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Abstract: Detection of re-epithelialization in wound healing is important, but challenging.
Hyperspectral imaging can be used for non-destructive characterization, but efficient techniques
are needed to extract and interpret the information. An inverse photon transport model suitable
for characterization of re-epithelialization is validated and explored in this study. It exploits
scale-invariance to enable fitting of the epidermal skin layer only. Monte Carlo simulations
indicate that the fitted layer transmittance and reflectance spectra are unique, and that there exists
an infinite number of coupled parameter solutions. The method is used to explain the optical
behavior of and detect re-epithelialization in an in vitro wound model.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In vitro wound models are useful for investigation of wound healing in a controlled laboratory
setting [1–5]. However, it is challenging to monitor the actual healing in such models without
destructive histology analysis. Hyperspectral imaging is a technique providing a non-destructive,
objective method for characterizing such tissues optically.
Hyperspectral imaging has a spectral and spatial resolution that has been shown to be useful

for biomedical applications like wound imaging [6–14], burn wound imaging [12,15], cancer
diagnostics [6,16,17] and surgical guidance [6,18]. Statistical processing techniques are often
used to handle the large amounts of data [8,12,13,15,19–25]. The rich spectral content further
enables use of inverse photon transport modeling [26–32]. Such modeling techniques can be
used to interpret the data and relate spectral changes to changes in skin properties like blood
content and blood oxygenation through constrained fitting of optical properties. This indirect
way of estimating optical properties is considered to be ill-defined [6,33] since different media
can have similar reflectance spectra [33,34]. Further, absorption and scattering properties are
fitted to a single reflectance measurement [35]. A priori knowledge of the expected shapes of the
absorption and scattering restrains the problem somewhat [35], but there is still a basic ambiguity
resulting from a scale-invariance of the reflectance with respect to the absorption and scattering
spectra [33,34]. Other possibilities to restrain such models can be a valuable road of study in
order to obtain unique and robust estimates.
The tissue model used in this study was based on an in vitro wound model setup developed

by Jansson et al. [36] and Kratz [37]. Here, samples with wounds are prepared from ex vivo
human tissue and placed in a growth medium, which causes the wounds to re-epithelialize.
Characterization of the re-epithelialized layer is of special interest, e.g. the presence, maturity
and thickness of the layer. Photon transport modeling techniques could be used to extract this
information from the reflectance spectra.

Photon transport modeling of in vitro wounds can be challenging. The spectral characteristics
of the dermal part of the wound models are less defined than in normally circulated tissue due to
the lack of blood absorption, and the spectra are significantly influenced by the spectral properties
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of the growth medium [38]. However, in wounds, both regions with and without the upper tissue
layer are present. The spatial resolution of hyperspectral imaging makes multiple reflectance
spectra of each tissue type available as every pixel contains data with high spectral resolution.
This could potentially be used to restrain the model and target the epidermal layer specifically.

The main idea of the inverse modeling technique to be presented in this paper is that the basic
scale-invariant limitations of the reflectance modeling can be exploited to enable consideration
of the upper layers without having to completely model the lower layers. The availability of
reflectance spectra from both wound and re-epithelialized tissue then enables quantification of
skin properties in re-epithelialized layers, without the need to consider the dermal layers.
The basic method requires knowledge of an appropriate wound spectrum. The high number

of available wound spectra in a hyperspectral image makes selection of one unique spectrum
somewhat prohibitive. However, the same availability of multiple spectra with a high spectral
resolution makes it possible to use dimensionality reduction methods to remove redundant
information and represent the spectral information in a low-dimensional space [38]. Principal
component analysis (PCA) is such a method, which can decompose a dataset in terms of
orthonormal components (loadings) that can linearly transform each observation into new
variance-maximizing coordinates (scores) [39]. This technique has been used as a pre-processing
technique [40–42] and for investigation of spectra in a low-dimensional space [6,19,38]. The
method is used in the current paper to reduce a discrete wound spectrum choice to a continuous
choice of PCA scores that can be back-transformed to a wound-like spectrum using the inverse
transform. This enables the wound spectrum selection to be an efficiently evaluated part of
the model optimization. The main goal of this study is to validate a proof of concept of the
presented basic inverse modeling technique including the suggested PCA extension, and explore
the limitations and possibilities of this approach.
A simulation study is carried out using Monte Carlo simulations in MCML [43], which

represents a gold standard for photon transport simulations. The simulation study is used to
investigate and verify the assumptions that enable use of the inverse modeling method. The
uniqueness and accuracy of the fitted skin parameters are explored. With the findings of the
simulation study on uniqueness and parameter accuracy in place, the method is finally applied
to experimental data. Hyperspectral images of an in vitro wound model sample are used as an
example for the application of the technique.
The inverse modeling method and its basic assumptions are given in section 2.1, along with

the PCA-based modification appropriate for wound imaging. The simulation study used to verify
these assumptions and investigate the accuracy and uniqueness of the inverse modeled parameters
is outlined in section 2.2. Information on the hyperspectral wound dataset used to demonstrate
an application of the method is given in section 2.3. Finally, results and discussion are given in
section 3.

The method represents a partial modeling approach which combines data-driven results with
photon transport modeling. Model fitting is mainly constrained to the upper layer, alleviating
some of the inherent undetermined nature of the inverse photon transport modeling approach. The
example given here is wound healing, but the method is generic, and can be used to investigate
any top layer given that reflectance spectra are available with and without modifications to or
removal of the top layers. Examples include characterization of burn wounds and estimation of
epidermal skin thickness in pre-term newborns.

2. Materials and methods

2.1. Inverse modeling setup

2.1.1. Fundamental assumptions

Two main assumptions form the basis of the method:
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1. The reflectance of a one-layer model can be written as a function of µa/µ
′
s (scale-invariance).

2. A multi-layer model and a one-layer representation yield identical reflectance values when
a top layer is added.

The method considers cases where reflectance spectra are available from two regions, with and
without a top layer. Given the first assumption, the reflectance from the region without the top
layer is represented using a one-layer model by estimating its corresponding µa/µ

′
s ratio without

having to consider their actual forms. From the second assumption, using these properties in the
deeper layer of a two-layer model can be used to represent the reflectance from the region with the
top layer. The skin properties of the top layer can then be fitted without considering the deeper
layers if the optical properties of the top layer are known. Insertion of one-layer properties from
the region without the top layer into the two-layer model ensures that the boundary conditions
towards the top layer are correct. The basic model steps are shown in Fig. 1.

Fig. 1. Basic inverse model geometry. A one-layer model is fitted to the reflectance R0(λ)
from a region with the top layer missing. Due to scale-invariance, any absorption coefficient
µa and scattering coefficient µs obeying the required ratio are viable solutions. A top layer
can then be fitted to the model by reusing the optical properties in the deeper layer of a
two-layer model.

2.1.2. Photon transport model

A diffusion model with an isotropic source function [44] is used as photon transport model. The
main advantage of this model is its simple, analytic expression for the reflectance, enabling fast
evaluation during optimization. In addition, it can yield µa/µ

′
s directly from the reflectance

without iteration.

Theory Photon transport in biological tissue can be modeled by the radiative transfer equation
(RTE) [45]. Assuming an almost isotropic light distribution and isotropic source functions, the
time-independent RTE in a one-dimensional geometry is simplified to [44,45]

µaφ(z) − D
d2

dz2
φ(z) = q(z), (1)

where the diffusion constant is D = 1
3(µ′s+µa)

and φ is the fluence rate. A multi-layer medium is
assumed, with di describing the depth of layer interface i. With the source function in a layer i
given as [44]

qi(z) = µ′s,i exp(−µtr,iz)
i−1∏
j=1

exp(−µtr,jdj), (2)
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the solution for the fluence rate in the layer i is given as [44]

φi(z) =
δiµ
′
s,i

Di(1 − µtr,iδ
2
i )

exp[−µtr,i(z − di)]

i−1∏
j=1

exp[−µtr,j(dj − dj−1)] (3)

+ Ai1 exp(−x/δi) + Ai2 exp(x/δi). (4)

The boundary condition at the air-tissue interface is taken as j(z = 0) = Aφ(z = 0). The property
j is the photon flux. The boundary condition essentially relates the irradiance propagating back
into the tissue to the irradiance propagating out of the tissue by an effective reflection coefficient
[44]. A refraction index of n = 1.4 yields A = 0.17 [44]. It is required that limz→∞ φ(z) = 0. All
constants Aij can then be determined by using continuity in j(z) and φ(z) between each layer and
the boundary conditions above [44]. The diffuse reflectance Rd is found by [44]

Rd = j(z = 0). (5)

The last expression is obtained by considering the irradiance transmitted into the air. Analytic
solution for a two-layer model can be found in Svaasand et al. [44]. The one-layer solution is
trivial to obtain.

Offset correction A correction constant is applied to the diffusion model reflectance. Compar-
ing the diffusion model with the same boundary conditions and optical properties as a Monte
Carlo simulation shows that the output reflectance from the diffusion model has an offset [46,47].
The assumption of an almost isotropic light distribution in the diffusion model leads to a less
forward-directed photon flux close to the surface, as compared to other source functions such as
the Delta-Eddington source function [47], and this yields a higher output reflectance contributing
to the observed offset. The isotropic source function is chosen for simplicity and convenience,
and it is considered as out of scope of this proof of principle to minimize this well known and
systematic offset. It is however acknowledged that it introduces systematic errors in the estimated
parameters.
The diffusion model and two-layer Monte Carlo spectra from model A and model C1 to be

described in section 2.2.1 were compared with equal input parameters. An offset correction of
0.036 was found to minimize the average root mean squared error (RMSE) among all spectra.
The offset correction is demonstrated in Fig. 2. On average, the RMSE between the model C1
Monte Carlo spectra in section 2.2.1 and corresponding diffusion model spectra were 0.037
(standard deviation 0.003) and 0.005 (standard deviation 0.001) before and after offset correction,
respectively.

2.1.3. Inverse modeling method for skin

The main application of the method considers human skin with and without epidermis present,
such as in wounds. Construction of a two-layer model from a basis reflectance was outlined in
section 2.1.1. The properties of epidermis are then fitted to the reflectance from the region with
the top layer. Python was used for development of the technique.
Melanin is assumed to be the main absorber in epidermis in the visible range [45,48,49].

Minor absorbers include carotene, lipids, cell nuclei and filamentous proteins [50], and are
often modeled using a bulk background absorption [31,44,51,52]. A small amount of blood is
sometimes included in the epidermis to account for the non-planar geometry of the papillary
dermis [44,51,52]. For simplicity, neither of these are included in the current model. The
epidermis is assumed to consist of a single layer with melanin as the absorber as shown in Eq. (6)
and a scattering corresponding to Eq. (8), along with a defined layer thickness.
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Fig. 2. Demonstration of empirical offset correction of the diffusion model reflectance.
Model C1 in section 2.2.1 was used for the demonstrated examples, with the lowest possible
parameter choices used for the upper reflectance spectrum, and the highest possible parameter
choices for the lower reflectance spectrum. The RMSE between Monte Carlo and diffusion
model spectrum was reduced from 0.036 to 0.006 for the upper spectrum, and from 0.043 to
0.007 for the lower spectrum. The Monte Carlo simulations were run with 1000 000 photons
per wavelength.

The objective function to be minimized was chosen to be the RMSE between measured
reflectance and simulated reflectance, relative to the simulated reflectance. The function
minimize from the Python package scipy.optimize was used to minimize the objective
function, using L-BFGS-B (Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm with
box constraints) as the optimization method. The parameters were bounded, and they were
rescaled to values between 0 and 1 in order to make them comparable. The fitted epidermal skin
parameters are listed in Table 1.

Table 1. Parameters to be fitted during optimization, along with their lower and upper bounds and
the scaling factor applied before they are input into the optimization method.

Property Lower bound Upper bound Scaling Unit

Layer thickness, d1 0 500 500 µm

Melanin absorption, µa,m,694 0 2000 1000 m−1

Scattering, µ′s,Ray,500 0 5000 5000 m−1

Scattering, µ′s,Mie,500 1 5000 5000 m−1

Scattering, bMie 0 4 4 -

2.1.4. Modifications to the technique for application to wounds

A modification of the inverse model was used for hyperspectral images of wounds, as the
appropriate basis spectrum for a given re-epithelialized tissue sample is not known a priori. It
was desired to let selection of the wound spectrum be something which could be fitted during
optimization rather than iterating through the possible choices.
A PCA transform with three components is applied to spectra from the wound region.

This reduces all possible wound spectra down to a combination of three score parameters
and corresponding PCA loading vectors. Three additional parameters were input during the
optimization. These were used as PCA scores and inverse transformed to construct an artificial
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wound basis spectrum onto which an epidermis was placed. This allowed the inverse model to
represent a wound spectrum that could be fitted during optimization.

The PCA scores were then fitted along with the rest of the parameters. The fitted scores were
bounded within the min/max range of the scores as transformed from the original wound spectra.
Reconstructed wound basis spectra were constrained to non-negative values, effectively changing
the optimization method to SLSQP (Sequential least squares programming).

2.2. Simulation study

2.2.1. Simulation setup

GPU-MCML [53,54] was used to simulate reflectance spectra from a skin-like geometry. NVIDIA
GeForce GTX 670 was used for GPU parallelization. Wavelengths from λ = 400 to 850 nm were
modeled with 3 nm discretization. 1 000 000 photons were used in each simulation. The total
run time for a full spectrum was between 12 and 22 seconds. All simulations were run with
pencil beams incident on the skin model, and the tissue was assumed to have a refraction index
of 1.4. The homogeneity of the model makes the total integrated reflectance equivalent with the
reflectance from the same model illuminated with an infinitely broad beam. A layer thickness of
1 meter was used in order to emulate a semi-infinite layer.

Absorption properties The absorption in the top layer was modeled using an absorption model
for melanin [55]

µa,e = µa,m,694(λ/694)−3.46, (6)
where µa,m,694 is a parameter associated with the mean melanin content of the layer. Moderately
dark skin corresponds to an absorption in the range 500-900m−1, while fair skin corresponds
to an absorption in the range 200-300m−1 [44]. Assumed low and high values for melanin
absorption and epidermal thickness are listed in Table 2. For the dermal layers, the absorption is
modeled as

µa,d = µoxy(λ)coxy + µdeoxy(λ)cdeoxy, (7)
where µ{oxy, deoxy}(λ) are the absorption spectra for oxygenated and deoxygenated blood, respec-
tively. Assumed low and high values are listed in Table 2. These cover blood volume fractions
from 2% to 10%, and oxygenations from approx. 20% to 80%. The inverse model avoids
consideration of this layer, and the main goal is to model a layer with absorption and scattering
magnitudes representing human skin.

Table 2. Low and high values for parameters varied in the Monte Carlo simulations.

Layer Property Low value High value Unit

Upper Layer thickness, d1 50 500 µm

Upper Melanin absorption, µa,m,694 150 700 m−1

Upper/Deeper Scattering, µ′s,Ray,500 1500 3000 m−1

Upper/Deeper Scattering, µ′s,Mie,500 1500 3000 m−1

Deeper Oxy. blood fr., Coxy 0.01 0.05 -

Deeper Deoxy. blood fr., Cdeoxy 0.01 0.05 -

Scattering properties For scattering, the following model is used:

µ′s = µ
′
s,Mie,500(λ/500)

−bMie + µ′s,Ray,500(λ/500)
−4. (8)

The parameters µ′s,Mie,500 and bMie describe Mie scattering. Examples of values for ex vivo
human skin are 1800m−1 and 0.22, respectively [56]. The parameter µ′s,Ray,500 describes Rayleigh
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scattering. Example of an ex vivo value is 1700m−1 [56]. Low and high values are listed in
Table 2, and are assumed to represent the expected magnitudes in human skin. The parameter
bMie is kept constant at 0.22 [56] across all simulations. This parameter is expected to vary
[57], however, changes in the coefficients were thought to represent a similar change in the
wavelength-dependency that could test recovery of bMie. Further, the reflectance was found to be
less sensitive to changes in scattering in the epidermal layer, and full parameter recovery of bMie
was not expected. For simplicity, the parameter was not varied in the simulations.

Model geometries Geometries used in this paper are shown in Fig. 3: One-layer geometry,
multi-layer geometry and two-layer geometry. The following simulations were run:

• Model A (one-layer model): All combinations of deeper layer parameters in Table 2 were
used, yielding in total 16 varieties.

• Model B (multi-layer model): Deeper layer parameters in Table 2 were randomly picked
in each of the layers in a three-layer model. Layer thicknesses were set to 150 µm. The
simulation was run with and without an additional top layer with thickness 100 µm, melanin
content 300m−1 and the low scattering parameters in Table 2.

• Model C1 (systematic two-layer model): Lowest deeper layer parameters in Table 2 were
used for the deeper layer. The thickness of the top layer was varied between 100, 150, 200,
250 and 300 µm, the melanin content between 150, 300 and 700m−1, and all combinations
of the scattering values listed in Table 2 were used. This yielded in total 60 varieties, or 12
spectra per layer thickness step.

• Model C2 (random two-layer model): The properties of the deeper layer were randomly
selected among the deeper layer parameters listed in Table 2. Parameters corresponding
to the lowest scattering values were selected for the top layer, while melanin in (6) and
thickness were randomly selected from a uniform probability distribution bounded by the
lower and upper values in Table 2. 50 model varieties were sampled.

Fig. 3. Model geometries used in the Monte Carlo simulations.

2.2.2. Verification of modeling assumptions

Two main assumptions for the technique to be applicable were given in section 2.1.1.
The model A simulations (one-layer models) above yield, over the various wavelengths, a

large range of possible combinations of µa (65 to 6714m−1) and µ′s (1517 to 5237m−1). The
assumption that the reflectance can be written as a function of µa/µ

′
s is checked by plotting the

output reflectance values as a function of µa/µ
′
s across all simulations.
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The model B simulations (multi-layer models) yield the reflectance from a complex multi-layer
model with and without a top layer. An empirical Monte Carlo model was constructed for looking
up µa/µ

′
s given a reflectance value through the use of a Savitzky-Golay fit and an interpolating

natural cubic spline. This model was used to find the µa/µ
′
s ratio for a one-layer model from the

complex multi-layer reflectance. A µ′s was assumed (µ′s = 1000m−1), and a µa was calculated
from the ratio. The assumption that a multi-layer model with an extra top layer is indistinguishable
from a fitted one-layer model with the same top layer is then checked by comparing the latter
model with an extra top layer to the original model with the same top layer.

2.2.3. Uniqueness of the inverse model solution

Diffusion model simulations were run in order to investigate whether multiple optical parameters
could yield the same R, and find the shape of the relation among the optical properties, if any.
A reflectance (R = 0.6) was picked, and a µa/µ

′
s ratio (1/200) was set in the deeper layer of a

two-layer model. Top layer thicknesses ranging from 10 to 500 µm and scattering coefficients
ranging from 10 to 100 000m−1 were put into the top layer. The absorption coefficient necessary
to yield the assumed reflectance were derived for each parameter combination.
The uniqueness of the obtained skin parameter solution was then investigated. The inverse

model was run repeatedly on the same simulated spectrum from model C1 with randomly
generated start parameters in order to see whether it was possible to reach the same global
solution.

2.2.4. Accuracy of the inverse modeled parameters

In addition to investigation of the uniqueness of the solution, it is desired to determine the
accuracy of the inverse modeled parameters as compared to the input parameters in the Monte
Carlo model. Three variations of the inverse model were run on the model C1 simulations:

1. Fit a single parameter, with all parameters except for one fixed. This estimates a baseline
accuracy of the inverse model for each parameter.

2. Fit all parameters simultaneously.

3. Fit only thickness and melanin content, with scattering parameters fixed.

Model C2 picks epidermal and dermal parameters randomly across a continuous range, and
is suitable for evaluating the parameter resolving performance, evaluating at multiple basis
spectra and evaluating the case where the basis spectrum is not known. The same epidermal
scattering parameters are used, representing a case where the epidermal scattering is known to be
homogeneous. Here, three new cases of the inverse model were run:

1. Set the scattering parameter to the true parameter, estimate melanin content and thickness.
Evaluates the inverse model error when the scattering is known.

2. Set the scattering parameter to the results from multi-parameter optimization on the
first spectrum, estimate only melanin content and thickness for the rest. This outlines
the estimated parameter behavior when the scattering is unknown but known to be
homogeneous.

3. Set the scattering parameter to the true parameter and use the PCA inverse model in
section 2.1.4 to fit the rest of the parameters. Here, all spectra without epidermis were
used to fit a PCA transform, and the PCA transform is used to find a best basis spectrum
for the spectrum at hand during optimization.

These tests should then elucidate the accuracy of the inverse model under various conditions,
from which conclusions may be drawn about its application to real measurement data.



Research Article Vol. 11, No. 9 / 1 September 2020 / Biomedical Optics Express 5078

2.3. Experimental tests

Hyperspectral acquisition Reflectance data were acquired using a push-broom Hyspex VNIR-
1600 hyperspectral camera (Norsk Elektro Optikk, Lillestrom, Norway). The images were
acquired over the wavelength range 400-1000 nm, with a spectral resolution of 3.7 nm and an
integration time of 7.5 ms per line of data. The camera has been radiometrically and spectrally
calibrated using light sources with known characteristics. The radiometric calibration was used
to apply correction factors to the images.
The reflectance data were acquired with illumination from two linear light sources (Model

2900 Tungsten Halogen, Illumination Technologies, New York). Polarizers (VLR-100 NIR,
450-1100 nm, Meadowlark Optics, Frederick, Colorado) were mounted on the camera lens and
the light sources in order to avoid specular reflection. A Spectralon reflectance target (WS-1-SL,
Ocean Optics, Duiven, Netherlands) was included within each image and used to convert the raw
data to reflectance spectra.
Wound model Samples of the in vitro wound model were prepared from human abdominal

skin. The project was approved by the regional ethical committee (REK-Midt-Norge), and
informed consent was obtained from the donor. The sample used for demonstration in this study
was prepared with a 4 mm wound using punch biopsy, and the full tissue sample was cut using 8
mm punch biopsy. The sample was incubated for 22 days in Dulbecco’s Modified Eagle Medium
(Gibco, USA), with fetal calf serum (10%), penicillin (50 ug/ml), streptomycin (50 U/ml) and
glutamine added. Hyperspectral images were acquired at day 1, 2 and then every other day, and
the medium was changed every imaging session. The wound was exposed to air by resting the
sample on a metallic grid, in order to ensure development and migration of multiple cell layers
[36].
Re-epithelialization visible by visual inspection of the RGB images occurred during the last

ten days. The sample was therefore investigated at day 12, 18 and 22.
A larger image subset over the wound boundary was selected at approximately the same region

across these three days. PCA transforms were fitted to a subset of wound spectra at each day that
by visual inspection and comparison of the spectra had no obvious re-epithelialization present.
Each wound subset consisted of 7400 spectra, and 3 PCA components were used (explaining
87.9% of the variance, on average 0.012 RMSE between raw and reconstructed reflectance
spectrum when running forward and inverse transforms). The modified PCA-based inverse model
in section 2.1.4 was then run on each pixel in the larger subsets in order to yield skin parameters
for the top layer.

3. Results and discussion

Simulations are presented in section 3.1. The modeling assumptions that form the basis of the
inverse modeling technique are investigated using Monte Carlo simulations in section 3.1.1.
The uniqueness and accuracy of inverse modeled parameters as compared to Monte Carlo
simulations are given in 3.1.2 and 3.1.3. The simulation results are then summarized and
discussed in section 3.1.4. The technique is used to estimate re-epithelialized layer thickness
from hyperspectral images of wounds in section 3.1.5, and the performance of the technique is
discussed in light of the findings from the simulation study.

3.1. Simulation study

3.1.1. Verification of modeling assumptions

Two assumptions were given in section 2.1.1. These were that the reflectance of a one-layer
model can be written as a function of µa/µ

′
s, and that a multi-layer geometry with a top layer has

a reflectance indistinguishable from a one-layer representation with the same top layer.
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The validity of the first assumption is confirmed in Fig. 4. The figure shows reflectance
spectra acquired across a wide range of one-layer models, and a corresponding plot over the
same reflectance values as a function of µa/µ

′
s. The latter clearly demonstrates that there is

a one-to-one correspondence between the µa/µ
′
s ratio and the reflectance. Other studies also

confirm this fact [34].

Fig. 4. Simulated Monte Carlo reflectance spectra as a function of wavelength (left), and
as a function of µa/µ′s (right). The reflectance is uniquely defined only down to the ratio
µa/µ′s. The simulations were run with 1000 000 photons per wavelength.

The second assumption was that a one-layer representation of a multi-layer model yields
identical reflectance to the multi-layer model when a top layer is added to either. This is
demonstrated in Fig. 5. Here, the reflectance from one-layer models constructed from each
layer of the multi-layer model are used to verify that none of the upper layers completely shield
the deeper layers. Further, the reflectance from the multilayer model with an epidermis on
top is compared to a one-layer representation with the same epidermis on top. As they are
indistinguishable, the second assumption is verified. The various optical properties at the different
wavelengths represent a wide range of layer combinations that all demonstrate the validity of
the second assumption. This is also mostly given by the fact that placing a layer on top of some
existing model will not modify the existing parts of the model. Here, the RMSE between the two
example spectra was 0.0010. Further testing the same assumption on 20 randomly generated
multi-layer skin models yielded an RMSE of 0.0015.

The consequence of the two assumptions is that a top layer can be investigated without having
to fully model the deeper layers, if measurements with and without the top layer are available.

3.1.2. Uniqueness of the inverse modeled solution

The combined results above means that the properties of the deeper layer are scale-invariant.
This is a consequence of the output reflectance having no units [34]. A top layer is independent
from the deeper layers, and a similar scale-invariant relation must exist between µa, µ′s and d1
in order to produce a unit-less reflectance at the output. The epidermal skin parameters will
therefore likely be coupled.

Parameter couplings between d and µa for several µ′s that yield the exact same reflectance are
shown in Fig. 6. This demonstrates that there exists an infinite number of parameter sets that
all yield the exact same reflectance, and sketches out the hyperplane on which the valid optical
parameters reside.
To check potential skin parameter coupling, the model was fitted at random start parameters

in Fig. 7. A clear relation between the estimated d1 and the melanin content is evident. Fixing
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Fig. 5. Demonstration using Monte Carlo simulations that a multi-layer model and its
one-layer fit have identical reflectance spectra when adding additional top layers: Comparison
of the reflectance spectrum from a multi-layered model and the reflectance spectra from a
one-layer model constructed from each layer (top), and the reflectance from the multi-layered
model with an epidermis on top compared to a single-layer approximation with the same
epidermis on top (bottom). The consequence is that a one-layer model is appropriate for
representing a wound spectrum when evaluating the effect of adding an epidermis to the
wound spectrum. The simulations were run with 1000 000 photons per wavelength.

Fig. 6. Demonstration of the coupling between d, µa and µ′s in the top layer in the two-layer
diffusion model, for a single reflectance value. All these parameter combinations produce
the same output reflectance (R = 0.6).
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the scattering to the true parameters yields the same solution regardless of the start parameters.
The relation is less clear between the estimated d1 and the scattering parameters, but there are
indications of a noisy quadratic relation similar to the melanin content relation. The scattering
parameters were not found to influence the reflectance as much as the other parameters within
the varied range, which can explain the noisiness of the relation. The lack of influence can be
observed in Fig. 6, by the relations here being significantly changed only for larger scattering
coefficients.

Fig. 7. Results from fitted inverse model at random start parameters, demonstrating the
coupling of the fitted parameters. All parameter combinations produce the same reflectance
spectra. Top left: Estimated layer thickness versus estimated melanin concentration. Top
right: Estimated layer thickness versus scattering parameters. Bottom: Estimated layer
thickness versus fit RMSE. Fitted parameters at random start parameters for thickness and
melanin, with the scattering parameters fixed to the true scattering parameters, are marked
as "Fixed scattering" in the plots.

The RMSE shows that each of these solutions are identical with respect to the simulated
reflectance. Fitting all unknown parameters at the same time is therefore not expected to yield a
unique solution.

The found parameter non-uniqueness can be argued from the scale-invariance between µa, µ′s
and d1. The absorption coefficient µa is here modeled as a varying parameter multiplied by a
fixed wavelength-dependency. Since the wavelength-dependency is fixed, it can be argued that the
scale-invariance is translated into the parameter, and that this has a scale-invariant relation with
d1 and µ′s. The scattering model can be re-written to µs = A

[
f (λ/500)−bMie + (1 − f )(λ/500)−4

]
,

where A = µ′s,Mie,500 + µ
′
s,Ray,500 and f =

µ′s,Mie,500
A . Since f is a dimensionless number and the

wavelength-dependencies are fixed, the scale-invariant relation can be translated into A and to
the scattering parameters µ′s,Mie,500 and µ

′
s,Ray,500. A coupling between the skin parameters is

therefore expected.
All of these solutions are valid with respect to the stated problem, as all yield the same fitted

reflectance. It can be observed that they all apparently characterize a unique diffuse layer despite
the large variation in skin parameters. Each of the valid parameter sets in Fig. 7 were used to
model a single-layer model with finite thickness, and Monte Carlo simulations were used to
obtain reflectance and transmittance spectra. The spectra are plotted in Fig. 8. These are more
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or less identical. Deviations can be attributed to albedo-dependent inaccuracies in identical
diffusion model simulations that would lead to variations in a Monte Carlo simulation.

Fig. 8. Monte Carlo simulations of reflectance and transmittance through epidermises fitted
at random start parameters, 50 spectra in total. Multiple spectra overlap in the plot. The
simulations were run with 1000 000 photons per wavelength.

3.1.3. Accuracy of inverse modeled parameters

Systematic variation in input parameters (model C1) The error deviation results across the
different parameters are shown in Fig. 9 for three cases: Fit of the particular parameter only, fit of
all parameters simultaneously, and fit of melanin content and layer thickness only. Averages over
the corresponding reflectance errors between fitted and original spectra are shown in Fig. 10.
The case where all parameters are fitted simultaneously is first considered. Each fitted

parameter deviates over a large range (highest relative error, low/high input parameter: thickness
69%/35%, melanin content 61%/40%, Mie scattering 116%/38%, Rayleigh scattering 93%/45%).
This is to be expected due to the non-uniqueness of the solution. The variation in simulated
reflectance likely trigger various local minima along the scale-invariance.

Fitting a single parameter is more interesting. The deviation range for thickness and melanin
content is more limited for this case, due to the uniqueness of the solution (highest relative error,
low/high input parameter: thickness 17%/14%, melanin content 14%/15%). The deviation of the
scattering still matches the order of magnitude of the input, however (Mie scattering 122%/46%,
Rayleigh scattering 61%/29%). Changing the epidermal scattering parameters do not change the
reflectance as much as the absorption and layer thickness. The scattering can therefore not be
reliably estimated, even if it is the only fitted parameter. The mismatch between the diffusion
model and the Monte Carlo spectra at the true parameter leads to a bias in all parameters. Varying
the particular parameter only does not bridge the mismatch entirely, as seen in Fig. 10 by the
higher reflectance errors as compared to the cases where multiple parameters are fitted.
The parameter bMie was not varied in the simulations. Recovered values (input 0.22) ranged

from 0 to 3 in full parameter fit, and from 0 to 2 when it was the only parameter fitted.
Last, fixing scattering and fitting the rest of the parameters is considered. Fitting the thickness

and melanin at the same time apparently yields a less biased estimate than when considering
them apart. Further, the error is at most 80m−1 for larger melanin contents (highest relative error,
low/high input: 12%/12%), while the thickness can be estimated down to an error below 14 µm
(11%/5%).

Random selection of input parameters (model C2) Parameter estimation results over random
skin models are shown in Fig. 11. Using the true scattering yields a reasonable estimate of
thickness and melanin content. The RMSEs are 17 µm (relative RMSE: 7%) and 57m−1 (8%)
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Fig. 9. Inverse model deviations from the original modeled parameters, at lowest and
highest input value for each parameter: Layer thickness (top left), melanin content (top right)
and scattering (bottom). The range from minimum to maximum deviation illustrates the
expected error, while the offset of the mean deviation from the zero-line expresses bias. The
different cases are, respectively, a fit of the parameter at hand with all other parameters fixed
to the original parameters, a fit of all parameters simultaneously and a fit of layer thickness
and melanin content simultaneously with scattering fixed.

Fig. 10. Average absolute error as a function of wavelength between fitted and original
MCML reflectance spectra for the various cases in Fig. 9.
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for the thickness and melanin contents, respectively. This is in line with the deviations found for
thickness (below 14 µm) and melanin contents (below 80m−1) when fitting these simultaneously
on the systematic variation earlier.

Fig. 11. Modeled parameters versus estimated parameters across Monte Carlo simulations
with random input parameters, fixed scattering. Two cases are shown: Scattering parameters
fixed to the true scattering (blue), and scattering parameters fixed to the parameters estimated
from a single reflectance spectrum (green). The former leads to reasonable estimates of
thickness and melanin content, while the latter leads to estimates that are only correlated
with the true parameters.

Exact knowledge of the correct scattering is challenging. It is expected that it must be
guessed in the application at hand. A case where the scattering is estimated from a single
reflectance spectrum and fixed for the rest of the spectra is shown in the same figure above. Both
melanin content and thickness estimates become biased, but they remain correlated with the true
parameters and retain variations that are similar to the case where the true scattering is used.
Although the scattering is not known and the thickness estimates are incorrect, this can then still
be used to detect relative thickness changes.
The method is to be applied to hyperspectral images of wounds, where the basis spectrum is

not known a priori. The modification of the technique, as outlined in section 2.1.4, was used
to fit basis spectra along with the rest of the epidermal skin parameters. The resulting RMSEs
were 16 µm (relative RMSE: 6%) and 50m−1 (13%) for the thickness and melanin parameters,
respectively, similar to RMSEs in the case where the basis spectra are known exactly.

3.1.4. Summary and general discussion of the simulation results

The inverse modeling method presented in this paper could be a valuable tool for characterizing
hyperspectral images of re-epithelialized tissues in wounds.
The main inverse modeling assumptions have been verified. The reflectance of a one-layer

model can be written as a function of µa/µ
′
s. This means that any combination of µa and µ′s

yields the same reflectance as long as they obey the given ratio. Further, an arbitrary multi-layer
model can be represented by a one-layer model. Adding a top layer to either of these models
yields indistinguishable reflectance spectra. Thus, the top layer can be fitted and investigated
without considering the deeper layers.

It has been shown that no unique solutions exist for the top layer. The solutions are coupled,
however, and yield unique R(λ) and T(λ) through the upper layer that are common for all
parameter sets. The fitted, diffuse layer is therefore unique, though the lack of a known thickness
means that the optical properties are undeterminable. The wavelength dependency in R and T
can be valuable for drawing conclusions about the nature of the layer.
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The solutions for some of the skin parameters were found to be robust to changes in the
start parameters during fitting when at least one parameter was fixated. This indicates that
unique solutions may be possible to find in such cases. The reflectance was not found to be
very sensitive to changes in the scattering parameter within the expected range. The scattering
parameter is therefore a first choice for fixation. Fair estimates of the absorption parameter and
layer thickness can be found when given the correct scattering, and the main expected levels
can be discriminated. The method has been shown to yield reasonable relative estimates when
the scattering is homogeneous, but unknown. The parameter value will then vary around a
mean level within a small deviation, and be correlated with the true value. Such estimates are
useful for determining whether a given location has a top layer thickness greater or less than the
thickness of some other location. In practice, the scattering parameters can be fixed to e.g. the
low parameter values outlined in section 2.2.1. Another possibility is to let all parameters be fitted
simultaneously for a single spectrum in order to estimate a best fit for the wavelength-dependency,
and then fixate the scattering parameters to these parameters for the rest of the spectra.

The method is thus useful for in vitro wounds in two ways. First by demonstrating whether the
optical properties of various tissue regions can be explained by wound optical properties with an
epidermal layer on top. Second by evaluating relative layer thicknesses at different positions, and
further use these to explain spatial variations by layer thickness differences.
Melanin and thickness parameter fits have been found to have relative errors from 5 to 12%.

Inverse methods in other studies that estimate epidermal thickness and melanin content are
reported to have errors in the range of 9% for epidermal thickness and 8-15% for melanin content
[58], or 6-8%, 16-20% for epidermal thickness and below 0.5% for melanin content [31], subject
to modeling details. Relative errors of the current model are thus in the same range as methods
reported in the literature.
A weakness of the method is that the basis spectrum representing the deeper layers must

be known. While known exactly for the simulations, wounds have inhomogeneities that result
in no clear basis candidate. Taking a mean spectrum over the wound was not found to yield
correct wavelength-dependencies. Iterating over all possible wound spectra and selecting the
best candidate was found to yield better wavelength-dependencies and lower RMSEs, but this
is problematic for a larger number of pixels. Using a PCA transform to represent the possible
wound spectra was found to be a viable alternative that could be fitted during optimization.
This alternative has been shown to yield similar parameter RMSEs to the case where the basis
spectrum is known exactly. This thus represents a suitable modification to the technique for
hyperspectral images of wounds.
The layer uniqueness results show that a more direct approach technically could be taken in

obtaining the reflectance and transmittance of the diffuse top layer, using a similar approach as
the adding-doubling technique [59]. Such a technique would obtain reflectance and transmittance
directly. A separate characterization using a one-layer model with finite thickness would be
necessary for parameter estimation. The method in the current study obtains the parameters
directly as a part of the procedure. Obtaining reflectance and transmittance would have to be done
as a second step. Which method would be better to use would then depend on the application
and the desired end result of the technique. A variant of adding-doubling would more clearly
show that no unique parameters exist. It would not assume anything on the form of the optical
properties of the top layer during fitting, which could be valuable as a more independent result.
On the other hand, the form assumptions are necessary for enabling application of the PCA
modification of the technique.

For this study, an inverse diffusion model with an offset correction obtained from Monte Carlo
simulations was used. Its performance would thus be similar to an inverse Monte Carlo model
with some minor inaccuracies. This allows the technique to be evaluated in terms of the basic
idea rather than being overshadowed by systematic errors, while making the model suitable for
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hyperspectral applications. Similar corrections include a background absorption included by
Svaasand et al. [44] and blood volume fraction scaling done by Randeberg et al. [46]. The
offset correction is not expected to work outside the parameter range for which it was fitted,
and is thus not appropriate for any unknown spectrum. More elaborate correction schemes or
better model approximations are required. The model could be replaced by an empirical Monte
Carlo model, or a diffusion approximation more appropriate for the absorption/scattering ratios
in human tissue. Examples include the δ-Eddington/δ-P1 approximation [47,60]. The latter
will not eliminate the offset between the model and the Monte Carlo spectra entirely [47]. In
addition, it should be noted that correction factors developed for simulated reflectance spectra in
an integrating sphere geometry will not directly apply to reflectance spectra from hyperspectral
images. Model replacement is out of scope for the current study, where the main aim is to present
and demonstrate a proof of concept. Refining the core model will be a part of future studies.
The simulations have thus verified the applicability of the technique, identified limitations

and indicated what it can be used for. The technique can then be applied to experimental data.
Thickness estimation of re-epithelialized areas in hyperspectral images of wounds is used as an
example application.

3.1.5. Experimental results

In the following, hyperspectral images of an in vitrowoundmodel samplewere used to demonstrate
the inverse modeling technique. The PCA-based modification in section 2.1.4 was used to
represent the wound spectra using PCA during fitting. Layer thickness results over a hyperspectral
image subset at days 12, 18 and 22 during the wound healing process are shown in Fig. 12. Model
fits for selected spectra from day 18 are shown in Fig. 13.
The first main conclusion to be drawn from these results is that the spectral properties of the

edge of the wound are explained by a gradually increasing re-epithelialization. This is modeled
as a diffuse, epidermal-like layer placed on top of reflectance representing wound tissue. The
layer has been shown in the simulation study to be unique. The fitted model then works as
an explanatory model. The model shows that these regions have re-epithelialized, and that
the optical properties here are no more than the optical properties of the wound with a typical
epidermis on top. The main strength of the technique is that this can be shown without having to
consider the optical properties of the dermal layers. This is a major advantage of the method as
the optical properties of in vitro wound models are largely unknown. Minor changes that are
challenging to identify in the RGB images can be found by the technique, as demonstrated by a
thin epidermis apparently being present at the wound edge of day 12 in Fig. 12.

Depth profiles along lines placed at the approximately same position across days are shown in
Fig. 14. The estimated layer thicknesses here provide a relative estimate of the re-epithelialization
thickness, given that the scattering properties are homogeneous, as shown by the simulation study.
In vitro wounds which are exposed to air and incubated in the medium used in this study are
expected to have migration of multiple epidermal cell layers which quickly stratify into more
mature epithelium [36]. This migration occurs from the edge of the wound and towards the
center of the wound, with a tip of non-cornified epidermis extending on the wound side of a
more mature neo-epidermis [61]. Such behavior is consistent with the migration and increases
in thickness represented by the depth profiles. An epidermal thickness of magnitude 50 um is
expected [3], however, indicating that higher absorption or scattering magnitudes than the ones
currently used in the model are in order. Histologies were not available for the wound model
samples in this study, and repetition of the experiment is necessary for proper attribution of the
reflectance changes to corresponding changes in epidermal layer composition. However, the
epidermal layer presence indicated by the inverse model results is in agreement with statistical
characterization of these data [38].
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Fig. 12. Results from application of the inverse model to hyperspectral images of an in
vitro wound model sample. Three measurements are shown: day 12 (top row), day 18
(center row) and day 22 (bottom row). For each measurement, three images are shown:
the RGB image with a dotted square indicating the image subset considered in the inverse
model, the RGB values of the reflectance from the one-layer dermis reconstruction within
the subset, and the estimated thickness of the epidermis within the subset. RGB images
were constructed from the hyperspectral images at 615, 564 and 459 nm wavelength bands,
and were gamma-corrected for increased contrast. The white-pink region corresponds to
wound, while the brown region is intact tissue. Coordinates of the spectra plotted in Fig. 13
are marked in the day 18 image.

Fig. 13. Model fits at selected spectra from day 18. The labeled positions refer to the
positions used in Fig. 14, and are marked in Fig. 12. The peaks between 690 and 750 nm are
artifacts due to mismatch of the order sorting filter in the hyperspectral camera, and were
not fitted by the model. Fitted parameters were the melanin content, layer thickness and
scattering parameters in epidermis, and the three PCA coefficients for the wound basis in
dermis.
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Fig. 14. Estimated depth profile along lines placed at approximately the same region at
days 12, 18 and 22. The strongest colored plotted line is along the chosen line in the image,
while weaker lines of the same color are profiles offset 1 and 2 pixels from the main line.

Variations in absorption properties are not expected to be decouplable from thickness variations
for real measurements. The fitted inverse model is able to match the reality in the simulations,
which gives a clear minimum of the RMSE during optimization. More complex geometries or
changes to the assumed optical properties broadens the minimum for real measurements, due
to existence of multiple slightly sub-optimal solutions to the problem. Here, a melanin content
range from 150m−1 to above 700m−1 and corresponding layer thicknesses yielded identical
solutions. A clear minimum could only be found for high scattering levels, but in this case, this
led to compensation by unrealistically high melanin contents.

The only absorber included in epidermis was melanin. Inclusion of a background absorption is
expected to perturb the fitted parameter results, and could reduce the required melanin absorption
and make the minimum mentioned above more clear. This was not investigated further, however,
and tuning of such modeling details should wait until confirmation of the epidermal composition
by histology. This will therefore be investigated in future work.

The simulation study indicates that at least one parameter should be fixed. All parameters were
fitted simultaneously here, however, and no parameters were fixed, since the optimization seemed
to produce stable estimates of both absorption and scattering properties. Only minor instabilities
are evident in the day 12 profile in Fig. 14. This then shows that fitting a multi-parameter model
to some reflectance might apparently give stable, unique results - but only by accident. Care
must be taken, since the end result is dependent on the start parameters. Fixing at least one of the
parameters is necessary for trustworthy results, as shown by the simulation study. Yet, as the
parameters were stable in current case, these are the same results that would be obtained if e.g.
the scattering parameters were fixed. Estimated parameters are then expected to correlate with
the true parameters, as shown by the simulation study.
An infinitely wide beam illuminating a spatially invariant slab is effectively assumed in the

simulations. The width of the beam is sufficiently broad with respect to the extent of the wound
model sample, but the illuminated geometry is not homogeneous. Edge effects will be present in
sharp transitions of tissue types, and lead to escaped photons from one type of tissue into the
other. This will lead to an under- or over-estimation of thickness or absorption properties in
some parts [32], but this is unlikely to have a significant effect within the slowly varying parts of
the tissue. More investigation could be made in future studies into adjusting the model to the
measurement geometry.
PCA was used to find a low-dimensional representation of the wound spectra that could be

fitted during optimization. The PCA inverse transform with the selected number of components
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was found to be able to appropriately reproduce a given spectrum, and fitting the PCA scores
during optimization gave reasonable results in the epidermal parameters. The simulation results
indicate no significant decrease in estimation accuracy for the simulations. However, correctness
for measurements should be investigated further in future studies, as the method might need
tuning in e.g. number of components, or a different decomposition method than PCA might be
more appropriate. The method is promising, however, and combines a data-driven, statistical
approach to information extraction with physics-based photon transport modeling.
The method was tailored towards wounds, as the basis spectrum is available and can be used

to fit spectra with a top layer. With adaption it might be possible to use the technique to estimate
relative variations in the epidermal skin thickness of pre-term newborns and characterize burn
wounds. Further, the technique is suitable for characterizing strongly absorptive inclusions in
scattering media.
A spectrum from a single pixel was on average fitted in 0.66 seconds on a single CPU core,

and 0.14 seconds when naively parallelizing the fitting of different pixels across 8 CPU cores
(Intel Core i7-3840 QM, 2.80 GHz, 8 cores). The small subset of 50 x 40 pixels considered here
would take 4 minutes and 40 seconds to fit using naive multiprocessing. The method currently
runs a full, separate optimization of every pixel, which might not be needed. Future work will
include adaption of GPU parallelization to reduce the running times. The current method, albeit
slow, represents a proof of concept against which optimized solutions may be compared for
correctness, and represents a first step towards a more scalable algorithm.

4. Conclusion

A technique for estimating the skin parameters of the re-epithelialized layer in wounds has been
developed. The method has been found to characterize a unique diffuse layer defined by a unique
reflectance and transmittance spectrum. There exists an infinite number of valid skin parameters
that might characterize this layer. Fixing e.g. scattering parameters, however, can yield good
relative estimates of layer thickness. The method has been used to characterize a larger area
over the boundary of an in vitro wound model sample, showing the usefulness of the approach
in characterizing the re-epithelialized layer. Here, a PCA modification to find the optimal
wound basis spectrum has also been demonstrated, and represents a successful combination of
data-driven techniques with physical photon transport modeling.
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