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Abstract 

The structural condition of bridges is generally assessed using manual visual inspection. However, 

this approach consumes labor, time, and capital, and produces subjective results. Therefore, 

industries today are using automated visual inspection approaches, which quantify and localize 

damages such as cracks using robots and computer vision. This paper proposes an instant damage 

identification and localization approach that uses an image capturing and geo-tagging (ICGT) 

system and deep convolutional neural network (Deep CNN) for crack detection. The ICGT allows 

the geo-tagging of three-dimensional coordinates and camera pose data with bridge inspection 

images; the Deep CNN is trained for automated crack identification. The damages extracted by the 

CNN are instantly transformed into a global bridge damage map, with georeferencing data 

acquired using the ICGT. This method is experimentally validated through a lab-scale test on a 

wall and a field test on a bridge to demonstrate the performance of the instant damage map. 

Keywords 

Visual inspection, damage detection, image capturing and geo-tagging system, crack map, 

homography, structural health monitoring 

 

Introduction 

Bridges are continuously subjected to a combined effect of material aging, structural 

degradation caused by moving traffic, and environmental loads. Design and construction defects 

further deteriorate bridges and result in the loss of load carrying capacity [1]. Visual inspection is 

the primary method used for routine inspections to determine the status of a bridge. This approach 

uses non-destructive evaluation (NDE) techniques. However, visual inspection is laborious and 

time consuming, and introduces subjectivity in the results [2]–[5].  

To overcome these limitations, researchers have introduced automated visual inspection 

systems for bridge health monitoring that utilize computer vision techniques [6]–[11]. Automated 

visual inspection is implemented by first capturing panoramic images according to a standardized 

procedure and performing automatic image processing to extract the damage locations and 

quantities. The images are generated by stitching inspection images, which is followed by damage 

extraction. The extracted damages are overlaid for the bridge inspection report. Researchers have 

used various robotic vehicles for automated visual inspection over the past two decades [12]. The 

ubiquitous bridge inspection robot system (U-BIROS) was developed [13] to scan bridges and 

generate a crack map using a robotic arm equipped with cameras. An autonomous robotic system 

for high-efficiency bridge deck inspection was proposed with several NDE sensors. The robotic 

crack inspection and mapping (ROCIM) [14] method was proposed for autonomous inspection 

using a visual mounted camera and integrated edge detector software. A wall-climbing robot was 

developed for monitoring reinforced concrete and detect corrosion to perform inspection using 

impact-echo and metric learning support vector machine (SVM) [15]. 

In the last two decades, computer-vision based methods are largely utilized in structural health 

monitoring (SHM) [16]–[19] of large scale concrete structures to facilitate automation and 

expedite inspection process. Consequently, a progression of SHM applications is seen in wide 

variety of concrete structures such as dam [20], road tunnels [21], wind turbine [22], [23], and 
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others. In recent years, many researchers used unmanned aerial vehicles (UAVs) in visual 

inspection for its mobility and flexibility. An automated vision-based crack detection method was 

investigated for bridge damage detection using a convolution neural network (CNN) [24]; the 

study used three-dimensional dense point-cloud data to generate a condition-aware model for 

structure inspection with semantic segmentation. In another study, an autonomous UAV inspection 

method with a deep learning neural network and damage localization using geo-tagging was 

proposed [25]. Table 1 shows a detailed survey on state-of-the-art SHM methods however, almost 

all applications used computer vision for bridge inspection. 

Table 1. Survey on state-of-the-art vision-based robotic systems for bridge inspection. 

Classification Literature Proposed Methodology Applications 

UAV Jang et al. [26] Hybrid images combining vision and 

infrared thermography through CNN 

UAV-based inspection of 

concrete cracks 

Akbar et al. [27] SURF-based detection and image 

stitching using UAV 

UAVs for reliable SHM on 

structural sites 

Lei et al. [28] Vision-based inspection using SVM-

support crack inspection 

Low-cost UAV for efficient 

crack inspection 

Song et al. [29] Integration of visual inertial state and 

three-dimensional LIDAR into graph 

structured SLAM 

UAV-based inspection under 

bridges 

Brooks et al. [30] Vision-based image processing to 

reconstruct three-dimensional sites and 

identify damage 

Traffic monitoring and 

structural health inspection 

Unmanned 

ground 

vehicle 

(UGV) 

Prasanna et al. [7] Machine learning-based robust, 

spatially tuned multifeatured classifier 

Automated detection of 

cracks in concrete bridge 

La et al. [31] High-efficiency bridge inspection using 

NDE sensors 

Autonomous robotic system 

for bridge deck inspection 

Gibb et al. [32] Autonomous system capable of quasi-

real-time data processing using GPR 

Robotic system for 

inspection of infrastructures  

Firoozi Yeganeh 

Sayna [33] 

In-depth measurement using Kinect 

RGB-D camera combined with three-

dimensional point cloud autonomous 

stitching 

Autonomous quantification 

of rut depths using RDG–

depth sensor. 

Wall climbing 

robots 

Jiang and Zhang 

[34] 

Deep CNN combined with image post-

processing 

Applied on three-story 

building for crack detection.  

Li et al. [15] Impact-echo inspection combined with 

metric learning SVM 

Applied to bridge deck 

inspection with visible cracks 

Wang and 

Kawamura [35] 

Automated sensing system using GMR 

sensor array 

Applied for crack and 

corrosion inspection in steel 

bridges 

La et al. [36] Image stitching and three-dimensional 

map construction using ICP algorithm 

Three-dimensional structure 

inspection and crack 

detection for steel structures 

and bridges 

SURF: speeded-up robust features; SLAM: simultaneous localization and mapping; GPR: ground penetrating radar; 
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GMR: giant magnetoresistance; ICP: iterative closest point. 

While several studies have focused on developing image processing and machine learning 

techniques for automated damage identification, few have considered panoramic image stitching 

for bridge inspection [37], [38]. Moreover, when it comes to the inspection of concrete and steel 

surfaces, where distinctive image features are rarely found, handling the acquired images is a 

challenge. Instead of conducting image stitching, which finds correspondences between images, 

direct image stitching can be implemented using georeferenced images with the global positioning 

system (GPS) and inertia measurement unit (IMU), which provide six degrees-of-freedom (DoF) 

information where each image can be directly mapped for panoramic image stitching. For bridge 

inspection needs, a georeferencing system with a camera that records GPS, IMU, as well as light 

detection and ranging (LiDAR), which measures distance between structure and the camera, can 

be used. 

In this study, we develop an image capturing and geo-tagging (ICGT) system that 

synchronizes GPS, IMU, and 1D-LiDAR with a camera installed on a UAV to generate 

georeferenced images of bridges, and uses a deep convolutional neural network (Deep CNN) for 

instant and automated damage detection and localization. The Deep CNN identifies damages in 

the georeferenced images acquired by the ICGT, and the extracted damages are projected to create 

a panoramic damage map using direct image stitching. This method comprises three parts: the (1) 

development of the ICGT platform; (2) development of a CNN-based crack detection algorithm 

incorporating image slicing and multistage training; and (3) direct projection for global bridge 

damage map (GBDM). It is noteworthy that several types of damage can occur in a bridge, but this 

study only focuses on crack detection for validation. The main contribution of this study is a 

framework for instant damage identification using a UAV incorporating Deep CNN. The proposed 

method is experimentally validated with a lab-scale test and a field experiment. 

The remainder of the paper is organized as follows; a) framework of the proposed method 

detailing the overall procedure; b) development of the ICGT, with explanation of the system design, 

hardware development of the ICGT platform, and software framework; c) crack detection using 

deep CNN, describing the architecture of the CNN, database generation and training setup, 

parametric study for probability threshold, and evaluation of crack detection algorithm; d) GBDM, 

which proposes the integration of georeferenced data acquired by the ICGT for direct stitching of 

damages extracted by deep the CNN; e) experimental validation, detailing the lab-scale and field-

scale tests and discussing the results; and, f) conclusions, which briefly articulate the overall 

summary and findings of the study. 

Framework of the proposed method 

The overall scheme of the proposed method is shown in Figure 1, which is subdivided into 

three stages. The first stage involves the development of the ICGT, which controls the camera 

shutter, and acquires GPS, IMU, and 1D-LiDAR data for tagging the location and the distance 

between the structure and the camera. To acquire georeferencing data from images simultaneously, 

a fast and low-cost ICGT was designed that is capable of handling middleware tasks efficiently. 

The ICGT module is application independent—it can be mounted either on a UAV or UGV for 

autonomous inspection or on a fixed platform for acquiring data. The second stage is the crack 

damage identification for offline inspection images using the Deep CNN; an image and masked 

based (Mask R-CNN) method is employed, owing to its GPU-accelerated processing for instant 
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crack detection and damage identification. Lastly, the Mask R-CNN results of each image are 

extracted based on its geotagged position. The images are directly projected on to a global 

coordinate to generate a GBDM. 

 

Figure 1. Overall scheme of proposed method 

Development of an Image Capturing and Geo-Tagging System for UAVs 

System design 

A low-level block diagram of the ICGT is shown in Figure 2. The block diagram is composed 

of two units: (1) a UAV that feeds three-dimensional position data, such as GPS data, and three-

dimensional LiDAR data to the ICGT; (2) an ICGT that controls the camera shutter and acquires 

sensor data such as that from the IMU and 1D-LiDAR. Communication between the UAV and 

ICGT is handled by a robot operating system (ROS). The ICGT comprises of a Teensy 3.6 

microcontroller for handling low-level operations related to sensor initialization, data acquisition, 

and data syncing and storage. Teensy communicates with the UAV-master unit via the UART serial 

port, and IMU and 1D-LiDAR through the I2C interface. The camera unit is connected via general-

purpose input/output pins to a multi-function universal serial bus port for program-controlled 

image capturing. 

 

Figure 2. Low-level block diagram of ICGT design 

Hardware development 

Figure 3(a) shows the hardware for the ICGT comprised of Teensy 3.6, an IMU, a 1D-LiDAR, 

and a real-time clock (RTC). Teensy 3.6 has a 180 MHz ARM Cortex-M4 processor capable of 
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performing tasks with high processing requirements. The IMU selected for the development was 

BNO055 IMU, integrating a triaxial 14-bit accelerometer, a triaxial 16-bit gyroscope, a triaxial 

magnetometer, and a 32-bit cortex M0+ microcontroller running sensor fusion algorithm for all 

three sensors. The accelerometer and gyroscope are less susceptible to external disturbances when 

running IMU fusion mode, as a result there is no significant drift and the offset is negligible [39]. 

1D-LiDAR Lite v3 was used for a heading distance with a range of 40 m and accuracy of ±2.5 cm. 

Sony Alpha-9 (with 24.2-megapixel, 35-mm, full-frame stacked CMOS sensor) was chosen as the 

camera. The camera can fulfil the large buffer size and high-speed continuous shooting 

requirements of long-duration aerial inspections without interruptions. The actualization of the 

ICGT on top of the camera unit is shown in Figure 3(b). 

 
Figure 3. Development of ICGT: (a) ICGT hardware; (b) ICGT integrated with a camera 

Software framework 

The software framework of the ICGT is shown in Figure 4. The figure describes the overall 

process of the control software. Upon initialization, the master unit (i.e., UAV) and the slave unit 

(i.e., ICGT) are initialized, and all sensors are set up. The ICGT waits for the “Start/Stop” 

command to initiate the inspection through a middleware rosservice. Rosservice is a command-

line tool within the ROS core toolchain and is used to commence or cease the ICGT from a remote 

station during the inspection. When the master unit transmits the “Start” command, the slave unit 

will perform two tasks simultaneously: (1) control the camera shutter for 500 ms to increase the 

focus and for 2 s to continuously shoot at 5 fps, (2) acquire data from the IMU, 1D-LiDAR, and 

GPS sensors. During the 500 ms of focusing, the sensor data are written to the SD card, and the 

camera buffer is cleared for the next 2 s of continuous shooting. Note that these two tasks run 

simultaneously at 5 fps, so that data between the images and the sensor data are synchronized. The 

procedure follows a cyclic routine continuously until the master unit gives the “Stop” command. 
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Figure 4. Software flowchart of the proposed system 

Crack Detection using Deep Convolutional Neural Network 

Image Slicing with Mask R-CNN Network 

There have been several advancements in the cross-discipline of computer vision and deep 

learning, especially with respect to CNNs. As a sophisticated classification method, CNNs have 

been applied in structural inspection for object identification and localization, and subsequently a 

variety of CNN models have been proposed. Most object detection models such as Faster R-CNN 

[40], YOLO [41], and SSD [42] have achieved fast and accurate object detection. To attain the 

maximum possible crack detection efficiency, this study adopts a recent deep learning-based object 

detection method—the mask and region-based convolutional neural network [43]. 

In this study, we developed an image slicing-based crack detection method that combines 

mask-based region detection (Figure 5). This method is used to slice high-resolution images into 

small patches for fine crack detection and reduce the memory load for processing. A 2K resolution 

image is fed as the input, which is sliced down to a 512 × 512 image to preserve the low-level 

features that are passed through crack detection block. The outputs of these small patches are 
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spliced to reconstruct the original 2K image with higher detection accuracy. The low-resolution 

images provide better accuracy in detecting minor cracks with less inference time, while a high-

resolution image would require a longer inference time. The detection results are extracted in the 

form of binary mask vectors and are spliced together to reconstruct the original input images. The 

proposed method yields better results than the general procedure and is more reliable in terms of 

fine crack detection, which is critical in civil infrastructure inspection. 

 
Figure 5. Network architecture of Mask R-CNN with image slicing and splicing 

Database generation 

Thus far, CNNs have been used to detect damages such as cracks, corrosions, and spalling 

from images or video, but few crack datasets are available. Most images are either taken by hand-

held cameras or on-board cameras on vehicles (UGVs and UAVs). Therefore, the obtained images 

could vary with respect to field of view (FOV), with equal chances for blur and noise interference 

to occur. To address these problems and enhance detection performance, the dataset must have a 

large number of images with mixed variations of images. The proposed method uses a custom 

database with images acquired from two sources; (1) an open-source dataset called SDNET2018 

[44] and (2) Google databank using ImageScraper [45]. In addition, 5% of the added images 

contain noise, which were originally part of SDNET2018, to handle occluded images in the field. 

To validate the database and compare its performance against a benchmark, a second dataset called 

crack forest dataset (CFD) was used. Details of the two datasets with their corresponding image 

characteristics and targets structures are listed in Table 2. 

Table 2. Datasets used for crack classification. 

Name Source No. of 

Images 

Train: 

Test 

Resolution Target structure Noise Location 

Dataset-1 SDNET 

2018* + 

Google 

1073 853:220 ~256 × 256 

1920 × 1080 

54 bridge decks 

72 walls, 

104 pavements 

Yes 

Blurring was 

added by 

authors 

Utah State 

University, Logan, 

Utah, USA 

Dataset-2 CFD 329 263: 66 480 × 320 Road surface No Urban road 

surface, Beijing, 

China 

*Note: SDNET2018 is large database consisting of 56000 images, from which only images of bridge decks with concrete cracks 

were used. 

Proposed training configuration 

The collected images of bridges with cracks were annotated manually using the VGG image 

annotator [46]—an online tool for defining and labeling images. Due to the size limitation of 

datasets, the data were augmented during the training to prevent overfitting. For training and 
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validation, data were divided in an 80:20 ratio, respectively, and the model was initialized with 

weights of a pretrained model called ResNet50 [47], to reduce training time and computation 

complexity. We optimized the hyperparameters and compared them with those of the general 

configuration by adopting a multistage scheduled learning for performance comparison, as shown 

in Table 3. The progressive learning rate with the multistage training procedure helped the model 

learn expeditiously without failing in the initial training itself. To time the models, we used a server 

with 24×Intel Core i9-7920X CPU, 4×NVIDIA GeForce RTX 2080Ti GPU, and 128 GB RAM. 

Since the training requires a large memory size, model files with increasing training and validation 

accuracies were saved, and those with low accuracy were discarded. This helped to reduce the 

memory allocation. The optimized model with increased accuracy was used for damage detection. 

Table 3. General configuration and proposed training parameters 

Hyperparameters General configuration Proposed configuration 

Batch size 1 4 

Steps per epoch 500 1000 

Weight decay 0.01 0.001 

Multi-stage  
✓ 

Stage-1 Stage-2 

Layers Heads heads all 

No. of epoch 100 100 200 

Validation steps 50 50 200 

Learning rate 0.001 0.001 0.0001 

 

Parametric Study of Probability Threshold 

The baseline (ground truth) for crack detection can differ with the environmental conditions 

and inspection procedures to be followed for a certain inspection site. For cases where precision 

is more important than recall, the intersection-over-union (IoU) threshold must be high, and vice 

versa. Generally, recall is considered critical to the inspection of infrastructures, in order to not 

miss any possible source (crack) of failure. The evaluation of a model can be performed based on 

the true positives and true negatives extracted from a confusion matrix, which describes the actual 

and predicted score. To evaluate the proposed model, precision, recall, accuracy, and F1-score 

were considered as the performance measures [Eq. (1–4)]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
         (1), 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
         (2), 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁+ 𝐹𝑃+𝐹𝑁
        (3), 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
       (4), 

where TP, TN, FP, and FN are the true positive, true negative, false positive, and false negative, 

respectively. TP, TN and FP, FN are defined mask-wise with respect to the ground truths, as in 
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previous studies [43]. A validation dataset was considered to calculate the parameters, and the 

threshold for IoU was set as 0.5. In addition, the mean average precision (mAP) of images was 

calculated based on the COCO evaluation metrics in the IoU range of 0.5–0.95. 

Evaluation of Crack Detection Algorithm 

The crack detection algorithm can be evaluated by comparing the training results using the 

general and proposed configurations for the individual evaluation metrics. To evaluate the 

performance of the trained model, recall must be chosen as the primary indicator because it is the 

key to identifying the cause of damage. Table 4 lists the evaluation results for two different training 

configurations in dataset-1 and dataset-2. From the performance measures, the trained model with 

dataset-1 showed better performance compared to dataset-2. This is due to the large number of 

images used for training dataset-1, while dataset-2 was limited and suffered from overfitting. This 

shows that increasing the volume of data in a database will benefit the training process. The 

performance of the proposed configuration was tested on validation dataset-1 containing 220 

images and dataset-2 containing 66 images, and the results are listed in Table 4. 

Table 4. Evaluation metrics for custom dataset vs. crack forest dataset. 

Training 

Configuration 
Source Accuracy (%) Precision (%) F1-score (%) mAP (%) Recall (%) 

General Dataset-1 54.93 57.68 55.30 39.27 53.12 

Dataset-2 63.93 56.00 61.24 31.73 61.24 

Proposed Dataset-1 77.12 78.27 79.90 77.50 81.60 

Dataset-2 53.70 48.56 59.43 34.23 76.57 

*Note: The bold font indicates improved results. 

To demonstrate the working of the crack predictions model, i.e., the applicability of the trained 

model to an on-site environment, a set of sample images was obtained from concrete structures in 

Chung-ang University, Seoul, South Korea, with smartphone camera (Samsung Galaxy S8). The 

images were tested with dataset-1 trained model selected from the proposed configuration, owing 

to its high validation accuracy and low validation loss. Meanwhile, the normal detection method, 

i.e., excluding image slicing, and the proposed detection method, i.e., including image slicing, 

were compared using the test images. Figure 6 shows the input images, their ground truth labels, 

crack detection without image slicing, and the proposed image slicing method using Mask R-CNN 

for single and multiple cracks. Note that these images vary from a plane to complex background 

and from single crack to multiple connected cracks. Image slicing helps in more accurate damage 

detection from high-resolution images as well as textured images. The description of cracks for 

Figure 6 is as follows; (a) crack on a textured wall with crack-like lines in the background; (b) 

small crack on a shiny steel-aluminum surface; (c) multiple cracks on a concrete wall with a thin 

hair-line crack; and, (d) a bridge pier with concrete voids. The crack damage results showed 

promising results with image slicing for crack detection when compared with normal image 

detection. 
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Figure 6. Mask R-CNN prediction results compared to actual images 

Discussion 

From Table 4, it is evident that the proposed training setup achieves better results than the 

general training method. This training configuration yields improved recall and precision with a 

batch size of 4, a weight decay of 0.001, and a scheduled learning momentum of 0.001 that 

increases to 0.0001 once the weights are learned to avoid overfitting. The empirical results show 

that increasing the batch size with low weight decay caused overfitting with no significant 

improvement in the overall accuracy or recall. The optimized model achieved a recall of 81.6% 

and a mAP of 77.50% when compared with database-2 which achieves a recall of 76.57%. 

Additionally, the trained model outperformed a previous study that also used Mask R-CNN to 

achieve a recall of 76.15% [48]. In addition, Figure 6 depicts the damage detection results from 

the image slicing method for high-resolution images. The method works well on images with fine 

to long cracks as well as crack-like texture and a redundant background. 

Global Bridge Damage Map 

To generate an inspection report and gather information about the overall condition of the 

bridge, it is important to have global knowledge of bridge damage. To validate the structural 

integrity, a post-processing method was applied to generate a GBDM after inspection. In this 

regard, damage indicators collected through a conjoint Mask R-CNN and the ICGT are projected 

on to a global coordinate plane. 

Camera Calibration and Transformation 

Image distortion is common in wide-angle lens cameras, and therefore the camera must be 

calibrated for precise crack detection. In this study, we adopted the camera calibration algorithm 

developed by Jean-Yves Bouguet [49]. The algorithm finds the extrinsic and intrinsic parameters 

by detecting checkerboard pattern and using the pin-hole model [50] to map the crack locations on 

to a two-dimensional plane. The equation defining the relationship between a two-dimensional 

point projected on to an image plane (x,y) for a three-dimensional point and the world coordinates 
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[U, V, W] is shown in Equation (5). 

[
𝑥
𝑦
1

] =  [𝐾] ⋅  [𝑅|𝑇] ⋅ [

𝑢
𝑣
𝑤
1

]        (5), 

where K is the camera intrinsic matrix that defines the camera focal length and the principle 

points, and s is the skew coefficient. [R|T] denotes the camera extrinsic matrix that corresponds to 

rotation and translation. If 𝑅𝑏  is the given baseline rotation vector and 𝑅𝑖  is the given rotation 

matrix, then 𝑅𝑛𝑒𝑤 rotation can be measured using the relationship defined in Equation (6). 

𝑅𝑛𝑒𝑤 = 𝑅𝑏
𝑇𝑅𝑖           (6), 

Image Projection 

A digital image captured by a camera is a two-dimensional projection of a three-dimensional 

real-world object, and the task of image analysis depends on the projection of that two-dimensional 

image. Image projection is classified into two categories—perspective projection, in which parallel 

three-dimensional lines are not necessarily projected on to parallel lines in the images, and 

orthographic projection, which are parallel projections of the object on to the projection plane. To 

project a two-dimensional image on to a three-dimensional coordinate system and calculate the 

relative 6-DoF position of an image, the transform geometry must be known. The projection of 

image points on to the world coordinate points can be calculated using Equation (7) for two-

dimensional image points. The outputs are the world points that map the image points on to the 

world points using an input rotation matrix, a translation matrix, and the camera parameters. 

 [
𝑢
𝑣
𝑤

] =  𝑅−1 ([
𝑥
𝑦
1

] 𝐾−1 − 𝑡)        (7), 

To create a GBDM, image projection should be applied to crack masks extracted from the 

CNN using georeferenced data collected from the ICGT. Figure 7(a) compares the ideal image 

plane with the actual transformed plane with no change in the heading (z-axis) or height (y-axis). 

Figure 7(b) and (c) shows the translated CNN masks of the captured images. For simplicity, we 

assumed the first image as the origin and calculated the rotation and translation with respect to it. 

Figure 7(d) shows the spliced mask vector image with coordinate transformation for two images. 
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Figure 7. Image projection (a) Referenced ideal plane and transformed plane (b, c) Transformed crack masks (d) 

Spliced masks with coordinate transformation 

In this figure, (U, V, W) correspond to the world points, (𝑋𝑜 , 𝑌𝑜 , 𝑍𝑜) are the initial points of the 

camera location marked as the origin, and (𝑋𝑇 , 𝑌𝑇 , 𝑍𝑇) are the translated camera points on the world 

coordinate plane. Point X denotes the translation along the x-axis, Y is the altitude of the camera, 

and Z is the heading that remains constant. 

Implementation of the Global Bridge Damage Map 

The global crack map can not only be used for quantitative analysis, but also for visually assessing 

the global crack pattern. An offline post-processing procedure was conducted to generate a two-

dimensional bridge damage map using the transformation matrix, as it preserves the orientation 

information for all images. For efficient crack localization, we adopted image slicing to divide 

large-scale images to small-scale ones. After detection, we spliced them together and created a 

global bridge map. The details of the post-processing method are shown in Algorithm 1, providing 

the detailed flow of offline bridge damage map generation. 

Algorithm 1: Vision-based crack localization and mapping 

Input: Original RGB color image, In=(X×Y×3) 

Output: Spliced image, Out=(X×Y×3) 

Step 1: Get Aerial Images with respective Georeferencing Information. 

Load images, lidar and IMU measurements; 

Step 2: Crack Feature Extraction. 

 Perform mask R-CNN based crack detection; 

 Reduce memory load by extracting binary masks; 

 Save mask based binary images; 

  Step 3: Splice Back to Original Size. 

 Add sliced patches back to regenerate original image; 

 Join binary mask to reconstruct image of original size; 
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  Step 4: Apply Coordinate Transformation. 

 Calculate rotation and transformation matrices from IMU and LIDAR data;  

 Compute World coordinates by applying coordinate transformation; 

 Perform Image alignment; 

  Step 5: Global Map Generation. 

 Project transformed masks on stitched bridge panorama; 

 Splice each mask to bridge panorama w.r.t its localization and image transformation; 

Experiments and Result Analyses 

To evaluate the performance of the ICGT and CNN-based damage detection, a lab-scale 

experiment was conducted to validate indoor localization and damage identification, and a field-

scale experiment was conducted for bridge structure inspection, as detailed in the following 

subsections. 

Lab-scale Validation: Experimental Setup 

For indoor experimentation of crack damage detection, the ICGT system was mounted on a 

tripod stand. The proposed system can be easily configured, and the mounted hardware can be 

attached in a fixed position or translated manually. The experimental setup is shown in Figure 8(a), 

where the ICGT is attached on top of the hot shoe of the Sony Alpha9 camera. The ICGT was 

placed approximately 1.2 m from the ground and 1 m from the target wall. The test was carried 

out in the corridor beside the lab at the College of Engineering, Chung-Ang University. The tests 

confirmed the ICGT can capture images with position information in indoor testing. Figure 8(b) 

shows the extracted crack, and the two images with 50% overlap were stitched together to 

understand the view of the camera. 

 

Figure 8. Lab scale experimental setup (a) Image capturing and geo-tagging system (b) Camera zoom view of 

extracted crack damage (c) Reference of crack scale dimension 
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For indoor testing, the ICGT system was mounted on a tripod stand, and three-dimensional 

positional data were acquired by manually measuring the actual translation of the camera without 

the GPS. The initial point was marked as the origin, and translation in any direction was recorded 

to track the relative positional coordinates. Initially, the system was placed at the origin, and then 

translated along the x-axis (toward the right) with a minor rotation. For better understanding, a 

close-up view of the camera viewpoint is shown in Figure 8(b), and a referenced measuring scale 

with the crack length in a real wall is given in Figure 8(c) for comparison with the transformation 

results. The two images of cracks captured by the translating and rotating camera are shown in 

Figure 9. 

 
Figure 9. Images taken for lab-scale validation 

Lab-scale Validation: Experimental Results 

For every image, the corresponding georeferenced information is tagged and stored in the 

memory of the ICGT system. Before being fed to the CNN, the images were sliced into smaller 

resolutions as a post-inspection procedure for detecting possible minor cracks. The CNN inference 

is performed for offline damage detection, and the inference results are stored as vectors with 

instance segmentation of crack masks. The output of the Mask R-CNN-based crack detection was 

spliced together for every chopped image to reconstruct their original dimensions, and the results 

of the two images are shown in Figure 10 for indoor testing. Once the crack damages were detected 

and the masks were extracted, the image transformation matrix was calculated based on the 

georeferenced data gathered from the ICGT. The transformation matrix defines the homography 

of mask vectors, and the global coordinates are calculated using the pin-hole camera model. The 

procedure is repeated for every image, and the corresponding projection is performed in the world 

plane to map the results. In this test, translation was applied with 50% overlap, and due to close 

image acquisition, the rotation matrix was considered as unity for lab-scale testing. 

The results of CNN detection are mapped on to global coordinates using a coordinate 

transform and spliced together to create a mesh of cracks. The transformed image (Figure 11(a)) 

can be validated with a reference image (Figure 8(c)) showing the crack to be 20-cm long. In 

addition, Figure 11(b) demonstrate the results overlaid on top of the acquired image (see Figure 

8(b)) for better realization of crack maps in the real world. Offline post-processing was performed 

on the MATLAB Computer Vision Toolbox and Python OpenCV Library in a system equipped 

with Intel i5-8500 CPU and 32 GB RAM. The average computational time for crack detection and 

crack surface map generation on 2 × 4K resolution images was 2.57 s, which can be improved with 

GPU-accelerated systems. The crack detection results using a GPU-equipped server (details 

presented earlier) took approximately 1.5 s for the same 2 × 4K images. 
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Figure 10. Mask RCNN prediction results 

 

(a) 

 

(b) 
Figure 11. Image transformation results (a) Image to world plane (b) Crack map for real-world image 

Field-scale Validation: Experimental Setup 

The field-scale experiments were conducted on a bridge inspection site in Chuncheon, South 

Korea, using the ICGT system in a UAV. The hardware platform was a customized commercial 

UAV with an ICGT mounted on its gimbal at the front. The advantage of a custom drone is that its 

gimbal is designed to rotate 180° from top to bottom as well as left to right of the deck, enabling 

the camera to cover all possible angles in underside inspection. The hardware specifications of the 

UAV are listed in Table 5, and the ICGT-integrated UAV is shown in Figure 12. The onboard 

computer has an Intel i7-8559U processor with 16 GB RAM and an ROS that acts as an 

intermediate interface between the UAV and the ICGT. The UAV can perform underside bridge 

inspection and handle GPS-prohibited environment using a fusion of GPS and Velodyne three-

dimensional LiDAR data [51]. 

Table 5. Hardware specifications of UAV integrated ICGT module. 

Component Name Component Type 

Processor Intel NUC Kit NUC817BEH 

Flight controller DJI A3 Pro 

LiDAR module Velodyne Puck LITE 

100 m measurement range 

±3 cm range accuracy 

Transmission DJI Lightbridge 2 

Communication distance 3 km 
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Power supply module 2 × LiPo 6S 30000 mAh 

Camera Gimbal 

Specifications 

 

Roll ±90° 

Pitch ±90° 

Motor GBM6212H-150T 

Payload range 1500–2800 g 

 
Figure 12. Hardware integration of UAV with ICGT system (a) Front view (b) Top view (c) Side view 

The outdoor inspection was carried on the bridge deck. The side and bottom of the bridge as 

well as the piers were inspected for crack damage. The general view of the bridge under inspection 

is shown in Figure 13. The height and width of the bridge are 18 m and 7 m, respectively, with a 

span of 50 m between adjacent piers. The bridge deck as well as piers were considered for 

inspection, and the UAV was hovering at approximately 0.8 m/s to achieve 60% overlap between 

consecutive images. 

Inspection procedure 

The inspection is divided into three steps: flight take-off, inspection, flight landing and 

acquisition of inspection data (Figure 13). 

Step 1: The UAV takes off under normal flight conditions and maneuvers to the target structure for 

inspection. During this state, the UAV starts hovering while the ICGT system is initialized, and the 
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ROS boots up. All communication between the UAV and the ground station is remotely controlled 

via rosservice through Team Viewer. 

Step 2: The bridge is inspected for damages. The UAV acts as a master unit, while the ICGT is the 

slave unit controlled to start and stop data acquisition as well as image capture. Once it has reached 

the target structure, the “Start” command is transmitted to the drone, initiating the ICGT and data 

acquisition in parallel with image capture at 5 fps. The image capture as well as sensor data are 

stored simultaneously in memory with timestamps to geotag the corresponding image with its 

respective georeferenced data. The process flow of the bridge pier inspection is shown in Figure 

13. 

Step 3: After the inspection, the flight is prepared for landing. A “Stop” command is transmitted to 

cease and reset the ICGT data acquisition, and the flight lands on the ground. Once the inspection 

is completed and the drone has landed, the captured images and sensor data are collected from the 

ICGT for offline post-processing. 

 
Figure 13. Experimental setup and inspection procedure of bridge pier 

Experimental results 

The inspection is performed vertically from the bottom-right to the top and continued from 

the top to the bottom-left along the bridge column (see Figure 13). During the test, the speed was 

kept constant, to maintain an overlap of 60%, for fast image mapping. The acquired images had a 

resolution of 3008 × 2000 pixels(Figure 14(a) – (c)), and 512 × 512 patches of each image were 
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fed directly to the Mask R-CNN for crack damage detection. The results of the Mask R-CNN 

damage vectors are shown in Figure 14(d)–(f). 

 
Figure 14. Images acquired from field inspection (a) Referenced origin image (b) Upward translated image from 

referenced image (c) Upward-right translated image 

The experiments were performed on three images of the bridge piers and eight images of the 

bridge deck for crack localization. For data synchronization, an RTC was enabled to synchronize 

the IMU and LiDAR data with the camera images based on their timestamps. The results of the 

bridge pier are presented in Figure 15, and the results of the bridge deck are presented in Figure 

16. Each image is paired with its corresponding IMU, LiDAR, and GPS data synchronously. Table 

6 shows an example of the ICGT log file generated after synchronization with timestamps for three 

images taken as the field-scale validation. The 1D-LiDAR distance was kept constant at 2–3 m 

from the bridge pier and the IMU and 1D-LiDAR data are synchronized with the camera images 

using timestamps from the camera unit and the RTC on the ICGT. 

Table 6. Georeferenced data from ICGT 

The relative image transformation of local coordinates to global coordinates with the images 

are showed in Figure 15(a). In the end, the Mask-RCNN-transformed results are projected onto 

the field images, according to the degree of orientation during the field test, for instant masking of 

cracks in the world coordinate system (Figure 15(b)). Based on crack prediction from the Mask R-

CNN model, as shown in Figure 14(d)–(f), most cracks were well preserved and detected, but a 

few cracks were FPs due to the sensitivity of the model. To reduce FPs, the new dataset must be 

No. Filename Time 

Dist

ance 

(m) 

Longitude Latitude Altitude Yaw Roll Pitch 

1 DSC07462.JPG 16:31:38 2.49 127.6512204 37.82339 99.18125 359.94 0.12 -0.25 

2 DSC07463.JPG 16:31:38 2.47 127.6512204 37.82339 99.18125 359.94 0.08 -0.25 

3 DSC07464.JPG 16:31:39 2.42 127.6512207 37.82339 99.17252 359.81 0.08 -0.06 
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enhanced with improved training by including images with crack-like textures. In addition, Figure 

16 shows the GBDM of the bottom deck of the bridge from the left side. The proposed method 

with the image slicing procedure could identify crack damages that went undetected with existing 

approaches. The input image with 3008 × 2000 resolution did not show any damage, while the 512 

× 512 ones showed minor cracks. Image slicing is thus critical to identifying cracks and improve 

damage detection, albeit with the disadvantage of FPs. 

 
Figure 15. Image transformation results (a) Image to world plane (b) GBDM (pier) 
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Figure 16. GBDM of deck (Bottom side) 

Discussion and Comparison on Implementation Time 

The computational and measurement speed of the proposed method supported fast image 

analysis and damage mapping at flight speeds of 0.8 m/s and a camera frame rate of 5 fps, while 

covering a bridge section of 1.2 m × 13 m. The computational time for the Mask RCNN-based 

detection for a single 2K image was approximately 1.722 s and 2.77 s for a 4K image with a CPU-

powered system defined earlier in the text. Similarly, the computational time for image projection 

of 4K images was 5.9 s for a total of three images used for lab-scale validation. Crack detection 

for an average bridge with 100 high-resolution images can take approximately 14 min. In addition, 

crack detection can result in some false positives as shown in the GBDM of bridge pier (see Figure 

15(b)). The FPs are the result of concrete formwork making crack like pattern and these can be 

minimized by adding another class for formwork crack during training to upskill the neural 

network. Table 7 showed timing comparison of the proposed method with state-of-the-art robotics 

platforms for bridge inspection. 

Table 7. Timing comparison between state-of-the-art systems 

Literature Area (𝑚2) Time (min) 

Proposed method 1.2 × 13  14 

ROCIM [14] 4 × 2.5  23 

RABIT [7] 10.6 × 1 33 

Conclusions 

This paper proposed instant crack damage detection using an ICGT with deep CNN for 

automated inspection. The system was mounted on a drone for aerial inspection. First, the ICGT 

was developed to control a camera shutter, and acquire GPS, IMU, and 1D-LiDAR data for 

generating georeferenced inspection images. Second, a type of deep CNN, the Mask R-CNN 

method was tailored for rapid and accurate crack identification using the bridge inspection images. 

Lastly, the Mask R-CNN prediction results from each inspection image were directly projected on 

to the global coordinate system, where the projected damages from each image were combined to 

generate a GBDM. 

The key findings of the study are as follows: 

• ICGT system for acquiring data from GPS, IMU and LiDAR, while controlling a camera 

shutter to capture georeferenced images with synchronized timestamps. 
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• A ICGT interface designed flexibly to work with ROS, which allows communication between 

any master units running the ROS. 

• A recall of 81.6% and a mAP of 77.5% for dataset-2 with proposed configuration. 

• Through experimental validation, the proposed method successfully projected damage on to a 

scaled global damage map using the developed Mask R-CNN and georeferenced data from the 

ICGT. A lab-scale experiment projected two images containing continuous crack paths on to a 

global damage map, directly constructing a scaled crack propagation path using the ICGT and 

trained Mask R-CNN. A field experiment using a UAV also generated a scaled damage map of 

a bridge pier and a bridge deck with cracks through ICGT interfaced with the UAV and trained 

Mask R-CNN model. 

• The computational time for crack damage prediction using a CPU-powered system from one 

2K-resolution image is 1.722 s, while the same system takes 5.9 s to project three such images 

for field validation. 

Manual damage inspection often consumes a lot of time to generate damage report. However, 

the proposed system can be used as an automatic inspection technique adopted to obtain a 

generalized overview of the bridge structure. The proposed method is a first-of-its-kind approach 

to realize the UAV–ICGT functionality with a deep CNN detection algorithm. The automated 

inspection approach was implemented at the lab-scale as well as validated in the field. The 

performance of the new system was better than that of existing approaches, as confirmed through 

the experimental evaluation. The system with all available resources will be provided as open-

source material (reference link: https://github.com/rakehsaleem) after the publication of the paper, for 

future collaboration and improvements. 

In the future, this system can be extended to multiclass damage detection such as corrosion, 

spalling, efflorescence, and formwork. An extension to this approach for damage detection would 

be to project the image on to a three-dimensional point cloud and using building information 

modeling (BIM) to advance damage detection for bridges. 
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