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Abstract: Radio frequency fingerprinting (RFF) is a promising physical layer protection technique
which can be used to defend wireless networks from malicious attacks. It is based on the use of
the distinctive features of the physical waveforms (signals) transmitted from wireless devices in
order to classify authorized users. The most important requirement to develop an RFF method is
the existence of a precise, robust, and extensive database of the emitted signals. In this context,
this paper introduces a database consisting of Bluetooth (BT) signals collected at different sampling
rates from 27 different smartphones (six manufacturers with several models for each). Firstly, the data
acquisition system to create the database is described in detail. Then, the two well-known methods
based on transient BT signals are experimentally tested by using the provided data to check their
solidity. The results show that the created database may be useful for many researchers working on
the development of the RFF of BT devices.

Dataset: http://doi.org/10.5281/zenodo.3876140

Dataset License: The data set is made available under a CC-BY license.

Keywords: Bluetooth; classification; data acquisition; emitter identification; radio frequency
fingerprinting; RF front end

1. Introduction

The development of wireless communication technologies has introduced end users to various
external security attacks. For this reason, the protection of wireless communication networks has
become an important concern in order to provide data security and user privacy. Currently, one of the
ways of achieving this is to employ traditional upper layer security techniques. However, physical
layer protection techniques can also be used to protect wireless networks from malicious attacks.
Such techniques are based on the use of the fully physical identification of wireless communication
devices. This process is also known as radio frequency fingerprinting (RFF). In RFF, the distinctive or
unique features of the physical waveforms (signals) emitted by wireless devices are utilized to classify
the authorized users. This paves the way for identifying possible threats to the network [1,2].

A typical RFF method is composed of three main stages, namely data acquisition, signal processing
and classification. In the literature, high-end receivers [3–5] and low-end receivers [5,6] have been
preferred for data acquisition. High-end receivers use higher sampling rates. This, evidently, increases
the data size. Hence, an extended memory is highly important to record signals. It should be noted that
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the sampling rate is one of the most critical parameters that greatly affects the accuracy. Specifically,
a higher sampling rate can result in undesired frequency components in the signals, while lower
sampling rates can cause the loss of the unique features needed for RFF. To overcome this trade off,
it is necessary to use sub-Nyquist rates [7], or downconverters [3]. In this context, an RF front end
system can be used for data acquisition [8,9]. Another critical parameter in data acquisition is the
device diversity and also the number of signals to be recorded. For a reliable RFF method, the number
of devices and captured signals should be kept as high as possible. In the signal processing stage,
on the other hand, either the transient or steady-state regions of the transmitted signals are used to
extract the distinctive or unique features (so called “RF fingerprints”). The extracted features are then
used in the subsequent stage in order to classify the transmitting devices according to their model
and manufacturer.

Among the implementation stages of the RFF method, the data acquisition stage plays a critical
role as it directly affects the upper bounds of the performance of RFF. This is because even a small
error or deficiency, like an insufficient number of devices in the data acquisition, might adversely affect
the subsequent stages. Consequently, this leads to a poor device identification ability. Then, the data
acquisition stage should be planned carefully in order to provide an accurate, robust and adequate
size of database. The purpose of this study is to introduce a database consisting of datasets, including
Bluetooth (BT) signals, collected from various smartphones of different brands and models, that were
recorded at different sampling frequencies. To this end, the details of the data acquisition system are
presented in detail. In addition, the results of two transient-based RFF methods that use the dataset
are provided. To the best of our knowledge, this is the first freely available database that enables
the testing or developing of RFF methods with various BT devices. Therefore, it is believed that the
database would help many researchers from the community of the RFF identification of BT devices.

2. Data Acquisition and Processing

2.1. Data Acquisition System

The dataset was constructed by capturing the emitted signals from each device within a period
of several months. As reported in the literature [6–8], the distinctive or unique features of emitted
signals (so, the devices) do not vary within short time scales (days, weeks and months). However,
for long periods (typically years), it is necessary to study the changes in the emitted signals due to
hardware-oriented defects in the devices, which might change the emitted signal’s features. On the
other hand, there are two more parameters that might affect the unique features of the emitted signals;
signal-to-noise ratio (SNR) and interferers in the environment. In this work, these two parameters
were considered at all signal collection stages by keeping the distance between the emitting phone and
the receiver fixed and also by removing possible interferers in the environment.

In order to capture BT signals, two different systems were used, as described in the
following section.

2.1.1. Direct Sampling

The first system for data acquisition is shown in Figure 1. BT signals were directly captured
by means of a high sampling rate oscilloscope (Tektronix TDS7404), along with a low-resolution
(8 bits) analog-to-digital converter (ADC). As BT devices operate at a ISM2400 band, according to
the Nyquist Theorem, a 4.8 Gsps sampling rate is required to capture BT signals. Hence, three
alternative sampling rates of the receiver of the oscilloscope were used: 5 Gsps, 10 Gsps and 20 Gsps.
A commercial off-the-shelf (COTS) antenna operating at 2.4 GHz was then connected to the oscilloscope.
While capturing data, the distance between the antenna and smartphone was fixed at approximately
30 cm. BT signals were captured through the edge detection mode of the oscilloscope. In this way,
BT signals with an approximate duration of 10 µs were captured adequately. The data were recorded in
text format (.txt). As the BT band covers about 82 MHz, the bandwidth was tuned to 15 MHz–100 MHz.
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Figure 1. Data acquisition system with direct sampling.

2.1.2. Sampling with RF Front End

The second system for data acquisition is shown in Figure 2. In this system, a modular RF front
end system, as in [9], was used. Here, the RF front end was connected to the oscilloscope to record
the received signals at lower sampling rates (250 Msps). As mentioned before, this provides several
benefits. With the help of this system, the data size along with the computational cost are significantly
reduced. Besides this, it also enables researchers to reduce the memory requirements of the data storage
equipment. More detailed descriptions and specifications of the RF front end can be found in [9].
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Figure 2. Data acquisition system with radio frequency (RF) front end.

2.2. BT Signal Capturing

BT signals were captured in an isolated laboratory environment, on the second underground
floor of a nine-story building in Atilim University, Ankara, Turkey. During the data capturing process,
the electronic devices around the system were switched off (possible interferers). To collect BT signals,
a total of 27 different smartphones (6 manufacturers with various models) were used. Additionally,
two different smartphone series for each model were acquired.

For the first data acquisition system, three datasets were created for the three different sampling
rates. The datasets containing BT signals sampled at 5, 10 and 20 Gsps are presented in Table 1. For the
second data acquisition system, a dataset containing the BT signals sampled at a rate of 250 Msps is
also presented in Table 1. At each dataset, 150 BT signals from each device were recorded. Therefore,
a database containing approximately 12,900 recordings from 86 smartphones was created.
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Table 1. Datasets, sampling rates and Bluetooth (BT) device sets.

Dataset A (5 Gsps) Dataset B (10 Gsps) Dataset C (20 Gsps) Dataset D (250 Msps)

Brand Model Brand Model Brand Model Brand Model

Apple iPhone 5 Apple iPhone 4s Apple iPhone 5s Apple iPhone 4s
Apple iPhone 5s Apple iPhone 7 Apple iPhone 6s Apple iPhone 5

Apple iPhone 6 Apple iPhone 7
Plus Apple iPhone 6s

Plus Apple iPhone 5s

Apple iPhone 6s LG V20 Apple iPhone 7 Apple iPhone 6
LG G4 Samsung J7 Huawei Gr5 Apple iPhone 6s

Samsung Note 3 Samsung Note 2 LG G4 Apple iPhone 7
Samsung S5 Samsung S7 Edge Samsung Note 3 Apple iPhone 7 Plus

Sony Xperia M5 Xiaomi Mi 6 Samsung S3 LG G4
Samsung S3 Duos LG V20
Samsung S4 Samsung J7

Sony C4 Samsung Note 2
Samsung Note 3
Samsung S5
Samsung S7 Edge

Sony Xperia M5
Xiaomi Mi6

2.3. Preprocessing

After recording the signals, it was found that the oscilloscope used in the first data acquisition
system generated some undesired signals (spur signals). As shown in Figure 3, these undesired signals
were detected at frequencies of 2.5 GHz or above in the datasets of A, B and C. Therefore, a band pass
filter (BPF) was used to remove the spur signals. Essentially, this was a standard digital filter allowing
only ISM2400 band components.
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Furthermore, all the signals were normalized for scaling purposes. In this way, the extracted
features can represent the generalized features of the emitting devices. As an example, Figure 4 shows
the recordings of the BT signals after preprocessing.
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Figure 4. The recordings of BT signals: (a) Huawei GR5; (b) Samsung Note 3; (c) iPhone 7; (d) LG G4.
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3. Data Usage Example

The recorded data are a real-valued time series (voltage/time). Firstly, they should be transformed
into analytical signals by using the Hilbert transform (HT) [9–12]. Then, a digital downconverter can
be used if further down-conversion is needed. Next, the I/Q data can be generated through MATLAB
or AWR.

As discussed previously, to classify the authorized users in a network, the distinctive or unique
features of the physical waveforms transmitted from a wireless device are utilized in RFF. The distinctive
features can be extracted from transient or steady-state regions of the transmitted signals, as shown in
Figure 4. Recent studies have shown that most of the distinctive features can be extracted from transient
regions [9–12]. To do this, firstly, it is necessary to detect transient signals. Then, from the detected
transient signal, the features can be extracted. Mostly, instantaneous signal characteristics [13] and the
time–frequency–energy distribution (TFED) [14] are utilized to extract the features. Next, the extracted
features are used in the classification of the transmitting devices by brand, model or series. The choice
of classifier type might highly affect the RFF’s performance. Deep learning (DL) [4], support vector
machines (SVM) [14], k-nearest neighbor (KNN) [15] and multiple discriminant analysis (MDA) [16]
are well-known for the identification of transmitting devices in RFF.

For a demonstration of the use of the dataset, the implementation of RFF is presented here.
To this end, two different transient signal-based RFF methods on the basis of instantaneous signal
characteristics and TFED features were experimentally tested. These methods are described in the
following subsections. Before testing these methods, a transient detection method was employed to
detect the transients of the recorded signals [17]. In this method, the energy envelope of the emitted
signals was utilized. The transient signals detected from four BT devices are shown in Figure 5.
Moreover, the normalized energy of the signals from the same devices are also shown in Figure 6
for comparison.

3.1. Device Identification Using Instantaneous Signal Characteristics

In the transient signal-based RFF method, on the basis of instantaneous signal characteristics,
three higher order statistical (HOS) features (skewness, kurtosis and variance) are derived from the
signal’s characteristics, namely instantaneous amplitude, instantaneous frequency and instantaneous
phase. The process of extracting HOS features has been presented in detail in [9–13].

After extracting the HOS features, the next step is the classification of the BT devices (smartphones).
The classification performances of two classifiers, the support vector machine (SVM) and neural
networks (NN), were examined. The feature set was divided into training and test sets for each BT
device in the dataset. Each training set consisted of 120 transient signals (out of 150) while the test
set consisted of the remaining 30 transients. The training and test sets were chosen randomly from
the dataset.

In the training stage, a non-linear SVM classifier was used as the data were linearly inseparable.
To build a non-linear SVM classifier, it is already known that the kernel function enables researchers to
map the dataset onto a higher-dimensional vector space. Although there are several types of kernel
functions (radial basis, sigmoid and polynomial), the polynomial kernel function (quadratic) was
chosen as it provides higher classification accuracy. On the other hand, a multi-layer NN structure for
the training of the NN classifier can be found in [9]. As the input layer of the NN structure, ten neurons
corresponding to the number of generated signal features were selected. The output layer consisted of
sixteen neurons as there were sixteen classes in each dataset. Moreover, two hidden layers with four
neurons were used initially. Then, the number of neurons and hidden layers were increased gradually
to achieve the best training performance. It was found that three hidden layers with sixty-four neurons
for each were sufficient to achieve the targeted performance. Furthermore, the tansig function was
chosen for the activation of all neurons. For the network training, the number of epoch limits was
chosen as 2500. The classification accuracy of the classifiers is given in Table 2.
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Note 3, iPhone 7 and LG G4.

Table 2. Classification performances of support vector machine (SVM) and neural networks (NN).

Dataset Classifier Training Accuracy Test Accuracy

A

SVM

100% 99.2%
B 99.7% 97.9%
C 99.8% 99.0%
D 99.6% 96.9%

A

NN

100% 99.6%
B 100% 97.3%
C 100% 99.4%
D 100% 96.5%

From the results listed in Table 2, the NN classifier initially seems to be overfitted due to the
training accuracy. While training the data, initial weights were used randomly at every turn. For this
reason, such higher training accuracies would have been expected. If similar data were trained,
it would not be possible to achieve such accuracy rates. Here, the network that achieved the highest
training accuracy among the trained networks was used. Furthermore, the training and test sets
consisted of different data. If there was an overfitting, the overfitted network would memorize only the
given training data, and the accuracy of the test data would be much lower. In this context, the high
accuracies achieved with both the training and test data indicate that the network was not overfitted.

3.2. Device Identification Using Time Frequency Energy Distribution (TFED) Features

An RFF method based on TFED features is presented in [14]. In this method, features can be
extracted by using the Hilbert Huang Transformation (HHT) of transient signals. HHT is simply
defined as the calculation of the energy of each frequency component in a certain time resolution. In this
context, the device’s signal characteristics in terms of both time and frequency can be analyzed easily.

To extract the TFED features, the dataset consisting of BT signals sampled with 20 Gsps was used
(dataset C). The features extracted from the TFED of BT signals are listed in Table 3. A feature set
created from the features was smoothed by a median filter in order to evaluate the effects of filtering
the features on the classification performance. Then, the smoothed and unsmoothed features were
employed separately for comparison. Three classifiers, the linear support vector machine (L-SVM),
linear discriminant analysis (LDA) and the complex decision tree (CDT) were used for the same feature
set. As in the previous section, the feature set was divided into training and testing sets. In the
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training set, 60 records (out of 150 records) were used, while the remaining 90 records were used in the
testing set.

Table 3. Time frequency energy distribution (TFED) feature set.

Feature Number Feature Name

1 Duration of transient signal
2 Total energy of transient energy
3 Total energy of transient energy envelope
4 Variance of transient energy envelope
5 Standard deviation of instantaneous phase of transient signal
6 Entropy of instantaneous phase of transient signal
7 Length of transient energy distribution
8 Slope of transient energy distribution
9 Variance of summation of transient energy distribution

10 Maximum of summation of transient energy distribution
11 Third order polynomial fitting coefficient of summation of transient energy distribution
12 Maximum of summation of transient energy distribution
13 Variance of summation of transient energy distribution

The CDT classifier consisted of three main nodes: root node, split nodes and leaves or terminal
nodes. The root node contains whole data while the split nodes generate internal nodes. CDT is known
as a supervised learning algorithm and is widely used in classification processes. To generate the
model, it requires high quality training data. The CDT classifier is based on the idea that the data are
split into subsets, each of which belongs to a unique class.

On the other hand, the LDA is based on modeling the differences between the data classes.
This classifier projects high-dimensional feature vectors onto low-dimensional ones by means of a
linear transformation. In this way, the generated vectors provide an efficient separation of the classes.

Finally, linear support vector machines (L-SVM) is a supervised machine learning algorithm
which maps input data (x) onto high-dimensional data. For this, it utilizes a mapping function ϕ(·),
along with a linear transformation f (x) = ωϕ(x) + b, where ω and b are the optimized coefficients.
With the help of f (x), the data can be separated, from which a hyperplane is generated. Maximizing
the margin between the separating hyperplanes results in minimizing the upper bound error, and thus,
the structure of the L-SVM is constructed. The L-SVM classifier was employed for the given BT data,
and the details are reported in [10,12].

The performances of the classifiers for both the smoothed and unsmoothed features are presented
in Table 4.

Table 4. Classification performances of linear support vector machines (L-SVM), linear discriminant
analysis (LDA) and complex decision tree (CDT).

Classifier Smoothed Features Accuracy Un-smoothed Features Accuracy

L-SVM 99.8% 97.2%
CDT 99.6% 97.6%
LDA 99.7% 91.3%

3.3. Discussion

In order to evaluate the usability of the database, two different transient signal-based RFF methods
have been experimentally tested. During the tests, the distinctive features extracted from the transient
signals were used in the classification stage to identify the BT devices. The classification performance
results of the classifiers prove the robustness of the datasets. Obviously, without an accurate dataset,
it is impossible to achieve such classification performance. The results also verify the effectiveness
of the data acquisition system. Therefore, the database provided in this study could be valuable
for the research community. The database may give greater flexibility to the research community
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for developing better RFF methods. On the other hand, novel or existing RFF methods can also be
implemented with the database. It may also be used in developing and testing transient or steady-state
signal detection techniques.

4. Conclusions

This paper is intended to describe a BT signal database which is freely available to the research
community for developing RFF methods. The BT database was recorded at an isolated laboratory at
Atilim University, Ankara, Turkey. A set of 27 smartphones from various models produced by six
manufacturers were used in the data collection. This is a work of a team who dedicated substantial
time and effort to generate such an extensive and reliable BT signal database. Even a small mistake in
the data acquisition process can adversely affect the following stages in the RFF methods. For this
reason, this paper presents not only the database but also the data acquisition methodology for a
reliable database of BT signals. Moreover, two well-known RFF methods have been reviewed, and the
demonstration results are presented to show the usability of the database. The results of the RRF
methods prove the effectiveness of both the acquisition system and the database for the further
researching of RFF methods. As a future work, the authors intend to create a new version of the
database that might include Wi-Fi signals.
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