
The Journal of Systems and Software 167 (2020) 110599

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Achieving agility and quality in product development - an empirical

study of hardware startups

Vebjørn Berg

a , ∗, Jørgen Birkeland

a , Anh Nguyen-Duc

b , Ilias O. Pappas a , c , Letizia Jaccheri a

a Department of Computer Science, Norwegian University of Science and Technology, Sem Sælands vei 9, Trondheim 7034, Norway
b Department of Business and IT, University of South-Eastern Norway, Lærerskoleveien 40, Notodden 3679, Norway
c Department of Information Systems, University of Agder, Universitetsveien 25, Kristiansand 4630, Norway

a r t i c l e i n f o

Article history:

Received 6 January 2019

Revised 16 March 2020

Accepted 8 April 2020

Available online 22 April 2020

Keywords:

Startup

Hardware startup

Software engineering

Product development

Empirical research

a b s t r a c t

Context: Startups aim at scaling their business, often by developing innovative products with limited hu-

man and financial resources. The development of software products in the startup context is known as

opportunistic, agility-driven, and with high tolerance for technical debt. The special context of hardware

startups calls for a better understanding of state-of-the-practice of hardware startups’ activities. Objec-

tive: This study aimed to identify whether and how startups can achieve product quality while main-

taining focus on agility. Method: We conducted an exploratory study with 13 hardware startups, collect-

ing data through semi-structured interviews and analysis of documentation. We proposed an integrative

model of agility and quality in hardware startups. Results: Agility in hardware startups is complex and not

achieved through adoption of fast-paced development practices alone. Hardware startups follow a quality-

driven approach for development of core components, where frequent user testing is a measure for early

debt management. Hardware startups often lack mindset and strategies for achieving long-term quality in

early stages. Conclusions: Hardware startups need attention to hardware quality to allow for evolutionary

prototyping and speed. Future research should focus on defining quality-driven practices that contribute

to agility, and strategies and mindsets to support long-term quality in the hardware startup context.

© 2020 The Author(s). Published by Elsevier Inc.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1

t

h

(

o

t

e

n

c

a

t

e

p

v

c

i

e

F

e

s

t

b

p

a

D

i

n

b

n

p

s

h

0

. Introduction

Startups, newly created companies producing cutting-edge

echnology, are an important source of technology innovation, and

ave a significant impact on the wave of digital transformation

 Jacobson et al., 2017). Despite stories of successful startups, most

f them fail, primarily due to self-destruction rather than compe-

ition (Crowne, 2002; Marmer et al., 2011). Without previous op-

rational experience, startups often need to learn how to establish

ew roles, new connections to external stakeholders, and new pro-

esses and practices (Stinchcombe, 20 0 0; Abatecola et al., 2012). In

 startup company developing high-tech products, besides personal

rait of startup founders and financial and market factors (Giardino

t al., 2015; Aldrich and Auster, 1986; Van Gelderen et al., 2005),

roduct development is also a key factor characterizing the de-

elopment of the startup (Unterkalmsteiner et al., 2016; Giardino
∗ Corresponding author.

E-mail addresses: vebjornb@netcompany.com (V. Berg), jorgen.birkeland1@gmail.

om (J. Birkeland), anh.nguyen.duc@usn.no (A. Nguyen-Duc), ilias.pappas@uia.no ,

lpappas@ntnu.no (I.O. Pappas), letizia.jaccheri@ntnu.no (L. Jaccheri).

b

t

a

i

t

ttps://doi.org/10.1016/j.jss.2020.110599

164-1212/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article
t al., 2015; Tripathi et al., 2016; Giardino et al., 2016; 2014a).

or instance, software research has shown interest in achieving

ffective Minimum Viable Products (Nguyen-Duc and Abrahams-

on, 2016) and managing technical debt (Giardino et al., 2016) in

he startup context. Even though the obstacles to success gradually

ecome known and aware to entrepreneurs, the startup context

oses several unique challenges to traditional product development

nd innovation methods (Unterkalmsteiner et al., 2016; Nguyen-

uc et al., 2016).

The part of startup ecosystems that is relatively little explored

n research is hardware startups. They include startup compa-

ies developing products and services with a value proposition

ased on an integral solution of software and hardware compo-

ents (DiResta et al., 2015; Jacobson et al., 2017). Hardware is a

hysical, tangible part of a system, or a system of systems (e.g.,

ensors, gateways, connectivity components, wearable devices, mo-

ile phones), while software is a code-based, intangible part of

he system (e.g., operating systems, server-side scripts, databases,

lgorithms). A typical example for a modern hardware system

s a connected house, where the hardware part is implemented

o measure, collect and transmit data, and the software part is
under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.jss.2020.110599
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.110599&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:vebjornb@netcompany.com
mailto:jorgen.birkeland1@gmail.com
mailto:anh.nguyen.duc@usn.no
mailto:ilias.pappas@uia.no
mailto:ilpappas@ntnu.no
mailto:letizia.jaccheri@ntnu.no
https://doi.org/10.1016/j.jss.2020.110599
http://creativecommons.org/licenses/by/4.0/

2 V. Berg, J. Birkeland and A. Nguyen-Duc et al. / The Journal of Systems and Software 167 (2020) 110599

S

a

2

2

o

t

t

t

i

g

k

s

i

t

c

p

w

i

s

e

a

f

K

2

m

2

e

t

t

d

c

T

q

r

a

e

n

n

t

i

T

B

B

p

(

t

(

o

c

m

I

n

(

o

f

(
used to coordinate the operations of hardware, store and pro-

cess the collected data. The barriers for starting a hardware com-

pany have never been lower, a result of the advanced development

of hardware technology. Rapid prototyping, decreased component

costs, small-batch manufacturing, and fundraising platforms have

renewed the interest for hardware startups (DiResta et al., 2015;

Wei, 2017).

Hardware startups add additional complexity to software star-

tups as they need to handle the development and integration of

hardware parts into the offered products (Nguyen-Duc et al., 2018).

Hardware products usually need to be secured and safe, which

puts a focus on ensuring quality attributes of delivered products.

Moreover, the quality of the whole product relies on the quality

of its integrated components, both software and hardware mod-

ules. While it is known that software startups focus on speed and

agility, remaining low priority on quality assurance, it is not known

if the same practices occur in hardware-related product develop-

ment. While knowledge from development of embedded products

in established companies can be relevant (Kaisti et al., 2013; Albu-

querque et al., 2012), the ”newness and smallness” nature of star-

tups calls for an investigation and further, an adaption of existing

methodologies and practices that are suitable to startup context

(Bosch, 2016).

Software startups are known for fast-paced development, with

ability to handle uncertainty, react to changes in product and

business development, and introduce flexibility in the process

(Garbajosa et al., 2017). The concept of agility in hardware startups

might be different from pure software development, as hardware

development typically involves a long development cycle and de-

pends on a larger set of third-party vendors. The relationship be-

tween agility and quality might be more critical in some circum-

stances, for instance startup companies who deliver quality-driven

products. For example, the Norwegian startup Prediktor Medical

AS develops a glucose smartwatch that measures glucose level

without penetrating people’s skin. The product was quality-driven

and has been developed under a market-pressure with a promised

launch time. A recent industry survey also calls for systematic

adoption of product development methodologies in hardware star-

tups (Nguyen-Duc et al., 2018).

To this end, we seek to create a better understanding of work-

practices in hardware startups by investigating the role of engineer-

ing activities, from idea conceptualization to a launched product. In

particular, we will investigate factors influencing agility and qual-

ity, and explore commonalities and challenges. As mentioned by

Jacobson et al. (2017) , literature regarding methods for hardware

product development is scarce. We aim at exploring how agility

and quality are managed in practice. This has motivated the fol-

lowing research question:

RQ How do hardware startups achieve both agility and product

quality during product development?

This paper presents the results from a qualitative survey inves-

tigating 13 early-stage European hardware startups. The work con-

tributes to startup engineering research by focusing on hardware-

intensive product development. The research provides early empir-

ical evidence to agility in hardware startups, and simple quality-

aware practices in the context of restricted resources. The work

also builds the foundation for researchers and practitioners to

further explore hardware startup engineering, which is still in a

nascent stage.

The remainder of this paper proceeds as follows: Section 2 in-

troduces the background of the study and relevant theoretical

frameworks. Section 3 presents the research method undertaken

and potential threats to the validity. Section 4 reports the results

of the study, including transcribed citations from the participants.

Section 5 discusses the results in relation to the research questions.
ection 6 concludes the paper by answering the research questions

nd proposing directions for future work.

. Background

.1. The context of high-tech startup companies

The term “startup” has been defined differently across vari-

us principles (Steininger, 2019; Sutton, 20 0 0; Ghezzi, 2018; Un-

erkalmsteiner et al., 2016; Crowne, 2002). From the recurrent

hemes on startups, high-tech startups share common charac-

eristics of organizations focusing on the creation of software-

ntensive products, with little or no operating history, aiming to

row by aggressively scaling their business in highly scalable mar-

ets (Giardino et al., 2016). The context of startups is long under-

tood as a special organizational state. New companies generally

nvolve new roles, and the “coordination of strangers” scenario of-

en lead to low quality of performance (Stinchcombe, 20 0 0; Abate-

ola et al., 2012). Sommer et al. (2009) highlighted that new com-

anies often do not correctly foresee real opportunities or the best

ays of addressing them, and so are forced to adapt and mod-

fy their approach over time. Giardino et al. (2014b) revealed that

tartups often fail to achieve the problem-solution fit during their

xecution. From early-stage, startups increase their learning curve

nd foster the establishment of survival determinants (i.e., success-

ul practices and procedures) (Abatecola et al., 2012; Hodgson and

nudsen, 2004).

.2. Software product development in startup companies

Startups generally develop products in high-potential target

arkets without necessarily knowing what customers want (Blank,

013b; Rafiq et al., 2017). Increasingly more industries experi-

nce that new technologies become available to all players at

he same time, hence the benefits of technology-driven innova-

ions decrease. This has led companies to prioritize customer-

riven development, which involves identifying new and unknown

ustomer needs as well as meeting known needs (Bosch, 2016).

his relates to market-driven software development, where re-

uirements tend to be (1) invented by the software company, (2)

arely documented (Karlsson et al., 2002), and (3) validated only

fter the product is released in the market (Carmel, 1994; Dahlst-

dt, 2003; Keil and Carmel, 1995; Rafiq et al., 2017). Products

ot meeting customer needs are common, resulting in failure of

ew product releases (Alves et al., 2006). There exist several en-

repreneurial theories and frameworks that can guide practitioners

n their pursuit to lasting business growth, including “Effectuation

heory” (Sarasvathy, 2001), “Discovery and Creation” (Alvarez and

arney, 2007), the customer development approach introduced by

lank (2013a) , and the Lean Startup (Ries, 2011).

Research on software engineering depicts that startup com-

anies prefer to prioritize time and cost over product quality

 Yau and Murphy, 2013), neglecting traditional process activi-

ies like formal project management, documentation, and testing

 Giardino et al., 2016). Shortcuts taken in product quality, design,

r infrastructure can inhibit validated learning (Ries, 2011), in a

ontext where customized development practices are necessary to

anage the challenges posed by customer development methods.

nadequate use of software engineering practices might be a sig-

ificant factor leading to the high failure rates of software startups

 Klotins et al., 2015).

Entrepreneurs are in general aware of the significance

f how their products are built. Even though studies have

ound that startups are either reluctant to introducing process

 Coleman and O’Connor, 2008), or that they use their own mix

V. Berg, J. Birkeland and A. Nguyen-Duc et al. / The Journal of Systems and Software 167 (2020) 110599 3

o

t

i

e

a

i

e

2

t

a

s

t

m

b

d

w

(

d

t

c

(

(

s

d

a

t

2

D

a

z

p

t

p

c

a

a

s

i

fl

o

p

p

d

m

A

a

S

i

F

a

s

s

T

t

a

a

c

2

r

s

d

a

a

s

e

e

p

c

I

s

m

r

f

t

d

F

t

n

w

t

q

p

2

i

o

i

c

b

p
f Agile and ad-hoc methods (Giardino et al., 2014a), many star-

ups emphasized the importance of having good practices in build-

ng their products (Sutton, 20 0 0; Giardino et al., 2014a). Small

arly-stage software startups don’t experience the same challenges

s larger, more experienced companies, and the cost and time of

mplementing a rigorous Agile methodology may not provide big

nough benefits (Yau and Murphy, 2013).

.3. Agility in product development

Agility as a concept is multi-facet and in many cases refers

o the ability of an organization, a team, or a project to re-

ct to changes occurred to them (Conboy, 2009). In a general

ense, agility can be defined as ”the capability to react and adapt

o expected and unexpected changes within a dynamic environ-

ent constantly and quickly, and to use those changes (if possi-

le) as an advantage” (Bohmer and Lindemann, 2015). In software

evelopment, Agile methods have proven to be a powerful tool

hen the goal is to build a successful, profitable business model

 Cunningham et al., 2001). When a company needs to quickly ad-

ress market and customer needs, Agile processes have proven

o be much more effective than traditional high-ceremony pro-

esses (Wasserman, 2016). Since the birth of the Agile Manifesto

2001), with stated principles and practices of Agile methodology

 Beck et al., 2001), it has become a popular set of practices in the

oftware industry to replace traditional, rigid, and heavy software

evelopment processes.

During the last decades, Agile in software engineering has been

n extensive research area with an enormous amount of litera-

ure (Dybå and Dingsøyr, 2008; Conboy, 2009; Abrahamsson et al.,

010; Díaz et al., 2011; Misra et al., 2012; Jalali and Wohlin, 2010;

a Silva et al., 2011). Existing studies provide the introduction and

doption of Agile methods and their variance in different organi-

ational settings. They do not agree on a unified view of current

ractices, but offer a broad picture of experience and some con-

radictory findings (Dybå and Dingsøyr, 2008). Benefits were re-

orted in the following areas: customer collaboration, work pro-

esses for handling defects, learning in pair programming, thinking

head for management, focusing on current work for engineers,

nd estimation (Dybå and Dingsøyr, 2008). A recurring theme in

tudies on Agile development is human factors (e.g., team dynam-

cs, team coordination, customer involvement, etc.) and their in-

uence on Agile development. Much research reports experience

f combining Agile development with other Software Engineering

aradigms, such as distributed teams (Jalali and Wohlin, 2010),

roduct line development (Misra et al., 2012), and user-centered

esign (Díaz et al., 2011). The combination of product line develop-

ent, with the focus on upfront investments, planning, design, and

gile methods, with the highlight of rapid and frequent changes,

ttention to the design is found challenging (Misra et al., 2012).

everal practices are investigated in the fusion of Agile methods

nto more rigid processes, including release planning (Hanssen and

ægri, 2008) and the bottom-up application driven approach with

utomated acceptance tests (Ghanam and Maurer, 2010).

Research suggests that Agile methods are suitable for software

tartups, as iterative development approaches are adaptive, with

hort lead time (Pantiuchina et al., 2017; Paternoster et al., 2014).

he adoption of formal sets of Agile practices and methods in star-

ups is limited, often due to an excessive amount of uncertainty

nd high time-pressure (Giardino et al., 2014a). Startups often use

 tailored version of Agile development, in many cases, the quick

ombination of Agile and other methodologies.

v

c

.4. Engineering processes for embedded system development

Research on development processes in hardware startups is

are, where exploration of state-of-practice is limited to a few

tudies (Nguyen-Duc et al., 2018). The processes and practices for

eveloping hardware-relevant products have been reported in liter-

ture about embedded system engineering, which concerns about

pplication-specific computing devices consisting of hardware and

oftware components (Ronkainen et al., 2002). Current knowl-

dge on development processes of hardware-related products in

stablished companies is rarely transferred to hardware startups’

roduct development, as the startup context is unique and spe-

ial (Nguyen-Duc et al., 2018; Ronkainen and Abrahamsson, 2003).

n the embedded domain, hardware sets strict requirements to

oftware. Development of hardware-intensive systems require si-

ultaneous development of hardware-components and hardware-

elated software (Ronkainen et al., 2002). Since software allows for

requent updates and releases, the system architecture often seeks

o separate hardware from software to allow for two largely in-

ependent release processes (Bosch, 2016). This is illustrated in

ig. 1 where hardware and related software development are dis-

inct processes requiring constant communication and intercon-

ected testing and verification.

Ronkainen et al. (2002) found four main characteristics of hard-

are and related software development, including (1) hard real-

ime requirements, (2) experimental work, (3) documentation re-

uirements, and (4) testing.

1. Hard real-time requirements (e.g., data throughput rates, cycle

counts, or function call latency) mean that if software doesn’t

meet requirements, further system operation may be at risk.

Hardware simulations can help determine the precise opera-

tion of hardware without producing an expensive prototype and

even enable testing of the hardware-software co-operation.

2. Hardware-oriented software development is experimental by

nature, and developers need to understand the whole system to

deal with all uncertainties related to changes in hardware and

how software affects the whole system. Every requirement can-

not be known and every decision cannot be made before writ-

ing software. Developers should utilize an iterative develop-

ment approach to deal with all ambiguities of hardware-related

software development.

3. The communication among hardware and software developers

must work to implement the hardware-software interface effi-

ciently. Information has to be explicit and relies heavily on ex-

act documentation to minimize information loss between iter-

ations. However, due to the vast amount of experimental work,

too much documentation is not feasible in early stages of prod-

uct development.

4. Testing is an essential activity both due to reliability and device

autonomy requirements, and regression tests to ensure paral-

lel development doesn’t drift. In addition to independent soft-

ware and hardware tests, checking the right interaction be-

tween hardware and software (i.e., co-verification) is important

to ensure the system works as intended.

Recent advancement in hardware technology suggest that Agile

ractices also could be used in the embedded domain (Kaisti et al.,

013). Although Agile methods and practices may have a positive

mpact (e.g., decreased development time and reduced error rates)

n product development, the use of Agile in the embedded domain

s not widespread (Albuquerque et al., 2012). There is a need for a

oherent understanding of how Agile methodologies best fit to em-

edded systems development in the startup context, and how such

ractices can reduce costs and effort s in different phases of the de-

elopment process (i.e., requirement management, design, and ar-

hitecture).

4 V. Berg, J. Birkeland and A. Nguyen-Duc et al. / The Journal of Systems and Software 167 (2020) 110599

Fig. 1. Hardware-software co-design process (Ronkainen et al., 2002).

Fig. 2. Research process.

m

f

c

t

i

t

(

e

p

i

p

n

H

s

t

l

a

a

T

t

o

3. Research methodology

Software startup engineering research is to a great extent con-

cerned with investigating the development, operation, and main-

tenance of software and hardware products in startup companies.

In order to gather and to interpret evidence for answering our re-

search questions, we devised a qualitative approach. The goal of

qualitative research is to investigate and understand phenomena

within their real-life context (Robson, 2002). Dependent on the in-

depth knowledge in a case, the qualitative research can have a nar-

row focus on a few case studies, or a broader scope as a qualitative

survey (Robson, 2002; Andersson and Runeson, 2002; Walsham,

1995). As the study’s overall goal is to characterize current sta-

tus of adopting agility and quality-driven practices in a population

of hardware startups, a qualitative survey appears to be suitable,

especially when there is a limited capacity for capturing insight

data from a number of companies in a short time (Andersson and

Runeson, 2002). Robson classified four types of research purposes

(Robson, 2002):

• Exploratory - understanding what is happening; to seek new

insights.
• Descriptive - portraying a situation or phenomenon.
• Explanatory - seeking an explanation of a situation or a prob-

lem, mostly but not necessary in the form of a causal relation-

ship.
• Improving - trying to improve a certain aspect of the studied

phenomenon.

In line with the non-deterministic nature of product develop-

ent in the startup context (Nguyen-Duc et al., 2015) (i.e., contexts

or product development are highly influenced by team, finan-

ial, market situations and entrepreneurial approaches), and with

he exploratory nature of our research question, we exploratively

nvestigate multiple startups. Klein and Myers differentiate three

ypes of research perspectives, positivist, critical, and interpretive

 Klein and Myers, 1999; Walsham, 1995). Positivist studies search

vidence for testing hypotheses, drawing inferences from a sam-

le; critical studies identify social critique, and interpretive stud-

es attempt to understand phenomena through participants’ inter-

retation of their context. In this research, we investigate a phe-

omenon that integrates human factors and engineering concepts.

ence, we adopted the interpretive view and collected data from

emi-structured interviews.

There are several possible levels of analysis (e.g., individual, ar-

ifact, team, project and company). We chose project as a suitable

evel of analysis, as this study concerns about product development

ctivities and processes, with certain expectations about the inter-

ctions between the products and their contextual environments.

he focus of our interviews is startups’ single projects that leads

o the launching of their core products. Fig. 2 illustrates all steps

f the research process.

V. Berg, J. Birkeland and A. Nguyen-Duc et al. / The Journal of Systems and Software 167 (2020) 110599 5

Table 1

Startup channels.

Channel Description Link

Innovation Center

Gløshaugen

The center is located at campus Gløshaugen, and houses various early-stage

high-tech startups, mainly to support innovative students.

www.ntnu.no/ig

NTNU Accel and FAKTRY NTNU Accel is a uni-based accelerator for promising startups. FAKTRY is an

incubator which is part of Accel, and houses various hardware startups.

www.ntnuaccel.no , www.faktry.no

Our professional networks Italian companies (S13), Spanish and Dutch companies (S11)

OsloTech and StartupLab OsloTech manage Oslo Science Park, including incubator StartupLab which

has supported more than 200 startups since 2012.

www.oslotech.no www.startuplab.no

The Hub The Hub is a community platform which gives an overview of Norwegian

and Nordic startups. Via the platform, startups can get assistance with

recruitment and connection with investors.

www.hub.no

3

p

v

i

w

a

H

t

p

p

s

i

h

w

t

s

e

t

p

H

c

t

o

d

f

t

a

s

t

t

3

a

r

d

Table 2

Interviewee descriptions.

Company Role Background Gender

Startup 1 (S1) CEO Industrial Engineer M

Startup 2 (S2) CTO Informatics M

Startup 3 (S3) CTO Computer Science M

Startup 4 (S4) Hardware developer Cybernetics M

Startup 5 (S5) CTO Electronics M

Startup 6 (S6) Software developer Informatics M

Startup 7 (S7) CEO Electronics M

Startup 8 (S8) CEO Mechanical Engineer M

Startup 9 (S9) CEO Entrepreneurship M

Startup 10 (S10) Software developer Computer Science M

Startup 11 (S11) CEO Computer Science M

Startup 12 (S12) CEO Electronics M

Startup 13 (S13) Software developer Computer Science M

t

p

q

s

fi

r

t

v

r

B

o
.1. Companies and subjects selection

Our research relies on theoretical sampling: purposive, non-

robabilistic samples which are typically small, as a single obser-

ation is sufficient for inclusion in the coding system. Researchers

dentify key participant, for instance, CEO, CTO or key engineers

ho has access to important information. To select appropri-

te participants, we chose criteria, as suggested by Runeson and

öst (2009) . Startups were relevant for inclusion in the study if

hey met the following criteria:

• The startup has at least two members, so product development

is not an individual activity.
• The startup has been active for at least six months, so their

experience can be relevant.
• The startup develops products or services that include both

hardware and software parts.
• The startup has a first running prototype so it’s engineering

practices are relevant.

Our sample in the survey is comprised of 13 hardware com-

anies. They represent a diverse selection of application domains,

roduct types and company characteristics, although they are not

ystematically sampled from any larger distribution.

People from the relevant startups were eligible for participation

f they had experience and/or knowledge about software and/or

ardware development. If the candidate met the criteria, he/she

as regarded as qualified for contributing to the research study.

Via professional networks of co-authors of this work, we iden-

ified several potential sources of contacts, which are co-working

paces, incubator programs, and technology parks. The five differ-

nt channels used to find relevant startups are (1) Innovation Cen-

er Gløshaugen, (2) NTNU Accel and FAKTRY, (3) our co-authors’

rofessional networks, (4) OsloTech and StartupLab, and (5) The

ub. Table 1 provides an overview of the different communication

hannels and can help other researchers to find and contact star-

ups (Table 2).

There was a mix of startups originated from academica (7 out

f 13 companies), entrepreneurs (5 out of 13 companies), and in-

ustry spin-off (1 out of 13 companies). The investigated startup

ounders have varied industrial experience, ranging from 1 to more

han 10 years. Regarding entrepreneurial experience, five startups

re first time startups. The other eight startups have experienced

ome failure before. Regarding the background of the interviewees,

he majority (12 out of 13 companies) have technical backgrounds

hat are relevant for developing products (Table 3).

.2. Data collection procedure

Our chosen data collection method was interviews, identified

s an efficient method for answering research questions in explo-

ative studies (Oates, 2005). The semi-structured approach enabled

iscovery of unforeseen information as interviewees could express
hemselves more freely, and fitted both the time constraints of the

roject and the availability of startup companies. We followed a

uestionnaire guiding the data collection process.

• Section 1: Warm-up

1. Tell us about your company at the current stage

2. What was the original ideas?
• Section 2: Agility and Agile practices

1. Have you heard about, or used any of the methodologies:

Agile, Lean Startup?

2. How is the methodology implemented?

3. How do external dependencies influence product develop-

ment?

4. How do you balance hardware and software development?

5. How do you manage documentation?
• Section 3: Quality and Quality assurance

1. How do you manage product quality?

2. When did you last refactor the codebase?

3. To what extent do you reuse components of earlier proto-

types?

4. How do you perform hardware and software testing?

5. When do you start writing tests?
• Section 4: Closing-up

1. What would you do differently with the product develop-

ment?

2. Any final interesting remarks?

The first and second researcher were in direct contact with the

ubjects, hence the data collection process can be regarded as a

rst degree data collection technique. First degree data collection

equires a significant effort, but allowed both researchers to con-

rol what data was collected, ensuring that all pre-defined inter-

iew questions were answered sufficiently and exploring new di-

ections by asking follow-up questions (Runeson and Höst, 2009).

oth the first and second author attended all interviews to avoid

ne single interpretation of the respondent’s perspective and in-

http://www.ntnu.no/ig
http://www.ntnuaccel.no
http://www.faktry.no
http://www.oslotech.no
http://www.startuplab.no
http://www.hub.no

6 V. Berg, J. Birkeland and A. Nguyen-Duc et al. / The Journal of Systems and Software 167 (2020) 110599

Table 3

Startup description.

Company Product Current Stage Founded Location # of employees

Startup 1 (S1) Smart gloves Startup 2016 Norway 18

Startup 2 (S2) Medtech biosensor Startup 2017 Norway 5

Startup 3 (S3) Physical exercise game Stabilization 2016 Norway 5

Startup 4 (S4) Unmanned aircraft system Startup 2016 Norway 7

Startup 5 (S5) Advanced noise cancellation Startup 2017 Norway 5

Startup 6 (S6) Medtech hydration monitoring Startup 2016 Norway 10

Startup 7 (S7) LPG management system Stabilization 2016 Norway 8

Startup 8 (S8) Cable cam system Stabilization 2016 Norway 10

Startup 9 (S9) Digital piggy bank Startup 2017 Norway 5

Startup 10 (S10) Collaborative camera Growth 2014 Norway 50

Startup 11 (S11) Interactive children’s toy Startup 2015 Netherlands 8

Startup 12 (S12) 3D-printer control board Growth 2009 Norway 1

Startup 13 (S13) Sensors for IoT Growth 2007 Italy 25

Fig. 3. Thematic Synthesis Process (Cruzes and Dybå, 2011).

s

a

v

m

3

d

c

t

d

t

(

c

s

c

a

a

i

t

w

f

g

t

g

3

s

t

c

t

i

3

c

o

a

e

w

T

3

r

2
sight on topics, as qualitative data often can be rich and broad, but

less precise.

Before the interviews, we looked into the participants’ business

background, either through their company websites or other rele-

vant incubator or accelerator websites. Additionally, most partici-

pants answered a simple questionnaire prior to interviews where

they filled out basic information about themselves and the com-

pany (Appendix B). These measures allowed for more efficient in-

terviews as the first and second author possessed more knowl-

edge about the interviewee and could use less time on formali-

ties. Initial company analysis allowed for a holistic understanding

of each company and provided stronger evidence for the conclu-

sions drawn from the interviews. Each interview lasted between

40 min and 1 h. Table 3 presents key facts about the investigated

companies. The size of the company provides insight into the re-

quired need for development process and managerial overhead.

The “Current stage” is adapted from the paper (Crowne, 2002), as

applied in the systematic mapping study by Berg et al. (2018) , rep-

resenting the stage of the startups at the time of the interviews.

The startup stage refers to the period between product conception

and the first sale. The stabilization phase starts when the first cus-

tomer receives the product, while the growth phase begins when

a product is delivered to a new customer without disturbing the

development team.

3.3. Analysis procedure

We applied the thematic synthesis process which is a codes-

to-theory model for qualitative research (Cruzes and Dybå, 2011).

The objective of our thematic synthesis process was to both an-

swer the research questions and come up with a model of higher-

order themes describing development strategies in hardware star-

tups, focusing on aspects that are unique from software startups.

The main steps of the process are illustrated in Fig. 3 .

3.3.1. Initial reading

The first step of the analysis process was to read through the

transcribed interviews to generate initial ideas and identify pos-
ible patterns in the data. All interviews were transcribed shortly

fter they were conducted to ensure the actual meaning of inter-

iewees’ answers. All authors discussed the interviews, creating a

ind map of central concepts relevant to hardware startups.

.3.2. Coding process

To generate initial codes, the first and second author applied a

escriptive coding technique (Saldaña, 2015), to identify interesting

oncepts, categories, or other findings in a systematic way across

he data set. Descriptive coding helped organize and group similar

ata into categories, which is the first step towards the creation of

hemes.

The coding process followed an integrated approach

 Saldaña, 2015). This allowed us to avoid coding data out of

ontext, while at the same time identifying what the text was

aying rather than what we wanted to see. We applied an iterative

oding process, to allow for simultaneous data collection and

nalysis (Runeson and Höst, 2009). The coding process resulted in

 total of 49 codes and 734 references from 13 interviews. The first

teration involved coding the data from the four first interviews. A

otal of 29 codes were generated from 416 references. The codes

ere examined by the first, second, and third author. Lessons

rom the evaluation were implemented in the next interviews to

enerate relevant codes. For the second iteration, we classified

ext into the codes from the first iteration, while at the same time

enerating new codes in an inductive manner.

.3.3. Codes into themes

A theme can be seen as a way of grouping initial codes into a

maller number of sets, to create a meaningful whole of unstruc-

ured codes (Cruzes and Dybå, 2011). We divided related codes into

ategories and concepts (Strauss and Corbin, 1998). All interview

ranscripts were analyzed separately to ensure that themes were

n line with the associated context.

.3.4. Model of higher-order themes

The generated themes were further explored and interpreted to

reate a model of higher-order themes (Appendix A). The higher-

rder themes were prototyping and development, quality assurance,

nd enabling factors . In addition, we identified patterns more gen-

ral to the startup context. The 14 themes in the thematic map

ere extracted to address management of Agility (as shown in

able 5) and Quality (as shown in Table 6).

.4. Validity procedure

In qualitative research, the validity must be addressed to enable

eplication of research and to ensure findings are trustworthy (Yin,

003; Cruzes and Dybå, 2011; Runeson and Höst, 2009). To ensure

V. Berg, J. Birkeland and A. Nguyen-Duc et al. / The Journal of Systems and Software 167 (2020) 110599 7

t

R

a

a

a

f

t

m

i

u

t

a

i

c

w

g

t

s

t

i

m

s

s

f

s

d

i

o

v

n

d

m

a

a

p

l

4

p

4

s

t

a

(

q

i

c

a

a

i

i

t

i

a

f

f

s

o

d

i

b

o

i

w

i

T

t

a

c

i

p

t

t

p

(

4

p

d

p

fi

p

o

t

s

i

o

f

o

s

n

p

t

w

t

f

t

h
he validity of this study, we followed the validity guidelines from

uneson and Höst (2009) .

Construct validity ensures that the operational measures that

re studied really represent what the researcher have in mind

nd what is investigated according to the research questions. To

ssure that the interview questions (Section 3.2) were suitable

or answering our research questions, we defined interview ques-

ions through a top-down approach using the Goal Question Metric

ethod. Interviewees were either CEOs or engineers with insight

nto business- and technical-related aspects. Since it is difficult to

nderstand a startup and its dimensions within a time-span of 30

o 60 min, we collected data about the startups through incubator

nd company websites prior to interviews. To improve the reliabil-

ty of the study, all participating startups were included in the pro-

ess of writing company descriptions to ensure their conformance

ith reality.

External validity refers to the extent to which the findings are

eneralizable beyond the context studied. For qualitative studies,

he intention is to enable analytical generalization where the re-

ults are extended to companies which have common characteris-

ics. Our startups were mostly located in Norway, mainly consist-

ng of early-stage small-size entrepreneurial teams. They are also

ostly self-funded and acquiring some key competence from the

tart. Hence, it would be safe to rely the findings to startups with

imilar characteristics (i.e., early-stage European startups). Startups

rom other American countries or startups already in a growth

tage, might not be observed with similar features.

Reliability refers to the extent that data and the analysis are

ependent on the specific researchers. We have defined and val-

dated interview protocols with colleagues. To decrease the risk

f biased interpretations, author one and two attended all inter-

iews. Some interviews were in Norwegian, hence transcripts were

ot always verbatim to preserve the actual meaning of respon-

ents. Recordings were transcribed shortly after each interview to

itigate bias. Additionally, we compared findings to related liter-

ture (Giardino et al., 2016; Nguyen-Duc et al., 2018; Ronkainen

nd Abrahamsson, 2003), examining similarities, contrasts, and ex-

lanations. Such comparisons have proven to enhance internal va-

idity and the quality of findings (Eisenhardt, 1989).

. Results - How do hardware startups achieve both agility and

roduct quality during product development?

.1. An integrative view on agility and product quality in hardware

tartup development

The integrative model of agility and quality in hardware star-

ups is presented in Fig. 4 . We have grouped the main concepts

ccording to two dimensions (1) agility-driven or quality-driven,

2) project activities (i.e., prototype and product development, or

uality assurance). Each concept describes a common foundation

n hardware startups that manage agility or product quality. We

lassified the emerging concepts into three categories:

• Mindset (represented by green boxes in Fig. 4): a belief, an

opinion, or a way of thinking towards a topic
• Practice (represented by pink boxes in Fig. 4): the actual appli-

cation of an idea, a belief, or a method to solve a specific task
• Strategy (represented by yellow boxes in Fig. 4): a high level

plan that might include a set of practices or processes to

achieve a goal

As can be seen from Fig. 4 , the integrative model of agility

nd quality in hardware startups focuses on four quadrants on two

xes. The vertical axis shows two major activity areas (1) prototyp-

ng and product development and (2) quality assurance. The hor-

zontal axis shows the area of Agility or Quality. By putting them
ogether, we offer an integrative overview of how agility and qual-

ty are managed in both product development and quality assur-

nce activities. The final section in the model represents enabling

actors that apply to both quality and agility concepts. As seen

rom the model, hardware startups achieve agility at both mindset,

trategy, and practice level in the prototyping and product devel-

pment phase. Hardware startups include development practices

uring the quality assurance phase that provide short-term gains

n quality. However, it becomes clear that hardware startups lack

oth strategies and mindsets for achieving the long-term quality

f the product during the prototyping and development phases.

The model also illustrates the lack of practices during the qual-

ty assurance phase that support the vital need for agility in hard-

are startups. In other words, there are none quality-driven activ-

ties adopted by hardware startups that contribute to their agility.

his impedes the adoption and focus on quality in hardware star-

ups.

The commonality among hardware startups performing these

pproaches are (1) customized iterative practices, (2) sufficient

ompetence in team, and (3) collaborative technical decision mak-

ng. These appear as key mindsets and strategies for startups to

erform both agility and quality-driven product development. In

he following sub-sections, we present detailed insights related

o the common enabling factors, agility and quality aspects in

rototyping, product development, and quality assurance activities

 Table 4).

.2. Enabling factors for achieving agility and quality

Customized iterative practices. Hardware and hardware-oriented

roduct development involve a lot of experimental work, and so

evelopers are encouraged to follow an iterative development ap-

roach (Ronkainen and Abrahamsson, 2003). Among the startups,

ve practiced simplistic versions of Scrum, seven used ad-hoc Agile

ractices, while one startup did not follow a defined Agile devel-

pment process. In some startups there was not identified a need

o implement specific development methods, one reason being the

mall size of the development team. This was especially the case

n early stages when tech teams were co-located and introduction

f formal communication processes would inhibit the agility and

reedom of the team. In the startup where the development team

nly consisted of one person, the degree of process was almost ab-

ent.

S5 - “Since the team is so small, communication is easy. We have

not seen a need to implement any specific Agile methods or other

lean practices.”

S13 - “I don’t think Agile practices are applicable to hardware de-

velopment, for example you cannot frequently re-design a port as

it involves great costs.”

S8 - “In hardware, the variance of tasks and interrelated depen-

dencies make it more complex than what current Scrum tools like

Jira are suited for.”

S4 - “Strict Scrum is probably easier to implement for pure soft-

ware development, so we use a simplified version of it.”

Due to different team sizes, product offerings, and other fi-

ancial, managerial, and human factors, Agile practices were im-

lemented differently among the hardware startups. Sprint dura-

ion usually lasted between 1–2 weeks, and goals were defined in

eekly meetings. Since development of physical products usually

akes longer time than implementation of software, the startups

ocused on defining measurable sub-goals that were part of a long-

erm plan. Most startups had the same Sprints for the respective

ardware and software development. However, one startup differ-

8 V. Berg, J. Birkeland and A. Nguyen-Duc et al. / The Journal of Systems and Software 167 (2020) 110599

Fig. 4. An integrative view on quality and agility.

Table 4

Enabling factors for achieving agility and quality.

Terms Definitions Impacting factors Category

Customized iterative practices Self-defined versions of Agile with Sprints

where customers or potential users can give

feedback. Tailored set of Agile practices (e.g.,

product backlogs, Sprint reviews) might be

adopted

Team competence, team size,

third-party vendors, market

feedback

Strategy

Sufficient competence in team Acquiring in-house software and hardware

engineers to perform design, implementation,

and product testing

Funding, professional

networks, recruitment strategy

Strategy

Collaborative technical

decision making

Achieving harmony between hardware and

software integration with a flat-team

structure that supports quick decisions

regarding both implementation and testing

Team competence, leadership,

coordination and

communication mechanisms

Mindset

Table 5

Achieving agility in hardware startups.

Terms Definitions Impacting factors Category

Partial laboratory-prototyping Production of simple and low-fidelity prototypes,

representing a part of the final products and services,

software and hardware prototyped separately

Complexity of hardware, funding,

available tools, third-party vendors

Practice

Adoption of tools and components Utilizing commercial-off-the-shelf or open source

components and tools to speed up the prototyping

Funding, component-driven experts in

team, third-party vendors

Practice

Optimizing manufacturing and logistic

process

Managing third-party risks and maintaining flexibility in

development process to achieve performance

Team competence, communication

skills, risk management

Strategy

Combining documentation with Agile

methods

Spend less time on documents, make it as a task in the

Sprint backlog

Expert availability Mindset

Accepting technical debt as an

intrinsic attribute

Allow amount of technical debt that does not block

product demonstration

Product nature, team competence,

traceability of issues

Mindset

Outsourced manual testing Outsourcing none important, manual testing tasks to

third-party vendors

Communication skills, quality of

outsourced partners, task definition

mechanisms

Strategy

V. Berg, J. Birkeland and A. Nguyen-Duc et al. / The Journal of Systems and Software 167 (2020) 110599 9

Table 6

Quality aspects of hardware startups.

Terms Definitions Impacting factors Category

Quality-driven prototyping for core components Test-driven prototyping, early

focus on non-functional

attributes

Testing capabilities within team Practice

Towards more frequent user testing Early verify customer value

before thorough testing

Communication skills, task definition Strategy

Partly automated testing Team members individually

test new functionality

Team competence, product nature Practice

Simulation as an aid for unit and component testing Ability to predict product

behaviour before physical

production

Available tools, product nature Practice

Regulation and standard to guide quality assurance Market regulations and

standards may infer strict

development guidelines

Quality of outsourced partners, available tools Practice

e

c

m

b

m

c

s

r

w

a

c

p

w

e

o

s

c

s

t

m

c

f

u

f

s

r

m

c

m

b

r

t

t

o

o

4

b

b

a

r

t

c

f

l

e

t

m

s

S

t

a

c

w

w

t

t

H

m

s

t

s

ntiated between hardware and software Sprints to better handle

ontingencies of hardware and software development.

S1 - “We work on a weekly basis where we define goals for each

week. These are part of a main goal of what we want to achieve

during the semester.”

S10 - “Software development follows two-week Sprints while hard-

ware Sprints last 1–2 months.”

Sufficient competence in team. Although contracting is a com-

on approach, startups mention that internal development would

e the best way to achieve agility. Hardware startups need team

embers that are dedicated to all aspects of the development pro-

ess. As hardware startups have to deal with many factors be-

ides software there are higher demands to expertise and expe-

ience of team members. Team members of hardware startups

ill preferably need knowledge about application domain, system-

tic development, software and hardware development, mechani-

al engineering, and experience of working with third-party com-

anies. Particularly, achieving a good collaboration between soft-

are engineers and hardware engineers in the team would accel-

rate the process of prototyping. However, this is only observed in

ne startup. Most of the startups had challenges of achieving right

ets of competence from the beginning:

S6 - “Finding talented people is hard. Since we are a startup we

cannot give very good salary. This is why we try to attract people

who see that the product may provide great value in the future.”

Even though external resources can substitute for the missing

ompetence, this would not be sustainable in the long run. Many

tartups include part-time team members, who are typically more

ask-based oriented than co-founders. Depending on these people

ight reduce the agility of production due to the availability and

ommitment issues.

Collaborative technical decision making. Hardware startups are

ound with technology-driven processes of iterating their prod-

cts. The teams are typically flat structured, probably due to the

act that startups often have a small number of members at early

tages. Members are motivated and voluntary in taking tasks and

esponsibilities. In our study, startups seem to lack governance

echanisms of legal rules and strict regulation. Typically, techni-

al decisions are made by engineers themselves. All decisions are

ade on team-basis. We also observe that startups allow for flexi-

ility in working time and place, as everyone is responsible for the

equirements needed for their area of responsibility. For a small

eam, team members could probably play multiple roles. Overall,

eam members trust other’s competence. The team is flexible in

rganizing and reorganizing (i.e., adding new members and collab-

rating with vendors) to react to changes from environments.
.3. Agility aspects of hardware startups

Partial laboratory-prototyping. Almost all startups immediately

uilt a physical prototype to elicit requirements and achieve rapid

usiness experimentation. They usually followed an evolutionary

pproach, performing incremental improvements on an early low-

esolution prototype. Rapid prototyping is important to obtain cus-

omer feedback, however it can be problematic in the hardware

ontext. Hardware startups usually have a significant focus on non-

unctional requirements because of the many challenges and regu-

ations associated with complex systems development and the gen-

ral hardware ecosystem. Common to the investigated startups is

heir priority of modularity both at software and hardware level,

uch so to achieve frequent user testing.

S10 - “We made a physical prototype immediately. It looks like

today’s product, but with many shortcuts and lower quality.”

S8 - “We can develop many low-resolution prototypes using our

own equipment, but if we want high-quality prototypes we might

have to order 10 different parts from 2 to 3 suppliers.”

To deal with their inability to quickly develop prototypes, the

tartups tried to be flexible on the software side of their products.

ince software can be frequently updated and tested by customers,

hey focused on developing a simple interface between hardware

nd the software directly accessing the hardware. In this way they

ould achieve more parallel and independent development of hard-

are and software. They mainly tried to reuse software, as hard-

are components were easier to reuse with more refined proto-

ypes.

S4 - “We have developed a simple interface between hardware and

software so that the development can happen individually.”

S3 - “When we outsourced software development, changes took a

lot of time... In software we need to make changes weekly. In hard-

ware it is okay that things take a bit more time.”

S2 - “We prefer making changes in the software or firmware. To

facilitate this, we have a clearly defined interface between software

and hardware.”

Adoption of tools and components. Among the investigated star-

ups there was a more extensive reuse of software than hardware.

ardware and mechanical components were easier to reuse with

ore refined prototypes than early low-resolution prototypes. The

tartups made little use of mock-up tools, and so throwaway proto-

ypes seem to take little part of the prototyping stage of hardware

tartups.

S2 - “We try to reuse as much as possible from each prototype. We

divide the code into different modules, so that if we replace any

10 V. Berg, J. Birkeland and A. Nguyen-Duc et al. / The Journal of Systems and Software 167 (2020) 110599

b

p

p

T

c

a

f

s

o

l

m

t

p

a

d

i

t

r

t

b

k

a

d

t

t

t

t

t

n

hardware component we only need to change that specific part of

the code.”

S7 - “We tried to reuse the electronics, but it was harder than

expected. So the physical components are usually substituted for

each prototype... The software is more easily reusable.”

Having access to prototyping equipment will be an important

asset, reducing both development time and prototyping cost. With

3D-printers startups can do a lot of the prototyping themselves,

and make rapid changes based on customer feedback. This enables

faster problem space testing.

S2 - “With a 3D-printer we can make products that look and feel

real. This is a huge advantage. We can literally do almost every-

thing apart from the electronics production ourselves and put it

together almost for free.”

S9 - “We have done a lot of 3D-printing. Without access to useful

equipment prototyping would have been very expensive and taken

more time.”

Optimizing manufacturing and logistic process. The most time-

consuming process of hardware prototyping is the long production

and shipping times, as production usually is located in China or

other countries in southeast Asia. This means that not only will

the delivery time of necessary parts depend on the vendor’s own

schedule, but also the shipping method used. Several of the inves-

tigated startups spent a significant amount of money on speeding

up production and shipping time of manufactured components.

S8 - “All parts of the prototypes must be ordered, mostly from

China, with long delivery times. We spend a lot of money making

delivery times shorter.”

Several startups experienced quality issues working with their

external partners. Manufacturing defects of crucial prototype com-

ponents caused extra delays, which is critical considering the valu-

able time already spent waiting for the components. Cooperating

with professional actors can decrease the risk of quality issues, and

enhance communication.

S4 - “We have outsourced production of mechanical parts and cir-

cuit boards. Some of the components we have received from the

manufacturer have been in bad condition and with significant de-

fects.”

As high-tech prototyping is a time demanding process, there

might go several years from the startup is founded to the time a

finalized product is ready to be released to the market. This im-

plies that vendors’ dependability also is of importance. Choosing

components that with certainty will be available the entire proto-

typing stage is crucial.

S12 - “The first version of the screen went out of production. This

was the most important component and it took a lot of time to fix

the problem.”

To achieve speed, product quality often gets low priority in

startups. However, because of the vendor dependency of hard-

ware startups, hardware development should receive higher fo-

cus on quality. Making shortcuts in hardware design, and not as-

suring that the design is of sufficient quality before sending the

specifications for production might be costly. Initial findings sug-

gest that hardware startups focus on ensuring the quality of core

hardware components, as low-cost solutions may inhibit progress

in the long-run. Findings from S12 and S1 indicate that hardware

startups should put great effort into ensuring the quality of hard-

ware components, as low-cost solutions can inhibit the long-term

evolution of their prototypes.
S1 - “We spent more than $500 on a single component we could

not use. In addition we had to spend more time redesigning the

board, and wait for it to be produced.”

Because of pressured financial resources and small production

atches it can be hard for startups to receive commitment from

rofessional manufacturers. Working with vendors producing com-

onents of high quality at an affordable cost will be an advantage.

he big geographical distance, and the difference in language and

ulture may also challenge the communication skills of the team,

s effective communication is important to receive service as paid

or and maintain product development speed.

S10 - “As we have grown, we have been able to work with better

suppliers producing at higher quality, which in turn has helped us

prototype faster.”

S2 - “We are building on networks from earlier startup experi-

ence... Previously, we chose the cheapest suppliers, but then we

also got components in bad condition, there were communication

problems, and it usually took more than 4 weeks to get the prod-

ucts.”

Combining documentation with Agile methods . On the software

ide of the product, the common perception is that since the devel-

pers work on the code-base every day, documentation activities

ead to additional overhead. Tacit knowledge seem to be a com-

on practice in hardware startups.

S3 - “We spend less time on documentation to speed things up,

development is our main focus. It is also because software devel-

opment is in-house. We work on it daily and understand the code.”

High-tech products include a lot of different sub-systems and

echnologies, and so product complexity increases fast. This im-

lies that documentation of components should receive a bigger

ttention in hardware startups. In worst case, lack of quality and

ocumentation can put all development on hold.

S2 - “Instead of updating documentation and quality, we did

things as fast as possible, which eventually led to a lot of extra

work.”

The prototyping stage in hardware development is often signif-

cantly longer than that of software development. Since it might

ake years before hardware startups have a functioning product

eady for the market, there’s a great probability of people quit-

ing the project before it is finished. As to this there should

e increased focus on documentation in hardware startups, since

nowledge often accompanies the person quitting.

S4 - “Sometimes it becomes challenging to keep the knowledge of

people who quit, the knowledge often accompanies that person.

This leads to extra costs and effort.”

The choice of outsourcing companies can greatly impact the

mount of documentation. Good partners usually provide well-

ocumented solutions and components, which can help manage

echnical debt.

S3 - “We received an 80-page user manual from the consultants

who developed the hardware.”

To help startups perform documentation, there exist multiple

ools lowering the barriers for writing documentation. Examples of

ools include Wikis, Google Spreadsheets, and Confluence. Utilizing

ools can help decrease the amount of rework in the long run. Also

horough documentation can allow for more efficient integration of

ew employees in the development process.

S2 - “Previously we have spent a lot of extra time due to a lack of

documentation. Instead of stopping, we did things as fast as pos-

V. Berg, J. Birkeland and A. Nguyen-Duc et al. / The Journal of Systems and Software 167 (2020) 110599 11

h

o

s

d

“

p

t

a

t

u

B

s

r

t

t

q

s

v

i

h

A

f

i

w

h

b

l

w

i

o

o

b

q

l

b

H

e

a

t

c

o

m

i

4

t

i

f

f

c

q

c

s

t

p

m

r

a

i

t

i

p

q

T

t

r

v

n

l

P

t

n

t

i

I

s

A

s

d

u

d

sible without performing documentation. This eventually lead to a

lot of extra work.”

S4 - “We have a wiki for internal documentation. It is quite low

effort t o write something.”

Accepting technical debt as an intrinsic attribute. Technical debt

as been illustrated by Brown et al. (2010) , stating that “devel-

pers sometimes accept compromises in a system in one dimen-

ion (e.g., modularity) to meet an urgent demand in some other

imension (e.g., a deadline), and that such compromises incur a

debt” on which “interest” has to be paid and which the “princi-

al” should be repaid at some point for the long-term health of

he project”. Finding the correct balance between learning goals

nd quality is therefore important in order to minimize waste and

o manage technical debt (Terho et al., 2016).

By accepting that time to market is more important than prod-

ct quality, hardware startups incur intentional technical debt.

usiness experimentation to build new features is performed in

mall iterative cycles with minimal effort on product quality to

eceive fast customer feedback. Corresponding to software star-

ups technical debt mainly manifests itself on the software side of

he product in hardware startups. Since software can be changed

uickly, shortcuts and workarounds are more easily taken on the

oftware side than on the hardware side of the product. The de-

elopment team prioritizes implementing new functionality over

mproving the quality of the codebase.

S2 - “Software changes all the time... To make things work straight

away, we’d rather take a shortcut and fix it later. We know we’re

building up technical debt, but it’s on purpose to be able to test

the product on customers as quickly as possible.”

Hardware startups do not accumulate technical debt for their

ardware components similarly as for their software components.

s the concept of technical debt is built on erosion of systems

rom frequent low-quality changes, this is not as easily manifested

n hardware components. Refactoring delivered or released hard-

are is a difficult and rarely performed endeavour. However, poor

ardware design might eventually lead to the hardware needing to

e redesigned. As hardware components often are reused between

ow-resolution prototypes, bad design might imply that the hard-

are needs redesign on an earlier iteration of the product than

ntended. Early lifetime design decisions might propagate through-

ut the lifetime of the product, and may eventually become part

f the final product. These poorly made design decisions will then

e discovered after the product is released. Hence, temporary low-

uality solutions in both hardware and software will eventually

ead to accumulation of technical debt in hardware startups

Outsourced manual testing. Outsourcing includes the choices of

oth local consultant companies and aboard contracting vendors.

ardware development requires a significant amount of testing to

nsure product quality. This applies already at the prototype stage,

nd for demonstration. Among the companies, some outsourced

heir manual testing (i.e., testing the final release at different exe-

ution environments, and testing the integration between devel-

ped components and known services or products). Outsourcing

anual testing can save time and effort for startups to focus on

nnovation and core value creation activities.

S10 - “In software we have a great focus on testing. When soft-

ware is modified, we run automatic tests to ensure that everything

works... In hardware we test that the product functions in different

climates, and perform various mechanical tests... We have also out-

sourced much manual testing to a company to check more parts of
the product.” t
.4. Quality aspect of hardware startups

Quality-driven prototyping for core components. Testing is cen-

ral to hardware startups. High quality in hardware development

s important both because of the cost associated with mistakes

rom production, but also as quality greatly affects the perceived

unctionality of the product. In contrast to software products, it is

hallenging to implement changes and make improvements to the

uality after the product has been produced and assembled. As a

onsequence, focus on non-functional attributes at the prototyping

tage is essential. We observed many startups that implemented a

est-driven approach for developing the core components of their

rototypes.

S4 - “We have a test setup to ensure that the subsystems work

as intended, and that allows us to analyze different metrics and

data. For the most critical components and features we usually

define detailed test plans in advance of development.”

Towards more frequent user testing. To achieve quick develop-

ent speed in early stages, low-level testing activities generally

eceive little focus in hardware startups. Before a feature is guar-

nteed to be part of the final product, it is more important to ver-

fy that the feature adds value to the customers. Until then, the

ime spent on testing activities is minimized. This is also evident

n software startups, where developers avoid wasting time on im-

rovements of not-validated functionalities (Giardino et al., 2016).

S2 - “We prefer to work fast, as writing tests can double the de-

velopment time... If parts are to be replaced, then we think there’s

no point in spending time on testing.”

In S3 and S6, the CEO highlighted the importance of having fre-

uent feedback from their customers and users on the prototypes.

his would be critical for the design and development of a product

hat later is sought to a mass market.

Several startups faced the challenge of testing their product in

ealistic environments because of legal restrictions related to pri-

acy and public safety. Simulations and dummy-data can be alter-

atives to early testing.

S4 - “Setting up a foundation for doing robust tests is a challenge.

When developing drones it is not easy to perform testing, it re-

quires specific experience and knowledge.”

Lack of financial resources and long delivery times make it chal-

enging to test the product on a broader spectrum of customers.

hysical prototypes are resource-intensive to develop, and in con-

rast to pure software products, one cannot necessarily deliver a

ew digital software update to customers. The investigated star-

ups relied on a small set of customers for frequent feedback.

Partly automated testing. The hardware startups relied on each

ndividual developer to test features as they were implemented.

n that way the person responsible for the code was also respon-

ible for its quality and functioning with the rest of the system.

 frequently used testing activity among the startups was manual

moke tests (i.e., ensuring that major functionality work before un-

ertaking more formal testing procedures). Prototypes were man-

ally tested by internal employees to identify the most prominent

efects before testing prototypes with early adopters or customers.

S8 - “We test the subsystems ourselves, but do not have a struc-

tured system for testing... The person responsible for delivery is also

responsible for testing the feature to make sure it works.”

S1 - “People inside the startup who have experience with similar

solutions test the product before it is tested with pilot customers.”

Software engineers tends to optimize the integration and opera-

ion of software components by adopting automated testing. This is

12 V. Berg, J. Birkeland and A. Nguyen-Duc et al. / The Journal of Systems and Software 167 (2020) 110599

w

t

t

p

s

p

m

t

t

s

m

t

w

i

s

w

t

fl

a

d

m

b

s

h

p

c

s

t

t

T

i

t

t

t

r

w

t

e

d

q

l

r

s

t

(

e

p

t

t

l

a

5

p

f

T

s

i
reported to be done in some part of the product. Simulation as an

aid for unit and component testing. For hardware development, sim-

ulation is very helpful to ensure certain quality attributes of phys-

ical products. Hardware simulations can help determine the pre-

cise operation of hardware without producing an expensive pro-

totype, and enable testing of the hardware-software co-operation

(Ronkainen et al., 2002). Several startups found it challenging to

test their product in realistic environments, both due to memory

and performance constraints and because of privacy and public

safety issues. Since planning is difficult in the startup context, test

plans were often changed, hence these were often neglected. Sim-

ulations helped testing the product and code base before produc-

tion, postponing the split between hardware and software func-

tionality.

S4 - “At an early stage, things don’t always go as planned. Other

things than what you test for fail, so test and project plans often

change a lot... In addition to performing many simulations, we use

basic tuning of attitude control to avoid simple mathematical er-

rors.”

Among the investigated startups we found that startups in later

lifecycle stages implemented more systematic testing activities. As

they got more customers, quality and testing activities became

more important. Established customers have stricter demands than

pilot customers. To deal with increased quality requirements, the

startups implemented formal processes for testing. Regulation as a

guide for early quality assurance. For some startups working under

regulated domains, such as healthcare and automotive, market reg-

ulations and standards infer a strict guideline for product develop-

ment. This has been used to guide the quality assurance activities

since the prototyping phases. Besides, companies operating in the

market will need to document all parts of their product and meet

the high standards of quality required. Hence, market segment will

greatly affect the severity of technical debt and infers an early debt

management.

S6 - “We are weak on processes and document management, it

is very ad-hoc. Soon we will introduce a process tool and a docu-

ment management tool. This is necessary if we are to meet the ISO

standard requirements and get it approved as a medical product.”

S13 - “The documentation is part of the development process... We

have an ISO certification that says we are certified according to

that quality process. They have strict requirements on how docu-

mentation should be kept, including the flow of the documentation

and what kind of documentation to write.”

5. Discussion

5.1. Achieving agility in hardware-related product development

Agility is an essential part of startups in general

(Pantiuchina et al., 2017), and should thus be considered as

an attribute of early stage hardware startups. Hardware startups’

need for speed often sacrifice product quality. Instead of applying

best engineering principles, we found that development teams

prefer simple solutions to achieve rapid business growth. Speed-

related activities lead to the accumulation of technical debt, which

eventually inhibit further business growth (Giardino et al., 2016).

Achieving agility in hardware startups is not as straightforward as

adopting Agile practices or rapid prototyping in software startups.

It is evident that iterative development with middle-term plan-

ning is used in hardware startups because hardware development

usually requires more time than software development does. As

non-functional attributes need to be assured at the prototyping

stage (Nguyen-Duc et al., 2018), and hardware startups deal with

third-party dependency, release frequency is low compared to soft-
are startups. This limited the ability of continuous experimenta-

ion as observed in software startups (Fagerholm et al., 2014).

The investigated hardware startups achieved agility by facili-

ating for simultaneous work on multiple possible solutions. Im-

lementation of ready-made or outsourced components can be a

ignificant struggle as hardware startups rarely develop all com-

onents themselves. System design and architectural decisions are

ade in advance of development, and may greatly affect later sys-

em integration of components. As development in hardware star-

ups can be considered a test of feasibility, development methods

hould facilitate for experimentation of multiple solution methods.

One of the key practices to achieve agility is efficient manage-

ent of external dependency. By increasing the knowledge of ex-

ernal components in the system, developing reliable relationships

ith external partners, startups can reduce the time wasted on fix-

ng issues that are not under the startup’s team control.

The nature of hardware development makes embedded systems

ensitive to rapid changes in hardware or hardware-related soft-

are (Ronkainen and Abrahamsson, 2003). Preliminary architec-

ure design is necessary to facilitate iterative development, and

exibility to handle rapid changes. As hardware startups intention-

lly try to force changes on the software side, neglecting up-front

esign may cause bugs that are not easily detected. Early invest-

ents in up-front system design can make the product more ro-

ust to changes, and facilitate for streamlined development in later

tages.

Testing must ensure conformance between hardware and

ardware-related software. However, the test-driven approach is

roblematic because of the severe memory and performance

onstraints of embedded systems (Ronkainen and Abrahams-

on, 2003), in addition to the restricted resources of hardware star-

ups. To achieve quick development speed in early stages, low-level

esting activities generally receive little focus in hardware startups.

he startups were first and foremost interested in ensuring that

ncluded features provide value to customers.

Refactoring is basically the object-oriented variant of restruc-

uring, “the process of changing a [object-oriented] software sys-

em in such a way that it does not alter the external behaviour of

he code, yet improves its internal structure” (Fowler, 2018). Our

esearch indicates that regular refactoring is not practiced in hard-

are startups, neither for software or hardware development. Pro-

otyping consists to a large degree of shortcuts and workarounds,

specially for the software components. The nature of hardware

evelopment is not compatible with regular refactoring, as fre-

uently redesigning components involves significant costs. This re-

ates to software startups as well. Research states that refactoring

arely is implemented in the early stages of the startup, but as the

tartup grows, returning the accumulated technical debt is needed

o meet more quality-demanding customers and scalability issues

 Giardino et al., 2016).

The mentioned practices extend the list of Agile methods for

mbedded systems development and in general hardware-related

roducts (i.e., embedded hardware, wearable devices, Internet-of-

hings systems, and robotics) (Kaisti et al., 2013). The environmen-

al conditions that make the practices particularly relevant include

imited resources, market-driven requirements, and the temporary

nd exploratory nature of process management.

.2. Assuring product quality

The complexities and uniqueness of hardware development im-

ly that hardware startups need to prioritize product quality dif-

erently from software startups in order to speed-up development.

he investigated startups tried to facilitate for changes in their

oftware parts while keeping the amount of hardware rework min-

mum, due to the rigid nature of hardware development. Hardware

V. Berg, J. Birkeland and A. Nguyen-Duc et al. / The Journal of Systems and Software 167 (2020) 110599 13

q

m

E

c

h

o

h

s

t

w

h

s

r

w

t

t

b

c

i

c

a

i

o

t

t

A

(

s

n

n

f

c

d

u

p

c

c

h

b

i

t

D

w

s

o

c

e

f

s

e

t

t

w

m

c

f

a

f

d

5

v

s

a

i

m

i

a

w

a

fl

u

c

t

w

c

t

s

t

s

s

t

d

i

d

S

a

n

t

p

s

i

t

g

a

m

F

a

o

w

i

A

l

t

p

q

6

w

r

h

i

i

s

r
uality is often necessary to meet real-time performance require-

ents of embedded systems (Ronkainen and Abrahamsson, 2003).

nabling the hardware-software co-operation is an intricate pro-

ess due to the complex control and testing support required over

ardware, and the fast time-to-market cycles require simultane-

us software and hardware design (Ronkainen et al., 2002). The

ardware startups invested in a simple interface combined with a

killed team to increase the amount of parallel development, facili-

ating for two largely independent development processes of hard-

are and software.

While forcing rapid changes on the flexible software side, the

ardware startups incurred intentional technical debt. Since the

oftware developers constantly worked with the code base, they

elied on tacit knowledge instead of formal documentation. Hard-

are documentation seemed to be of higher importance due to

he many stakeholders involved in hardware development. Inten-

ional technical debt is a frequent problem in software startups,

ut can be even more harmful for hardware startups due to the

hange-sensitivity of the numerous complex hardware-software

nteractions (Ronkainen and Abrahamsson, 2003). Refactoring of

ode base can cause changes in system behaviour or even jeop-

rdize system operation. Even if software shortcuts make sense

n the short-run, our findings indicate that the complex nature

f high-tech products may cause a severe amount of rework in

he long-run. Hardware startups should invest in documentation

ools to lower the barriers for formal documentation. Adoption of

gile methods has proven to be efficient in reducing error rates

 Albuquerque et al., 2012), however current usage of such is re-

tricted to a subset of Agile practices customized the individual

eeds of hardware startups.

The investigated hardware startups incurred unintentional tech-

ical debt due to the difficulty of testing problem space. They per-

ormed usability and acceptance tests on a small group of pilot

ustomers, as a lack of financial resources and third-party depen-

encies (e.g., delivery times) made it challenging to test the prod-

ct on a broader spectre of customers. By immediately building a

hysical prototype, the startups focused on validating, as they fo-

used on making their customer acquisition processes more effi-

ient rather than testing the demand for a functional product. The

ardware startups’ inability to produce many prototypes inhibited

usiness experimentation and lead to feature creep. Feature creep

n hardware startups may similarly to software startups be harmful

o the production and maintenance of core functionality (Nguyen-

uc et al., 2017).

Testing is central to embedded system development, as hard-

are startups need to assure non-functional attributes at an early

tage. We found that testing practices were implemented to vari-

us extent among the hardware startups, among other things, be-

ause the testing environment was different from the development

nvironment. Memory and performance constraints can also af-

ect hardware startups’ testing ability (Ronkainen and Abrahams-

on, 2003). The investigated startups relied on individual develop-

rs’ effort s to ensure quality of new functionality. Manual smoke

ests and simulations were favored to professional engineering ac-

ivities. Findings indicate that rigorous low-level testing practices

ere not implemented before later life-cycle stages.

The investigated startups followed a quality-driven develop-

ent approach, where performance and quality criteria of core

omponents were verified through frequent user testing. Beyond

unctional testing as in software development, specific test plans

re needed for hardware and hardware-software integration inter-

aces. The found practices can be applied to a cost and quality-

riven environment similar to what (Peters et al., 2014) reported.

l
.3. Balancing agility and quality in high-tech product development

The conflicting requirements for quality and agility mean de-

elopment methods will need a hybrid process that balances both

trict hardware development while allowing speed and flexibility

s in software development. We extend knowledge about possible

ntegrative approaches for agility and quality in hardware develop-

ent (Jha et al., 2016). Tactics for achieving agility (i.e., outsourc-

ng, rapid prototyping, Sprint-based development) related to speed

re commonly used by most startups, however, we see that hard-

are startups’ overall strategy is to spend more time on quality-

ssuring activities.

A previous study reports five types of Agile practices that in-

uence software quality, which are teamwork, engineering, doc-

mentation, testing, and management (Arcos-Medina and Mauri-

io, 2019). The startups in our study illustrate the implementa-

ion of simple quality-aware practices in their development process

ith the focus on frequent user testing, early customer feedback,

ollaborative decision making, adoption of low-level documenta-

ion tools, and model-based engineering.

Working with limited resources, finding alternative ways to en-

ure product quality in early stages can be of high value. Realis-

ic testing environments may be restricted, and as the early stages

hould not only be about failing fast, but failing cheap, computer

imulations may provide early product validation. As documenta-

ion and component testing usually is the responsibility of each

eveloper it should be easy to produce light documentation. Find-

ng a sufficient approach to Agile documentation in startups that

oes not disrupt the informal workflow of the team is important.

imple and useful documentation will spare later effort.

Particular for the startup context, hardware and software teams

re not always co-located or communicating in an effective man-

er. We see hardware-software integration meetings as an impor-

ant practice for providing agility and quality to the development

rocess, supporting team decision making. As observed in most

tartups, managing the interface between hardware and software

s a necessity for speed that allows for distributed development

eams simultaneously working on multiple solutions and technolo-

ies.

Existing research addresses the combination between agility

nd quality at requirement engineering, architecture, and imple-

entation level (Jha et al., 2016; Arcos-Medina and Mauricio, 2019;

ranch et al., 2019). Our study offers a comprehensive view on

dopting agility and quality-aware practices across product devel-

pment activities. We also observe that all startups to some extent

ere familiar with Agile and it’s concepts, however its’ applicabil-

ty to the hardware startup context were of different perception.

lthough quality-aware Agile practices are useful, there is still a

ack of know-how to establish and bring these practices into ac-

ual usage. Hardware startups need a specific set of quality-aware

ractices in order to manage technical debt and attain the level of

uality required for all stages of their development process.

. Conclusion

Hardware startups develop physical products with mixed hard-

are and software components, requiring expertise within a broad

ange of technological fields. In addition to software development

ardware startups deal with production and logistics issues, factors

mplying higher initial financial and human investments than what

s experienced by software startups. From a qualitative exploratory

tudy investigating 13 hardware startups, this paper presents the

ole of engineering activities from idea conceptualization to a

aunched product, and factors influencing agility and quality. Our

14 V. Berg, J. Birkeland and A. Nguyen-Duc et al. / The Journal of Systems and Software 167 (2020) 110599

c

o

d

t

m

t

s

t

r

t

c

s

s

i

m

t

v

s

s

s

m

b

r

v

s

i

p

l

s

t

k

p

D

c

i

research results indicate that hardware startups achieve rapid pro-

totyping through evolutionary approaches, hardware-software de-

composition strategies, and opportunistic Agile practices. The level

of agility in prototyping and production varies depending on team

competence, funding and various external constraints. Hardware

startups incur technical debt as an unavoidable part of the evolu-

tion. The state-of-practice testing, with informal and partial qual-

ity assurance approaches, does not help to reduce the overall level

of technical debt. The competitive environment of hardware star-

tups makes speed inevitable, where investing in hardware quality

will be necessary for bringing products fast to market. The study

explains the priorities of hardware startups’ engineering approach,

and the specific need for process in managing the relationship be-

tween quality and speed. We provide practitioners with a better

understanding and awareness of their own context, helping them

make technical and business-related decisions of sustainable char-

acter. It is also evident that quality and agility is balanced with

the mean of quality-aware Agile processes with an effective man-

agement of third-party vendors.

This study provides early empirical evidence into prototyping

and engineering practices in hardware startups. However, the study

highlights the compromise hardware startups make between qual-

ity and speed. Quality is of higher significance, and more research

should be provided identifying valuable activities and approaches

for hardware startups dealing with restricted resources. We en-

courage researchers to explore the long-term effects of techni-

cal debt, as our results are based on a small sample of early-

stage hardware startups. In addition, future research should inves-

tigate how hardware startups can ensure safety and security stan-

dards when developing highly safe systems, following standards

like IEC61508 (Japan, 2012). The results are partly based on man-

agerial viewpoints, hence missing important links to everyday test-

ing activities performed by engineers and developers. Future work

should verify the results with other startup companies to find its

applicability in other environments, enabling generalization to a

larger startup audience. More investigations should be undertaken

to understand the role of scope in the engineering activities of

hardware startups.
Our integrative model of agility and quality also implies the fo-

us on mindsets, strategies, and practices for each product devel-

pment activity. Future research should focus on defining quality-

riven practices that contribute to agility, and further simplify

he introduction of quality in startups. As hardware startups need

ore attention to hardware quality to allow for evolutionary pro-

otyping and speed, there should be engineering strategies de-

cribing how hardware startups can manage the relationship be-

ween restricted resources and increased quality demands. Future

esearch can also focus on strategies and mindsets to support long-

erm quality in the startup context. Hardware startups need spe-

ific guidelines for performing problem space testing, and research

hould verify the consequences of its absence. There are identified

everal limitations to this study. Having based our study on qual-

tative measures, results and implications are subject to bias. To

itigate the risk of misunderstandings or wrong interpretations,

wo researchers attended all interviews. Whenever possible, inter-

iews were performed face-to-face on-site. Recordings were tran-

cribed and translated shortly after each interview to ensure re-

pondents’ meanings were preserved. Another limitation is the in-

ufficient knowledge on technical decisions and product develop-

ent challenges provided by some interviewees (i.e., knowledge of

usiness executives is often based on managerial viewpoints). The

esults would benefit from a greater amount of participants pro-

iding insights into every-day engineering activities of hardware

tartups. Another shortcoming to the study is the diversity of the

nvestigated startups, as the selection constituted early-stage Euro-

ean hardware startups. The study would profit from a wider col-

ection of data, both to discover more relevant themes and to en-

ure credible conclusions (i.e., generalizability of the results). Fur-

her investigations of hardware startups operating in different mar-

ets, lifecycle stages, and various geographical locations can im-

rove the reliability of the research results.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

V. Berg, J. Birkeland and A. Nguyen-Duc et al. / The Journal of Systems and Software 167 (2020) 110599 15

A

A

Have you received any funding?
ppendix A. Thematic map

ppendix B. Pre-interview question questionnaire

• Briefly describe your product.
• Briefly explain your role and responsibilities in the company.
• Briefly describe your company (i.e., history, current headcount,

roles, and process)
•

16 V. Berg, J. Birkeland and A. Nguyen-Duc et al. / The Journal of Systems and Software 167 (2020) 110599

F

F

F

G

G

G

G

G

G

H

J

J

K

K

K

K

K

M

N

N

N

N

N

O
P

CRediT authorship contribution statement

Vebjørn Berg: Conceptualization, Methodology, Formal analy-

sis, Investigation, Data curation, Writing - original draft, Writing -

review & editing. Jørgen Birkeland: Conceptualization, Methodol-

ogy, Formal analysis, Investigation, Data curation, Writing - original

draft, Writing - review & editing. Anh Nguyen-Duc: Conceptual-

ization, Validation, Resources, Supervision, Writing - original draft,

Writing - review & editing. Ilias O. Pappas: Resources, Supervision,

Writing - review & editing. Letizia Jaccheri: Validation, Resources,

Supervision, Writing - review & editing.

References

Abatecola, G., Cafferata, R., Poggesi, S., 2012. Arthur stinchcombe’s “liability of new-

ness”: contribution and impact of the construct. J. Manage. Hist. 18 (4), 402–
418. doi: 10.1108/17511341211258747 .

Abrahamsson, P. , Oza, N. , Siponen, M.T. , 2010. Agile software development methods:

a comparative review. In: Agile Software Development. Springer, pp. 31–59 .
Cunningham et al., W., 2001. The agile manifesto. http://www.agilemanifesto.org ac-

cess date: 2017-11-12.
Albuquerque, C.O. , Antonino, P.O. , Nakagawa, E.Y. , 2012. An investigation into agile

methods in embedded systems development. In: International Conference on
Computational Science and Its Applications. Springer, pp. 576–591 .

Aldrich, H. , Auster, E.R. , 1986. Even dwarfs started small: liabilities of age and size

and their strategic implications.. Res. Organ. Behav. .
Alvarez, S.A. , Barney, J.B. , 2007. Discovery and creation: alternative theories of en-

trepreneurial action. Strateg. Entrep. J. 1 (1–2), 11–26 .
Alves, C. , Pereira, S. , Castro, J. , 2006. A study in market-driven requirements engi-

neering .
Andersson, C., Runeson, P., 2002. Verification and validation in industry - a quali-

tative survey on the state of practice. In: Proceedings International Symposium
on Empirical Software Engineering, pp. 37–47. doi: 10.1109/ISESE.2002.1166923 .

Arcos-Medina, G., Mauricio, D., 2019. Aspects of software quality applied to the pro-

cess of agile software development: a systematic literature review. Int. J. Syst.
Assur. Eng. Manage. 10 (5), 867–897. doi: 10.1007/s13198-019-00840-7 .

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.

C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D., 2001. Manifesto for agile
software development.

Berg, V. , Birkeland, J. , Nguyen-Duc, A. , Pappas, I. , Jaccheri, L. , 2018. Software startup

engineering: a systematic mapping study. J. Syst. Softw. .
Blank, S. , 2013a. The Four Steps to the Epiphany: Successful Strategies for Products

That Win. BookBaby .
Blank, S. , 2013b. Why the lean start-up changes everything. Harv. Bus. Rev. 91 (5),

63–72 .
Bohmer, B.A .A .I. , Lindemann, U. , 2015. Open innovation ecosystem-makerspaces

within an agile innovation process. In: Proceedings of the International Society

for Professional Innovation Management .
Bosch, J., 2016. Speed, data, and ecosystems: the future of software engineering.

IEEE Softw. 33 (1), 82–88. doi: 10.1109/MS.2016.14 .
Brown, N. , Cai, Y. , Guo, Y. , Kazman, R. , Kim, M. , Kruchten, P. , Lim, E. , MacCormack, A. ,

Nord, R. , Ozkaya, I. , 2010. Managing technical debt in software-reliant systems.
In: Proceedings of the FSE/SDP Workshop on Future of Software Engineering

Research. ACM, pp. 47–52 .

Carmel, E. , 1994. Time-to-completion in software package startups. In: 1994 Pro-
ceedings of the Twenty-Seventh Hawaii International Conference on System Sci-

ences .
Coleman, G., O’Connor, R.V., 2008. An investigation into software development pro-

cess formation in software start-ups. J. Enterp. Inform. Manage. 21 (6), 633–648.
doi: 10.1108/17410390810911221 .

Conboy, K. , 2009. Agility from first principles: reconstructing the concept of agility

in information systems development. Inform. Syst. Res. 20 (3), 329–354 .
Crowne, M. , 2002. Why software product startups fail and what to do about it.

Evolution of software product development in startup companies. In: Engi-
neering Management Conference, 20 02. IEMC’02. 20 02 IEEE International. IEEE,

pp. 338–343 .
Cruzes, D.S. , Dybå, T. , 2011. Recommended steps for thematic synthesis in software

engineering. In: Empirical Software Engineering and Measurement (ESEM), 2011

International Symposium on. IEEE, pp. 275–284 .
Da Silva, T.S. , Martin, A. , Maurer, F. , Silveira, M. , 2011. User-centered design and agile

methods: a systematic review. In: 2011 Agile Conference. IEEE, pp. 77–86 .
Dahlstedt, A. , 2003. Study of current practices in market-driven requirements engi-

neering. In: Third Conference for the Promotion of Research in IT at New Uni-
versities and University Colleges in Sweden .

Díaz, J. , Pérez, J. , Alarcón, P.P. , Garbajosa, J. , 2011. Agile product line engineering—a
systematic literature review. Software 41 (8), 921–941 .

DiResta, R. , Forrest, B. , Vinyard, R. , 2015. The Hardware Startup: Building Your Prod-

uct, Business, and Brand. O’Reilly Media, Inc. .
Dybå, T. , Dingsøyr, T. , 2008. Empirical studies of agile software development: asys-

tematic review. Inf. Softw. Technol. 50 (9–10), 833–859 .
Eisenhardt, K.M. , 1989. Building theories from case study research. Acad. Manage.

Rev. 14 (4), 532–550 .
agerholm, F. , Guinea, A.S. , Mäenpää, H. , Münch, J. , 2014. Building blocks for con-
tinuous experimentation. In: Proceedings of the 1st International Workshop on

Rapid Continuous Software Engineering. ACM, pp. 26–35 .
owler, M. , 2018. Refactoring: Improving the Design of Existing Code. Addison-Wes-

ley Professional .
ranch, X., Lopez, L., Martínez-Fernández, S., Oriol, M., Rodríguez, P., Trendowicz, A.,

2019. Quality-aware rapid software development project: the q-rapids project.
In: Software Technology: Methods and Tools. Springer, Cham, pp. 378–392.

doi: 10.1007/978- 3- 030- 29852- 4 _ 32 .

arbajosa, J. , Magnusson, M. , Wang, X. , 2017. Generating innovations for the internet
of things: agility and speed. In: Proceedings of the XP2017 Scientific Workshops.

ACM, p. 10 .
hanam, Y. , Maurer, F. , 2010. Linking feature models to code artifacts using ex-

ecutable acceptance tests. In: International Conference on Software Product
Lines. Springer, pp. 211–225 .

hezzi, A., 2018. Digital startups and the adoption and implementation of lean

startup approaches: effectuation, bricolage and opportunity creation in practice.
Technol. Forecast Soc. Change doi: 10.1016/j.techfore.2018.09.017 .

iardino, C. , Bajwa, S.S. , Wang, X. , Abrahamsson, P. , 2015. Key challenges in ear-
ly-stage software startups. In: International Conference on Agile Software De-

velopment. Springer, pp. 52–63 .
iardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.,

2016. Software development in startup companies: the greenfield startup

model. IEEE Trans. Softw. Eng. 42 (6), 585–604. doi: 10.1109/TSE.2015.2509970 .
iardino, C., Unterkalmsteiner, M., Paternoster, N., Gorschek, T., Abrahamsson, P.,

2014a. What do we know about software development in startups? IEEE Softw.
31 (5), 28–32. doi: 10.1109/MS.2014.129 .

Giardino, C. , Wang, X. , Abrahamsson, P. , 2014b. Why early-stage software startups
fail: a behavioral framework. In: International Conference of Software Business.

Springer, pp. 27–41 .

anssen, G.K. , Fægri, T.E. , 2008. Process fusion: an industrial case study on agile
software product line engineering. J. Syst. Softw. 81 (6), 843–854 .

Hodgson, G.M., Knudsen, T., 2004. The firm as an interactor: firms as vehi-
cles for habits and routines. J. Evol. Econ. 14 (3), 281–307. doi: 10.1007/

s0 0191-0 04-0192-1 .
acobson, I. , Spence, I. , Ng, P.-W. , 2017. Is there a single method for the internet of

things? ACM Queue 15 (3), 20 .

Jalali, S. , Wohlin, C. , 2010. Agile practices in global software engineering-a system-
atic map. In: 2010 5th IEEE International Conference on Global Software Engi-

neering. IEEE, pp. 45–54 .
apan, I. , 2012. Embedded System Development Process Reference Guide. Informa-

tion-technology Promotion Agency, Japan .
Jha, M.M., Vilardell, R.M.F., Narayan, J., 2016. Scaling agile scrum software develop-

ment: providing agility and quality to platform development by reducing time

to market. In: 2016 IEEE 11th International Conference on Global Software En-
gineering (ICGSE), pp. 84–88 ISSN: 2329-6313. doi: 10.1109/ICGSE.2016.24 .

aisti, M. , Rantala, V. , Mujunen, T. , Hyrynsalmi, S. , Könnölä, K. , Mäkilä, T. , Lehto-
nen, T. , 2013. Agile methods for embedded systems development-a literature

review and a mapping study. EURASIP J. Embedded Syst. 2013 (1), 15 .
arlsson, L. , Dahlstedt, A. , och Dag, J.N. , Regnell, B. , Persson, A. , 2002. Challenges in

market-driven requirements engineering-an industrial interview study. Eighth
International Workshop on Requirements Engineering: Foundation for Software

Quality .

eil, M. , Carmel, E. , 1995. Customer-developer links in software development. Com-
mun. ACM 38 (5), 33–44 .

lein, H.K., Myers, M.D., 1999. A set of principles for conducting and evaluat-
ing interpretive field studies in information systems. MIS Q. 23 (1), 67–93.

doi: 10.2307/249410 .
lotins, E. , Unterkalmsteiner, M. , Gorschek, T. , 2015. Software engineering knowl-

edge areas in startup companies: a mapping study. In: Lecture Notes in Business

Information Processing, vol. 210, pp. 245–257 .
armer, M., Herrmann, B. L., Dogrultan, E., Berman, R., Eesley, C., Blank, S., 2011.

Startup Genome Report Extra: premature Scaling. Startup Genome, 10.
Misra, S. , Kumar, V. , Kumar, U. , Fantazy, K. , Akhter, M. , 2012. Agile software develop-

ment practices: evolution, principles, and criticisms. Int. J. Qual. Reliab.Manage.
29 (9), 972–980 .

guyen-Duc, A. , Abrahamsson, P. , 2016. Minimum viable product or multiple facet

product? The role of MVP in software startups. In: International Conference on
Agile Software Development. Springer, pp. 118–130 .

guyen-Duc, A., Seppänen, P., Abrahamsson, P., 2015. Hunter-gatherer cycle: a con-
ceptual model of the evolution of software startups. In: Proceedings of the 2015

International Conference on Software and System Process. ACM, New York, NY,
USA, pp. 199–203 Event-place: Tallinn, Estonia. doi: 10.1145/2785592.2795368 .

guyen-Duc, A. , Shah, S.M.A. , Ambrahamsson, P. , 2016. Towards an early stage soft-

ware startups evolution model. In: Software Engineering and Advanced Appli-
cations (SEAA), 2016 42th Euromicro Conference on. IEEE, pp. 120–127 .

guyen-Duc, A. , Wang, X. , Abrahamsson, P. , 2017. What influences the speed of pro-
totyping? An empirical investigation of twenty software startups. In: Interna-

tional Conference on Agile Software Development. Springer, pp. 20–36 .
guyen-Duc, A. , Weng, X. , Abrahamsson, P. , 2018. A preliminary study of agility in

business and production: cases of early-stage hardware startups. In: Proceed-

ings of the 12th ACM/IEEE International Symposium on Empirical Software En-
gineering and Measurement. ACM, p. 51 .

ates, B.J. , 2005. Researching Information Systems and Computing. Sage .
antiuchina, J., Mondini, M., Khanna, D., Wang, X., Abrahamsson, P., 2017. Are soft-

ware startups applying agile practices? The state of the practice from a large

https://doi.org/10.1108/17511341211258747
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0002
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0002
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0002
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0002
http://www.agilemanifesto.org
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0006
https://doi.org/10.1109/ISESE.2002.1166923
https://doi.org/10.1007/s13198-019-00840-7
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0011
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0011
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0012
https://doi.org/10.1109/MS.2016.14
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0015
https://doi.org/10.1108/17410390810911221
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0017
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0017
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0018
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0018
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0022
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0022
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0022
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0022
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0022
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0024
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0024
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0024
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0025
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0025
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0027
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0027
https://doi.org/10.1007/978-3-030-29852-4_32
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0029
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0029
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0029
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0029
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0030
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0030
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0030
https://doi.org/10.1016/j.techfore.2018.09.017
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0032
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0032
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0032
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0032
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0032
https://doi.org/10.1109/TSE.2015.2509970
https://doi.org/10.1109/MS.2014.129
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0036
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0036
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0036
https://doi.org/10.1007/s00191-004-0192-1
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0038
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0038
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0038
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0038
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0039
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0039
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0039
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0040
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0040
https://doi.org/10.1109/ICGSE.2016.24
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0042
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0042
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0042
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0042
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0042
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0042
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0042
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0042
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0043
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0043
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0043
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0043
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0043
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0043
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0044
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0044
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0044
https://doi.org/10.2307/249410
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0046
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0046
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0046
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0046
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0047
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0047
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0047
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0047
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0047
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0047
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0048
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0048
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0048
https://doi.org/10.1145/2785592.2795368
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0050
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0050
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0050
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0050
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0051
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0051
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0051
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0051
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0052
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0052
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0052
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0052
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0053
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0053

V. Berg, J. Birkeland and A. Nguyen-Duc et al. / The Journal of Systems and Software 167 (2020) 110599 17

P

P

R

R

R

R

R

R

S

S

S

S

S

S

S

T

T

U

V

W

W

W

Y

Y

V

S

J

s

C

A

U

E

I

m

r

a

t

w

h

c

a

e

p

H

p

f

L

m

J

t

s

p

b

s

a

o

e

E

p

r

p

D

survey. In: 18th International Conference on Agile Software Development, XP
2017, May 22, 2017 - May 26, 2017. Springer Verlag, pp. 167–183. doi: 10.1007/

978- 3- 319- 57633- 6 _ 11 .
aternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.,

2014. Software development in startup companies: asystematic mapping study.
Inform. Softw. Technol. 56 (10), 1200–1218. doi: 10.1016/j.infsof.2014.04.014 .

eters, H., Knieke, C., Brox, O., Jauns-Seyfried, S., Krämer, M., Schulze, A., 2014. A
test-driven approach for model-based development of powertrain functions. In:

Cantone, G., Marchesi, M. (Eds.), Agile Processes in Software Engineering and

Extreme Programming. Springer International Publishing, pp. 294–301. doi: 10.
1007/978- 3- 319- 06862- 6 _ 23 .

afiq, U., Bajwa, S.S., Xiaofeng, W., Lunesu, I., 2017. Requirements elicitation tech-
niques applied in software startups. In: 2017 43rd Euromicro Conference on

Software Engineering and Advanced Applications (SEAA), 30 Aug.-1 Sept. 2017.
IEEE Computer Society, pp. 141–144. doi: 10.1109/SEAA.2017.73 .

ies, E. , 2011. The Lean Startup: How Today’s Entrepreneurs Use Continuous Inno-

vation to Create Radically Successful Businesses. Crown Books .
obson, C. , 2002. Real World Research: A Resource for Social Scientists and Practi-

tioner-Researchers, second ed. Wiley-Blackwell, Oxford, UK ; Madden, Mass .
onkainen, J. , Abrahamsson, P. , 2003. Software development under stringent hard-

ware constraints: do agile methods have a chance? In: International Conference
on Extreme Programming and Agile Processes in Software Engineering. Springer,

pp. 73–79 .

onkainen, J. , Taramaa, J. , Savuoja, A. , 2002. Characteristics of process improvement
of hardware-related sw. In: International Conference on Product Focused Soft-

ware Process Improvement. Springer, pp. 247–257 .
uneson, P. , Höst, M. , 2009. Guidelines for conducting and reporting case study re-

search in software engineering. Empir. softw. Eng. 14 (2), 131 .
aldaña, J. , 2015. The Coding Manual for Qualitative Researchers. Sage .

arasvathy, S.D. , 2001. Causation and effectuation: toward a theoretical shift from

economic inevitability to entrepreneurial contingency. Acad. Manage. Rev. 26
(2), 243–263 .

ommer, S.C. , Loch, C.H. , Dong, J. , 2009. Managing complexity and unforeseeable un-
certainty in startup companies: an empirical study. Organ. Sci. 20 (1), 118–133 .

teininger, D.M., 2019. Linking information systems and entrepreneurship: areview
and agenda for IT-associated and digital entrepreneurship research. Inform. Syst.

J. 29 (2), 363–407. doi: 10.1111/isj.12206 .

tinchcombe, A.L., 20 0 0. Social structure and organizations. In: Economics Meets
Sociology in Strategic Management. Emerald Group Publishing Limited, pp. 229–

259. doi: 10.1016/S0742-3322(00)17019-6 .
trauss, A., Corbin, J., 1998. Basics of qualitative research: procedures and techniques

for developing grounded theory.
utton Jr., S.M., 20 0 0. Role of process in a software start-up. IEEE Softw. 17 (4), 33–

39. doi: 10.1109/52.854066 .

erho, H., Suonsyrja, S., Systa, K., 2016. The developers dilemma: perfect prod-
uct development or fast business validation? In: 17th International Confer-

ence on Product-Focused Software Process Improvement, PROFES 2016, Novem-
ber 24, 2016 - November 26, 2016. Springer Verlag, pp. 571–579. doi: 10.1007/

978- 3- 319- 49094- 6 _ 42 .
ripathi, N. , Annanpera, E. , Oivo, M. , Liukkunen, K. , 2016. Exploring processes in

small software companies: a systematic review. In: Communications in Com-
puter and Information Science, vol. 609, pp. 150–165 .

nterkalmsteiner, M., Abrahamsson, P., Wang, X.F., Anh, N.D., Shah, S., Bajwa, S.S.,

Baltes, G.H., Conboy, K., Cullina, E., Dennehy, D., Edison, H., Fernandez-
Sanchez, C., Garbajosa, J., Gorschek, T., Klotins, E., Hokkanen, L., Kon, F.,

Lunesu, I., Marchesi, M., Morgan, L., Oivo, M., Selig, C., Seppanen, P., Sweet-
man, R., Tyrvainen, P., Ungerer, C., Yague, A., 2016. Software startups - a research

agenda. E-Inform. Softw. Eng. J. 10 (1), 89–123. doi: 10.5277/e-Inf160105 .
an Gelderen, M. , Thurik, R. , Bosma, N. , 2005. Success and risk factors in the pre-s-
tartup phase. Small Bus. Econ. 24 (4), 365–380 .

alsham, G., 1995. Interpretive case studies in IS research: nature and method. Eur.
J. Inform. Syst. 4 (2), 74–81. doi: 10.1057/ejis.1995.9 .

asserman, A.I. , 2016. Low ceremony processes for short lifecycle projects. In: Man-
aging Software Process Evolution. Springer, pp. 1–13 .

ei, J. , 2017. State of the hardware incubators and accelerators in the united states
[society news]. IEEE Consum. Electron. Mag. 6 (1), 22–23 .

au, A. , Murphy, C. , 2013. Is a rigorous agile methodology the best development

strategy for small scale tech startups? .
in, R.K. , 2003. Case Study Research: Design and Methods. Sage Publications, Inc 5,

11 .

ebjorn Berg holds a M.Sc. in computer science at NTNU: Norwegian University of
cience and Technology. He is currently working at consultancy firm Netcompany.

orgen Birkeland holds a M.Sc. in computer science at NTNU: Norwegian Univer-
ity of Science and Technology. He is currently working at consultancy firm Holte

onsulting.

nh Nguyen-Duc is a Associate Professor at the Department of Business and IT,
niversity of Southeast Norway. His research interests include Empirical Software

ngineering, Data Mining, Software Startups Research and Cybersecurity.

lias O. Pappas is an Associate Professor of Information Systems at the Depart-

ent of Information Systems, University of Agder (UiA), Norway. His teaching and

esearch activities focus on the areas of digital transformation, social innovation
nd social change, as well as Internet marketing and information technology adop-

ion. He has worked on EU-funded projects that support SMEs to innovate, net-
ork and grow by promoting innovation through collaboration platforms. Pappas

as been a Guest Editor for the journals Information & Management, Technologi-
al Forecasting and Social Change, and Information Systems and e-Business Man-

gement. He has published over 70 articles in peer reviewed journals and confer-
nces including Journal of Business Research, European Journal of Marketing, Com-

uters in Human Behavior, Information & Management, Psychology & Marketing.

e serves as the secretary of the IFIP Working Group 6.11: Communication As-
ects of the E-World. Pappas is a recipient of ERCIM and Marie Skłodowska-Curie

ellowships.

etizia Jaccheri (Ph.D. from Politecnico di Torino, Italy) is Professor at the Depart-

ent of Computer Science of the Norwegian University of Science and Technology.

accheri’s research is on: software engineering; entertainment computing; compu-
ational creativity; ICT-enabled social innovation. Jaccheri is the Norwegian repre-

entative and Vice President of IFIP TC14 on Entertainment Computing. She has
ublished more than 200 papers in International conferences and journals. She has

een teaching courses in software engineering at various levels since 1994. She has
upervised PhD students, Post-doctoral students and acted as opponent for national

nd international defences. From 2015 to April 2018 she was independent director

f Reply S.p.A, an IT company with 60 0 0 employees world wide. She has been gen-
ral chair of IFIP ICEC 2015, co-chair of ACM IDC 2018, and Program Chair of the

uropean Computer Science Summit 2018. She participates to several Horizon 2020
rojects. Letizia Jaccheri is passionate about dissemination of computer science and

esearch to the general public and to contribute to recruit female students to com-
uter science and research. Jaccheri is Senior ACM Member since 2017 and ACM

istinguished speaker since 2018.

https://doi.org/10.1007/978-3-319-57633-6_11
https://doi.org/10.1016/j.infsof.2014.04.014
https://doi.org/10.1007/978-3-319-06862-6_23
https://doi.org/10.1109/SEAA.2017.73
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0058
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0058
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0059
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0059
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0060
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0060
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0060
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0061
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0061
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0061
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0061
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0062
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0062
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0062
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0063
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0063
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0064
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0064
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0065
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0065
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0065
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0065
https://doi.org/10.1111/isj.12206
https://doi.org/10.1016/S0742-3322(00)17019-6
https://doi.org/10.1109/52.854066
https://doi.org/10.1007/978-3-319-49094-6_42
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0070
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0070
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0070
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0070
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0070
https://doi.org/10.5277/e-Inf160105
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0072
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0072
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0072
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0072
https://doi.org/10.1057/ejis.1995.9
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0074
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0074
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0075
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0075
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0076
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0076
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0076
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0077
http://refhub.elsevier.com/S0164-1212(20)30077-7/sbref0077

	Achieving agility and quality in product development - an empirical study of hardware startups
	1 Introduction
	2 Background
	2.1 The context of high-tech startup companies
	2.2 Software product development in startup companies
	2.3 Agility in product development
	2.4 Engineering processes for embedded system development

	3 Research methodology
	3.1 Companies and subjects selection
	3.2 Data collection procedure
	3.3 Analysis procedure
	3.3.1 Initial reading
	3.3.2 Coding process
	3.3.3 Codes into themes
	3.3.4 Model of higher-order themes

	3.4 Validity procedure

	4 Results - How do hardware startups achieve both agility and product quality during product development?
	4.1 An integrative view on agility and product quality in hardware startup development
	4.2 Enabling factors for achieving agility and quality
	4.3 Agility aspects of hardware startups
	4.4 Quality aspect of hardware startups

	5 Discussion
	5.1 Achieving agility in hardware-related product development
	5.2 Assuring product quality
	5.3 Balancing agility and quality in high-tech product development

	6 Conclusion
	Declaration of Competing Interest
	Appendix A Thematic map
	Appendix B Pre-interview question questionnaire
	CRediT authorship contribution statement
	References

