
HUCDO: A Hybrid User-Centric Data Outsourcing Scheme

KE HUANG, University of Electronic Science and Technology of China

XIAOSONG ZHANG, University of Electronic Science and Technology of China

XIAOFEN WANG, University of Electronic Science and Technology of China

YI MU, Fujian Normal University

FATEMEH REZAEIBAGHA, Murdoch University

GUANGQUAN XU, Tianjin University

HAO WANG, Norwegian University of Science and Technology

XI ZHENG, Maquarie University

GUOMIN YANG, University of Wollongong

QI XIA, University of Electronic Science and Technology of China

XIAOJIANG DU, Temple University

Outsourcing helps relocate data from the cyber-physical system (CPS) for efficient storage at
low cost. Current server-based outsourcing mainly focuses on the benefits of server, this cannot
attract users well as their security, efficiency and economy are not guaranteed. To solve with this
issue, a hybrid outsourcing model which exploits both cloud server and edge devices to store
data is needed. Meanwhile, the requirements of security and efficiency are different under specific
scenarios. There lacks a comprehensive solution to consider the above issues at one time for the
sake of users. In this work, we overcome the above issues by proposing the first hybrid user-centric
data outsourcing (HUCDO) scheme, it allows users to outsource data securely, efficiently and
economically via different CPSs. Shortly, our contributions consist of theories, implementations and
evaluations. Our theories include the first homomorphic collision-resistant chameleon hash (HCCH)
and homomorphic designated-receiver signcryption (HDRS). As implementations, we instantiate
how to use our proposals to outsource small or large-scale of data through distinct CPS respectively.
Additionally, a blockchain with proof-of-discrete-logarithm (B-PoDL) is instantiated to help improve
our performance. Lastly, as demonstrated by our evaluations, our proposals are secure, efficient and
economic for users to implement while outsourcing their data via CPSs.

CCS Concepts: • Security and Privacy → Cryptography.

Additional Key Words and Phrases: chameleon hash, signcryption, hybrid data outsourcing,

blockchain

1 INTRODUCTION

Cyber physical system (CPS) [1] seeks to integrate and coordinate physical and computational
elements at a high level, which it paves the way to industry 4.0 [2] and develops modern
system that operates in a more intelligent and reliable way. CPS shares basic infrastructure
as internet-of-things (IoT) [3, 4]) did and it has largely driven by cloud computing techniques
[5] in recent years.

Generally, data outsourcing allows for migration of data from the user device to cloud server
to reclaim space from local-side. The server keeps data preserved and audited, and allows
for remote access whenever it is required. However, since CPSs diverged to heterogeneous

Authors’ addresses: Ke Huang, kh936@uowmail.edu.au, University of Electronic Science and Technology of

China; Xiaosong Zhang, University of Electronic Science and Technology of China; Xiaofen Wang, University
of Electronic Science and Technology of China; Yi Mu, Fujian Normal University; Fatemeh Rezaeibagha,

Murdoch University; Guangquan Xu, Tianjin University; Hao Wang, Norwegian University of Science and
Technology; Xi Zheng, Maquarie University; Guomin Yang, University of Wollongong; Qi Xia, University of

Electronic Science and Technology of China; Xiaojiang Du, Temple University.

, Vol. 1, No. 1, Article . Publication date: May 2020.

devices (personal computer, mobile phone and etc), their capabilities regarding storage and
computing are different. Therefore, it calls for a smart solution to maximize the potential of
each distinct CPS in heterogeneous outsourcing environment.

Early outsourcing schemes mainly focus on the gain-and-loss of server, which is reasonable
when computing power and storage capacity are hard to come by. However, with a more
insightful perspective of data value and gaining users [6], it is reasonable to consider the
interests of users in order to prosper the outsourcing business. From a typical view, security,
efficiency and economy are basic demands of users.

1.1 Problem Statement and Motivation

Data outsourcing schemes are facing security, efficiency and economy problems. We briefly
state each issue and give our motivation behind.
For security [7], it is suggested to keep outsourced data under encryption for privacy

concerns. Symmetric encryption [8] is acknowledged as an ideal way to encrypt massive
data, but it leads to the key management problem. Public-key encryption overcomes key
management issue but it costs too much at large scale of data. So, it calls for a comprehensive
solution.
For efficiency, the server-centric cloud storage ignores the availability of edge devices for

storing data [9]. With the booming of smart devices, there are many edge devices with
considerable space to spare. Meanwhile, short-range transmission between these edge devices
(e.g., blue tooth and etc [10]) wins long-distance transmission. If there is any edge devices
nearby at disposal, a faster data outsourcing solution is available.
For economic reasons, users will more actively participate in outsourcing business if

they are rewarded accordingly. In fact, there are already successful cases of data-driven
businesses [6] where crypto-currencies are rewarded to users as incentives. As bitcoin and
other blockchains [11] have been widely and trivially used nowadays, we omit to discuss the
initiation or maintenance of matters. Instead, we only focus on the core technical details of
launching the blockchain.

To address above problems, we are motivated to devise a hybrid and user-centric framework
which exploits both cloud server, edge device and blockchain to maximize user’s security,
efficiency and economy.

1.2 Contributions

In this work, we propose a hybrid user-centric data outsourcing (HUCDO) scheme to ensure
security, efficiency and economy of users who are engaged in outsourcing business via different
cyber-physical systems (CPSs). Our contributions can be summarized on HUCDO as follows:
(1). As theoretical contributions, we propose the first homomorphic collision-resistant

chameleon hash (HCCH) and homomorphic designated-receiver signcryption (HDRS). Our
HCCH serves as a special hash function to help outsource large file, and our HDRS is used
as privacy protection for small-scale of data during outsourcing.
(2). As practical implementations, we instantiate how to use our proposed HCCH and

HDRS for outsourcing. Additionally, we instantiate the details of a blockchain with proof-of-
discrete-logarithm (B-PoDL) to help improve the performance of our proposals.

(3). As evaluations, we conduct a comprehensive analysis of our proposals. The evidences
show that our proposals are secure, efficient and economic for users to implement.

2 RELATED WORK

In this section, we study data outsourcing [12], chameleon hash (CH) [13] and signcryption
[14] scheme. Basically, data outsourcing is the background of this work, CH and signcryption
scheme are meant to implement outsourcing service efficiently and securely (as instantiated
in section 6). The motivation behind each study is followed by.

2.1 Data Outsourcing

Data outsourcing is closely related to notions of provable data possession (PDP) [12] and
data auditing. Informally, it allows the user to upload data to remote server for storage,
and periodically audit it to ensure integrity. Ateniese et al. [12] proposed the first notion
and security model of PDP where the user is allowed to verify data file without retrieving
it. Then, Juels et al. [15] proposed the notion of proof-of-retrievability (PoR) to guarantee
data retrieval by erasure code and random sampling. With the expansion of studies on data
outsourcing, research regarding data dynamic operation [16], public auditability [17] and
others have being considered. To ensure the efficiency during outsourcing, deduplication is a
popular technique to consider [18], since it was used to delete redundant files at user-side
to reclaim space. Since Douceur et al. [18] proposed notion of convergent encryption (CE)
by the idea of hash-as-a-key, the research line expands to multiple aspects. Noticeably,
for rigorous security, Bellare et al. [19] proposed message-locked encryption (MLE) which
formally answered what security can CE and MLE achieve.

In this work, we mainly focus on how to process data securely for outsourcing. Specifically,
we identify two different outsourcing scenarios where data is outsourced at different scales.
We research on hashing and signcryption schemes, our proposals can help build secure and
efficient outsourcing services as we will later instantiate in section 6.

2.2 Chameleon Hash

Informally, the chameleon hash is a trapdoor one-way hash function where finding the collision
is hard without the trapdoor key. Krawczyk pand Rabin [13] first proposed chameleon
signature in 2000. Later on, Ateniese et al. [20] extended it to the first identity-based
chameleon hash while solving the key-exposure problem. Key-exposure problem was first
identified by Ateniese et al. [21], in which, it is infeasible to extract trapdoor key from
any given collisions. It was until the work of Camenisch et al. [22] which formally proved
that collision-resistance is a stronger notion than key-exposure problem. In addition, they
proposed chameleon hash with ephemeral trapdoors in [22] to prevent finding collisions
without ephemeral trapdoor. In another work Krenn et al. [23] proposed chameleon-hashes
with dual long-term trapdoors where the hashing party can choose between using a fresh
second trapdoor and reusing an existing one.
We summarized relevant schemes in Table 1 as an overview. As it is shown in Table 1.

most hash schemes do not involve in pairing-based computations (although there exists such
scheme, however we do not instantiate them here), due to the hash function is generally
designed to be practically fast. So, as long as the security is guaranteed, the chameleon hash
function can serve as an efficient tool to process large scale of data. With smart design, it
can breed many functions such as: sanitizable signature [28], public-key encryption [29] and
etc. In this work, we specifically instantiate to use it for outsourcing large-scale of data.

Table 1. Overview of Chameleon Hash Schemes

Scheme Identity Pairing Collision Formal Assumptions

-based -based -Resistance Proof

ICHA[20] Yes No Yes No q-SDHP

CHWK [24] No No Yes No CDHP

OKEP[21] No No Yes No Factoring and DLP

KEFC[25] No No Yes No CDHP

CHET [22] No No Yes Yes RSA and DLP

CHDL [23] No No Yes Yes RSA

CIKE[26] No No Yes No Factoring

ACCH[27] No No Yes Yes Factoring

Each scheme is named by the abbreviation of titles.

2.3 Signcryption

Informally, signcryption is a notion where encryption and signature are applied during single
operation, as a result, data confidentiality and authentication are achieved simultaneously.
For the first time, Zheng [14] first proposed a signcryption scheme based on ElGamal

signature and encryption in 1997. Then, Baek et al [30] formally proved the confidentiality
of Zheng’s signcryption scheme [14] under a rigorous security model. Since then, studies on
signcryption schemes have kept prospering.

Table 2. Overview of Signcryption Schemes

Scheme Identity Online/ Assumption Security in

-based Offline Standard Model

IOSL[31] Yes Yes q-SDHP and q-BDHIP No

OOIB[32] Yes Yes l-BDHI and l-SDHP No

IBOO[33] Yes Yes k-mBDHIP No

EIOE[34] Yes Yes k-CCA1 No

AISI[35] Yes No CDHP and DBDH Yes

SISS[36] Yes No CDHP and DBDH Yes

FSIS[37] Yes No CDHP and DBDH Yes

IBSS[38] Yes No CDHP and DBDH Yes

PSIB[39] Yes No MBSDH and DMBDHI No

Each scheme is named by the abbreviation of titles. Denote following notions as: DMBDHI: Decisional
Modified Bilinear Diffie-Hellman Inversion problem; MBSDH: Modified Bilinear Strong Diffie-Hellman

problem; k-CCA1: k-Collision Attack Assumption; q-BDHIP: q-Bilinear Diffie-Hellman Inversion problem;
DBDH: Decisional Bilinear Diffie-Hellman problem; l-SDH: l-Strong Diffie-Hellman assumption; k-mBDHIP:

Modified BDHI for 𝑘 values.

Generally, most signcryption schemes fall into two categories: public-key infrastructure
-based (PKI-based) [40–42] and Identity-based (ID-based) [31–39, 43–48].

Among the above ID-based signcryption schemes, Chen and Malone-Lee’s work [43] is the
most efficient one. For pairing-based signcryption schemes, Barreto et al’s work [48] is the
most efficient among others because they proposed both provably secure signcryption and
signature. Works of [35–38] offer schemes with practical security and are provably secure in
the standard model. To aim for faster performance, works of [31–34] focus on on-line/off-line

feature which speed up performance by off-line pre-computations. Among them, the scheme
proposed by Lai et al [34] is the most efficient one.
We list an overview of the current schemes in Table 2. As it is shown in Table 2, all

schemes are under identity-based infrastructure (to resolve key-management problem in
symmetric encryptions). Almost half of them are provably secure under the standard model
(security is guaranteed without reliance on random oracle). Based on the above, we can
conclude that signcryption is an idea primitive to serve as privacy protection for small scale
of data (length of data is fixed and short).

3 DEFINITIONS

In this section, we give definitions and security requirements for our proposed HCCH and
HDRS.

3.1 System Model of HUDCO

Layer4: Blockchain with Proof-of-Discrete-LogarithmLayer4: Blockchain with Proof-of-Discrete-Logarithm

Layer 2: Large Scale Outsourcing Layer

Layer 2: Small Scale Outsourcing Layer

Edge Device

PC Device 1

PC Device 2

 Mobile Device 1
Mobile Device 2

Mobile Device 3

Mobile Device 4
Mobile Device 4

Cloud Server
Edge Device 1

Edge Device 2

Edge Device 3

......

...

...

JudgeJudge

PC Device 3
PC Device 6

PC Device 4
PC Device 5

MinerMiner MinerMinerMinerMiner

Block

1

Block

2

Block

3
…

Block

1

Block

2

Block

3
…

Layer1: User Device Layer

H
C
C
H

H
D
R
S

Fig. 1. The framework of hybrid user-centric data outsourcing (HUCDO) scheme

The framework of our hybrid user-centric data outsourcing (HUCDO) scheme is shown in
Figure 1, it mainly consists of six parties explained as below.

User Device: Mobile or personal computer (PC) devices which outsource data from local-
side to cloud server (or edge device). PC device is computationally powerful in computing
whereas mobile device is computationally-limited.

Cloud Server: Conventional storage server with seemingly unlimited space and computing
power due to economies of scale.

Edge Device: Devices which are geographically located at different places, and they
have spare space to keep outsourced data for the nearest user device via a short-range
transmission (e.g., blue-tooth).

Judge: A trusted third party delegated to settle any disputes (refer to HDRS.IntDeny in
section 5.1) between user device and edge device regarding data validity.

B-PoDL: Blockchain with proof-of-discrete logarithm (as consensus) to help shift compu-
tational burdens from user device to miners (as instantiated by algorithm 1 and 2 in section

6.2). It is also used as an economic incentive for users to participate in outsourcing business
more often.

Miner: A device equipped with powerful graphics processing units (GPUs), and it
is utilized to maintain the blockchain and reach global consensus through competitive
computations against each other ([11]).
As it is shown in Figure 1, our hybrid user-centric data outsourcing (HUCDO) scheme

is captured by four layers. At layer 1, the user outsources their data from either pc device
or mobile device. To outsource massive data, our proposed HCCH is applied to process
data file (as instantiated by Figure 2 in section 6.1). In the opposite, when outsourcing
data at a small scale (at layer 3), our proposed HDRS is used as privacy protection (as
instantiated by Figure 3 in section 6.2). Additionally, a blockchain called B-PoDL at layer
4 is utilized to shift computations from the mobile device to miners, it also serves as an
incentive mechanism for users.

3.2 Security Requirements of HCCH

A secure homomorphic collision-resistant chameleon hash (HCCH) should satisfy indistin-
guishability and public-collision resistance [22]. Correctness is obvious from inspection.

Experiment: 𝐼𝑁𝐷HCCH
𝒜 (𝜆)

paramch
HCCH ← HCCH.Setup(𝜆)

(ℎ𝑘𝑐ℎ, 𝑡𝑘𝑐ℎ)← HCCH.KeyGen(paramch
HCCH)

𝑏← {0, 1}
𝑎←
𝒜Hash&Forge(𝑡𝑘𝑐ℎ,··· ,a),HCCH.Forge(𝑡𝑘𝑐ℎ, · · ·)(ℎ𝑘𝑐ℎ)
where oracle Hash&Forge on input
(𝑡𝑘𝑐ℎ,CID,𝑀,𝑀

′
, 𝑏):

Set (ℋ, 𝑟)← HCCH.Hash(ℎ𝑘𝑐ℎ,CID,𝑀, 𝛼)

Set (ℋ′
, 𝑟

′
)← HCCH.Hash(ℎ𝑘𝑐ℎ,CID,

𝑀
′
, 𝛼

′
)

Set (𝑟
′′
)←

HCCH.Forge(tkch,CID,𝑀, (𝑀
′
,ℋ, 𝑟′

))

If HCCH.Verify(hkch,CID,𝑀
′
,ℋ′

, 𝑟
′
) = ⊥

∨𝑟′′ = ⊥, return ⊥
If 𝑏 = 0, return (ℋ, 𝑟)
If 𝑏 = 1, return (ℋ′, 𝑟′′)
return 1, if 𝑎 = 𝑏;
else, return 0

Experiment: 𝑃𝐶𝑜𝑙𝑅𝑒𝑠HCCH𝒜 (𝜆)
paramch

HCCH ← HCCH.Setup(𝜆)
(𝑡𝑘𝑐ℎ, ℎ𝑘𝑐ℎ)← HCCH.KeyGen(paramch

HCCH)
(CID*,𝑀*, 𝑟*,𝑀**, 𝑟**,ℋ*)←
𝒜𝐹𝑜𝑟𝑔𝑒′(𝑡𝑘𝑐ℎ,···)(ℎ𝑘𝑐ℎ)
where oracle 𝐹𝑜𝑟𝑔𝑒′ on input
(𝑡𝑘𝑐ℎ,CID,𝑀,𝑀 ′, 𝑟,ℋ):
Return ⊥ if
0← HCCH.Verify(ℎ𝑘𝑐ℎ,CID,𝑀,ℋ, 𝑟)
(𝑟′)←
HCCH.Forge(𝑡𝑘𝑐ℎ,CID,𝑀

′, (𝑀,ℋ, 𝑟))
If 𝑟′ = ⊥, return ⊥
𝒬ℒ ← 𝒬ℒ ∪ {CID} where 𝒬ℒ denotes a list
of query history
Return 𝑟′

Output 1 if 1←
HCCH.Verify(hkch,CID

, (M,ℋ*, r*)) = 1 ∧
1← HCCH.Verify(ℎ𝑘𝑐ℎ,CID

*, (𝑀**,)
ℋ*, 𝑟**) ∧ CID* /∈ 𝒬ℒ ∧ 𝑀* ̸= 𝑀**

else, return 0, if 𝑎 = 𝑏

Indistinguishability: Indistinguishability can be achieved if no adversary should be
able to efficiently distinguish the chameleon randomness 𝑟 generated from HCCH.Hash or
HCCH.Forge. Our proposed HCCH is indistinguishable if for any efficient adversary 𝒜, the ad-
vantage in winning following experiment 𝐼𝑁𝐷HCCH

𝒜 (𝜆) is negligible, i.e., Pr| [𝐼𝑁𝐷HCCH
𝒜 (𝜆) =

1] − 1
2 |≤ 𝜈(𝜆) where 𝜈 is a negligible function [22]. Additionally, the indistinguishability

between randomness generated from HCCH.Int (homomorphic integration) and HCCH.Hash
(or HCCH.Forge) can also be captured by the above experiment if we adapt the experiment
slightly. Due to space limitations, we omit details.

Public Collision-resistance: Public Collision-resistance [22] requires that no adversary
should be able to find any new collisions even if it is allowed to query a forging oracle
Forge′. Obviously, the output should be fresh and has not been queried before. Our proposed
HCCH is public collision-resistant if for any efficient adversary 𝒜 against our HCCH, we
have Pr[𝐼𝑁𝐷HCCH

𝒜 (𝜆) = 1] ≤ 𝜈(𝜆) where 𝜈 is a negligible function. In addition, collision
resistance is a stronger notion than key-exposure freeness as noted by [22].

3.3 Security Requirements of HDRS

A secure homomorphic designated-receiver signcryption (HDRS) scheme should satisfy
privacy, weak unforgeability, soundness of homomorphic integration and non-repudiation.
Correctness is obvious from inspection.

Privacy: Our proposed HDRS is private if the encryption is indistinguishable against
chosen-plaintext-attacks (IND-CPA). This is captured by experiment 𝐼𝑁𝐷 − 𝐶𝑃𝐴HDRS

𝒜 (𝜆).
Assume there exists an efficient adversary 𝒜 against our scheme, our HDRS is private if
Pr| [𝐼𝑁𝐷 − 𝐶𝑃𝐴HDRS

𝒜 (𝜆) = 1]− 1
2 |≤ 𝜈(𝜆) holds where 𝜈 is a negligible function.

Experiment: 𝐼𝑁𝐷 − 𝐶𝑃𝐴𝜆
𝒜

paramch
HDRS ← HDRS.Setup(𝜆)

(𝑝𝑘𝑅, 𝑠𝑘𝑅)(𝑝𝑘𝑆 , 𝑠𝑘𝑆)← HDRS.KeyGen
(paramch

HCCH)
𝑏* ← 𝒜Encrypt(𝑝𝑘𝑅, 𝑝𝑘𝑆 , 𝑐𝑏,𝑚0,𝑚1)
where oracle Encrypt on input:
𝑝𝑘𝑅,CID,𝑚, 𝛼:
return 𝐶 = 𝑔𝑚(ℎ · 𝑝𝑘𝑅)

𝛼
, i.e.,

the same way as HDRS.Signcrypt did for 𝑐2
in a signcrypted message 𝑐 = (𝑐0, 𝑐1, 𝑐2, 𝑐3)
Here, 𝐶𝑏 = 𝑔𝑚𝑏(ℎ · 𝑝𝑘𝑅)

𝛼

where 𝑏 is chosen randomly from {0, 1}

beside of 𝒜’s view and 𝛼 is chosen
randomly from 𝑍𝑞 and |𝑚0| = |𝑚1|
Return 1 if 𝑏 = 𝑏*

else, return 0

Experiment: 𝑊𝑈𝐹𝜆
𝒜

paramch
HDRS ← HDRS.Setup(𝜆)

(𝑝𝑘𝑅, 𝑠𝑘𝑅)← HDRS.KeyGen
(𝑚*,CID*, 𝑐*)← 𝒜(𝑝𝑘𝑅, paramch

HDRS)
Return 1 if
1← HDRS.Verify(𝑚*,CID*, 𝑐*, 𝑠𝑘𝑅)
otherwise, return 0.

Weak Unforgeability (WUF): Our proposed HDRS is unforgeable against weak chosen-

message attacks (WUF) if no efficient adversary 𝒜 can win experiment 𝑊𝑈𝐹HDRS
𝒜 (𝜆) defined

as below with non-negligible advantage, i.e., Pr[𝐸𝑈𝐹 − 𝐶𝑀𝐴𝜆
𝒜 = 1] ≤ 𝜈(𝜆) where 𝜈 is

a negligible function. The unforgeability of our re-signature (generated by HDRS.Re-Sign)
follows definition of weak unforgeability as well, details are omitted.

Soundness of Homomorphic Integration: Our proposed HDRS satisfies soundness
of homomorphic integration if no adversary 𝒜 could successfully forge a proof to pass the
verification without actually performing homomorphic integration. This is captured by
experiment 𝐻𝑜𝑚𝐼𝑛𝑡𝜆𝒜. We requires that Pr[𝐻𝑜𝑚𝐼𝑛𝑡𝜆𝒜 = 1] ≤ 𝜈(𝜆) holds for any efficient
adversary 𝒜 against our scheme where 𝜈 is a negligible function.

Non-repudiation: Our proposed HDRS satisfies non-repudiation if no adversary could
deny a legitimate ciphertext signcrypted by himself. In other words, he cannot maliciously
accuse the receiver of performing any non-negotiated actions. This is captured by the
experiment of 𝑁𝑅𝜆

𝒜. We asks that Pr[𝑁𝑅𝜆
𝒜 = 1] ≤ 𝜈(𝜆) holds for any efficient adversary 𝒜

against our scheme where 𝜈 is a negligible function.

Experiment: 𝐻𝑜𝑚𝐼𝑛𝑡𝜆𝒜
paramch

HDRS ← HDRS.Setup(𝜆)
(𝑝𝑘𝑅, 𝑠𝑘𝑅)(𝑝𝑘𝑆 , 𝑠𝑘𝑆)← HDRS.KeyGen
Given 𝑚, CID and 𝑐 where
𝑐← HDRS.Signcrypt(CID,𝑚, 𝑠𝑘𝑆 , 𝑝𝑘𝑅)
and 1← HDRS.Verify(𝑚,CID, 𝑐, 𝑠𝑘𝑅)
For ease of analysis, we limit number of
integrated messages 𝑛 to 1, i.e.,
𝑐 = {𝑐0, 𝑐1, 𝑐2, 𝑐3}.
On a challenge 𝑐ℎ𝑎𝑙← HDRS.IntChal() for 𝑐
proof* ← 𝒜chal(𝑝𝑘𝑅, 𝑝𝑘𝑆)
Return 1 to signify success if
1← HDRS.IntVerify(𝑐ℎ𝑎𝑙, proof*, pkR)
else, return 0 as a failure

Experiment: 𝑁𝑅𝜆
𝒜

paramch
HDRS ← HDRS.Setup(𝜆)

(𝑝𝑘𝑅, 𝑠𝑘𝑅)(𝑝𝑘𝑆 , 𝑠𝑘𝑆)← HDRS.KeyGen
On given a customized identity CID and
𝑐← HDRS.Signcrypt(CID,𝑚, 𝑠𝑘𝑆 , 𝑝𝑘𝑅)
(𝛼**,𝑚**)← 𝒜Signcrypt(𝑠𝑘𝑆 , · · ·)(𝑐,CID)
Here, oracle Signcrypt responds queries the
same way as algorithm HDRS.Signcrypt did
for each distinct 𝑚𝑖 where 1 ≤ 𝑖 ≤ 𝑞𝑠
Return 1 if 0← HDRS.IntDeny(𝑐,CID,
(𝛼**,𝑚**), 𝑝𝑘𝑆 , 𝑝𝑘𝑅) ∧ 𝑐←
HDRS.Verify(𝑚,CID, 𝑐, 𝑠𝑘𝑅) ∧ 𝑚 ̸= 𝑚*

else, return 0.

4 THE PROPOSED HCCH AND SECURITY ANALYSIS

In this section, we give concrete construction of HCCH in the Gap Diffie-Hellman (GDH)
group and security analysis based on definitions given in section 3.2. A Gap Diffie-Hellman
(GDH) group is a group where CDHP is hard and DDHP is easy on it, its construction can
be found in [49].
Additionally, our HCCH yields a chameleon signature in the form of (𝑚, 𝑟, 𝑆𝐼𝐺𝑁(ℋ))

where 𝑆𝐼𝐺𝑁() is a non-specified public-key signing scheme. Due to space limitations, further
discussions are omitted.

4.1 Construction of HCCH Scheme

HCCH.Setup(𝜆)→ (paramHCCH): On input a security parameter 𝜆, choose a GDH group
𝐺1 with a generator 𝑔 and prime order 𝑝. Set 𝐻1 : {0, 1}* → 𝑍𝑝. Output system parameter
paramHCCH = {𝐺1, 𝑝, 𝑔,𝐻1}.

HCCH.KeyGen(paramHCCH) → (𝑡𝑘, ℎ𝑘): On input system parameters paramHCCH, the

algorithm randomly selects and integer 𝑥
𝑅← 𝑍*

𝑝 as trapdoor key 𝑡𝑘 and computes ℎ𝑘 = 𝑦 = 𝑔𝑥

as hash key. Output trapdoor key and hash key (𝑡𝑘, ℎ𝑘).
HCCH.Hash(ℎ𝑘,CID,𝑀, 𝛼) → (ℋ, 𝑟): On input a hash key ℎ𝑘, a customized identity

CID, a message of arbitrary length 𝑀 ∈ {0, 1}* and a randomness 𝛼
𝑅← 𝑍*

𝑝 , the HCCH.Hash
algorithm computes 𝑒 = 𝐻1(CID, 𝑦) and ℎ = 𝑔𝑒, and then computes chameleon randomness
𝑟 = (𝑔𝛼, 𝑦𝛼) and chameleon hash ℋ = 𝑔𝐻1(𝑀)(ℎ · 𝑦)𝛼. Output (ℋ, 𝑟).

HCCH.Verify(ℎ𝑘,CID, (𝑀,ℋ, 𝑟)) → (0 or 1): On input a hash key ℎ𝑘, a customized
identity CID, a tuple (𝑀,ℎ, 𝑟) which includes a message𝑀 ∈ {0, 1}*, a chameleon hashℋ and
a chameleon randomness 𝑟 = (𝑔𝛼, 𝑦𝛼), the HCCH.Hash algorithm computes 𝑒 = 𝐻1(CID, 𝑦)
and checks whether < 𝑔, 𝑔𝛼, 𝑦, 𝑦𝛼 > and < 𝑔, 𝑔𝛼, ℎ ·𝑦, ℋ

𝑔𝐻1(𝑀) > are both valid Diffie-Hellman

tuples. If both are, output 0; otherwise, output 1.
HCCH.Forge(𝑡𝑘,CID,𝑀

′
, (𝑀,ℋ, 𝑟)) → (𝑟

′
or ⊥): On input a trapdoor key 𝑡𝑘, a cus-

tomized identity CID, a new message 𝑀
′ ∈ {0, 1}*, a tuple (𝑀,ℋ, 𝑟) which includes an

original message 𝑀 ∈ {0, 1}*, corresponding chameleon hash ℋ and chameleon randomness
𝑟, the algorithm first runs HCCH.Forge(ℎ𝑘,CID, (𝑀,ℋ, 𝑟)). If it is 0, outputs ⊥; otherwise,
the algorithm computes 𝑒 = 𝐻1(CID, 𝑦) and the new randomness 𝑟

′
= (𝑔𝛼

′

, 𝑦𝛼
′

) =

(𝑔𝛼 · 𝑔(𝐻1(𝑀)−𝐻1(𝑀
′
))(𝑥+𝑒)−1

, 𝑦𝛼 · 𝑦(𝐻1(𝑀)−𝐻1(𝑀
′
))(𝑥+𝑒)−1

). Then, the algorithm runs

HCCH.Verify(ℎ𝑘,CID, (𝐻1(𝑀
′
),ℋ, 𝑟′

)) to check correctness. If it is 0, output ⊥; otherwise,
output 𝑟

′
. Note that the forgery succeeds if equation 1 holds and both (𝑀,ℋ, 𝑟) and

(𝐻1(𝑀
′
),ℋ, 𝑟′

) pass verifications of HCCH.Verify.

𝑔𝐻1(𝑀)(ℎ · 𝑦)𝛼 = 𝑔𝐻1(𝑀
′
)(ℎ · 𝑦)𝛼

′

(1)

HCCH.Int(ℎ𝑘, (𝐻1(𝑀1),ℋ1, 𝑟1), · · · , (𝐻1(𝑀𝑛),ℋ𝑛, 𝑟𝑛),CID)→ ((�̃�, ℋ̃, 𝑟) or ⊥):
On input a hash key ℎ𝑘, 𝑛 tuples of (𝐻1(𝑀𝑖),ℋ𝑖, 𝑟𝑖) for (1 ≤ 𝑖 ≤ 𝑛) under same

customized identity CID, the algorithm computes �̃� =
∑︀𝑛

𝑖=1 𝐻1(𝑀𝑖), ℋ̃ =
∏︀𝑛

𝑖=1ℋ𝑖 and 𝑟 =

(𝑔𝛼, 𝑦𝛼) = (𝑔
∑︀𝑛

𝑖=1 𝛼𝑖 , 𝑦
∑︀𝑛

𝑖=1 𝛼𝑖)) where 𝛼 =
∑︀𝑛

𝑖=1 𝛼𝑖. Then, check whether < 𝑔, 𝑔𝛼, 𝑦, 𝑦𝛼 >

and < 𝑔, 𝑔𝛼, ℎ ·𝑦, ℋ̃
𝑔𝐻1(�̃�)

> are both valid Diffie-Hellman tuples. If yes, output (�̃�, ℋ̃, 𝑟) as a

homomorphic integration result; otherwise, output ⊥. Since ℋ̃ = 𝑔
∑︀𝑛

𝑖=1 𝐻1(𝑀𝑖)(ℎ · 𝑦)
∑︀𝑛

𝑖=1 𝛼𝑖

where
∑︀𝑛

𝑖=1 𝐻1(𝑀𝑖) ∈ 𝑍𝑝, the result (ℋ̃, 𝑟) has the same form of the output of HCCH.Hash.

4.2 Security Analysis of HCCH

Indistinguishability:: We prove by game hopping as follows:

- Game 0: This is the original indistinguishability game where 𝑏 = 0.
- Game 1: The same as Game 0 except hashing directly to derive ℋ.
- Game 2:: The same as Game 1 except hashing directly to derive ℋ′.

Denote 𝐸𝑖 as the event of Game i won by 𝒜 (i.e. 1 ← 𝐼𝑁𝐷HCCH
𝒜 (𝜆)). Set Game 0

as the original game defined in 𝐼𝑁𝐷HCCH
𝒜 (𝜆), the advantage of 𝒜 in winning Game 0 is

𝐴𝑑𝑣𝐼𝑁𝐷
𝒜 = |𝑃𝑟[𝐸0]− 1

2 |.
Transition from Game 0 to game 1: This hop only modifies the view of adversary

𝒜 negligibly due to the indistinguishability of our HCCH. Otherwise, if 𝒜 can distinguish
this hop, an adversary ℬ can be constructed to break the indistinguishability of HCCH.
Concretely, ℬ replaces ℎ𝑘𝑐ℎ0 with ℎ𝑘𝑐ℎ1 and queries oracle Hash&Forge to derive ℋ.
Then, ℬ relays the output from 𝒜. Due to the indistinguishability of our HCCH, we have
|𝑃𝑟[𝐸0]− 𝑃𝑟[𝐸1]| ≤ 𝜈(𝜆).
Transition from Game 1 to game 2: This hop only modifies the view of adversary

𝒜 negligibly due to the indistinguishability of our HCCH. Otherwise, if 𝒜 can distinguish
this hop, an adversary ℬ can be constructed to break the indistinguishability of HCCH.
Concretely, ℬ replaces ℎ𝑘𝑐ℎ1 with ℎ𝑘𝑐ℎ2 and applies Hash&Forge to derive ℋ′. Then, ℬ
relays the output from 𝒜. Analogically, we have |𝑃𝑟[𝐸1]− 𝑃𝑟[𝐸2]| ≤ 𝜈(𝜆).

Last, for 𝑏 = 1 we have 𝑃𝑟[𝐸2] =
1
2 . Based on the above, we can deduce that 𝐴𝑑𝑣𝐼𝑁𝐷

𝒜 ≤
𝐴𝑑𝑣𝐼𝑁𝐷

ℬ ≤ 𝜈(𝜆). Since each hop modifies the view slightly and this change is beyond the
adversary 𝒜’s view, our HCCH is indistinguishable.

Public Collision-Resistance: Suppose 𝒜 is an efficient adversary who breaks the
indistinguishability of our HCCH, we briefly show how to construct a probabilistic polynomial
time (PPT) algorithm ℬ to solve q-SDHP [50]. On given a q-SDHP instance (𝑔, 𝑔𝑥, · · · , 𝑔𝑥𝑞

),
we denote it as (𝐴0, 𝐴1, · · · , 𝐴𝑞) where 𝐴𝑖 = 𝑔𝑥𝑖 ∈ 𝐺1 for 𝑖 = 1, · · · , 𝑞 and 𝐴0 = 𝑔. Here,

𝑥 ∈ 𝑍*
𝑝 is unknown. In order to derive an answer (𝑐, 𝑔

1
(𝑥+𝑐)) for some 𝑐 ∈ 𝑍*

𝑞 (which can
either be designated [50] or not, for ease of analysis, we do not designate it). ℬ interacts
with 𝒜 to derive an answer for q-SDHP as below:

Query: Adversary 𝒜 issues 𝑞𝑠 distinct queries {CID𝑖,𝑀
′

𝑖 , (𝑀𝑖,ℋ, 𝑟𝑖)}𝑖∈[1,𝑞𝑠]
under same

hash key ℎ𝑘 = 𝑦. Assume 𝑞𝑠 = 𝑞 − 1.

Response: For each 𝑀𝑖 for 1 ≤ 𝑖 ≤ 𝑞𝑠, ℬ generates corresponding response as follows: Set
polynomial 𝑓(𝑧) =

∏︀𝑞𝑠
𝑖=1(𝑧+𝑒𝑖) =

∑︀𝑞𝑠
𝑖=0 𝑎𝑖𝑧

𝑖 where 𝑎0, · · · , 𝑎𝑞𝑠 are coefficients of polynomial
𝑓(𝑧) and 𝑒𝑖 = 𝐻1(CID𝑖, 𝑦), ℎ𝑘 = 𝑦 is the hash key. Define:

𝑔′ =

𝑞𝑠∏︁
𝑖=0

(𝐴𝑖)
𝑎𝑖 = 𝑔𝑓(𝑧) and ℎ̃ =

𝑞𝑠∏︁
𝑖=1

(𝐴𝑖)
𝑎𝑖−1 = 𝑔𝑧𝑓(𝑧) = 𝑔′

𝑧

Next, we define polynomial 𝑓𝑖(𝑧) = 𝑓(𝑧)/(𝑧+𝑒𝑖) =
∏︀𝑞𝑠

𝑗=1,𝑗 ̸=𝑖(𝑧+𝑒𝑗) and 𝑓𝑖(𝑧) =
∑︀𝑞𝑠−1

𝑗=0 (𝑏𝑗𝑧
𝑗).

Then, ℬ computes:

𝑟
′

𝑖 = (𝑔𝛼𝑖 · 𝑠𝑖𝐻1(𝑀𝑖)−𝐻1(𝑀
′
𝑖), 𝑦𝛼𝑖 · 𝑠𝑖𝑥[𝐻1(𝑀𝑖)−𝐻1(𝑀

′
𝑖)])

𝑠𝑖 =

𝑞𝑠−1∏︁
𝑗=0

(𝐴𝑗)
𝑏𝑗 = (𝑔′)1/(𝑥+𝑒𝑖) where 𝑒𝑖 = 𝐻1(CID𝑖, 𝑦)

Since equation holds for 𝑔𝐻1(𝑀𝑖)(ℎ𝑖 · 𝑦)𝛼𝑖 = 𝑔𝐻1(𝑀
′
𝑖)(ℎ𝑖 · 𝑦)𝛼

′
𝑖 where ℎ𝑖 = 𝑔𝑒𝑖 = 𝑔𝐻1(CID𝑖,𝑦),

𝑟′ is the correct randomness to satisfy collision under customized identity CID𝑖 and public
key (𝑔′, · · ·). Algorithm ℬ replies adversary 𝒜 with a list of 𝑞𝑠 new randomness (𝑟′1, · · · , 𝑟′𝑞𝑠)

Output: Adversary 𝒜 wins by output (CID*,𝑀*, 𝑟*,𝑀**, 𝑟**,ℋ*) where (𝑀*,ℋ*, 𝑟*)
and (𝑀**,ℋ*, 𝑟**) are a collision and 𝑀** has never been queried during query stage such

that 𝑔𝐻1(𝑀
)(ℎ · 𝑦)𝛼

*
= 𝑔𝐻1(𝑀

**)(ℎ* · 𝑦)𝛼
**
𝑖 where ℎ* = 𝑔𝑒

*
= 𝑔𝐻1(CID

*,𝑦). We have:

𝑟** = (𝑔𝛼
**
, 𝑦𝛼

**
) = (𝑔𝛼

*
· 𝑠*𝐻1(𝑀

*)−𝐻1(𝑀
**), 𝑦𝛼

*
· 𝑠*𝑥{𝐻1(𝑀

*)−𝐻1(𝑀
**)})

𝑠* = (
𝑔𝛼

**

𝑔𝛼*)
1

𝐻1(𝑀*−𝐻1(𝑀**)) = (𝑔′)1/(𝑥+𝑒*) = 𝑔𝑓(𝑥)/(𝑥+𝑒*)

where ℎ𝑘 = 𝑥 denotes the trapdoor key. We can parse 𝑓 as 𝑓(𝑧) = 𝛾(𝑧)(𝑧 + 𝑒*) + 𝛾−1 for

some 𝛾(𝑦) =
∑︀𝑞𝑠−1

𝑖=0 𝛾𝑖𝑧
𝑖 and 𝛾−1 ∈ 𝑍𝑝. Then, we can deduce by:

𝑓(𝑧)/(𝑧 + 𝑒*) =
𝛾−1

𝑧 + 𝑒*
+

𝑞𝑠−1∑︁
𝑖=0

𝛾𝑖𝑧
𝑖

Since 𝛾−1 ̸= 0 and CID* has never been queried before (i.e., CID* /∈ {CID1, · · · ,CID𝑞𝑠}),
(𝑧 + 𝑒*) cannot divide 𝑓(𝑧). So, algorithm ℬ calculates:

𝜋 = (𝑠* ·
𝑞𝑠∑︁
𝑖=1

(𝐴𝑖)
−𝛾𝑖)

1
𝛾−1

= 𝑔
1

𝑥+𝑒*

and outputs (𝑒*, 𝜋) where 𝑒* = 𝐻1(CID
*, 𝑦) as an answer to the q-SDHP instance (𝑔, 𝑔𝑥, · · · , 𝑔𝑥𝑞

).
To bound the advantage of algorithm ℬ which solves q-SDHP by using 𝒜, ideas can be
followed by [50], details are omitted.

5 THE PROPOSED HDRS AND SECURITY ANALYSIS

In this section, we give concrete construction of HDRS in the non-GDH groups and security
analysis based on definitions given in section 3.3.

5.1 Construction of HDRS Scheme

HDRS.Setup(𝜆) → (paramHDRS): On input a security parameter 𝜆, choose a group 𝐺2

generated by 𝑔 of prime order 𝑝. Set 𝐻2 : {0, 1}* → 𝑍𝑝. Output system parameter
paramHDRS = {𝐺2, 𝑝, 𝑔,𝐻2}.

HDRS.KeyGen(paramHDRS)→ (𝑠𝑘𝑢𝑠𝑒𝑟, 𝑝𝑘𝑢𝑠𝑒𝑟): On input system parameters paramHDRS,
the algorithm randomly selects three integers from 𝑍𝑝 as private key 𝑠𝑘𝑢𝑠𝑒𝑟 = (𝑥0,𝑢𝑠𝑒𝑟, 𝑥1,𝑢𝑠𝑒𝑟,
𝑥2,𝑢𝑠𝑒𝑟) and computes 𝑝𝑘𝑢𝑠𝑒𝑟 = (𝑦0,𝑢𝑠𝑒𝑟 = 𝑔𝑥0,𝑢𝑠𝑒𝑟 , 𝑦1,𝑢𝑠𝑒𝑟 = 𝑔𝑥1,𝑢𝑠𝑒𝑟 ,
𝑦2,𝑢𝑠𝑒𝑟 = 𝑔𝑥2,𝑢𝑠𝑒𝑟) as public key for a user. Concretely, 𝑥0,𝑢𝑠𝑒𝑟 is for de-signcryption, 𝑥1,𝑢𝑠𝑒𝑟

is for signing and 𝑥2,𝑢𝑠𝑒𝑟 is for verification of the signature scheme. Output (𝑠𝑘𝑢𝑠𝑒𝑟, 𝑝𝑘𝑢𝑠𝑒𝑟).
HDRS.RKeyGen(paramHDRS, 𝑠𝑘𝑆𝐴

, 𝑠𝑘𝑆𝐵
)→ (𝑘𝐴𝐵): On input system parameters

paramHDRS, two private keys 𝑥1,𝑆𝐴
and 𝑥1,𝑆𝐵

for user 𝑆𝐴 and user 𝑆𝐵 respectively. Generate
a proxy re-signature key 𝑘𝐴𝐵 as follows: (1). The proxy P picks a random number 𝑠 ∈ 𝑍𝑝 and
sends it to 𝑆𝐴, (2) 𝑆𝐴 generates and sends 𝑆𝐼𝐺𝑁𝑥1,𝐴

(𝑠
𝑥1,𝐴

) to 𝑆𝐵 (we apply BLS signature

[49] as SIGN() here), (3). 𝑆𝐵 generates and sends 𝑆𝐼𝐺𝑁𝑥1,𝐴
(
𝑠·𝑥1,𝐵

𝑥1,𝐴
). Output a re-encryption

key 𝑘𝐴𝐵 .
HDRS.Signcrypt(CID,𝑚, 𝑠𝑘𝑆 , 𝑝𝑘𝑅) → (𝑐,⊥): On input a customized identity CID ∈

{0, 1}*, a message 𝑚 ∈ 𝑍𝑝, private key 𝑠𝑘𝑆 of sender S, public key 𝑝𝑘𝑅 of receiver R, the
algorithm first computes 𝑒 = 𝐻2(CID, 𝑝𝑘𝑅) and ℎ = 𝑔𝑒. Then, it selects a random number

𝛼
𝑅← 𝑍*

𝑝 and compute 𝑐 = (𝑐0.𝑐1, 𝑐2, 𝑐3) as follows:

𝑐0 = 𝑔𝛼

𝑐1 = 𝑦𝛼1,𝑆

𝑐2 = 𝑔𝑚(ℎ · 𝑦0,𝑅)𝛼

𝑐3 = (𝑦𝑚1,𝑅 · 𝑦𝛼2,𝑅)
𝑥1,𝑆

Output 𝑐 = (𝑐0.𝑐1, 𝑐2, 𝑐3) as message signcrypted by sender S for receiver R.
HDRS.Re-Sign(𝑐𝑆𝐴

, 𝑘𝐴𝐵)→ (𝑐𝑆𝐵
): On input a signcrypted message 𝑐𝑆𝐴

= (𝑐0,𝑆𝐴
, 𝑐1,𝑆𝐴

,
𝑐2,𝑆𝐴

, 𝑐3,𝑆𝐴
) signcrypted by sender 𝑆𝐴 for receiver 𝑅, a re-signature key 𝑘𝐴𝐵 , the algorithm

proceeds as: (1). Set 𝑐0,𝑆𝐵
= 𝑐𝑘𝐴𝐵

1,𝑆𝐴
and 𝑐2,𝑆𝐵

= 𝑐𝑘𝐴𝐵

1,𝑆𝐴
, (2). Compute 𝑐1,𝑆𝐵

= 𝑐0,𝑆𝐴
and

𝑐3,𝑆𝐵
= 𝑐𝑘𝐴𝐵

3,𝑆𝐴
. Output 𝑐𝑆𝐵

= (𝑐0,𝑆𝐵
, 𝑐1,𝑆𝐵

, 𝑐2,𝑆𝐵
, 𝑐3,𝑆𝐵

) as a message signcrypted by sender
𝑆𝐵 to receiver R.

HDRS.De-Signcrypt(𝑐,CID, 𝑠𝑘𝑅)→ (𝑚): On input a signcrypted message 𝑐 = (𝑐0, 𝑐1, 𝑐2
, 𝑐3), a customized identity CID and private key 𝑠𝑘𝑅 of receiver R, the algorithm computes

𝑒 = 𝐻2(CID, 𝑝𝑘𝑅) and de-signcrypts as equation 2:

𝑚 = log

𝑐2

𝑐0
(𝑒+𝑥0,𝑅)

𝑔 (2)

HDRS.Verify(𝑚,CID, 𝑐, 𝑠𝑘𝑅)→ (0 or 1): On input a plaintext 𝑚 ∈ 𝑍𝑝, a customized i-
dentity CID, a signcrypted message 𝑐 = (𝑐0, 𝑐1, 𝑐2, 𝑐3) and private key 𝑠𝑘𝑅 = {𝑥0,𝑅, 𝑥1,𝑅, 𝑥2,𝑅}
of receiver R, the algorithm checks whether equation 3 holds:

𝑐3 = 𝑦
𝑚·𝑥1,𝑅

1,𝑆 · 𝑐𝑥2,𝑅

1 (3)

If equation 3 holds, output 1; otherwise, output 0.
HDRS.IntChal()→ (𝑐ℎ𝑎𝑙). No input, the sender S generates an order 𝑃 = {𝑖𝑗}1≤𝑗≤𝑛 to

indicate a homomorphic integration of 𝑛 messages as �̃� =
∑︀𝑛

𝑗=1 𝑚𝑖𝑗 under same customized

identity CID. Then, the sender randomly generates a message �̃�
′ ∈ 𝑍𝑝. The algorithm

outputs 𝑐ℎ𝑎𝑙 = (𝑃, �̃�
′
,CID) as a challenge for a homomorphic integration.

HDRS.Int&Prove(𝑐ℎ𝑎𝑙, 𝑐, 𝑠𝑘𝑅)→ (𝑐, 𝑝𝑟𝑜𝑜𝑓 or ⊥): On input a challenge 𝑐ℎ𝑎𝑙 = (𝑃, �̃�
′
,

CID), a set of 𝑛 ciphertexts 𝑐 = {𝑐0,𝑖𝑗 , 𝑐1,𝑖𝑗 , 𝑐2,𝑖𝑗 , 𝑐3,𝑖𝑗}1≤𝑗≤𝑛
generated from same sender

S to same receiver R, and private key 𝑠𝑘𝑅 of receiver R, R first performs homomorphic
integration based on challenge 𝑐ℎ𝑎𝑙 to derive 𝑐 by:

𝑐0 =

𝑛∏︁
𝑗=1

𝑐0,𝑖𝑗 = 𝑔
∑︀𝑛

𝑗=1 𝛼𝑖𝑗

𝑐1 =
𝑛∏︁

𝑗=1

𝑐1,𝑖𝑗 = 𝑦
∑︀𝑛

𝑗=1 𝛼𝑖𝑗

1,𝑆

𝑐2 =

𝑛∏︁
𝑗=1

𝑐2,𝑖𝑗 = 𝑔
∑︀𝑛

𝑗=1 𝑚𝑖𝑗 (ℎ · 𝑦0,𝑅)
∑︀𝑛

𝑗=1 𝛼𝑖𝑗

𝑐3 =

𝑛∏︁
𝑗=1

𝑐3,𝑖𝑗 = (𝑦

∑︀𝑛
𝑖𝑗=1 𝑚𝑖𝑗

1,𝑅 𝑦
∑︀𝑛

𝑗=1 𝛼𝑖𝑗

2,𝑅)
𝑥1,𝑆

Denote the result as 𝑐 = (𝑐0, 𝑐1, 𝑐2, 𝑐3). Then, R runs HDRS.De-Signcrypt(𝑐,CID, 𝑠𝑘𝑅) to
derive plaintext �̃� where �̃� =

∑︀𝑛
𝑗=1 𝑚𝑖𝑗 . Then, R runs HDRS.Verify(�̃�,CID, 𝑐, 𝑠𝑘𝑅) for

verification, if output 0, return ⊥ and terminate; otherwise, R computes a forgery by:

𝑐0
′
= 𝑔𝛼

′

= 𝑔𝛼 · 𝑔(�̃�−�̃�
′
)(𝑥𝑅+𝑒)−1

Next, R computes 𝑍1 = 𝑔�̃�, 𝑍2 = 𝑔𝛼, 𝑍3 = 𝑔𝛼
′

, 𝑍4 = (𝑐0)
𝑥𝑅 = (𝑔𝛼)𝑥𝑅 and 𝑍5 = (𝑐0

′
)𝑥𝑅 =

(𝑔𝛼
′

)𝑥𝑅 . Finally, R computes 𝑝𝑟𝑜𝑜𝑓 = SIGN𝑠𝑘𝑅
(𝑍1 ‖ 𝑍2 ‖ 𝑍3 ‖ 𝑍4 ‖ 𝑍5) as a proof for

challenge 𝑐ℎ𝑎𝑙. Output (𝑐, 𝑝𝑟𝑜𝑜𝑓).

HDRS.IntVerify(𝑐ℎ𝑎𝑙, 𝑝𝑟𝑜𝑜𝑓, 𝑝𝑘𝑅)→ (0 or 1): On input a challenge 𝑐ℎ𝑎𝑙 = (𝑃, �̃�
′
,CID),

a proof 𝑝𝑟𝑜𝑜𝑓 = SIGN𝑠𝑘𝑅
(𝑍1 ‖ 𝑍2 ‖ 𝑍3 ‖ 𝑍4 ‖ 𝑍5), first verifies the validity of signature

SIGN𝑠𝑘𝑅
() with 𝑝𝑘𝑅, if it does not hold, return 0 and terminate; otherwise, compute 𝑍6 = 𝑔�̃�

′

and 𝑒 = 𝐻2(CID, 𝑝𝑘𝑅). Then, checks whether equation 4 holds:

𝑍1 · 𝑍2
𝑒 · 𝑍4 = 𝑍6 · 𝑍3

𝑒 · 𝑍5 (4)

If equation 4 holds, the algorithm outputs 1; otherwise, output 0.
HDRS.IntDeny(𝑐*,CID, (𝛼,𝑚), 𝑝𝑘𝑆 , 𝑝𝑘𝑅) → (0 or 1): On input a dispute aggregated

ciphertext 𝑐* = (𝑐*0, 𝑐
*
1, 𝑐

*
2, 𝑐

*
3) from HDRS.Int&Prove and corresponding customized identity

CID, an evidence (𝛼,𝑚) which is revealed by sender S to deny the legitimacy of 𝑐* where
𝛼 denotes the original randomness chosen to compute 𝑐*, and public keys 𝑝𝑘𝑆 and 𝑝𝑘𝑅
for sender S and receiver R respectively. A trusted judge can be employed to decide the
legitimacy of received evidences (i.e., where 𝑐* is forged by receiver R or not). The algorithm
computes ℎ = 𝑔𝑒 = 𝑔𝐻2(CID,𝑝𝑘𝑅) and checks whether : 𝑐*2 = 𝑔𝑚(ℎ · 𝑦0,𝑅)𝛼 and 𝑐*0 ≠ 𝑔𝛼.
If both hold, return 1 to suggest that dispute ciphertext 𝑐* is not a valid homomorphic
integration result from HDRS.Int&Prove as negotiated with sender R; otherwise, 𝑐* is valid.

p

5.2 Security Analysis of HDRS

Privacy: Assuming 𝒜 is a PPT adversary 𝒜 who can break the IND-CPA security of our
HDRS. We first prove by game hopping where each hop only changes 𝒜’s view negligibly.
Then, we can construct an algorithm ℬ to use 𝒜 (supposing he can distinguish between
hops) to solve DDHP [51]. Accordingly, we can bound their advantages based on the above.
First, we give game hops as follows.

- Game 0: This is the original IND-CPA game for our HDRS.
1. The simulator 𝒮 runs HDRS.Setup to get system parameters paramch

HDRS =< 𝐺2, 𝑝, 𝑔,𝐻2 >.
Then, run HDRS.KeyGen to output (𝑝𝑘𝑅, 𝑠𝑘𝑅). 𝒮 relays (paramch

HDRS, 𝑝𝑘𝑅) to 𝒜.
2. 𝒜 randomly chooses two messages of the same length 𝑚0,𝑚1 ∈ {0, 1}* where |𝑚0| =
|𝑚1|, and generates 𝑠𝑘𝑆 = (𝑥0, 𝑥1, 𝑥2).𝒜 sends𝑚0,𝑚1 to 𝒮. 𝒮 flips a coin 𝑐𝑜𝑖𝑛← {0, 1}
and generates 𝑐𝑐𝑜𝑖𝑛 = HDRS.Signcrypt(𝑚𝑐𝑜𝑖𝑛) = (𝑐𝑐𝑜𝑖𝑛,0, 𝑐𝑐𝑜𝑖𝑛,1, 𝑐𝑐𝑜𝑖𝑛,2, 𝑐𝑐𝑜𝑖𝑛,3) by:

𝛽
𝑅← 𝑍*

𝑝 , 𝑐𝑐𝑜𝑖𝑛,0 = 𝑔𝛽 , 𝑐𝑐𝑜𝑖𝑛,1 = 𝑦𝛽1,𝑆 ,

𝑐𝑐𝑜𝑖𝑛,2 = 𝑔𝑚𝑐𝑜𝑖𝑛(ℎ · 𝑦0,𝑅)𝛽 , 𝑐𝑐𝑜𝑖𝑛,3 = 𝑦𝑚𝑐𝑜𝑖𝑛

1,𝑅 · (𝑦𝛽2,𝑅)
𝑥1,𝑆

𝒮 sends 𝑐𝑐𝑜𝑖𝑛 to 𝒜.
3. Finally, 𝒜 outputs a guess by 𝑐𝑜𝑖𝑛′ ∈ {0, 1}. If 𝑐𝑜𝑖𝑛 = 𝑐𝑜𝑖𝑛′, 𝒜 wins and ℬ outputs 1;

else, ℬ outputs 0.

- Game 1: The same as Game 0 except that 𝒮 changes 𝑦𝛽0,𝑅 with 𝑅0 ∈ 𝐺2 during step
2 while computing 𝑐𝑐𝑜𝑖𝑛:

ℎ = 𝐻2(CID, 𝑝𝑘𝑅), 𝛽
𝑅← 𝑍*

𝑝 , 𝑅0
𝑅← 𝐺2,

𝑐𝑐𝑜𝑖𝑛,0 = 𝑔𝛽 , 𝑐𝑐𝑜𝑖𝑛,1 = 𝑦𝛽1,𝑆 , 𝑐𝑐𝑜𝑖𝑛,2 = 𝑔𝑚𝑐𝑜𝑖𝑛ℎ𝛽 𝑅0 , 𝑐𝑐𝑜𝑖𝑛,3 = 𝑦𝑚𝑐𝑜𝑖𝑛

1,𝑅 · (𝑦𝛽2,𝑅)
𝑥1,𝑆

- Game 2:: The same as Game 1 except that 𝒮 changes 𝑦𝛽2,𝑅 with 𝑅1 ∈ 𝐺2 during step
2 while computing 𝑐𝑐𝑜𝑖𝑛:

ℎ = 𝐻2(CID, 𝑝𝑘𝑅), 𝛽
𝑅← 𝑍*

𝑝 , 𝑅0, 𝑅1
𝑅← 𝐺2,

𝑐𝑐𝑜𝑖𝑛,0 = 𝑔𝛽 , 𝑐𝑐𝑜𝑖𝑛,1 = 𝑦𝛽1,𝑆 , 𝑐𝑐𝑜𝑖𝑛,2 = 𝑔𝑚𝑐𝑜𝑖𝑛ℎ𝛽𝑅0, 𝑐𝑐𝑜𝑖𝑛,3 = 𝑦𝑚𝑐𝑜𝑖𝑛

1,𝑅 · 𝑅1

𝑥1,𝑆

Each next hop in above games only made negligible change to the former one, i.e., the
modification of parameters are beyond adversary 𝒜’s view; otherwise, we can construct an
algorithm ℬ to solve DDHP by using 𝒜 who can distinguish between Game 0 and Game
1, or Game 1 and Game 2. Take Game 0 and Game 1 as an example:

On given a DDHP instance 𝑔, 𝑔𝑎, 𝑔𝑏, 𝑅 ∈ 𝐺, ℬ decides by proceeding the following game:

1. ℬ chooses 𝑥1, 𝑥2
𝑅← 𝑍𝑝, it sets 𝑦0 = 𝑔𝑎 and computes 𝑦1 = 𝑔𝑥1 and 𝑦2 = 𝑔𝑥2 . Next, ℬ

replays 𝑝𝑘𝑅 = (𝑦0, 𝑦1, 𝑦2) and paramHDRS to 𝒜
2. 𝒜 generates 𝑠𝑘𝑆 = (𝑥0, 𝑥1, 𝑥2) as HDRS.KeyGen. Then, it samples 𝑚0,𝑚1

𝑅← {0, 1}*
and relays them to ℬ. ℬ flips a coin 𝑐𝑜𝑖𝑛← {0, 1} and generates 𝑐𝑐𝑜𝑖𝑛 = (𝑐𝑐𝑜𝑖𝑛,0, 𝑐𝑐𝑜𝑖𝑛,1,
𝑃 𝑐𝑐𝑜𝑖𝑛,2, 𝑐𝑐𝑜𝑖𝑛,3) as:

ℎ = 𝐻2(CID, 𝑝𝑘𝑅), 𝛽
𝑅← 𝑍*

𝑝 ,

𝑐𝑐𝑜𝑖𝑛,0 = 𝑔𝛽 , 𝑐𝑐𝑜𝑖𝑛,1 = 𝑦𝛽1,𝑆 , 𝑐𝑐𝑜𝑖𝑛,2 = 𝑔𝑚𝑏ℎ𝛽𝑍, 𝑐𝑐𝑜𝑖𝑛,3 = 𝑦𝑚𝑐𝑜𝑖𝑛

1,𝑅 · (𝑦𝛽2,𝑅)
𝑥1,𝑆

3. Finally, 𝒜 outputs his guess 𝑐𝑜𝑖𝑛′ ∈ {0, 1}. If 𝑐𝑜𝑖𝑛′ = 𝑐𝑜𝑖𝑛, 𝒜 wins and ℬ outputs 1;
else, ℬ outputs 0.

Denote 𝐸𝑖 as the event of Game i won by 𝒜 (i.e. 1 ← 𝒮). If 𝑍 = 𝑔𝑎𝑏 holds, this

implies Game 0; else, if 𝑍
𝑅← 𝐺2, it implies Game 1. So, we can bound ℬ’s advantage

in solving DDHP by 𝐴𝑑𝑣𝐷𝐷𝐻𝑃
ℬ = |𝑃𝑟[𝐸0] − 𝑃𝑟[𝐸1]|. Analogically, if 𝒜 can distinguish

between Game 0 and Game 1, we can also bound ℬ’s advantage in solving DDHP by
𝐴𝑑𝑣𝐷𝐷𝐻𝑃

ℬ = |𝑃𝑟[𝐸1]− 𝑃𝑟[𝐸2]|.
In Game 2, 𝑐𝑐𝑜𝑖𝑛 = {𝑐𝑐𝑜𝑖𝑛,0, 𝑐𝑐𝑜𝑖𝑛,1, 𝑐𝑐𝑜𝑖𝑛,2, 𝑐𝑐𝑜𝑖𝑛,3} is generated follows one-time pad (con-

cretely, 𝑐𝑐𝑜𝑖𝑛,0 and 𝑐𝑐𝑜𝑖𝑛,1 are set as 𝛽
𝑅← 𝑍*

𝑝 , 𝑐𝑐𝑜𝑖𝑛,2 is set as 𝑅0
𝑅← 𝐺2, 𝑐𝑐𝑜𝑖𝑛,3 is set as

𝑅1
𝑅← 𝐺2), and therefore, 𝒜’s view is beyond the random coin 𝑐𝑜𝑖𝑛, therefore, his advan-

tage in winning Game 2 is negligible, i.e., 𝑃𝑟[𝐸2] =
1
2 . Analogically, from all above, we

can bound the adversary 𝒜’s advantage in breaking our IND-CPA security with ℬ which
solves the DDHP as: 𝐴𝑑𝑣𝐼𝑁𝐷−𝐶𝑃𝐴

𝒜 ≤ 2 ·𝐴𝑑𝑣𝐷𝐷𝐻𝑃
ℬ . Since 𝐴𝑑𝑣𝐷𝐷𝐻𝑃

ℬ is negligible, therefore,

𝐴𝑑𝑣𝐼𝑁𝐷−𝐶𝑃𝐴
𝒜 is negligible as well. Refer to [52] for more details.

Weak Unforgeability (WUF): We briefly show how to construct an algorithm ℬ which
uses 𝒜 to solve CDHP [51]. On given a CDHP instance (𝑝, 𝑔, 𝑔𝐴, 𝑔𝐵), ℬ interacts with 𝒜 as
follows:
ℬ derives paramch

HDRS ← HDRS.Setup, and randomly chooses 𝑥0,𝑅 and 𝑥2,𝑅 from 𝑍𝑝. It
generates 𝑦0,𝑅 = 𝑔𝑥0,𝑅 and 𝑦2,𝑅 = 𝑔𝑥2,𝑅 . Then, ℬ sets 𝑦1,𝑅 = 𝑔𝐵 and 𝑦1,𝑆 = 𝑔𝐴. ℬ relays
above information to 𝒜. Finally, 𝒜 outputs (𝑚*,CID*, 𝑐*) where 𝑐* = (𝑐*0, 𝑐

*
1, 𝑐

*
2, 𝑐

*
3) denotes

forged signcryption under corresponding customized identity CID* and message 𝑚*.
ℬ can compute 𝑔𝐴𝐵 as the solution to CDHP instance by (𝑝, 𝑔, 𝑔𝐴, 𝑔𝐵) by:

𝑔𝐴𝐵 = (
𝑐*3

𝑐*1
𝑥2,𝑅

)log

𝑐*2
𝑐*0

(𝑒+𝑥0,𝑅)

𝑔

−1

Therefore, we can bound ℬ’s advantage by 𝐴𝑑𝑣𝑊𝑈𝐹
𝒜 ≤ 𝐴𝑑𝑣𝐶𝐷𝐻𝑃

ℬ . Since CDHP is hard,
𝐴𝑑𝑣𝐶𝐷𝐻𝑃

ℬ is negligible and we can deduce that 𝐴𝑑𝑣𝑊𝑈𝐹
𝒜 is negligible as well. We omit

details here.

Soundness of Homomorphic Integration: Suppose 𝒜 is an efficient adversary who
breaks the soundness of homomorphic integration of our HDRS, we can construct an
algorithm ℬ to solve q-SDHP [50] as below:
On given a q-SDHP instance (𝐴0, · · · , 𝐴𝑞) where 𝐴𝑖 is denoted as 𝐴𝑖 = 𝑔𝑥𝑖 ∈ 𝐺2 for

𝑖 = 1, · · · , 𝑞 and 𝐴0 = 𝑔. ℬ interacts with 𝒜 as below:
ℬ picks a security parameter 𝜆 and runs paramch

HDRS ← HDRS.Setup(𝜆). Then, sample
(𝑠𝑘𝑅, 𝑝𝑘𝑅) and (𝑠𝑘𝑆 , 𝑝𝑘𝑆). Randomly pick customized identity CID and message 𝑚 ∈ {0, 1}*,
and run 𝑐 ← HDRS.Signcrypt(CID,m, skS, pkR) to derive ciphertext 𝑐. Next, run 𝑐ℎ𝑎𝑙 ←
HDRS.IntChal() with no input to derive a challenge 𝑐ℎ𝑎𝑙 for homomorphic integration.
To note, we set 𝑛 target messages to be integrated by 1 for ease of analysis. Then, no
homomorphic operation is performed but a proof is generated. This will not affect our
theoretical analysis but will save much space to specify redundant parameters. Finally, ℬ
sends the above generated information to 𝒜 and 𝒜 is challenged to produce a proof 𝑝𝑟𝑜𝑜𝑓*

such that 1← HDRS.IntVerify(chal, proof*, pkR).
Specifically, denote 𝑝𝑟𝑜𝑜𝑓 and 𝑝𝑟𝑜𝑜𝑓* as the valid and forged proof for 𝑐 (target ciphertexts

to be integrated) on a challenge 𝑐, respectively. If 𝑝𝑟𝑜𝑜𝑓 = 𝑝𝑟𝑜𝑜𝑓*, we can reduce it to the

public collision-resistance of our HCCH by viewing 𝑦0,𝑅 as hash key ℎ𝑘 and 𝑥0,𝑅 as trapdoor
key 𝑡𝑘 for HCCH scheme, as we discussed in 4.2 earlier. Shortly, an algorithm (say 𝒞) can
be constructed to solve q-SDHP with non-negligible advantage using the adversary 𝒜 who
breaks the soundness of homomorphic integration of our HDRS. For 𝑝𝑟𝑜𝑜𝑓 ̸= 𝑝𝑟𝑜𝑜𝑓*, we
have following equations where 𝑒 = 𝐻2(CID, 𝑝𝑘𝑅) and CID denotes a customized identity:

𝑔𝑚
′

(𝑔𝛼
′

)
𝑒+𝑥0,𝑅

= 𝑔𝑚(ℎ · 𝑦0,𝑅)𝛼,

𝑔𝑚
*
(𝑔𝛼

*
)
𝑒+𝑥0,𝑅

= 𝑔𝑚(ℎ · 𝑦0,𝑅)𝛼.
By considering these equations, we can also build algorithm, say 𝒞, to solve q-SDHP with
non-negligible advantage. Specifically, this implies the breaking of a stronger security notion
called ”uniqueness” (as identified in [22], which asks that it is infeasible to come up with
two randomness to hold collision for the same challenged message). Due to space limitation,
details are omitted.
Based on the above, we can reduce the soundness of homomorphic integration of our

HDRS to the public collision-resistance of our HCCH as proven in section 4.2 earlier.

Non-repudiation: Suppose 𝒜 is an efficient adversary who breaks the non-repudiation
of our HDRS, we briefly show how to construct an algorithm ℬ to solve q-SDHP by using
adversary 𝒜 as follows. Given a q-SDHP instance (𝑔, 𝑔𝑥, · · · , 𝑔𝑥𝑞

), in order to derive an

(𝑐, 𝑔
1

(𝑥+𝑐)) for some 𝑐 ∈ 𝑍*
𝑞 , ℬ proceeds with 𝒜 as follows:

ℬ picks a security parameter 𝜆 and runs paramch
HDRS ← HDRS.Setup(𝜆). Then, sample

(𝑠𝑘𝑅, 𝑝𝑘𝑅) and (𝑠𝑘𝑆 , 𝑝𝑘𝑆). Randomly pick customized identity CID and message 𝑚 ∈ {0, 1}*,
and run 𝑐 ← HDRS.Signcrypt(CID,m, skS, pkR) to derive ciphertext 𝑐. Next, run 𝑐ℎ𝑎𝑙 ←
HDRS.IntChal() with no input to derive a challenge 𝑐ℎ𝑎𝑙 for homomorphic integration. To
note, we set 𝑛 target messages to be integrated by 1 for ease of analysis. So, no homomorphic
operation is performed but a proof is generated still. This will not affect our theoretical
analysis but will save much space to specify redundant parameters. Next, ℬ sends above
generated information to 𝒜 and 𝒜 is challenged to produce a proof 𝑝𝑟𝑜𝑜𝑓*. On given the
𝑝𝑟𝑜𝑜𝑓* by 𝒜, ℬ runs (0 or 1) ← HDRS.IntVerify(chal, proof*, pkR) to check validity. If the
output is 0, 𝒜 outputs ⊥; if the output is 1, ℬ can extract an answer to q-SDHP from
𝑝𝑟𝑜𝑜𝑓* by viewing 𝑍2 as 𝑔𝛼*, 𝑍3 as 𝑔𝛼**, 𝑦0,𝑅 as hash key ℎ𝑘, 𝑥0,𝑅 as the trapdoor key
𝑡𝑘, 𝐻1(𝑀

*) and 𝐻1(𝑀
**) as 𝑚 and 𝑚′ in our proposed HCCH. Then, ℬ can compute

𝜋 = (𝑠* ·
∑︀𝑞𝑠

𝑖=1(𝐴𝑖)
−𝛾𝑖)

1
𝛾−1 = 𝑔

1
𝑥+𝑒* as an answer to q-SDHP the same way as discussed in

section 4.2 for HCCH. Here, 𝑒* = 𝑔𝐻2(CID,𝑝𝑘𝑅) and 𝑠* = (𝑔
𝛼**

𝑔𝛼*)
1

𝐻1(𝑀*−𝐻1(𝑀**)) . Therefore,

we successfully reduce the security of non-repudiation of our HDRS to the public collision-
resistance of our HCCH.

6 INSTANTIATIONS

In this section, we give instantiations of our HCCH and HDRS schemes for practical use.
We also briefly instantiate technical details of a blockchain with proof-of-discrete-logarithm
to improve the performance of our HDRS by shifting computations of the discrete logarithm
to miners who maintain the blockchain.

6.1 Instantiating HCCH

We show how to use HCCH to process mass data to be outsourced where it maps any
arbitrary size of data (i.e., 𝑀) to short and fixed-length hash value (ℋ ← HCCH.Hash(M)).

The result will be recorded on the blockchain as a proof of outsourcing, and the user can be
rewarded with some crypto-currencies as incentives.

ServerServer

ServerServer

ServerServer

ServerServer

ServerServer

BlockBlock

......

......

……

......

......

......

......

......

......

Blockchain

 User A

Stage1:
HCCH.Hash

User B

User C

Stage3:
HCCH.Int

User D

User E

Stage2:
HCCH.Verify

Deduplication

Stage4:
HCCH.Forge

Grant
Deduplication

Access

HCCH.Verify

Deduplication

HCCH
.

Hash

Fig. 2. Instantiation of HCCH

Edge Device
(Crowdsourcer)

1. HDRS.Signcrypt

2. HDRS.Int(Chal, Int&Prove, Verify)

Dispute

Proxy

4. HDRS.Re-Sign

5. HDRS.De-Signcrypt HDRS.Verify

Proxy Re-
signature

6. HDRS.IntDeny

JudgeJudge

3. HDRS.RKeyGen

Mobile
Device 1

Mobile
Device 2

Mobile
Device 3

Mobile
Device 4

Fig. 3. Instantiation of HDRS

As it is shown in Figure 2, when user A outsources a file to the server, the hash of the
file (generated by HCCH.Hash at stage 1, marked in red) is recorded in blockchain as an
evidence. Later, if user B wishes to access this file, she only needs to show the hash proof to
the corresponding server. Then, a verification (by HCCH.Verify at stage 2, marked in red) is
executed by comparing with the record on the blockchain. If the verification passes, access
to the file can be granted accordingly. This process is known as deduplication [18], where
the outsourcing of repeated files will be deleted to save both bandwidth and storage.

In addition, the hash values of multiple outsourced files (say, three files uploaded by user
C) can be integrated (by HCCH.Int at stage 3, marked in red) to one value. This can be
used as a proof of ownership for user C, and it will be recorded on the blockchain as well.
Accordingly, if user D also shares these files with user C , to differentiate, the HCCH.Forge
algorithm (at stage 4, marked in red) can be executed to produce a hash collision where
the hash value remains the same but new chameleon hash randomness is used to certify D’s
ownership meanwhile differentiating it with C’s. This allows deduplication to take effect
without causing any contradictions [53]. Meanwhile, the access control mechanism can be
created for C and D by identifying the signed chameleon hash randomness. Analogically,
user E can also retrieve these files which he co-owned with user C and D.

A concrete construction of the above scenario is presented in our other work, consequently,
deduplication, data auditing and dynamic update are achieved in one framework by the use
of blockchain.

6.2 Instantiating HDRS

We instantiate how to use our HDRS as the basic privacy protection to outsource data at
small scale to an edge device. To capture the business model, inspired by Yang et al [54],
we instantiate it by crowdsourcing-based crowdsensing (CbC). In this scenario, our HDRS

is applied to outsourced data, and the user can gain profits from outsourcing them to a
crowdsourcer (the price of an outsourced file is negotiated between user and receiver (i.e.,
the crowdsourcer)). How to put price on each data is out of the scope of this paper, but we
will discuss this interesting topic in our next work under the background of datamarket.

In Figure 3, an edge device which also known as crowdsourcer employs several other mobile
devices to collect sensing data. The transmission of these sensitive data is supposed to be
encrypted and signed, since they are transmitted on public channel (where tampering and
eavesdropping may happen). Concretely, mobile device (say, 1,2,3,4) run HDRS.Signcrypt
(at stage 1) to signcrypt sensing data with fixed-length (we can partition file with arbitrary
length into chunks which fixed size by hash function, or specifically, via our HCCH). On
receiving the information, crowdsourcer can perform homomorphic integration (at stage 2)
on the received data, this avoids repeated decryption (in stage 4) because sensing data (like
signal) often comes at the consecutive manner and decrypting them one by one is inefficient.
Additionally, the mobile device can designate a proxy (at stage 3) to re-sign (at stage 4) a
signcrypted information (previously generated by him) to another user (say, from device 1
to device 2) by the notion of proxy re-signature [55]. This allows users to trade their sensing
data with others and gain profits. Last but not least, if there exists any disputes on the
received information, a trusted judge can be entrusted to contact the corresponding user to
check the validity (via HDRS.IntDeny, at stage 6). As undeniable authentication (as guarded
by our non-repudiation security in section 5.2) is achieved, it can be used as an evidence for
information forensics [56] purposes.

Algorithm 1 Block Generation

Input: On input 𝑛 transactions 𝑡𝑟𝑎𝑛 = {𝑡𝑟𝑎𝑛𝑖}1≤𝑖≤𝑛 broadcast in a current network,

where each 𝑡𝑟𝑎𝑛𝑖 is embedded with a signed discrete logarithm 𝑆𝐼𝐺𝑁𝑠𝑘𝑖
(𝑔𝑚𝑖) as a

puzzle to be solved. It is issued and signed by a user with signing key 𝑠𝑘𝑖 where we
instantiate SIGN by BLS signature [49].

Output: New block ℬ𝒪 or ⊥
1: Verify the validity of each 𝑡𝑟𝑎𝑛𝑖 by user 𝑖th’s public key 𝑝𝑘𝑖 by [49]. If invalid, output
⊥; else continue.

2: Define ComptDL as an algorithm to calculate discrete logarithm (e.g., [57, 58]), run
𝑚𝑖 ← ComptDL(𝑔𝑚𝑖) for each 1 ≤ 𝑖 ≤ 𝑛.

3: Aggregate 𝑚 = 𝑚1 ‖ · · · ‖ 𝑚𝑛 and sign it with miner’s signing key (say, 𝑠𝑘𝜋) such that
𝜎 = 𝑆𝐼𝐺𝑁𝑠𝑘𝜋 (𝑚). Here, miner is the one who succeeded in performing above steps.

4: Include {(𝑚,𝜎), 𝑝𝑘𝜋} in the block header where 𝑝𝑘𝜋 is the public key of miner, and
include 𝑡𝑟𝑎𝑛 in block body for public auditing. Apply other definitions as described in
[11].

6.3 Instantiating B-PoDL

We briefly instantiate how to construct a new blockchain with proof-of-discrete-logarithm
(B-PoDL) to help solve discrete logarithm (caused by HDRS.De-Signcrypt) via miners. The
trick is to embed an discrete logarithm instance for each transaction. Our proposal is adapted
from a simplified version of bitcoin [11], instantiation of block generation is given in algorithm
1. For auditing a block, block verification is instantiated in algorithm 2.

As noted previously, we only focus on the core design of blockchain. We refer readers to
[59, 60] for questions related to incentives.

Algorithm 2 Block Verification

Input: On input a block ℬ𝒪 which incorporates {𝑚′, 𝜎′, 𝑡𝑟𝑎𝑛′, 𝑝𝑘𝜋} where 𝑡𝑟𝑎𝑛′ denotes
instances of discrete logarithms and 𝑚′ denotes an answer for it.

Output: 0 or 1
Verify the validity of 𝜎′ by miner’s private key 𝑝𝑘𝜋. If invalid, output 0; else continue.

2: Verify the validity of signature for each 𝑡𝑟𝑎𝑛𝑖 included in 𝑡𝑟𝑎𝑛 by public key 𝑝𝑘𝑖 of the
𝑖th user. If invalid, output 0; else continue.
Check whether 𝑔𝑚

′
𝑖 = 𝑔𝑚𝑖 holds for each 1 ≤ 𝑖 ≤ 𝑛. If all hold, output 1; else, output 0.

Table 3. Definitions of Primitive Operations

Symbol Meaning Approximation Symbol Meaning Approximation

𝑇𝑚 Multiplication 𝑇𝑒 Exponentiation ≈ 21𝑇𝑚

𝑇𝑖 Inversion ≈ 11.6𝑇𝑚 𝑇𝑝 Pairing ≈ 87𝑇𝑚

𝑇𝑝𝑎 Point Addition ≈ 0.12𝑇𝑚 𝑇𝑝𝑚 Point Multiplication ≈ 22𝑇𝑚

𝑇𝑚𝑝𝑚 Multi-Point ≈ 29𝑇𝑚 𝑇𝑚𝑡𝑝 Map-to-Point ≈ 29𝑇𝑚

Multiplication Function

𝑇𝑠𝑖𝑔 Signing of ≈ 58𝑇𝑚 𝑇𝑚𝑡𝑝 Verifying of ≈ 203𝑇𝑚

BLS [49] BLS [49]

𝑇𝑚ℎ𝑡 Constructing 𝑇𝑙𝑜𝑔 Computing ≥ Ω(𝑝
1
2)

Merkle-Hash Tree Discrete Logarithm [63]

We use 𝑇𝑚 as unit of measurement and derive approximations based on indications of [39, 64]. According to

[63], the lower bound for general discrete logarithm is Ω(𝑝
1
2) where 𝑝 denotes the largest prime factor of

group order and no special property is exploited in this group.

7 PERFORMANCE EVALUATION

In this section, we give a comprehensive evaluation of our proposed HCCH, HDRS and
B-PoDL. It includes both complexity and experiment analysis.

7.1 Complexity Analysis

To start, we first give some definitions for involved cryptographic operations in Table 3. For
ease of evaluation, we use group multiplication (𝑇𝑚) as a unit of measurement, and convert
primitive operation by the complexity of 𝑇𝑚 based on [61, 62] where it is possible.

According to Table 4, our proposed HCCH is less efficient than relevant schemes (e.g., 67%
and 58% slower than scheme [25] in hashing and forging respectively). Meanwhile, according
to Table 5 and Figure 7(b), our proposed HDRS ranks the 6th efficient one in signcryption
among 10 listed works in comparison. Assuming |𝐺| = |𝐺1| = |𝐺2| = |𝐺𝑇 | = |𝑍*

𝑞 |, our HDRS
costs the least communication overhead. Therefore, our proposals are acceptably efficient
from complexity perspective.

7.2 Experiment Analysis

To confirm our theoretical analysis, we utilize dev3 (as specified in Table 6) to simulate our
proposed hashing scheme HCCH. Configuration is given in Table 7. For ease of comparison,
we use SHA-256 as benchmark scheme. According to Figure 5, our HCCH is less efficient
than SHA-256 in terms of hashing and verification. This coincides with our complexity
analysis. However, since the performance of HCCH is dominated by throughput efficiency of

Table 4. Complexity of Hash Schemes

Scheme Hash Forge

HCCH 5𝑇𝑒 + 2𝑇𝑚 ≈ 107𝑇𝑚 2𝑇𝑒 + 4𝑇𝑚 + 2𝑇𝑖 ≈ 69.6𝑇𝑚

BRCB[65] 3𝑇𝑒 + 𝑇𝑚 ≈ 64𝑇𝑚 (𝑘+1)𝑇𝑒 +3𝑇𝑚 +𝑇𝑖 ≥ 56.6𝑇𝑚

ICHA[20] 4𝑇𝑒 + 2𝑇𝑚 ≈ 86𝑇𝑚 2𝑇𝑒 + 2𝑇𝑚 + 𝑇𝑖 ≈ 57.6𝑇𝑚

CHKE[24] 3𝑇𝑒 + 2𝑇𝑚 ≈ 65𝑇𝑚 2𝑇𝑒 + 2𝑇𝑚 + 𝑇𝑖 ≈ 57.6𝑇𝑚

KEFC[25] 3𝑇𝑒 + 1𝑇𝑚 ≈ 64𝑇𝑚 2𝑇𝑒 + 2𝑇𝑚 ≈ 44𝑇𝑚

We set 𝑘 = 1 to derive the a lower bound for the forging algorithm of [65] where 𝑘 denotes number of

threshold parties to forge a collision.

Table 5. Complexity of Signcryption Schemes

Scheme Signcryption De-Signcryption Communication
PSIB[39] 4𝑇𝑒 ≈ 84𝑇𝑚 2𝑇𝑒 + 2𝑇𝑝 + 2𝑇𝑖 ≈ 227.6𝑇𝑚 2|𝐺1| + 2|𝐺2| + |𝑍*

𝑞 |

AISI[35] 4𝑇𝑒 ≈ 84𝑇𝑚 6𝑇𝑝 + 𝑇𝑖 ≈ 533.6𝑇𝑚 4|𝐺1| + |𝐺2|

IOSL[31] 2𝑇𝑝𝑚+𝑇𝑚𝑝𝑚+𝑇𝑒+2𝑇𝑚 ≈ 96𝑇𝑚 3𝑇𝑝𝑚 + 𝑇𝑒 + 2𝑇𝑝 ≈ 261𝑇𝑚 3|𝐺| + 𝑛 + 2|𝑍*
𝑞 |

EIOE[34] 𝑇𝑚𝑝𝑚 + 3𝑇𝑝𝑚 + 2𝑇𝑚 ≈ 97𝑇𝑚 𝑇𝑝 + 𝑇𝑝𝑚 + 2𝑇𝑚 + 2𝑇𝑖 ≈ 122.6𝑇𝑚 2|𝐺| + 𝑛 + 2|𝑍*
𝑞 |

OOIB[32] 4𝑇𝑝𝑚 + 𝑇𝑚𝑝𝑚 + 3𝑇𝑚 ≈ 120𝑇𝑚 𝑇𝑚𝑝𝑚 + 𝑇𝑝 ≈ 116𝑇𝑚 4|𝐺| + 𝑛 + 3|𝑍𝑝|

HDRS 8𝑇𝑒 + 3𝑇𝑚 ≈ 171𝑇𝑚 𝑇𝑒+𝑇𝑚+𝑇𝑖+𝑇𝑙𝑜𝑔 ≥ 33.6𝑇𝑚+𝑇𝑙𝑜𝑔 4|𝐺|

FSIS[37] 4𝑇𝑒 + 𝑇𝑝 ≈ 171𝑇𝑚 6𝑇𝑝 + 𝑇𝑖 ≈ 533.6𝑇𝑚 4|𝐺1| + 2|𝐺2|

IBSS[38] 6𝑇𝑒 + 𝑇𝑝 ≈ 213𝑇𝑚 2𝑇𝑒 + 6𝑇𝑝 + 𝑇𝑖 ≈ 575.6𝑇𝑚 4|𝐺1| + |𝑍*
𝑞 |

SISS[36] 6𝑇𝑒 + 𝑇𝑝 ≈ 213𝑇𝑚 2𝑇𝑒 + 6𝑇𝑝 + 𝑇𝑖 ≈ 575.6𝑇𝑚 4|𝐺1| + |𝐺2| + |𝑍*
𝑞 |

IBOO[33] 6𝑇𝑚𝑝𝑚 + 2𝑇𝑒 + 2𝑇𝑚 ≈ 218𝑇𝑚 2𝑇𝑝 + 5𝑇𝑚𝑝𝑚 ≈ 319𝑇𝑚 |𝐺𝑇 |+5|𝐺𝑇 |+𝑛+2|𝑍*
𝑝 |

Listed by signcryption cost from low to high. Each scheme is named by the abbreviation of title.

0

100

200

300

400

500

PSIB

[39]

AISI

[35]

IOSL

[31]

EIOE

[34]

OOIB

[32]
HDRS

FSIS

[37]

IBSS

[38]

SISS

[36]

IBOO

[33]

C
om

pl
ex

ity
 in

 T
m

?

600

SigncryptionSigncryption

De-SigncryptionDe-Signcryption

Not estimated?

Signcryption

De-Signcryption

Not estimated?

Fig. 4. Overview of Signcryption Schemes

dev3 (other than inherent cryptographic operations), our HCCH suffices to be implemented
for practical use.
Next, we utilize dev1 (as specified in Table 6) to test performance of our HDRS. We

use RSA as benchmark scheme as it is widely used. Configuration is given in Figure 6(a).
According to Figure 6(b), both tested algorithms show poor performance in processing
massive files. Meanwhile, according to Figure 7(b), our HDRS scales poor in decryption
due to intractability of solving discrete logarithm. Here, we try to simulate decryption cost
by extracting results directly from [58]. In a previous research [58], a unique group with

Table 6. Simulation Devices

Parameter Dev1 Dev2 Dev3

Model Dell Inspiron Alienware Raspberry Pi
15 7567 15 R3 3 Model B

CPU 4×(3.5GHz) 4×(2.8GHz) 1.2 GHz

RAM 8 GB 16 GB 1 GB

Storage 256 GB 1T+512GB 32 GB
SSD HDD+SSD Micro SD

GPU GTX 1050 GTX 1070 N/A

Table 7. Configuration of HCCH

Platform Dev3
OS Windows 10

Library JPBC [66]

Curve 𝑦2 = 𝑥3 + 1

Benchmark SHA-256 [67]

Simulating 𝑀𝑎𝑝𝑇𝑜𝐺𝑟𝑜𝑢𝑝 instantiated
HCCH.Hash by [49]: {0, 1}* → 𝐺*

Simulating DDH Oracle
HCCH.Verify based on [49, 68]

R
u

n
n

in
g

Ti
m

e
(s

ec
)

File Size (mb)
25 50 100 200

0

100

200

300

0

HCCH.HashHCCH.Hash

SHA-256SHA-256

HCCH.Hash

SHA-256

400 -

(a) Performance of HCCH.Hash

R
u

n
n

in
g

Ti
m

e
(s

ec
)

File Size (mb)
25 50 100 200

0

200

400

600

0

HCCH.VerifyHCCH.Verify

SHA-256SHA-256

HCCH.Verify

SHA-256

400 -

(b) Performance of HCCH.Verify

Fig. 5. Performance of HCCH

Platform Dev1

OS&Compiler Win10 & C

Bechmark RSA-1024 [69]

Key Length 1024 bits

Message Size (per) 117 bytes

Tested Trials 100

Size of Tested File From 11.4 kb

(approx.) to 111.57 mb

(a) Configuration of RSA and HDRS

R
u

n
n

in
g

Ti
m

e
(s

)

Number of Messages
102 103 104 105

0

1

10

100

0

RSA-1024RSA-1024

HDRS-1024HDRS-1024

106 -

(b) Comparison of Encryption Cost

Fig. 6. Performance of HDRS in Signcryption

smoothness-order [70] and graphics processing unit (GPU) are exploited to solve small
discrete logarithm. According to results, decryption costs are high.

Inspired by blockchain [11], we try to shift decryption burdens from user-side to distributed
devices (i.e., miners). We propose a notion called blockchain with proof-of-discrete-logarithm
(B-PoDL) which is similar to hashing-based proof-of-work consensus mechanism. Differently,

Est. 𝑇𝑙𝑜𝑔 by [58]

Modulus Group Time

Length (bit) Smoothness Cost (𝑠)

1536 248 ≈ 23

1536 250 ≈ 32

· · ·
1536 258 ≈ 270

Other Platform: Dev2

Parameter The rest as Fig.6 (a)

(a) Configuration of Decryption

R
u

n
n

in
g

Ti
m

e
(s

)

Number of Messages
1 101 102 103

0

104

105

106

0

RSA-1024RSA-1024

HDRSHDRS

104 105

107

(b) Performance of Decryption Cost

Fig. 7. Comparison of Decryption

it works by performing repeated computation on small discrete logarithm as discussed in
[58]. Performance is verified as follows. We conduct experiment through Geth 1.8.23 by
dev2 (specified in Table 6). Due to limit on mining power, we set mining difficulty to low
level. We randomly sampled 25, 000 transactions, and use dev1 to transmit them to dev2 via
OpenSSL. Based on the above, we set checkpoint for transaction number at 1, 000, 5, 000
and 25, 000 for analysis. Computing costs on small discrete logarithm are drawn from [58]
(as squared in Figure 7, 23 sec for decryption inp a unique group). The results reported in
Table 8 demonstrate the cost to append a block in a basic chain and B-PoDL. As it is shown
in Table 8, our B-PoDL scales fine with increasing number of transactions. Therefore, our
B-PoDL is helpful to shift burdens of computing discrete logarithm from the user device
meanwhile issuing financial incentives to users (e.g., issuing bitcoin) to prosper outsourcing
business. This further indicates the possibility of applying our HDRS scheme for practical
use, as well as realizing HUCDO model we introduced.

Table 8. Overview of Chain Growth

Number of Running Time (min) Confirmation Rate Chain Growth

Transactions basic chain/B-PoDL basic chain/B-PoDL (mb)
1, 000 3/8.21 33/121 per min ≈ 1.2
5, 000 53/75.24 94/66 per min ≈ 32
25, 000 250.18/325.59 100/74 per min ≈ 172

8 CONCLUSION

In this paper, we proposed a hybrid user-centric data outsourcing scheme which considers
user’s benefits in security, efficiency and economy. Our contributions are three-fold: theories,
implementations and evaluations. Firstly, we proposed HCCH and HDRS as two fundamental
tools to enable hybrid outsourcing. Secondly, we instantiate how to use HCCH and HDRS
for practical implementations. Additionally, a new blockchain called B-PoDL is instantiated
to improve the performance of our proposal meanwhile serving as an incentive method to
encourage users for outsourcing. Finally, evaluations showed that our proposals are efficient,
secure and economic for users to outsource data from cyber-physical systems to the cloud
server and edge devices.

REFERENCES

[1] Edward A Lee. Cyber physical systems: Design challenges. In 2008 11th IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing (ISORC), pages 363–369. IEEE,
2008.

[2] Jay Lee, Behrad Bagheri, and Hung-An Kao. A cyber-physical systems architecture for industry

4.0-based manufacturing systems. Manufacturing letters, 3:18–23, 2015.

[3] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey. Computer networks,
54(15):2787–2805, 2010.

[4] Deepak Puthal, Rajiv Ranjan, Surya Nepal, and Jinjun Chen. Iot and big data: An architecture with
data flow and security issues. In Cloud infrastructures, services, and IoT systems for smart cities,
pages 243–252. Springer, 2017.

[5] Anthony D JoSEP, RAnDy KAtz, AnDy KonWinSKi, LEE Gunho, DAViD PAttERSon, and ARiEL
RABKin. A view of cloud computing. Communications of the ACM, 53(4), 2010.

[6] Okke Schrijvers, Joseph Bonneau, Dan Boneh, and Tim Roughgarden. Incentive compatibility of
bitcoin mining pool reward functions. In International Conference on Financial Cryptography and
Data Security, pages 477–498. Springer, 2016.

[7] Deepak Puthal, Saraju P Mohanty, Priyadarsi Nanda, and Uma Choppali. Building security perimeters
to protect network systems against cyber threats [future directions]. IEEE Consumer Electronics
Magazine, 6(4):24–27, 2017.

[8] Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A concrete security treatment of
symmetric encryption. In Proceedings 38th Annual Symposium on Foundations of Computer Science,
pages 394–403. IEEE, 1997.

[9] Deepak Puthal, Rajiv Ranjan, Ashish Nanda, Priyadarsi Nanda, Prem Prakash Jayaraman, and Albert Y
Zomaya. Secure authentication and load balancing of distributed edge datacenters. Journal of Parallel
and Distributed Computing, 124:60–69, 2019.

[10] Jian-Jun Wang and De-Li Yang. Using a hybrid multi-criteria decision aid method for information
systems outsourcing. Computers & Operations Research, 34(12):3691–3700, 2007.

[11] Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system. 2008.

[12] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary Peterson, and
Dawn Song. Provable data possession at untrusted stores. In Proceedings of the 14th ACM conference

on Computer and communications security, pages 598–609. Acm, 2007.

[13] Hugo Mario Krawczyk and Tal D Rabin. Chameleon hashing and signatures, August 22 2000. US
Patent 6,108,783.

[14] Yuliang Zheng. Digital signcryption or how to achieve cost (signature & encryption)? cost (signature)+

cost (encryption). In Annual International Cryptology Conference, pages 165–179. Springer, 1997.
[15] Ari Juels and Burton S Kaliski Jr. Pors: Proofs of retrievability for large files. In Proceedings of the

14th ACM conference on Computer and communications security, pages 584–597. Acm, 2007.

[16] Giuseppe Ateniese, Roberto Di Pietro, Luigi V Mancini, and Gene Tsudik. Scalable and efficient
provable data possession. In Proceedings of the 4th international conference on Security and privacy in

communication netowrks, page 9. ACM, 2008.
[17] Qian Wang, Cong Wang, Jin Li, Kui Ren, and Wenjing Lou. Enabling public verifiability and data

dynamics for storage security in cloud computing. In European symposium on research in computer

security, pages 355–370. Springer, 2009.
[18] John R Douceur, Atul Adya, William J Bolosky, P Simon, and Marvin Theimer. Reclaiming space from

duplicate files in a serverless distributed file system. In Proceedings 22nd international conference on

distributed computing systems, pages 617–624. IEEE, 2002.
[19] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Message-locked encryption and secure

deduplication. In Annual international conference on the theory and applications of cryptographic

techniques, pages 296–312. Springer, 2013.
[20] Giuseppe Ateniese and Breno de Medeiros. Identity-based chameleon hash and applications. In

International Conference on Financial Cryptography, pages 164–180. Springer, 2004.

[21] Giuseppe Ateniese and Breno de Medeiros. On the key exposure problem in chameleon hashes. In
International Conference on Security in Communication Networks, pages 165–179. Springer, 2004.

[22] Jan Camenisch, David Derler, Stephan Krenn, Henrich C Pöhls, Kai Samelin, and Daniel Slamanig.
Chameleon-hashes with ephemeral trapdoors. In IACR International Workshop on Public Key Cryp-

tography, pages 152–182. Springer, 2017.

[23] Stephan Krenn, Henrich C Pöhls, Kai Samelin, and Daniel Slamanig. Chameleon-hashes with dual
long-term trapdoors and their applications. In International Conference on Cryptology in Africa, pages
11–32. Springer, 2018.

[24] Xiaofeng Chen, Fangguo Zhang, and Kwangjo Kim. Chameleon hashing without key exposure. In
International Conference on Information Security, pages 87–98. Springer, 2004.

[25] Xiaofeng Chen, Fangguo Zhang, Haibo Tian, Baodian Wei, and Kwangjo Kim. Key-exposure free

chameleon hashing and signatures based on discrete logarithm systems. IACR Cryptology ePrint
Archive, 2009:35, 2009.

[26] Xiaofeng Chen, Haibo Tian, Fangguo Zhang, and Yong Ding. Comments and improvements on key-

exposure free chameleon hashing based on factoring. In International Conference on Information
Security and Cryptology, pages 415–426. Springer, 2010.

[27] Mihir Bellare and Todor Ristov. A characterization of chameleon hash functions and new, efficient
designs. Journal of cryptology, 27(4):799–823, 2014.

[28] Giuseppe Ateniese, Daniel H Chou, Breno De Medeiros, and Gene Tsudik. Sanitizable signatures. In

European Symposium on Research in Computer Security, pages 159–177. Springer, 2005.

[29] Marc Fischlin and Patrick Harasser. Invisible sanitizable signatures and public-key encryption are
equivalent. In International Conference on Applied Cryptography and Network Security, pages 202–220.

Springer, 2018.

[30] Joonsang Baek, Ron Steinfeld, and Yuliang Zheng. Formal proofs for the security of signcryption. In
International Workshop on Practice Theory in Public Key Cryptosystems: Public Key Cryptography,

2002.

[31] Fagen Li, Muhammad Khurram Khan, Khaled Alghathbar, and Tsuyoshi Takagi. Identity-based
online/offline signcryption for low power devices. Journal of Network Computer Applications, 35(1):340–

347, 2012.
[32] Joseph K. Liu, Joonsang Baek, and Jianying Zhou. Online/Offline Identity-Based Signcryption Revisited.

2010.

[33] S. Sharmila Deva Selvi, S. Sree Vivek, and C. Pandu Rangan. Identity based online/offline encryption
and signcryption schemes revisited. In International Conference on Security Aspects in Information

Technology, 2011.

[34] Jianchang Lai, Mu Yi, and Fuchun Guo. Efficient identity-based online/offline encryption and sign-
cryption with short ciphertext. 2017.

[35] Zhengping Jin, Qiaoyan Wen, and Hongzhen Du. An improved semantically-secure identity-based

signcryption scheme in the standard model. Computers Electrical Engineering, 36(3):545–552, 2010.
[36] Fagen Li and Tsuyoshi Takagi. Secure identity-based signcryption in the standard model. Mathematical

Computer Modelling, 57(11-12):2685–2694, 2013.
[37] Xiangxue Li, Haifeng Qian, Weng Jian, and Yu Yu. Fully secure identity-based signcryption scheme

with shorter signcryptext in the standard model. Mathematical Computer Modelling, 57(3-4):503–511,

2013.
[38] S. Sharmila Deva Selvi, S. Sree Vivek, Dhinakaran Vinayagamurthy, and C. Pandu Rangan. Id based

signcryption scheme in standard model. In International Conference on Provable Security, 2012.

[39] Arijit Karati, Sk Hafizul Islam, G. P. Biswas, Md Zakirul Alam Bhuiyan, Pandi Vijayakumar, Marimuthu
Karuppiah, Arijit Karati, Sk Hafizul Islam, G. P. Biswas, and Md Zakirul Alam Bhuiyan. Provably
secure identity-based signcryption scheme for crowdsourced industrial internet of things environments.

IEEE Internet of Things Journal, PP(99):1–1, 2017.
[40] Feng Bao and Robert H. Deng. A signcryption scheme with signature directly verifiable by public key.

Proc Pck98 Feb, 1431:55–59, 1998.

[41] Chandana Gamage, Jussipekka Leiwo, and Yuliang Zheng. Encrypted message authentication by
firewalls. In International Workshop on Public Key Cryptography, 1999.

[42] John Malonelee and Wenbo Mao. Two birds one stone: Signcryption using rsa. In Rsa Conference on
the Cryptographers Track, 2003.

[43] Liqun Chen and John Malone-Lee. Improved identity-based signcryption. Lecture Notes in Computer

Science, 2004(1):362–379, 2005.
[44] Xavier Boyen. Multipurpose Identity-Based Signcryption. 2003.
[45] Sherman S. M. Chow, S. M. Yiu, Lucas C. K. Hui, and K. P. Chow. Efficient forward and provably

secure id-based signcryption scheme with public verifiability and public ciphertext authenticity. 2003.
[46] Beno?t Libert and Jean Jacques Quisquater. A new identity-based signcryption scheme from pairings.

IEEE Information Theory Workshop, pages 155–158, 2003.

[47] Tsz Hon Yuen and Victor K. Wei. Fast and proven secure blind identity-based signcryption from
pairings. In International Conference on Topics in Cryptology, 2005.

[48] Paulo S. L. M. Barreto, Beno?t Libert, Noel Mccullagh, and Jean Jacques Quisquater. Efficient

and provably-secure identity-based signatures and signcryption from bilinear maps. In International
Conference on Theory Application of Cryptology Information Security, 2005.

[49] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In International

Conference on the Theory and Application of Cryptology and Information Security, pages 514–532.
Springer, 2001.

[50] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In International Conference

on the Theory and Applications of Cryptographic Techniques, pages 56–73. Springer, 2004.

[51] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE transactions on Information

Theory, 22(6):644–654, 1976.

[52] Fatemeh Rezaeibagha, Mu Yi, Shiwei Zhang, and Xiaofen Wang. Provably secure homomorphic
signcryption. In International Conference on Provable Security, 2017.

[53] Ke Huang, Xiaosong Zhang, Xiaofen Wang, Xiaojiang Du, and Ruonan Zhang. Ebd-mle: Enabling
block dynamics under bl-mle for ubiquitous data. In 2017 IEEE International Symposium on Parallel
and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous

Computing and Communications (ISPA/IUCC), pages 1281–1288. IEEE, 2017.

[54] Dejun Yang, Guoliang Xue, Xi Fang, and Jian Tang. Incentive mechanisms for crowdsensing: Crowd-
sourcing with smartphones. IEEE/ACM Transactions on Networking (TON), 24(3):1732–1744, 2016.

[55] Giuseppe Ateniese and Susan Hohenberger. Proxy re-signatures: new definitions, algorithms, and
applications. In Proceedings of the 12th ACM conference on Computer and communications security,
pages 310–319. ACM, 2005.

[56] Matthew C Stamm, Min Wu, and KJ Ray Liu. Information forensics: An overview of the first decade.
IEEE access, 1:167–200, 2013.

[57] Daniel J Bernstein and Tanja Lange. Computing small discrete logarithms faster. In International

Conference on Cryptology in India, pages 317–338. Springer, 2012.
[58] Ryan Henry and Ian Goldberg. Solving discrete logarithms in smooth-order groups with cuda. In

Workshop Record of SHARCS, pages 101–118, 2012.

[59] Yongjun Ren, Yepeng Liu, Sai Ji, Arun Kumar Sangaiah, and Jin Wang. Incentive mechanism of data
storage based on blockchain for wireless sensor networks. Mobile Information Systems, 2018, 2018.

[60] Fan Zhang, Ittay Eyal, Robert Escriva, Ari Juels, and Robbert Van Renesse. {REM}: Resource-efficient

mining for blockchains. In 26th {USENIX} Security Symposium ({USENIX} Security 17), pages
1427–1444, 2017.

[61] Arijit Karati, SK Hafizul Islam, GP Biswas, Md Zakirul Alam Bhuiyan, Pandi Vijayakumar, and
Marimuthu Karuppiah. Provably secure identity-based signcryption scheme for crowdsourced industrial
internet of things environments. IEEE Internet of Things Journal, 5(4):2904–2914, 2018.

[62] Jonathan Katz, Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of applied
cryptography. CRC press, 1996.

[63] Victor Shoup. Lower bounds for discrete logarithms and related problems. In International Conference

on the Theory and Applications of Cryptographic Techniques, pages 256–266. Springer, 1997.
[64] Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. An efficient signature scheme from bilinear

pairings and its applications. In International Workshop on Public Key Cryptography, pages 277–290.

Springer, 2004.
[65] Ke Huang, Xiaosong Zhang, Yi Mu, Xiaofen Wang, Guomin Yang, Xiaojiang Du, Qi Xia, Fatemeh

Rezaeibagha, and Mohsen Guizani. Building redactable consortium blockchain for industrial internet-of-

things. IEEE Transactions on Industrial Informatics, 2019.
[66] Angelo De Caro and Vincenzo Iovino. jpbc: Java pairing based cryptography. In 2011 IEEE symposium

on computers and communications (ISCC), pages 850–855. IEEE, 2011.
[67] Wikipedia contributors. Sha-2 — Wikipedia, the free encyclopedia, 2019. [Online; accessed 5-May-2019].

[68] Antoine Joux and Kim Nguyen. Separating decision diffie–hellman from computational diffie–hellman

in cryptographic groups. Journal of cryptology, 16(4):239–247, 2003.
[69] Jiezhao Peng and Qi Wu. Research and implementation of rsa algorithm in java. In 2008 International

Conference on Management of e-Commerce and e-Government, pages 359–363. IEEE, 2008.

[70] Carl Pomerance and Igor E Shparlinski. Smooth orders and cryptographic applications. In International
Algorithmic Number Theory Symposium, pages 338–348. Springer, 2002.

	Abstract
	1 Introduction
	1.1 Problem Statement and Motivation
	1.2 Contributions

	2 Related Work
	2.1 Data Outsourcing
	2.2 Chameleon Hash
	2.3 Signcryption

	3 Definitions
	3.1 System Model of HUDCO
	3.2 Security Requirements of HCCH
	3.3 Security Requirements of HDRS

	4 The Proposed HCCH and Security Analysis
	4.1 Construction of HCCH Scheme
	4.2 Security Analysis of HCCH

	5 The Proposed HDRS and Security Analysis
	5.1 Construction of HDRS Scheme
	5.2 Security Analysis of HDRS

	6 Instantiations
	6.1 Instantiating HCCH
	6.2 Instantiating HDRS
	6.3 Instantiating B-PoDL

	7 Performance Evaluation
	7.1 Complexity Analysis
	7.2 Experiment Analysis

	8 Conclusion
	References

