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Abstract 

Hedonic regression and repeat sales are commonly used methods in real estate analysis. While 

the merits of combining these models when constructing house price indices are well 

documented, no research on the utility of adopting the same approach for residential property 

valuation has been conducted to date. Specifically, house value estimates were obtained by 

combining predictions from repeat sales and various hedonic regression specifications, which 

were enhanced to account for spatial effects. Three of these enhancements—regression 

kriging, mixed regressive − spatial autoregressive model and geographically weighted 

regression—are widely utilized spatial econometric models. However, a fourth augmentation, 

which addresses systematic residual patterns in regressions with district indicator variables 

and the presence of outliers in housing data, was also proposed. The resulting models were 

applied to a dataset containing 16,417 real estate transactions in Oslo, Norway, revealing that, 

when the repeat sales approach is included, it reduces the median absolute percentage error of 

solely hedonic models by 6.8−9.5%, where greater improvements are associated with less 

accurate spatial enhancements. These improvements can be attributed to the inclusion of both 

spatial and non-spatial information inherent in previous sales prices. While the former has 

limited utility for well-specified spatial models, the non-spatial information implicit in 

previous sales prices likely captures otherwise difficult to observe phenomena, potentially 

making its contribution highly valuable in automated valuation models.  
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1. Introduction 

Accurate property valuation is essential for reducing the inherent uncertainty in housing 

transactions. As home purchase represents the largest investment most individuals will ever 

make in their lifetime, uncertainty tolerance is low. This psychological component of what is 

essentially a financial transaction arguably underpins the real estate agent industry and its 

business of human appraisal of property market value (Levin, 2001). Accurate property 

valuation is also critical for housing research. New, well-specified big datasets combined with 

more computer power have made it cost effective to construct more accurate valuation 

models. Corcoran and Liu, 2014 points out that the growing demand for automatically 

generated housing value estimates, as an efficient and cost-effective alternative, may 

potentially contribute to a more transparent housing market. 

 

In this article, benefits derived by combining property price predictions yielded by two well-

known valuation methods—repeat sales and hedonic regression—were investigated. The 

developed models were tested by applying them to 16,417 residential property transactions in 

Oslo, Norway, between August 2016 and December 2017. Due to the spatial effects inherent 

in housing markets, the hedonic regression was enhanced with three widely utilized spatial 

econometric models and a fourth, outlier-robust model. This was done to ensure that any 

change in model performance was caused by methodological effects from the model 

combination, rather than being due to the correction of a spatially misspecified regression. 

 

Historically, hedonic price regression models have been used when conducting house price 

analysis. First described by Rosen (1974) to value composite goods, this model is based on 

the assumption that the residential property value is merely the sum of the market value of its 

individual characteristics. Thus, accuracy of such hedonic house price predictions is 

determined by the data’s ability to identify important housing attributes and ability correctly 

estimate the structural characteristics, time, and location as the main determinants of housing 

value. Although the first two factors require considerate specification, location modeling has 

proven particularly challenging in the classic hedonic regression framework. The issue 

primarily stems from the difficulty in capturing the spatial interactions in cross-sectional 

housing data, as these introduce simultaneity and feedback effects that necessitate use of 

spatial econometric models (Anselin, 2010). This has been a long-neglected fact in the studies 

of economics, arguably because spatial analysis is commonly associated with disciplines like 

geography and geology (Dubin, 1998).  

The repeat sales model is another important real estate analysis methodology, based on the 

premise that the prices at which a particular property has been sold in the past are useful 

inputs for estimating future real estate market development (Bailey et al., 1963). When 

applying this model, it is common to multiply previous sale prices with the expected market 

growth to obtain current price estimates. While this method has been widely used, Case and 

Quigley (1991) demonstrated the merits of combining repeat sales with hedonic regression in 

the construction of house price indices. Their findings were subsequently confirmed and 
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discussed by Case et al. (1991). However, extensive literature review has revealed that 

broader applicability of this combination has never been explored.1 

To get robust results against spatial misspecification of the hedonic model, repeat sales price 

predictions are combined with the predictions yielded by regression models, which are further 

enhanced by applying both traditional and state-of-the-art spatial models reported in pertinent 

literature, as well as an ad hoc spatial model proposed in this paper. As a result, in addition to 

the primary contribution to the house price valuation methods, we provides further empirical 

evidence on the utility of spatial econometric modeling of the housing market, linking the 

analyses and findings reported in this paper to one of the most prevalent research trends in 

real estate valuation (Krause and Bitter, 2012).  

Combining regression predictions with the estimates yielded by the repeat sales model 

improved the accuracy of all hedonic models with respect to all examined metrics. These 

improvements were attained even when novice combination techniques were adopted, which 

was primarily attributed to diversification effects (Bates and Granger, 1969). The 

geographically weighted regression outperformed the other spatial specifications, indicating 

that spatial non-stationarity is more prominent than spatial dependence in the Oslo housing 

market. Further, combining hedonic regression and repeat sales within a single model resulted 

in greater improvements to the outputs generated by regression models characterized by low 

accuracy. As the models differed in terms of location modeling only, it can be posited that 

repeat sales estimates contribute at least some spatial information to the overall model output. 

While the value of this contribution diminishes for well-specified spatial models, previous 

sales prices nonetheless likely contain a certain amount of non-spatial information that is 

otherwise difficult to discern from the market trends. If this assumption holds, previous sales 

prices could be particularly valuable for developing automated property valuation tools, as 

few alternatives for detecting such information exist besides human inspection. 

The remainder of this article is organized as follows. First, the Norwegian housing market, 

and that characterizing Oslo in particular, is introduced in Section 2, while the data employed 

when testing the models is presented in Section 3. The real estate evaluation models are 

presented in Section 4, while their results are reported and discussed in Section 5. The main 

conclusions are presented in Section 6, along with some suggestions for future research 

directions in this field.  

2 Background 

2.1 The Norwegian property market  
 

The Norwegian housing market has some noteworthy characteristics, making it highly 

suitable for studies on property pricing in general. First, the sales process can be characterized 

as an English auction, where the price is determined in a near perfect bidding context 

(Olaussen et al., 2017). Second, most properties for sale in Norway are announced via 

 
1 Extensive literature review has failed to uncover any publicly available research on this topic. However, some 
companies advertise automated valuation based on both models, e.g., Home Value Explorer® by Freddie Mac (2017).  
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standardized advertisements published on the FINN.no website.2 Such high degree of 

transparency and standardization facilitates comparison between dwellings and provides high-

quality data for market participants. Third, Norwegians have a strong preference for home 

ownership as opposed to renting, as indicated by the 82.7% ownership rate reported for 2016 

by Eurostat (2016). 
 

2.2 The property market of Oslo 

Oslo is the capital of Norway with a 2018 population of approximately 670,000. Historically, 

the city has been demographically divided between east and west, whereby industry workers 

were based around the river Akerselva in the central and eastern areas, while wealthier 

families mainly resided in western parts (Amundsen, 2015). Even though some former 

working-class districts like Grünerløkka and Gamle Oslo are becoming increasingly popular 

(Faksvåg, 2015), the historical pattern with higher prices in western areas is still evident, as 

shown in Figure 3.1.  

 

Figure 3.1: Administrative districts of Oslo with the price/m2 ranking for 2017 given by 

Humberset (2018). Data for district Sentrum (denoted by grey color) were not available, 

while district Søndre Nordstrand is not represented in our dataset and is thus not shown on 

the map. 

 

2 FINN covers approximately 70% of the Norwegian housing market (Eiendom Norge, Eiendomsverdi and FINN.no, 
2017). All properties in the dataset employed in the current investigation were announced on the site.  
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3 Data 

The real property transaction data are compiled from the property register of Oslo, provided 

by the firm Alva Technologies (Alva). The dataset comprises of all housing transactions that 

took place in Oslo between August 2016 and December 2017. This dataset provides accurate 

and comprehensive information on building characteristics for each transaction, including 

longitude and latitude of the relevant residential property. Alva also provided the previous 

transaction prices for the dwellings if these were available. Prior to utilizing this data in the 

current investigation, some modifications were needed. For example, all entries related to the 

Marka district were discarded, dwellings from district Sentrum were reassigned to St. 

Hanshaugen and there was 36 dwellings labeled as Other unit type, after manual checking all 

36 they was labeled as Apartments. This data preprocessing resulted in 16,417 residential 

units within the dataset, which was further augmented by mapping administrative district 

information from Oslo Kommune (2018), as well as by obtaining additional data by reviewing 

the corresponding FINN advertisements. An overview of the variables included in the 

regression models is provided in Table 3.1−3.5, where all attributes are specified as indicator 

variables. Variables derived directly from FINN are described in Table 3.5.  

 

Parts of the information sourced from FINN were obtained through word recognition, which 

was applied to the advertisement title. As a result, only the property characteristics 

highlighted by the seller/agent were examined, potentially disregarding the attributes that a 

certain properties possess. However, the likelihood of missing potentially vital information 

was limited, as these titles are comprehensive, with the dwellings included in the dataset 

examined containing almost 17 words on average, which is sufficient for promoting multiple 

property characteristics. Further, since data related to variables that typically enhance 

property value, such as Has a garden, were also retrieved, the effect of aforementioned 

problem on the models presented here is negligible, as promoting such attributes is in the 

seller’s interest. 

 

In the repeat sales method, Statistics Norway’s Price index for existing dwellings for Oslo and 

Bærum (Monsrud and Takle, 2018) was used as a proxy for the expected price appreciation, 

as it provides sales information from 1993 to the present. The distribution of the numbers of 

previous sales for the dwellings used in the repeat sales method is provided in Table 3.6.  

 

 

 

Table 3.1: Construction year 

Construction 

year Dwellings 

1820−1989 12,894 

1990−2004 1,120 

2005−2014 2,063 

2015-2017 340 
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Total 16,417 

 

Table 3.2: House type distribution 

House type Dwellings 

Apartment 14,592 

Semi-detached 

house 367 

Detached house 385 

Serial house 1,073 

Total 16,417 

 

Table 3.3 District distribution 

District Dwellings 

Alna 1,317 

Bjerke 719 

Frogner 1,616 

Gamle Oslo 1,647 

Grorud 771 

Grünerløkka 2,079 

Nordre Aker 816 

Nordstrand 1,038 

Sagene 1,949 

St. Hanshaugen 1,193 

Stovner 556 

Ullern 641 

Vestre Aker 725 

Østensjø 1,35 

Total 16,417 

 

Table 3.4: Size distribution 

Dwelling Size Dwellings 

10—29 m2 578 

30—39 m2 1,513 

40—49 m2 1,933 

50—59 m2 2,886 

60—69 m2 3,277 

70—79 m2 1,901 

80—89 m2 1,303 

90—99 m2 757 

100—109 m2 578 

120—119 m2 348 

120—129 m2 292 
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130—139 m2 203 

140—149 m2 165 

150—179 m2 328 

Above 180 m2 355 

Total 16,417 

 

Table 3.5: Variables retrieved from FINN advertisements 

  Dwellings % of total 

High monthly shared cost 1,642 10.0% 

Two bedrooms & size < 60 m2 932 5.7% 

Three bedrooms & size < 85 m2 835 5.1% 

Housing cooperative 8,615 52.5% 

Needs refurbishment 1,158 7.1% 

Is a penthouse 2,299 18.2% 

Has a garden 1,659 10.1% 

Has a terrace 1,139 6.9% 

High monthly shared cost is defined as being ranked within the top 10% for all dwellings in 

the dataset, the threshold being NOK 4,713 per month; Two bedrooms & size < 60 m2 is the 

number of 2-bedroom dwellings covering area smaller than 60 m2; Three bedrooms & size < 

85 m2 is the number of 3-bedroom dwellings with the floor area smaller than 85 m2; Housing 

cooperative denotes whether the dwelling is part of a housing cooperative. The self-

explanatory variables “Needs refurbishment,” “Is a penthouse,” “Has a garden” and “Has 

a terrace” were retrieved by word recognition. 

 

 

Table 3.6: Number of sales for a dwelling in the dataset 

Number of sales Dwellings % of total 

One sales 3,279 20.0% 

Two sale 5,631 34.3% 

Three sales 4,109 25.0% 

Four sales or more 3,398 20.7% 

Total 16,417 100.0% 

The table shows the number of dwellings and the share of the dataset where we have data on one 

sale, two sales, three sales and four or more sales. 

4 Methodology 

In this section, an ordinary hedonic regression model is introduced, with an emphasis on the 

intercept area dummy variables constructed using the k-means and k-nearest neighbor 

algorithms. Next, the following four extensions to the basic regression model are described: 

Regression kriging, Mixed regressive, spatial autoregressive model, Geographically weighted 

regression and Vicinity-based residual tuning. 

 

Finally, the manner in which the estimates yielded by the repeat sales model are combined 

with the hedonic regression estimates is delineated. The schematic representation of the 

proposed models is given in Figure 5.1, where the geographically weighted regression is 



 

8 

 

denoted by a dashed line, since variables related to districts must be omitted in this model. 

 

Figure 5.1: Overview of spatial models and extensions used in the present study. The dashed 

line indicates that district indicator variables cannot be specified in the GWR model. 

4.1 Basic hedonic regression model  

The hedonic regression model was first introduced by Rosen (1974). It has since been widely 

used in property valuation, due to the prevalent view that residential property value can be 

approximated by the sum of market value of its constituents. In the model employed, the 

value of a given dwelling is represented by the sum of its common debt3 at sales and sales 

price, divided by the area in m2, as given below:  

𝑃𝑖 =
𝑠𝑎𝑙𝑒𝑠 𝑝𝑟𝑖𝑐𝑒𝑖 + 𝑐𝑜𝑚𝑚𝑜𝑛 𝑑𝑒𝑏𝑡𝑖

ℎ𝑜𝑢𝑠𝑒 𝑎𝑟𝑒𝑎𝑖
.  (4.1) 

The natural logarithm of Pi given by Equation (4.1) is estimated by evaluating contributions 

to the price by each utility-bearing attribute using multiple linear regression. The general 

equation to be estimated is given by:  

ln(𝑃𝑖) = β0 +∑𝛽𝑘𝑋𝑘𝑖 +∑𝛿𝑛𝐷𝑛𝑖 + 𝜖𝑖,

𝑛

      𝜖 ∼ 𝑖. 𝑖. 𝑑.  (4.2)

𝑘

 

where P is the price variable as defined in Equation (4.1); Xk is a set of explanatory variables, 

describing a presence of utility-bearing characteristic k (including both building 

characteristics and dummy variables pertaining to time); Dn is a set of n area indicator 

variables; ε is the error term, and β0, βk and δn are the parameters to be estimated, with their 

respective estimates denoted as �̂�0, �̂�𝑘 and 𝛿𝑛. As the data only span over 17 months, and 

cover a single city, the common assumption that parameter vectors are invariant across space 

and time is deemed valid (de Haan and Diewert, 2013). In line with the approach adopted by 

Koenker and Bassett Jr (1978), Equation (4.2) is estimated using least absolute deviation 

 
3 In Norway cooperatives and apartment buildings, can take on common debt for example to renovate the 

building. Especially for cooperatives, the common debt can be high compared with the transaction price of 

apartment. The total price of a dwelling in Norway is the transaction price plus the dwellings share of the total 

common debt. 
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(LAD), as LAD is more robust towards outliers than ordinary least squares (OLS) and other 

estimators based on distributional assumptions (Yoo, 2001). An overview of the structural 

explanatory variables used in Equation (4.2) is given in Table 3.1−3.5. To incorporate spatial 

and temporal variability in Equation (4.2), intercept indicator variables, further discussed in 

the following subsections, were introduced. Price predictions in nominal values is obtained by 

taking the exponential and multiplying with a scaling factor, to minimize underestimation bias 

in the transformation. The scaling-factor is estimated by regressing unscaled price estimates 

from the training sample on their corresponding real prices through the origin, where the 1% 

most expensive dwellings is discarded to control for outliers in the data.   
 

 

House prices are volatile, as they are subject to seasonality and other effects, and are 

generally substantially influenced by time (Reichert, 1990). However, as the aim was 

modeling spatial effects, the temporal dimension is neglected. Specifically, to ensure that 

model output is unbiased by market price developments, this effect was isolated by including 

monthly time dummies as explanatory variables into all regression models. Furthermore, the 

test sample was constructed by randomly drawing 20% of the observations from the full 

sample. As a result of this approach, the two samples used for estimating and testing the 

models, respectively, span the same time horizon, thus eliminating the temporal dimension.  

 

The k-means algorithm was applied to the training data sample to construct artificial market 

districts characterized by more homogeneous property pricing processes while retaining 

cohesiveness. For this purpose, distance between dwellings was measured as a function of 

longitude, latitude and price, whereby the latter was calculated by applying Equation (4.1). 

After clustering the training set, k-nearest neighbors were used to classify dwellings in the test 

sample based on the newly constructed districts, measuring distance in classical, geographic 

sense using the haversine formula (Sinnott (1984)). In empirical trials, the best results were 

obtained when the values of k in the k-means algorithm ranged from 14 to 20, and k = 18 was 

adopted in the final model, as this provided the most stable results. An illustrative plot 

comparing a k-means clustering with k = 14 and administrative borders is shown in Figure 

6.1. The k in the k-nearest neighbor algorithm was set to 3, based on empirical trials, as well 

as visual inspection of district shapes produced by k-means.  

 

4.2 Regression kriging  

As argued by Dubin (1988) and Basu and Thibodeau (1998) among others, spatial 

dependence in the housing price process can be modeled by assuming that the original 

functional relationship given by Equation (4.2) holds, while abandoning the assumption of the 

error term being independent and identically distributed (i.i.d.), which requires modeling of 

the error covariance structure. Adopting this approach for prediction builds on the statistical 

interpolation technique known as kriging. Following the previously outlined notation, 

Equation (4.2) can be rewritten as:  

ln(𝑃𝑖) = β0 +∑𝛽𝑘𝑋𝑘𝑖 +∑𝛿𝑛𝐷𝑛𝑖 + 𝜖𝑖,

𝑛

      𝜖 ∼ 𝑁(0, 𝜎2C)    (4.3)

𝑘

 

where C is the error correlation matrix. To estimate Equation (4.3), a functional form for the 

error term’s covariance structure must be assumed. The parameters of this function, along 

with the normal regression coefficients, are simultaneously estimated using the maximum 

likelihood method. However, it should be noted that estimation of Equation (4.3) can become 
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very complex when the dataset includes nonlinear explanatory variables (Hengl et al., 2007). 

Moreover, parameter instability is another major concern commonly encountered in practice 

(Goovaerts, 1999).  

To mitigate these issues, the estimation process can be divided into two phases. First, the 

linear regression parameters β0, βk and δn are estimated using a less complex estimator—

LAD, as previously noted. Next, the error covariance function parameters are estimated by 

simple kriging4 with zero mean on the residuals from the first regression. The prediction 

process is finalized by adding the fitted residual from the simple kriging model to the fitted 

value from the linear regression. In mathematical terms, the predicted value for dwelling i in 

the test sample having structural characteristics X ′ and D ′ is given by  

ln(�̂�𝑖) = �̂�0,LAD +∑�̂�𝑘,𝐿𝐴𝐷𝑋´𝑘𝑖 +∑𝛿𝑛,𝐿𝐴𝐷𝐷´𝑛𝑖 +∑𝑤𝑖𝑗𝜖�̂�,𝐿𝐴𝐷 ,

𝑗

 

𝑛

 𝑗 ≠ 𝑖     (4.4)

𝑘

 

where 휀̂ are the LAD residuals from the training sample, and wi j are the elements of the 

weight matrix W, determined by the a priori chosen covariance function. This two-step 

procedure was denoted as regression kriging by Odeh et al. (1995). Predictions yielded by 

Equation (4.4) and those resulting from directly estimating Equation (4.3) are mathematically 

equivalent. Indeed, Hengl et al. (2003) demonstrated that, as long as the assumed covariance 

function is identical, the difference is restricted to the computational steps.  

 

Several structural covariance functions are applicable in kriging, provided that correlation 

between observations decreases with increased physical distance. In the current analyses, it is 

assumed that the error covariance follows the negative exponential form given below, as 

proposed by Case et al. (2004).  

𝑐𝑖𝑗 = 𝑏1 + 𝑒
−
𝑑𝑖𝑗
𝑏2 , 𝑗 = 1, 2, 3, … , 100; 𝑗 ≠ 𝑖 

where the parameters b1 and b2 are estimated in the second step of the regression kriging 

procedure outlined above; di j are Euclidean distances between dwelling i and dwelling j, and 

ci j are entries in the C-matrix derived from Equation (4.3). To calculate the weights based on 

the covariance matrix, the relationship W = C−1c was assumed, where c is a vector of 

covariances between the training data points and the estimation point (Bohling, 2005). To 

limit the computational cost, the number of neighbors for each dwelling was limited to 100.  

 

At this juncture, it is important to note that generalized least squares (GLS) is typically 

recommended as the proper estimator in the first step of regression kriging, to account for 

spatial autocorrelation in the error term (Cressie, 1990). However, Kitanidis (1993) 

demonstrated that the difference between several iterations of GLS and a single iteration 

(OLS) is too small to have any notable effect on the final output. To test this claim, both GLS 

and LAD were adopted, yielding marginal differences, in line with the findings reported by 

Kitanidis (1993). Thus, LAD was chosen to ensure that a consistent choice of estimator is 

employed across all models evaluated.  
 

 

4 The term simple kriging is used when the mean of the dependent variable is assumed to be known a priori (Cressie, 
1990).  
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4.3 Mixed regressive, spatial autoregressive model  
 

As argued by Can (1992), spatial dependence in the housing price determination process can 

be modeled by including a function of the dependent variable as an autoregressive term in the 

standard hedonic regression (Equation (4.2)). Using the specification put forth by 

Fotheringham (2009, p. 257) the model can be expressed as:  

ln(𝑃𝑖) = β0 + 𝜌∑𝑤𝑖𝑗 ln(𝑃𝑗) +

𝑗

∑𝛽𝑘𝑋𝑘𝑖 +∑𝛿𝑛𝐷𝑛𝑖 + 𝜖𝑖,

𝑛

      𝑗 ≠ 𝑖    (4.5)

𝑘

 

where ρ is a measure of the overall level of spatial dependence among (ln(Pi), ln(Pj)) pairs for 

which wi j > 0, and wi j are spatial weights assigned to the sales price of dwelling j. Other 

variables are as described in Section 3. Including the dependent variable to the right-hand side 

of the equation induces simultaneity; hence, estimating Equation (4.5) with OLS or LAD 

produces biased estimates. However, this approach is commonly adopted, as appropriate 

estimation using maximum likelihood is extremely challenging (Farber and Yeates, 2006). A 

different solution was proposed by Can and Megbolugbe (1997), who advocated for inclusion 

of an additional constraint, thus giving Equation (4.5) the following revised form:  

ln(𝑃𝑖𝑡) = β0 + 𝜌∑𝑤𝑖𝑗 ln(𝑃𝑗,𝑡−𝑚) +

𝑗

∑𝛽𝑘𝑋𝑘𝑖 +∑𝛿𝑛𝐷𝑛𝑖 + 𝜖𝑖,

𝑛

    𝑚 = 1,2, … ;   𝑗

𝑘

≠ 𝑖    (4.6) 

The distinction between Equation (4.5) and (4.6) is that the dependent variables in the latter 

are determined at time t and are hence exogenous, rendering OLS and LAD unbiased 

estimators. The weighting function, again following Can and Megbolugbe (1997), is given by:  

𝑤𝑖𝑗 =

{
 
 

 
 

1
𝑑𝑖𝑗
⁄

∑ (1 𝑑𝑖𝑗
⁄ )𝑗

: 𝑑𝑖𝑗 < 1.5𝑘𝑚

        0        ∶ 𝑑𝑖𝑗 ≥ 1.5 𝑘𝑚

           𝑗 = 1,2,3, … ,15;   𝑗 ≠ 𝑖 (4.7) 

 

where di j are Euclidean distances between dwelling i and dwelling j, with j representing the 

15 dwellings located closest to the dwelling i, and having earlier sales dates than dwelling i. 

In the special case where two dwellings share the same location, di j is set to 10 m, to ensure 

that Equation (4.7) is defined for all observations.  

 

It is also worth noting that some dwellings in the dataset are situated at remote locations, and 

thus no relevant neighbors are available for defining the autoregressive term. The same issue 

arises for the oldest transactions within the sample. Thus, to retain the same number of 

observations for all models, the autoregressive term for the aforementioned dwellings was 

assumed to be equal to the average log(price) for the relevant district, with the price defined 

by Equation (4.1). 

 

4.4 Geographically weighted regression  

 

As argued by Wheeler and Calder (2007), the housing price process is non-stationary over 
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space, the coefficients in the traditional hedonic regression represent the global "average" 

only. As a result, accurate predictions necessitate application of an enhanced regression model 

that permits parameter variation across space (Yao and Fotheringham, 2016). The 

geographically weighted regression method enables such a local parameter estimation. We 

adopt the notation given by Fotheringham et al. (2002, p. 52), resulting in a revised traditional 

regression framework given by:  

 

ln(𝑃𝑖) = β0(𝑢𝑖, 𝑣𝑖) +∑𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑋𝑘𝑖 + 𝜖𝑖,        (4.8)

𝑘

 

where ui and vi denote the coordinates of the ith point in space, and βk(ui, vi) is a realization 

of the continuous function βk(u, v) at point i. Note that the location area indicator variable D 

from Equation (4.2) is omitted in Equation (4.8), which contains a greater number of 

unknown than observed variables. Consequently, at point i, Equation (4.8) is approximated 

by:  

ln(𝑃𝑖) = β0 +∑𝛽𝑘𝑋𝑘𝑖 + 𝜖𝑖,        (4.9)

𝑘

 

The parameters β0 and βk are independently estimated for all i locations with dwellings in the 

test sample. Estimation is conducted by weighting the observations in accordance with their 

proximity to location i, and the parameters are chosen to minimize the weighted sum of 

squared residuals. In line with the approach proposed by Fotheringham et al. (2002), Equation 

(4.9) is estimated with the weights calculated using a Gaussian kernel function:  

𝑤𝑖𝑗 = 𝑒
−0.5 

𝑑𝑖𝑗
2

𝑏  , 𝑖 ≠ 𝑗  (5.10) 

 

where dij are the Euclidean distances between point i and j; b is denoted as bandwidth and is 

chosen by applying the cross-validation optimization approach described by Cleveland 

(1979). The practical implication of this choice is that only a small subset of the observations 

in the training sample is used to estimate Equation (4.9) at the different points i. Thus, the 

estimate for a given dwelling is vulnerable to anomalies in the data related to the neighboring 

dwellings.  

 

 

4.5 Vicinity-based residual tuning  
 

An automated variant—referred to as vicinity-based residual tuning or VRT—of a valuation 

method commonly used by real estate agents is adopted. In the original approach, a limited 

number of recently sold properties in the immediate neighborhood (usually 3−6) is used to 

provide a house value estimate (Can and Megbolugbe, 1997; Pace et al., 2000). The procedure 

outlined here is based on the premise that differences between properties are already 

controlled for in the residuals of a hedonic regression. Moreover, the issues that arise from 

including district intercept dummies in a regression, as outlined by Fik et al. (2003), are also 

addressed.  

 

The fitted values for dwellings in the test set were obtained by using regression coefficients 

estimated on the training set. Next, for each dwelling in the test set, with the sales date 
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denoted by τ. Up to κ closest neighbors from the training set sold before time τ, located within 

the same district5 and within a radius of maximum μ meters were identified. The residuals of 

the neighbors were extracted before calculating their median, which was multiplied by a 

deflation factor α (along with another deflation factor β if the number of neighbors is below 

λ). Finally, this residual was added to the fitted value to obtain the VRT estimate, as shown in 

Table 4.1.  

 
 

Table 4.1: Parameter values yielded by the VRT method 

κ μ α β λ 

6 150 0.7 0.5 3 

 

Specifying area intercept dummies in a hedonic regression often results in low prediction 

accuracy close to district borders, where residuals with different magnitudes and signs are 

clustered on either side of the border. Figure A.2 provides an example of such effects. To 

address this issue, the district constraint was included in the step (i) above. Further, an outlier 

with an extreme residual value included as a neighbor can have a severe impact on the model 

accuracy. In the present investigation, this effect was mitigated by using the median and 

including the (λ, β) clause in the step (ii) above, where λ = 3 corresponds to the lowest 

number of neighbors where the smallest and largest neighbor residual value are discarded in 

the calculation of the median. The remaining model parameters were determined by applying 

the following reasoning: μ was chosen intuitively, and α and β values were determined by 

empirical trials, while the selection of κ was based on the approach recommended by Can and 

Megbolugbe (1997). 

 

 

4.6 Constructing and combining repeat sales predictions  
 

A common drawback of all hedonic house price models stems from the high heterogeneity 

among dwellings, rendering the inclusion of all price-influencing attributes infeasible (Case et 

al., 1991). To overcome this issue, repeat sales analysis was conducted, as this allowed 

capturing some of the effects that would be difficult to observe through the former sales 

prices of a given dwelling. The model is grounded in the assumption that residential property 

prices have developed in line with the overall market trends, as described by a house price 

index, implying that the quality of each dwelling is assumed comparable at the time of each 

sales transaction. As outlined in Section 3, Statistic Norway’s Price index for existing 

dwellings for Oslo and Bærum provides quarterly data dating back to 1993. In adopting this 

resource, a maximum of three previous transactions for each dwelling was considered, giving 

preference to the most recent transactions, excluding all sales that occurred prior to 1993, as 

this period precedes the development of the aforementioned price index.  

 

The premise that a dwelling’s quality is highly similar at different transaction times is a 

questionable assumption. If previous sales conditions are unrepresentative for the dwelling’s 

condition at resale, the repeat sales estimate is likely to be erroneous. To remove such 

outliers, all repeat sales estimates deviating by more than 25% from the regression estimate 

with which they are to be combined were discarded, in line with the approach recommended 

by Anon. (2013). To obtain one final prediction, the remaining estimates were combined 

 
5 Either administrative or generated by k-means, depending on the variable type required in the regression. 
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following a stepwise procedure. Briefly, the weight given to the hedonic regression estimate 

was at least 60%6, and heavier weighting was given to predictions based on more recent 

previous sales than earlier transactions. In line with the approach utilized by Clemen (1989), 

only simple linear combination techniques were used.  

 

5 Results and discussion 

The performance7 of an ordinary hedonic regression without any location attributes is 

displayed in the top row of Table 5.1. As this model includes no spatial information, it 

represents a benchmark for assessing the utility of all enhancements incorporated into 

subsequent models in order to address the spatial aspect of residential property pricing. A 

comparison of the results confirms the strong influence of location on housing value. Indeed, 

addition of administrative district indicator variables only (row 2) reduces the median error 

from 12.1% to 8.05%, an improvement of 33.5%. Interestingly, augmenting the benchmark 

model with either regression kriging (row 5) or mixed regressive, spatial autoregressive 

model (row 9) yields similar improvements—from 12.1% to 8.18% and 7.70%, respectively. 

Thus, it can be argued that district intercept dummies incorporate the effect of location 

relatively accurately, although several methods can be adopted to address this issue. The 

extensive use of indicator variables is likely driven by the intuitive interpretation of the 

parameters, as well as ease of implementation. However, reliance on such variables, 

particularly when based on administrative districts, disregards intra-district variation and 

tends to result in irregular residual patterns close to borders. The resulting residual pattern 

from using administrative borders is plotted in Figure A.2. 

 

Statistically generated districts can mitigate the aforementioned issues. A comparison of the 

administrative and a k-means based division of Oslo is depicted in Figure 5.1. As k-means 

operates independently of administrative districts, any area similarities are coincidental. An 

interesting case is the administrative district Alna, where k-means classifies the dwellings into 

four districts, indicating marked internal price differences. Further observations can be 

gleaned from comparing Figure 5.1 and Figures 3.1, as well as Figure A.1 and A.2 given in 

the Appendix. Improved performance from using k-means districts becomes evident when 

comparing row 2 and 3 in Table 5.1, as the median absolute percentage error improves from 

8.05% to 7.67%. Moreover, the corresponding Moran’s I and Geary’s C values (Moran, 1950; 

Geary, 1954; Cliff and Ord, 1970) indicate reduced spatial autocorrelation in the residuals. As 

stated in Subsection 4.1.2, k-means is set to divide the city into a higher number of districts 

(18) than the administrative division (14), due to more stable performance. Results based on 

different values of k are shown in Appendix Table A.1, supporting the algorithm’s conceptual 

advantages, as the improvement arising from implementing k-means with 14 districts is 

 
6 By testing different weighting and combinations we found no single optimal solution for multiple performance 
metrics - resulting in our choice of a “trail-and-error” based weight of 60% for the regression estimate that resulted 
on both high prediction and low volatility across multiple runs. 

7 Generally, model performance is measured by median absolute percentage error (Q0.5). 
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relatively high compared to the improvement stemming from finer district fragmentation.  
 

 

Figure 5.1: Comparison of administrative districts (lines) and statistically generated districts 

delineated by using k-means (colored markers) for the city of Oslo. Final k-means models are 

based on k = 18, whereas this map is obtained by using k = 14 for easier visual inspection of 

algorithm functioning. Color gradient indicates the average price/m2 for each k-means 

district, and is thus directly comparable to the map provided in Figure 3.1. Number of 

observations is 13,133. 
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Table 5.1: Model performance 

Figure 5.2: Model refers to the methods outlined in Section 4.1−4.5; Admin district and K-

means indicate if the boundaries for the area dummy variables are administrative districts or 

are generated by k-means, respectively (irrelevant for the GWR model); Repeat sales 

indicates whether the results are obtained after combining the output with the repeat sales 

predictions; Q0.25, Q0.5 and Q0.75 denote the first, second and third error quartile, respectively, 

where Q0.5 is boldfaced for emphasis; Within 10% specifies the fraction of errors below 10%; 

Row no. is row number provided for convenience when referring to this table. The results 

shown are average values based on the outputs of 10 runs for each implementation. The 

number of observations used for model training is 13,133, while the number of out-of-sample 

observations is 3,284.   



 

17 

 

 

District indicators are insufficient to appropriately model refined spatial patterns. Thus, the 

performance of the global augmentations—regression kriging and mixed regressive, spatial 

autoregressive model—is examined here first. Without incorporating district variables, both 

models display improved prediction accuracy compared to the benchmark model, as already 

pointed out. When district variables are included in the model, accuracy increases further, 

although not substantially. A less intuitive result is that the two spatial models seem 

indifferent to the choice of district representation, as indicated by a comparison of results 

reported in row 6 with those in row 7, as well as row 10 with row 11 in Figure 5.2, in contrast 

to the clear advantage of applying k-means to the ordinary regression. Two possible 

explanations can be offered for this finding. First, the influence of district dummy variables 

declines when location is concurrently modelled by several methods. This assertion is 

supported by a comparison of the absolute values of the location dummy parameters from the 

hedonic regressions with k-means districts and hedonic regressions with k-means districts and 

autoregressive term. Second, the two enhancements correct some spatial abnormalities caused 

by the administrative district, reducing the need for k-means. Finally, the autoregressive 

model outperforms regression kriging. However, this finding cannot be compared to 

previously published results, as none are available. Moreover, in line with LeSage and Pace 

(2014), applying different weighting functions in the regression kriging model did not affect 

the results. However, while this might reduce the credibility of the kriging implementation 

presented here, the effect of combining these predictions with repeat sales estimates 

(discussed later in this section) coincides with the remaining spatial models.  

 

The VRT model performs second best among those aimed at spatial enhancements (as can be 

seen from the results reported in rows 14 and 15 in Figure 5.2). These findings are supported 

by the arguments put forth by Chan et al. (1999), who highlighted the severe impact of 

outliers on most models, which is avoided in VRT, as it is constructed to be more outlier-

robust. It is also noteworthy that the VRT model only performs well for specifications 

including district variables,8 likely due to the inability to distinguish more district-wide trends 

when considering a very limited number of neighbors. However, rather than adjusting the 

model to capture such trends, it is intrinsically tailored to address spatial residual patterns 

emerging from the use of intercept dummy variables in a regression. As a result, the method 

probably has limited use in general forecasting. Nonetheless, it is highly effective in this 

specific context. VRT also seems indifferent to the choice of district representation, most 

likely for the reasons suggested earlier for regression kriging and the autoregressive model.  

 

The geographically weighted regression emerges as the most precise spatial enhancement (as 

shown in row 17 of Figure 5.2). Since this model assumes and addresses spatial non-

stationarity, such significant improvement strongly suggests that this is the more prominent 

spatial effect in the Oslo housing market. The fact that GWR seems to outperform other 

spatial models for out-of-sample predictions corresponds with the findings reported by Farber 

and Yeates (2006) and Páez et al. (2008). However, it contrasts arguments put forth by Harris 

et al. (2010) and Harris et al. (2011), who recommended universal kriging. Although GWR 

tends to provide precise predictions, it has received criticism owing to its limited value for 

making inferences. Furthermore, the method is sensitive to outliers on a local level, which is 

 
8 Row 13 in Table 5.1 shows unsatisfactory performance by VRT where district variables are omitted.  
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particularly problematic in housing valuation, where outliers pose a permanent challenge.

 
Figure 5.3: Visualization of improved performance achieved by combining repeat sales 

predictions with hedonic regression predictions. The bold number above the arrows indicates 

the reduction in median absolute percentage error in percentage terms. The row number at 

the bottom of each column indicates the corresponding row in Table 5.1. 
 

The gain from combining repeat sales predictions with hedonic regression forecasts is evident 

in Figure 5.2 and is further emphasized in Figure 5.3, where the median absolute error 

achieved by the different regression models pre-and post-combination is plotted, which is 

equivalent to comparing rows 4, 8, 12, 16 and 18 with the corresponding values in Figure 5.2. 

In fact, the tabulated results reveal that combining repeat sales predictions with hedonic 

regression forecasts improves model accuracy by every metric and for every variation of the 

hedonic regression. To support diversification as the main driver behind this improvement, as 

argued by Bates and Granger (1969), as opposed to a deterioration of highly accurate repeat 

sales predictions, independent repeat sales results are provided in Appendix Table A.2. The 

data reported in this table confirm that, when used in isolation, repeat sales predictions are 

outperformed by all regression models incorporated into the combined models, supporting the 

diversification argument. It is also worth noting the considerable effect of outlier removal on 

the repeat sales estimates, which becomes evident when the two rows in Appendix Table A.2 

are compared. This is arguably a necessity in order to replicate the level of improvement from 

the repeat sales/hedonic regression combination.  
 

Apart from the overall increase in model accuracy, Figure 5.3 shows that improvements 

derived from combining repeat sales with other enhancements vary between the regression 

models, where a more substantial effect is observed when the initial regression error is large. 
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Considering the fact that the regression models only differ in terms of location modeling, it 

can be argued that repeat sales contribute at least some spatial information, the value of which 

diminishes for more sophisticated spatial models. Arguably, location is modeled fairly well in 

the autoregressive, VRT and GWR models, where combination with the repeat sales method 

resulted in similar improvements of 0.51, 0.52 and 0.45 percentage points, respectively. 

Consequently, it is reasonable to conclude that the predominant part of these improvements 

stems from the incorporation of non-spatial information omitted from the hedonic regression. 

Although it is not verifiable, this argument is supported by the inherent heterogeneity of 

dwellings, making inclusion of all price-influencing attributes in a regression framework 

infeasible (de Haan and Diewert, 2013).  

 

Based on the preceding discussion, it can be posited that previous sales prices can provide 

specific value in two ways. Most importantly, they have the ability to incorporate information 

on difficult to observe attributes. This could have a pivotal value in automated property 

valuation, as there are few alternatives for detecting such information besides human 

inspection. Second, they enable the implementation of a scalable, parsimonious forecasting 

model, incorporating easily available attributes only, and relying on previous sales prices to 

incorporate information on the omitted, more market-specific attributes. As no universal 

hedonic specification presently exists (Bowen et al., 2001), local expertise remains necessary 

to identify relevant price-influencing attributes in a given market (Gelfand et al., 1998). 

 

While we conceptual advantages of combining the hedonic regression and repeat sales 

methods are demonstrated, some practical limitations of such approach should also be noted. 

First, collecting previous sales price data reflecting current housing quality is generally hard, 

and can even be impossible in certain cases. Newly built dwellings obviously lack such data, 

but very old sales prices are not informative either, as they rarely represent the current state of 

the property (Case and Shiller, 1987). As a result, aforementioned combination might be less 

useful for markets where houses are traded less frequently, such as rural or suburban areas in 

which family homes predominate (Clapp et al., 1991). In addition, data will inevitably be 

lacking for some residential properties, preventing the method’s applicability to all dwellings. 

Finally, the scale of the model improvement should also be considered when deciding if 

combining the modeling approaches is useful in practice. For example, in the present 

analyses, the median error of GWR was reduced from 6.65% to 6.20% (a 6.8% improvement) 

when combining the regression predictions with estimates from repeat sales. This rather 

marginal improvement might imply that the combination has little practical implication. 

Arguably, both models are good enough for obtaining an approximate value estimate. 

Nonetheless, neither is good enough to make end users confident in the results.  
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6 Conclusion 

A central aspect of uncertainty in housing transactions is inaccurate property valuation. In this 

article, benefits derived by combining property price predictions yielded by two well-known 

valuation methods—repeat sales and hedonic regression—were investigated. The developed 

models were tested by applying them to 16,417 historical residential property transactions in 

Oslo, Norway. Due to the spatial effects inherent in housing markets, the hedonic regression 

was enhanced with three widely utilized spatial econometric models and a fourth, outlier-

robust model. This was done to ensure that any change in model performance was caused by 

methodological effects from the model combination, rather than being due to the correction of 

a spatially misspecified regression.  

 

The studied combination resulted in improved accuracy for all hedonic regressions on all 

metrics, which was attributed to diversification, as proposed by Bates and Granger (1969). 

Models with lower pre-combination accuracy yielded greater improvements, where reduction 

in median absolute percentage error ranged from 9.5% for the ordinary regression to 6.8% for 

the geographically weighted regression. This difference in the gains is argued to indicate that 

repeat sales predictions contribute at least some spatial information. While this contribution 

might have limited value for refined spatial models, the existence of some non-locational 

information in previous sales prices could nonetheless have pivotal value for automated 

property valuation, as there are few alternatives for detecting such information besides human 

inspection.  
 

When interpreting the findings reported in this paper, certain limitations of the model 

combination should be noted. Specifically, non-existent or inapplicable previous sales price 

data in certain markets is inevitable. Optimizing the simple combination scheme presented in 

this paper is also a fruitful path for future studies, e.g., through more considerate 

implementation of the temporal dimension of previous sales. Similarly, improving repeat 

sales accuracy by, for example, applying local price indices, would be beneficial. Considering 

broader trends in automatic housing valuation, machine learning appears to be usurping the 

position as focal point of research at the expense of hedonic regression (Park and Bae, 2015). 

However, these tools remain highly dependent on the quality and quantity of observable, 

quantifiable data (Trawin ́ski et al., 2017). Thus, given that previous sales prices seem to 

incorporate some otherwise difficult to capture information, a repeat sales/machine learning 

combination is an interesting direction for further research.  
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Appendix 
 

Table A.1: K-means results with varying k, compared to administrative districts 

District type Q0.25 Q0.50 Q0.75 

Within 

10% Moran's I Geary's C 

Administrative 3.74% 8.05% 14.1% 59.6% 0.143 0.826 

K-means (k = 14) 3.61% 7.78% 13.9% 60.8% 0.125 0.839 

K-means (k = 16) 3.66% 7.78% 13.9% 60.8% 0.115 0.853 

K-means (k = 18) 3.55% 7.67% 13.5% 61.6% 0.107 0.860 

K-means (k = 20) 3.54% 7.62% 13.6% 61.5% 0.098 0.870 

K-means (k = 22) 3.57% 7.64% 13.6% 61.5% 0.103 0.866 

District type refers to the type of district indicator used; Q0.25, Q0.5 and Q0.75 denote the first, 

second and third error quartile, respectively. Within 10% specifies the fraction of errors 

below 10%, and values for Moran’s I and Geary’s C is presented. The tabulated results 

pertain to 14 administrative districts and represent average values from 10 runs for each 

implementation. The number of observations used for model training is 13,133, while there 

were 3,284 out-of-sample observations. 

 

Table A.2: Independent repeat sales results 

Model Q0.25 Q0.50 Q0.75 

Within 

10% 

Number of 

Observations 

Percentage 

of Total 

Repeat sales 4.11% 8.88% 16.1% 54.8% 13,138 80.0% 
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Repeat sales after outlier 

removal 3.68% 7.77% 13.4% 61.5% 11,69 71.2% 

Model refers to whether the repeat sales estimates have undergone outlier removal; Q0.25, 

Q0.5 and Q0.75 denote the first, second and third error quartile, respectively and Within 10% 

specifies the fraction of errors below 10%. Number of Observations denotes the number of 

entries with previous sales prices, and Percentage of Total indicates the latter number as a 

percentage of the entire data set. The similarity between the number of entries with previous 

sales before outlier removal (13,138) and the number of observations used for model training 

(13,133) is purely coincidental. 
 

 

 

 

 

 
Figure A.1: Out-of-sample residuals from the hedonic regression without spatial 

enhancements or district indicators (referred to in Section 5the main text as the benchmark 

model) depicted on the map of Oslo. Lines represent administrative district boundaries, while 

marker color indicates residual value for each dwelling. Observations: 3,284. 
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Figure A.2: Out-of-sample residuals from the hedonic regression with administrative district 

indicators depicted on the map of Oslo. Lines represent administrative district boundaries, 

whereas marker color indicates residual value for each dwelling. Observations: 3,284. 

 
Figure A.3: Out-of-sample residuals from the most accurate model that combines 

geographically weighted regression and repeat sales depicted on the map of Oslo. Lines 

represent administrative district boundaries, whereas marker color denotes residual value for 

each dwelling. Observations: 3,284. 


