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ABSTRACT The optimal control of denitrification system in coal-fired power plants in China has recently
received widespread attention. The accurate prediction of denitrification efficiency and formulate control
strategy of denitrification efficiency can guide the control and operation of the denitrification system
better. Meanwhile, it can achieve the effect of energy conservation and Nitrogen oxides (NOx) reduction.
In this paper, we take a domestic 1000 MW unit as an example, consider each of the major factors
that affect the denitrification efficiency of selective catalytic reduction (SCR). We put forward a deep
reinforcement learning (DRL) model by combining the Long short-term memory (LSTM) model and the
Asynchronous Advantage Actor - Critic algorithm (A3C). We first use the LSTM to build a prediction
model for denitrification efficiency. We then use the DRL model to obtain a control strategy for SCR
denitrification efficiency in coal-fired power plants. The experimental results demonstrate that the accuracy
of denitrification efficiency prediction model we established is better than other machine learning models,
reaching 91.7%. Our control strategy model is industrially feasible and universally applicable.

INDEX TERMS Coal-fired power plant, denitrification efficiency, selective catalytic reduction (SCR), long
short-term memory (LSTM), asynchronous advantage actor critic (A3C), deep reinforcement learning.

I. INTRODUCTION
As the industry continues to develop, Nitrogen oxides (NOx)
emissions are also increasing continuously. Acid rain has
changed from sulfuric acid type to composite type of sulfuric
acid and nitric acid [1]. NOx has gradually become the main
source of gaseous pollution. For power station boilers burning
pulverized coal, the pollutants’ NOx emissions are mainly
Nitric oxide (NO) and Nitrogen dioxide (NO2), of which NO
accounts for more than 90%, so NO and NO2 are generally
referred to as NOx .

In recent years, the government and research institutes
have done a lot of research on the control of NOx pol-
lution, they have developed many practical and efficient
new technologies. According to the different control stages
of nitrogen oxides during combustion, the emission reduc-
tion technologies are generally divided into before combus-
tion, during combustion and flue gas denitrification after
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combustion. Among them, the most effective emission reduc-
tion technology is flue gas denitrification after combustion.
Denitrification measures after combustion include hot carbon
reduction, wet complex absorption, selective non-catalytic
reduction (SNCR), electron beam irradiation, selective cat-
alytic reduction (SCR), plasma, microbiological methods,
etc [2]. Among them, SCR is currently the most widely used
flue gas denitrification technology in the world. The SCR
means that a reducing agent (generally ammonia) selectively
reduces NOx (mainly NO) in the flue gas to N2 and H2O
under conditions of catalyst, oxygen and a certain tempera-
ture range. It has the advantages of high denitrification effi-
ciency, mature technology, no secondary pollution, reliable
operation and easy maintenance [3], [4], it is most suitable
for vigorous promotion. That is why the SCR is most widely
used in Chinese coal-fired power stations.

Therefore, the accurate prediction of denitrification
efficiency and formulate control strategy of denitrification
efficiency can guide the control and operation of the den-
itrification system better. How to steadily optimize the

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 65127

https://orcid.org/0000-0002-1328-8803
https://orcid.org/0000-0002-0823-0877
https://orcid.org/0000-0001-9301-5989
https://orcid.org/0000-0001-9309-8315
https://orcid.org/0000-0001-6165-4196


J. Fu et al.: Control Strategy for Denitrification Efficiency of Coal-Fired Power Plant Based on DRL

denitrification efficiency in the SCR denitrification system,
so that coal-fired power plants can achieve the energy con-
servation and emission reduction has become a hot research
topic.

A. MOTIVATION
The basis for optimizing the denitrification control system is
to accurately establish the relationship between actual deni-
trification efficiency and the parameters of industrial process.
According to the actual operation, the SCR flue gas temper-
ature is related to the boiler load and fuel combustion. The
catalyst can usually only be replaced after the failure, so the
Spray ammonia mass flow becomes one of the key factors for
daily adjustment [5],[6].

The chemical reaction equation for denitrification is:

4NO+ 4NH3 + O2→ 4N2 + 6H2O, (1)

2NO2 + 4NH3 + O2→ 3N2 + 6H2O. (2)

Consequently, the denitrification efficiency is affected by
multiple factors such as Boiler load, Inlet NOx mass con-
centration, Inlet O2 mass concentration, Inlet flue gas tem-
perature, Spray ammonia mass flow and Ammonia/air mixer
ammonia inlet regulator valve position feedback, etc.

However, there are some challenges in predictive analysis
and control of denitrification efficiency.

1) Currently, the instruments for flue gas monitoring and
analysis can monitor the mass concentration of NOx
in the inlet and outlet flue gas of SCR denitrifica-
tion equipment directly. Meanwhile, they compute the
denitrification efficiency. But this way is just a sim-
ple feedback on the results of denitrification reaction
process, it cannot reflect the relationship between the
monitoring process parameters and the denitrification
efficiency. Simultaneously, the monitoring equipment
is relatively influenced by external factors, and some-
times there are problems such as faults, etc. which will
lead to inaccurate measurement results.

2) The current machine learning methods mostly used
for predictive modeling of denitrification efficiency
in coal-fired power plants are regression analysis,
Support Vector Machine (SVM), Artificial Neural Net-
work (ANN), etc. However, there are fewer reasons
for selecting auxiliary variables, less data samples and
no consideration of the time series characteristics of
process parameters, so that the prediction results still
have large errors and lack a certain generalization
ability.

3) There is no reliable strategy model for controlling
denitrification efficiency in the progress of industrial
applications.

Existing methods based on formula or data-driven have
modeled the denitrification efficiency and achieved not bad
predicted results, but the accuracy of prediction needs to be
further improved. However, in order to truly optimize the
denitrification efficiency in the SCR denitrification system,

it is not only necessary to improve the prediction accuracy
of the denitrification efficiency, but also to research how to
control the effects of the above factors on the denitrification
efficiency and the cost in the denitrification system. Establish
an effective control strategy model for the related factors of
denitrification efficiency.

B. CONTRIBUTIONS
In order to solve the above challenges, we put forward
an intelligent control method for denitrification efficiency.
This method combines Long short-term memory neural
network (LSTM) with Asynchronous Advantage Actor -
Critic (A3C) algorithm to build a deep reinforcement learn-
ing (DRL) model, and implements a control strategy for SCR
denitrification efficiency of coal-fired power plants. As far as
we know,we are the first to adopt deep reinforcement learning
method in the control strategy of denitrification efficiency.
In this paper, our main contributions are summarized as fol-
lows.

1) We originally propose a deep reinforcement learning
model that combines LSTM and A3C algorithm, which
can provide control strategies for the control of denitri-
fication efficiency or related industrial applications.

2) Taking the 1000 MW boiler of a power plant in
Guangdong as the research object, we use the LSTM to
establish the SCR denitrification efficiency prediction
model. The model is able to embody the effect of the
time series characteristics of industrial process param-
eters on actual denitrification efficiency. Experimental
results demonstrate that compared with existing mod-
els, the accuracy of prediction is improved.

3) We take the SCR system’s denitrification efficiency to
be not less than 85% as the goal. Then we use DRL
algorithm to perform simulation control experiments
on the LSTM model. The experimental results indicate
that our proposed approach can maintain the denitri-
fication efficiency above 85%. Meanwhile, the value
control strategy of the optimal input variable action
combination is obtained.

In this paper, the remainder is arranged as follows.
We review related works on predictive analysis of denitrifica-
tion efficiency and control strategies in Section II. Section III
describes the main methods that we used. Section IV
presents the details of the model which we put forward.
Then Section V discusses the results of experiment. At last,
Section VI summarizes our work and discuss the direction of
research in future.

II. RELATED WORK
This section looks back the latest advances in denitrification
efficiency for coal-fired power plants. We divide the recent
research into two categories: 1) Predictive analysis of deni-
trification efficiency based on machine learning approaches;
2) Control strategies based on deep reinforcement learning
methods.
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A. PREDICTIVE ANALYSIS OF DENITRIFICATION
EFFICIENCY BASED ON MACHINE LEARNING
APPROACHES
With the development of artificial intelligence and com-
puter technology in recent years, the ability to deal with
nonlinear problems is gradually increasing. It has achieved
notable results in the area of modeling and optimization
of power plant boilers. As data-driven modeling methods
are widely used in industry, some scholars have proposed
using soft-measurement technology to predict and analyze
denitrification efficiency [7]. They used multiple regression
algorithms, neural networks, genetic algorithms or partial
least squares to model and predict the denitrification effi-
ciency, and achieved good prediction results. However, due
to fewer auxiliary variables and less data samples, it makes
the prediction results in the literature still have a lot of errors
and lack of the ability to popularize. Currently, most of the
methods for predictive modeling of denitrification efficiency
in coal-fired power plants are regression analysis, SVM,
ANN or other methods. Zhao et al. [8] adopted Principal
Component Analysis (PCA) to select the dominant factors
affecting denitrification efficiency, they established a pre-
dictive model on the basis of Least Squares Support Vector
Machine (LS-SVM) to obtain good generalization ability
and prediction accuracy. However, none of the foregoing
methods take into consideration the time series characteristics
of industrial process parameters.

Deep Learning (DL) has become an important research
hotspot in the area of machine learning [9], which has
achieved remarkable success in the field of image analy-
sis [10], machine translation [11], video classification [12],
speech recognition [13], etc. The basic idea of DL is combin-
ing low-level features through non-linear transformation and
multi-layer network structure to form easily distinguishable,
abstract high-level representations to discover distributed
feature representations of data [14]. Therefore, the DL
places extra emphasis on the expression and perception of
things. But training a DL model is a very time consuming
task because DL models usually involve numerous param-
eters [15], it means a large amount of data, high speed
streaming data and different types of data, which poses a
challenge for DL models [16].

The LSTM is a kind of deep learning methods which is
an improved time recurrent neural network on the basis of
the RNN. It was originally put forward by Hochreiter and
Schmidhuber [17] to solve the gradient explosion, gradient
disappearance, lack of long-term memory ability, etc. during
the use process of RNN, enables RNN to be effectively
used for the time series information of long distance [18].
Recently, with the continuous development of DL, themodels
of LSTM have been successfully applied in a number of
different areas such as sentimental analysis [19], traffic speed
prediction [20], electrical load forecasting [21], failure time
series prediction [22], etc. Compared with our work in [23],
we expand on it and combine the method of reinforcement
learning (RL) in this paper, which can better formulate

industrially applicable control strategies. Because the opti-
mization of industrial processes not only needs to improve
the prediction accuracy of certain factors, but also needs to
know how to control their controllable variables.

Another research hotspot in the area of machine learning
is RL, which has been widely used in industrial manufactur-
ing [24], robot control [25], optimization and scheduling [26],
game theory of games [27] and other fields. The main idea of
RL is learning the optimal strategy to achieve the goal through
maximizing the cumulative reward value got by the agent
from the environment [28]. So the RL places extra emphasis
on learning problem-solving strategies.

B. CONTROL STRATEGIES BASED ON DEEP
REINFORCEMENT LEARNING METHODS
With the high-speed development of human society, in more
and more complex real-world tasks. It is necessary to utilize
DL for learning automatically the abstract representation of
extensive input data, then use RL can self-encourage based
on this representation to optimize problem-solving strategies.
Therefrom, DeepMind, the artificial intelligence research
team of Google, which combines innovatively the perception
ability of DL and the decision ability of RL, forming a new
research hotspot in the area of artificial intelligence, namely
Deep Reinforcement Learning (DRL). It can achieve direct
control from initial input to output by the method of end-to-
end learning. Since its introduction, DRLmethods have made
substantive breakthroughs in many tasks that require percep-
tion of high-dimensional original input data and control of
strategy. The emergence of DRL makes the RL technology
truly practical, which can solve complex problems in real
scene. Since then, DeepMind team has createdmany agents of
human expert-level in many challenging areas. These agents
build and learn their own knowledge from the initial input
signal directly, without any domain knowledge and the coding
of manual control.

The Policy Gradient is a commonly used method for opti-
mizing strategies, it updates the strategy parameters by con-
tinuously computing the gradient of strategy’s expected total
reward with respect to strategy parameters, and finally con-
verges on the optimal strategy [29]. Therefore, when solving
the DRL problem, the deep neural network with parameter θ
can be adopted to parameterize the representation strategy,
and Policy Gradient is used to optimize the strategy. It is
worth noting that when solving DRL problems, the first
choice is to adopt an algorithm based on Policy Gradient. The
reason is that it can optimize strategy’s expected total rewards
directly. Meanwhile, search the optimal strategy directly in
the policy space by the manner of end-to-end, eliminating
the cumbersome intermediate links. Therefore, compared
with Deep Q Network (DQN) [30] and its improved model,
the DRLmethod based on Policy Gradient is more applicable
and the effect of strategy optimization is better.

The basic idea of the Deep Policy Gradient is to opti-
mize directly the strategy of parameterization representation
with deep neural networks through various Policy Gradient
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FIGURE 1. Overview of methodology.

approaches. At each iteration of this type of method, it is need
to sample the trajectory {τ i}Ni = 1 with a batch size is N
to renew the Policy Gradient. However, it is difficult to get
numerous training data online in many complex real-world
scenarios. For example, in the manipulation task of a robot in
a real scene, collecting and utilizing numerous training data
online is very expensive. Meanwhile, the continuous feature
of the action makes the method of extracting the batch track
online unable to achieve satisfactory coverage. The above
problems lead to the emergence of local optimal solutions.
To solve this problem, the Actor-Critic (AC) framework in the
traditional RL can be extended to the Deep Policy Gradient
method. Figure 3 demonstrates the learning framework of a
Deep Policy Gradient method based on the AC framework.

Different types of deep neural networks provide a highly
efficient representation of the strategy optimization tasks
in DRL. So as to alleviate the instability caused by the
combination of neural networks and traditional Policy Gra-
dient approaches, various types of Deep Policy Gradient
approaches adopt the experience replay [31] to eliminate the
correlation between training data, such as Stochastic Value
Gradient (SVG) [32], Deep Deterministic Policy Gradient
(DDPG) [33], etc. However, the experience replay has two
shortcomings: (1) Each real-time interaction between the
environment and the agent will consume a large number
of computing power and memory; (2) It claims the agent
to adopt the off-policy for learning, but the off-policy can
only renew the data produced by the old policy. In response
to these problems, Mnih et al. [34] put forth a lightweight
framework of DRLwhich based on the idea of Asynchronous
Reinforcement Learning (ARL). The framework can utilize
asynchronous gradient descent method to optimize network
controllers’ parameters, and it can be combined with a variety
of RL algorithms. Among them, the A3C algorithm performs
best in the control tasks of various continuous motion spaces.

Taking into account the data of the boiler combustion
process and denitrification process also have time series
characteristics. Meanwhile, our goal is to achieve a control

strategy for SCR denitrification efficiency in coal-fired power
plants. There is currently no reliable denitrification efficiency
control strategy in the progress of industrial applications.
Therefore, in this paper, we put forward a method of combin-
ing LSTM with A3C algorithm to build a DRL model. This
method can be used to implement control strategies for SCR
denitrification efficiency in coal-fired power plants. It has
universal applicability and can also be used in other industrial
applications.

III. OVERVIEW OF METHODOLOGY
Figure 1 demonstrates an approach for implementing a
control strategy for SCR denitrification efficiency. Firstly,
the data can be obtained from the Distributed Control Sys-
tem (DCS) of the power plant. In this paper, parameters
related to the comparison of SCR denitrification efficiency
are selected as data sources. These parameter data are then
preprocessed to obtain the parameter data most relevant to the
SCR denitrification efficiency. Once the data is ready, all the
preprocessed data is input into the LSTMmodel, and then the
trained LSTMmodel is used as the DRL’s environment. After
that, the DRL method based on the A3C algorithm uses the
State value output by the environment as an input to output a
newAction value. Finally, through several iterations, the con-
trol strategy of SCR denitrification efficiency was obtained.

A. LONG SHORT-TERM MEMORY NEURAL NETWORK
The LSTM realizes the memory function of time by the
switch of the gate to prevent the disappearance of gradient.
Each LSTM cell has three gate controllers, which are forget
gate, input gate and output gate, forming a new computing
unit. The forget gate is responsible for controlling the reten-
tion of historical state information of the computing unit.
The input gate is responsible for controlling the input of
information. The output gate is responsible for controlling
the output of information. The activation function Sigmoid
makes the output value of the forget gate to be [0,1].When the
output is 1, indicating all the information of previous state is
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FIGURE 2. Framework of denitrification efficiency prediction model based on LSTM.

retained. When the output is 0, indicating all the information
of previous state is discarded by the forget gate. The process
of calculation can be represented as:

ft = δ(Wf xt + Uf ht−1 + Vf ct−1 + bf ), (3)
it = δ(Wixt + Uiht−1 + Vict−1 + bi), (4)
ct = ft · ct−1 + it · tanh(Wcxt + Ucht−1 + bc), (5)
ot = δ(Woxt + Uoht−1 + VoCt + bo), (6)
ht = ot · tanh(ct ), (7)

where ft , it and ot are the computing rule of the forget gate,
the input gate and the output gate at time t respectively, ct
is the computing rule of the LSTM cells at time t , ht is the
output of the computing unit at time t , δ(·) is the activation
function Sigmoid, tanh(·) is the hyperbolic tangent activation
function, W , U and V are parameter matrices, b is the bias
term.

By the formula (3) - (7) can be seen that input gate, forget
gate and output gate each connected to a multiplier to control
the state of each cell and the input and output of information.
Figure 2 shows the internal structure of the LSTM unit.

The LSTM adopts a Back Propagation Through
Time (BPTT) algorithm during training. The optimized gradi-
ent algorithm uses the Adaptive Moment Estimation (Adam)
algorithm. Adam combines the advantages of the Root Mean
Square Prop (RMSProp) algorithm and the Momentum algo-
rithm. It can compute the adaptability of different parameters
and occupy less resources of processor. Compared with
other algorithms of optimization, Adam demonstrates great
advantages in practical applications.

B. DEEP REINFORCEMENT LEARNING BASED ON
ASYNCHRONOUS ADVANTAGE ACTOR - CRITIC
DRL is a system of end-to-end perception and control with
strong versatility. The learning process can be represented
as follows: (1) The agent interacts with the environment to

get a high-dimensional observation at each moment, and the
DL approaches can perceive the observation to get a specific
state feature representations; (2) Evaluate the value function
of each action based on the expected reciprocation, and map
the current state to the corresponding action through a certain
policy; (3) The environment reacts to this action and obtains
the next observation. Through continuously circulating the
above process, the optimal strategy for achieving the goal can
be eventually obtained. The principle framework of DRL is
shown in Figure 3.

Specifically, the A3C algorithm performs multiple agents
in parallel and asynchronously using the functions of the
CPU multi-thread. Therefore, at any time, the parallel agents
will go through many different states, eliminating the cor-
relation between the samples of state transitions produced
during the training process. Therefore, this low-consumption
asynchronous execution method can be a good alternative to
the experience playback mechanism.

The A3C algorithm reduces the hardware requirements
during training. The depth strategy gradient algorithm relies
heavily on a computationally intensive GPU, while the A3C
algorithm requires only one standard multicore CPU in the
actual operation. By applying multi-threading technology,
the A3C algorithm reduces the hardware requirements of
the model. In the case of less training time, the average
performance of the A3C algorithm on the Atari 2600 game
task is significantly improved. Moreover, the A3C algorithm
is able to learn an effective strategy for walking a 3D maze
based only on the original visual input. In addition, the A3C
algorithm also can be widely applied to various continuous
action space problems. In summary, the A3C algorithm can
be widely applied to various 2D, 3D discrete and continuous
motion space tasks. Meanwhile, it achieved the best results
in these tasks. This shows that A3C is currently the most
versatile and successful DRL algorithm.
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FIGURE 3. The framework of denitrification efficiency model based
on DRL.

IV. DENITRIFICATION EFFICIENCY CONTROL STRATEGY
MODEL BASED ON DEEP REINFORCEMENT LEARNING
A. THE INFLUENCING FACTORS OF DENITRIFICATION
EFFICIENCY
An important index to test the performance of denitrifica-
tion system is the denitrification efficiency. Denitrification
efficiency is the percentage of NOx removed by the SCR
denitrification system to the NOx entering the SCR denitrifi-
cation system in the unit time. The SCR denitrification crafts
relates a series of chemical and physical reactions. There-
fore, the denitrification efficiency is determined by many
factors [35].

The power plant DCS records the Boiler load, Inlet O2
mass concentration, Inlet NOx mass concentration, SCR
ammonia slip, Spray ammonia mass flow, denitrification
catalyst inlet and outlet differential pressure, etc. 8 param-
eters every 1 minute to represent the denitrification status
of the SCR denitrification system. We carry out PCA and
correlation analysis of each effective parameter on site and
the denitrification efficiency in this paper. The analysis
results demonstrate that the cumulative contribution rate of
the 6 main components of the Boiler load, Inlet flue gas
temperature, Inlet O2 mass concentration, Inlet NOx mass
concentration, Ammonia/air mixer ammonia inlet regulator
valve and Spray ammonia mass flow to the original data is
greater than 90%, so we select the 6 main components as
input to the LSTM model.

Real-time monitoring of the entire SCR denitrification
process of a 1000MW unit in China using the monitoring
system of the existing fume pollution source emission process
(operating condition). The monitoring data per minute for
6 input variables required by themodel during the period from
2018-09-01 to 2018-09-07 was selected, a total of 10000 sets
of the data were used as the samples of model. Among them,
8000 sets of the data are training data (including verification

samples) and 2000 sets of the data are test data. The value
range of each parameter in the data is shown in Table 1.

TABLE 1. The value range of parameter in SCR denitrification system of a
unit.

B. SCR DENITRIFICATION EFFICIENCY MODEL BASED ON
LSTM
The design scheme of the prediction model for denitrification
efficiency based on LSTM is as follows. We adopt 6 main
variables as input variables of the LSTM. In the design of the
framework of the network, after repeated experiments. It is
eventually decided that the LSTM neural network contains
3 LSTM layers, 64 nodes per layer. The optimized method of
the model uses the Adam algorithm, the training data is set to
8000 sets, test data is set to 2000 sets, timestep is 10, batch
size is 20 and initial learning rate is 0.001.

Figure 2 shows the overall framework of denitrification
efficiency prediction model based on LSTM we build, which
includes 5 functional modules: Input layer, Hidden layer,
Output layer, Network training and Network prediction. Input
layer performs preliminary processing on the initial time
series to satisfy the input requirements of the network. Hidden
layer adopts the LSTM cells, which are demonstrated in
Figure 2 to set up a 3-layer recurrent neural network. Output
layer is responsible for providing predicted results. Network
training adopts the Adam algorithm. Network prediction
adopts an iterative approach to predict point by point.

C. ESTABLISHMENT OF DEEP REINFORCEMENT
LEARNING MODEL
The design scheme of the SCR denitrification efficiency DRL
model based on the AC framework is as follows. Select Boiler
load, Spray ammonia mass flow, Inlet O2 mass concentration,
Inlet flue gas temperature, Inlet NOx mass concentration,
Ammonia/air mixer ammonia inlet regulator valve position
feedback 6 variables as action value, denitrification efficiency
as state value, value range setting as Table 1 is shown.

In the design of the structure of the network, after repeated
experimental debugging. It is finally determined that the
learning round of the whole model is set to 2000, and
100 times in each round, of which 80 trainings, 20 pre-
dictions. The reward function is set to a denitrification
efficiency of 85% or more, the reward = 10. When the
denitrification efficiency is greater than or equal to 90%,
the reward = 20. When the denitrification efficiency is less
than 85%, the reward= -30. The Actor learning rate is 0.001
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and the Critic learning rate is 0.01. The training process of
this model is as follows:

1) Firstly, we set the ranges of Action value and the rules
for Reward value;

2) Then, the Actor network (Policy) adjusts the change of
the Action value, and output State value (denitrification
efficiency value) through Environment (LSTM);

3) The State value gets the Reward value of the corre-
sponding Action through the Critic network (Value
Function), and then feeds back to the Actor network;

4) The Actor network adjusts based on the State value
and the Reward value fed back by the Critic network
to obtain new Action values;

5) Finally, through continuous iterative updates, the opti-
mal Action combination that meets the conditions is
obtained.

The overall framework of the SCR denitrification
efficiency DRL model based on AC framework is shown
in Figure 3.

V. EXPERIMENTAL RESULTS
A. PERFORMANCE METRICS OF THE MODEL
In order to compare the proposed approach with other mod-
els, we adopt two performance metrics: root mean square
error (RMSE) and R-square (R2).
The RMSE is the standard deviation of the residuals

between observed values and predicted values, it can well
reflect the prediction accuracy. The RMSE is calculated by:

δRMSE =

√∑n
i=1 σ

2
errori

n
, (8)

where n is the total number of test data, σerror is the predicted
error.

The R2 can represent the quality of a fit through changes
in the data.

R2 = 1−

∑
(Yactual − Ypredict )2∑
(Yactual − Ymean)2

. (9)

The denominator is understood as the discreteness of the
initial data. The numerator is the error between the initial
data and the predicted data. Dividing the two can remove
the influence of the discreteness of the original data. The
theoretical value range is (−∞, 1), the theoretical value range
is [0, 1]. In actual operation, a curve that fits good is generally
chosen to calculate R2, so −∞ is rarely seen.
If R2 is closer to 1, it indicates that the equation’s variables

have a stronger ability to explain y, and the model will fit the
data better. If R2 is closer to 0, it indicates that the model
fits worse. Currently, a large amount of experimental results
indicate that if R2 is more than 0.4, fitting effect of the model
is good.

B. PERFORMANCE COMPARISON
In this paper, we adopt 10000 sets of data of a 1000 MW
coal-fired boiler unit in Guangdong under the operating

conditions from 00:01 on September 1, 2018 to 22:40 on
September 7, as experimental data. The coal-fired boiler has
no obvious external operations that affect combustion during
this period. Investigate abnormal operating data and abnormal
value of the experimental data, no abnormal operating data
and abnormal value were detected. It shows that the unit is
basically in stable operating state.

Table 2 presents the process of adjusting the time step of
LSTM. The results reflect that when the time step of the
LSTM model parameters is 10 and the number of training
epochs is 500, the model has the best predictive performance.
So as to verify the predicted performance of LSTM model
in SCR denitrification efficiency of coal-fired power plants.
By comparing the LSTM model with the LSSVM model and
the RNN model, we obtain the predicted results of 2000 sets
of test data. Figure 4-6 shows us that the 100 sets of exper-
imental results of SCR denitrification efficiency prediction,
Table 3 lists the performance comparison of our LSTMmodel
with other models. The key parameters of the LSSVMmodel
are the parameters adjusted to the optimal accuracy. The key
parameters of the RNN model and the LSTM model are the
same for easy comparison.

TABLE 2. Performance comparison of time step.

TABLE 3. Performance comparison with other models.

It can be seen from Figure 4-6 and Table 3 that the predic-
tion results of the RNNmodel and the LSSVMmodel are not
much different, the performance of the RNN model is better
than the LSSVM model. The RMSE of the LSTM model is
1.606915 and the R2 of the LSTM model is 0.916849. The
performance of the LSTM model are better than the LSSVM

TABLE 4. Distribution of rewards and punishments.
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FIGURE 4. Prediction of LSSVM model.

FIGURE 5. Prediction of RNN model.

model and RNN model, which indicates that our LSTM
model has higher prediction accuracy than other existing
models.

Therefore, the LSTM model is used as the environment
in the DRL model. After repeated experimental debugging,
it is eventually decided that the reinforcement learning round
setting has obvious convergence effect at 2000. There are
2000 learning rounds, 80 trainings and 20 tests per round.
Take one prediction result per round as shown in Figure 7-8.

As can be seen from Figure 7, the total reward value of the
model tends to be stable after 500 rounds. It can be seen from
Figure 7-8 and Table 4, in 2000 rounds, there were 67 rounds

FIGURE 6. Prediction of LSTM model.

FIGURE 7. Total reward value and reward value results.

FIGURE 8. Status value prediction results.

of punishment, 28 rounds were rewarded with 20, and the
remaining 1905 rounds were rewarded with 10. It can be seen
fromTable 5 that themost stable predicted state value remains
at 85.66. Therefore, the most stable control strategy predicted
is that when the Boiler load is 751.96 MW, the Inlet flue
gas temperature is adjusted to 335.739 oC, the Inlet O2 mass

TABLE 5. Combined solution with optimal denitrification efficiency under variable Boiler load.
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TABLE 6. Combined solution with lowest cost and denitrification efficiency reach the standard under variable Boiler load.

concentration is adjusted to 4.53mg·m−3, the Inlet NOx mass
concentration is adjusted to 337.82 mg· m−3, the Ammo-
nia/air mixer ammonia inlet regulator valve position feedback
is adjusted to 59.09 and the Spray ammonia mass flow is
adjusted to 129.08 kg/h, the denitrification efficiency will be
85.66%.

Since the Boiler load cannot be adjusted manually. If the
1000 MW unit is in a stable load state. This is equivalent to a
Boiler load of about 1000 MW. At this time, the control strat-
egy with a Boiler load of 901-1000 MW should be adopted.
If the 1000 MW unit is under variable load condition, refer
to Table 5 for the control strategy of the optimal denitrifi-
cation efficiency. If the cost is considered, the cost of the
SCR denitrification process mainly depends on the amount
of Spray ammonia mass flow. Therefore, the control strategy
with the lowest cost and the denitrification efficiencymeeting
the standard can refer to Table 6.

VI. CONCLUSION
As themain indicator of SCR denitrification system, denitrifi-
cation efficiency has great significance for the denitrification
system and even the entire power generation unit. Quickly
and accurately to predict the denitrification efficiency can
contribute the stable operation of unit. The control strategy to
obtain the optimal combination of input variable can optimize
the energy conservation and emission reduction of the unit.
In this paper, we aim at the characteristics of multiple param-
eters, multiple variables and mutual coupling of coal-fired
boilers. First of all, we use correlation analysis and PCA to
perform dimensionality reduction on the data of all variables
to remove the coupling property between the initial variables.
We then adopt the LSTM model which can take advantage
of the time series characteristics of industrial process data.
Experimental verification of LSTM model by using actual
operating data of a coal-fired power plant in Guangdong.
Experimental results demonstrate that our approach has bet-
ter performance than other machine learning approaches.
Finally, the A3C algorithm is used to construct the DRL
model with the LSTM model to realize the control strategy
of SCR denitrification efficiency in coal-fired power plants,
which can achieve energy conservation and the emission
reduction of NOx . The experimental results demonstrate that
our proposed approach is feasible and universally applicable
in industry.

Regarding future directions, we will further investigate the
integrated control method of the combustion process, deni-
trification process and system cost of coal-fired power plants
to improve the stability and reliability of control strategies.
In particular, we will first build an integrated optimization
control model for the entire life cycle of NOx generation and
emissions. At the same time, we will improve the universal
applicability of the model and work on researching machine
learning models that can be widely used in other industries.
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