOW is developed
as an improved numerical model that discretises the depth-related terms appropriately
in the original equation set from Jeschke et al. (2017). The 5th-order WENO scheme
(Jiang and Shu (1996)) is used for the convective terms and the Total-Variation-
Diminishing (TVD) 3rd-order Runge-Kutta explicit time scheme developed by Shu
and Osher (1988) is used for the temporal discretisation. Wetting and drying is
handled by setting the velocities in cells below a certain user-defined threshold of the
water level to zero (Stelling and Duinmeijer (2003b); Zijlema and Stelling (2008)). A
breaking wave criterion is introduced (SWASH developers (2017)) to represent the
wave breaking process. The wave breaking is initialised when the vertical velocity
of the free-surface exceeds a fraction of the shallow water celerity. During the wave
breaking, the dynamic pressure is neglected and remains so at the front of the breaker.
Parallel computation is enabled by domain decomposition. The message passing
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interface (MPI) is then used for the communication at the sub-domain boundaries.
The accuracy gain from the quadratic pressure approximation for non-constant
bathymetry and overall numerical performance are the main results from the study.

• The model demonstrates great computational scalability.

The model’s scaling capacity is investigated by conducting a series of simulations
for 500 time step iterations with the number of processors being 16, 32, 64, 128, 256
and 512 on the supercomputer Vilje. The dimension of the computational domain
is (10000 m× 1000 m× 10 m). The input wave is a 2nd-order Stokes wave of wave
height H = 5 m and wavelength L = 100 m. A cell size of dx = 1 m is used, resulting
in 10 million cells in total. It is empirically assumed that the scaling is linear within
16 processors, i.e. one physical node on the cluster. Therefore, the computation
time with one processor is linearly extrapolated from the 16-processor simulation.
The computational speed of the one-processor simulation is considered as the base
reference. The simulation time on one processor divided by the simulation time
on multiple processors is defined as a speed-up factor. The relation between the
speed-up factor and the number of processors as well as the number of cells per
processor are plotted in Fig. 4.2. It shows that the performance increases almost
linearly with the number of processors within the chosen range.
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Figure 4.2: The performance of the parallel computation, shown as a relation between the speed-
up factor in reference to the single-processor simulation for 500 iterations versus the number of
processors and the number of cells per processor

• The model is able to represent energy loss during wave breaking correctly.

The numerical wave tank is initialised based on the experiments in (Ting and
Kirby (1994, 1996)) to model a breaking wave scenario. The wave tank has a total
length of 40 m. A wave generation zone of 9.8 m is located at the inlet of the tank;
a wave energy dissipation zone of the same length is arranged at the outlet. An
inclined bed with a slope of 1:35 is located 4 m away from the wave generation zone.
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The obstacle increases to 0.748 m at the right end of the tank. The water depth
is constant at 0.4 m. Wave gauges 1-4 are located on the slope, 10 m, 11 m, 12 m
and 12.3 m away from the wave generation zone respectively. A 5th-order cnoidal
wave with wave height H = 0.128 m and wave period T = 5 s is generated in this
simulation, which is supposed to result in a plunging breaker on the slope according
to the experiment. A simulation time of 40 s is used.

The simulated wave elevations at different wave gauges with dx = 0.005 m are
compared to the experimental data in Fig. 4.3. The simulated free surfaces agree
with the experimental measurements at all wave gauges. Especially the wave height
decrease from wave gauge 2 to wave gauge 3 is accurately captured, indicating a
correct energy loss during the wave breaking. Further examination shows that the
breaking height of hb = 0.208 m is measured at x = 21.580 m in the simulation.
In the experiment, the breaking point is detected at x = 21.595 m and a breaking
height of hb = 0.196 m is measured. Both, the predicted breaking point and the
breaking wave height are very close to that in the experiment.

Experimental Numerical

η
(m

)

−0.05

0

0.05

0.10

0.15

t (s)

14 16 18 20 22

(a) gauge 1

Experimental Numerical

η
(m

)

−0.05

0

0.05

0.10

0.15

t (s)

14 16 18 20 22

(b) gauge 2

Experimental Numerical

η
(m

)

−0.05

0

0.05

0.10

0.15

t (s)

14 16 18 20 22

(c) gauge 3

Experimental Numerical

η
(m

)

−0.05

0

0.05

0.10

0.15

t (s)

14 16 18 20 22

(d) gauge 4

Figure 4.3: Wave surface elevations of wave breaking over a sloping bed. The input wave is a
5th-order cnoidal wave with a wave height of H = 0.128 m and a wave period of T = 5 s. The cell
size is dx = 0.005 m and CFL = 0.2 is used. Black dashed lines are from laboratory experiments,
red solid lines are results from REEF3D::SFLOW.

• The model represents wave shoaling and decomposition over an irregular
bottom correctly. However, the limitation of the model regarding water depth
is exposed during the wave decomposition process.

The well-known benchmark case of wave propagation over a submerged bar (Beji
and Battjes (1993)) is tested. A 2D wave tank of 38 m is equipped with a wave
generation zone of 5 m and a wave energy dissipation zone of 9.5 m at the end. The
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beginning of the submerged bar is located 6 m downstream from the wave generation
zone. Eight wave gauges are located above the submerged bar with the x-coordinates
being 11 m, 16 m, 17 m, 18 m, 19 m, 20 m, 21 m and 22 m. The incident wave height
is H = 0.021 m, and the wave period is T = 2.525 s. A cell size of dx = 0.02 m is
found to sufficiently represent the phenomena and shows good agreement with the
experimental data. A simulation time of 60 s is used. The time series of free surface
at wave gauges 3, 4, 7 and 8 are shown in Fig. 4.4
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Figure 4.4: The surface elevations of the wave transformation over a submerged bar. Black lines are
from laboratory experiments, red lines are results of REEF3D::SFLOW. The cell size dx = 0.02 m
and CFL = 0.2.

The good agreement between the simulation and experiment at wave gauge 3 and
4 shows the model’s capacity to capture wave shoaling and decomposition. However,
during the de-shoaling process at wave gauges 7 and 8, higher frequency harmonics
with shorter wave lengths appear. These emerging short waves are exposed to a deep
water condition which exceeds the validity of the model.

• The model demonstrate its ability for large-scale wave modelling

A simulation of swell propagation into Mehamn harbour in the north of Norway
is performed. The computational domain is 10.5 km in the east-west direction and
14 km in the north-south direction, with the deepest water depth being 147.5 m.
The site is exposed to swell from the open sea. An estimated regular wave of height
H = 4.5 m and period T = 15 s is generated at the northern boundary. The wetting
and drying scheme over the complex bathymetry is included. A cell size of 5 m
is used in the simulation, resulting in 5.88 million cells. The simulation of wave
propagation in Mehamn harbour takes about 4.2 hours for 1000 s simulation time
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(a) (b)

Figure 4.5: The wave propagation towards the Mehamn harbour in the numerical simulation with
a 2nd-order Stokes wave of wave height H = 4.5 m and wave period T = 15 s. The cell size is
dx = 5.0 m and CFL = 0.2 is used. (a) The topography in the simulation; (b) The surface elevation
at simulation time t = 650 s.

with 256 cores on the Vilje supercomputer. The free surface elevation at the end of
the simulation is shown in Fig. 4.5.

In conclusion, the accuracy gain from the quadratic pressure approximation and
the high-order discretisation schemes in REEF3D enable the model to simulate a
large range of wave transformations including wave breaking with great numerical
performance. However, the improvement of the quadratic pressure approximation
does not enable the model to simulate deepwater waves as in the Norwegian fjords.

4.2 REEF3D::FNPF model description

4.2.1 Paper 2: REEF3D::FNPF - a flexible fully nonlinear potential flow
solver

Potential flow theory based wave models are not limited by water depth. The
development of a fully non-linear potential flow model REEF3D::FNPF is described
in the paper. The model solves the Laplace equation tougher with the kinematic
and dynamics free surface boundary conditions and bottom boundary condition on a
σ-coordinate grid. The grid follows the variation of the bottom topography and the
evolution of free surface. It offers great flexibility regarding varying bathymetry. A
stretching function is used in the vertical direction that enables a refined vertical
grid closer to the free surface. The 5th-order WENO scheme (Jiang and Shu (1996))
and TVD 3rd-order Runge-Kutta scheme Shu and Osher (1988) is used at the free
surface boundary conditions. Parallel computation is made possible using the domain
decomposition strategy with MPI.

• The model is able to represent the complex free surface and wave transforma-
tions without water depth limits.
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The wave propagation over a submerged bar (Beji and Battjes (1993)) is tested.
The 2D wave tank of 35 m is equipped with a wave generation zone of one wavelength
3.73 m long at the inlet and a numerical beach of two wavelengths 8.73 m at the
outlet. The still water level is 0.4 m. The submerged bar begins at x = 6 m and
elevates following a slope of 1 : 20 until it reaches the top platform at x = 12 m, with
a height of 0.3 m. It remains at a height for 2 m before it starts a downwards slope of
1 : 10 and reaches the bottom of the tank at x = 17 m. Nine wave gauges are located
at x = 4.0 m, 10.5 m, 12.5 m, 13.5 m, 14.5 m, 15.7 m, 17.3 m, 19.0 m and 21.0 m.
The incident wave height is H = 0.02 m and the wavelength is L = 3.73 m. Similar
to the study with REEF3D::SFLOW, the surface elevations at wave gauges 3, 4, 7
and 8 in the simulation are compared to the experiment in Fig. 4.6.
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Figure 4.6: The comparison between the simulated time series and the experimental measurements
at wave gauges 3, 4, 7 and 8 with the grid resolution L/dx = 212 in the numerical wave tank for
the wave propagation over a submerged bar.

It is seen that good agreement is achieved at all wave gauges, indicating a good
representation of wave shoaling, decomposition and de-shoaling. Especially after
the de-shoaling, the emerging short waves are well represented in the deep water
condition.

• The model demonstrates high computational efficiency even for three-hour
irregular wave simulations.

The advantage of the potential flow solver is more prominent for long-duration
simulations for obtaining statistical properties of a sea state. The proposed potential
flow model is used to simulate a three-hour irregular sea state at intermediate water
depth. The input spectrum is a JONSWAP spectrum with a peak enhancement
factor of 3.0. The input wave has a significant wave height of Hs = 4.5 m, and peak
period of Tp = 12.0 s. A constant water depth of 40 m is used. The two-dimensional
wave tank is 1760 m long, corresponding to 8 wavelengths based on the peak period.
The frequency range of [0.75ωp, 2ωp] is used. The frequency limits represent the

53



wave energy from 0.5% of the total energy to 99.5% of the total energy. Therefore,
the chosen frequency range represents 99% of the total wave energy. 30 vertical
cells are used with vertical stretching in the σ-coordinate system. The horizontal
resolution is 30 cells per wave length corresponding to the shortest wave with the
highest frequency. The configuration results in a horizontal cell size of 2 m. The
total number of cells is 26400. The simulation time is 12800 s, where the three-hour
window from 2000 s to 12800 s is used for the data analysis. The wave elevation at the
wave probe located five wave lengths (using the peak period) away is investigated for
the chosen time window. The simulated spectrum is compared with the theoretical
spectrum in Fig. 4.7. With 16 cores on supercomputer Vilje, the 12800 s simulation
takes only 1.13 hour, which is three times faster than real time. The calculated
significant wave height in the numerical wave tank is 4.456 m, the peak period is
11.95 s. With a compensation of 1% wave energy, the significant wave height becomes
4.50 m, exactly the same as the input value. The simulated irregular wave match
the input Hs, Tp and the shape of the spectrum with high accuracy. In the current
setup, the simulation is faster that real time, showing a very high computational
efficiency of the model.
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Figure 4.7: Simulated wave spectrum in comparison to the theoretical spectrum for the three-hour
irregular wave simulation.

4.3 REEF3D::FNPF applications for deepwater conditions

4.3.1 Paper 3: Investigation of focusing wave properties in a numerical
wave tank with a fully nonlinear potential flow model

With the new model REEF3D::FNPF, some of the design concerns of the floating
bridges can be investigated. Extreme sea state is one of the major concerns. Here,
both the wave packet method (Hennig (2005)) and the NewWave theory(Tromans
et al. (1991)) are used to generate rogue waves in the numerical wave tank. The
parametric study on different factors that influence the focused wave generation
helps to predict the rogue wave in a numerical wave tank more accurately. Some of
the main results are summarised in the following:

• The numerical model is more accurate in capturing the correct wave focusing
location than physical experiments due to the continuous outputs rather than
discrete measurements.
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A focused irregular wave group is generated with the wave packet method and
the numerical results are compared with the experimental data measured in the
Large Wave Flume (GWK), Hannover, Germany (Clauss and Steinhagen (1999)).
The physical wave tank in the experiments is 300 m long with a constant water
depth of h = 4.01 m. A piston-type wavemaker is used to generate the wave packet
that focuses at the designated location at xF = 126.21 m and time at tF = 103 s.
Though the time series of the surface elevation match well with the experiments, the
geometry of the focused wave is not symmetric, indicating that the real wave focusing
is may have not been captured during the experiment. Further study is performed
by comparing the geometry of the surface elevation every time step to finds out the
real focusing location where the wave crest is the highest and the geometry of the
crest is symmetric. This lead to the finding out a delayed wave focusing, as shown in
Fig. 4.8.
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Figure 4.8: The comparison of the time series at the designated focusing location at x = 126.21 m
and at the real focusing location at x = 129.38 m as detected in the numerical simulation. The
black dash-dot curve is the time series measured in the experiment at x = 126.21 m and the vertical
black dash-dot line indicates the measured focusing time at t = 102.825 s. The red solid curve
is the time series at x = 126.21 m in the NWT, and the vertical red dashed line indicates the
corresponding numerical focusing time t = 102.7 s. The red dash-dot curve is time series at the
real focusing location x = 129.38 m in the NWT and the vertical red dash-dot line indicates the
real focusing time t = 103.4 s. The vertical black dashed line is the designated focusing time at
t = 103 s.

• Increasing nonlinearity postpones the wave focusing in comparison to the
designed locations.

The delayed wave focusing in the GWK test case reveals further clues that
increasing nonlinearity lead to further delay of the wave focusing. Therefore, waves
of higher steepness are simulated in the same numerical wave tank to quantify the
shift of wave focusing. The delay in space and time in relation to wave steepness is
shown in Fig. 4.9. A near linear delay of focusing is observed in relation to wave
steepness.

• Different frequency bands in the input wave spectrum create different focusing
wave geometry.

The NewWave theory is used to reproduce the wave field as described by Ning
et al. (2009). Here, an additional test is made by using five various frequency band
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Figure 4.9: The relative spatial differences in focusing location δxF and temporal differences in
focusing time δtF in relation to wave steepness in the simulation with the wave packet.

widths. NB1 represents the narrowest frequency band, NB5 represents the widest
frequency band width. The focused wave profiles produced with different frequency
band widths are then compared in Figure. 4.10. It shows that the narrow frequency
band produces higher focused wave crests as well as higher secondary crests in the
adjacency of the focused wave crests.
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Figure 4.10: Comparison of the wave surface elevations with five different frequency bandwidths.
(a) the time series at the designated focusing location x = 7.5 m, (b) the spatial wave profile in the
longitudinal direction at the designated focusing time t = 10 s.

• A Neumann boundary is seen to predict the wave focusing location better than
a relaxation wave generation boundary.

In the relaxation method for wave generation, usually only linear dispersion
is represented inside the generation zone, which might result in errors in wave
phases and the location and time of the focusing point. To test the hypothesis,
both Newmann boundary and relaxation method are used to generate the focused
wave trains resented by Ning et al. (2009). Two cases are compared, with NING1
representing a wave train of linear nature and NING3 representing a steeper wave
train. The results are shown in Fig. 4.11. It is seen that both wave generation
methods produce similar wave profiles at the focusing point. However, with increasing
nonlinearity, the Newman boundary predicts focusing location and wave height more
accurately in comparison to the experiment.

• In a directional sea state, the directional spreading function also influences the
3D focused wave profile. In a more spreading sea, the focused wave crest height
is reduced and the wave profile in the transversal plane becomes narrower.
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Figure 4.11: Comparison of the time series at the focusing location of 7.5 m generated by a relaxation
method and a Neumann boundary. (a) for the simulation case NING1, (b) for the simulation case
NING3.

A three-dimensional (3D) focusing wave is produced in the numerical wave tank.
The simulation domain is 20 m long, 20 m wide and 0.5 m deep. The designated
wave focusing takes place at x =7.5 m and y =10 m at 35 s. By changing the
directional spreading factor, the effect of directional spreading is observed, as shown
in Fig. 4.12. As can be seen, a wider directional spreading leads to a lower focusing
wave height and a narrower wave profile in the y-direction. This effect can influence
the calculation of wave forces on structures tremendously.
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Figure 4.12: Comparison of the wave free surface elevations with four different spreading functions,
(a) comparison of the wave profiles in the longitudinal x-z plane at y = 10 m, (b) comparison of
wave profiles in the transverse y-z plane at x = 7.5 m.

4.3.2 Paper 4: A fully nonlinear potential flow wave modelling pro-
cedure for full-scale simulations of sea states with various wave
breaking scenarios

In order to ensure an accurate representation of the wave fields inside the fjord, the
first critical step is to ensure a high fidelity representation of an irregular wave sea
state over a three-hour duration. In this paper, several irregular sea states with
different input waves, water depth conditions and severity of wave breaking are
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simulated. A breaking wave algorithm is introduced to detect both steepness induced
wave breaking in deep water and depth induced wave breaking in shallow water.
A geometric filtering method (Jensen et al. (1999))and viscous damping method
(Baquet et al. (2017)) can be used alone or in combination to dissipate wave energy.
A constant truncation error method (Pakozdi et al. (2019b)) is used to optimise the
vertical grid arrangement. A working procedure for an accurate simulation of an
irregular sea state is concluded especially for a fully non-linear potential flow on a
σ-coordinate grid. The procedure is summarised in Fig. 4.13

I. Determine freqeuncy range

0.05% energy truncation 

1) 99% energy truncation 

2)  

High frequency limitLow frequency limit 

II. Determine horizontal grid

III. Determine time step

IV. Determine vertical grid

Constant truncation error method

Figure 4.13: Procedure of the numerical setup for the simulation using a potential flow model with
a σ-coordinate grid.

Four wave conditions are simulated in a 2D numerical wave tank for 12800 s where
the time series from the wave gauge 12.5Lp (Lp is the wavelength corresponding to
the peak period) away from the inlet boundary is used to obtain short-term wave
statistics. The reproduced wave spectra as well as the wave height distribution match
the theoretical input wave spectra and the analytical wave height distribution well in
all simulated cases. However, more wave energy loss and more tendency of exceeding
the upper bound of the wave height distribution are also observed with increasing
severity of breaking waves. As an example of the simulated results, the simulated
wave spectra in the test case with mild wave breaking in intermediate water depth
(JMB) using the equal energy method (EEM) for spectrum discretisation is shown
in Fig. 4.14. In addition, the wave height distributions at wave gauges G3 to g7
between 10Lp to 15Lp with a 1.25Lp interval are shown in Fig. 4.15.
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Figure 4.14: Comparison of the numerically reproduced wave spectra and the input theoretical
wave spectra in the case with mild wave breaking in intermediate water depth using the EEM
discretisation method and viscous damping wave breaking method.
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Figure 4.15: Wave crest distribution at G3-G7 in the case with mild wave breaking in intermediate
water depth using the EEM discretisation method and viscous damping wave breaking method.
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4.4 REEF3D::FNPF applications for Norwegian coastal conditions

4.4.1 Paper 5: A flexible fully nonlinear potential flow model for wave
propagation over the complex topography of the Norwegian coast

In this paper, a novel coastline algorithm is introduced into REEF3D::FNPF. The
coastline algorithm consists of three steps:

• The wet and dry cells are identified. The computational cells are identified as
wet cells and dry cells following a relative-depth criterion. If the local water
depth h is smaller than a threshold h, then the local cell is identified as a dry
cell. When a cell is identified as a dry cell, the velocities in the cell are set to
be zero.

• The wet cells are assigned with a value + 1 and the dry cells are assigned with
a value - 1. With the signed initial values, the coastline is captured using a
level-set function (Osher and Sethian (1988)). Using the level-set method, the
computational grid remains a uniform structured grid in the horizontal plane
even though complex topography is included in the computational domain.

• Relaxation zones are applied along the the wet side of the coastline covering
a given distance from the coastline. This way, extreme run-ups are avoided
and therefore eliminate numerical instabilities in the free surface boundary
conditions at shallow regions.

With the novel coastline algorithm and the high computational efficiency as
demonstrated previously, REEF3D::FNPF is tested with challenging wave transfor-
mations with strongly varying bathymetry and irregular natural topography. Some
of the most important results are summarised here:

• The wave model predicts wave propagation over steep underwater slope with
high accuracy

One of the challenging scenarios follows the experiment conducted at SINTEF
Ocean in Trondheim (Pakozdi et al. (2019a)). Here a bi-chromatic wave propagates
over a steep submerged ramp, the first segment of which has a slope of 70◦ and
the second segment has a slope of 45◦. This condition closely resembles the natural
under water topography in several locations inside the Norwegian fjords. With the
chosen grid and time step, the free surface in the simulation is compared to the
experiment. As an example, the comparison at wave gauge G3 is shown here. A
good agreement is achieved between the experiment and the simulation. In addition,
all theoretical frequency components are represented in the frequency spectra from
both the experiment and the simulation. The simulation captures the two principal
frequencies ω1 and ω2 and the low frequency ω3 exactly as the theoretical values and
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the corresponding energy densities are nearly identical to the experiment. The high
frequencies represented in the numerical simulation are slightly different from the
experiment, and the relevant energy densities show a different of 10− 25%. However,
the energy densities at the high frequency range are very small (10−5 to 10−4) in
comparison to the principal frequencies (10−2). The energy differences between the
simulation and the experiment at the high frequency range is negligible when they
are compared in the same scale as the principal frequencies. For further details,
please refer to Paper 5.
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Figure 4.16: Comparison of free surface time series between the simulated waves and experimental
measurements. (a) the input wave signal in the numerical simulation at G3.

• The wave breaking algorithm together with the coastline algorithm enables the
model to simulate breaking waves nearshore.

The experiment of plunging breaking waves over a mild slope are used for
validation of the breaking wave algorithm (Ting and Kirby (1995)). The surface
elevation at the wave gauges before (G2) and after the breaking (G3) are selected
to be shown in Fig. 4.17. The wave crest has a sudden decrease at wave gauge 3,
indicating that wave breaking occurs between wave gauge 2 and 3. The simulated
wave crests match the experiment well both before and after the breaking, showing
the correct energy dissipation in the implemented breaking algorithm.
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Figure 4.17: Time series of surface elevation at gauge 2 before the wave breaking and gauge 3 after
the wave breaking in the simulation of wave breaking over a mild-slope.

• The numerical model shows the capability of simulating large-scale wave
propagation over irregular bathymetry and irregular coastlines accurately and
efficiently.
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Full-scale simulations of wave propagation into Mehamn harbour with natural
topography are performed for 12800 s. The domain size is 1760 m in the x-direction
and 1440 m in the y-direction. The 12800 s simulation takes 7.9 h to finish with 128
Intel Sandy Bridge processors (2.6 GHz) on the supercomputer Vilje. The coastline
algorithm captures the coastlines and the topography accurately and efficiently. The
detected coastline and the coast-following relaxation zone are shown in Fig. 4.18.
The simulations capture the complicated wave transformation inside the harbour,
including diffraction around the breakwaters. The free surface at 12800 s is shown in
Fig. 4.19. The significant wave height Hs matches the experiment even with both
breakwaters . The comparison of Hs is shown in Fig. 4.20.

(a) (b)

Figure 4.18: Detection of the coastline and calculation of distance from the coastline for a complicated
topography using the proposed coastline algorithm. The white contour in (a) is the detected coastline,
the colour shows the distance aways from the coastline, with negative values indicating inland and
positive values indicated offshore. The yellow contour in (b) is the boundary of the coast-following
relaxation zone to reduce numerical instability and customise reflection properties of the coastline.

Figure 4.19: Free surface elevation in the simulations of wave propagation into Mehamn harbour at
t = 12800 s with both breakwater BW1 and BW2.

• Phase-resolved models predict wave diffraction better than phase-averaged
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Figure 4.20: Comparison of Hs at the wave gauges between the experimental measurements and
numerical simulations for wave propagation in Mehamn harbour with both breakwaters BW1 and
BW2.

wave models.

Finally a large-scale simulation of wave propagation over an archipelago towards
a fish farm is simulated. The Hs behind the archipelago are compared with the
phase-averaged model SWAN (Booij et al. (1999)). The relative differences are
calculated as the absolute differences divided by the corresponding values from
REEF3D::FNPF. The wave heights from SWAN are underestimated by 20% to 50%.
These comparisons confirm the advantage of the proposed phase-resolved wave model
in representing some of the nonlinear phenomena such as strong diffraction (Thomas
and Dwarakish (2015)). Fergstad et al. (2018) also reported an underestimation of
phase-avbrgead model in comparison with the in-situ measurement.

4.4.2 Paper 6: Phase-resolved wave modelling in the Norwegian fjords
for the ferry-free E39 project

In this paper, REEF3D::FNPF is first tested for several benchmark cases to further
ensure the wave quality in relevant scenarios. Then, the model is applied to simulate
the wave field inside the fjords along E39 route. The first study object is the Sulafjord
that is located in the Møre and Romsdal county. The fjord is relatively exposed to
the open ocean, as there are no archipelagos outside the fjord to prevent offshore swell
waves from entering the inner channel of the fjord. The other fjord is Bjørnafjord that
is located in the county of Vestland. The fjord is well sheltered from the ocean swell
from the Atlantic due to the arrays of archipelagos outside the fjord entry. These
fjords have a domain of interest with dimensions of tens of kilometres. Phase-resolved
wave modelling for a three-hour duration has not been performed before for these
type of applications.

Both long-crested and narrow-spreading short-crested swell waves from offshore
are used for both fjords. The chosen domain is 25 km in the x-direction and 16
km wide in the y-direction with its maximum water depth of 500 m. With the
chosen grid resolution, 17.8 million cells are used in the simulations at Sulafjord.
The simulations with long-crested and host-crested waves are completed in 15.1 and
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15.7 hours with 256 Intel Sandy Bridge cores (2.6 GHz) on the supercomputer Vilje.
Surface elevation at 12800 s in the simulations of wave propagation into Sulafjord
with narrow spreading short-crested irregular wave input is shown in Fig. 4.21.

Figure 4.21: Surface elevation at 12800 s in the simulations of wave propagation into Sulafjord with
narrow spreading short-crested irregular wave input.

The variation of the frequency components is one of the main findings from the
simulations. The dominating frequencies tend to shift away from the peak frequency
of the input wave spectrum towards the lower and higher frequency range. As an
example, the wave spectra at wave gauge B inside the fjord is shown in Fig. 4.22.
At wave gauge B, the short-crested wave shows a main peak near 0.06 Hz while a
significant percentage of wave energy is concentrated near 0.08 Hz. For the long-
crested wave, the majority of wave energy is concentrated near the new peak of
the spectrum at 0.08 Hz. The shift of wave energy towards 0.08 Hz in both wave
conditions shows that 0.08 Hz is the critical frequency when considering structure
egen frequency, given the input wave properties.
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Figure 4.22: Wave spectra at wave gauge B inside Sulafjord.

At Bjørnafjord, the chosen computational domain is 45 km in the x-direction
and 35 km in the y-direction with the maximum water depth of 675 m. With
the chosen grid arrangement, the final number of cells for the simulations is 39.4
million. All simulations are performed with 256 Intel Sandy Bridge cores (2.6 GHz)
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on the supercomputer Vilje for 12800 s. The long-crested wave and short-crested
wave simulations take 32.0 and 32.1 hours respectively. The free surface at 12800
s in the simulations of wave propagation into Bjørnafjord with narrow spreading
short-crested irregular wave input is shown in Fig. 4.23. The frequency of the field
also varies significantly inside the fjord at wave gauges G16 to G18, especially in the
low frequency range. The new wave spectrum inside the fjord is shown in Fig. 4.24.
The emerging new wave frequencies create significant challenges for the floating
structures. The low frequency waves contribute to the low frequency drift (Faltinsen
(1999)) for the mooring system and the high frequency waves might cause resonant
excitations such as ringing (Faltinsen et al. (1995); Faltinsen (1999)).

Figure 4.23: Free surface elevation at 12800 s in the simulations of wave propagation into Bjørnafjord
with narrow spreading short-crested irregular wave.
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Figure 4.24: Variation of wave spectra during narrow spreading short-crested irregular wave
propagation into Bjørnafjord at wave gauges G16-G18 at the second possible crossing location.
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4.5 REEF3D open-source hydrodynamics framework

4.5.1 Paper 7: A comparison of different wave modelling techniques in
an open-source hydrodynamic framework

The three models, REEF3D::CFD, REEF3D::SFLOW and REEF3D::FNPF are
compared in this paper. Since they all share the same numerical framework, the
comparison should be relatively objective and offer insights on the differences in
numerical performance and their most suitable area of applications.

For example, the test case of wave propagation over a submerged bar (Beji and
Battjes (1993)) is simulated with all models with the same setting. The time series
are plotted together in Fig. 4.25. Both REEF3D::CFD and REEF3D::FNPF are
able to represent the de-shoaling process while REEF3D::SFLOW is restricted by
the water depth.
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Figure 4.25: Comparison of the time histories of the free surface elevations at the wave gauges
in the simulations of wave propagation over a submerged bar using the cell sizes achieving grid
convergence.

The test case of wave breaking over a mild slope (Ting and Kirby (1995)) is
also simulated with all models. The comparison of the free surface at wave gauge
2 and 3 before and after breaking show that all models are able to capture the
correct location of wave breaking and dissipate the correct amount of energy near the
shoreline. The comparison is shown in Fig. 4.26. However, the coastline algorithm in
REEF3D::FNPF does not allow wave run-up over the slope.

A 3D wave breaking over a fringe reef is also simulated with all models. Here,
REEF3D::CFD is the only wave model that is able to represent the geometry of the
overturning wave breaker, which is shown in Fig. 4.27.

In terms of computational performance, the computational speed gains from
REEF3D::SFLOW and REF3D::FNPF in comparison to REEF3D::CFD are found
to be by factors of about 10 and 40 respectively on average for 2D simulations and
60 and 800 respectively for the 3D simulation. The higher computational demands
of the CFD model is compensated by that fact that it is the only model capable
of representing the geometry of an overturning wave breaker accurately, which is
important for studies on slamming load on structures.
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Figure 4.26: Comparison between the simulated free surface elevation time series from the three
REEF3D modules and the experiment measurements at all four wave gauges in the simulations of
wave breaking over a mild slope.

Figure 4.27: Three-dimensional wave breaking over the reef in the numerical wave tank calculated
using REEF3D::CFD

67





Chapter 5

Conclusions and Outlooks

5.1 Conclusions

The Ph.D. study was tasked with developing a numerical wave model that is computa-
tionally efficient, accurate, flexible and phase-resolved. The development includes the
shallow water equations model REEF3D::SFLOW with a quadratic non-hydrostatic
pressure profile and the fully non-linear potential flow model REEF3D::FNPF with
a novel coastline algorithm. Both models show computational speed gains by factors
of 10 to 800 in comparison to REEF3D::CFD, enabling large-scale simulations over
long durations. The performance of REEF3D::SFLOW is limited by the water depth.
However, the model shows high computational efficiency and accuracy in the shallow
to intermediate water depth regions and allows wave run-up at the shoreline, making
it a faster alternative for the study of swash zone dynamics. REEF3D::FNPF is
found to be an ideal wave model that is fast, accurate and not restricted by water
depth, bathymetry changes and irregular coastlines. Though the coastline algorithm
solves the difficulty of including irregular coastlines, it also prohibits wave run-up.
Therefore, the model is a wave propagation model that is not suitable for studies on
swash zone dynamics.

It is concluded that REEF3D::FNPF is the ideal numerical wave model for the
E39 fjord-crossing project as it fulfils all criteria that are required for accurate
large-scale simulations of wave propagation into the Norwegian fjords:

• The model is computationally efficient. For example, the model completed
the simulation of a 2D irregular wave field for a 12800 s (slightly longer than
3-hour) duration within 1.13 hours using 16 cores on the supercomputer Vilje
(see details in Paper 2). The large-scale 3D short-crested wave modelling in
Bjørnafjord with the duration of 12800 s is completed within 32 hours using
256 cores on the supercomputer Vilje (see details in Paper 6). In this case, the
domain size is 45 km in the x-direction and 35 km in the y-direction and the
total number of cells is almost 40 million. It indicates a maximum simulation
time to real time ratio of 10 for most Norwegian fjords using the available
supercomputer resources in Norway.
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• The model provides phase-resolved solutions. All simulation results using
REEF3D::FNPF provide information on surface elevation and particle velocities.
They represent all wave transformation phenomena including strong diffraction
(for example, the wave propagation into Mehamn harbour with breakwaters.
See details in Paper 5) and provide time domain information.

• The model is accurate in representing a large range of wave propagation
transformation phenomena. The model has been verified and validated with
several benchmark cases (see details in Papers 2, 5 and 6) as well as large-scale
engineering scenarios (see details in Papers 5 and 6). These tests prove the
modelling capability of accurately simulating regular waves, bi-chromatic waves
and long-crested and short-crested irregular wave propagation, wave shoaling,
wave decomposition, wave de-shoaling, wave refraction, wave diffraction as well
as wave breaking.

• The model is very flexible regarding the coastal topography. The model is not
limited by water depth conditions, varying bathymetry and irregular shorelines.
The effective coastline algorithm provides a universal solution for irregular
coastline inclusion and distinguishes REEF3D::FNPF from other potential
flow models. The flexibility is demonstrated with the simulations of Mehamn
harbour and Flatøya in Paper 5 and Sulafjord and Bjørnafjord in Paper 6.

• The model is open-source. Just as all models developed in the REEF3D frame-
work, the source code of the model is made freely available from www.reef3d.com.
This brings the research transparency and maximises the impact on academics,
industry and society.

The procedure for numerical wave analysis in the Norwegian fjords is suggested
as the following: The results from the phase-averaged wave models, the in-situ
measurements and the hindcast wave data in the offshore area can be used as input
waves in REEF3D::FNPF. Then REEF3D::FNPF carries out the phase-resolved
simulation in the nearshore area as well as inside the fjords. Here, a customisable
number of wave gauges can be arranged in the numerical wave model that provide
time series at multiple locations. This information can then be used for the analysis
of many properties of the wave fields as well as floating structure response. The
schematics of the wave modelling in the Norwegian fjord is shown in Fig. 5.1

During the Ph.D. study, REEF3D has been transformed from an open-source CFD
code to an open-source hydrodynamics framework. Even though REEF3D::CFD
and REEF3D::SFLOW are not suggested for the large-scale wave modelling at the
Norwegian coast for the E39 project, their own features enable the research results
to be applied to a wider range of applications beyond the E39 project. For example
REEF3D::SFLOW can also be sued for shallow water coastal wave modelling as well
as the study on morphology along the coastline. REEF3D::CFD can be used for
wave-structure interaction (WSI). As a summary, the characteristics and featured
applications of the present models are summarised in Table. 5.1.

70



Island

Land

Land

Fjord-crossing

SWAN

Hindcast

data

REEF3D::FNPF

Offshore

[deep water]

Nearshore

[Shallow water]

Fjord

[Deep water]

Figure 5.1: Wave propagation strategy for E39.
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WSI and O.B.
SFLOW 2D Yes Yes No No Swash zone
FNPF 3D Yes No No No Wave propagation
∗ Dim.: Dimension; Br.: Breaking wave; Tub.:Turbulence;

Visc.: viscosity; O.B.: Overturning breaking wave

Table 5.1: Summary of wave models in REEF3D

5.2 Outlook

In the future, the proposed wave propagation model REEF3D::FNPF will be further
tested with engineering scenarios. The numerical results will be compared with
in-situ measurements as well as industrial standards. These studies will bring further
improvement to the model. Every model in REEF3D has its own features, the coupling
among them is beneficial for many applications. Other marine environmental factors
such as wind and current should be included in the wave models. The suggested
further works are summarised as below:

• Coupling between REEF3D models. Different models have their own strengths
and limitations, the coupling between the models combine their advantages.
For example, the coupling between REEF3D::FNPF and REEF3D::CFD will
transfer the wave field information from REEF3D::FNPF to REEF3D::CFD
and thus allow for the representation of wave slamming and the consequent
studies on the impact loads on structures.

• Including wind and current in the wave propagation model. Wind waves and
current are two of the main factors that influence the wave field inside the
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fjords. Including the effects of wind and current on the wave fields is one of
the demanding features to be implemented in the framework.

• Further applications of REEF3D::FNPF in engineering scenarios and compare
the results with in-situ measurements.

• Further development with REEF3D::SFLOW for coastal morphology studies.
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Abstract

Phase-resolved information is necessary for many coastal wave problems, for example, for the
wave conditions in the vicinity of harbour structures. Two-dimensional (2D) depth-averaging
shallow water models are commonly used to obtain a phase-resolved solution near the coast.
These models are in general more computationally effective compared to computational fluid
dynamics (CFD) software and will be even more capable if equipped with a parallelised code.
In the current paper, a 2D wave model solving the depth-averaged continuity equation and the
Euler equations is implemented in the open-source hydrodynamic code REEF3D. The model
is based on a non-hydrostatic extension and a quadratic vertical pressure profile assumption
which provides a better approximation of the frequency dispersion. It is the first model of
its kind to employ high-order discretisation schemes and to be fully parallelised following the
domain decomposition strategy. Wave generation and absorption are achieved with a relax-
ation method. The simulations of non-linear long wave propagations and transformations over
non-constant bathymetries are presented. The results are compared to benchmark wave prop-
agation cases. A large-scale wave propagation simulation over realistic irregular topography
is shown to demonstrate the model’s capability of solving operational large-scale problems.

Keywords: wave modelling; numerical simulation; shallow water equations; dynamic pres-
sure; quadratic profile
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1 Introduction1

Phase-resolved wave modelling is required for many applications in coastal engineering. It2

enables a time-domain analysis and presents more details for complex free-surface phenomena.3

Many efforts have been made to solve the Navier-Stokes equations for water waves with the4

fast development of computational infrastructures and the application of parallel computation5

techniques. Various methods have been used to capture the free-surface, such as the volume-6

of-fluid method (Jacobsen et al. (2012); Higuera et al. (2013a); Hirt and Nichols (1981)), the7

level set method (Bihs et al. (2016); Osher and Sethian (1988)) and the smooth particle hydro-8

dynamics method (Dalrymple and Rogers (2006); Altomare et al. (2017); Chow et al. (2019)).9

Navier-Stokes solvers in combination with one of the aforementioned free-surface treatment10

methods are able to provide high-resolution results for complicated marine free-surface flows11

and near-field wave hydrodynamics. One example that is closely related to the current work12

is the open-source hydrodynamics model REEF3D. In Kamath et al. (2016), the solver was13

used to analyse non-breaking wave forces on various configurations of multiple vertical circular14

cylinders. Further simulations of marine fluid-structure interaction were performed for semi-15

submerged horizontal circular cylinders in tandem (Ong et al. (2017)), and non-linear marine16

hydrodynamics were investigated in detail (Aggarwal et al. (2018)). Broader applications of17

the model are also seen on the sediment transport analysis (Ahmad et al. (2018)) and the18

coastal infrastructure design (Sasikumar et al. (2018)). Typically, these simulations require19

relatively fine three-dimensional grids and are, therefore, more computationally demanding.20

Phase-resolved modelling of the far-field wave field is important for delivering a realistic21

wave generation boundary condition for higher resolution near-field wave modelling. However,22

the far-field wave propagation towards the coast is a large-scale phenomenon, which puts a23

limitation on the application of the Navier-Stokes approach in spite of the increasing computa-24

tional capacities. Less computationally demanding models are required to model the far-field25

large-scale phase-resolved wave propagation efficiently. As most coastal areas share relatively26

shallower water conditions, depth-averaged shallow water models have been favoured for the27

coastal wave modelling. These models are essentially two-dimensional and, thus, require less28

cells. The advances of such models have been focused on developing numerical methods to ac-29

curately capture the frequency dispersion relation and the non-linearity when the water depth30

increases or a rapidly varying bathymetry is involved. A common representative of shallow31

water models is the Boussinesq-type wave model (Madsen et al. (1991); Nwogu (1993)). Here,32

the lack of vertical flow information is compensated through the Boussinesq terms which33

help to calculate the correct frequency dispersion of the waves. This approach is valid from34

shallow to deep water, depending on the order of the Boussinesq terms (Lynnett and Liu35

(200451)). However, higher-order mixed time-space derivatives in the Boussinesq equations36

tend to cause numerical instabilities. More recently, the possibility of using non-hydrostatic37

shallow equations with a single layer or multiple layers in the vertical direction has been ex-38

plored by Zijlema and Stelling (Stelling and Zijlema (2003); Zijlema et al. (2005); Zijlema and39

Stelling (2008); Zijlema et al. (2011a)). With an increasing number of vertical layers, the flow40

information in the vertical direction is better resolved. However, it has been shown previously41

that the increase of vertical layers leads to a significant increase in computational costs. For42

example, Monteban (2016) observed that the simulation time using two layers is nearly 1043

times compared to that using a single layer. Cui et al. (2014) improved the two-layer approach44

such that it has similar computational efficiency as a one-layer counterpart and, yet, main-45
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taining a high linear dispersion accuracy. While the commonly used vertical pressure profile is46

linear, a quadratic pressure approach has been presented by Jeschke et al. (2017). It is stated47

that, with an approximation of a proposed quadratic vertical pressure profile, the model can48

achieve at least a good equivalence to existing fully non-linear weakly dispersive Boussinesq49

models (Jeschke et al. (2017)). This method presents itself as an attractive alternative for50

modelling shallow water waves, while potentially avoiding the numerical instabilities due to51

higher-order terms in a Boussinesq-type model and the increased computational costs from a52

larger number of vertical layers in a multi-layer non-hydrostatic model. However, only simple53

scenarios such as one-dimensional (1D) standing waves and progressive solitary waves over a54

flat bottom have been investigated previously (Jeschke et al. (2017)). Here, several terms of55

the derived equations are neglected which leaves the final question of reliability open. It is56

reported by Jeschke (2018) that it is challenging to incorporate the vital term involving the57

varying bathymetry into her numerical model. As a result, the model’s accuracy is seen to58

be less ideal than the theoretical expectations when changing bottom is present. Therefore,59

this paper includes a numerical procedure to discretise this term appropriately. This enables60

the authors to emphasise the accuracy gain from the quadratic pressure approximation for61

non-constant bathymetries.62

The accuracy of shallow water models has been improved over the last years. High-order63

numerical schemes are employed in the development of Boussinesq-types models. Wei and64

Kirby (1995) applied a 4th-order accurate AdamsBashforthMoulton (ABM) scheme for the65

time discretisation and a mixed 4th-order and 2nd-order scheme for the spatial discretisation.66

Shi et al. (2012) employed a mixed finite volume and finite difference method using a 4th-order67

accurate MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) reconstruc-68

tion technique for the advection term and a 3rd-order Runge-Kutta scheme for temporal69

discretisation. However, few high-order implementations are presented for non-hydrostatic70

models. Zijlema et al. (2011b) present their model using a 2nd-order discretisation scheme71

in space and a 2nd-order leapfrog algorithm in time. Jeschke et al. (2017) implement the72

quadratic pressure model with the 2nd-order P1
NC − P1 finite element method (Hanert et al.73

(2005); Roux and Pouliot (2008)) for the advection terms and a Leapfrog method for the time74

stepping. In a recent development, Jeschke (2018) also implemented a 2nd-order discontinu-75

ous Galerkin scheme in the model. Thus, high-order numerical implementations are left to be76

fulfilled in order to advance the development of non-hydrostatic models.77

In addition, parallel computations are incorporated in many shallow water models in case78

of computationally demanding simulations. Shi et al. (2012) presents a parallelized Boussi-79

nesq model following the domain decomposition strategy with a Message Passing Interface80

(MPI). Good scaling characteristic is observed up to 48 cores. Zijlema et al. (2011b) also81

uses the same parallelisation technique and achieve linear scalability up to 8 cores. However,82

the newly proposed quadratic pressure approximation (Jeschke et al. (2017)) has not been83

incorporated into any parallel code. A good scalability up to hundreds of processors is also84

not presented in the literature regarding shallow water models in general. For large-scale85

operational engineering applications, such scalability is in great demand.86

Ensuring high-quality input waves is another important aspect in the development of a87

shallow water model. The typical practice is to impose the surface elevation and the depth-88

averaged velocities to the boundary (Madsen et al. (1991); Nwogu (1993); Wei et al. (1995);89

Zijlema et al. (2011b); Shi et al. (2012); Chen et al. (2003)). Periodic boundary conditions90

are also widely used, for example, a spatial periodic boundary condition is applied by Madsen91
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et al. (2002), and a double periodic boundary condition is implemented in (Jeschke et al.92

(2017)). Another popular wave generation method is the relaxation method (Mayer et al.93

(1998); Jacobsen et al. (2012)) which has high flexibility and tends to result in less reflected94

waves (Miquel et al. (2018)). This method has been widely implemented in Navier-Stokes95

solvers (Azimi et al. (2014)) but remains absent in the development of shallow water models.96

The feasibility of using a relaxation method for the wave generation and absorption in a97

non-hydrostatic shallow water model remains to be explored.98

In the presented paper, REEF3D::SFLOW is introduced as a novel non-hydrostatic shal-99

low water model following the quadratic pressure approximation (Jeschke et al. (2017)). De-100

veloped as a part of the REEF3D framework, the proposed model has direct access to all101

the existing numerical schemes and parallelisation algorithms in REEF3D. Thus, the model102

presents itself as the first non-hydrostatic shallow water model with high-order discretisation103

schemes, for example, a 5th-order Weighted-Essentially-Non-Oscillatory (WENO) scheme in104

spatial discretisation and a 3rd to 4th-order Runge-Kutta scheme for the temporal discreti-105

sation. The model also innovatively employs the relaxation method (Jacobsen et al. (2012))106

for the wave generation and absorption. With a model equipped with high-order numeri-107

cal methods, this paper presents for the first time the simulations of non-linear long wave108

propagations over varying bathymetries using the quadratic pressure approximation. In these109

simulations, the equations with the depth-related terms are solved and the overall performance110

gain from the quadratic pressure approximation is investigated comprehensively. Computa-111

tional scalability up to multi-hundred cores is demonstrated with the proposed model. An112

expanded validation process is then presented, including several well-known benchmark cases113

incorporating wave propagation over changing topographies and wave-structure interactions.114

Additionally, a large-scale coastal wave propagation over a natural topography is presented115

to demonstrate the model’s capability for engineering applications.116

2 Numerical Theory117

The mass and momentum conservation for an incompressible inviscid flow leads to the conti-
nuity and Euler equations in three dimensions:

∂U

∂x
+

∂V

∂y
+

∂W

∂z
= 0, (1)

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
+W

∂U

∂z
= −1

ρ

∂PT

∂x
, (2)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+W

∂V

∂z
= −1

ρ

∂PT

∂y
, (3)

∂W

∂t
+ U

∂W

∂x
+ V

∂W

∂y
+W

∂W

∂z
= −1

ρ

∂PT

∂z
− g. (4)

where U , V and W are velocities in x, y and z directions, ρ is the constant density, PT118

represents the total pressure and g is the gravitational acceleration. Additional source terms119

such as bottom friction and turbulent stresses are omitted here but are straightforward to120

include if needed.121

The water depth h = d+ζ consists of two parts: the still water depth d and the free-surface
elevation ζ, as displayed in Fig. 1. Defining the horizontal velocity vector as U = (U, V ), the
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kinematic boundary conditions at the free-surface and the bottom are:

W |ζ =
∂ζ

∂t
+ U |ζ · ∇ζ, (5)

W |−d = −U |−d · ∇d. (6)

z
x,y

d

Linear
Bottom

Still water level

Quadratic

h=d+

Figure 1: Basic definitions in the shallow water model: the water depth h, the still water depth
d, the free-surface elevation ζ, the coordinates system and the schematics of the assumed linear
pressure profile and quadratic pressure approximation

The shallow water assumption, i.e. the horizontal acceleration is much greater than the
vertical acceleration, implies a hydrostatic pressure. In order to get a hydrodynamic pres-
sure correction, the total pressure PT is assumed to consist of a hydrostatic part P and a
hydrodynamic part Q. The pressure and its boundary condition at the free-surface is given
by:

PT = P +Q = ρg(ζ − z) +Q, (7)

PT |ζ = P |ζ = Q|ζ = 0. (8)

The velocities and the dynamic pressure are depth-averaged by integrating over the water
depth:

u = (u, v) =
1

h

∫ ζ

−d
U d z; w =

1

h

∫ ζ

−d
W d z; q =

1

h

∫ ζ

−d
Qd z (9)

In contrast to previous models (Zijlema et al. (2011b)), where the pressure is solved at the
bottom, the proposed model consists of only depth-averaged quantities. A relation between
the depth-averaged pressure q and the pressure at the bottom Q|−d needs to be defined in
order to close the system. If the linear pressure profile (Stelling and Zijlema (2003); Zijlema
et al. (2011b)) is assumed, the pressure at the bottom is simply twice the depth-averaged
pressure, or:

Q|−d = 2q. (10)
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Consequently, the governing equations with only depth-averaged variables are:

∂ζ

∂t
+
∂hu

∂x
+

∂hv

∂y
= 0, (11)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g

∂ζ

∂x
− 1

ρh

(
∂hq

∂x
− 2q

∂d

∂x

)
, (12)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g

∂ζ

∂y
− 1

ρh

(
∂hq

∂y
− 2q

∂d

∂y

)
, (13)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
= − 2q

ρh
. (14)

Jeschke et al. (2017) replaces the linear assumption with a quadratic vertical pressure
profile as shown in Eqn. (15).

Q|−d =
3

2
q +

1

4
ρhΦ, (15)

Φ = −∇d · (∂tu+ (u · ∇)u)− u · ∇(∇d) · u. (16)

Following the quadratic assumption, the governing equations with depth-averaged vari-
ables become:

∂ζ

∂t
+

∂hu

∂x
+

∂hv

∂y
= 0, (17)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g

∂ζ

∂x
− 1

ρh

(
∂hq

∂x
−
(
3

2
q +

1

4
ρhΦ

)
∂d

∂x

)
, (18)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g

∂ζ

∂y
− 1

ρh

(
∂hq

∂y
−
(
3

2
q +

1

4
ρhΦ

)
∂d

∂y

)
, (19)

∂w

∂t
+u

∂w

∂x
+ v

∂w

∂y
=

1

ρh

(
3

2
q +

1

4
ρhΦ

)
. (20)

The governing equations with the boundary conditions are solved on a structured staggered
grid using a finite difference method (FDM). Chorin’s projection method (Chorin (1968)) is
applied for the solution of the velocities. The 5th-order conservative finite difference Weighted-
Essentially-Non-Oscillatory (WENO) scheme proposed by Jiang and Shu (1996) is used for
the discretisation of convective terms for the velocities u,v and w. The Total-Variation-
Diminishing (TVD) 3rd-order Runge-Kutta explicit time scheme developed by Shu and Osher
(1988) is employed for time discretisation. It involves the calculation of the spatial derivatives
and the dynamics pressure three times per time step. The information containing pressure is
solved using the Poisson equation:

hp
ρ

(
∂2q

∂x2
+

∂2q

∂y2

)
+

2q

ρhp
=

1

∂x∂t

(
−hp

(
∂u

∂x
+

∂v

∂y

)
− 2w − u

∂d

∂x
− v

∂d

∂y

)
(21)

Here, the parameter hp denotes the water level in the centre of the cell. In a staggered grid122

arrangement, this is where the dynamic pressure q, the vertical velocities w and the free123

surface location ζ are solved. The horizontal velocities are solved at the faces of the cells.124

The high-performance solver library HYPRE (Hypre (2015)) is employed to solve the Poisson125

pressure equation using the PFMG-preconditioned BiCGStab algorithm (Ashby and Flagout126

96



Wang, W. et al., 2020

(1996)). The dynamic pressure q is then used to correct the velocities in a correction step.127

Hence, the corrections of the velocities with the quadratic pressure approximation are128

un+1 = u∗ +∆t

(
3

2

qn+1

ρhp

∂d

∂x
+

1

4
Φ
∂d

∂x

)
, (22)

vn+1 = v∗ +∆t

(
3

2

qn+1

ρhp

∂d

∂y
+

1

4
Φ
∂d

∂y

)
, (23)

wn+1 = w∗ +∆t

(
3

2

qn+1

ρhp
+

1

4
Φ

)
. (24)

where u∗, v∗, w∗ are intermediate-step velocities with only hydrostatic pressure.129

The term Φ on the right-hand side of Eqn. (18) to Eqn. (20) is treated with a procedure130

following the principles of the fractional step method of Le and Moin (1991). Assuming131

the dynamic pressure does not change significantly within one Runge-Kutta sub-step, the132

intermediate velocities u∗, v∗, w∗ are corrected with the dynamic pressure gradients of the133

previous sub-step:134

u∗∗ = u∗ − ∂qn,rk

∂x
, (25)

v∗∗ = v∗ − ∂qn,rk

∂y
, (26)

w∗∗ = w∗ − ∂qn,rk

∂z
, (27)

where qn,rk is the dynamic pressure from the previous Runge-Kutta sub-step. The spatial135

derivatives of Φ are updated with the corrected velocities u∗∗, v∗∗ and w∗∗ in equation Eqn. 16,136

which is then inserted into Eqn. (22) to Eqn. (24) to obtain the velocities at the new time137

step. The time derivative term inside Φ is then calculated with simple finite differences:138

∂tu =
u∗∗ − un,rk

α∆t
, (28)

∂tv =
v∗∗ − vn,rk

α∆t
, (29)

∂tw =
w∗∗ − wn,rk

α∆t
, (30)

(31)

where α is the increment factor of the corresponding Runge-Kutta sub-step and un,rk,139

vn,rk, wn,rk are the velocities from the previous Runge-Kutta sub-step.140

Parallel computation is enabled by decomposing the simulation domain into smaller sub-141

domains. The communication between these domains is achieved through a ghost cell ap-142

proach. The message passing interface (MPI) is then used for the communication at the143

sub-domain boundaries.144
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The location of the free-surface ζ is determined based on the divergence of the depth-145

integrated horizontal velocities as given in Eqn. (17). The free-surface is reconstructed us-146

ing the 5th-order WENO scheme (Jiang and Shu (1996)). The solutions of the stencils are147

weighted, i.e. a coefficient or weight is assigned to the solution of each stencil. The scheme148

assigns the largest weight to the smoothest solution and can therefore handle large-gradient149

free-surface changes caused by the varying bathymetry. As an example, the discretised form150

of Eqn. (17) in x-direction is presented in Eqn. (32).151

ζn+1
i − ζni

4t
+

ĥni+1/2u
n+1/2
i+1/2 − ĥni−1/2u

n+1/2
i−1/2

4x
= 0, (32)

where ĥi+1/2 is the water level at the cell face i + 1/2. ĥi+1/2 is reconstructed with the
WENO procedure:

ĥ±i+1/2 = ω±
1 ĥ

1±
i+1/2 + ω±

2 ĥ
2±
i+1/2 + ω±

3 ĥ
3±
i+1/2. (33)

The ± sign indicates the upwind direction. The nonlinear weights ω±
n are calculated for

each ENO stencil based on the smoothness indicators (Jiang and Shu (1996)). For the upwind
direction in the positive i-direction, the three possible ENO stencils ĥ1, ĥ2 and ĥ3 are:

ĥ1−i+1/2 =
1

3
hi−2 −

7

6
hi−1 +

11

6
hi, (34)

ĥ2−i+1/2 = −1

6
hi−1 +

5

6
hi +

1

3
hi+1, (35)

ĥ3−i+1/2 =
1

3
hi +

5

6
hi+1 −

1

6
hi+2. (36)

Wetting and drying are handled by setting the velocities in cells below a certain user-
defined threshold of the water level to zero:{

u = 0, if ĥx < threshold,

v = 0, if ĥy < threshold.
(37)

The default threshold is set to be 0.00005 m, which is used throughout the presented152

work. The approach tracks the variation of the shoreline accurately and avoids numerical153

instabilities by ensuring non-negative water depth (Stelling and Duinmeijer (2003); Zijlema154

and Stelling (2008)).155

Wave generation and absorption are carried out with the relaxation method as described
in Bihs et al. (2016). The relaxation function formulated by Jacobsen (Jacobsen et al. (2012))
is used in the proposed model:

Γ(x̃) = 1− e(x̃
3.5) − 1

e− 1
for x̃ ∈ [0; 1], (38)

where x̃ is scaled to the length of the relaxation zone. The velocities u, v, the surface elevation
ζ and the pressure p are increased to the analytical values in the wave generation zone and
reduced to zero or initial still wave values in the wave energy dissipation zone:

u(x̃)relaxed = Γ(x̃)uanalytical + (1− Γ(x̃))ucomputational, (39)

v(x̃)relaxed = Γ(x̃)vanalytical + (1− Γ(x̃))vcomputational, (40)

ζ(x̃)relaxed = Γ(x̃)ζanalytical + (1− Γ(x̃))ζcomputational, (41)

p(x̃)relaxed = Γ(x̃)panalytical + (1− Γ(x̃))pcomputational. (42)
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All types of wave theories, type of wavemakers and wave signal input available in the existing156

code are applicable to the proposed shallow water model as well.157

A breaking wave criterion is introduced (The SWASH Team (2017)) to represent the wave
breaking process. The wave breaking is initialised when the vertical velocity of the free-surface
exceeds a fraction of the shallow water celerity:

∂ζ

∂t
> α

√
gh. (43)

At the same time, the dynamic pressure is neglected and remains so at the front of the158

breaker. For the persistence of the wave breaking, the coefficient β (0 < β < α) is introduced159

in Eqn. (43) instead of α to stop the wave breaking process. The computations become non-160

hydrostatic again when the vertical velocity of the free-surface falls out of the range of the161

criterium. α = 0.6 and β = 0.3 are recommended as they work well with most of the waves162

(The SWASH Team (2017)). By introducing the wave breaking criterion and removing the163

dynamic pressure during breaking, the momentum is well conserved, the energy dissipation is164

well represented and the asymmetry and skewness of non-linearity are respected (The SWASH165

Team (2017)).166

3 Verification167

The proposed numerical model REEF3D::SFLOW is first verified for the wave propagation168

in a 28 m long one-dimensional flume as shown in Fig. 2. The wave generation zone of one169

wavelength is at the inlet of the flume, and a wave energy dissipation zone of two wavelengths170

is located at the outlet. Four different wave cases are simulated with the proposed model.171

3.1 Linear progressive wave propagation over constant bathymetry172

First, a linear wave (Dean and Dalrymple (1991b)) of wave height H = 0.02 m and wavelength173

L = 4 m is simulated for 60 s. The water depth is constant at 0.5 m, correspondingly174

kd = 0.25π. A grid convergence study is initially performed with the cell sizes of 0.01 m, 0.02175

m, 0.04 m and 0.08 m. Only one cell exits in the y-direction and its size equals to that in176

the x-direction. The Courant-Friedrichs-Lewy (CFL) number is kept constant at 0.2 for all177

cases. The wave profiles obtained using different cell sizes at t = 90 s are compared in Fig. 3a.178

As can be seen, dx = 0.04 m and dx = 0.08 m under-predict the wave height and show minor179

phase differences. The cell size of dx = 0.02 m represents the wave propagation sufficiently180

well, with a similar result as dx = 0.01 m. The average wave heights of the last ten wave181

periods in the time series at the wave gauge at x = 14.5 m from the inlet boundary are used to182

quantify the grid convergence property. The relative error between the averaged wave height183

and the theoretical value together with the L2 norm of the absolute errors are summarised in184

Table 2. A monotonic reduction of the error can be observed with the refinement of the grids.185

Further, a series of simulations are performed with different CFL numbers of 0.1, 0.2, 0.3186

and 0.4 to investigate the impact of the time step. For this purpose, a constant cell size of187

0.02 m is utilized. The different wave profiles at t = 90 s are compared in Fig. 3b. All tested188

CFL numbers represent the phase information well in comparison to the theoretical wave.189

For CFL = 0.3 and 0.4, the wave height seems to reduce. The wave height information is190

better represented for CFL = 0.1 and 0.2, while an over-estimation of wave crest is noticed191
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with CFL = 0.1 in the chosen time frame. The relative errors and the L2 norms of errors192

are summarised in Table 1. CFL number of 0.2 matches both the trough and crest well and193

errors approach to the ones with CFL number 0.1. As a result, CFL = 0.2 will be used in194

all the following simulations of this paper. Fig. 4a shows that the linear progressive wave is195

well represented by the solver at an intermediate water depth. Both, the wave height and196

phase are matching satisfactorily. It is also noticeable that the relaxation method dissipates197

the wave energy well at the wave energy dissipation zone where the surface elevation remains198

constant at the still water level and no artificial reflection is observed.199

The advantage of the quadratic pressure approximation is demonstrated by comparing200

the surface elevation with quadratic pressure approximation with the linear pressure profile201

in Stelling and Zijlema (2003); Zijlema et al. (2011b) (see Fig. 4b). It is observed that, with202

a linear pressure assumption, the wave phase starts to shift shortly after the waves propagate203

outside the generation zone. In contrast, the quadratic pressure approximation improves the204

phase accuracy significantly and approximates the theoretical value more precisely due to a205

better representation of dispersion.206

4m 8m16m

wave gauge
x = 14.5m

z
x

0.5m

1.0m

Figure 2: The numerical wave tank set-up of the 1D flume for linear progressive waves, view
from the side. The left-hand side is the wave generation zone of one wavelength, the right-
hand side is the wave energy dissipation zone of two wavelengths. The water depth is constant
at 0.5 m.
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Figure 3: The convergence study of the linear progressive wave simulation in a 1D wave flume
with REEF3D::SFLOW: (a) grid convergence study (CFL number is kept constant 0.2), (b)
time step convergence study.
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Figure 4: The wave surface elevation profiles at t = 90 s with a linear wave of wave height
H = 0.02 m, wavelength L = 4 m, cell size dx = 0.02 m and CFL = 0.2: (a) quadratic
pressure approximation in the vertical direction; (b) comparison between quadratic pressure
approximation and linear pressure profile in the vertical direction.

Table 1: The spatial discretisation error analysis for the progressive linear wave simulation.

dx (m) H (m) relative error L2 error

0.08 0.0186 -7.00 % 0.0046

0.04 0.0193 -3.50 % 0.0023

0.02 0.0196 -2.00 % 0.0014

0.01 0.0197 -1.50% 0.0010

Table 2: The CFL error analysis for progressive linear wave simulation.

CFL H (m) relative error L2 error

0.4 0.0192 -4.00 % 0.0024

0.3 0.0194 -3.00 % 0.0019

0.2 0.0196 -2.00 % 0.0014

0.1 0.0197 -1.50% 0.0009

3.2 2nd-order Stokes wave propagation over constant bathymetry207

Next, a 2nd-order Stokes wave (Dean and Dalrymple (1991b)) of H = 0.1 m and L = 4 m is208

simulated in the same 1D numerical flume. The grid convergences study is presented in Fig. 5a.209

Similar to the previous study, the cell size dx = 0.02 m is found to be suitable for this case.210

The average wave height of the last ten periods are again used for the convergence study.211

The relative errors and L2 norms of the absolute error for different grids are summarised212

in Table. 3. With the quadratic pressure approximation, the asymmetry due to the high-213

order approximation is well presented, and both, the wave height and phase match well with214

the theory. It shows that the model provides a good representation of the non-linearity215

of progressive waves. In comparison, the simulation with linear pressure profile shows an216

increasing difference in phase over time compared to the theoretical result.217
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Figure 5: (a) Grid convergence study for the 2nd-order Stokes progressive wave with the wave
height H = 0.1 m, the wavelength L = 4 m and CFL = 0.2. (b) The wave surface elevation
profile at t = 90 s with the cell size dx = 0.02 m. The two horizontal solid black lines represent
the theoretical wave envelope.

Table 3: The spatial discretisation error analysis for progressive 2nd-order Stokes wave simu-
lation.

dx (m) H (m) relative error L2 error

0.08 0.0957 -4.30 % 0.0136

0.04 0.0991 -0.90 % 0.0030

0.02 0.1003 0.30 % 0.0010

0.01 0.1011 1.10 % 0.0035

3.3 Cnoidal wave propagation over constant bathymetry218

A 5th-order cnoidal wave (Korteweg and de Vries (1895); Dean and Dalrymple (1991b)) of219

H = 0.21 m and L = 4 m is investigated in the 1D numerical flume to test steep periodic220

wave propagation in shallow water. The steepness of the wave is H/L = 0.0525, the wave221

length to depth ratio is H/d = 0.42 which is about 65% of the breaking limit suggested by222

Laitone (1960). As shown in Fig. 6a, dx = 0.02 m is still a suitable cell size to capture the223

wave surface elevation accurately despite the increased wave steepness. Following the same224

methodology as in section 3.1, the relative error and L2 norms are computed and shown225

in Table 4. The wave profiles obtained with the quadratic pressure approximation and the226

linear pressure assumption are also compared in Fig. 6b. The wave troughs start to show227

slight deformation while the crests are still well preserved with the wave height to depth ratio228

closer to the breaking limit. The geometry of the steep cnoidal wave is kept constant during229

the propagation. It is also observed that the phase misalignment from the linear pressure230

assumption amplifies with the increase of wave steepness because the linear pressure profile231

assumption deviates further from the physical pressure distribution.232
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Figure 6: (a) The grid convergence study for the 5th-order cnoidal progressive wave with the
wave height H = 0.21 m, the wavelength L = 4 m and CFL = 0.2. (b) The wave surface
elevation profile at t = 90 s with the cell size dx = 0.02 m. The two horizontal solid black
lines represent the theoretical wave envelope.

Table 4: The spatial discretisation error analysis for progressive cnoidal wave simulation.

dx (m) H (m) relative error L2 error

0.08 0.1719 -18.14 % 0.0978

0.04 0.1958 -6.76 % 0.0449

0.02 0.2047 -2.52 % 0.0168

0.01 0.2110 0.48 % 0.0031

3.4 Solitary wave propagation over constant bathymetry233

A solitary wave (Munk (1949); Dean and Dalrymple (1991b)) propagation over a constant234

bathymetry is simulated for 60 s in a 1D flume of 100 m length. The input wave height is is235

H = 0.05 m, and the constant water depth is d = 0.5 m. A wave generation zone of 4 m and236

a wave energy dissipation zone of 8 m are allocated at the inlet and the outlet of the flume.237

The comparison of the wave profiles at t = 90 s simulated with different grids is shown in238

Fig. 7a. The relative errors and L2 norms are also computed and shown in Table 5.239

Further, simulations with the quadratic pressure approximation and the linear pressure240

assumption are simulated with dx = 0.02 m. The numerical computations are compared to241

the analytical values at propagation time 10 s, 20 s, 30 s and 40 s, shown in Fig. 7b. It is seen242

that the numerical results with the quadratic pressure remain in good agreement during the243

entire wave propagation process. Small amplitude waves propagate in opposite direction and244

trailing waves start to form during the simulation with the linear pressure. Simultaneously, the245

wave height increases during the process due to weaker dispersion from the linear assumption.246

These findings are in agreement with the investigations of Jeschke et al. (2017).247
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Figure 7: (a) The grid convergence study for the solitary wave propagation with the wave
height H = 0.05 m, the wavelength L = 100 m and CFL = 0.2. (b) Comparison of the
analytical surface elevation of the solitary wave with the simulation results of the quadratic
and linear vertical pressure profile after a propagation time of 10 s, 20 s, 30 s and 40 s (from
left to right).

Table 5: The spatial discretisation error analysis for progressive solitary wave simulation.

dx (m) H (m) relative error L2 error

0.08 0.0473 -5.40 % 0.0027

0.04 0.0483 -3.40 % 0.0017

0.02 0.0487 -2.60 % 0.0013

0.01 0.0490 -2.00 % 0.0010

The model’s scaling capacity is investigated by conducting a series of simulations for 500248

time step iterations with the number of processors being 16, 32, 64, 128, 256 and 512 on the249

supercomputer Vilje. The dimension of the computational domain is (10000 m × 1000 m ×250

10 m). The input wave is a 2nd-order Stokes wave of wave height H = 5 m and wavelength251

L = 100 m. A cell size of dx = 1 m is used, resulting in 10 million cells in total. It is252

empirically assumed that the scaling is linear within 16 processors, i.e. one physical node253

on the cluster. Therefore, the computation time with one processor is linearly extrapolated254

from the 16-processor simulation. The computational speed of the one-processor simulation255

is considered as the base reference. The simulation time on one processor divided by the256

simulation time on multiple processors is defined as a speed-up factor. The relation between257

the speed-up factor and the number of processors as well as the number of cells per processor258

are plotted in Fig. 8. It shows that the performance increases almost linearly with the number259

of processors within the chosen range.260

4 Validations and Applications261

The evolution of waves over a non-constant bathymetry is complicated, and the performance262

gain from the quadratic pressure approximation in a general setting was recommended as263

future work by Jeschke et al. (2017). To fill the research gap, wave propagations over non-264

constant bathymetries of various configurations are simulated and validated with the available265

experimental data. A wave-structure interaction study is also validated against the bench-266
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Figure 8: The performance of the parallel computation, shown as a relation between the
speed-up factor in reference to the single-processor simulation for 500 iterations versus the
number of processors and the number of cells per processor

mark. Jeschke et al. (2017) suggest the quadratic pressure approximation has the best per-267

formance when the water depth to wave length ratio is below 0.25. The selected benchmark268

cases all share the water depth condition within the suggested range. In addition, a large-scale269

wave propagation over a natural topography is presented based on an engineering scenario.270

4.1 Wave propagation over a submerged bar271

First, the well-known benchmark case of wave propagation over a submerged bar (Beji and272

Battjes (1993)) is tested. The configuration of the numerical set-up based on the experiment273

is shown in Fig. 9. A 2D wave tank of 38 m is equipped with a wave generation zone of 5 m to274

the left end and a wave energy dissipation zone of 9.5 m to the right end. The beginning of the275

submerged bar is located 6 m downstream from the wave generation zone. Eight wave gauges276

are located above the submerged bar with the x-coordinates being 11 m, 16 m, 17 m, 18 m,277

19 m, 20 m, 21 m and 22 m, as shown in Fig. 9. The incident wave height is H = 0.021 m,278

and the wave period is T = 2.525 s. A grid convergence study is performed at gauge 2 and 6,279

before and after the crest of the submerged bar, as shown in Fig. 10i and Fig. 10j. A cell size280

of dx = 0.02 m is found to sufficiently represent the phenomena and shows good agreement281

with the experimental data. A simulation time of 60 s is used.282

The numerically predicted time series of the surface elevations at gauge 1 to gauge 8 are283

compared with the experimental data in Fig. 10. The results match well with the experimen-284

tal measurements before the waves reach the submerged bar and during the shoaling process,285

for example at gauges 1 and 2. It demonstrates that the model can represent the dispersion286

relations well with changing bathymetry. At the crest of the bar, no wave breaking happens287

but the wave decomposition takes place and results in higher harmonic wave components.288

The wave decomposition phenomenon is observed at wave gauges 3 to 5, where the numerical289

results show accurate agreement with the experimental measurements as well. On top of the290

relatively steep downslope, the waves undergo a de-shoaling process as the water depth in-291

creases. During this process, it is observed that the numerical results start to show differences292
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in phase from the experimental data. The discrepancies accumulate from wave gauge 6 to293

wave gauge 7. When the waves reach wave gauge 8, a significant difference is observed. This294

shows a less discussed limitation of existing shallow water approximations for de-shoaling295

processes. Furthermore, the results are also compared between the quadratic and the linear296

pressure profile assumptions. As an example, the comparisons of the surface elevations at297

gauge 3 and 5 are shown in Fig. 11. At both gauges, the quadratic assumption shows good298

alignment in phase with the experiment, while the linear assumption tends to predict a faster299

moving wave front. The observation is consistent with the investigation in section 3.300

38m
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1 2 3 4 5 6 7 8

6m5m

z

x

6m 2m

0.3m
1:20 1:10

0.4m

0.8m
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Figure 9: The numerical wave tank set-up of the wave propagation over a submerged bar,
view from the side. The water depth is constant at 0.4 m. The locations of the wave elevation
gauges are marked with short vertical line segments from 1 to 8. The grey-shaded object is
the submerged bar. A wave generation zone of 5 m and a wave energy dissipation zone of 9.5
m are located at the left end and right end of the tank respectively.

4.2 Solitary wave interaction with a rectangular abutment301

In this benchmark study, the solitary wave interaction with a surface-piercing rectangular302

abutment is investigated. Based on the experiments (Higuera et al. (2013b); Lara et al.303

(2012)), the numerical wave tank is defined as shown in Fig. 12. The tank is 23.86 m long,304

0.58 m wide and 0.9 m deep. The still water level is constant at 0.45 m. A wave generation305

zone of 3.93 m is placed at the left end of the numerical wave tank to cover the effective306

wave length of the solitary wave (Dean and Dalrymple (1991a)), and a fully reflective wall307

is placed at the right end. A 3rd-order solitary wave (Grimshaw (1971)) with a wave height308

of 0.1 m is generated in the wave generation zone. The front face of the abutment is located309

14.86 m from the beginning of the tank. Nine wave gauges are located upstream, sideways310

and downstream of the abutment, as shown in Fig. 12. For the grid convergence study, three311

different cell sizes dx = 0.05 m, 0.1 m and 0.2 m are used. All cases are simulated for 30 s to312

allow enough time for the reflected wave to interact with the abutment and propagate back313

to the generation zone.314

The simulated time series at all wave gauges are compared to those from the experiments315

as shown in Fig. 13. The first peak in the distributions is the result of the incoming solitary316

wave impact on the abutment. After the incident solitary wave passes the abutment, it is317

reflected from the wall at the end of the tank and interact with the abutment again, resulting318

in the second peak. The grid convergence study shown in Fig. 13j is performed at gauge319

7, which is located at the downstream side of the abutment. At this location, both, the320
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Figure 10: The surface elevations of the wave transformation over a submerged bar. (a)-
(h) show the surface elevations at different wave gauges at t = 60 s, black lines are from
laboratory experiments, red lines are results of REEF3D::SFLOW. The cell size dx = 0.02 m
and CFL = 0.2. (i) and (j) are grid convergence study at wave gauge 4 and 6. (part 1)
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Figure 10: The surface elevations of the wave transformation over a submerged bar. (a)-
(h) show the surface elevations at different wave gauges at t = 60 s, black lines are from
laboratory experiments, red lines are results of REEF3D::SFLOW. The cell size dx = 0.02 m
and CFL = 0.2. (i) and (j) are grid convergence study at wave gauge 4 and 6. (part 2)
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Figure 11: The comparison of the surface elevation between the quadratic and linear pressure
profile assumptions at gauge 3 (a) and gauge 5 (b) in the simulation of wave propagation over
a submerged bar.
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interaction between the structure and the incoming waves and the properties of the reflected321

waves can be well observed. It indicates that the cell size dx = 0.05 m sufficiently captures322

the details of the wave pattern and gives good results compared to the experiments. At gauge323

1 and 2, the first peaks show the solitary wave propagates without much interruption and,324

therefore, preserves its wave height. A second minor peak is noticed right after the peak325

which is due to the partially reflected waves from the abutment. Gauge 3 shows an increase326

of the wave height due to the narrowing of the channel, while gauge 4 presents a further327

increase of the peak because of the interaction with the abutment. The peaks increase to328

about 0.11 m and 0.13 m at gauge 3 and 4 respectively. Since gauge 5 is located in the329

constricted part of the channel, the flow velocity increases and the pressure decreases. As a330

consequence, the wave surface drops. At gauge 6, the first peak occurs right after the wave331

crest passes the abutment while the depth-averaged solution tends to smooth out the results332

in the sheltered region behind the abutment. At gauge 8 and 9, two peaks of equal heights333

are observed, indicating that the reflected wave shares the same wave height as the incoming334

wave. This shows that there is no damping of the soliton and the model provides an accurate335

representation of the solitary wave propagation. Similarly, the two peaks also share similar336

height at gauge 7, where no wave transformations occur before and after the wave reflects337

from the vertical wall. When the reflected wave reaches the abutment, a second peak occurs338

at gauge 6. After the reflected wave passes the abutment, gauge 4 also witnesses the second339

peak. In general, the wave patterns from gauge 6 and gauge 4 mirror each other.340

Finally, the second peak at wave gauge 5 and the first peak at wave gauge 7 are compared341

with the quadratic and the linear pressure approximation in Fig. 14. Similar to the previous342

observations, the linear approximation predicts a increased phase velocity while the quadratic343

approximation matches the experiment well in phase.344
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Figure 12: The numerical wave tank set-up of the solitary wave interaction with a rectangular
abutment in a view from above. The grey-shaded object is the abutment. The following three
groups of wave gauges share the same y-coordinate: wave gauges 1,3,7; wave gauges 4,6 and
the wave gauges 2,8,9. A wave generation zone of 3.93 m is located on the left-hand side, the
solid wall is located on the right-hand side to allow full reflection of the waves.

The details of the free-surface during this process is also visualised in Fig. 15. Fig. 15a345

shows the free-surface at simulation time t = 7 s, right before the solitary wave reaches the346

abutment. The solitary wave preserves its waveform. After the wave passes the abutment,347

a vortex is observed at the downstream behind the abutment, as can be seen in Fig. 15b.348

When the reflected wave reaches back towards the abutment from the right-hand side, the349

wave crest meets the vortex from the last interaction before a second interaction, as seen in350
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Figure 13: Wave surface elevation at the wave gauges are shown in (a)-(i). The input solitary
wave has a wave height ofH = 0.1 m. The black dashed lines are from laboratory experiments,
red solid lines are results from REEF3D::SFLOW. The cell size is dx = 0.05 m and CFL = 0.2
is used. (j) shows the grid convergence study.
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Figure 14: The comparison of the surface elevation between the quadratic and linear pressure
profile approximation at gauge 5 (a) and gauge 7 (b) in the simulation of solitary wave
interaction with a rectangular abutment.

Fig. 15c. After the reflected wave passes the abutment, two vortices are observed on both351

sides of the abutment. Fig. 13 reveals that the resolution of the vortex is smoothed out at352

gauge 4 and 6, while the other wave gauges are well represented.353

(a) t = 7.0 s (b) t = 8.75 s

(c) t = 15.25 s (d) t = 17.5 s

Figure 15: Surface elevation of the input and reflected wave interaction with the rectangular
abutment, (a) right before the input solitary wave reaches the abutment, (b) right after
the input solitary wave passes the abutment, (c) right before the reflected wave reaches the
abutment from the right-hand side, (d) right after the reflected wave passes the abutment.

It might be interesting to notice that the 2D shallow water model is as accurate as the354

CFD study in (Bihs et al. (2016)) except for the vortices representation in the wakes of355

the abutment. Here, the results of simulations based on the 3D Navier-Stokes equations356

show a slightly better match with the experiments. The cost of the computational resource,357
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however, is significantly lower using the proposed shallow water model. This benchmark case358

is simulated with 16 processors on the Vilje supercomputer about 56 times faster than the359

3D simulation with the same configuration.360

4.3 Plunging breaking waves over a sloping bed361

In section 4.1, non-breaking waves over a submerged bar are modelled. In a more extreme362

situation, where the shoaling is so strong that the wave steepness increases over a certain363

threshold, the wavefront becomes unstable and breaking takes place. The numerical wave364

tank is initialised based on the experiments in (Ting and Kirby (1994, 1996)) to model a365

breaking wave scenario. The wave tank has a total length of 40 m and a height of 1 m. A366

wave generation zone of 9.8 m is located at the inlet of the tank; a wave energy dissipation367

zone of the same length is arranged at the outlet. An inclined bed with a slope of 1:35 is368

located 4 m away from the wave generation zone. The obstacle increases to 0.748 m at the369

right end of the tank. The water depth is constant at 0.4 m. Wave gauges 1-4 are located on370

the slope, 10 m, 11 m, 12 m and 12.3 m away from the wave generation zone respectively. A371

5th-order cnoidal wave with wave height H = 0.128 m and wave period T = 5 s is propagated372

in this simulation, which is supposed to result in a plunging breaker on the slope according373

to the experiment. A simulation time of 40 s is used.374

The sensitivity to the grid resolution is investigated with different cell sizes of dx =375

0.0025 m, 0.005 m, 0.01 m, 0.02 m and 0.05 m. The wave surface elevation at wave gauge 4376

is chosen for comparing the results from different cell sizes. As can be seen in Fig. 17e, the377

simulations capture very steep wavefronts as well as instabilities at the wave crest with all cell378

sizes. It is not possible to observe the over-turning process because the shallow water model379

represents the free-surface with a single-valued function. Though, a vertical wavefront and380

instability at the wave crest indicates the breaking process. The view on the wave crest is381

shown in more detail in Fig. 17f, where it is visible that dx = 0.005 m captures the peak values382

most accurately. The simulated wave elevations at different wave gauges with dx = 0.005 m383

are compared to the experimental data in Fig. 17 in order to assess the model’s capacity to384

resolve the surf-zone wave transformations. The wave crests increase significantly when the385

waves propagate from gauge 1 to gauge 2, showing an increasing shoaling process. As the386

waves evolve on the slope, an unstable wave crest is seen at gauge 3 and the wave height387

decreases slightly compared to that at gauge 2. The instability at the crest remains as the388

waves approach gauge 4 and a further decrease of the wave crest is noticed. These time series389

suggest that the breaking happens between gauge 2 and 3. To identify the breaking point,390

the wave elevation profile at different time are compared in the same plot (Fig. 18). It is391

seen that at x = 21.580 m, the wave crest is the highest while the wavefront becomes vertical392

for the first time indicating the location of the breaking point. Correspondingly, a breaking393

height of hb = 0.208 m is measured at x = 21.580 m. In the experiment, the breaking point394

is detected at x = 21.595 m and a breaking height of hb = 0.196 m is measured. Both, the395

predicted breaking point and are very close to that in the experiment. The wave surface396

elevation profile is illustrated in Fig. 19. As can be seen in Fig. 19a, the wave height increases397

significantly, the wave shape becomes narrower, the crest becomes unstable and the wavefront398

becomes vertical, indicating a breaking process. At a later time, the wave energy dissipates399

and the wave height decreases dramatically. An attempt to simulate the breaking wave using400

the linear pressure approximation leads to a numerical failure. It indicates that the quadratic401
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pressure approximation is superior for the simulation of breaking waves.402

9.8m 4m

40m

1:35

1 2 34

9.8m

z

x

0.4m
0.748m

1.0m

Figure 16: The numerical wave tank set-up of the wave breaking over a sloping bed, view
from the side. The water depth is constant at 0.5 m, the grey-shaded object is the sloping
bed with a slope of 1:35. Four wave gauges are arranged near the breaking point.

4.4 Large scaling numerical modelling of coastal waves near Mehamn har-403

bour404

The previous benchmark studies have quantitatively examined the capacities of the proposed405

model. In this section, the wave propagation in a large domain with real topography is simu-406

lated to show the model’s computational efficiency and its capacity for operational engineering407

applications. The chosen scenario is Mehamn harbour in northern Norway, highlighted by a408

black box in Fig. 20. The harbour is the north-most Hutigruten harbour and it is connected409

to the open sea to the north and relatively well protected from the west and the east. The410

bathymetry outside the harbour has a mostly intermediate water depth condition with mod-411

erate changes of topography. The computational domain is 10.5 km in the east-west direction412

and 14 km in the north-south direction, with the deepest water depth being 147.5 m. The413

site is exposed to swell from the open sea. An estimated regular wave of height H = 4.5 m414

and period T = 15 s is generated at the northern boundary. The wetting and drying scheme415

over the complex bathymetry is included. A cell size of 5 m is used in the simulation, re-416

sulting in 5.88 million cells. In the case of a 3D simulation with Navier-Stokes solver, such a417

configuration will result in 246.96 million cells assuming a uniform grid. This simulation of418

wave propagation in Mehamn harbour takes about 4.2 hours for 1000 s simulation time with419

256 cores on the Vilje supercomputer.420

The wave surface elevation at simulation time t = 650 s is shown in Fig. 21b. Strongly421

reflected waves can be seen at the tips of the peninsulas that reach out northwards into the422

ocean. Stripes of submerged reefs in the north-south directions create strong shoaling, as423

higher waves are shown to be following the same pattern of the submerged reefs. When424

the waves propagate southwards, refraction occurs and bend the wave rays towards the shore.425

When the waves start to reach the harbour, the narrowing entry causes diffraction. A fraction426

of the diffracted waves manages to bypass the curve-shaped peninsulas and enter the inner427

harbour. The complicated wave transformations and their interactions are well demonstrated428

in the simulation results.429

430

Finally, the model’s computational performance including a complicated bathymetry with431

wetting and drying and the breaking algorithm is determined in a similar manner as described432
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(f) Grid convergence study at gauge 4
with the wave crest zoomed in

Figure 17: Wave surface elevations of wave breaking over a sloping bed. The input wave is
a 5th-order cnoidal wave with a wave height of H = 0.128 m and a wave period of T = 5 s.
The cell size is dx = 0.005 m and CFL = 0.2 is used. Black dashed lines are from laboratory
experiments, red solid lines are results from REEF3D::SFLOW.
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Figure 18: The wavefront evolution near the wave breaking point, from the numerical simu-
lation with dx = 0.005 m. When the wavefront turns vertical for the first time, shown as a
red curve, the breaking and overturning process starts.

114



Wang, W. et al., 2020

(a) (b)

Figure 19: The wave surface elevation profiles along the x-direction. (a) the breaking wave
at t = 34.75 s, as highlighted by a box of a dashed frame. (b) after the wave breaking, at
t = 37.50 s, the wave height reduces and the wave keeps running up the sloping bed, as
highlighted by a box of dashed lines.

in section 2. The simulations are conducted for 500 iterations with the number of processors433

fixed to 16, 32, 64, 128, 256 and 512 on the supercomputer Vilje. The computational time434

with one processor is linearly extrapolated from the 16-processor simulation and is used as435

a base reference for the speed-up factor. The relation between the speed-up factor and the436

number of processors as well as the number of cells per processor are then plotted in Fig. 22.437

It shows that with the presence of a complex topography and the wetting-drying scheme, the438

model is as computationally efficient as with a constant bottom within 200 processors, while439

it slows down compared to the ideal scaling characteristics afterwards.440

Figure 20: The illustration of the simulated region outside Mehamn harbour in northern
Norway. The harbour is highlighted by a black box.

5 Conclusion441

The shallow water model REEF3D::SFLOW has been presented in this paper. The model442

solves the depth-averaged shallow water equations with non-hydrostatic extensions and a443

quadratic vertical pressure profile approximation (Jeschke et al. (2017)). In comparison to444

well-known Boussinesq-type models, the proposed model treats the pressure terms differently.445

A typical Boussinesq model adds higher-order terms to express the hydrodynamic pressure.446

The proposed model adds non-hydrostatic extensions to the shallow water equations and447
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(a) (b)

Figure 21: The wave propagation towards the Mehamn harbour in the numerical simulation
with a 2nd-order Stokes wave of wave height H = 4.5 m and wave period T = 15 s. The cell
size is dx = 5.0 m and CFL = 0.2 is used. (a) The topography in the simulation; (b) The
surface elevation at simulation time t = 650 s.
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Figure 22: The performance of the parallel computation, shown as a relation between the
speed-up factor in reference to the single-processor simulation for 500 iterations versus the
number of processors and the number of cells per processor
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solves for the hydrodynamic pressure explicitly from a Poisson equation. This equation is448

solved iteratively using an implicit scheme. Thus, the proposed model offers simpler nu-449

merics and indicates higher numerical stability by avoiding the high-order pressure terms of450

a Boussinesq model. The current model assumes a quadratic pressure approximation for a451

better representation of dispersion and always solves the depth-averaged pressure. This is452

in contrast to the multi-layer approach that uses vertical layers to represent dispersion and453

solves the pressure at the lower layer interface. Thereby, the presented approach saves the454

additional computational costs from the increasing number of layers.455

High-order numerical methods are incorporated into the new model. Consequently, it is456

the first model with the quadratic pressure approximation that combines high-order schemes457

and fully parallelised computation. The wave generation and absorption are achieved using a458

relaxation method, which is absent in the current literature. The approach proves to generate459

various wave types with correct amplitude and dispersion, and no artificial reflections are460

observed in the numerical wave tank. The accuracy of the high-order scheme is confirmed461

for 1D and 2D wave propagation cases with a constant bathymetry. The 2D large-scale462

simulation of a wave propagation over constant bathymetry presents a near-linear scaling of463

the computational speed with an increasing number of processors up to 512. Further, the464

model shows an almost linear scaling up to 128 processors if a natural topography is included465

in the numerical wave tank. The speed-up is reduced with a further increase of computational466

units due to the complex boundary treatment from the topography.467

Overall, the study confirms the advantage of the quadratic pressure approximation over468

the linear pressure assumption for multiple validation cases. The linear pressure assumption469

leads to an overshooting phase velocity for all the regular wave tests in the manuscripts. It470

also causes a secondary wave during the solitary wave propagation. The quadratic pressure471

approximation improves the phase information for progressive waves significantly and removes472

the unrealistic free-surface disturbances.473

A key advancement presented in the current work is the inclusion of the varying bathymetry474

and structures in a non-hydrostatic shallow water model with the quadratic pressure approxi-475

mation. A fractional step method is applied in the proposed numerical model in order to meet476

the challenge of incorporating the term Φ that appears in the bottom pressure calculation.477

Thus, the simulations of the nonlinear long wave propagation over varying topographies using478

a non-hydrostatic model with the quadratic pressure assumption are possible for the first479

time. The wave transformations over varying topography are well represented and in good480

agreement with the experimental data. The model can represent the complex free-surface481

during wave-structure interactions and predicts the breaking wave height and locations ac-482

curately. The quadratic pressure approximation again provides a better representation of483

the free-surface than the linear pressure assumption for the wave propagation over varying484

bathymetries. The challenges of representing the de-shoaling process using a non-hydrostatic485

shallow water model is also discussed, and the study confirms the findings from previous486

research (Dingemans (1994)).487

It can be concluded that, within the applicable range of the quadratic assumption (Jeschke488

et al. (2017)), the quadratic pressure approximation presents better results both with a con-489

stant and a varying bathymetry. The large-scale engineering application shows a good com-490

putational scaling character with the wetting and drying of complex topography included.491

In general, the model presents itself as a good alternative to shallow water modelling with492

robust and efficient numerical methods. The model also serves as an additional option within493
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the hydrodynamics code REEF3D. As a consequence, an integrated wave modelling cascade494

is more easily adaptable because different sub-models are developed on a single platform and495

the information exchange can be made more convenient.496
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Abstract

In situations where the calculation of ocean wave propagation and impact on structures is re-
quired, fast numerical solvers are desired in order to find relevant wave events. Computational
Fluid Dynamics (CFD) based Numerical Wave Tanks (NWT) emphasize on the hydrodynamic
details such as fluid-structure interaction, which make them less ideal for the event identifica-
tion due to the large computational resources involved. Therefore, a computationally efficient
numerical wave model is needed to identify the events both for offshore deep-water wave fields
and coastal wave fields where the bathymetry and coastline variations have strong impact on
wave propagation. In the current paper a new numerical wave model is represented that solves
the Laplace equation for the flow potential and the nonlinear kinematic and dynamics free sur-
face boundary conditions. This approach requires reduced computational resources compared
to CFD based NWTs. The resulting fully nonlinear potential flow solver REEF3D::FNPF uses
a σ-coordinate grid for the computations. This allows the grid to follow the irregular bottom
variation with great flexibility. The free surface boundary conditions are discretized using
fifth-order WENO finite difference methods and the third-order TVD Runge-Kutta scheme
for time stepping. The Laplace equation for the potential is solved with Hypres stabilized bi-
conjugated gradient solver preconditioned with geometric multi-grid. REEF3D::FNPF is fully
parallelized following the domain decomposition strategy and the MPI communication proto-
col. The numerical results agree well with the experimental measurements in all tested cases
and the model proves to be efficient and accurate for both offshore and coastal conditions.
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1 Introduction1

In the study of wave propagation and wave loads on offshore and coastal structures, phase-2

resolved wave modeling is often required, because it presents the details of the complicated3

free surface phenomena and enables a time domain analysis. A closer investigation of wave-4

structure interaction usually requires a Navier-Stokes solver to represent the complicated5

events involving turbulent flows. REEF3D is developed as an open-source hydrodynamic6

model specializing in the simulations of complex free surface flows (Bihs et al. (2016)). Its7

Navier-Stokes solver REEF3D::CFD has been widely used for various hydrodynamic studies.8

For example, the model is used for the regular wave interaction with surface piercing circular9

cylinder arrays (Kamath et al. (2016)), wave interaction with horizontal semi-submersible10

cylinders in tandem (Ong et al. (2017)) and multi-directional irregular wave interaction with11

a large-diameter cylinder (Wang et al. (2018)). The modular design of the model enables a12

flexible implementation of extensions. As a result, the model is also seen in a broader range13

of applications, such as the sediment transport analysis (Ahmad et al. (2018)) and the coastal14

infrastructure design (Sasikumar et al. (2018)). However, such computations tend to require15

a high resolution of the computational domain and therefore require more computational16

resources and longer simulation time. In order to identify relevant wave events close to the17

structures, a large-scale simulation is demanded, where a faster numerical model is needed.18

In the far-field wave domain, fast two-dimensional shallow water models have been de-19

veloped for fast phase-resolving wave modeling, such as widely used Boussinesq-type models20

(Madsen et al. (1991); Nwogu (1993)). However, the representation of the dispersion relation21

remains a challenge in deep water regions with such models. Turbulence and viscosity are22

normally not significant in the far-field domain. Therefore, a potential flow solver is ideal for a23

fast calculation of wave propagation in the far-field, especially in deep water conditions. The24

development of the potential flow solvers has focused on the representation of nonlinearity.25

One nonlinear wave model in the potential flow domain is the high-order spectrum (HOS)26

model (Ducrozet et al. (2012); Ducrozet et al. (2016)) where a high level of accuracy and com-27

putational efficiency are provided by a Fast Fourier Transform (FFT) solution. The model is28

proven to be efficient both in a numerical wave tank and in an open-ocean scenario. How-29

ever, the development is challenged by an efficient representation of the fast varying bottom30

geometry.31

Another approach is solving the Laplace equation with an enclosure of free surface bound-32

ary conditions and the bottom boundary condition. In the studies of Grilli et al. (1996) (Grilli33

(1996)), a high-order boundary element method (BEM) is used for various applications in-34

cluding wave propagation, shoaling, breaking and wave run-up. Correct representations of35

both the geometry and kinematics of strongly nonlinear waves are achieved with the highly36

nonlinear model where no approximations are introduced for the free surface boundary condi-37

tions. However, BEM approaches usually require explicit knowledge of a fundamental solution38

of the differential equations and case-specific mathematical analysis. A sharp discontinuity39

at the boundary, such as corners and edges may introduce singularities in the solution. In40

contrast to the BEM approach, Li and Fleming (1997) (Li and Fleming (1997)) were the41

first to propose a finite difference method (FDM) for the solution of the Laplace equation42

throughout the whole domain. A low-order multi-grid method is developed for an efficient43

and scalable solution of the fully nonlinear potential flow (FNPF) equations for water wave44

applications. Bingham et al. (2007) (Bingham and Zhang (2007)) further improved the model45
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using high-order finite differences. In 2008, OceanWave3D (Engsig-Karup et al. (2009)) was46

introduced as a fully nonlinear and dispersive free surface wave model for 3D nonlinear water47

waves. Adaptive and curvilinear meshes are employed in the model, offering flexibilities with48

respect to geometry. The model has also been extended to study wave-structure interactions49

(Engsig-Karup and Bingham (2009); Ducrozet et al. (2014)). However, the mesh generation50

with curvilinear mesh can be challenging with the appearance of complicated solid boundaries51

in the computational domain. Other FNPF models have also been developed in 2D or 3D,52

as presented in (Janssen et al. (2010); Mehmood et al. (2015, 2016)). These FNPF models53

are able to simulate strongly nonlinear wave generation, propagation and transformation, up54

to wave overturning (Janssen et al. (2010)). Recently, much attention has also been put on55

improving the computational capacity of the FNPF models. For example, an OceanWave3D56

version equipped with a GPU-based parallelization was introduced in 2012 (Engsig-Karup57

et al. (2012)). Further explanations of the GPU implementations on heterogeneous many-58

core architectures can be found in (Engsig-Karup et al. (2013)) and (Glimberg et al. (2013)).59

The model achieves an applaudable computational efficiency, but also requires specific GPU60

infrastructure.61

There is a lack of potential flow model that represents both non-linear wave phenomena62

at offshore and wave transformation at coastal area with irregular varying topography, as63

well as supporting High Performance Computation (HPC) with multiple processors. In this64

paper, a fully nonlinear potential flow solver REEF3D::FNPF is introduced in the numerical65

framework of REEF3D. The computations are performed with a finite difference method on66

a σ-coordinate grid. Since the model is coded in REEF3D, the existing robust numerical67

schemes in REEF3D are straightforward accessible to the proposed model. For example,68

the model is equipped with high-order discretization schemes and is fully parallelized with69

an MPI-based domain decomposition method. The presented paper describes the governing70

equations and the numerical implementations of the model. Then four test cases are shown71

to demonstrate its numerical performance. First, a linear progressive wave propagation over72

constant water depth is simulated. Then, the wave propagation over irregular topography73

is investigated by simulating the wave transformation over a submerged bar. Next, the evo-74

lution of a wave packet and the wave focusing is presented. Finally, a three-hour irregular75

wave simulation is performed. The simulated results are compared to theoretical values and76

experimental measurements. In the presented studies, the model shows a robust accuracy and77

cheerful computational efficiency.78

2 Numerical Model79

Governing equations80

The governing equation for the flow calculations in the open-source fully non-linear potential81

flow code REEF3D::FNPF is the Laplace equation:82

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0 (1)

In order to solve for the velocity potential φ, this elliptic equation requires boundary83

conditions, where especially the ones at the free surface and the bed are of importance. At84
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the free surface, the fluid particles should remain at the surface and the pressure in the fluid85

is equal to the atmospheric pressure. These conditions must hold true at the free surface at86

all times and they form the kinematic and dynamic boundary conditions at the free surface87

respectively:88

∂η

∂t
=− ∂η

∂x

∂φ̃

∂x
− ∂η

∂y

∂φ̃

∂y
+ w̃

(
1 +

(
∂η

∂x

)2

+

(
∂η

∂y

)2
)
, (2)

∂φ̃

∂t
=− 1

2



(
∂φ̃

∂x

)2

+

(
∂φ̃

∂y

)2

+

1

2
w̃2

(
1 +

(
∂η

∂x

)2

+

(
∂η

∂y

)2
)

− gη. (3)

where φ̃ = φ(x, η, t) is the velocity potential at the free surface, x = (x, y) represents the89

horizontal location and w̃ is the vertical velocity at the free surface.90

91

At the bottom, the fluid particle cannot penetrate the solid boundary, and therefore the92

vertical water velocity must be zero at all times. This gives the bottom boundary condition:93

∂φ

∂z
+

∂h

∂x

∂φ

∂x
+

∂h

∂y

∂φ

∂y
= 0, z = −h. (4)

where h = h(x) is the water depth from the seabed to the still water level.94

95

The Laplace equation, together with the enclosure of the boundary conditions are solved on96

a flexible-order finite difference scheme on a σ-coordinate. The σ-coordinate can be transferred97

from a Cartesian grid following:98

σ =
z + h (x)

η(x, t) + h(x)
(5)

The velocity potential is denoted as Φ after the σ-coordinate transformation. Then the99

governing equations and boundary conditions in the σ-coordinate become:100

Φ = φ̃, σ = 1; (6)

∂2Φ

∂x2
+

∂2Φ

∂y2
+

(
∂2σ

∂x2
+

∂2σ

∂y2

)
∂Φ

∂σ
+ 2

(
∂σ

∂x

∂

∂x

(
∂Φ

∂σ

)

+
∂σ

∂y

∂

∂y

(
∂Φ

∂σ

))
+

((
∂σ

∂x

)2

+

(
∂σ

∂y

)2

+

(
∂σ

∂z

)2
)

∂2Φ

∂σ2
= 0, 0 ≤ σ < 1;

(7)
(
∂σ

∂z
+

∂h

∂x

∂σ

∂x
+

∂h

∂y

∂σ

∂y

)
∂Φ

∂σ
+

∂h

∂x

∂Φ

∂x
+

∂h

∂y

∂Φ

∂y
= 0, σ = 0. (8)

Once the velocity potential Φ is obtained in the σ-domain, the velocities can be calculated101

as follows:102
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u (x, z) =
∂Φ (x, z)

∂x
=

∂Φ (x, σ)

∂x
+

∂σ

∂x

∂Φ (x, σ)

∂σ
, (9)

v (x, z) =
∂Φ (x, z)

∂y
=

∂Φ (x, σ)

∂y
+

∂σ

∂y

∂Φ (x, σ)

∂σ
, (10)

w (x, z) =
∂Φ (x, z)

∂z
=

∂σ

∂z

∂Φ (x, σ)

∂σ
. (11)

The waves are generated at the wave generation zone using the relaxation method (Mayer103

et al. (1998)). The relaxation function proposed by Jacobsen (Jacobsen et al. (2012)) is used104

in the model, as shown in Eqn. (12). In the wave generation zone, the free-surface elevation105

and velocities are ramped up to the designed theoretical values. In the numerical beach, a106

reverse process takes place and the flow properties are restored to hydrostatic values following107

the relaxation method.108

109

Γ(x̃) = 1− e(x̃
3.5) − 1

e− 1
for x̃ ∈ [0; 1] (12)

where x̃ is scaled to the length of the relaxation zone.110

The Laplace equation is solved using the parallelized geometric multi-grid algorithm pro-111

vided by hypre (van der Vorst (1992)). Second-order central differences are used for the112

discretization of the Laplace equation.113

The calculation of wave propagation can be challenging because insufficient grid resolution114

can cause numerical diffusion which consequently leads to unphysical damping of the waves.115

In order to achieve the balance between the order of accuracy of the discretization methods116

and the numerical stability and efficiency, the model chooses the fifth-order WENO (weighted117

essentially non-oscillatory) scheme (Jiang and Shu (1996)) in the conservative finite-difference118

framework for the discretization of the convection terms. This scheme can handle large gra-119

dients accurately by taking local smoothness into account. The overall WENO discretization120

stencil consists of three local ENO-stencils, which are weighted depending on their smooth-121

ness, with the smoothest stencil contributing the most significantly.122

For the time treatment for the freesurface boundary conditions, a third-order accurate123

TVD Runge-Kutta scheme (Shu and Osher (1988)) is used. Adaptive time stepping is used124

in order to determine the time step size while keeping a constant CFL number which is based125

on phase velocity.126

The model is fully parallelized following the domain decomposition strategy. Ghost cells127

are used within the implemented domain decomposition framework for the parallelization.128

These ghost cells are updated with the values from the neighboring processors via MPI (Mes-129

sage Passing Interface).130

3 Results131

Linear wave propagation132

At first, the proposed model is tested with wave propagation over a constant bottom. The133

two-dimensional (2D) numerical wave tank is 35 m long. The still water level is constant at134
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0.4 m. The input wave is a linear wave at intermediate water depth. The wave height is135

0.02 m and the wavelength is 3.73 m. A wave generation zone of one wavelength is located at136

the inlet of the tank to the left-hand side. A numerical beach of two wavelengths is located137

at the outlet of the tank to the right-hand side. The schematics of the numerical wave tank’s138

configuration is shown in Fig. 1.139

22.54 m 8.73 m3.73 m

z

x

0.4m

0.8m

Figure 1: The configuration of the numerical wave tank for the linear wave propagation.

To study the grid convergence property of the model, three simulations are performed140

with three different grid sizes. The finest grid uses 85 cells per wavelength, the intermediate141

grid allows 53 cells per wavelength, while the coarsest grid consists of 26 cells per wavelength.142

The wave profiles at t = 35 s from the three simulations are compared to the theoretical value143

in Fig. 2:144

Theoretical L/dx=85 L/dx=53 L/dx=26

η
(m

)

−0.01

0

0.01

x (m)

14 15 16 17 18 19 20

(a)

Theoretical L/dx=85 L/dx=53 L/dx=26

η
(m

)

−0.01

0

0.01

x (m)

0 5 10 15 20 25 30 35

(b)

Figure 2: The comparison of the wave profile at t = 35 s for the linear wave propagation. (a)
the comparison along the whole tank, (b) a closer view at the wave profile.

A Richardson extrapolation method is used to estimate the grid-independent numerical145

result, the spatial discretization error and the convergence rate. The average wave heights146

during 30 s simulations are used for the grid-convergence study. The fitted curve of the147

Richardson extrapolation is shown in Fig. 3. It is seen that the grid-independent average148

wave height is 0.01983 m, with an error of −0.833% compared to the input theoretical value149

of 0.01983 m. The monotonic convergence rate is found to be 2.64, higher than second order.150

Wave propagation over a submerged bar151

In this section, the wave propagation over a submerged bar (Beji and Battjes (1993)) is tested.152

The 2D wave tank of 35 m is equipped with a wave generation zone of one wavelength 3.73 m at153

the inlet and a numerical beach of two wavelengths 8.73 m at the outlet. The still water level154

is 0.4 m. The submerged bar begins at x = 6 m and elevates following a slope of 1 : 20 until it155

reaches the top platform at x = 12 m, with a height of 0.3 m. It remains the height for 2 m be-156

fore it starts a downwards slope of 1 : 10 and reaches the bottom of the tank at x = 17 m. Nine157

wave gauges are located at x = 4.0 m, 10.5 m, 12.5 m, 13.5 m, 14.5 m, 15.7 m, 17.3 m, 19.0 m158

and 21.0 m. The incident wave height is H = 0.02 m and the wavelength is L = 3.73 m. The159
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0.018
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0.0195
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Computed

Fitted curve (p = 2.64)

Fitted curve (p = 2)

Figure 3: The grid convergence study following a Richardson extrapolation method for the
linear wave propagation case.

schematics of the configurations of the numerical wave tank is shown in Fig. 4.160

161

35m

8.73m

1 2 3 4 5 6 7 8

2.27m3.73m

z

x

6m 2m

0.3m
1:20 1:10

0.4m

0.8m

3m

9

Figure 4: The configuration of the numerical wave tank for wave propagation over a submerged
bar.

A grid convergence study is performed at gauge 2 and 6, before and after the crest of the162

submerged bar, as shown in Fig. 5a and Fig. 5b. Three grids sizes are used in the study, giving163

212, 106, 53, and 26 cells per incident wavelength. It is found that 212 cells per wavelength164

are sufficient to capture the wave transformation. A simulation time of 35 s is used. With165

12 2.7 GHz cores on a Mac Pro with 32 GB memory, the simulation only takes 170 s. The166

time series at all nine wave gauges are compared to the experimental measurements, shown167

from Fig. 6a to Fig. 6i. The waves shoal over the uprising slope of the submerged bar.168

A continuous increase of wave height is observed from gauge 1 to gauge 3. Gauge 4 and169

gauge 5 sees the beginning of the wave decomposition process, where higher frequency short170

wave components start to emerge. From gauge 6, the de-shoaling takes place, and the wave171

decomposition becomes more prominent. The velocity potential and the horizontal velocities172

in the numerical wave tank at t = 35 s is also shown in Fig. 7. With the chosen grid resolution,173

the evolution of the waves is well represented during the entire shoaling and the de-shoaling174

process, especially the complicated wave decomposition after the top of the bar. It is also175

noted that in order to resolve those short waves during the decomposition, a finer grid is176

needed compared to the previous study with a constant bottom in the previous section.177
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gauge 6
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Figure 5: The grid convergence study at wave gauge 6 and wave gauge 8.
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(c) wave gauge 3 at x = 12.5 m
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(d) wave gauge 4 at x = 13.5 m
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(e) wave gauge 5 at x = 14.5 m
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(f) wave gauge 6 at x = 15.7 m
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(g) wave gauge 7 at x = 17.3 m
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(h) wave gauge 8 at x = 19.0 m
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Experiment REEF3D::FNPF

η
[m

]

−0.01

0

0.01

0.02

t [s]

20 25 30 35

(i) wave gauge 9 at x = 21.0 m

Figure 6: The comparison between the simulated time series and the experimental measure-
ments at all wave gauges with the grid resolution L/dx = 212 in the numerical wave tank for
the wave propagation over a submerged bar.

(a) The velocity potential in the wave tank at t = 35 s

(b) The horizontal velocity in the wave tank at t = 35 s

Figure 7: The velocity potential and the horizontal velocity in the numerical wave tank when
the waves pass the submerged bar at t = 35 s.
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In comparison, a CFD simulation requires a much finer grid and smaller time step to resolve178

the high-frequency wave components. In stead of 20000 cells used in the current simulation,179

a cell number of 1322000 is needed in a CFD simulation to achieve good representation of the180

wave propagation. With 12 cores on a Mac Pro, the CFD simulation takes about 17 hours181

indtead of 170 s as with FNPF, a magnitude of 400 slower than the FNPF simulation for this182

case.183

The focused wave from a wave packet184

The model is tested with extreme wave event in this section. An experimental wave packet185

measured in the LargeWave Flume (GWK), Hannover, Germany (Clauss and Steinhagen186

(1999)) is used for the validation. Several tests in the experiment have been successfully re-187

produced with the CFD model REEF3D::CFD (Bihs et al. (2019)), including focused wave188

breaking. Here, a non-breaking focused wave is to be reproduced with the presented model189

REEF3D::FNPF. The physical wave tank in the experiment is a 300 m long channel with190

a still water level of d = 4.01 m. A Piston-type wavemaker is used to generate the wave191

packets such that the waves focus at a designed location and time. In the numerical test,192

a 2D numerical wave tank 250 m long with a water depth of d = 4.01 m is used. Follow-193

ing the arrangement from the experiment, the distance of the focus point and the time of194

focusing are xf = 126.21 m and tf = 83 s. The free surface elevations are measured at195

x = 3.59 m, 50.5 m, 79.05 m, 100.10 m and 126.21 m in the numerical wave tank. They are196

compared to the experimental observations as presented from Fig. 8a to Fig. 8e. The grid197

convergence study is shown in Fig. 9, where 30, 20 and 10 cells per shortest wavelength in198

the generated ave group are tested. It is found that 30 cells per shortest wavelength shows a199

nearly grid-independent result. With the chosen resolution, a 110 s simulation takes 1160 s200

with 2 processors on the same machine as shown in the previous section. At the focus lo-201

cation, the numerical error at the wave peak is 4.8%. In order to show the evolution of the202

wave packet, the wave profiles and the horizontal velocities in the computational domain are203

shown in Fig. 10 for the sampled time frames t = 65 s, 83 s and 99 s. At t = 65 s, the wave204

packet propagates from the wave generation zone, where a short wave is leading the wave205

train while the longer wave is chasing from behind. At t = 83 s, all the wave components su-206

perimpose into a focused wave with an amplified single peak with high velocities. At t = 99 s,207

the longer wave components surpass the shorter waves and the single peak decomposes into208

several components again. The entire process is clearly represented by the model.209

Three-hour irregular wave210

The advantage of the potential flow solver is more prominent for long-duration simulations211

for obtaining statistical properties of a sea state. In order to gather statistical information212

on a wave field, it is necessary to perform a three-hour simulation at full scale. This is213

computationally demanding for Naiver-Stokes solvers. In this section, the proposed potential214

flow model is used to simulation a three-hour irregular sea state at intermediate water depth.215

The input spectrum is a JONSWAP spectrum with a peak enhancement factor of 3.0. The216

input wave has a significant wave height of Hs = 4.5 m, and peak period of Tp = 12.0 s.217

A constant water depth of 40 m is used. The two-dimensional wave tank is 1760 m long,218

corresponding to 8 wavelengths based on the peak period. The frequency range of [0.75ωp, 2ωp]219

134



Bihs, H. et al., 2020

Pakozdi [2005]

REEF3D::FNPF

η
[m

]

−0.5

0

0.5

1.0

t [s]

0 20 40 60 80

(a) wave gauge 1 at x = 3.59 m

Pakozdi [2005]

REEF3D::FNPF

η
[m

]

−0.5

0

0.5

1.0

t [s]

20 40 60 80

(b) wave gauge 2 at x = 50.5 m

Pakozdi [2005]

REEF3D::FNPF

η
[m

]

−0.5

0

0.5

1.0

t [s]

40 60 80 100

(c) wave gauge 3 at x = 79.05 m

Pakozdi [2005]

REEF3D::FNPF

η
[m

]
−0.5

0

0.5

1.0

t [s]

40 60 80 100

(d) wave gauge 4 at x = 100.10 m

Pakozdi [2005]

REEF3D::FNPF

η
[m

]

−0.5

0

0.5

1.0

t [s]

40 60 80 100

(e) wave gauge at the focus point at x =
126.21 m

Figure 8: The comparison between the simulated time series and the experimental measure-
ments at all wave gauges in the numerical wave tank for the focusing wave packet.
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Figure 9: The grid convergence study at the focusing point for the wave packet propagation.

is used. The frequency limits represent the wave energy from 0.5% of the total energy to 99.5%220

of the total energy. Therefore, the chosen frequency range represents 99% of the total wave221

energy. The wave generation zone is located at the input boundary with the length of one222

wavelength corresponding to the lowest frequency. The numerical beach is located at the223

outlet boundary and has a length twice that of the wave generation zone. 30 vertical cells224

are used with vertical stretching in the σ-coordinate system. The horizontal resolution is 30225

cells per wave length corresponding to the shortest wave with the highest frequency. The226

configuration results in a horizontal cell size of 2 m. The total number of cells is 26400. The227
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(a) Horizontal velocity at t = 65 s

(b) Horizontal velocity at t = 83 s at the focusing time

(c) Horizontal velocity at t = 99 s

Figure 10: The wave profile and the horizontal velocities (m/s) at different times during the
evolution of the wave packet.

simulation time is 12800 s, where the three-hour window from 2000 s to 12800 s is used for228

the data analysis. The wave elevation at the wave probe located five wave lengths (using229

the peak period) away is investigated for the chosen time window. The simulated spectrum230

is compared with the theoretical spectrum in Fig. 11. The horizontal velocity field of the231

simulation at t = 12800 s is shown in Fig. 12, where the surface elevation is amplified with232

a factor of 10 for visualisation purpose. With 16 cores on supercomputer Vilje, the 12800 s233

simulation takes only 1.13 hour, which is three times faster than real time. The calculated234

significant wave height in the numerical wave tank is 4.456 m, the peak period is 11.95 s.235

With a compensation of 1% wave energy, the significant wave height becomes 4.50 m, exactly236

the same as the input value. The simulated irregular wave match the input Hs, Tp and the237

shape of the spectrum with high accuracy.238

4 Conclusion239

The presented work introduces a new flexible fully-nonlinear potential flow solver REEF3D::FNPF240

in the numerical framework of the open-source hydrodynamics model REEF3D. The proposed241

model solves the Laplace equation together with the free surface boundary conditions and the242
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Figure 11: Simulated wave spectrum in comparison to the theoretical spectrum for the three-
hour irregular wave simulation.

Figure 12: Horizontal velocities in the simulated irregular wave field in the entire numerical
wave tank at t = 12800 s. Surface elevation is amplified with a factor of 10 for visualisation
purpose.

bottom boundary condition using a finite difference method on a σ-coordinate system. The243

solution for the velocity potential is obtained with Hypres stabilized bi-conjugated gradient244

solver preconditioned with geometric multi-grid. High-order discretization schemes are used,245

such as a fifth-order WENO scheme in space and a third-order Runge-Kutta in time. The246

varying bottom is represented with the sigma coordinate grid. An efficient domain decomposi-247

tion strategy is used for the parallel computation where the information between sub-domains248

is exchanged following an MPI protocol. The model is validated for the wave propagation249

over a submerged bar and the wave focusing from a wave packet. In both studies, the model250

provides favorable agreements with the experimental data. In addition, the model is able251

to perform simulations very fast with very limited computational resources, enabling com-252

plex simulations on personal computers or desktops. The model takes only one hour for the253

three-hour irregular wave simulation on 16 processors and obtained near identical statistical254

wave properties in comparison to the theoretical inputs. The model is proven to be accurate255

and computationally efficient for diverse and flexible scenarios with non-breaking waves. To256

further explore the model’s potential, large-scale wave propagation over irregular natural to-257

pography and irregular coastline are to be investigated. A robust wave breaking algorithm is258

also to be introduced in the model for future studies.259
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Abstract

Nonlinear wave interactions and superpositions among the different wave components and
wave groups in a random sea sometimes produce rogue waves that appear unexpectedly with
extremely large wave heights. A good understanding of the generation and evolution of
such extreme wave events is of great importance for the analysis of wave forces on marine
structures. A fully nonlinear potential flow (FNPF) model is proposed in the presented paper
to investigate the different factors that influence the wave focusing location, focusing time
and focusing wave height in a numerical wave tank. Those factors include wave steepness,
spectrum bandwidth, wave generation method, focused wave spectrum and wave spreading
functions. The proposed model solves the Laplace equation together with the boundary
conditions on a σ-coordinate grid using high-order discretisation schemes on a fully parallel
computational framework. The model is validated against the focused wave experiments and
thereafter used to obtain insights into the effects of the different factors. It is found that the
wave steepness contributes to changing the location and time of focus significantly. Spectrum
bandwidth and directional spreading affect the focusing wave height and profile, for example,
a wider bandwidth and a wider directional spread lead to lower focusing wave height. A
Neumann boundary condition represents the nonlinearity of the wave groups better than a
relaxation method for wave generation.
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1 Introduction1

Random seas consist of many incident wave components of different amplitudes, frequencies2

and phases. The nonlinear interactions among them may result in extreme waves that are3

much higher than that expected from the sea state in the region. Such large and unexpected4

extreme waves can exert tremendous forces on offshore structures. Understanding the gen-5

eration and evolution of such waves is important for determining the wave loads on marine6

structures. One of the most renowned extreme events is the ‘New Year Wave’ recorded at the7

Draupner platform (Haver (2004)) where a maximum wave height of nearly 26 m was observed8

in a sea state with an measured significant wave height of 12 m. Afterwards, many efforts9

have been made to generate and reproduce such extreme events in both physical experiments10

and numerical wave tanks. Among those efforts, focused wave groups are considered as an11

efficient method to replicate extreme wave events.12

13

Due to the stochastic nature of the sea state and extreme events, the basis for the gener-14

ation of focused waves is the irregular wave theory. Lindgren (1970) presented a theoretical15

explanation for the wave generation through empirically studying the propagation of irregular16

wave groups. Based on his results, Tromans et al. (1991) suggested a practical spectrum for17

focused wave groups. The spectrum has a shape that is proportional to the auto-correlation18

function of the underlying random processes. This type of compact wave spectrum was later19

named the NewWave model. The NewWave model is based on the linear wave theory and20

wave spectra such as the JONSWAP and PM spectrum can be used to generate the irregu-21

lar wave components for linear superposition. The NewWave method has been successfully22

applied to investigate irregular large waves both in deep (Jonathan and Taylor (1997)) and23

intermediate water depths (Taylor and Williams (2004)). The method has also been used for24

the studies of directional irregular seas and three-dimensional (3D) wave focusing in spread-25

ing seas (Jonathan and Taylor (1997); Bateman et al. (2001); Johannessen and Swan (2001)).26

Recently, researchers have further extended the NewWave theory to coastal applications in27

the shallow water domain, for example, wave run-up and flow kinematics at plane beaches28

(Borthwick et al. (2006); Whittaker et al. (2017)) and focused wave overtopping and forces29

on seawalls (Hunt (2003); Hunt-Raby et al. (2011); Whittaker et al. (2016, 2018); Hofland30

et al. (2014)). Another method for extreme wave generation is to use the transient wave31

packet approach, which has been validated during an experimental study in a wave flume32

(Clauss and Bergmann (1986)). The approach was later improved with increased flexibility,33

allowing a prediction of the wave train at any instant and location in a wave tank (Clauss34

and Kühhnlein (1995)). It was further optimised to avoid premature breaking by adjusting35

the high-frequency components (Clauss and Kuhnlein (1997)). Compared to the NewWave36

theory, the spectrum for the wave packet has a wider bandwidth and consists of more har-37

monic components of lower amplitudes relative to the focusing wave height. Consequently, a38

larger focusing wave height can be achieved and premature breaking is avoided.39

40

Using different wave focusing theories, researchers have conducted many experiments to41

investigate different aspects of the evolution of focusing wave groups. Ning et al. (2009) per-42

formed an experiment in a wave flume to study the propagation of transient focusing wave43

groups with a range of different steepness. It is shown that the focusing point in time and44

space changes with varying wave steepnesses. Clauss and Steinhagen (1999) reported an ex-45
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perimental study on the evolution of a wave packet at the Large Wave Flume (GWK) in46

Hannover and demonstrated a similar finding. Sriram et al. (2015) investigated the evolu-47

tion of focused wave packet in intermediate and deep water condition using different paddle48

displacements for a piston-type wavemaker. The results using second-order corrected paddle49

motion and linear paddle motion are compared and it is found that the difference is more50

prominent for a broadband spectrum. Bai et al. (2018) reported an experiment to generate51

focused waves in a wave flume and used the measured data for the validation of a numerical52

model. Taylor and Williams (2004) analyzed the data set from the WACSIS measurement53

program (Forristall et al. (2004)). The authors paid special attention to the average shape of54

large crests and troughs and the vertical and horizontal asymmetry. It was shown that the55

NewWave theory fits the average shape of large waves well when the trough-crest asymmetry56

is accounted for. Buldakov et al. (2017) introduced a linearized amplitude spectrum method-57

ology following the NewWave theory to produce focused waves up to weak breaking waves in58

a physical wave flume. They found that the steepness of the limiting breaking wave depends59

strongly on the choice of the wave group spectrum. Focused wave group interaction with off-60

shore and coastal structures and the impact forces are also investigated in several experiments61

(Zang et al. (2010, 2006)). In a 3D wave basin, Johannessen and Swan (2001) performed a62

laboratory study on the influence of directionality on the transient focusing wave groups in63

a spreading sea. The experiments prove the effectiveness of the focusing wave theories and64

provide fundamental insights into the generation and evolution of focused waves. However,65

experiments are also limited by the capability of continuous measurement. Wave focusing is66

a transient phenomenon with a short duration, therefore, demands more dense measurements.67

68

Many numerical models have been employed to investigate focusing wave groups. Ning69

et al. (2009) used the local surface elevation measurements from a physical experiment to70

drive the numerical solution in their numerical model using a high-order boundary element71

method (HOBEM). Bai and Taylor (2007) report their numerical study on the diffraction72

of a focusing wave group around a circular cylinder using a HOBEM model with a mixed73

Eulerian-Lagrangian approach. A similar approach has been discussed in detail by Grilli74

et al. (2001) and used for the modeling of different 3D focusing wave groups (Grilli et al.75

(2010)). Other studies on the 3D energy focusing in a spreading sea have also been performed76

following the BEM approach (Brandini and Grilli (2001); Fochesato et al. (2007)). However,77

the BEM approaches generally involve mathematic expressions that make them less flexible78

for handling complex boundaries. Wu and Taylor (1994) suggest that a finite element method79

requires less memory than a BEM method and is more computationally efficient as a result.80

Following the suggestions and formulations of Wu and Taylor (1995), Clauss and Steinhagen81

(1999) performed numerical simulations of nonlinear transient waves using a potential flow82

solver with a moving boundary finite element method. Good agreements were achieved in83

the validation process against their laboratory data. Boussinesq-type models (Madsen et al.84

(1991); Nwogu (1993)) can also be used for extreme sea states, especially for shallow water85

region. With higher order terms for hydrodynamic pressure, Boussinesq-type models can re-86

solve better dispersion relation in deeper wave condition (Madsen et al. (2002)), often with87

increasing risks of numerical instabilities due to higher order derivatives. The double-layer88

approach developed by Chazel et al. (2009) reduces the order of derivatives in comparison89

to the traditional high-order Boussinesq models and still shows the ability of modelling deep90

water waves up to kh = 10. Other numerical methods based on Fast Fourier Transforms91
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(FFT) are also explored for a further increase in computational efficiency. A fully-nonlinear92

spectral model is applied systematically for simulating the focusing of directionally spread93

surface water waves in 3D (Bateman et al. (2001, 2003, 2012)). The model is based on a94

Neumann operator similar to the G-operator (Craig and Sulem (1993)) and only the velocity95

potential at the free surface is needed for the solution. Both the free surface elevation η and96

velocity potential Φ are represented by a Fourier series and are advanced in time. The model97

is computationally efficient, as necessary spatial derivatives can be calculated rapidly using98

the FFT. However, the periodicity assumption is necessary to ensure that the spatial deriva-99

tives can be evaluated rapidly using FFT and this requirement is not necessarily physically100

realistic. Similarly, a high-order spectral (HOS) model is described and used in the simula-101

tion of 2D and 3D focused wave groups (Ducrozet et al. (2012); Bonnefoy et al. (2006a,b)).102

The spectral based methods are generally effective but also require certain criteria for the103

boundary conditions. Another approach is to solve the Laplace equation directly. Bingham104

and Zhang (2007) used a finite difference scheme for solving the Laplace equation and recom-105

mended using stretched grid that is clustered towards the free surface in the vertical direction.106

Based on the research, Engsig-Karup and Bingham (2009) introduced a general purpose fully107

nonlinear potential flow model OceanWave3D for wave propagation over varying bottom with108

no water depth limits. The model uses curvilinear grid in the horizontal plane for irregular109

boundaries. This approach requires sophisticated grid treatment when the boundary geom-110

etry becomes complicated. Efforts have been made to combine the usage of finite difference111

methods and spectral methods. Yates and Benoit (2015) compared a spectral approach with112

a finite difference approach in the vertical direction and found that the spectral approach is113

more accurate and efficient in one-dimensional tests. Based on that, Raoult et al. (2016) and114

Zhang et al. (2019) introduced the model Whisper3D that combines a finite difference scheme115

in the horizontal direction with a spectral approach in the vertical with Chebyshev polyno-116

mial. Clamond and Grue (2001) and Fructus et al. (2005) introduced another approach to117

evaluate the Dirichlet to Neumann operator, where the global terms of the operator are com-118

puted using FFT and the local terms are evaluated by numerical integration. However, the119

model also limits itself to periodic boundary conditions (Fructus et al. (2005)) as many others120

that reply on FFT. The coupled-mode Hamiltonian approach of Belibassakis and Athanas-121

soulis (2011) and Athanassoulis et al. (2017) also shows a good representation of non-linear122

high waves over varying bottom in finite depth. For example, Athanassoulis et al. (2017)123

studied a focused wave evolution both over constant finite water depth and sloping bottom.124

The model has an efficient treatment of the bottom boundary and is most suitable for shallow125

to intermediate water depth simulations. In a recent development, a spectral element method126

(SEM) is used for the study of focused wave groups (Engsig-Karup and Eskilsson (2018)). The127

aforementioned numerical models are all based on potential flow theory and represent the free128

surface with a single-value and therefore cannot represent overturning breaking waves. For an129

accurate representation of overturning breaking waves, computational fluid dynamic (CFD)130

models are usually needed. Efforts to model the steep near-breaking focused wave group using131

a finite volume method (FVM) and a volume of fluid (VOF) technique for the free surface132

have been reported (Chen et al. (2014); Bai et al. (2018); Vyzikas et al. (2018)). Westphalen133

et al. (2012) compared the focused wave impact forces modeled by Navier-Stokes solvers with134

FVM and with a control-volume finite element method(CV-FE). To accurately capture the135

overturning breaker, the finite difference CFD model REEF3D::CFD (Bihs et al. (2016b)) has136

been used for extreme wave generation. With this model, focused breaking wave impact on137
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structures is investigated with transient wave packets (Bihs et al. (2017b, 2019b)) and the138

NewWave theory (Bihs et al. (2016a, 2017a)). A level-set method is used to capture the free139

surface and overturning breakers are well represented. The modeled free surface elevations140

and impact loads are validated against experimental measurements and good agreement is141

achieved. CFD methods generally require high spatial resolution and present high demands142

on computational power. To reduce the computational cost associated with the CFD simula-143

tions, a one-way coupling between a CFD model and a fully nonlinear potential flow (FNPF)144

solver is presented by Paulsen et al. (2014) to study focusing wave groups. In this approach,145

the wave propagation is modeled rapidly in the FNPF domain and the breaking wave is re-146

solved in a smaller CFD domain. However, special attention is needed for the coupling error147

at the boundaries of information exchange.148

149

The presented paper attempts to offer insights into the different numerical configura-150

tions and aspects that influence the generation and evolution of non-breaking focused wave151

groups in a comprehensive manner. The work focuses on the time domain analysis and the152

geometric study of focusing wave groups. The changes of focusing time, focusing location,153

wave height and wave profile of the focused waves due to the effects of the wave generation154

method, bandwidth, wave nonlinearity, choice of focusing wave spectrum and wave spreading155

are investigated in detail. After examining the existing numerical approaches, a fully nonlin-156

ear potential flow model with a flexible boundary treatment is considered as a reliable and157

efficient alternative for non-breaking nonlinear steep focusing waves. Therefore, the paper pro-158

poses a new FNPF model for this investigation. Compared to the boundary integral method159

and the spectral-based method, the proposed FNPF model solves the Laplace equation on a160

σ-coordinate with a finite difference method. The model is developed as a part of the open-161

source hydrodynamic code REEF3D. The code uses high-order discretization schemes in space162

and time and provides fully parallel computation using Message Passing Interface (MPI). The163

code has been widely used for various hydrodynamic studies, for example, wave interactions164

with surface piercing cylinders (Chella et al. (2019); Kamath et al. (2015)), extreme wave165

generation (Bihs et al. (2019b)), free falling objects into water (Kamath et al. (2017)), local166

scour around a pipeline (Ahmad et al. (2019)) and new developments of a non-hydrostatic167

Navier-Sokes solver (Bihs et al. (2019a)). The proposed potential flow model REEF3D::FNPF168

inherits the high-order schemes and parallel computation from the REEF3D framework. In169

comparison to the CFD solvers, the presented model is much less computationally demanding170

and therefore is ideal for the time domain analyses of different factors. For example, in order171

to obtain the same accuracy for the simulation of the wave propagation over a submerged bar172

(Beji and Battjes (1993)), a CFD simulation takes 17 hours while the FNPF solver takes only173

54 s in the work presented by Bihs et al. (2019 in press).174

175

The structure for the presented work is arranged as follows: First, the mathematical model176

and numerical methods are presented. The model is then validated against the experimental177

data using a wave packet input (Clauss and Steinhagen (1999)). A detailed time domain178

analysis is applied to identify the real focusing point and further studies are performed using179

different wave steepnesses and wave generation methods. Next, the model is validated against180

the experiments performed by Ning et al. (2009) using the NewWave theory input. Similarly,181

the effect of wave generation method and wave steepness are investigated. In addition, various182

bandwidths of the input JONSWAP spectrum are used to obtain a better understanding of183

147



Wang, W. et al., 2019

the frequency bandwidth effect. Finally, a 3D focusing wave in a directional sea is simulated184

and the effects of the directional spreading function on the focused wave evolution in the185

longitudinal and transverse direction are studied. With high efficiency and accuracy, the186

proposed model is able to offer insights into 2D and 3D wave groups and from low steepness187

wave groups up to near-breaking. The effects of the different factors are helpful for future188

configurations of numerical wave tanks and physical experiments when studying focused wave189

groups.190

2 Numerical model191

2.1 Governing equations192

The governing equation for the proposed fully nonlinear potential flow model is the Laplace193

equation:194

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0. (1)

Boundary conditions are required in order to solve for the velocity potential φ from this195

elliptic equation, especially at the free surface and at the bed. The fluid particles at the196

free surface should remain at the surface where the pressure in the fluid should be equal to197

the atmospheric pressure. These conditions must be fulfilled at all times and they form the198

kinematic and dynamic boundary conditions at the free surface respectively:199

∂η

∂t
=− ∂η

∂x

∂φ̃

∂x
− ∂η

∂y

∂φ̃

∂y
+ w̃

(
1 +

(
∂η

∂x

)2

+

(
∂η

∂y

)2
)
, (2)

∂φ̃

∂t
=− 1

2



(
∂φ̃

∂x

)2

+

(
∂φ̃

∂y

)2

− w̃2

(
1 +

(
∂η

∂x

)2

+

(
∂η

∂y

)2
)
− gη. (3)

where η is the free surface elevation, φ̃ = φ(x, η, t) is the velocity potential at the free sur-200

face, x = (x, y) represents the location at the horizontal plane and w̃ is the vertical velocity201

at the free surface.202

203

At the bottom, the component of the velocity normal to the bottom must be zero at all204

times since the fluid particle cannot penetrate the solid boundary. This gives the bottom205

boundary condition:206

∂φ

∂z
+

∂h

∂x

∂φ

∂x
+

∂h

∂y

∂φ

∂y
= 0, z = −h. (4)

where h = h(x) is the water depth measured from the still water level to the seabed.207

208

The Laplace equation, together with the boundary conditions are solved with a finite209

difference method on a σ-coordinate system. The σ-coordinate system follows the water depth210
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changes and offers flexibility for irregular boundaries. The transformation from a Cartesian211

grid to a σ-coordinate is expressed as follows:212

σ =
z + h (x)

η(x, t) + h(x)
. (5)

In the model, the vertical coordinates also follow a stretching function so that the grid213

becomes denser close to the free surface:214

σi =
sinh (−α)− sinh

(
α
(

i
Nz

− 1
))

sinh (−α)
, (6)

where α is the stretching factor and i and Nz stand for the index of the grid point and215

the total number of cells in the vertical direction.216

The velocity potential after the σ-coordinate transformation is denoted as Φ. The bound-217

ary conditions and the governing equation in the σ-coordinate are then written in the following218

format:219

Φ = φ̃ , σ = 1; (7)

∂2Φ

∂x2
+

∂2Φ

∂y2
+

(
∂2σ

∂x2
+

∂2σ

∂y2

)
∂Φ

∂σ
+ 2

(
∂σ

∂x

∂

∂x

(
∂Φ

∂σ

)
+

∂σ

∂y

∂

∂y

(
∂Φ

∂σ

)
+

((
∂σ

∂x

)2

+

(
∂σ

∂y

)2

+

(
∂σ

∂z

)2
)

∂2Φ

∂σ2
= 0 , 0 ≤ σ < 1;

(8)

(
∂σ

∂z
+

∂h

∂x

∂σ

∂x
+

∂h

∂y

∂σ

∂y

)
∂Φ

∂σ
+

∂h

∂x

∂Φ

∂x
+

∂h

∂y

∂Φ

∂y
= 0 , σ = 0. (9)

Once the velocity potential Φ is obtained in the σ-domain, the velocities can be calculated220

as follows:221

u (x, z) =
∂Φ (x, z)

∂x
=

∂Φ (x, σ)

∂x
+

∂σ

∂x

∂Φ (x, σ)

∂σ
, (10)

v (x, z) =
∂Φ (x, z)

∂y
=

∂Φ (x, σ)

∂y
+

∂σ

∂y

∂Φ (x, σ)

∂σ
, (11)

w (x, z) =
∂Φ (x, z)

∂z
=

∂σ

∂z

∂Φ (x, σ)

∂σ
. (12)

The waves are generated at the inlet using a Neumann boundary condition where the222

spatial derivatives of the velocity potential are defined. In this way, the velocity potential at223

the boundary is calculated using the desired analytical horizontal velocity:224

ϕi−1 = −u(x, z, t)4x+ ϕi. (13)

where u(x, z, t) is the analytical horizontal velocity.225

226
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The numerical beach uses the relaxation method (Mayer et al. (1998)) to mitigate wave227

reflection. The relaxation function used in the model:228

229

Γ(x̃) = 1− e(x̃
3.5) − 1

e− 1
for x̃ ∈ [0; 1]. (14)

where x̃ is scaled to the length of the relaxation zone.230

231

The Laplace equation is discretized using second-order central differences and solved us-232

ing a parallelized geometric multigrid preconditioned conjugated gradient solver provided by233

Hypre (van der Vorst (1992)).234

235

Insufficient grid resolution can lead to numerical diffusion which causes unphysical damp-236

ing of the waves as a result. In order to achieve the balance between numerical accuracy,237

stability and efficiency, the convection terms at the free-surface boundary conditions are dis-238

cretized with the 5-order Hamilton-Jacobi version of the weighted essentially non-oscillatory239

(WENO) scheme (Jiang and Shu (1996)). The WENO discretization stencil consists of three240

local ENO-stencils based on the smoothness indicators. A large smoothness indicator means241

a non-smooth solution in a local stencil. The scheme is designed such that the local stencil242

with the highest smoothness is assigned the largest weight and therefore contributes the most243

significantly. In this way, the scheme is able to handle large gradients up to shock with good244

accuracy. For example, let u represent the convective quantities, which include the ∂η/∂x and245

∂Φ̃/∂x terms in the free surface boundary conditions and U represents the stencils used in246

the discretisation. At the cell face i+1/2, ui+1/2 is reconstructed with the WENO procedure:247

U±
i+1/2 = ω±

1 U
1±
i+1/2 + ω±

2 U
2±
i+1/2 + ω±

3 U
3±
i+1/2. (15)

U1, U2 and U3 represent the three possible ENO stencils, and the ± sign indicates the248

upwind direction. For upwind direction in the positive i-direction, they are:249

U1−
i+1/2 =

1

3
ui−2 −

7

6
ui−1 +

11

6
ui,

U2−
i+1/2 = −1

6
ui−1 +

5

6
ui +

1

3
ui+1,

U3−
i+1/2 =

1

3
ui +

5

6
ui+1 −

1

6
ui+2.

(16)

For the time treatment, a third-order accurate TVD Runge-Kutta scheme (Shu and Osher250

(1988)) is used. Adaptive time stepping is used by controlling a constant time factor as an251

equivalence to the CFL number:252

253
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cu =
dx∣∣max(umax, 1.0
√
9.81 ∗ hmax)

∣∣ ,

cv =
dx∣∣max(vmax, 1.0
√
9.81 ∗ hmax)

∣∣ ,

ctot = min(cu, cv),

dt = ctotCFL.

(17)

where umax, vmax are the maximum particle velocities in x and y directions, hmax is the254

maximum water depth.255

The model is fully parallelized following the domain decomposition strategy where ghost256

cells are used to exchange information between adjacent domains. These ghost cells are up-257

dated with the values from the neighboring processors via Message Passing Interface (MPI).258

259

2.2 Focused wave generation260

The focusing irregular wave generation is achieved by a linear superposition of a finite number261

of individual regular wave components with different amplitudes, frequencies and phases. The262

phase of each wave component is adjusted so that the wave components focus at the pre-defined263

focusing time and focusing location. The first-order free surface η(1) is defined as264

η(1) =
N∑

i=1

Ai cosαi. (18)

where Ai is the amplitude of each wave component and αi is the phase of each component,265

which is defined as266

θi = kix− ωit− εi. (19)

where ωi is the angular frequency, ki is the wave number and εi is the phase angle of267

each component. For irregular waves, the phases are randomly distributed with a uniform268

probability distribution function over the [−π, π] range. In the case of focused waves, εi is269

designed so that each individual wave focuses at a specified time tF and location xF :270

εi = kixF − ωitF . (20)

In the case of a 3D focusing wave group, the propagation angle is also included in the271

phase adjustment:272

εi = kixF cos(βi) + kiyF sin(βi)− ωitF . (21)

The amplitude of the individual wave components are calculated based on the different273

methods for the focused waves. The wave packet generation uses a dimensionless amplitude274

spectrum of the form (Hennig (2005)):275

∣∣∣A′
(ω)
∣∣∣ = 27 (ω − ωbeg) (ω − ωend)

2

4 (ωend − ωbeg)
3 . (22)
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Here, ω is the angular frequency and the subscripts beg and end define the frequency276

range for the Fourier spectrum. The absolute magnitude of the resulting wave amplitude A
′
i277

does not represent the given focused wave input at this point, therefore a scaling factor f is278

calculated:279

f =
AF

N∑

i=1

A
′
i

. (23)

Then the amplitudes of the harmonic components can be calculated as:280

Ai = fA
′
i. (24)

When using the NewWave theory, a JONSWAP spectrum is used to describe the distri-281

bution of the wave energy as a function of the angular frequency ω. The required significant282

wave height Hs, the peak angular frequency ωp, and the number of components N are given283

as input values to the JONSWAP spectrum (DNV-GL (2000)):284

S (ω) =
5

16
H2

sω
4
pω

−5
i exp

(
−5

4

(
ωi

ωp

)−4
)
γ
exp

(
−(ω−ωp)

2

2σ2ω2
p

)

Aγ . (25)

where the peak-shape parameter γ = 3.3 and the spectral width parameter σ is 0.07 for285

ωi ≤ ωp and 0.09 for ωi > ωp. The normalising facor Aγ = 1− 0.287ln(γ).286

The Pierson-Neumann-James (PNJ) directional spreading function (Pierson et al. (1955))287

is used to describe the directionality in the wave field:288

G(β) =

{
2
π cosn(βj − β) , if

∣∣βj − β| < π
2

0 , else.
(26)

where β is the principal direction representing the major energy propagation direction289

and βj is the direction of each incident wave component measured counterclockwise from the290

principal. The shape parameter n is subject to change in order to study the effect of different291

angular spreading properties.292

293

By multiplying Eqn. (25) and Eqn. (26), the directional spectrum is obtained. An equal294

energy method is used to discretize the frequency spectrum and the spreading function to pre-295

vent phase-locking in the directional wave field and ensure ergodicity (Duarte et al. (2014);296

Jefferys (1987)). With the equal energy method, the amplitude of each wave component can297

be expressed in terms of the wave spectrum Si(ω) and the amplitude at the focus point AF :298

299

Ai = AF
Si (ω)4ω
N∑

i=1

Si (ω)4ω

. (27)

Following the first-order wave theory, the particle velocities u(1), v(1) and w(1) are defined300

as the sum of individual wave components301
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u(1) =
N∑

i=1

Aiωi
cosh (ki (z + h))

sinh (kih)
cos θi, (28)

v(1) =

N∑

i=1

Aiωi
cosh (ki (z + h))

sinh (kih)
sin θi, (29)

w(1) =

N∑

i=1

Aiωi
sinh (ki (z + h))

sinh (kih)
sin θi. (30)

With increasing wave steepness, it is necessary to take the second-order effects into ac-302

count. In the presented study, the second-order component is added to the first-order com-303

ponent of the free surface elevation, velocity potential and the particle velocities.304

η = η(1) + η(2), (31)

φ = φ(1) + φ(2), (32)

u = u(1) + u(2), (33)

w = w(1) + w(2). (34)

In the presented model, the second-order wave components are implemented following305

the formulations presented in (Ning et al. (2009)) using second-order irregular wave theory306

(Schäffer (1996)).307

3 Results and Discussions308

The proposed model is first validated against two experiments with a wave packet spectrum309

and NewWave theory respectively. The differences between the numerical and experimental310

data are analyzed and the advantages of the numerical simulations are discussed. Then, dif-311

ferent wave generation methods, wave steepnesses, frequency bandwidths and wave spreading312

are investigated with the numerical tool.313

3.1 Validation of the focused wave group generation in the NWT314

The focused irregular wave group is generated with the wave packet method and the numer-315

ical results are compared with the experimental data measured in the Large Wave Flume316

(GWK), Hannover, Germany (Clauss and Steinhagen (1999)). The physical wave tank in317

the experiments is 300 m long with a constant water depth of h = 4.01 m. A piston-type318

wavemaker is used to generate the wave packet that focuses at the designated location at319

xF = 126.21 m and time at tF = 103 s. Following the experimental setup, a 2D numerical320

wave tank (NWT) 250 m long with a water depth of h = 4.01 m is used in the numerical321

test. A Neumann boundary is used at the inlet of the NWT to generate the wave packet that322

focuses at xF = 126.21 m and tF = 103 s. A 50 m long numerical beach is located at the out-323

let to absorb the wave energy. A linear wavemaker theory is used in the experiment (Clauss324

and Steinhagen (1999)), therefore a 1st-order focused wave theory is used in the numerical325

153



Wang, W. et al., 2019

wave tank. The free surface elevations are measured at x = 3.59 m, 90.30 m and 126.21 m326

in both the physical and the numerical wave tank. The grid convergence study is shown in327

Fig. 1. The time series at the focusing location and the wave profiles at the focusing time are328

nearly identical when a further grid refinement is made from dx = 0.25 m to dx = 0.167 m329

in the horizontal direction. Therefore, the grid size of dx = 0.25 m is considered sufficient for330

the simulation. A vertical grid convergence study with the σ-coordinate arrangement is also331

shown in Fig. 2. With more than 10 cells, the focused wave shape, focusing time and focused332

wave crest height are nearly identical. It is therefore concluded that 10 cells in the water333

depth are sufficient to capture the extreme event accurately. Ning et al. (2009) captured the334

focused wave shape in their NWT with only 16 frequency components due to the transient335

nature of the focusing event. In this study, the free surface time series with different numbers336

of frequency components are also compared in Fig. 3. At the wave focusing event, 25 wave337

components appear to be sufficient to capture the focusing crest geometry very well as shown338

in Fig. 3a. However, away from the crest, 50 components are needed to achieve convergence339

in the time domain. With a grid size of 0.25 m in the horizontal direction, 10 cells in the340

vertical direction and 50 wave components, a 180 s simulation takes 553 s on a Mac pro341

with with 2 Intel Xeon E5 processors (2.7 GHz). The simulated results are compared to the342

experimental observations in Fig. 4. A favourable match is achieved at all wave probes. At343

the focusing point, the absolute difference between the simulated and measured wave peak344

height |HF (sim) −HF (exp)| is divided by the measured wave peak height HF (exp) to quantify345

the relative numerical error, which is found to be limited to 4.5%.346

347
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Figure 1: Grid convergence study of the focusing wave group generated using a wave packet
method. (a) Comparison of time series at the designated focusing location with different
grid sizes. The time series are also compared to the measurements. (b) Comparison of
wave profiles at the designated focusing time with different grid sizes. Four grid sizes are
investigated: dx = 0.167 m, 0.25 m, 0.5 m and 1.0 m. 10 vertical cells are used in the study.
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Figure 2: The grid convergence study of the vertical grid resolution in a σ-coordinate arrange-
ment for the focusing wave group generated using a wave packet method.
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Figure 3: Convergence study for the number of frequency components for the generation of
the focused wave group using the wave packet approach, (a) time series near the focusing
event with different number of frequency components, (b) time series away from the focusing
event with different number of frequency components.
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(a) Wave gauge 1, x=3.59 m
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(b) Wave gauge 2, x=90.30 m

Experiment

REEF3D::FNPF

η
[m

]

−0.5

0

0.5

1.0

t [s]

60 80 100 120

(c) Wave gauge 3, x=126.21 m
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(d) Wave gauge 3, x=126.21 m

Figure 4: Comparison of the wave elevation time series at the three wave probes between the
numerical wave tank and the experiment for the wave packet study. d) is the close-up view
of the wave profile near the focusing region.

The velocity potential, the vertical velocities at the focusing point and the grid are shown348
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in Fig. 5a and Fig. 5b. It is seen that the σ-grid follows the free surface well at the focusing349

peak with a sharp curvature. The velocity potential and the velocity field inside the water350

volume are also presented and the vertical velocity distribution for the intermediate water351

depth is demonstrated. The evolution of the wave packet and its vertical velocities are shown352

in Fig. 6 for the sampled time frames t = 59.5 s, 103.0 s and 126.0 s. At t = 59.5 s, the353

wave packet propagates from the wave generating Neumann boundary with shorter waves354

leading the wave train and the trailing longer waves. At t = 103.0 s, all the wave components355

propagate to the focusing location at the same time, creating an amplified single peak with356

high velocities. At t = 126.0 s, the longer wave components surpass the shorter waves and357

the single peak decomposes into several smaller components of different frequencies.358

(a) (b)

Figure 5: Flow information and σ-grid near the focusing event, (a) velocity potential in the
water volume, (b) The vertical velocity component in the water volume.
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(a) t=59.5 s

(b) t=103.0 s

(c) t=126.0 s

Figure 6: Vertical velocity component during the evolution of the focused wave group gener-
ated by the wave packet method, (a) t = 59.5 s, (b) t = 103.0 s, (c) t = 126.0 s.

In spite of the agreement between the experimental and numerical results, the asymme-359

try of the time series at the focusing location indicates that the real focusing event might360

not happen at the measured location in the experiment, i.e. not all the wave components361

superimpose simultaneously at the designated point. As can be observed in Fig. 1a, both362

the simulated and physically measured focused wave at the designated focusing location at363

x = 126.21 m take place slightly ahead of the designated focusing time t = 103 s. In addition,364

at the designated focusing time, the waves in the numerical wave tank focus at x = 127.5 m,365

1.29 m after the designated focusing location. These discrepancies indicate that there is a366

possibility that the real focusing event is delayed in comparison to the designated focusing367

location and time. Since it is challenging to perform a continuous measurement at very fine368

spatial intervals in the experiment, it is likely that there are no wave probes located at the369

real focusing point in the experiment. With the flexibility of the NWT, the spatial wave pro-370

files along the longitudinal direction of the wave tank are plotted in one graph with a small371

interval of 0.06 s near t = 103.0 s as shown in Fig. 7.372
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Figure 7: Wave profiles along the longitudinal direction of the wave tank are plotted in
one graph at an interval of 0.06 s near t = 103.0 s. The red dash-dot line indicates the
real focusing location in the NWT at x = 129.38 m. The blue dash-dot line indicates the
designated focusing location at x = 126.21 m.

As can be seen from Fig. 7, the highest peak appears at the location x = 129.38 m,373

reaching 0.8845 m, 8.5% higher than the measured peak in the experiment. It indicates that374

the real focusing location is x = 129.38 m, 3.17 m after the designated focusing location, and375

the corresponding focus time is t = 103.4 s, 0.4 s after the designated focusing time. This376

finding is also illustrated in time domain, as shown in Fig. 8.377
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Figure 8: The comparison of the time series at the designated focusing location at x =
126.21 m and at the real focusing location at x = 129.38 m as detected in the numerical
simulation. The black dash-dot curve is the time series measured in the experiment at x =
126.21 m and the vertical black dash-dot line indicates the measured focusing time at t =
102.825 s. The red solid curve is the time series at x = 126.21 m in the NWT, and the
vertical red dashed line indicates the corresponding numerical focusing time t = 102.7 s. The
red dash-dot curve is time series at the real focusing location x = 129.38 m in the NWT and
the vertical red dash-dot line indicates the real focusing time t = 103.4 s. The vertical black
dashed line is the designated focusing time at t = 103 s.

Previous research on focusing waves also found that the focusing time and location is378

delayed with increasing nonlinearity (Baldock et al. (1996)). A detailed discussion on the in-379

fluence of nonlinearity on the focusing wave group in time and space is presented in section 3.2.380

381

The input wave packet is a strictly defined wave train with a very specific spectrum.382

To investigate a more general wave focusing mechanism, the widely used NewWave theory383

(Lindgren (1970); Tromans et al. (1991)) is also implemented in the proposed model. The384

numerical results are validated against the experiments performed by Ning et al. (2009). The385

experiments were conducted at Dalian University of Technology in a wave flume 69 m long386
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and 3 m wide. A constant water depth of 0.5 m is used during the tests. A 4 m region of387

foam is located at the outlet of the tank to reduce wave reflections. The experimental setup388

has been modified by (Bihs et al. (2017a)) considering the computational convenience. The389

equivalence of the modified NWT to the original experimental setup has been demonstrated390

in (Bihs et al. (2017a)). The current study adopts the modified configuration of the NWT in a391

two-dimensional arrangement by removing the transverse dimension. Two of the physical tests392

are used for the validation in the study, the input wave conditions are summarized in Table. 1.393

The Neumann boundary condition is used for the wave generation. The input wave in case394

NING1 has a more linear behaviour, while the input wave in NING3 is expected to show more395

nonlinearity with higher steepness. As described by Ning et al. (2009), a second-order wave396

theory is implemented in the wave generation to account for higher nonlinearity.397

Table 1: The focusing wave inputs and the real focusing properties for the validation cases

Case No. Tp (s) AF (m) xF (m) tF (s) xFr (m) tFr (s)

NING1 1.20 0.0313 7.5 10.0 7.5 10.0
NING3 1.25 0.0875 7.2 10.0 8.475 10.7

To begin with, the grid convergence studies in the x-direction are performed for both398

NING1 and NING3, which are shown in Fig. 9 and Fig. 10. Since the numerical wave tank399

length and the designated focusing location are modified from the original experiment, the400

experimental time series are shifted 0.6 s and 0.2 s respectively for NING1 and NING3 cases401

to match the numerical focusing time in the numerical wave tank. These shifts are kept402

constant in all following comparisons. For both cases, further refinements of the horizontal403

grid from dx = 0.05 m to dx = 0.025 m do not improve the results further and the time series404

with both grid sizes match well with the experimental measurements. The location, time and405

crest height at focusing and the wave group shape adjacent to the focused crest are almost406

identical between the experimental and numerical results with the grid size of dx = 0.05 m.407

Consequently, the horizontal grid size of dx = 0.05 m is used in all the following simulations.408

In the vertical direction, the grid convergence study is shown in Fig. 11. As can be seen in409

these two plots, the vertical grid resolution has a low influence on the accuracy of the model410

and a resolution of ten cells is found to be sufficient for both cases. As reported by Ning et al.411

(2009), 20 frequency components are seen to be sufficient for all the tested wave conditions.412

To confirm this finding with the proposed model, the time series using different numbers of413

frequency components are compared at the focusing location in Fig. 12. It is seen that 20414

components are sufficient to capture the focusing wave group shape. All the following results415

are obtained with dx = 0.05 m in the horizontal plane, 10 cells in the vertical direction and 20416

wave components for the irregular wave generation. The simulation time for the case NING1417

is 20 s and it takes 37 s to finish the simulation with 2 Intel Xeon E5 processors (2.7 GHz)418

on a Mac Pro. On the same computer, the 32 s simulation for the case NING3 takes 76 s.419
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Figure 9: Grid convergence study in the x-direction for the case NING1, where four grid sizes
are tested dx = 0.025, 0.05, 0.1 and 0.2 m. 10 vertical cells are used in the study. (a) the
time series at the focusing location x = 7.5 m, (b) the spatial wave profiles at the focusing
time t = 10.0 s.
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Figure 10: Grid convergence study in the x-direction for the case NING3, where four grid
sizes are tested dx = 0.025, 0.05, 0.1 and 0.2 m. 10 vertical cells are used in the study. (a) the
time series at the focusing location x = 8.475 m, (b) the spatial wave profiles at the focusing
location t = 10.7 s.
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Figure 11: Grid convergence study in the z-direction, (a) the time series at the focusing
location x = 7.5 m for case NING1, (b) the time series at the focusing location x = 8.475 m
for case NING3. The tested numbers of grid in the vertical direction areNz = 5, 10, 20 and 40.
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Figure 12: Convergence study of the number of frequency components, (a) the time series
at the focusing location x = 7.5 m for case NING1, (b) the time series at the focusing
location x = 8.475 m for case NING3. The tested numbers of frequency components are
N = 10, 15, 20, 100 and 500.

For the first case NING1, the wave focuses at nearly the exact designated focusing time420

at t = 10 s both in the experiment and the numerical simulation, as shown in Fig. 9a. Cor-421

respondingly, the focusing location is found to be also nearly as designated at x = 7.5 m, as422

shown in Fig. 9b. However, with a higher wave steepness and consequently stronger nonlin-423

earity, both the focusing time and the focusing location are delayed for case NING3. These424

observations are again confirmed by both the experiment and the simulations. In the case425

NING3, the wave group actually focuses at x = 8.475 m instead of focusing at x = 7.2 m426

as designated. The numerical wave tank is able to provide a continuous output of the wave427

evolution at close time intervals. By plotting the wave profiles along the tank together at a428

time interval of 0.06 s near t = 10.7 s in Fig. 13, one can clearly observe the real focusing429

location marked in red in comparison to the designated focusing location marked in blue.430

Similarly, the focusing time is delayed to t = 10.7 s rather than t = 10.0 s. The difference in431

the focusing location and time is mainly due to the nonlinear wave-wave interaction in the432

process of the wave group evolution. With stronger nonlinearity in NING3 case, the effect433
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becomes more prominent. To demonstrate the evolution of the two different wave groups, the434

vertical velocity in the flow field for the two cases are illustrated in Fig. 14. The focusing435

amplitude is much higher and the wave profile is much narrower with the steeper wave in436

NING3 in comparison to NING1. The difference in the focusing location is also visible when437

the two simulations are laid side by side. The vertical velocity magnitude of steeper waves is438

comparatively higher. This finding of the shifted focusing point due to nonlinear wave-wave439

interaction confirms the previous research reported by (Baldock et al. (1996); Westphalen440

et al. (2012); Ning et al. (2009); Bateman et al. (2001)).441

3 4 5 6 7 8 9 10 11 12 13
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Figure 13: The wave profiles along the longitudinal direction of the wave tank are plotted
in one graph at an interval of 0.06 s near t = 10.7 s for the simulation case NING3. The
red dash-dot line indicates the real focusing location in the NWT at x = 8.475 m. The blue
dash-dot line indicates the designated focusing location at x = 7.2 m. The red curve is the
wave profile at the real focusing time.
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(a)

(b)

Figure 14: The vertical velocity in the wave fields at the focusing time, (a) for the simulation
case NING1 with a less steep input wave, (b) for the simulation case NING3 with a more
steep input wave. The black vertical dashed line in (a) indicates the location of the focused
wave crest in the case NING1, and the red vertical dashed line in (b) indicates the location
of the focused wave crest in the case NING3. The black dashed line in (a) is extended to (b),
and the red dashed line in (b) is extended to (a) so that the horizontal distance between the
focused wave crests in the two cases is straightforwardly observable.

3.2 Effects of nonlinearity442

As found in the previous section, nonlinearity has a strong impact on the focused wave group443

evolution in time and space. In order to investigate the effect of wave nonlinearity, four wave444

groups with varying wave steepness are generated with the wave packet method, as shown in445

Table. 2. The NWT configurations and designated focusing locations and times are the same446

as in the experiment shown in section 3.1. The wave length Lp is calculated based on linear447

wave theory with the corresponding peak period Tp. The wave steepness is then defined as448

εp = kpAF , where AF is the input value for the focusing amplitude, and kp = 2π/Lp is the449

corresponding wave number at the peak period.450
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Table 2: The wave inputs and the absolute differences in the focusing points for the wave
groups generated using the wave packet with different wave steepnesses

Case No. AF (m) Tp (s) Lp (m) εp 4xF (m) 4tF (s)

Case PK1 0.25 4.20 24.32 0.0646 0.00 0.00
Case PK2 0.50 4.20 24.32 0.1292 0.09 0.05
Case PK3 1.00 4.20 24.32 0.2584 0.54 0.15
Case PK4 1.50 4.20 24.32 0.3875 1.29 0.31

The wave profiles in the longitudinal direction at the designated focusing time t = 103 s in451

the four cases are compared in Fig. 15a. The time series at the designated focusing location452

x = 126.21 m in the four cases are compared in Fig. 15b. As can be seen from the figure,453

stronger asymmetries are observed with steeper waves at the designated focusing time and454

location, indicating that the wave is not really focused at this location. As can be seen455

further in Fig. 16a and Fig. 16b, the wave profiles and time series are more symmetric at456

their respective real focus locations and time. It is also seen that the focusing location and457

focusing time of the simulated waves approach the designed values for lower wave steepness.458

For example, the simulated focusing location and time are almost identical with the designed459

input at the wave steepness εp = 0.0646, as shown in Fig. 17. The spatial and temporal460

differences at the designated focusing points are listed in Table. 2. The relative differences in461

time and space are then defined as δxF = ∆xF /Lp and δtF = ∆tF /Lp. The general trend462

of increasing relative differences with increasing wave steepnesses is further demonstrated in463

Fig. 18. The finding confirms the previous investigations and justifies the differences between464

the measured and real focusing point in the experiment of Clauss and Steinhagen (1999).465
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Figure 15: Comparison of the wave surface elevations at the designated focusing time and
location with four different wave steepnesses, (a) the wave profiles in the longitudinal direction
at t = 103 s, (b) the time series at x = 126.21 m.
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Figure 16: Comparison of the wave surface elevations at the respective real focusing time
and location with four different wave steepnesses, (a) the wave profiles in the longitudinal
direction, (b) the time series at respective real focusing location.
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Figure 17: The wave profiles along the longitudinal direction of the wave tank with the wave
steepness εp = 0.0646 are plotted in one graph at an interval of 0.06 s near t = 103.0 s. The
red dash-dot line indicates the real focusing location in the NWT at x = 126.21 m, which
align with the designated focusing locations.
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Figure 18: The relative spatial differences in focusing location δxF and temporal differences
in focusing time δtF in relation to wave steepness in the simulation with the wave packet.

Similarly, the influence of wave steepness on the focusing location and focusing time is466

also investigated with the NewWave theory. The designated input wave parameters are listed467

in Table. 3. While keeping the same peak period, the focusing wave amplitude increases468

consistently. The time series at the respective focusing location and the wave profiles at the469

respective focusing time are plotted in Fig. 19. It is seen that the differences between the real470

and designated focusing location and focusing time increase monotonically with increasing471

steepnesses. This finding agrees with the previous observations with the wave packet in the472

previous section. The absolute differences of focusing time and focusing location for each case473

are also listed in Table. 3 and the relative differences are plotted in Fig. 20. It is shown that474
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there are almost no differences in the first two cases with lower steepnesses. As larger waves475

evolve, the focusing location and focusing time of the wave group shift downstream due to476

the highly nonlinear wave-wave interactions. After a certain threshold, the differences start477

to increase dramatically following a near-linear trend.478

Table 3: The wave inputs and the absolute differences in the focusing points for the wave
groups generated using the NewWave theory with different wave steepnesses

Case No. AF (m) Tp (s) Lp (m) εp 4xF (m) 4tF (s)

NS1 0.0391 1.20 2.00 0.1229 0.000 0.000
NS2 0.0470 1.20 2.00 0.1475 0.075 0.015
NS3 0.0626 1.20 2.00 0.1967 0.375 0.165
NS4 0.0783 1.20 2.00 0.2458 1.025 0.520
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Figure 19: Comparison of wave surface elevations at the respective real focusing time and
location with four different wave steepnesses (a) the time series at respective real focusing
time, (b) The comparison of the wave profiles in the longitudinal direction at the respective
real focusing locations.
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Figure 20: The relative spatial differences in focusing location δxF and temporal differences
in focusing time δtF in relation to wave steepness in the simulation with the NewWave theory.

3.3 Effects of frequency bandwidth479

Another factor influencing the properties of the focusing wave group is the frequency band-480

width. The combined effects of the nonlinearity and bandwidth (randomness) have been481

investigated previously by (Alber and Stewartson (1978); Socquet-Juglard et al. (2005); Dys-482

the et al. (2003)). In this study, instead of focusing on the statistical properties, the authors483

focus on the geometrical properties and the general shape of the evolving wave train. Since484
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the frequency range of a wave packet spectrum is strictly defined, the frequency bandwidth485

effects are only studied with the NewWave theory. Five different bandwidths are tested with486

the same peak frequency. The detailed specifications are listed in Table. 4. The input wave487

height is the same as that defined in NING1. The focusing wave time series and wave pro-488

files are plotted together in Fig. 21. The focusing wave height decreases as the frequency489

bandwidth gets wider, the differences between the focusing wave height in comparison to the490

designated wave height are also listed in Table. 4. It is seen that the focusing wave height491

decreases by 12% with the widest bandwidth in case NB5. However, it is also noticed that492

the bandwidth does not have an influence on the focusing location and time.493

Table 4: The input wave properties with different bandwidth for the wave spectrum

Case No. ω range (rad/s) bandwidth (rad/s) HF (m) δHF (%)

NB1 [5.02, 6.54] 1.52 0.06191 1.10
NB2 [4.27, 7.04] 2.77 0.06142 1.88
NB3 [3.77, 7.54] 3.77 0.06143 1.87
NB4 [2.77, 9.54] 6.77 0.05690 9.11
NB5 [1.77, 11.04] 9.27 0.05495 12.22
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Figure 21: Comparison of the wave surface elevations with five different frequency bandwidths.
(a) the time series at the designated focusing location x = 7.5 m, (b) the spatial wave profile
in the longitudinal direction at the designated focusing time t = 10 s.

3.4 Effects of wave generation method494

The presented waves are generated using a Neumann boundary when the gradient of the495

velocity potential changes are defined at the wave generation boundary. Another widely496

used wave generation method is the relaxation method (Mayer et al. (1998)). Following the497

configurations in the experiments, a linear irregular wave theory and a second-order wave498

theory are used in the relaxation zones for the simulations using the wave packet method499

and the NewWave theory respectively. However, in both theories, only linear dispersion is500

represented inside the generation zone, which might result in errors in wave phases and the501

location and time of the focusing point. To demonstrate the difference between the two502

different wave generation methods, the validation cases presented in section 3.1 are simulated503
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with relaxation wave generation zone and the results are compared to the corresponding results504

from the Neumann boundary condition. It is seen that the two wave generation methods show505

similar results for waves of relative weaker nonlinearity as in Fig. 22 and Fig. 23a. However,506

with increasing wave steepness and nonlinearity, the wave focusing properties are significantly507

different between the two wave generation methods, as shown in Fig. 23b. The wave group508

generated by the relaxation method focuses earlier and overpredicts the focusing wave crest.509

In contrast, the waves groups generated with the Neumann method match the experiments510

very well.511
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Figure 22: Comparison of the time series at the focusing location of 126.21 m generated by a
relaxation method and a Neumann boundary using the wave packet input.
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Figure 23: Comparison of the time series at the focusing location of 7.5 m generated by a
relaxation method and a Neumann boundary. (a) for the simulation case NING1, (b) for the
simulation case NING3.

3.5 Effects of directional spreading on 3D focused wave group512

Rogue waves are more likely to happen in a crossing sea state (Kharif et al. (2009)). To513

study the wave-wave interaction in a 3D sea-state, the JONSWAP spectrum and the PNJ514

directional spreading function are used to generate a multi-directional irregular wave field.515

The NewWave theory is used for wave focusing. A numerical wave basin 20 m long, 20 m516

wide with a constant water depth of 0.5 m is used in the study. Numerical beaches of 2 m517

width are arranged along the side walls and at the outlet of the tank. To fully resolve the518

3D wave field, an Equal Energy method is used to discretise the frequency spectrum and519

spreading function. In this study, 500 frequency components and 20 directions are used, i.e.520
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10000 wave components in total are generated at the boundary. The wave height and peak521

period in NING1 are used as the input wave properties in this simulation. The designated522

focusing location is (x, y) = (7.5, 10) m and the focusing time is set to be 35 s. The wave523

profiles along the x-axis and the y-axis at the designated focusing time together with the free524

surface elevation time series are compared with different grid sizes in Fig. 24. It is found525

that a grid size of 0.05 m is sufficient to achieve convergence. Ten cells are used in the526

vertical direction, resulting in 1.76 million cells in total. With 256 processors on NOTUR’s527

supercomputer Fram, the 70 s simulation is finished in 5 h. The wave envelope is shown in528

Fig. 25 by plotting the wave profile along the centre of the tank with a small time interval529

around tF = 35 s. It is seen that the highest peak of the wave envelope emerges at x = 7.5 m,530

indicating that the wave group focuses at the designated location. The evolution of the 3D531

focusing wave field is demonstrated in Fig. 26 by showing the velocity magnitude in the wave532

field at the chosen time frames at t = 30 s, t = 35 s and t = 40 s. The 3D wave train forms533

several curved wave fronts asymmetric along the centreline of the tank and approaches the534

focusing point in a wedge-shape pattern in the x-y plane. At the focusing location, the wave535

profile along the x-axis is similar to the 2D NewWave profile as shown in Fig. 24a and the536

wave profile along the y-axis is a single crested peak.537
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Figure 24: Grid convergence study for the 3D wave focusing simulation with four grid sizes
dx = 0.025, 0.05, 0.1 and 0.2 m, 10 vertical cells are used in the study. (a) wave profile along
the x-axis at y = 10 m and tF = 35 s , (b) wave profile along the y-axis at x = 7.5 m and
tF = 35 s, (c) free surface elevation time series at (x, y) = (7.5, 10) m.
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Figure 25: Wave profile envelop along the x-axis at y = 10 m, plotted with short time intervals
around tF = 35 s.
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Figure 26: Velocity magnitude in the 3D focusing wave field. The time frames are t = 30 s,
t = 35 s and t = 40 s from left to right.

Different energy spreading conditions are investigated in the study with various values538

of the spreading parameter n, as shown in Eqn. (26). The wave profile along y = 10.0 m539

and x = 7.5 m are plotted in Fig. 27 with different spreadings. A larger value of n signifies540

higher energy concentration and less spreading. It is seen from Fig. 27a that the focused541

wave height slightly decreases with stronger energy spreading. The two secondary peaks542

adjacent to the focused peak also follow the same trend. The directional spreading function543

tends to redistribute the energy in the horizontal plane more evenly and leads to smaller544

waves near the focusing point. Fig. 27a shows the wave profile in the y-direction at the545

focusing location. The focusing peak is higher and the wave profile is wider with more energy546

concentration. In contrast, with stronger directional spreading, the focused peak reduces547

and profile becomes narrower. The investigation indicates that different spreading conditions548

might lead to different load scenarios for marine structures due to varying peak height and549

the transverse dimension of the wavefront.550
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Figure 27: Comparison of the wave free surface elevations with four different spreading func-
tions, (a) comparison of the wave profiles in the longitudinal x-z plane at y = 10 m, (b)
comparison of wave profiles in the transverse y-z plane at x = 7.5 m.

4 Conclusions551

In this paper, an efficient fully-nonlinear potential flow model is introduced. The model solves552

the Laplace equation with a finite difference method on a σ-grid. The model employs high-553

order discretisation schemes in space and time which allows for larger grid sizes and time554

steps and ensures both the computational efficiency and accuracy. Ten vertical grids in the555

σ-coordinate system are usually found to be sufficient for surface wave applications. The556

focusing wave generated by the proposed model is validated against experiments using both557

the wave packet input and the NewWave theory. Favourable agreements are achieved with558

different wave conditions for both methods. The model is also used to create a 3D focusing559

wave group and the wave group focuses at the designated time and location. Further studies560

are performed to investigate the change of focusing location, focusing time, the geometry of561

the wave group and wave height in relation to the wave steepness, wave generation method,562

bandwidth and directional spreading. The focus of the study has been on the time domain563

analysis and geometry near the focusing point. The following findings are derived from the564

studies:565

566

1) Wave steepness and the nonlinearity affects the wave focusing location and time signif-567

icantly. As a steeper wave group evolves, both the focusing location and the focusing time568

are shifted downstream due to stronger nonlinear wave-wave interactions.569

570

2) The close relation between the wave nonlinearity and the downstream shift of the fo-571

cusing time and location challenges the physical test arrangement to allocate the wave probe572

at the exact focusing point. Instead of repeated attempts in a physical wave tank, a numerical573

wave model proves to be a useful tool to predict the exact real focusing time and location due574

to its flexibility and near-continuous output capacity.575

576

3) The frequency bandwidth does not have an influence on the focusing time and location577

but affects the focusing wave crest height. A wider bandwidth tends to reduce the focusing578

wave crest height.579
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580

4) The focusing wave evolution is a very nonlinear phenomenon, the wave generation us-581

ing a relaxation method does not represent the nonlinearity correctly as the wave steepness582

increases. Therefore, a Neumann boundary is recommended for the generation of the focusing583

wave group in an NWT.584

585

5) In a directional sea state, the directional spreading function also influences the 3D fo-586

cused wave profile. In a more spreading sea, the focused wave crest height is reduced and the587

wave profile in the transversal plane becomes narrower.588

589

In conclusion, the proposed FNPF model is efficient and flexible to investigate the focusing590

wave evolution comprehensively. The finding of the study offers insights into the numerical591

tank configurations for future studies on focused waves both numerically and experimentally.592
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Abstract

Modern design for marine and coastal activities place increasing focus on numerical simula-
tions. Several numerical wave models have been developed in the past decades with various
techniques and assumptions. Those numerical models have their own advantages and disad-
vantages. The proper choice of the most useful numerical tool depends on the understanding
of the validity and limitations of each model. In the past years, REEF3D has been devel-
oped into an open-source hydrodynamic numerical toolbox that consists of several modules
based on the Navier-Stokes equations, the shallow water equations and the fully non-linear
potential theory. All modules share a common numerical basis which consists of rectilinear
grids with an immersed boundary method, high-order finite differences and high-performance
computing capabilities. The numerical wave tank of REEF3D utilises a relaxation method
to generate waves at the inlet and dissipate them at the numerical beach. In combination
with the choice of the numerical grid and discretisation methods, high accuracy and stability
can be achieved for the calculation of free surface wave propagation and transformation. The
comparison among those models provide an objective overview of the different wave modelling
techniques in terms of their numerical performance as well as validity. The performance of
the different modules is validated and compared using several benchmark cases. They range
from simple propagations of regular waves to three-dimensional wave breaking over a changing
bathymetry. The diversity of the test cases help with an educated choice of wave models for
different scenarios.

Keywords: Numerical wave models; High-performance computing; Open-Source; CFD; Navier-
Stokes equations; Shallow water equations; Potential flow theory
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1 Introduction1

Each fluid flow is subject to the conservation laws of mass, momentum and energy which can2

be described by several non-linear partial differential equations. Numerical modelling is the3

method of solving these equations numerically by replacing them with a set of algebraic equa-4

tions. Today, this powerful technique is used in all industries and research areas, such as aero-5

and hydrodynamics, weather predictions or mixing processes. In contrast to experiments, nu-6

merical simulations are in general cheaper, faster in the preparation and more flexible with7

respect to specific external conditions or changing geometries.8

Free surface flows frequently arise in nature and present an increasingly important sub-9

ject due to increased sea transport, population growth and changing climate. The correct10

simulation of the interfaces separating the different fluids is key knowledge in marine and hy-11

draulic engineering. The class of interface phenomena range from current to large-scale waves12

of varying amplitude to splashing with coalescence and breakup situations. This variety of13

effects reveals the development of capable numerical models for two-phase flow applications14

as a difficult task.15

The open-source hydrodynamics framework REEF3D (Bihs et al. (2016)) was originally16

developed to overcome these difficulties by taking the specific challenges in hydraulics, coastal17

and marine engineering into consideration. This affected the design choices for the grid18

architecture, the discretization methods of the governing equations, the treatment of the19

complex free surface and the computational efficiency.20

The ever increasing computational resources allow the computation of more and more21

complex flow problems at a reasonable cost, even for small companies and research institutions.22

The limiting factor of such simulations becomes less the necessary computational power but23

rather the time it takes for the engineer to generate the numerical grids and post-process24

the results. However, these high-performance computations are only possible if the code25

provides a consistent parallelisation strategy. From the beginning, REEF3D was designed26

under consideration of high-performance computations (HPC). Therefore, all parts of the27

code are fully parallelised based on the domain decomposition strategy and the Message28

Passing Interface (MPI).29

The numerical grid affects the range of applicability of numerical methods but also the30

productivity in usage. REEF3D utilises a rectilinear grid to overcome the limitations from31

complicated grid generation processes. In each principal direction, user-specified analytical32

stretching functions enable the refinement of the grid at selected locations. Ray tracing and33

inverse distance algorithms are included to incorporate natural bathymetries and compli-34

cated structures using the STL file format. Together with the directional immersed boundary35

method of Berthelsen and Faltinsen (2008), this effectively simplifies the user input in pre-36

processing.37

Suitable boundary conditions for the application in hydraulics, coastal and marine engi-38

neering have to be given. This particularly includes establishing a numerical wave tank with39

varies wave generation and dissipation methodologies. The level set method is used for cap-40

turing the propagation of the free surface (Osher and Sethian (1988)). The challenge arising41

from most interface models relates to physical discontinuities of the fluid properties at the42

interface. Low-order discretization techniques lead to a large amount of numerical diffusion,43

whereas high-order methods produce oscillatory and non-physical results. In order to keep a44

high numerical accuracy and stability, the implementation of a high-order weighted essentially45
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non-oscillatory (WENO) scheme is the key step towards the accurate representation of sharp46

interfaces. The Cartesian grid makes it possible to employ the fifth-order accurate WENO47

scheme of Jiang and Shu (1996) for all convection terms in REEF3D. Also for the discretiza-48

tion in time, a high-order method is selected with the third-order total variation diminishing49

(TVD) RungeKutta scheme (Shu and Osher (1988)). The equations of fluid motion are solved50

on a staggered grid which ensures tight velocity-pressure coupling and avoids unphysical high51

air velocity above waves. As a result, wave propagation and transformation can be calculated52

throughout the wave steepness range up to the point of wave breaking and beyond, with no53

artificially high air velocities impacting the quality of the free surface. In the past, multiple54

applications proved the validity of this approach for wave propagation and wave-structure in-55

teraction. In Moreno Miquel et al. (2018), the wave generation and absorption were validated56

and compared to other CFD codes. Bihs et al. (2019) analysed the generation, propagation57

and impact of wave packets using REEF3D. Breaking waves and their interaction with a com-58

plex jacket structure were investigated by Aggarwal et al. (2019). Multi-directional irregular59

waves were subject of the studies in Wang et al. (2018). Alternative approaches for a numer-60

ical wave tank based on CFD were presented in e.g. Jacobsen et al. (2012) and Higuera et al.61

(2013). Both utilise a volume of fluid method with interface-compression (Weller (2008)) to62

capture the free surface and a collocated unstructured grid with second-order accuracy for63

the spatial and temporal discretization. The models were applied to experiments for wave64

propagation, and all results indicated the applicability of CFD for these kind of problems65

(Higuera et al. (2014); Paulsen et al. (2014); Seiffert et al. (2014)).66

The source code of REEF3D is available at http://www.reef3d.com and is published under67

the GPL license, version 3. REEF3D is written in an object-oriented C++ structure which68

enables a module-based design. This led to the development of several extensions of the69

main code. For applications near the coast and in rivers, a dynamic sediment transport70

model and porous structures were incorporated. The simulated flow field is coupled with71

the morphological module in REEF3D to simulate e.g. the scouring process around piles72

(Ahmad et al. (2018)). The morphological evolution of the sediment bed is based on the Exner73

formula, a modified calculation of the critical bed shear stress and a sand slide algorithm.74

The porous medium module solves the volume-averaged Navier-Stokes equations by adding75

appropriate terms and coefficients to the common Reynolds-averaged Navier-Stokes equations76

solved in REEF3D::CFD (Kamath et al. (2018)). The model is also adapted for vegetation77

(Arunakumar et al. (2019)). In Bihs and Kamath (2017), a floating algorithm was presented78

which utilises the same directional immersed boundary method developed for fixed structures.79

Recently, a mooring model based on finite elements (Martin et al. (2019)) was added which80

improves the capabilities of the model for the simulation of moored-floating structures in81

waves (Martin et al. (2018)).82

The phase-resolved modelling of the far-field is important for providing a realistic wave83

boundary condition for near-field CFD wave modelling. REEF3D, with its distinct numerical84

basis of high-order finite differences on rectilinear grids, is capable of incorporating simplified85

phase-resolving wave models for these type of problems.86

For very large scale wave modelling, such as the wave transformation from the ocean to the87

coast, spectral wave models such as SWAN (Booji et al. (1999)) are applicable. SWAN solves88

the wave action or energy balance equation, which describes the wave spectrum evolution in89

space and time. The model lacks the ability to resolve phases which is necessary information90

for more detailed analyses. Here, depth-averaged shallow water models have been favoured for91
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the coastal and harbour wave modelling because most coastal areas share relatively shallow92

water conditions. Shallow water models are essentially two-dimensional and, thus, require93

fewer computational resources. One possible approach is based on the Boussinesq equations94

(Madsen et al. (1991)) which can accurately model wave reflection and diffraction as well95

as non-dispersive linear wave propagation. Extended versions of the Boussinesq equations96

enable the prediction of wave propagation and transformation from deep to shallow water97

using improved dispersive terms (Madsen et al. (2002)). In contrast, REEF3D::SFLOW was98

introduced as a novel non-hydrostatic shallow water model following the quadratic pressure99

profile assumption. It benefits from the high-order discretization schemes and good scaling100

properties of REEF3D. Thus, large-scale coastal wave propagations over natural topography101

are possible.102

The specific characteristic of Norwegian fjords and the general demand for fast far-field103

solutions in marine engineering require an alternative approach due to the changing disper-104

sion relation in deep water regions. A potential flow solver is ideal for the fast calculation of105

wave propagation in deep water conditions as viscous effects are not important in the far-field106

domain. The general potential problem for waves is described by the Laplace equation with107

boundary conditions for the free surface and the bottom. This system of equations is highly108

non-linear and describes a one-phase three-dimensional flow field. High-order spectral (HOS)109

methods (Dommermuth and Yue (1987)), which solve the fully non-linear potential problem110

in deep water, have gained popularity (West et al. (1987)). HOS methods are capable of111

capturing non-linear wave interaction at a reasonable computational cost, though they are112

dependent on empirical input for wind forcing and wave breaking. Amongst others, Seiffert113

and Ducrozet (2018) incorporated a wave breaking parameter in HOS-NWT (Ducrozet and114

Bonnefoy (2012)) and simulated irregular breaking waves in 2D without wind or current.115

They could successfully compare surface elevation, wave spectra and energy dissipation with116

experiments. An alternative approach is the fully non-linear potential flow (FNPF) model,117

which is based on the solution of the potential problem in physical space and time. The direct118

numerical solution of the Laplace equation using the method of finite differences is the basis of119

the model OceanWave3D (Ensig-Karup et al. (2008)). This model has been used to simulate120

wave-structure interaction (Ducrozet et al. (2010); Paulsen et al. (2014)) and non-linear wave121

propagation over large spatial scales with variable bathymetry (Belibassakis and Athanas-122

soulis (2011)). The effects of wave steepness, water depth, white-capping, and directional123

spreading can be included with few assumptions to obtain a better description of the real124

sea state to calculate extreme wave statistics and wave crest height distributions. Within the125

REEF3D framework, REEF3D::FNPF combines the approach of solving the Laplace equation126

on a σ-coordinate system using high-order finite difference methods with its high-performance127

computing capabilities and natural bathymetry handling.128

Previously, different wave models are developed by different developers and institutes,129

often with various numerical implementations, making a direct comparison among the mod-130

elling techniques difficult. Now, REEF3D has evolved into an open-source numerical frame-131

work that include several types of numerical wave modelling: a computational fluid dynamic132

(CFD) solver REEF3D::CFD solving the Naiver-Stokes equations, a shallow water model133

REEF3D::SFLOW solving the non-hydrostatic shallow water equations and a fully nonlinear134

potential flow solver REEF3D::FNPF solving the Laplace equation with the fully nonlinear135

boundary conditions. With such a numerical framework, an objective comparison of the differ-136

ent wave modelling techniques is made possible. The authors attempt to reveal the differences137
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in the three numerical wave modelling methods in terms of their numerical performance and138

physical validity by explaining the development and numerical implementations of REEF3D139

and testing its three modules through a series of benchmark cases.140

The structure of the manuscript is arranged as the following. First, in section 2, the de-141

velopment and numerical implementation of the REEF3D numerical framework and its three142

wave modelling modules are introduced. Then an objective comparison among the differ-143

ent types of wave modules is performed using the three REEF3D wave modelling modules144

through a series of benchmark testings in section 3. In the process, the evidence of the models’145

strengths and limitations are revealed and explained. Finally, the findings and recommenda-146

tions for an educated choice of the wave models are summarised in the section 4.147

2 Numerical fluid modules148

2.1 REEF3D::CFD149

Mass and momentum are conserved for an incompressible fluid by solving the continuity and150

Reynolds-averaged Navier-Stokes (RANS) equations151

∂ui
∂xi

= 0, (1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

[
(ν + νt)

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ gi, (2)

with ui the velocity vector, ρ the fluid density, p the pressure, ν and νt the kinematic and152

turbulent viscosity, and gi the gravity acceleration vector.153

The Boussinesq hypothesis is used to calculate νt from the turbulent kinetic energy k and154

its specific rate of dissipation ω according to155

νt =
k

ω
. (3)

In REEF3D::CFD, the two-equations k-ω turbulence model (Wilcox (1988)) is typically156

applied to propagate the turbulence properties in space and time. Wall functions are taken157

into account to approximate the boundary layer flow. A limiter for νt is introduced to account158

for eventual overproduction of turbulence in highly strained flows outside the boundary layer159

(Durbin (2009)):160

νt = min

(
k

ω
,

√
2

3

k

|S|

)
(4)

Special attention is paid to the correct turbulence modelling near the free surface as161

the turbulent length scales in the water are reduced in its proximity. Standard two-phase162

RANS turbulence models do not account for this which can lead to increased ω and damped163

fluctuations normal to the surface due to a redistributed to parallel fluctuations. Additionally,164

standard RANS turbulence closure will incorrectly predict the maximum turbulence intensity165

at the free surface because the mean rate of strain S can be large especially in the vicinity of166
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the interface between water and air (Kamath et al. (2019)). A more realistic representation167

of the free surface effect on the turbulence can be achieved through the replacement of the168

original equation for ω in the vicinity of the surface by the empirical formula (Naot and Rodi169

(1982); Kamath et al. (2019)):170

ωs =
c−0.25
µ

κ
k0.5

(
1

y′
+

1

y∗

)
, (5)

with cµ = 0.07 and κ = 0.4. The virtual origin of the turbulent length scale y′ is empirically171

found to be 0.07 times the mean water depth (Hossain and Rodi (1980)). y∗ is the distance172

from the nearest wall. Hence, a smooth transition from the free surface value to the wall173

boundary value of ω is ensured.174

The location of the free surface is represented implicitly by the zero level set of a smooth175

signed distance function ϕ which can be expressed with the Eikonal equation |∇ϕ| = 1. The176

simple advection equation177

∂ϕ

∂t
+ uj

∂ϕ

∂xj
= 0, (6)

is applied for propagating the function in space and time. The hyperbolic property of178

(6) necessitates the usage of conservative numerical schemes. The level set function has179

to be reinitialized regularly in order to keep its signed distance property. The PDE-based180

reinitialization algorithm by Sussman et al. (1994) is, therefore, executed after each time181

step. By solving182

∂ϕ

∂τ
+ S(ϕ)

(∣∣∣∣
∂ϕ

∂xj

∣∣∣∣− 1

)
= 0, (7)

with ∆τ an artificial time stepping, the original properties of ϕ can be retained. S(ϕ) is183

the smoothed sign function Peng et al. (1999).184

The material properties of the two phases are determined for the whole domain in accor-185

dance with the continuum surface force model of Brackbill et al. (1992). The properties are186

defined at any location in the domain as187

ρi = ρwH(ϕi) + ρa(1−H(ϕi)), (8)

νi = νwH(ϕi) + νa(1−H(ϕi)), (9)

with w indicating water and a air properties. H is the smoothed Heaviside step function188

H(ϕi) =





0 if ϕi < −ε
1
2

(
1 + ϕ

ε + 1
π sin

(πϕi

ε

))
if |ϕi| ≤ ε

1 if ϕi > ε,

(10)

Typically the thickness of the smoothed out interface is chosen to be ε = 2.1∆x on both189

sides of the interface. The density is generally determined directly at the cell faces in order190

to avoid spurious oscillations at the interface (see Bihs et al. (2016) for details).191
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The numerical discretisation of the different equations is achieved using finite difference192

methods on rectilinear grids. The coupling of pressure and velocity during the solution of (2)193

is ensured by staggering the grid. A fifth-order accurate weighted essentially non-oscillatory194

(WENO) scheme (Jiang and Shu (1996)) adapted to non-uniform cell sizes is applied for195

the convection terms. In (6), the convection term is discretised by the fifth-order accurate196

Hamilton-Jacobi WENO method of Jiang and Peng (2000). Diffusion terms are, generally,197

discretised using second-order accurate central finite differences.198

The solution process follows the projection method for incompressible flows of Chorin199

(1968). In the predictor step, the conservation equation for momentum (2) is solved without200

considering the pressure gradients201

u
(∗)
i − u

(n)
i

∆t
= −uj

∂ui
∂xj

+
∂

∂xj

(
ν ·
(
∂ui
∂xj

+
∂uj
∂xi

))
+ gi. (11)

Thus, a predicted velocity field u
(∗)
i is obtained. Here, the time derivatives are solved by202

applying the third-order accurate Total Variation Diminishing (TVD) Runge-Kutta scheme203

(Shu and Osher (1988)). The same time discretisation is also used in (6) and (7). Turbulence204

time advancement is solved using implicit methods due to its source term driven character.205

The general time-stepping is controlled adaptively under consideration of the CFL condition206

(see Bihs et al. (2016)). Diffusion terms are treated implicitly to overcome their restrictions207

on this condition. The insertion of the predicted velocities into the continuity equation leads208

to the Poisson equation209

∂

∂xi

(
1

ρ(Φ̂n+1)

∂p(n+1)

∂xi

)
=

1

∆t

∂u
(∗)
i

∂xi
. (12)

for the pressure of the new time step. It is solved by the fully parallelized BiCGStab210

algorithm of the HYPRE library (van der Vorst (1992)) with the geometric multigrid PFMG211

pre-conditioner (Ashby and Flagout (1996)) to enhance the performance. As the final step,212

the divergence-free velocity field of the new time step is obtained following213

u
(n+1)
i = u

(∗)
i − ∆t

ρ(Φ̂n+1)

∂p(n+1)

∂xi
. (13)

High-performance computations are enabled in REEF3D::CFD by applying the Message214

Passing Interface (MPI) and ghost cells as the parallelisation strategy. Three layers of ghost215

cells are added to each sub-domain due to the fifth-order accurate WENO scheme. Similarly,216

the directional ghost cell immersed boundary method (GCIBM) of Berthelsen and Faltinsen217

(2008) is implemented to handle complex solid geometries. Here, the domain is virtually218

extended into the geometry, and the values at these ghost cells are found through extrapolation219

and under consideration of a wall boundary condition. Thus, the numerical discretisation of220

the fluid domain does not need to account for the boundary conditions explicitly. Instead,221

they are incorporated implicitly. Simple geometries such as boxes, cylinders or prisms can222

be generated directly through user input. Otherwise, STL files are to be generated. Then a223
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level set function, with the zero level set representing the solid boundary, is generated using224

a ray-tracing algorithm as presented in Yang and Stern (2013), see above. In the same way,225

natural bathymetries can be incorporated in a straight forward manner (Shepard (1968)).226

2.2 REEF3D::SFLOW227

The governing equations for the non-hydrostatic shallow water module are derived from the228

mass and momentum conservation for an incompressible inviscid fluid. Following the quadratic229

assumption (Jeschke et al. (2017); Wang et al. (2020)), the governing equations are written230

with depth-averaged variables:231

∂ζ

∂t
+

∂hu

∂x
+

∂hv

∂y
= 0, (14)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g

∂ζ

∂x
− 1

ρh

(
∂hq

∂x
−
(
3

2
q +

1

4
ρhΦnh

)
∂d

∂x

)
, (15)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g

∂ζ

∂y
− 1

ρh

(
∂hq

∂y
−
(
3

2
q +

1

4
ρhΦnh

)
∂d

∂y

)
, (16)

∂w

∂t
+u

∂w

∂x
+ v

∂w

∂y
= − 1

ρh

(
3

2
q +

1

4
ρhΦnh

)
, (17)

where u, v, w and q are the depth-averaged velocity components in x, y, z-directions and232

the depth-averaged dynamic pressure. d is the still water depth, ζ represents the free surface233

elevation and h = d+ζ. The hydrodynamic pressure at the bottom is represented as 3
2q+

1
4ρhΦ,234

which describes the quadratic vertical pressure profile (Jeschke et al. (2017)). The term Φ is235

expressed as follows Jeschke et al. (2017):236

Φnh = −∇d · (∂tu+ (u · ∇)u)− u · ∇(∇d) · u. (18)

The governing equations are solved on REEF3D’s structured staggered grid using finite237

differences. The solution of the velocities are obtained using Chorin’s projection method238

(Chorin (1968)). The convective terms for the velocities u,v and w are discretised with the239

fifth-order accurate WENO scheme. The TVD third-order accurate Runge-Kutta explicit240

time scheme is used for time discretisation. The pressure information is obtained from the241

solution of the Poisson equation242

hp
ρ

(
∂2q

∂x2
+

∂2q

∂y2

)
+

2q

ρhp
=

1

∂x∂t

(
−hp

(
∂u

∂x
+

∂v

∂y

)
− 2w − u

∂d

∂x
− v

∂d

∂y

)
. (19)

Here, the parameter hp denotes the water level in the centre of the cell, where the dynamic243

pressure q, the vertical velocities w and the free surface location ζ are solved. The horizontal244

velocities u and v are solved at the cell faces. The PFMG preconditioned BiCGStab algorithm245

(Ashby and Flagout (1996)) of HYPRE is applied to solve for pressure. The solution is then246

utilised to correct the velocities in a correction step:247
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un+1 = u∗ +∆t

(
3

2

qn+1

ρhp

∂d

∂x
+

1

4
Φnh

∂d

∂x

)
, (20)

vn+1 = v∗ +∆t

(
3

2

qn+1

ρhp

∂d

∂y
+

1

4
Φnh

∂d

∂y

)
, (21)

wn+1 = w∗ +∆t

(
3

2

qn+1

ρhp
+

1

4
Φnh

)
, (22)

with u∗, v∗, w∗ the intermediate velocities using only the hydrostatic pressure information.248

The free-surface elevation ζ is determined from Eqn. (14) using the divergence of the249

depth-integrated horizontal velocities and the fifth-order WENO scheme.250

A straightforward wetting and drying scheme (Stelling and Duinmeijer (2003); Zijlema251

and Stelling (2008)) is applied at the coastlines. The velocities are set to be zero in cells252

where the local water level is below a user-defined threshold:253

{
u = 0, if ĥx < threshold,

v = 0, if ĥy < threshold.
(23)

The default threshold is set to be 0.00005 m. This approach tracks the variations of the254

coastlines accurately and avoids numerical instabilities by ensuring non-negative water depth255

(Stelling and Duinmeijer (2003); Zijlema and Stelling (2008)).256

Breaking waves are detected when the vertical velocity of the free-surface exceeds a fraction257

of the shallow water celerity (SWASH developers (2017)):258

∂ζ

∂t
> α

√
gh. (24)

During breaking, the dynamic pressure is removed at the front of the breaker and only the259

hydrostatic pressure is present in the momentum equations. Another parameter β (0 < β < α)260

is introduced to replace α in Eqn. (24) to stop wave breaking and determine the persistence of261

the breaking process. α = 0.6 and β = 0.3 are recommended by the SWASH developers (2017).262

In this combined approach, the momentum is well conserved and the energy is correctly263

dissipated (SWASH developers (2017)).264

2.3 REEF3D::FNPF265

The governing equation for the fully non-linear potential flow module REEF3D::FNPF is the266

Laplace equation (Bihs et al. (2020))267

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0. (25)

Boundary conditions at the free surface and the bottom are required in order to solve for268

the velocity potential φ. The kinematic and dynamic free surface boundary conditions state269

that the fluid particles at the free surface must remain at the surface and the pressure at the270
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free surface should be equal to the atmospheric pressure. These boundary conditions can be271

expressed as follows:272

∂η

∂t
=− ∂η

∂x

∂φ̃

∂x
− ∂η

∂y

∂φ̃

∂y
+ w̃

(
1 +

(
∂η

∂x

)2

+

(
∂η

∂y

)2
)
, (26)

∂φ̃

∂t
=− 1

2



(
∂φ̃

∂x

)2

+

(
∂φ̃

∂y

)2

− w̃2

(
1 +

(
∂η

∂x

)2

+

(
∂η

∂y

)2
)
− gη, (27)

where η is the free surface elevation, x = (x, y) represents the horizontal directions, φ̃ =273

φ(x, η, t) and w̃ are the velocity potential and the vertical velocity at the free surface. At274

the bottom, the component of the velocity normal to the bottom surface must be zero at all275

times. This gives the bottom boundary condition276

∂φ

∂z
+

∂h

∂x

∂φ

∂x
+

∂h

∂y

∂φ

∂y
= 0, z = −h, (28)

with h = h(x) the water depth measured from the still water level to the bottom.277

The Laplace equation is solved iin each time step with the finite difference method on a278

σ-coordinate system as proposed by Li and Fleming (1997). Here, the σ-coordinate system279

follows the irregular variation of the water depth. A Cartesian grid can be transformed to a280

σ-coordinate as follows:281

σ =
z + h (x)

η(x, t) + h(x)
. (29)

The vertical coordinates are clustered towards the free surface by including a stretching282

function:283

σi =
sinh (−α)− sinh

(
α
(

i
Nz

− 1
))

sinh (−α)
, (30)

where α is the stretching factor, i is the index of the vertical grid point and Nz stand for284

the total number of cells in the vertical direction. The boundary conditions and the governing285

equation in the σ-coordinate can be written as:286

Φ = φ̃ , σ = 1; (31)

∂2Φ

∂x2
+

∂2Φ

∂y2
+

(
∂2σ

∂x2
+

∂2σ

∂y2

)
∂Φ

∂σ
+ 2

(
∂σ

∂x

∂

∂x

(
∂Φ

∂σ

)
+

∂σ

∂y

∂

∂y

(
∂Φ

∂σ

))
+

((
∂σ

∂x

)2

+

(
∂σ

∂y

)2

+

(
∂σ

∂z

)2
)

∂2Φ

∂σ2
= 0 , 0 ≤ σ < 1;

(32)

(
∂σ

∂z
+

∂h

∂x

∂σ

∂x
+

∂h

∂y

∂σ

∂y

)
∂Φ

∂σ
+

∂h

∂x

∂Φ

∂x
+

∂h

∂y

∂Φ

∂y
= 0 , σ = 0, (33)
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with Φ the velocity potential with a dependency on σ. The fluid velocities can then be287

calculated using288

u (x, z) =
∂Φ (x, z)

∂x
=

∂Φ (x, σ)

∂x
+

∂σ

∂x

∂Φ (x, σ)

∂σ
, (34)

v (x, z) =
∂Φ (x, z)

∂y
=

∂Φ (x, σ)

∂y
+

∂σ

∂y

∂Φ (x, σ)

∂σ
, (35)

w (x, z) =
∂Φ (x, z)

∂z
=

∂σ

∂z

∂Φ (x, σ)

∂σ
. (36)

The Laplace equation is discretized using second-order central differences, and the solution289

is obtained using the geometric multigrid preconditioned conjugated gradient solver provided290

by HYPRE. The convection terms in the free surface boundary conditions are discretized291

using the fifth-order accurate Hamilton-Jacobi version of the WENO scheme (Jiang and Peng292

(2000)). The time-dependent terms in the free surface boundary conditions are treated with293

the third-order accurate TVD Runge-Kutta scheme (Shu and Osher (1988)). An adaptive294

time step is included by controlling a constant time factor that is equivalent to the Courant295

criterion (Courant et al. (1967)):296

cu =
∆x∣∣max(umax,
√
9.81 ∗ dmax)

∣∣ ,

cv =
∆x∣∣max(vmax,
√
9.81 ∗ dmax)

∣∣ ,

ctot = min(cu, cv),

∆t = ctot CFL,

(37)

where cu, cv, cw are the phase velocities in x, y and z directions, and umax, vmax are the297

maximum particle velocities in x- and y-direction.298

The wetting-drying scheme for detecting coastlines and the shallow water breaking cri-299

terium follow the same principle as in REEF3D::SFLOW. For deep water breaking, a wave300

slope criterion is used. Wave breaking takes place when the ratio between the free surface301

elevation difference and the horizontal distance difference at adjacent cells is higher than the302

criterion, which has a default value of 1.25. A filtering scheme is used to smooth the free303

surface in order to dissipate wave energy when wave breaking is detected (Jacobsen (2015)).304

Another challenge in handling coastlines in a potential flow model is the possible numerical305

instability during the wave run-up process in the swash zone. The derivatives of velocity306

potential over water depth in Eqn. 32 indicate a possible numerical instability when water307

depth becomes infinitesimal. Therefore, an innovative coatline lagorithm is introduced to308

eliminate the instability.309

After the wet and dry cells are identified, the wet cells are assigned with +1 and the310

dry cells are assigned with −1. With these initial values, the coastline is captured using the311

level-set function by Osher and Sethian (1988):312

ϕ(~x, t)





> 0 if ~x ∈ wet cell

= 0 if ~x ∈ Γ

< 0 if ~x ∈ dry cell

(38)

323



Wang, W. et al.

Γ represents the coastline, and the Eikonal equation |∇ϕ| = 1 holds valid in the level-set313

function. From the initial values, the correct signed distance function is obtained by solving314

the following Partial Differential Equation (PDE) based reinitialisation function (Sussman315

et al. (1994)):316

∂ϕ

∂t
+ S (ϕ)

(∣∣∣∣
∂ϕ

∂xj

∣∣∣∣− 1

)
= 0 (39)

where S (ϕ) is the smoothed sign function (Peng et al. (1999)). This equation is solved317

until convergence and results in the correct signed distance away from the coastline in the318

whole horizontal plane. The excact coastline location is the zero-contour of the level set319

function.320

Relaxation zones are applied along the the wet side of the coastline. With these relaxation321

zones, the extreme run-ups are avoided and therefore eliminate numerical instabilities in the322

free surface boundary conditions at extreme shallow regions.323

3 Numerical Results324

3.1 Comparison of the different modules for the numerical simulation of325

progressive waves326

The different modules of REEF3D all share high-order numerical schemes for spatial and327

temporal discretisation and a high-performance computation capacity. To demonstrate the328

modules’ capabilities and limitations, simulations of progressive waves over constant and329

varying topography are performed using all three modules. First, progressive regular wave330

propagation over constant intermediate water depth in 2D is simulated. The numerical wave331

tank is 28 m long and the water depth is 0.5 m. Two input waves are used, one is a linear332

wave with the wave height H = 0.01 m and a wave period of T = 1.95 s, and another is333

a Stokes 2nd-order wave with a wave height of H = 0.05 m and the same wave period of334

T = 1.95 s and wavelength 3.936 m. A one-wavelength wave generation zone is located at the335

inlet boundary, and a two-wavelength numerical beach is arranged at the outlet boundary.336

All simulations are conducted for a duration of 40 s on a Mac Pro with a four 2.7 GHz Intel337

Xeon E5 cores. The grid convergence studies of the linear wave simulations are shown in338

Fig. 1a to Fig. 1c. For REEF3D::FNPF, the vertical grid is determined by keeping a constant339

truncation error in the vertical direction (Pakozdi et al. (2019)), which results in 10 vertical340

cells with a stretching factor of 1.25. It is seen that the results for amplitude and phase341

converge with ∆x = 0.05 m, 0.02 m and 0.1 m for REEF3D::CFD, REEF3D::SFLOW and342

REEF3D::FNPF respectively. With these cell sizes, the total number of cells Nt and the sim-343

ulation time Ts are compared in Tab. 2. The spatial free surface profiles are compared against344

the theoretical wave profile in Fig. 1d. All three modules generate the theoretical wave profile345

accurately and the numerical beach absorbs the wave energy at the outlet boundary effec-346

tively. REEF3D::SFLOW requires the least number of cells due to its two-dimensional grid.347

Consequently, it is 7.3 times faster as REEF3D::CFD. However, REEF3D::FNPF is the fastest348

(35 times as fast at REEF3D::CFD), even though it needs more cells than REEF3D::SFLOW.349
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(a) Grid convergence study using REEF3D::CFD
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(b) Grid convergence study using REEF3D::SFLOW

Theory dx= 0.05 m

dx= 0.1 m

dx= 0.2 m

dx= 0.4 m

η
[m

]

0

0.01

x [m]

0 5 10 15 20 25 30

(c) Grid convergence study using REEF3D::FNPF
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(d) Comparison of the spatial wave profiles

Figure 1: Convergence study on cell sizes for the 2D regular linear wave simulation and the
comparison of free surface elevation among the three modules. (a) - (c) grid convergence
study, (d) comparison of the spatial wave profiles using the finest cell sizes.

The mean square root errors for wave height in the grid convergence study for the 2D350

regular linear wave simulation using the three modules are summarised in Table. 1.351

Similarly, the grid convergence study and the comparison of the spatial wave profiles for352

the simulations of the 2nd-order Stokes wave using different modules are shown in Fig. 2. The353

mean square root errors for wave height in the grid convergence study for the 2D regular Stokes354

2nd-order wave simulation using the three modules are summarised in Table. 3. It is seen that355

the grid convergence is achieved with ∆x = 0.05 m, 0.02 m and 0.1 m for REEF3D::CFD,356
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Table 1: Mean square root errors on wave height in the grid convergence study for the 2D
regular linear wave simulation using the three modules. The notations dx1 to dx4 represent
the finest and coarsest cell size in the tests of each of the modules.

dx (m) REEF3D::CFD REEF3D::SFLOW REEF3D::FNPF

dx1 7.889e-05 8.031e-05 5.025e-05

dx2 8.872e-05 9.656-05 5.701e-05

dx3 1.010e-04 1.999e-04 3.303e-04

dx4 1.213e-04 4.251e-04 4.842e-04

Table 2: Comparison of total number of cells Nt and simulation time Ts in seconds for the
simulation of progressive linear wave using the three modules.

module Nt Ts

REEF3D::CFD 11200 594.9 s

REEF3D::SFLOW 560 81.5 s

REEF3D::FNPF 2800 16.8 s

REEF3D::SFLOW and REEF3D::FNPF. With these cell sizes, all three modules represent357

the 2nd-order Stokes wave with correct amplitude, phase and asymmetry over the still water358

level. Similarly, the total number of cells and computational time are summarised in Tab. 4,359

the computational speed is similar to the linear wave simulations.360
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(a) Grid convergence study using REEF3D::CFD
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(b) Grid convergence study using REEF3D::SFLOW
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(c) Grid convergence study using REEF3D::FNPF
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(d) Comparison of the spatial wave profiles

Figure 2: Convergence study on cell sizes for the 2D regular Stokes 2nd-order wave simula-
tion and the comparison of free surface elevation among the three modules. (a) - (c) grid
convergence study, (d) comparison of the spatial wave profiles using the cell sizes achieving
grid convergence.

3.2 Two-dimensional wave propagation over a submerged bar361

Next, the experiment of the wave propagation over a submerged bar (Beji and Battjes (1993))362

is reproduced using all three modules. The numerical tank setup is shown in Fig. 3. A wave363

generation zone of 5 m is located at the inlet boundary and a numerical beach of 9.5 m is364
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Table 3: Mean square root errors for wave height in the grid convergence study for the 2D
regular Stokes 2nd-order wave simulation using the three modules. The notations dx1 to dx4
represent the finest and coarsest cell size in the tests of each of the modules.

dx (m) REEF3D::CFD REEF3D::SFLOW REEF3D::FNPF

dx1 3.581e-04 5.117e-04 4.739e-04

dx2 3.582e-04 7.637e-04 5.483e-04

dx3 4.421e-04 9.529e-04 1.41e-03

dx4 1.109e-03 1.80e-03 2.15e-03

Table 4: Comparison of total number of cells Nt and simulation time Ts in seconds for the
simulation of progressive 2nd-order Stokes wave using the three modules

module Nt Ts

REEF3D::CFD 11200 638.3 s

REEF3D::SFLOW 560 86.7 s

REEF3D::FNPF 2800 16.9 s

located at the outlet boundary. The submerged bar starts 6 m from the wave generation zone,365

and 8 wave gauges are located over the horizontal range of the submerged bar. A 2nd-order366

Stokes wave with a wave height 0.021 m and a wave period of 2.525 s is generated from the367

inlet boundary and propagates over the bar for 60 s. The simulations are computed with four368

2.7 GHz Intel Xeon E5 cores on Mac Pro for REEF3D::FNPF and REEF3D::SFLOW and369

128 2.1 GHz Intel E5-2683v4 cores on the supercomputer Fram for REEF3D::CFD.370

38m

9.5m

1 2 3 4 5 6 7 8

6m5m

z

x

6m 2m

0.3m
1:20 1:10

0.4m

0.8m

3m

Figure 3: Numerical setup for the simulation of the wave propagation over a submerged bar.

The grid convergence study is shown in Fig. 4. The vertical grid arrangement for REEF3D::FNPF371

follows the same constant truncation error principle. Here, 10 vertical cells and a stretching372

factor of 1.2 is used. Only the horizontal grid convergence of REEF3D::FNPF is performed.373

The last wave gauge 8 is used for the convergence study as high-frequency wave components374

appear during the de-shoaling process after the waves propagate over the submerged bar.375

REEF3D::CFD and REEF3D::FNPF are able to capture the high-frequency wave compo-376

nents with cell sizes of 0.005 m and 0.025 m respectively. For REEF3D::SFLOW, even with377

a converged cell size of 0.02 m, the wave phases are not correctly represented because these378
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high-frequency waves have significantly shorter wavelengths and the water condition is not379

appropriate for shallow water models at this location.380
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(a) REEF3D::CFD convergence at Gauge 8
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(b) REEF3D::SFLOW convergence at Gauge 8
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(c) REEF3D::FNPF convergence at Gauge 8

Figure 4: Convergence study on horizontal cell sizes at wave gauge 8 for the simula-
tions of wave propagation over a submerged bar. (a)REEF3D::CFD grid convergence, (b)
REEF3D::SFLOW grid convergence, (c) REEF3D::FNPF grid convergence

Using the converged cell sizes, the free surface elevation time history in the simulations381

are compared against the experimental measurements in Fig. 5. The free surfaces from382

all simulations agree well with the experimental data during the shoaling process, while383

REEF3D::SFLOW starts to show phase differences from gauge 6 in the de-shoaling process384

as the water condition gets deeper due to shorter waves.385
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(f) Gauge 6
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(g) Gauge 7
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(h) Gauge 8

Figure 5: Comparison of the time histories of the free surface elevations at the wave gauges in
the simulations of wave propagation over a submerged bar using the cell sizes achieving grid
convergence. .

The number of cells and computational time for the simulations of the wave propagation386

over a submerged bar are summarised in Tab. 5. When complicated phenomena are present,387

CFD often requires a large number of cells, and the speed-up with the shallow water model388

and the potential flow model is dramatically increased.389

Table 5: Comparison of total number of cells Nt and simulation time Ts in seconds for the
simulation of wave propagation over a submerged bar using the three modules

module Nt Ts

REEF3D::CFD 1216000 10759.5 s

REEF3D::SFLOW 1900 761.7 s

REEF3D::FNPF 15200 282.2 s

The simulations show that for progressive regular waves below the breaking limit, all390
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three modules can represent the frees surface accurately. However, the requirements of the391

grid resolution are different. It is commonly seen that 80 to 100 cells per wavelength is able to392

capture the free-surface well with REEF3D::CFD, while only 30 to 40 cells per wavelength are393

needed in REEF3D::FNPF. The grid resolution in REEF3D::SFLOW might be higher, but394

the 2D vertical grid structure reduces the total number of cells dramatically. In practice, when395

the wave steepness is not close to the breaking limit, REEF3D::SFLOW and REEF3D::FNPF396

are much faster alternatives, especially for large-scale sea states and coastal wave simulations.397

In shallow to intermediate water condition up to wavelength to water depth ratio 0.25 (Jeschke398

et al. (2017)), REEF3D::SFLOW has an advantage because it is capable of resolving the run-399

up process in the swash zone. However, for water conditions with large water depth changes,400

the de-shoaling process limits the application of REEF3D::SFLOW as seen in the simulation401

of wave propagation over a submerged bar. In such conditions, REEF3D::FNPF is the optimal402

choice as its applicability is not limited by large water depth gradients. REEF3D::CFD is403

slower but contains more information about turbulent effects in the flow. In cases where strong404

wave-structure interaction take place or waves break, REEF3D::CFD is the only option for405

numerical modelling of the associated phenomena. The following applications focus on the406

most suitable applications for each of the modules.407

3.3 Two-dimensional wave breaking over a mild slope408

In shallow water regions, depth-induced wave breaking is a common phenomenon. All409

three modules are equipped with breaking wave algorithms to represent the energy dissipa-410

tion during a wave breaking process, as described in section 2. In this section, a depth-induced411

breaking wave over a mild slope is simulated with all three modules in a two-dimensional nu-412

merical wave tank. In order to reduce the computational cost of the CFD simulation, the413

original setup from Ting and Kirby (1995) is truncated in its longitudinal direction. The414

breaking wave zone and swash zone are all remained in the truncated numerical wave tank.415

The new numerical wave tank setup is shown in Fig. (6). The mild slope starts 13.8 m from416

the inlet boundary and rises up to 0.463 m at the outlet following a slope of 1:35. The water417

depth at the wave generator is 0.4 m. A 5th-order Cnoidal wave with a wave height of 0.128418

m and wave period of 5 s is generated at wave generation zone that is 9.8 m long, i.e. one419

wavelength. Four wave gauges are located on the slope adjacent to the wave breaking location.420

From wave gauges 1 to 4, the x-coordinates are x = 19.8, 20.8, 21.8 and 22.1 m. The simula-421

tions are computed with four 2.7 GHz Intel Xeon E5 cores on Mac Pro for REEF3D::FNPF422

and REEF3D::SFLOW and 128 2.1 GHz Intel E5-2683v4 cores on the supercomputer Fram.423

The grid convergence study for the three models REEF3D::CFD, REEF3D::SFLOW and424

REEF3D::FNPF were reported respectively by Bihs et al. (2016), Wang et al. (2020) and425

Bihs et al. (2020). As a result, the dx = 0.005 m, dx = 0.005 m and dx = 0.005 m are used426

in the REEF3D::CFD, REEF3D::SFLOW and REEF3D::FNPF simulations respectively. 10427

cells are used in the vertical direction for the simulation with REEF3D::FNPF. The simu-428

lations are performed for 40 s with adaptive time stepping and CFL = 0.1, 0.2 and 1.0 for429

the REEF3D::CFD, REEFD::SFLOW and REEF3D::FNPF simulations respectively. The430

simulated free surface elevation time series from all three modules are compared to the ex-431

perimental measurements in Fig. (7).432
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Figure 6: Numerical wave tank setup for wave breaking over a mild slope.

As can be seen in Fig. (7), the results from all three modules achieve a good agreement433

with the experiment both in wave amplitude and wave phase. The wave amplitudes increase434

from waver gauge 1 to wave gauge 2 due to the shoaling effect in both the simulations and435

the experiment. Wave gauge 3 shows a decrease in wave amplitude and the decreasing trend436

continues to wave gauge 4. This change of amplitude indicates a wave breaking happens437

between wave gauge 2 and 3 as a result of energy dissipation during the wave breaking438

process. The correct representation of the amplitude change shows that all three modules439

produce correct wave energy dissipation.440

To compare the computational performance of the three modules, the total number of cells441

and computational time for each model to finish the simulations are summarised in Table. 6442

Table 6: Comparison of total number of cells Nt and simulation time Ts in seconds for the
simulation of wave propagation over a submerged bar using the three modules

module Nt Ts

REEF3D::CFD 1200000 31578.8 s

REEF3D::SFLOW 6000 5326.62 s

REEF3D::FNPF 6000 639.9 s

Similar to section 3.2, REEF3D::SFLOW and REEF3D::FNPF use much less cells in443

comparison to REEF3D::CFD to achieve a similar level of accuracy. In this case, both444

REEF3D::SFLOW and REEF3D::FNPF only need 1/200 the number of cells as used in the445

REEF3D::CFD simulation. In terms of the computational speed, REEF3D::SFLOWS is seen446

to be roughly 190 times faster than REEF3D::CFD while REEF3D::FNPF is 1580 times447

faster. However, the slower computational speed of REEF3D::CFD is compensated by the448

fact that REEF3D::CFD is the only model that is able to represent a correct geometry of an449

overturning breaker, which is shown in the next section with a three-dimensional overturning450

wave breker.451

3.4 Three-dimensional wave breaking over a flat-tipped reef452

The design of coastal structures such as combined coastal defences, recreational surfing reefs453

and marine biodiversity enhancement measures such as submerged porous reefs require a454

detailed analysis of the interaction between the incident waves and the proposed structure.455
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Figure 7: Comparison between the simulated free surface elevation time series from the three
REEF3D modules and the experiment measurements at all four wave gauges in the simulations
of wave breaking over a mild slope.

The evaluation of the properties of the breaking waves generated due to the presence of the456

submerged structure is one of the essential analyses in such cases. In this sub-section, three-457

dimensional wave breaking is investigated using all three models. The free surface elevations458

at different locations calculated by the two models are also compared. The illustration of459

the numerical wave tank with the bottom topography used in the simulations is presented in460

Fig. (8). The bottom topography consists of a 1 in 20 slope over which a flat-tip shaped reef461

with a reef slope of 1 in 6 is placed. The reef angle, that is the angle between the reef normal462

and the direction of wave propagation is 60◦. A detailed description of the complicated reef463
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geometry is provided in Henriquez (2005). The width of the flat tip is 0.188 m and the width464

of the reef at the far end is 3.88 m. The numerical wave tank is 20 m long, 9 m wide, 0.8 m465

wide with a water depth of d = 0.4 m. Cnoidal waves with a height of H = 0.12 m and period466

T = 2.50 s are generated. The submerged reef will affect the propagation of the incident waves467

and induce wave breaking with the overturning wave crest first appearing over the slope of the468

reef as shown in Fig. (9). The rest of the wavefront undergoes overturning as it propagates469

further along the submerged reef and the bottom slope. All simulations are computed with470

128 2.1 GHz Intel E5-2683v4 cores on the supercomputer Fram.471

3.88 m

m = 1: 20

m = 1: 6

60˚

20 m

9 m 6.4 m

9 m

1.92 m

0.188 m

(a)

Wave generation

3.88 m 0.188 m

9 m

9 m

20 m

1:20

1:6

y

x

z

(b)

Figure 8: Numerical wave tank setup for the simulation of three-dimensional wave breaking
on a reef. m represents the slopes. (a) schematics from top view, (b) 3D view in the NWT.
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Figure 9: Three-dimensional wave breaking over the reef in the numerical wave tank calculated
using REEF3D::CFD
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(i) WG9- x = 14.42 m, y = 0.7 m
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Figure 10: Free surface elevations at several locations in the numerical wave tank for three-
dimensional wave breaking on a submerged reef calculated using CFD and SFLOW
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The free surface elevations at different locations along the reef in the numerical wave tank472

using the three models are presented in Fig(10). The incident wave at the toe of the slope473

near the wall is shown in Fig. (10a). The free surface elevation over the reef slope is seen in474

Figs. (10b) and Figs. (10c). The wave appears to break at these locations as seen from the475

vertical wave crest front. The difference between the results from the two models are seen476

in the shape of the wave crest front. The shallow water model, REEF3D::SFLOW and the477

potential flow model REEF3D::FNPF cannot account for an overturning crest and therefore478

represent a perfectly vertical wave crest fronts to represent the breaking wave before a sudden479

reduction in the free surface elevation. In the time series in Figs. (10b) and Figs. (10c),480

this is seen through the graph retracing its path, before its eventual reduction. In contrast,481

REEF3D::CFD represents the overturning wave crest. Therefore, the vertical wave crest front482

is followed by a reduction of the free surface elevation, without a period of retracing of the483

initial path to the peak. The wave gauges WG 2, 3 and 4 show this process in Figs. (10b), (10c)484

and (10d) respectively as they are placed in the region of wave breaking over the reef slope.485

The free surface elevations at WG 5, 6 and 7 in Figs. (10e, 10f and 10g) respectively show the486

secondary breaking process and the post breaking splash up. This is signified by the reduced487

free surface elevations and the appearance of secondary crests in the time series. A slight phase488

difference is seen between the results from REEF3D::SFLOW and REEF3D::CFD. The first489

secondary breaker in the REEF3D::FNPF simulation is in phase with the other two models.490

However, significant phase differences are seen in comparison to the other two models after491

the first secondary breaking. The reason is that the incoming waves start to interact with the492

wave run-up and run-down on the slope which takes place after the first secondary breaker.493

In the potential flow model, the wet side of the coastline is covered with a narrow relaxation494

zone of 0.675 m to avoid numerical instabilities due to the derivatives of the velocity potential495

over z in the infinitesimal water depth. Therefore, the run-up and run-down are not correctly496

represented, which lead to a large phase different and smaller wave amplitude in the potential497

flow simulation. The complex 3D swash zone dynamic and the steeper slope at the end of the498

numerical wave tank amplify this effect, which is not noticeable in section 3.3. Figures (10h),499

(10i) and (10j) present the free surface elevations at WG 8, 9 and 10 respectively, which are500

along the reef slope but in post-breaking region. The free surface elevations are seen to be501

further reduced and several secondary crests appear in the time series. There is also some502

phase difference seen among the models. On the other hand, the wave heights calculated by503

all models are similar for the first breaking wave. This suggests that the loss of wave energy504

due to wave breaking is well represented in the shallow water model as well as the potential505

flow model, even though the overturning wave crest is not accounted for.506

The free surface elevations in the numerical wave tank with the horizontal velocity con-507

tours for the simulations carried out using all three models are presented in Fig. (11). The508

overturning wave crest at t/T = 5.5 is represented in the CFD model in Fig. (11a), whereas509

only a steep free surface is seen in REEF3D::SFLOW and REEF3D::FNPF in Fig. (11c) and510

Fig. (11e). The free surface and velocities over the rest of the wavefront are seen to be similar511

for all the models. The overturning wave crest moves towards the preceding wave trough and512

the rest of the wavefront gets steeper at t/T = 5.6 in Fig. (11b) in REEF3D::CFD model.513

The REEF3D::SFLOW and REEF3D::FNPF simulations show smoothened free surfaces in514

the region of the overturning wave crest in Fig. (11d) and Fig. (11f). Wave breaking is seen515

on the reef slope and wave breaking is initiated away from the reef in Fig. (11g) at t/T = 5.8516

in the REEF3D::CFD simulation. Figure (11i) and Figure (11k) show steep wavefronts in the517
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region away from the reef for the REEF3D::SFLOW and REEF3D::FNPF simulations. The518

process of secondary breaking is seen to have started at this time step in the simulations. The519

overturning wave crest in the region away from the reef at t/T = 6.1 is seen in Fig. (11h) in the520

REEF3D::CFD simulation. The free surfaces in the REEF3D::SFLOW ad REEF3D::FNPF521

simulations in Fig. (11j) and Fig. (11l) are seen to be similar over the reef in the absence of522

wave breaking and a steep wavefront are seen away from the reef. However, the post-breaking523

region is seen to be very different in the simulation of REEF3D::FNPF in comparison to the524

other models, as seen in Fig. (11k) and Fig. (11l). Less run-up on the slope and some small525

high-frequency waves are seen only in the simulation of REEF3D::FNPF as the result of the526

coastal relaxation zone arrangement.527

The key difference in the results from REEF3D::CFD and the other two models is that528

the overturning wave crest is not represented by REEF3D::SFLOW and REEF3D::FNPF. On529

the other hand, the wave heights after the wave breaking process are seen to be similar in all530

models. Therefore, if the representation of the overturning wave crest is not critical in a simu-531

lation, the shallow water model and potential flow model can provide similar wave kinematics532

solutions as the three-dimensional and two-phase flow model. However, REEF3D::SFLOW533

is a better choice when swash zone dynamics result in strong interaction with the incoming534

waves.535
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Figure 11: Free surface elevations with velocity contours at different time steps for three-
dimensional wave breaking on a reef calculated using CFD and SFLOW (part 1)
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Figure 11: Free surface elevations with velocity contours at different time steps for three-
dimensional wave breaking on a reef calculated using CFD and SFLOW (part 2)
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The computational grid, computational resource and computational time from the three536

models are compared in Table. 7. The computational speed gains from REEF3D::SFLOW537

and REEF3D::FNPF in a 3D simulation are seen to be even more prominent in comparison538

to the CFD solver, with a speedup factor of 60 and 800 respectively. On the other hand, the539

computational speed of REEF3D::CFD is compensated by the fact that REEF3D::CFD is the540

only model that is able to represent a correct geometry of an overturning breaker.541

Table 7: Comparison of total number of cells Nt and simulation time Ts in seconds for the
simulation of wave propagation over a submerged bar using the three modules

module Nt Ts

REEF3D::CFD 28700000 90 h

REEF3D::SFLOW 450000 5014.73 s

REEF3D::FNPF 720000 401.34 s

4 Conclusions542

In the presented manuscript, a comparative study of the three major types of phase-resolved543

wave models is presented with the use of the open-source hydrodynamics framework REEF3D.544

The development and numerical implementation of REEF3D are explained extensively to show545

the numerical consistency as well as differences among the wave models. The benchmark stud-546

ies provide an insight into the strengths and limitations of each type of the wave modelling547

technique in terms of their computational performance as well as their limitations in different548

types of wave hydrodynamic phenomena. Thanks to the fact that all three models are imple-549

mented in the same numerical framework, an objective comparison is presented, which is not550

influenced by the various numerical implementations from different developers.551

REEF3D::CFD solves the incompressible NavierStokes equations with a RANS turbulence552

model. Here, the pressure is solved on a staggered grid using the projection method. This553

ensures a tight pressure-velocity coupling. The model benefits from the utilization of a level554

set function to capture the motion of the free surface implicitly. In the numerical wave tank,555

the waves are generated and absorbed with either the relaxation method or using Dirichlet556

boundary conditions.557

REEF3D::SFLOW reduces the computational costs significantly by solving the depth-558

averaged shallow water equations with a non-hydrostatic extension based on a quadratic559

vertical pressure profile. In comparison to existing approaches, like Boussinesq-type models560

or multi-layer approaches, the system of equations is solved with the projection method and561

high-order discretization schemes. This increases the stability of the computation through562

simpler terms in the equation and semi-implicit calculations for the pressure. Further, the563

model benefits from the parallelization strategy in REEF3D which enables the simulation of564

large scale wave propagation near shores.565

REEF3D::FNPF closes the gap between the efficient 2D shallow water solver and the566

accurate CFD solver for wave propagation problems as the FNPF potential flow solver is567

not restricted by water depth. By solving the three-dimensional Laplace equation with non-568
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linear boundary conditions for the free surface and the bottom, no simplifying assumptions569

regarding the wave characteristics or bottom slope are taken into account. At the same time,570

the use of a σ-coordinate system removes the additional cost of a two-phase approach. The571

model employs high-order discretization schemes in space and time which allows for larger572

cell sizes and time steps. Typically, ten cells in the vertical direction are sufficient to obtain573

accurate wave propagation. Very fast parallelized algorithms for solving the system matrix574

ensure the computational efficiency and enables the application for large-scale problems in575

deep and shallow water.576

The performance of the presented modules has been tested and compared for several577

benchmark applications. The direct comparisons for regular waves show that all approaches578

are capable of predicting the wave propagation in their range of applicability. The challeng-579

ing submerged bar case revealed very good accuracy of REEF3D::CFD and REF3D::FNPF,580

whereas the shallow water model fails due to its theoretical limitations. The two-dimensional581

wave breaking case shows that all three models are able to represent a correct wave energy582

dissipation during a breaking process. In the case of the three-dimensional wave breaking583

case, REEF3D::CFD and REEF3D::SFLOW capture the second breaking wave more accu-584

rately since both represent the swash zone dynamics better. The CFD based numerical wave585

tank is the only model that accurately represents the physics of wave propagation including586

complex overturning wave breaking. The computational speed gains from REEF3D::SFLOW587

and REF3D::FNPF in comparison to REEF3D::CFD are found to be by factors of about 10588

and 40 on average for 2D simulations and 60 and 800 for the 3D simulation. The higher589

computational demands of the CFD model is compensated by that fact that it is the only590

model capable of representing the geometry of an overturning wave breaker accurately, which591

is important for studies on slamming load on structures.592

With the strengths and limitations of each numerical models in mind, the future work will593

focus on the coupling of the different modules within REEF3D. A one-way coupling will use594

the propagated waves from a potential theory model as input waves in the CFD simulations.595

Two-way coupling processes will be interesting for applications in marine engineering with596

strong fluid-structure interactions.597
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