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This paper investigates cost-optimal operation of flexible electricity assets with a capacity-based power
grid tariff involving power subscription. The purpose of this research is to identify the characteristics of a
subscribed capacity-based tariff that promotes efficient network development through demand
response. Using historical load data, we compare two consumers with flexible assets being billed by their
individual load versus their combined and coordinated loads in a two-stage stochastic program. The
frequency of adjusting the subscribed capacity level (weekly versus annually) influences the effective-
ness of the tariff in terms of reducing loads that dimension the grid. The results show that weekly
subscription on average provides 5 — 6% cost savings, while annual subscription on average provides 3%
cost savings. A combined annual peak load reduction of 15% occurs when the combined subscription
level is adjusted weekly. We also find that when the subscription level is adjusted weekly, the load
reduction is cost efficient even when capacity is not scarce, which ought to be avoided. Depending on
where a bottleneck in the grid is located, the price signal should be based on the combined load of
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several consumers rather than individual loads if combined peak load shaving is to be cost-optimal.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Successful mitigation of climate change will require decarbon-
ization of the energy sector, increased production from variable
renewable energy sources (RES), and electrification. Several of
these measures are likely to be decentralized and require cross-
sectoral thinking [1].

Flexibility in power systems relates to the ability to deal with
variability in supply and demand. Demand-side flexibility through
demand response has been proposed as being significant if assets
can be coordinated and aggregated [2—6]. We will refer to con-
sumers with demand-side flexibility as ‘prosumers’ because they
both consume and produce energy services. Prosumers are seen as
part of the solution to facilitate a large share of variable RES, making

Abbreviations: C1, Campus 1; C2, Campus 2; CA, Combined annual subscription
scheme; CW, Combined weekly subscription scheme; DG, Distributed generation;
DSO, Distribution system operator; IA, Individual annual subscription scheme; IW,
Individual weekly subscription scheme; PV, Photovoltaic; RES, Renewable energy
source.
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the demand-side more flexible through self-generation, market
participation and active responses to price signals [7,8].

Several studies have been performed to analyze prosumer
response to different grid tariffs [9—15]. However, to the authors’
knowledge, no previous study compares dynamic intra-annual
adjustment of tariff parameters with annually fixed parameters
and simultaneously considers the difference between providing
short-term price signals based on individual loads versus the
combined load of several prosumers. To cover this gap, we propose
a two-stage stochastic program where uncertainty is related to net
load and spot prices with an hourly resolution for different pro-
sumers. The novelty of this paper is using the two-stage stochastic
programming framework to compare dynamically adjusting tariff
parameters within a year versus statically fixing tariff parameters
for a complete year. The paper also has the original contribution of
comparing individual versus coordinated asset planning to analyze
how effective different versions of a capacity-based grid tariff are in
reducing load peaks in the grid. Based on our results, we address
the implications for successful grid tariff design, i.e., a design that
will trigger efficient utilization of the local flexible assets and
reduce the highest loads.

The outline of the paper is as follows: Section 2 introduces the
background regarding flexibility in energy systems and the purpose
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of grid tariffs. Section 3 presents the model developed to analyze
subscribed capacity-based grid tariff schemes and the assumptions
and input for our case study. Section 4 states our model results,
while Section 5 discusses the implications of these results. Finally,
Section 6 concludes our paper and suggests further research.

2. Background and literature

This section elaborates on the literature and previous studies
related to our paper. The first part (Sections 2.1-2.3) explains the
context of our study linking flexibility in power systems to grid
tariff design, while the last part (Section 2.4) presents the reasoning
behind the use of the two-stage stochastic program in this paper.

2.1. Flexibility services in power systems

Flexibility is a term used to characterize a service or property
that is part of tangible assets [16]. Flexibility can be characterized
along three dimensions based on the Nordic Balancing Concept:
time, location, and resource type. Properties of the time dimension
include activation (response) time, ramp-up or down rate, and the
duration of the service. The location dimension describes how the
service from an asset can be provided in geographical locations, e.g.
individual unit (building), neighborhood, country, and cross-
border. For example, services based on reactive and active power
have different geographical relevance. The type of resource dimen-
sion describes the type of asset in the following classes: supply-
side, demand-side, grid-side, and storage [17].

In our analysis, we focus on time horizons with hourly resolu-
tion, demand-side flexibility assets, the neighborhood level, and
assume that all flexibility assets provide a firm service (there is no
uncertainty related to delivery). We assume that the scheduling of
flexible assets is driven by the prosumers’ wish to minimize the
total cost of energy consumption, including net trades in the spot
market and the grid tariff paid. In addition, we investigate the effect
of prosumer coordination by investigating what happens when an
aggregator controls all the flexibility assets to minimize total costs.
We do not discuss how to share the benefits of this, e.g. in a flexi-
bility market [18], only the total effect.

2.2. Allocation of ancillary service costs and flexibility

In a power system, distribution of electricity by preserving po-
wer quality and maintaining adequate assets in the low voltage grid
are the main tasks of a distribution system operator (DSO). The DSO
is commonly regulated as a natural monopoly which is challenged
by the development of a smart grid [19,20]. Full and timely recovery
of network costs is important for the DSO’s financial sustainability
[21]. A successful tariff design should increase network efficiency in
the short-term and signal efficient network capital development in
the long-term [22,23].

The tariff design normally includes up to three elements: a fixed
element, a volumetric (energy) element, and a capacity element.
Volumetric elements generally do not incentivize demand-side
flexibility services [24] as opposed to capacity elements that
partly charge consumers based on the power use over a measuring
period [23]. Due to an increase in distributed generation (DG),
especially solar photovoltaics (PV), power systems with net-
metering tariff designs are faced with the threat of a utility death
spiral [25]. The threat appears when DG behind the meter triggers
not just energy cost savings, but also tariff savings. Unless the DG
reduces the DSO’s costs, it creates a marginally higher cost for
consumers without DG, which is demonstrated in Ref. [26] where a
capacity element in the grid tariff increases the electricity costs up
to 10% for consumers with high power outtake in Norway. A

redesign of network tariffs is needed to avoid the allocation of grid
payments away from DG owners [27].

Most current grid tariff designs in Europe are static, i.e.,
dependent on a single element (commonly energy) without any
temporal rate variation [28]. In contrast, a dynamic tariff design will
depend on several elements and/or be subject to temporal varia-
tion. Static tariff designs are practical, predictable, and good at
achieving a single long-term objective, e.g. increasing energy effi-
ciency. In theory, dynamic tariffs reflect the DSO’s costs better and
could create signals to trigger flexibility services by prosumers [29].
However, dynamic tariffs are harder to implement [21] and could
cause political challenges related to an ‘unfair’ change in network
costs for certain consumer groups [30].

The signal for flexibility need could be provided using market-
based approaches, as proposed in e.g. Ref. [31—33]. An example of
a market-based approach calling for flexibility can be found in
Ref. [34] which proposes distribution locational marginal pricing.
The idea of activating demand-side flexibility in both market-based
solutions and through dynamic grid tariffs is to create price signals
to trigger efficient flexibility responses. We analyze how market-
based approaches could be similar to responding to a dynamic
grid tariff. In Ref. [35], they analyzed different ways of creating
incentives for prosumer flexibility, including tariff redesign and a
direct payment to flexibility providers. They find that a redesign of
network tariffs is up to 20% less costly than direct payment to
flexibility providers. However [35], does not consider how the
network tariffs should be redesigned.

2.3. Grid tariff design in Norway

Currently in Norway, grid tariffs for residential consumers have
a fixed element and a volumetric element. The volumetric element
is location dependent through a marginal loss factor, which reflects
how far electricity generation is from a consumer [28]. The current
Norwegian grid tariff design does not price high power outtakes for
households [26], and it is shown that dynamic tariffs provide in-
centives for better utilization of the grid [36].

In this paper, we analyze the ‘subscribed capacity’ grid tariff
scheme proposed by the Norwegian Regulator [37], where con-
sumers subscribe to a capacity level. If their hourly load exceeds the
subscribed level, a penalty is charged depending on the violation
(see Fig. 1). As consumers pay both for the subscribed level and the
penalty, they have incentives to subscribe to as low capacity as
possible providing they can stay below it most of the time. We
analyze four different versions of the subscribed capacity tariff
scheme. In the first version, consumers have individual sub-
scriptions that cannot be changed for a year (individual annual
subscription). The second version is individual subscriptions where
the consumers can adjust the subscription level on a weekly basis
(individual weekly subscription). The third version is a combined
capacity subscription on the total load of several consumers com-
bined, and the subscription is fixed for one year (combined annual
subscription). Finally, the fourth version is a combined subscription
for several consumers that can be changed on a weekly basis
(combined weekly subscription). By comparing these four versions
of the subscribed capacity grid tariff, our contribution is to elabo-
rate on the effect of providing inter-weekly rather than inter-
annual tariff adjustment and coordinated rather than individual
scheduling of flexibility assets. We study the effect on (1) the
resulting cost savings and cost-optimized responses by prosumers
minimizing their electricity bill and (2) the total peak load reduc-
tion for the grid. We assume the tariff rates are as presented in
Ref. [37] (see Table 1). These rates are suggested by the Norwegian
Regulator upon analyzing measured load data from 500 Norwegian
consumers, and the rates are determined subject to the criteria that
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Fig. 1. [llustration of the ‘subscribed capacity’ grid tariff scheme. The illustration shows an example of measured hourly load over 24 h for the combined load of Campus 1 (C1) and
Campus 2 (C2) and a combined subscription. The horizontal line represents the subscription level which causes a penalty charge for hours 11 and 12 (load exceeds subscribed level).

Table 1
Grid tariff rates provided as input in all our 52 instances. The rates are assumed to be
as proposed by the Norwegian regulators [37] (see Section 2.3).

csub [NOK/kW /year]
Rates 689

cnom [NOK/kWh] PeN[NOK/kWh]

0.0500 1.00

the same annual income to the DSO is provided as with the current
Norwegian gird tariff scheme.

2.4. Two-stage stochastic programming approach

Stochastic programming supports decision making under un-
certainty [38]. In Ref. [39], a stochastic programming approach is
used to analyze trading between prosumers under uncertainty;
however, there are not multiple stages. Throughout different stages
in stochastic programming, a decision maker ought to make de-
cisions for short-term and long-term plans, where stages represent
realization of uncertain outcomes. In our case, the short-term plans
include operating flexible assets to minimize costs given a reali-
zation of prosumer load and day-ahead prices, and the long-term
plan involves tuning the tariff parameters. We use two-stage sto-
chastic programming to analyze the difference between long-term
and short-term adjustment of the tariff parameters, where short-
term adjustment of the tariff parameters is analyzed by solving
deterministic versions of our two-stage stochastic program. Other
examples of two-stage programming approaches for addressing
uncertainty in energy management are [40—42].

3. The mathematical model

In this section, we present the model for the prosumer’s cost-
minimization problem. The model is a two-stage stochastic linear
program [43] where the first-stage decisions include deciding the
subscribed capacity level and the second-stage decisions include
operating flexible assets. The complete nomenclature of the model

can be found in Appendix A.

3.1. Time structure

The model considers one temporal scale with all operational
time periods defined in the ordered set.7~ ={1,2,...,|.77|}. In every
time step, decisions about how to operate a flexible asset is sup-
ported. Operational (second-stage) decisions can be different in all
stochastic scenarios w in the set of all scenarios Q. Each stochastic
scenario represents one realization of prosumer load and electricity
spot prices for a time horizon. The flexible assets are located at
different prosumers pe.%, and the scenario independent first-
stage decision is the subscribed capacity x},.

The model includes flexible asset types fe.7. If asset type f is
located at prosumer p, it belongs to the set 7, <.7. Any flexible
asset type fis modelled as a conceptual storage. Depending on the
asset type, it can be flexibly charged (prosumer demand can be
increased, e.g. electric vehicle [44]); it can be flexibly discharged
(prosumer demand can be decreased, e.g. curtailable loads [45]); or
it can be both flexibly charged and discharged (e.g. battery [46]).
Note that there is no resolving of uncertainty within a scenario as
time passes, hence the storages are operated with perfect foresight
within a scenario. For a static tariff where the subscribed capacity is
decided for a year, each scenario may consist of all hours in a week
with .7~ = {1,2,...,168}. Scenarios can be sampled from historical
data, and ideally, they represent seasonal variations over a year. If
the scenarios represent all weeks of a year, we would have Q =
{1,2,...,52}. Note that each scenario is independent with no link or
dependency between operations or storage levels in two subse-
quent scenarios.

3.2. Objective function

The objective function for an individual prosumer, Z!, minimizes
the electricity bill by scheduling flexible assets subject to energy
costs and a grid tariff:
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where x}J are variables for the subscribed capacity level for pro-

sumer p, the =, are scenario probabilities, and k}, ., are variables
identifying the tariff cost depending on the prosumer’s grid inter-
action in different scenarios. Resulting load profiles (import from
the grid to the prosumer) are identified through the second-stage

variables y},"fﬂ) and vary by scenario. The objective contains a time
varying load dependent retail cost (c{5') and a fixed capacity

dependent subscription cost (cs"P) for the capacity subscription.
For prosumer p, the tariff cost is identified through a two-step
linear cost function depending on the subscribed capacity level x},

and the prosumer load y}°34:

chorm yload
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where '™ and cP*" are load dependent prices for loads below and
above the subscribed capacity, respectively. Constraints (2) make
sure that the tariff has a lower bound of load multiplied by the cost
below the subscribed capacity, whereas constraints (3) ensure that
the tariff cost is increased when load exceeds the subscribed ca-
pacity to the penalty cost multiplied by the load.

3.3. Constraints

The original load before scheduling of the flexible assets (ex-

pected net demand) for electricity at prosumer p at time ¢ in sce-

nario w is denoted g’iffi?u. The total import from the grid to

prosumers is identified in the following constraints:

load _ gload charge discharge, , discharge
Ypto=Eptot D (Wpf,t,w — ¢ Wostw )
F€7 (4)

perte. 7, weQ,

where w;hfa{%f is charging of flexible asset type f at prosumer p

: discharge
while Wyttw

sumer p at time t will have a resulting load equal to the original load

plus the charged and discharged energy from all the flexible assets

at the prosumer. Note that losses s}ii“harge

discharged energy in (4).
. . storage
In time period t, Wyt
type f at prosumer p. The balance of storage must be maintained in
between operational time steps:

is discharging. Constraints (4) ensure that pro-

are only considered for

is the available energy in flexible asset

charge., charge discharge

storage _ storage Z o
KpfMpfa1 T4 e~ Wpfi e PEPFE T,
weQ.

(5)
diff, , storage charge, charge  discharge _ . storage Z o
§ Woreto T Wpftw  Wpftw = Wpfitw PELSETp,
te{2,...|7,
weQ.
(6)

Constraints (5) make sure that a flexible asset type f at prosumer
p start the operational horizon (t = 1) in scenario w with an initial
energy level equal to a percentage of installed capacity (k) plus
charging (subject to losses) minus discharging. Constraints (6)
make sure that flexible asset type f at prosumer p has an energy
level equal to the energy level from the previous period (subject to
diffusion losses) plus charging in the current period (subject to
losses) minus discharging for all operational time steps and sce-
narios. Losses are type dependent factors for flexible asset type f

and they are considered for charging (e;harge), discharging

(e}ji“harge) and diffusion of stored energy content (e;“ff). Note that

no losses are considered for discharging in (5) or (6) since it is

accounted for in (4). The maximum energy content (n;t}’rage),

charge discharge

charging (np | ) and discharging (np 1 ) of flexible asset type f

at prosumer p are defined as upper bounds for all time periods and
scenarios.
Constraints (7) ensure that the energy level of flexible asset type

fat prosumer p is at least the required level «/ﬁt in period t for all

scenarios:

7req < ystorage

pfit S pfm,pe%,fef;?p,tei,weﬁ. (7)

The individual objective Z! in (1) is combined with constraints
(2)—(7) to find the subscribed capacity level that minimize the
combined energy and tariff cost.

3.4. Coordinated scheduling of flexible assets

The individual prosumer model can be extended to a model
where an aggregator coordinates all flexible assets by changing the
objective. The combined objective function minimizes the elec-
tricity bill for all consumers with flexible assets where the billing of
the grid tariff is based on the combined load profile in the following
way:

min —chi 1 Y, Y (K, [ Y ) ) @)

weQ tesg pe#

where xC is a decision variable for the combined subscription level
for all prosumers, and I<Ew are variables identifying the combined
tariff cost depending on the sum of imports from the grid to all
prosumers.

The total electricity load of all prosumers will determine the
combined tariff cost through a two-step linear function:

cnom N yead <kf,, te.7, weq, 9)

JISEZ4

load _ ,C load _ 1,C .
cpe“(Zyp9§w —x ) Hcnorm N "yl <kf,, t€ T, wEQ.

peEZ? peEZ»
(10)

Similar to constraints (2) and (3), constraints (9) make sure that
the tariff has a lower bound of the combined load multiplied by the
cost below the subscribed capacity, whereas constraints (10) ensure
that the tariff cost is increased when combined load exceeds the
subscribed capacity to the penalty cost multiplied by the load,
respectively.

The combined objective z€ in (8) along with constraints (4)—(7)
and (9)—(10) form a problem that cannot be decomposed per
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Table 2

Assumed operational characteristics of the flexible asset types available for demand-
side management at each of the two prosumers (Campus 1 (C1) and Campus 2 (C2)).
The parameters identify available capacity for charging, discharging and storage.

Flexible asset peharge[kwh/h]  gdischarge[kwh/h]  gtorage [kwh]

Electric battery 100 100 200
Vehicle charging 50.0 0.00 500
Curtailable loads 0.00 50.0 200

prosumer due to constraints (9)—(10) that make the tariff cost kEw
dependent on the load of all prosumers.

4. Case study for capacity-based grid tariff in Norway

In this section, the models presented in Section 3 are used to
analyze the scheduling of flexible assets reacting to both an hourly
retail price and a subscribed capacity-based grid tariff. We present
the input data and assumptions (Section 4.1) before the results
(Section 4.2). All input data, the implemented model, and output
data is available in Refs. [47] for the reproduction of this case study.

4.1. Input data and problem instances
We build four classes of problem instances:

1. Individual Annual (IA): Subscribed capacity tariff based on the
individual objective (1) under annual decisions on subscribed
capacity level,

2. Individual Weekly (IW): Subscribed capacity tariff based on the
individual objective (1) under weekly decisions on subscribed
capacity level,

3. Combined Annual (CA): Subscribed capacity tariff based on the
combined objective (8) under annual decisions on subscribed
capacity level,

4, Combined Weekly (CW): Subscribed capacity tariff based on the
combined objective (8) under weekly decisions on subscribed
capacity level.

For IA and CA, we use stochastic models with sampled weeks
representing the scenarios. Each week is a scenario with 168 h. For
IW and CW, we optimize the subscribed capacity level weekly (only
one scenario). This resembles a dynamic subscribed capacity tariff.
As the model is solved under perfect foresight, it is overestimating
the ability to estimate exactly the optimal subscribed capacity for
the week.

The tariff rates used are as proposed by the Norwegian Regulator
in Ref. [37] (see Table 1). We sample historical hourly load profiles
from a rural Norwegian university campus, Campus Evenstad, from
50 weeks during 2016. We assume that two university campuses
exist in the same part of the distribution grid, ‘Campus 1’ (C1) and
‘Campus 2’ (C2). Odd weeks are sampled from Campus Evenstad to
create weekly load profiles with hourly resolution for C1 and even
weeks for C2. Here, the samples are made so that two consecutive
weeks from Campus Evenstad occur in parallel for C1 and C2
making up a total of 25 weeks for the study.

Three flexible asset types exist in the model at both prosumers:
electric battery, electric vehicle charging and curtailable loads (e.g.
fuel switching from electric to bio-based heating). Their assumed
operational characteristics are presented in Table 2. Losses are
assumed to be 1% for charging and discharging of all flexible assets.
Diffusion losses are only defined for the electric battery at 0.1% per
time step.

For vehicle charging, an annual demand of 14,000 km per

vehicle is chosen based on the average use of battery electric ve-
hicles in 2018 in the county of Campus Evenstad (Hedmark) [48].
Further, we assume one electric car needs 0.2 kWh per km,' so one
car needs (on average) 149%(0.2) = 54 kWh/week. Then, a weekly
demand of 500 kWh covers nine to ten vehicles (see Table 2). Some
of the weekly demand must be met every 24 h, meaning daily
demands sum up to the total weekly demand (see Fig. 2). The
vehicle charging demand is essentially a lower bound for the en-
ergy level in the flexible asset f at prosumer p and time t imple-

mented through the variables y;e_fqtand constraints (7).

C1 and C2 face hourly retail prices that are dependent on the
historical market data from price zone NO1 in Nord Pool in 2016.
Retail prices follow the Nord Pool day ahead spot price plus Nor-
wegian electricity charges and 25% VAT, and we sample hourly
prices from odd weeks in 2016.

The two deterministic classes (IW and CW) for the two pro-
sumers represent in total 50 instances for the 25 weeks, while the
two stochastic classes (IA and CA) represent in total two instances
for the 25 weeks. The model is implemented in the open-source
optimization modeling language Pyomo [49] through Python
version 2.7.8 and solved using Gurobi version 8.0.1. The optimiza-
tion was run on a computer with an Intel(R) Core(TM) i7-7500U
processor with CPU at 2.70 GHz and 16.0 GB installed memory
(RAM). The total run time for all instances (50 deterministic + 2
stochastic) including reading, building, solving and printing results
is around 60 s.

4.2. Results

This section describes the results from analyzing the four ca-
pacity subscriptions (IW, CW, IA, and CA) presented in Section 4.
Recall that the modified load profile is a result of the model
responding to the different schemes by (a) finding the cost mini-
mizing subscribed capacity level and (b) operating the flexible as-
sets to minimize the total electricity bill including variable energy
costs and grid costs.

Table 3 presents the total electricity bill costs before and after
the flexibility responses are optimized for the four different
schemes. The cost ex-ante optimization is calculated by optimizing
the subscription level without any flexibility available and includes
constant charging to meet weekly vehicle charging demand of
500 kWh at each campus site. On average, the flexibility responses
contribute to 5—6% savings for the weekly subscriptions (IW and
CW), while 3% savings are achieved on average for the annual
subscriptions (IA and CA).

The top part of Table 3 shows the results from the most
expensive scenario (week 24), where costs avoided from
responding to the grid tariff scheme (‘Grid’ in Table 3) are the
dominant part of the savings as compared to the saved energy cost
(‘Energy’ in Table 3). The results of all weeks for the weekly sub-
scriptions (IW and CW) show that the grid savings are the domi-
nant part of the savings for 23 weeks, i.e., there are more savings
related to the grid tariff than hourly retail prices for the weekly
subscriptions. For the annual subscriptions, the grid savings only
dominate the savings for eight weeks for the IA scheme and six
weeks for the CA scheme, indicating that responding to retail prices
is more valuable than responding to the grid tariff for the annual
subscriptions (the opposite to the weekly subscriptions). The bot-
tom part of Table 3 lists the results from the scenario with the
highest savings (week 2). Here, the energy costs avoided from
responding to retail price variations are the dominant part of the

! https://pushevs.com/electric-car-range-efficiency-epa/accessed: April 15, 2020.


https://pushevs.com/electric-car-range-efficiency-epa/

6 S. Backe et al. / Energy 201 (2020) 117619

500

400

300

200

100

Required energy level [kWh]

0
Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Time [hour]
Fig. 2. The lower bound for energy that must be charged by time t .7 to battery electric vehicles. This offers flexible charging in every time-step with some constraints (daily
demands).
Table 3 Table 4

Cost results summed for both prosumers in NOK ex-ante (before flexibility re-
sponses) and ex-post (after flexibility responses) for the individual weekly (IW),
combined weekly (CW), individual annual (IA), and combined annual (CA) schemes.
The table displays results for the most expensive scenario (week 24, top) and the
scenario with highest cost savings from flexible operation (week 2, bottom). The two
last columns show cost savings from responding to a variation in day-ahead spot
price (‘Energy’) and responding to the subscribed capacity scheme (‘Grid’).

Scheme Total cost, Total cost, Cost decrease

ex-ante ex-post Energy Grid
Week 24
w 59,300 NOK 57,600 NOK (—3%) 468 NOK 1220 NOK
cw 58,900 NOK 57,100 NOK (—3%) 494 NOK 1230 NOK
1A 69,100 NOK 67,900 NOK (—2%) 475 NOK 716 NOK
CA 68,100 NOK 66,800 NOK (—2%) 448 NOK 825 NOK
Week 2
w 48,200 NOK 43,300 NOK (—10%) 4170 NOK 676 NOK
W 46,900 NOK 42,300 NOK (—10%) 3990 NOK 615 NOK
1A 48,700 NOK 44,100 NOK (—9%) 4110 NOK 401 NOK
CA 46,900 NOK 42,400 NOK (—10%) 4000 NOK 526 NOK

savings for all schemes, which is linked to the average weekly spot
price being highest for week 2 (0.72 NOK/kWh). This indicates that
the load reduction in response to a grid tariff could be challenged
by high and variable retail prices if the two price signals are not
correlated.

Table 4 presents the weekly subscription level for C1 and C2. The
last two columns in Table 4 are the sum of subscription levels for C1
and C2 from the individual metering schemes. Note that for the
annual subscriptions (IA and CA), the subscription level is the same
for all weeks. The average of the weekly subscription levels for all
25 weeks is consistently less than the annual subscription levels
(see the bottom row in Table 4), which strengthens the need for the
two-stage stochastic programming approach. The highest weekly
combined subscription level is chosen in week 24 (591 kWh/h, see
the CW column in Table 4). The sum of the weekly individual
subscription levels for week 24 exceeds the combined subscription
level (246 + 374 = 620 kWh/h, see the last two columns in Table 4),
which is also the case for 92% of the weeks (all weeks except weeks
4 and 23, see Table 4). This is an indication that rationing several
prosumers combined is less conservative than rationing them
individually.

Resulting cost-optimal subscription levels in kWh/h in all 25 weeks. The columns
represent the subscription levels for the individual weekly (IW), combined weekly
(CW), individual annual (IA), and combined annual (CA) schemes for Campus 1 (C1),
Campus 2 (C2), and combined. The last column shows the sum of individual sub-
scription levels (C1+C2) for comparison with the combined subscription level.

C1 c2 Combined C1+C2

Week IW 1A W 1A cw CA IW 1A

1 151 197 181 216 315 387 332 413
2 251 197 196 216 398 387 447 413
3 138 197 134 216 271 387 272 413
4 143 197 137 216 282 387 280 413
5 137 197 280 216 405 387 417 413
6 197 197 86 216 283 387 283 413
7 108 197 118 216 223 387 226 413
8 111 197 171 216 273 387 282 413
9 186 197 184 216 337 387 370 413
10 122 197 138 216 247 387 260 413
11 142 197 120 216 258 387 262 413
12 112 197 101 216 208 387 213 413
13 79 197 79 216 157 387 158 413
14 76 197 78 216 154 387 154 413
15 39 197 40 216 78 387 79 413
16 50 197 123 216 159 387 173 413
17 98 197 115 216 211 387 213 413
18 136 197 135 216 262 387 271 413
19 156 197 122 216 263 387 278 413
20 96 197 159 216 212 387 255 413
21 148 197 216 216 340 387 364 413
22 268 197 193 216 416 387 461 413
23 254 197 215 216 478 387 469 413
24 246 197 374 216 591 387 620 413
25 164 197 253 216 374 387 417 413

Average 144 197 158 216 288 387 302 413

Table 5

Annual original and resulting peak load in kWh/h for Campus 1 (C1), Campus 2 (C2)
and combined for the individual weekly (IW), combined weekly (CW), individual
annual (IA), and combined annual (CA) schemes. Note that the ‘original’ column
represents the annual peak load ex-ante flexibility responses. The bold font marks
the scheme triggering the lowest annual peak for C1, C2, and combined. The
numbers in parentheses identify the week in which the annual peak load occurs.

Prosumer Original Iw cw 1A CA

c1 413 (2) 322 (2) 365 (2) 413 (2) 410 (2)
2 479 (5) 426 (24) 441 (24) 444 (24) 444 (24)
Combined 696 (24) 672 (24) 591 (24) 696 (24) 696 (24)
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Table 5 presents the results for the annual peak load at the in-
dividual prosumers (C1 and C2) and combined for both prosumers.
Weekly individual (IW) subscription triggers the largest individual
annual peak shaving, while weekly combined (CW) subscription
best achieves combined annual peak shaving. The CW scheme re-
duces the original annual combined peak by 105 kWh/h (—15%),
which is more than four times the annual combined peak shaving
triggered by the IW scheme (24 kWh/h, —3%) (see Table 5). Annual
subscriptions (IA and CA) trigger little or no annual peak load
reduction of individual or combined load profiles (see Original, IA,
and CA columns in Table 5).

Fig. 3 shows how the different schemes perform in reducing the
weekly peak loads. For weekly subscriptions (IW and CW), some
peak shaving is cost-optimal in all weeks, including weeks where
the original weekly combined peak load is small (see e.g. the blue
and orange bars in week 15 in Fig. 3). For annual subscriptions (IA
and CA), the weekly combined peak load generally increases in low
demand weeks and decreases in high demand weeks (see the
yellow and gray bars in Fig. 3). However, the highest weekly com-
bined peak load is unaffected for the annual subscriptions (see the
yellow and gray bars in week 24 in Fig. 3).

Fig. 4 presents the hourly load profiles in week 24 with the
highest annual combined load originally. The plot also shows the
hourly retail price linked to the hourly day-ahead wholesale price.
For all pricing schemes, flexible assets are operated to generally
increase the load in low retail price hours, and decrease the load in
high retail price hours: low loads occur in all pricing schemes when
the retail price (green dotted line) is peaking in Fig. 4. For the
weekly subscriptions (see Fig. 4a and b), load profile modifications
are similar; however, combined peak shaving is significantly larger
for the CW scheme compared to the IW scheme (see bottom row in
Table 5).

Fig. 5 presents the relationship between grid costs (grid price
multiplied by the load) and the combined load from C1 and C2 for
the different pricing schemes. The CA scheme (yellow in Fig. 5)
offers the highest cost (344 NOK/kWh) during the annual peak load
in week 24 because it is the highest combined load and it exceeds
the combined subscription level (387 kWh/h, see Table 4). Note that
(a) paying this high penalty is cost-optimal in the CA scheme

700
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300

200

Maximum combined load [kWh/h]

100

1 2 3 4 5 6 7 8 9 10 11

Individual Weekly Combined Weekly

12 13 14 15 16

Week

Individual Annual

considering total cost over the whole year and (b) there is no
combined peak load shaving in week 24 as a consequence of the
high penalty (see the bottom row in Table 5 and the yellow bar in
week 24 in Fig. 3). Fig. 5 also shows that the IA scheme has many
penalty hours below the sum of the subscribed levels (413 kWh/h,
see Table 4) because the individual loads exceed the individual
subscription levels without causing a high combined load. This is a
shortcoming of the individual subscribed capacity tariff in terms of
signaling efficient grid utilization, as it often penalizes situations
where the total flow into C1 and C2 is lower than the joint sub-
scribed capacity (recall that the sum of the individual subscription
levels is higher than the combined subscription level in 92% of the
weeks, see Table 4). For the weekly subscriptions (IW and CW),
there are significantly less penalty hours than for the annual sub-
scriptions since the subscription can be adjusted for each week (see
yellow and gray dots compared to orange and blue dots in Fig. 5).
The CW scheme has the least amount of penalty hours after flexi-
bility responses (see orange dots in Fig. 5), and it is the scheme that
most successfully reduces the annual combined peak load (see
Table 5).

5. Discussion

Our case study has been performed assuming perfect foresight
on hourly load and retail prices for 25 weeks and no disutility
(costs) of operating flexible assets except energy losses (see con-
straints (4)—(3.3) in Section 3.3). This means our results represent
an upper bound to how much cost reduction prosumers can obtain
for the different pricing schemes. Note that the stochastic structure
of the problem in our case study is related to price and load vari-
ation between weeks, i.e., there is no uncertainty within a week.
Note also that because we consider energy losses from flexibility
responses, total energy consumption increases slightly after de-
mand response even though total costs decrease.

The CW scheme is better at decreasing the weekly combined
peak load than the IW scheme. This is a central feature as it is the
combined load that dimension the grid connecting C1 and C2 to the
rest of the system. However, three weeks show a higher combined
peak load for the CW scheme compared to the IW scheme (see

17 18 19 20 21 22 23 24 25

Combined Annual B Original

Fig. 3. Weekly combined maximum load after cost-optimal response to the individual weekly (IW) scheme (blue), combined weekly (CW) scheme (orange), individual annual (IA)
scheme (gray), and combined annual (CA) scheme (yellow). The original maximum loads in the different weeks are displayed in black. The highest combined load occurs in week 24
where the combined weekly (CW) scheme triggers most peak load shaving. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web

version of this article.)
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Fig. 4. Resulting combined hourly load profile for 168 h for the individual weekly (IW) scheme (Fig. 4a), combined weekly (CW) scheme (Fig. 4b), individual annual (IA) scheme
(Fig. 4c), and combined annual (CA) scheme (Figure d) in week 24 when the original maximum combined load is occurring. The left axis shows hourly load in kWh/h (solid lines)
and the right axis shows hourly retail price in NOK/kWh (green dotted lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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Fig. 5. Resulting hourly load dependent grid tariff costs, i.e., load dependent price multiplied by the load, in NOK/kWh plotted against the combined load of Campus 1 (C1) and

Campus 2 (C2) for the individual weekly (IW) scheme (blue), combined weekly (CW) scheme (orange), individual annual (IA) scheme (gray), and combined annual (CA) scheme
(yellow). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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weeks 2, 4, and 21 in Fig. 3). This occurs due to three different (but
related) reasons that are worth noticing:

o For week 2, the opportunity to respond to retail prices is more
valuable than responding to the grid tariff scheme (see Table 3).
The two opportunities for cost saving could be conflicting.

For week 4, the sum of the individual subscription levels is
slightly lower than the combined subscription level (see
Table 4), so the individual subscriptions are more ‘conservative’
than the combined subscription.

For week 21, low subscription cost and high penalty loads in the
CW scheme are compensated by high subscription cost and low
penalty loads in the IW scheme, so peak shaving is not always
the cost-optimal response with the subscribed capacity scheme.

Two main factors should be considered depending on the goal of
introducing a capacity-based grid tariff scheme: (1) The dynamics
of the grid tariff, i.e., the adjustment frequency of tariff rates and
subscription levels, and (2) the load signal that the grid tariff will
depend on.

The first factor, the grid tariff dynamics, will impact the
achievement of peak shaving through flexibility (see Fig. 3). For an
annual decision on the grid subscription level, the cost-optimal
strategy is to consider a full year of costs when finding the best
subscription level. This consideration means the subscription level
is too low for critical hours because costs are minimized for the
whole year. Annual subscriptions also lead to more penalty hours
than weekly subscriptions, i.e., annual subscriptions make it cost-
optimal for prosumers to exceed their subscription level. Howev-
er, weekly subscriptions trigger load reduction in weeks when grid
capacity is not scarce, which results in a potential loss of consumer
welfare by penalizing utilization of idle grid capacity. A lower
bound on the subscription level combined with dynamic sub-
scription rates can be introduced to avoid rationing of capacity
during non-critical hours.

The second factor, the load signal, will impact at which
connection point peak shaving is triggered (see Table 5). Under the
condition that prosumers have significantly different hourly load
profiles,” shaving peaks based on individual metering does not
maximize the annual peak shaving of the combined load profile.
There is more variety in load profiles of buildings for various pur-
poses (e.g. households, shops, offices, etc.) [50], and the flexibility
potential will likely vary for the different buildings [51]. The
objective of reducing individual loads could be in competition with
reducing the combined load, i.e., the individual load could increase
and the combined load decrease within a measuring period (and
vice versa). If the goal of a capacity-based grid tariff scheme is to
trigger combined peak load shaving for a collection of prosumers,
price signals based on individual metering are likely to be sub-
optimal (see Table 5) and could compromise consumer welfare
when considering the disutility of offering flexibility. If the price
signal is based on the combined load at a bottleneck connection of
the grid, it is more likely to trigger combined peak load shaving.

In Norway, all grid-connected consumers are obliged to have
individual metering, and this requirement is not challenged by
introducing combined price signals. One could identify combined
loads through: (a) summing individually metered data, or (b)
combined metering at a potential bottleneck. This also points to
other alternatives for local coordination in the grid, for example
through flexibility markets. The efficiency of flexibility markets for

2 A quality check has been performed with our model confirming there is no
difference between individual (IW and IA) and combined (CW and CA) metering
schemes when two prosumers have identical load profiles.

resource allocation, either as an alternative or supplement to dy-
namic capacity-based grid tariffs, is an interesting area of future
research.

6. Conclusion

This paper analyzes four different capacity-based grid tariff
subscriptions by using a two-stage stochastic programming model
in a case study of a Norwegian campus site with flexible assets. The
novelty of our analysis includes: (1) comparing long-term annual
tariff adjustment with short-term weekly tariff adjustment and (2)
comparing the combined and coordinated demand response of
several prosumers with the individual responses of single pro-
sumers. The results show that cost-optimal operation of the flexible
assets varies depending on the design of the grid tariff scheme. We
find that a weekly adjustment of the subscribed grid tariff triggers a
reduction in the maximum weekly load more efficiently than an
annual subscription in 92% of the simulated weeks, while the
combined subscription triggers combined load reduction more
efficiently than individual subscriptions in 88% of the simulated
weeks. According to our results, the capacity-based grid tariff
subscription scheme is likely to be successful in promoting efficient
grid development if: (1) the tariff parameters (subscription level)
can be adjusted more frequently than annually and (2) the price
signals for scarcity in the grid depend on the combined load of
several consumers rather than the individual loads. The analysis
also indicates that the tariff rates should be adjusted within a year
to account for annual load variability and avoid rationing when grid
capacity is not scarce. Depending on where a bottleneck in the grid
is located, the price signal from a capacity-based tariff should be
based on the combined load of several consumers behind this
bottleneck (rather than individual load profiles) given different
individual load profiles.

Further research should expand the stylized case study to see
the impact in a larger collection of different prosumers and con-
sumers. Also, the case study does not address remuneration to
flexibility providers, for example in a flexibility market as a sup-
plement or alternative to capacity-based grid tariffs. Combined
metering schemes call for some remuneration from all who benefit
from flexibility to those who provide flexibility. Further research
should compare the difference and substitution between flexibility
market designs and capacity-based grid tariff schemes.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Stian Backe: Conceptualization, Methodology, Software, Vali-
dation, Formal analysis, Investigation, Visualization, Data curation,
Writing - original draft. Giiray Kara: Conceptualization, Writing -
original draft. Asgeir Tomasgard: Conceptualization, Supervision,
Writing - review & editing.

Acknowledgement

This paper has been researched at the Research Centre on Zero
Emission Neighbourhoods in Smart Cities (FME ZEN) and the
Centre for Intelligent Electricity Distribution (FME CINELDI) at the
Norwegian University of Science and Technology (NTNU). The au-
thors gratefully acknowledge the support from the Centre partners
and the Research Council of Norway. Special thanks to Professor



10 S. Backe et al. / Energy 201 (2020) 117619

Magnus Korpds, Department of Electric Power Engineering, NTNU
and Pedro Crespo del Granado, Department of Industrial Economics
and Technology Management, NTNU for valuable input. We also
acknowledge the The Norwegian Directorate of Public Construction
and Property (Statsbygg) for providing data for our research.

Appendix A. Nomenclature

List of model components

Sets
7 Set of flexible asset types
Tp Set of flexible asset types at pe.%#
2 Set of prosumers
7 Set of market clearing time steps
Q Set of stochastic scenarios
Input Data
£§harge Charging losses of fe.7
£diff Diffusion losses (self-discharge) of fe.7
f
S?ischarge Discharging losses of fe.7
ncl}arge Charging capacity of fe.7) at pe 7
iR
ndifscharge Discharging capacity of fe.7 ) at pe.#
D.
n;tjgmge Energy storage capacity of fe.7, at pe.7
Y;fqu Minimum required energy content of f€.7 at pe.% at time t€.7
Kpf Share of energy storage capacity initially available in fe.7) at pe. 2
Tw Probability of scenario weQ
5;70?21 Net demand for electricity at p.# in time t€.7 and scenario weQ
t0
chorm Energy dependent grid cost below subscription level (per kWh)
cben Energy dependent penalty cost for exceeding grid subscription level (per kWh)
cret Retail cost of electricity import (incl. taxes) at time t<.7 and scenario w€Q (per kWh)
csub Grid subscription cost per power level (per kWh/h)
Variables
kS, The (combined) tariff cost on import from the grid in time t<.7 and scenario weQ
k}].t “ The (individual) tariff cost on import from the grid to p€.# in time t<.7 and scenario weQ
d}a;ge Charging of f&.7), at pe.7at time t&.7 and scenario v €Q
pfitw
Wdi;charge Discharging of f € .7 at pe .7 at time t&.7 and scenario w€Q
pf.tw
W;t});ﬂ%e Available energy in flexible asset type f&.7, at prosumer p&.7 at time t€.7 and scenario w €Q
xC The (combined) subscribed capacity level
x;, The (individual) subscribed capacity level at prosumer p .2
)’}:0?‘41.; Resulting grid import at p€.# in time t<.7 and scenario w€Q
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