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1. Introduction 

In this paper, I’m going to use Options on West Texas Intermediate (WTI) Crude Oil Futures, 

to obtain information on market sentiments regarding the WTI Oil price distribution at the 

options maturity. This will be done by extracting risk-neutral density functions (RNDs) for 

the future oil price, implied by the observed Option prices. Although the concept of 

estimating implied risk-neutral densities from Option prices has become more popular the last 

fifteen years, there have not been done much published research on the Oil market. Working 

on this paper, I have been lucky enough to have access to a unique and complete data set 

consisting of daily price observations for European WTI Crude Oil Options traded at the New 

York Mercantile Exchange (NYMEX).  This has made it possible for me to extract and 

analyze implied RNDs from the WTI Oil market during two different time periods, 

characterized by considerably different market conditions. I find that the estimated densities 

are consistent with probability theory, and able to adapt to market conditions at the time the 

Options were traded. Furthermore, all densities are positively skewed, which can be explained 

by an inverse leverage effect in the oil market. 

The main motivation for extracting risk-neutral densities from option prices is the unique 

information it might give us about market sentiments, and can therefore be a nice supplement 

to other sources of information. Financial market participants and decision makers want 

information that can help them gain insight into future financial and economic development. 

One way to get this kind of information is to use asset and derivative prices as market 

indicators. Prices depend on the expected future value of the asset, therefore, by observing 

market prices of assets and put these in the context of the current market situation and 

historical economic development, we get a general overview of the market's expectations of 

the future. Analyzing the development in spot and futures prices for oil might tell us 

something about expectations of the future. If we want to know more about the uncertainty in 

the future distribution of the Oil price, we could estimate the future oil price volatility. The 

traditional approach to this problem would be to calculate the historic standard deviation of 

returns. A disadvantage with this method is that the past volatility is not necessary the same as 

the future volatility. As we will see later in this paper, the return volatility can vary quite 

much under different market conditions. By extracting probability densities from Option 

prices, we are able to obtain information about the markets expected future oil price 
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distribution. We get information about the expected uncertainty in the future Oil price and by 

analyzing changes in the characteristics (moments) of the implied density we might be able to 

catch changes in market expectations. This is helpful when we want to estimate the future 

volatility and it gives us another perspective on the uncertainty in the market. Implied 

probability densities can also be a useful tool to help gain insight into market views on 

political or economic events, to help manage risk, or to price exotic derivatives. In a note from 

Bank of England (2000), they write that the Monetary Policy Committee is provided with 

information from option markets to quantify market uncertainty about the future course of 

financial asset prices, and information extracted using implied RND analysis is used in the 

banks Inflation Report (Clews, Panigirtzoglou, & Proudman, 2000). They point out that 

implied RNDs have proved useful in estimating the markets assessment of the balance of risk 

associated with future price movements. On their homepage, Bank of England write that the 

Macro Financial Analysis Team Division estimate probability density functions from the 

prices of options on both equity futures and interest rate futures contracts (Bank of England, 

2011). Another way implied RND analysis can be valuable is that it quantifies market 

assessments implied by option prices. This way, changes in the implied density might give us 

insight into how the market reacts to major news, e.g. political or economic events. 

Prices of Options prove to be a rich source of information about market sentiments. Because 

of their forward-looking structure, these contracts naturally capture information about market 

expectations in the price. One intuitive way to see this is to look at prices of two European 

call options on the same asset, with the same time to maturity, but with different strike prices. 

The price-difference between the two options reflects among other things how likely the 

market think it is that the price of the underlying asset lies between the two strikes at maturity. 

In order to price an Option one has to make assumptions about how the underlying asset is 

distributed in the future. In the famous Black & Scholes Option pricing model, this is done by 

assuming that the asset price follows a Geometric Brownian Motion with constant drift. Thus 

it is assumed that the underlying asset is log-normally distributed over discrete periods of 

time, and that the continuously compounded returns are normally distributed. Furthermore, 

the volatility of the asset`s continuously compounded returns is assumed to be constant. 

Together with an assumption of perfect capital markets, Black & Scholes proved that 

continuous-time dynamic delta hedging allows us to value an Option as if the word is “risk-

neutral” (McDonald 2006). The implication is that by using this model, we do not need to 

take into account attitude towards risk, and this is why we talk about risk-neutral probability 
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densities. Probability densities for the underlying asset implied by this model are always 

lognormal, and are not affected by risk preferences. Given that the assumptions of the model 

were true, the shape of the assets probability density should only be affected by the 

underlying asset`s return volatility and expected value. However, it is well documented that 

the real world is not consistent with the assumptions in the Black & Scholes model. Capital 

markets are not perfect, and asset prices do not behave like a geometric Brownian motion. 

Empirical studies show among other things that financial asset return distributions are 

characterized by high peaks and fat tails relative to the normal distribution. Still, the Black & 

Scholes framework is widely used. Derivative traders have known about this inconsistency for 

a long time and take this into account when pricing Options. By tweaking the input 

parameters, traders are able to adjust the price until it reflects their best estimate for the risk 

associated with the underlying asset. One could say that traders use the incorrect input, in a 

faulty model, to get what they believe is the correct price. And if not the Black & Scholes 

model is used, more advanced pricing frameworks are able to do the same job. The 

implication is that we have Option prices that are inconsistent with the assumptions behind 

the Black & Scholes framework, which leads to implied RNDs that differ from the lognormal 

distribution. 

One way we can observe this inconsistency is through the Black & Scholes implied volatility. 

Black & Scholes implied volatility is defined as the volatility that yields a Black & Scholes 

price equal to the observed market price. If we extract implied volatilities from observed 

Option prices we will usually get something called a volatility smile, or volatility skew. This 

means that the implied volatility is shaped as a smile in the volatility-strike space. This is a 

well-known characteristic of option prices and has been observed in the option markets since 

the crash of 1987 (Hull, 2008). In fact, when implied volatilities are not constant across all 

strikes, the implied risk-neutral density will be different from the lognormal distribution 

(Taylor, 2007). The approach used to extract implied RNDs in this paper take advantage of 

this link. Based on a theoretical result by Breeden and Litzenberger (1976), we are able to 

convert implied volatilities into implied risk-neutral probabilities. The main obstacle we face 

is the discrete intervals for which Options are traded.  One way or another we must estimate 

the probability density between the discrete observations. Different empirical methods have 

been used in the literature to overcome this problem. This paper will focus on a technique that 

solves this issue by smoothing the implied volatility smile curve to estimate the volatility for 

all possible strikes. In this paper we use the Stochastic Volatility Inspired (SVI) 
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parameterization of volatility surfaces introduced by Gatheral (2004). This method is chosen 

partially because of its good track-record for being able to fit observed volatility smiles and 

because it is based on a solid theoretical fundament that is supposed to ensure absence of 

arbitrage in the results. Another motivation for using the SVI parameterization is that we have 

not seen this method used for this purpose in other papers. 

I have two goals writing this paper. First, this paper should be viewed upon as an attempt to 

gain an understanding of both the theoretical and practical aspect of extracting predictive 

densities from option prices. Secondly, I want to see if I am able to find evidence of market 

sentiments in the implied densities extracted from WTI Crude Oil Options. This means that 

the implied densities should be able to reflect the general attitude towards the future price 

development in the oil market. As mentioned earlier, the price which options are trading at is 

affected by traders beliefs of the future, and these beliefs is affected by a variety of factors, 

including economic news, supply and demand, and world events. Market sentiments is the 

accumulation of all these factors, and should result in implied densities which differ from the 

lognormal distribution. Further we expect the extracted densities to be able to adapt to 

characteristics specific to the oil market, and changes in the attitude towards to the future oil 

price. There have not been done much research on RNDs in the Oil market which makes this 

contribution relevant. I will continue this paper by first presenting earlier research on the 

topic, and explain why the SVI based approach to extracting implied RNDs was chosen. Part 

two will present theory and methodology, by deriving the Breeden and Litzenberger result, 

and prove the link between this result and the risk-neutral density. In the last part I will 

discuss the implementation and performance of the SVI approach, and discuss its ability to 

capture information that is implicit in Crude Oil Option prices.  
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2. Earlier Research 

There have not been done much research on risk-neutral densities in the Oil market. The main 

contribution to this topic was made by Melick and Thomas (1997). They used a three-

lognormal mixture method to extract implied RNDs from Crude Oil Option prices observed 

during the Persian Gulf crisis of 1991. They found that sentiments in the Option markets at 

the time were consistent with the media commentary, in that they reflected at significant 

uncertainty in future Oil prices. The implied densities extracted did provide evidence that 

suggested a relatively high probability for a large increase in the future Oil price were 

included in the observed prices, which can be explained by fear of a major disruption in the 

Oil market. Positively skewed probability densities with a long right tail are also a sign of an 

inverse leverage effect in the Oil Market. Melick and Thomas also found evidence that 

confirmed relatively large shifts in market expectations at days when significant crisis-related 

events struck. More research has been done on implied volatility in the oil market, e.g. Doran 

and Ronn (2006). They looked at, among other commodities, ten years of Crude Oil price data 

from NYMEX, and found evidence suggesting that the implied volatility is a biased, but 

efficient predictor of future realized volatility (Doran & Ronn, 2006). 

Following Melick and Thomas there are no major published research papers on RNDs 

extracted from Oil markets as far as I know. This makes new research on the topic relevant. 

Having access to daily data of European WTI Crude Oil Option prices traded at NYMEX in 

the period from 2004 to the spring of 2011 makes it interesting to see if we are able to find 

evidence of market sentiments and an inverse leverage effect in this data. 

2.1 Methods used 

Different techniques have been used in earlier research to extract implied probability densities 

from Option prices. As Taylor (2007) points out, the common goal for all of them is that the 

problem they must solve is to find a RND whose corresponding Option prices are an 

acceptable approximation of the prices observed in the market. At the same time they must 

solve the critical issue of discrete strikes by one way or another interpolate inside and 

extrapolate outside the range of traded strikes. Although many different approaches have been 

used, the most popular ones can roughly be divided into two branches. The first branch is 
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methods that assume a particular parametric form for the distribution of the future asset price 

and solve for the unknown parameters. The other branch consists of methods where the 

implied volatility smile is interpolated and extrapolated and directly converted into a RND. 

Methods in the first branch assume a parametric form for the future asset price. This is a 

general approach since no assumptions are made about the stochastic process of the 

underlying. The chosen parametric form is then estimated from the observed prices. The most 

popular structural form used in the literature seems to be a mixture of lognormal distributions. 

Two papers which uses this approach is Melick and Thomas (1997), which use a mixture of 

three lognormal distributions to extract RNDs from crude oil Options, and Bahra (1997) 

which prefer to use a mixture of two lognormal distributions on LIFFE equity and interest rate 

options. Other types of parametric specifications of the RND used in the literature are the 

general beta distribution of the second kind (GB2) or densities from stochastic volatility 

processes (Taylor, 2007).  

The approach used in this paper is among the methods in the latter branch, which involves 

smoothing the implied volatility function. The implied volatility function is interpolated and 

extrapolated in some way, e.g. by fitting a parametric form. Then a theoretical result by 

Breeden & Litzenberger allows us to convert the implied volatility function into an implied 

risk-neutral density. Shimko (1993) was among the first to use this approach. He assumed a 

quadratic form to interpolate the implied volatility function. Outside the observed strikes, he 

attached lognormal tails. Some years later started a trend of using splines to smooth the 

implied volatility function. Campa et al. (1998) chose to use a cubic spline, while Bliss and 

Panigirtzoglou (2000) use a natural spline. Splines are harder to use, but in turn they will most 

often give a better fit to the data compared to the quadratic function. 

From the literature, the two most popular methods seems to be the two-lognormal approach of 

the former branch, and the method of smoothing the IV function with a spline from the latter 

branch. There are a few papers that compare these two approaches on their stability and 

ability to capture the wanted features implied in the data. Cooper (1999) compares the two 

lognormal-mixture to a implied volatility smile approach with a cubic spline. He uses the 

Heston Stochastic Volatility model to simulate Option prices based on a known distribution, 

and is thereby able to test how well the true RND is reflected in the extracted implied RND. 

He finds that the mixture lognormal approach is especially unstable with short maturities, and 
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overall the smile based approach seems to better capture the first two moments of the true 

RND. Another comparison of the two lognormal mixture approach and a smoothed IV smile 

approach using a natural spline is done in Bliss and Panigirtzoglou (2000). Their results 

provide evidence that the former method is by far the most stable and robust of the two. In a 

note from Bank of England in 2005 they point out that the smile based technique is an 

improvement upon the parametric one (lognormal mixture) that has been used at the Bank 

earlier (Clews, Panigirtzoglou, & Proudman, 2000). 

2.2 Why chose the SVI smile based approach? 

The method we choose should be sufficiently flexible to capture the features of the density 

implicit within Option prices, e.g. leptokurtosis properties. Further it should be in compliance 

with theoretical properties of probability densities; it must never be negative, it should sum up 

to one, and must be defined for all possible strikes. Based on my impression from the earlier 

research mentioned above, it seems that a smile based approach is the best choice. Depending 

on the chosen method for smoothing the smile, this approach can be easy to implement, and 

research provides evidence that it can be both stable and robust (Cooper, 1999). It does not 

assume anything about the process of the underlying asset and should not be restrictive in 

possible functional forms. 

As mentioned earlier, the critical part of this approach is the interpolation and extrapolation of 

the implied volatility smile. Shimko (1993) use a quadratic function to solve this problem. An 

advantage with this parameterization is that with only three parameters to estimate, it is very 

easy to implement. A disadvantage is that densities can become negative and thus not in 

compliance with standard properties of probability. It is also possible to obtain a better fit to 

observed volatilities with other methods (Taylor, 2007). Bahra (1997) suggests that a cubic 

spline give a good fit, and finds the quadratic function to be somewhat restrictive. Overall, 

splines seem to yield a better fit than the quadratic function, and they do not have a problem 

with negative probabilities (Taylor, 2007). But in turn they are harder to implement. 

The stochastic volatility inspired parameterization requires only five parameters to be 

estimated, thus it should be relatively easy to implement. It is based on a nice theoretical 

fundament which relies on the absence of arbitrage. According to Gatheral (2004) the SVI 

approach will in practice very seldom produce results that imply vertical arbitrage, negative 
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probabilities should therefore not occur. Gatheral also points out that this method usually 

yields a good fit to observed smiles. Based on my impressions from earlier research, the smile 

based approach, combined with the arbitrage-free theoretical fundament of the SVI 

parameterization makes this method seem like a good approach for extracting implied RNDs 

from option prices.  
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3. Theory and Method 

In this part I will present theory related to the topic. I will start by defining the risk-neutral 

density function. Then I will explain the concept of how implied RNDs can be extracted from 

implied volatility smiles. To do this, we first need to derive the Breeden and Litzenberger 

result which all RND approaches are based on and show how this result is connected to the 

risk-neutral density. At last we will take a look at the SVI Parameterization by Gatheral. 

3.1 The Risk-Neutral Density Function 

This section is based on chapter 16 in Taylor (2007). The definition of a risk-neutral density 

function    in this paper is the density for which European option prices are the discounted 

expectations of final payoffs; thus 

  ( )       ∫    (     )   ( )  
 

 

 Equation 1 

for all exercise prices X≥0. The standard properties for densities are required:  

   is defined for all x≥0 

   ≥0 

 ∫   ( )    
 

 
 

Taylor points out that the expected value of the underlying asset under the risk-neutral 

measure must be the forwards price F. Proof: 

Assume we have a call option with an exercise price X equal to zero. Equation 1 becomes: 

  ( )       ∫      
 

 

 Equation 2 

This option is guaranteed to be “in the money”. At maturity we exercise the option and buy 

the underlying. This contract has the same properties as a forward contract. With both 

contracts we buy the asset at maturity of the contract. The main difference is that we pay the 
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option premium C(0) today instead of paying the forward price F at maturity. A no-arbitrage 

condition must be: 

  ( )       ∫              (  )        
 

 

 Equation 3 

     (  ) Equation 4 

3.2 The Breeden and Litzenberger result 

All methods for extracting implied risk-neutral densities mentioned in this paper is based on 

the paper Prices of State-Contingent Claims Implicit in Option Prices by Breeden and 

Litzenberger (1976). They managed to derive a valuation formula for elementary claims using 

European Options. This result can be used to show a link between the price of European 

Options and an implied RND function for the underlying asset. 

The elementary claim was introduced in the time-state preference framework which can be 

traced back to the work of Arrow (1964) and Debrau (1959). While developing the theory of 

complete markets, which is central to the time-state preference framework, they introduced a 

state contingent security called an elementary claim. This security pays $1 contingent upon 

the realization of a particular state of the world at a given future date, and pays out nothing if 

that particular state is not realized. Breeden and Litzenberger show in their paper from 1976 

that under an assumption of perfect capital markets, one are able to replicate the payoff of an 

elementary claim by entering into a Butterfly Spread using Options on the underlying asset. 

This means, if you want to replicate an elementary claim paying $1 if state X is realized, then 

you can do so by going long two Call Options, one with strike X-1 and one with strike X+1, 

and going short two Call Options with strike X. A simple illustration of this strategy for X 

equal 8 can be seen in the Figure 1 underneath. 
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Figure  1: Butterfly Spread 

 

Breeden and Litzenberger show that the payoff of an elementary claim for any given level of 

the asset at time T can be replicated in a similar manner using a Butterfly Spread strategy. A 

generalized expression for this portfolio on “state” X when the step size between possible 

asset prices at time T is X becomes: 

  

  
  [ (    )   ( )]  [ ( )   (    )]  Equation 5 

 

A no-arbitrage condition must then be that the price of an elementary claim paying $1 if state 

X is realized is given by Equation 5. The price of an elementary claim divided by the step size 

X is then given by: 

   

  
 

 

(  ) 
  [ (    )   ( )]  [ ( )   (    )]  Equation 6 

 

In the limit as the step size tends to zero, Breeden and Litzernberger show that this expression 

becomes: 
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   ( )

   
 Equation 7 

 

With Equation 7, Breeden & Litzenberger proved that in a continuous setting the price of an 

elementary claim is equal to the second derivative of the Call pricing function with respect to 

the strike price. To establish the link between Equation 7 and the risk-neutral density we can 

take advantage of the fundamental theorem of asset pricing. 

3.3 The risk-neutral measure 

Suppose we have a market consisting of a number of securities and a risk-free bond. Then the 

first and second fundamental Theorem of Asset Pricing states (Harrison & Pliska, 1981): 

1) The market is arbitrage-free
1

 if and only if there exist at least one equivalent 

martingale measure (EMM) Q. 

2) The market is complete if and only if the equivalent martingale measure (EMM) Q is 

unique. 

A process is a Martingale if the expected future value, conditional on the past, is its current 

value. An equivalent martingale measure
2
 is a probability measure Q, which is equivalent

3
 to 

the real probability measure P, under which the bond discounted securities are all Q-

martingales. Under the EMM Q all assets have the same expected growth rate as the risk-free 

bond, independent of the risk associated with the asset. Thus, the Q-measure is neutral with 

respect to risk (Baxter & Rennie, 1996). In other words, the expected value of any asset under 

the EMM Q, discounted at the risk-free rate, is equal to today`s asset value. The equivalent 

martingale measure is just a more accurate name for the well-known risk-neutral measure. 

                                                 
1
 A market is arbitrage-free if there is no way of making riskless profits. Riskless profit would be an investment 

opportunity with zero outlay today, and a positive value at termination with probability one (Baxter & Rennie, 

1996). 

2
 A Martingale Measure is a measure under which a process is a Martingale (Baxter & Rennie, 1996). 

3
 Two measures P and Q are equivalent if they operate on the same sample space and agree on what is possible 

(Baxter & Rennie, 1996). 



13 

 

Using the fundamental theorem of asset pricing we know that in a complete market, the price 

of an elementary claim paying $1 in state ST is given by the expected payoff under the risk-

neutral measure, discounted at the risk-free interest rate, see Equation 8. 

    
        [  ]         (  ) Equation 8 

Using Equation 7 and Equation 8 we see that the second derivative of the call pricing function 

with respect to the exercise price is equal to the discounted risk-neutral density (RND) 

function. 

    ( )

   
        (  ) Equation 9 

   (  )      
   ( )

   
 Equation 10 

Equation 10 verifies the link between the risk-neutral density function and the call pricing 

function. It states that the risk-neutral density function for the underlying asset is equal to 

second derivative of the Call pricing function with respect to the strike price, adjusted with 

the risk free rate of return. Since the Black & Scholes Option pricing function is twice 

differentiable with respect to the strike price, we can use this model combined with Equation 

10 to translate implied volatilities into probability densities. The only assumption made 

deriving this result is that there are perfect capital markets. Equation 10 does not rely on any 

assumptions about the process of the underlying asset.  

To illustrate how Equation 10 is used in practice, I will in the following example use it to 

calculate the risk-neutral density for a given strike, assuming the assumptions behind the 

Black & Scholes model are true. The parameters used are based on WTI Crude Oil data from 

1 April 2010, but assuming a constant volatility of 28%, which is the “at the money” implied 

volatility. We see from Equation 10, that in order to find the density, we need the second 

derivative of the Black & Scholes Call pricing function with respect to the strike, also called 

strike gamma. Assuming constant volatility, the strike gamma is given by (Haug, 2006): 
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 (  ) 
   

  √ 
  Equation 11 

Combining Equation 10 and 11, we get the following expression for the RND assuming 

constant volatility: 

   (  )     
 (  )

  √ 
 Equation 12 

The RND is given by the standard normal probability mass function of d2, divided by the 

strike multiplied by the volatility and the square root of time to maturity. The parameter d2 is 

the standard parameter from the Black and Scholes formula. When the underlying is a Futures 

contract, d2 is given by (Haug, 2006): 

 
   

  (
 
 )  (  

 
   ) 

 √ 
 Equation 13 

On 1 April 2010, we have the following parameters: 

Date 4/1/2010 
 

Risk-free Interest 0.2915% 

Maturity 5/18/2010 
 

Cost of Carry 0 

Futures Price $85.34 
 

Implied Volatility 28% 

Time to maturity 0.12877 
   

Table 1 

Using these parameters amd Equation 12, we get the following level of the risk-neutral 

density for a future oil Futures price of $100: 

d2 -1.628 
 

ST  $100 

n(d2) 0.106019 
 

B&S RND 0.010552 

Table 2 

Increasing the implied volatility to 35%, yields the following result: 

d2 -1.32501 
 

ST  $100 

n(d2) 0.165835 
 

B&S RND 0.013204 

Table 3 
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We see that with a volatility of 28%, the density for a Futures price of 100 at maturity is 

0,010552. Increasing the volatility to 35%, we get a density of 0,013204. Higher volatility 

means that larger price fluctuations are more likely, which results in a higher probability for 

the Futures price to be $100 at maturity. 

3.4 RNDs from Implied Volatility Functions 

We are now going to see how we can extract implied RNDs from the implied volatility smile. 

Based on the Breeden and Litzenberger result and the fundamental theorem of asset pricing, 

we were able to derive a solution for the implied RND, given by Equation 10. The only 

requirement we need to find the implied density is that the call pricing function is twice 

differentiable. Assuming a constant volatility, which we used in the example above, we used 

the second derivative of the Black & Scholes Call pricing formula and got an expression for 

the RND given by Equation 12. From the discussion earlier in this paper, we know that this is 

an unrealistic assumption. We know that implied volatilities differ across the traded strikes, 

and the result is risk-neutral densities that deviate from the lognormal distribution. We could 

use Equation 12 to calculate the implied density for the traded strikes by using the implied 

volatility observed at each particular strike. The problem is that to get a continuous 

probability density, we need to calculate the RND at every possible strike level, and thus we 

need to estimate the implied volatility between and outside the discrete observations. 

To solve this issue, we assume that the implied volatility follows a functional form. Fitting a 

parametric form to the observed smile lets us interpolate and extrapolate the implied volatility 

smile. Taylor (2007) shows that if we extend the Black & Scholes Call pricing formula to 

include a volatility that is dependent on the strike, then the second derivative with respect to 

the strike, combined with Equation 10, yields the following expression for the RND:  
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Where (x) is the volatility given the strike price x, and d1 and d2 are given by: 
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With Equation 14, we have a solution for the implied RND assuming that the volatility is 

dependent on the strike. This expression can be used to transfer an implied volatility function 

into implied risk-neutral probability densities. The last piece of the puzzle is to choose a 

parametric form to smooth the smile. In this paper, I have chosen to use the stochastic 

volatility inspired (SVI) parameterization by Gatheral. 

3.5 The SVI Parameterization 

The stochastic volatility inspired parameterization of the implied volatility surface was first 

introduced in Gatheral (2004). With only five parameters, this approach is relatively easy to 

calibrate to the observed volatility smile, and it will according to Gatheral almost never in 

practice produce results that implies vertical
4
 arbitrage (Gatheral, 2004). Gatheral based this 

method on the implications made by the moment formula for implied volatility at extreme 

strikes, introduced in Lee (2003). Under a no-arbitrage condition Lee proves a connection 

between the number of finite moments in the process of the underlying asset and the behavior 

of the implied volatility function at extreme strikes. Using this result Lee is able to derive no-

arbitrage bounds for the tails of the Black & Scholes implied volatility smile. In order to 

prevent arbitrage, Lee shows that implied variance must always be linear in “log moneyness” 

when the absolute value of “log moneyness” goes to infinity. “Log moneyness” is defined as 

the natural logarithm of the exercise price divided by the underlying asset price. 

     (
 

 
) Equation 17 

Thus, to ensure absence of arbitrage, a parameterization of the implied variance skew must in 

the variance-“log moneyness” space be linear in the tails and curved in the middle. Gatheral 

proposes the following expression for the variance as a function of “log moneyness”: 

                                                 
4
 Vertical arbitrage is an arbitrage opportunity using options on the same underlying asset with the same time to 

maturity but with different strikes. E.g. bull, bear and butterfly spreads. 
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    ( )     { (   )  √(   )    } Equation 18 

With the left and right asymptote given by: 

          (   )(   ) Equation 19 

           (   )(   ) Equation 20 

Figure 2 illustrates how the SVI variance behaves in the log-moneyness space. “Near the 

money”, the function is curved to fit the implied skew. Moving away from the money the 

variance function converges to the left and right asymptote.  

 

Figure  2: SVI Parameterization 

The SVI parameters can be given the following interpretation (Gatheral, 2004): 

 a: The overall level of the variance 

 b: The angle between the left and right asymptote 

 : Smoothness of the middle curvature 

 : Orientation of the graph 
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 m: Level along the x-axis 

3.6 Summary of the method derived in this section 

Based on the Breeden and Litzenberger result and the fundamental theorem of asset pricing, 

we found that the implied risk-neutral density for the underlying asset is given by the second 

derivative of the call pricing function with respect to the exercise price, adjusted by the risk 

free rate, see Equation 10: 

   (  )      
   ( )

   
 Equation 10 

Assuming that the volatility is dependent of the strike level, then the second derivative of the 

Black & Scholes Option pricing formula with respect to the strike price combined with 

Equation 10 becomes: 
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Using Equation 14, we can calculate the implied RND directly, given that we have a twice 

differentiable function for the volatility with respect to the strike. We solve this problem by 

fitting the stochastic volatility inspired parameterization by Gatheral to the observed volatility 

smile, se Equation 21. The first and second derivative of Equation 21 with respect to the strike 

can be seen in the appendix. 

  ( )  √   { (   )  √(   )    } Equation 21 

To calculate the implied RND, we follow almost the same approach as in the simple example 

discussed earlier. The main difference is that we first have to calibrate Equation 21 to the 

implied volatility smile. Then we use the calibrated parameters from Equation 21, together 

with Equation 14, to solve for the implied RND. 
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4. Implementation and Discussion 

I will start this section by presenting the data used in this paper. Then I will take a closer look 

at how the method of extracting implied RNDs by smoothing the implied the volatility smile 

with the SVI parameterization performs. This will involve discussing how well we are able to 

interpolate and extrapolate the implied volatility smile found in the WTI Crude Oil data. A 

quadratic function, following the approach in Taylor (2007) will be used as comparison. At 

last I will discuss implied RNDs extracted from the Oil data from two time periods 

characterized by different market conditions. 

4.1 The WTI Crude Oil Option Data 

Working on this paper I have had access to a unique data set consisting of settle prices for 

European Light Sweet Crude Oil (WTI) Options traded at the New York Mercantile Exchange 

(NYMEX). The underlying contract of these options is the Light Sweet Crude Oil (WTI) 

Futures traded at the same exchange. The WTI-Futures contract is the most liquid Oil-trading 

instrument available in the industry today. About 600,000 WTI Options or Futures contracts 

are traded daily, which translates to a volume of 600 Million barrels of Oil. This makes WTI 

Crude Oil an important benchmark in the Oil industry, and serves as a hedging tool for 

hundreds of commercial oil companies (CME Group). Over the last hundred years, Oil has 

become a commodity we are completely dependent on, and large fluctuations in the Oil price 

affect the whole world economy. 

The data set consists of settle prices for all European WTI Option contracts traded at NYMEX 

between 2004 and the spring of 2011. The settle price is decided by a settlement committee 

and is based on the last minutes of trading. The settlement committee establish the at the 

money volatility and create the volatility surface for out of the money Options based on traded 

outrights and spreads (CME Group). The observed price is therefore affected by a minimal of 

noise. In addition to data on Oil, the 3 Month LIBOR rate were used as the “risk-free” interest 

rate. Option Data was obtained from CME Group, while close prices for the underlying 

Futures contract and 3 Month LIBOR rate were obtained from Reuters EcoWin.  
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Trade 
Date Contract 

Call 
/ Put Month Year Strike Price Settle Price 

Open 
Interest IV Exchange 

4/1/2010 LC C 6 2010 60.0000000 25.36000000 850.000000 .411600 NYM 

4/1/2010 LC C 6 2010 62.0000000 23.37000000 25.000000 .391100 NYM 

4/1/2010 LC C 6 2010 66.0000000 19.42000000 600.000000 .363500 NYM 

4/1/2010 LC C 6 2010 68.0000000 17.47000000 375.000000 .348300 NYM 

4/1/2010 LC C 6 2010 70.0000000 15.54000000 550.000000 .337600 NYM 

4/1/2010 LC C 6 2010 72.5000000 13.16000000 100.000000 .323200 NYM 

4/1/2010 LC C 6 2010 73.5000000 12.23000000 500.000000 .315200 NYM 

4/1/2010 LC C 6 2010 74.5000000 11.32000000 300.000000 .310700 NYM 

4/1/2010 LC C 6 2010 76.0000000 9.97000000 50.000000 .301200 NYM 

4/1/2010 LC C 6 2010 76.5000000 9.53000000 410.000000 .298100 NYM 

4/1/2010 LC P 6 2010 80.0000000 1.38000000 477.000000 .287800 NYM 

4/1/2010 LC P 6 2010 82.0000000 1.97000000 50.000000 .282400 NYM 

4/1/2010 LC P 6 2010 83.0000000 2.33000000 44.000000 .279900 NYM 

4/1/2010 LC P 6 2010 85.0000000 3.18000000 300.000000 .274600 NYM 

4/1/2010 LC P 6 2010 86.0000000 3.67000000 14.000000 .271500 NYM 

4/1/2010 LC P 6 2010 87.0000000 4.22000000 100.000000 .269500 NYM 

4/1/2010 LC P 6 2010 120.0000000 34.67000000 350.000000 .366500 NYM 

4/1/2010 LC P 6 2010 125.5000000 40.16000000 400.000000 .380900 NYM 

4/1/2010 LC P 6 2010 130.0000000 44.65000000 300.000000 .411600 NYM 

Table 4 

Table 4 shows a small extraction from the raw data obtained from CME Group. This is only a 

small part of the total data, which consists of about 600 000 price observations. In the first 

column we see the trade date, the day these prices were observed. The next column tells us 

that these are European Options on WTI Crude Oil Futures, and the third column 

distinguishes between Call and Put Options. The next two columns tells us when the 

underlying Futures contract expires. Then the strike and settle price follows before the open 

interest in each contract. The second last column is implied volatility calculated by CME 

Group. Since implied volatility is only included in the newest part of the data, and because 

CME Group assumes zero interest in their calculation, I have calculated implied volatility 

myself for the data used. 
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Light Sweet Crude Oil (WTI) Future:   

 Underlying Commodity: WTI Light Sweet Crude Oil 

 Settlement Type: Physical 

 Expiration: Trading ceases on the third business day prior to the twenty-fifth calendar 

day of the month preceding the delivery month. 

European Light Sweet Crude Oil (WTI) Options: 

 Underlying Contract: Light Sweet Crude Oil (WTI) Future 

 Settlement Type: Financial 

 Expiration: The Option expires three business days before trading ceases in the 

underlying Futures contract 

To ensure a best possible result in the analysis, the following “data wash” were done to clean 

up the data used. On any given day, out of the money call and put Options with an open 

interest of less than 100 contracts were removed. All obviously misquoted observations were 

removed. All observations implying vertical arbitrage were removed, e.g. call options with 

different strikes quoted with the same settle price. Minimum price fluctuation for WTI options 

is $0,01 per barrel, thus all observations with quotes lower than $0,05 were removed. The 

precision in quotes below this threshold is deemed too low. Put-Call parity is used to convert 

out of the money put prices into the corresponding call prices. After this cleanup was done, a 

typical day used in the analysis consisted of Call prices for about 25 different strikes. 

4.2 Smoothing the Implied Volatility Smile 

To extract risk-neutral densities from the implied volatility smile, we need to somehow 

estimate the implied volatility for all possible strikes. In this section I will use a set of WTI 

Crude Oil Option prices observed 1 April 2010 as an example. These Options were on the 

underlying WTI Futures contract with delivery in June 2010, and the exercise date for the 

Option contracts were on the 17 of May, with 47 days until maturity. I am now going to take a 

closer look at how the SVI parameterization solves the problem of smoothing the IV smile, by 
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fitting it to the smile extracted from the prices observed 1 April. The next section will 

continue on the same example, discussing the corresponding risk-neutral density for the WTI 

Crude Oil price at the 17 of May. To help measure the performance of the SVI 

Parameterization, I will also use a quadratic function following the approach in Taylor (2007). 

4.2.1 Interpolation 

When extracting RNDs by smoothing the implied volatility smile, the quality of the results is 

largely dependent on how we smooth the smile. The first part of this problem is to interpolate 

inside the range of traded strike prices. Most of the time, almost all the probability mass is 

located inside this range, making it critical to get a good fit in this part of the process. Thus, 

we want the fitted function to be as close to the discrete observations as possible. I have 

solved this problem by minimizing the sum of squared deviations from the market implied 

volatilities. 

     ∑(         )
  Equation 22 

 

To get an idea what an interpolated smile looks like I have calibrated both the SVI and 

quadratic function to the smile extracted from the set of WTI Options traded at April 1 2010. 

The result is displayed in Figure 3 underneath. We see that the quadratic function has 

problems getting a close fit on the right side of the smile, where the implied volatilities 

deviate from the quadratic form. On the left side of the smile the quadratic function obtains a 

better fit. The SVI function, although not perfect on the right side, get a pretty good fit for the 

whole smile, especially good on the left side. From this example we see that the SVI approach 

benefits from being able to adapt to different kinds of shapes. It is also interesting to see that 

we observe a clearly defined smile extracted from our set of Crude Oil Options. Both “out of 

the money” Call and Put Options with maturity 17 May traded at 1 April had a significantly 

higher Black & Scholes implied volatility compared to “at the money” Options. This suggests 

a market expectation of a higher probability for large price movements in both directions 

compared to the lognormal distribution. This means that we expect to find fat probability tails 

on both sides of the corresponding risk-neutral density we will look at a little bit later. 
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Figure  3: Interpolated Volatility Smile 

As mentioned above, the problem of smoothing the smile inside the range of traded strikes are 

critical. Most of the time, this range will cover a large portion of the implied density. In 

Figure 4 underneath, I have extracted the implied density based on the SVI function we have 

fitted in Figure 3. In this case, using strikes ranging from 60 to 130, we have already found 

99.4% of the total probability mass. We see that only a very small part of the left tail needs to 

be estimated before we are very close to 100%. It is a great advantage when the traded range 

covers most of the implied density, because this part of the density is then based on observed 

information in the market. Other times we might not be this lucky and a bigger part of the 

probability mass may be missing. To obtain the missing part of the density, we have to 

extrapolate the smile outside the range of traded strikes. 
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Figure  4: RND - Range of traded strikes 

 

 

Figure  5: Missing probability mass 

0

0.01

0.02

0.03

0.04

0.05

0.06

40 60 80 100 120 140

D
e

n
si

ty
 

Strike 

SVI Risk-Neutral Density 
01.04.2010 

SVI RND

0

0.01

0.02

0.03

0.04

0.05

0.06

40 60 80 100 120 140

D
e

n
si

ty
 

Strike 

Missing Probability Mass 



25 

 

4.2.2Extrapolation 

Figure 5 illustrates the problem of missing probability mass. For some reason, the available 

market data only covers a smaller portion of the total RND. The missing part in Figure 5 is 

exaggerated on purpose to illustrate the problem. In this case we have to extrapolate the 

implied volatility smile to get an estimate of the missing tails of the distribution. This is a 

more difficult task because we have little information about market expectations outside the 

range of traded strikes.  

Using the parameter values we obtained when we interpolated the smile, we can continue to 

estimate the smile outside the range of traded strikes. Doing this for the same smile we 

interpolated above, we get the result seen in Figure 6. If we look at how the two functions 

behave outside the observed smile, we see that they estimate the volatility quite differently. 

On the right side, the SVI function follow the curvature of the smile by flattening out slightly. 

The quadratic function on the other hand increases fast. The difference is smaller on the left 

side, but also here we see that the quadratic function increases a bit faster. However, even 

though we observe that the two functions behave different outside the implied smile, it is 

difficult to say anything about which method behaves best. To help analyze the behavior, we 

can display the same information in the implied variance – “log-moneyness” space, see Figure 

7. Log-moneyness is as before defined as the natural logarithm of the strike, divided by the 

forward price. In Figure 7, the curvature we see around log-moneyness equal to zero, is where 

both functions are fitted to the smile.  
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Figure  6: Implied volatility extrapolation 

 

 

Figure  7: Implied variance - "Log-moneyness" 
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Figure 7 show us that if we continue to estimate the volatility at more extreme strikes, the two 

functions behave very different. Outside this curvature in the middle, the implied SVI 

variance continues in a straight line, while the implied quadratic variance increases very fast 

on both sides. We already know from the theory section that a required condition to secure 

absence of arbitrage at extreme strikes is that the slope of the variance function is not steeper 

than linear in the log-moneyness space (Lee, 2003). In Figure 7 above, the quadratic variance 

clearly violates this condition. The SVI variance on the other hand adapts to the curvature in 

the smile, and then converges to the two straight asymptotes on either side. This is likely to be 

the reason earlier research points out problems with negative probabilities when a quadratic 

function is used (Taylor, 2007). 

Based on what we have seen in this example, I think the SVI parameterization look like a 

promising solution to the problem of smoothing the implied volatility smile. Since most of the 

probability mass in the implied density is derived from range of traded strikes, this is the area 

of the smile that it is most important to get a good fit. On the smile used in the example 

above, which is a typical smile seen from the data used in this paper, we achieved a relatively 

good fit using the SVI function. Outside the range of traded strikes, we have seen that the 

estimated volatility-tails are in compliance the no arbitrage condition at extreme strikes 

introduced in Lee (2003). This means that the little part of the density we were not able to 

recover from the interpolated smile will be based on volatilities which should ensure absence 

of arbitrage. This should ensure that we do not have problems with negative probabilities in 

the estimated densities. 

4.3 The SVI implied Risk-Neutral Density 

Having obtained a parameterization of the implied volatility smile observed in the Oil data, 

we are able to convert the estimated volatility at each possible strike directly into risk-neutral 

probabilities using Equation 14. Doing this using the SVI parameterization fitted to the smile 

extracted from Options traded 1 April 2010 which we have discussed above, results in the 

implied RND seen in Figure 8. The solid black line represents the SVI RND, and for the sake 

of comparison I have included a lognormal density function using the “at the money” implied 

volatility of 28% across all strikes. 
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Figure  8: WTI Crude Oil implied RND 

 

  Mean Volatility Skewness Kurtosis 

SVI RND 85.34 9.065695779 0.38 6.39 

Lognormal RND 85.34 8.574204647 0.30 3.16 

Table 5 

It is easy to see the leptokurtic properties of the density which is based on the SVI function. 

Compared to the lognormal density, it got a high peak and fat tails on both sides. The first 

four moments of the distributions which can be seen in Table 5, confirms what we see in 

Figure 8. The SVI density has a Kurtosis of 6.39 compared to 3.16 for the lognormal function. 

Both densities are positively skewed with fatter right tails. The SVI slightly more with a 

Skewness of 0.38. Both densities are positively skewed compared to the normal distribution, 

which is symmetrical and thus have a Skewness of 0. This means that the SVI density 

extracted from Crude Oil Options got a larger part of the probability mass located in the right 

tail relative to the left. From the second moment we see that the volatility of the SVI density is 

slightly larger than that of the lognormal, with 9.06 for the former and 8.57 for the latter. The 

first moment is the same for both densities. We know from the theory presented earlier in the 

paper that a theoretical constraint for the implied RND, is that the expected value should be 

equal to the forward price. The price of the Futures contract traded 1 April 2010 with delivery 
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in June was $85.34. Thus, both the SVI density and the lognormal density yield the correct 

expected value. 

It is very interesting to see the high peak and positive skew of the SVI density extracted from 

our Crude Oil Options. Leptokurtic properties are something we would expect to find, and it 

is positive that our approach seems to be able to adapt to the leptokurtic properties reflected in 

our observed prices. Especially interesting is the positive skew. This suggests that a higher 

chance of large price increases in the Crude Oil price have been included in the traded Option 

prices. This is in compliance with the theory of an inverse leverage effect in the Oil market. 

Oil markets have a special characteristic in that volatility and prices are positively correlated, 

which is opposite of what is observed in equity markets. The theory of a leverage effect in 

stock markets was first introduced in Black (1976), where he suggested that negative shocks 

in the stock price usually leads to higher volatility than equally large positive shocks, thus 

price and volatility are negatively correlated (Black, 1976). The intuition behind the leverage 

effect is that falling stock prices makes the equity less valuable compared to the debt, 

increasing the leverage of the firm. This makes the firm a riskier investment, and the result is 

higher volatility. We could also say it the other way around. Higher volatility increases the 

risk of the firm, thus we demand a higher expected return to compensate for the increased 

risk, and prices go down. However, research shows that the opposite relationship between 

price and volatility is true in energy markets. This could partially be explained by an inelastic 

short run supply in the Oil market. A positive demand shock results in higher prices due to the 

time it takes the supply side to adapt to the higher demand. A little available inventory results 

in higher and more volatile prices. The positive skew observed in the SVI density can 

therefore be explained by the existence of an inverse leverage effect in the Oil market, and 

that this effect has been taken into account in the traded Option prices. If the volatility 

increase when the oil price increase, then the probability for even higher prices increase. This 

could explain the fat probability tail observed in Figure 8. The same characteristics were 

found by Melick and Thomas (1997) on the data from the period of the Gulf Crisis in 1991. 

The implied densities they analyzed suggested a relatively high probability for a large 

increase in the future Oil price were included in the observed prices, which can be explained 

by fear of a major disruption in the Oil market. Comparing the Skewness we see in the 

example above to research done on equity Options supports the theory of an inverse leverage 

effect. In their research on RNDs from equity markets, Bliss and Panigirtzoglou (2000) found 

that the extracted densities from FTSE 100 Options had a mean Skewness of -0,54. 
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This example has showed us that our approach is able to adapt to characteristics that are 

specific to oil markets. We have found a high peak and positive skew, indicating both 

leptokurtic properties and an inverse leverage effect in the oil price distribution. We have also 

seen that the SVI parameterization was able to get a good fit to the implied volatility smile 

extracted from WTI Crude Oil Options. Furthermore, we found that outside the range of 

traded strikes, the SVI function estimated a linear variance-tails in the log-moneyness space, 

which is in compliance with the no-arbitrage condition of Lee (2003). Converting the SVI 

volatility into a risk-neutral density resulted in a probability density which seems to behave 

according to probability theory, with positive probabilities for all strikes ranging from 0 to 

1000, and the cumulative density did not exceed 1. 
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4.4 WTI Crude Oil RNDs 

In this part I will focus on analyzing RNDs extracted from two different periods where Crude 

Oil Options were sold under quite different market conditions. Figure 9 displays the WTI 

Crude Oil price development from June 2007 until April 2011. The two periods used in this 

analysis in seen as the solid black lines. 

 

 

Figure  9: WTI Cude Oil price developtment 

 

The first period starts July 16 2008 and ends on October 13, covering the first half of the huge 

Oil price plunge in the fall of 2008. In the months before this period starts, the price of Oil 

had been increasing steadily for quite a while and it reached its all-time high of more than 

$145 per barrel in the first half of July 2008. The following weeks the price started to drop, 

partially due to lower demand for energy because of the economic crisis. On 14 July one 
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price had dropped to $129. The down-market continued the entire fall until the price reached 

$30 on December 23th. The second period I will look at starts on 1 February 2010 and ends 

14 May. This period is characterized by very different market conditions compared to the 

down-market of 2008. Instead, the price had a flat development, starting at about $76 per 

barrel in February and having decreased to $71.61 in the middle of May. 

In both periods I have extracted RNDs every 3 or 4 days for Options with the same maturity 

date, with a total of 27 and 32 RNDs from the two periods. All options in period 1 had the 

WTI Futures contract with delivery in November 2008 as the underlying asset, and all Option 

contracts in period 2 where on the WTI Futures contract with delivery in June 2010. We will 

therefore get two sets of risk-neutral predictive densities describing the WTI Futures price at 

the end of each period. This makes it possible to see how the implied RND change as time 

passes. These two periods were chosen to see if we are able to find evidence that the SVI 

approach used are able to produce RNDs that reflect market expectations. Given the very 

different market conditions the two sets of densities are extracted from, we would expect to 

find RNDs with characteristics reflecting the Oil market at the time they were traded. 

Figure 10 and 11 on the following two pages displays the RNDs from the two periods as 

probability time-charts. In Figure 10 we see the RND of July 16 as the very wide density in 

the front, and the RND of October 13 as the tall density all the way in the back. All densities 

in this chart are predictive densities for the WTI Futures price on October 18. The down-

market of the time is easily recognized as the peaks of the densities moving left towards lower 

prices as time passes. In Figure 11 we see the February 1 RND in front and the May 14 RND 

in the back, all being predictive densities for the futures price at May 18. In this chart all 

densities except for the last 3 is located just behind each other, because of the flat price 

development in this period. The WTI Oil price dropped a bit in the last part explaining the left 

shift of the 3 last RNDs. From both charts we see that the density starts out very wide, with 

more than 3 months until the maturity date, the range of likely Oil prices at maturity is very 

wide. There is still a long time to expiration and the probability of large price fluctuations is 

relatively high. As time passes and the expiration date draws nearer the densities gradually 

gets taller and narrower, mostly reflecting the fact that there is less time left for large price 

fluctuations. The last couple of densities in both charts are narrow and very tall, predicting the 

futures price only 5 and 4 days later. 
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Figure  10: RNDs Fall 2008 
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Figure  11: RNDs Spring 2010 
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The same information seen in Figure 10 and 11 can be displayed in a slightly different way, 

which better illustrates the risk-neutral prediction for the futures price at maturity. Figure 12 

and 13 on the next page, display the RNDs as risk-neutral probability bounds around the 

expected price. The darkest shaded area covers a 10% risk-neutral probability bound around 

the expected value. The two lighter grey areas cover respectively a 50% and 90% bound. At 

each point in time, these bounds are interpreted as a 10%, 50% and 90% risk-neutral 

probability that the WTI Oil price is within the respective range at maturity. Since the 

probability we are analyzing is risk-neutral, we know that the expected price equals the 

Futures price at the time. Thus the WTI Futures price is located in the middle of the darkest 

shaded bound. We recognize the same time effects as we have discussed above. Starting the 

period with about 3 months until maturity, especially the 90% bound is very wide. In Figure 

12, this bound actually covers the range from about $100 to about $215, with the Futures 

price at the time being $129.4. Moving closer to the maturity of the Option contracts these 

bounds gradually get narrower, following the trend of the charts seen above. 

From both the time charts seen above in Figure 10 and 11, and in the two time charts seen 

below in Figure 12 and 13, we see that the densities extracted from Options traded in the 

market with high and falling Oil prices in 2008, compared to the narrower densities of those 

extracted from the Oil market in the spring of 2010. As discussed earlier, this is a sign of the 

inverse leverage effect characteristic of Oil markets. In the couple of years leading up to the 

Oil price peak in July 2008, the price had been steadily increasing. During this period there 

were multiple disruptive events affecting the Oil market. Tension between OPEC and the 

United States grew as the price surged to $110 in March 2008. On 17 April the same year, it 

reached a new all-time high of $117, after an attack on an Oil pipe line in Nigeria. As tension 

between USA and Israel against Iran grew in the end of April and start of June, prices 

continued to increase, and by the start of July it had reached a new all-time high of about $140 

per barrel. Based on the theory of an inverse leverage effect, we should expect to find a 

relatively high uncertainty reflected in densities extracted in the first period. If we look at the 

development of “at the money” implied volatility and the volatility of our RNDs in the two 

periods, which are displayed in Figure 14 and 15, we see that volatility were very high in 

2008 compared to 2010. The first RND extracted in 2008, when the price only days before 

had been at its all-time high, had a “at the money” implied volatility of 48%, compared to 

34% for the first RND extracted in 2010. The RND volatility follows the same trend, starting 

at 34 in 2008, compared to 14 in 2010. 
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Figure  12: RNDs Fall 2008 

 

 

Figure  13: RNDs Spring 2010 
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The high uncertainty regarding Oil supply in the period leading up to our first implied RND in 

2008, could explain the increasing Oil prices and the resulting high volatility, following the 

theory of an inverse leverage effect in the Oil market. As we see in the two figures on the next 

page, volatility continued to be high throughout the period of 2008 compared to 2010. This 

means that, implicit in the observed prices, Oil market participants continued to expect high 

future volatility throughout the whole first period, relative to the more “normal” period in 

2010. The average “at the money” implied volatility from is 50% and 30% in respectively the 

densities from 2008 and 2010. Calculating the higher moments paints a picture supporting the 

observations already made. From Figure 16 we see that the Kurtosis, although unstable, were 

higher or equally high in 2010, compared to the RNDs of 2008. Knowing that the densities of 

2008 generally were wider with higher volatility, it makes sense that those densities also were 

flatter compared to those of 2010, explaining the lower Kurtosis. The much higher “at the 

money” implied volatility used throughout the first period resulted in flatter volatility smiles, 

and even though not being the same across all strikes, which results in lognormal densities, a 

flatter smile will result in lower peaks and less of a leptokurtic look. This can also be 

explained by the fact that a lower “at the money” volatility, means that the probability for 

large price movements included in the Option price is lower and more of the probability mass 

will be centered around the mean, resulting in a higher peak. The average kurtosis is 5.3 and 

8.56 in respectively the first and second period. From Figure 16 we see that all densities are 

positively skewed. The calculated skew is also a bit unstable throughout the two periods, but 

we see a clear tendency of a greater skew in densities from 2008, with an average skew of 

0.71, compared to an average of 0.45 for those extracted from Options traded in 2010. 

The implied risk-neutral densities extracted from the two different time periods show multiple 

signs indicating that our approach is able to adapt to expectations in the Oil market. All RNDs 

from the quiet period of 2010 are showing leptokurtic properties, with high peaks and fat tails. 

There were also a positive skew present in all densities, meaning that more of the probability 

mass was located in the right tail relative to the left. As we have mentioned earlier, these 

results suggest an inverse leverage effect is included in the traded Option prices, which can be 

explained by a greater fear in the market of increasing, relative to decreasing, energy prices 

(Geman, 2005). As Geman points out, this fear is not surprising, given the negative effect on 

the world economy of higher energy prices.  
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Figure 14: Volatility 

 

 

Figure 15: ATM Implied Volatility 
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Figure 16: Kurtosis 

 

 

Figure 17: Skewness 
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These results show us that the implied volatility from Options traded in the period of 2008 

was considerably higher compared to the period of 2010. This is consistent with earlier 

research, which suggests that volatility in oil markets tend to increase sharply when prices 

spike. I addition to high volatility and wide densities, we have observed that densities from 

the high-price period of 2008 were more positively skewed compared to those based on 

options from 2010. If a positive skew indicates, as Geman points out, higher aversion for 

increasing prices. Then, it makes perfect sense that the fear for higher prices were greater in 

the volatile oil market of 2008, were prices already were very high, compared to the period in 

2010 when the oil price were lower and more stable.  
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5. Conclusion 

This paper has presented and applied a way of extracting the implied risk-neutral density 

function of the future WTI Crude Oil price from Option prices with different strikes. This 

method is derived from a theoretical result by Breeden and Litzenberger, which proves the 

link between prices of Options and the risk-neutral measure. The main assumption made, to 

overcome the problem of Options being traded at discrete strike intervals, is that the implied 

volatility smile has a particular functional form. No assumptions are made regarding the 

stochastic process of the WTI Crude Oil price. Thus, the approach used should be able to 

adapt to properties and sentiments of the Oil market, as long as they are reflected in the 

observed Option price. To smooth the implied volatility smile, we have used the stochastic 

volatility inspired parameterization, introduced by Gatheral. Imposing a minimum of 

structure, the approach used in this paper proves to perform well at extracting implied RNDs 

from the Oil market, which is characterized by positively skewed and leptokurtic 

distributions. 

Throughout the paper, the approach of obtaining densities from implied volatility smiles 

smoothed by the SVI parameterization have worked very well. We have seen that the SVI 

parameterization yielded a good fit to implied volatility smiles implicit in the Oil data. Further 

it extrapolated the smile outside the range of traded strikes by creating volatility tails that 

secure absence of arbitrage in the corresponding option prices. This approach yielded implied 

RNDs which were consistent with probability theory, avoiding problems with negative 

probabilities. 

Applied to the Oil market, we find that the extracted densities are able to reflect market 

sentiments of the time the Options were traded. We also find that they are able to adapt to 

typical characteristics of Oil markets. The densities extracted from WTI Crude Oil Options 

show leptokurtic properties, and have high peaks and fat tails compared to the lognormal 

distribution. All densities are positively skewed, with long probability tails towards higher oil 

prices. Studying two sets of RNDs extracted from different time periods allowed us to study 

how the shape of the density is affected by the time to maturity and the market condition 

under which the Option price were observed. In both periods, densities start out very wide, 

with more than three months to maturity, and then gradually get narrower as time pass. 
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Densities extracted from the high Oil price period of 2008 had considerably higher volatility 

and were wider compared to the counterparts from 2010. The densities from 2008 were also 

flatter, confirmed by a lower kurtosis. All densities extracted were positively skewed, but 

more so in those from 2008. 

The positive skew observed in all densities can be explained by an inverse leverage effect in 

the Oil market, which means that the price and volatility are positively correlated. Market 

participants fear a positive shock to the Oil price more than an equally large price drop due to 

the negative effect a positive price shock have on the world economy. Higher volatility at 

higher prices would also increase the probability of even higher prices, which is exactly what 

we observe in the positively skewed densities. Densities extracted from the period of 2008 

were more skewed compared to those extracted from 2010, indicating that the inverse 

leverage effect was stronger in a market with high prices, which can be explained by more 

fear for increasing prices when the price and volatility already are high. Earlier research on 

RNDs from equity markets show that the characteristics we have found are specific to energy 

markets. 

It would be interesting to do a more comprehensive study of implied risk-neutral densities 

from Oil markets. This paper presents results suggesting the existence of an inverse leverage 

effect in the Crude Oil market, and show that implied RNDs are able to adapt to the 

sentiments of the market for which the Option was traded. One aspect further research could 

look into is the development of RNDs from the Oil market over a longer time interval. It 

would make it possible to better see how the inverse leverage effect is reflected in the RND 

by analyzing the development of the Skewness over time. It would also be interesting to 

compare the performance of the SVI parameterization to the more popular splines used in 

other research papers. Another direction further research could take, is to test if implied 

densities extracted from the oil data is able to predict the realized oil price.  
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Appendix 

Calculation of Moments 

Given a random variable X, the first four moments is defined as: 

Mean: 

The mean is a measure of the central tendency of a distribution. It is defined as the weighted 

average of a random variable X, where all outcomes are weighted with the corresponding 

probability of each outcome occurring. 

    [ ] Equation 12 

Variance: 

The variance is a measure of the dispersion of a distribution. It is defined as the weighted 

average squared deviation from the mean. 

    [   ]  Equation 24 

Skewness: 

The Skewness is a measure of asymmetry of a distribution. If the distribution has a longer tail 

to the right, it has a positive skew. A longer tail to the left means the distribution is negatively 

skewed. 

    [(
   

√ 
)
 

] Equation 25 

Kurtosis: 

The Kurtosis is a measure of peaked-ness of a distribution. It is measured relatively to the 

Gaussian distribution. A kurtosis of more than 3 has a high peak relative to the Gaussian 

curve, and a kurtosis of less than 3 is flatter than the Gaussian curve. Kurtosis equal to 3 is 

normally distributed. 
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    [(
   

√ 
)
 

] Equation 26 

Given that we know the density function of a random variable X, we can solve the following 

integral to help find the first four moments (Bertrand, 2011): 

     [  ]  ∫     ( )                   
 

 

 Equation 27 

This integral must be solved numerically. In this paper I used a method based on the 

Simpson`s rule for numerical integration. Using Equation 27 the moments are given by: 

      Equation 28 

         Equation 29 

 
    

 
 (         ) Equation 30 

 
     (       

 
         ) Equation 31 
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SVI Derivatives 

The first and second derivatives of the SVI volatility function with respect to the strike price 

were needed for the approach used in this paper. These two expressions were found using the 

Wolfram Alpha mathematical calculator. 

The first derivative of the SVI volatility function with respect to the strike: 

 

The second derivative of the SVI volatility function with respect to the strike: 

 


