
Journal of Heuristics
https://doi.org/10.1007/s10732-020-09451-z

An adaptive large neighborhood search heuristic for the
planar storage location assignment problem: application to
stowage planning for Roll-on Roll-off ships

Jone R. Hansen1 · Kjetil Fagerholt1 ·Magnus Stålhane1 · Jørgen G. Rakke2

Received: 26 September 2019 / Revised: 15 July 2020 / Accepted: 17 July 2020
© The Author(s) 2020

Abstract
This paper considers a generalized version of the planar storage location problem
arising in the stowage planning for Roll-on/Roll-off ships. A ship is set to sail along
a predefined voyage where given cargoes are to be transported between different port
pairs along the voyage.We aimat determining the optimal stowage plan for the vehicles
stored on a deck of the ship so that the time spent moving vehicles to enable loading or
unloading of other vehicles (shifting), is minimized.We propose a novel mixed integer
programmingmodel for the problem, considering both the stowage and shifting aspect
of the problem. An adaptive large neighborhood search (ALNS) heuristic with several
new destroy and repair operators is developed. We further show how the shifting cost
can be effectively evaluated using Dijkstra’s algorithm by transforming the stowage
plan into a network graph. The computational results show that the ALNS heuristic
provides high quality solutions to realistic test instances.

Keywords Maritime transportation · Packing · Stowage · Roll-on/Roll-off · RoRo

1 Introduction

This paper considers a generalized version of the planar storage location assignment
problem (PSLAP), which is a sub-class of the general storage location assignment
problem (SLAP). The SLAP is to assign incoming products to storage locations in
storage departments/zones in order to reducematerial handling cost and improve space
utilization (Gu et al. 2007). This problem arises in many industrial applications, e.g.
warehouse management (Xiao and Zheng 2010), and container terminal operations

B Jone R. Hansen
jone.hansen@ntnu.no

1 Department of Industrial Economics and Technology Management, Norwegian University of
Science and Technology, Trondheim, Norway

2 Wallenius Wilhelmsen Logistics, Lysaker, Norway

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-020-09451-z&domain=pdf
http://orcid.org/0000-0001-9576-983X

J. R. Hansen et al.

(Chen et al. 2003). In warehouse operations, a warehouse typically has one entry point
where the incoming products arrive before they are transported to a storage zone and
put in a shelf. When there is a demand for a product, it is retrieved from its storage
location and delivered to an exit point. For a recent survey on SLAP we refer to Reyes
et al. (2019).

The PSLAP, first introduced by Park and Seo (2009), considers the storage of
incoming objects on a planar, two-dimensional surface.When retrieving a given object
from its location, it may be necessary to temporarily move other objects in order to
retrieve it, as other objects may block every possible retrieval route. The objective is to
minimize the number of such undesirable relocations. Park and Seo (2009) consider a
version of the PSLAP arising in the assembly block stockyard operations at a shipyard,
where the stored and retrieved objects are multiple assembly blocks. These blocks are
moved into the yard for welding, outfitting, and painting at given times. Finally, they
are moved to the dry dock for final assembly. It is assumed that assembly blocks are
stored into the yard and retrieved from the yard in a straight line. While temporary
relocations may be unavoidable due to limited storage areas on the yard, it is clear
that the number of relocations should be kept at a minimum to reduce costs. A genetic
algorithm for the PSLAP with applications to assembly block stockyard operations
is proposed by Park and Seo (2010), while Tao et al. (2013) present a tabu search
heuristic for the same problem.

In this paper we consider a generalized version of the PSLAP arising in the stowage
planning for Roll-on/Roll-off (RoRo) ships. RoRo-ships havemultiple decks onwhich
various rolling material, such as cars, trucks, and heavy machinery, are transported. It
is usually decided at a higher planning level which cargoes to be placed onwhich deck,
considering stability and deck characteristics.We therefore study the two-dimensional
RoRo ship stowage problem (2DRSSP) for a single deck.

The 2DRSSP was first introduced by Hansen et al. (2016) and is the problem of
determining a stowage plan, given a predefined voyage, visiting several ports. At each
port, a given set of cargoes are to be loaded onto or unloaded from the ship through a
specific entry/exit point. Each cargo consists of a given number of identical vehicles
and has a predetermined loading and unloading port. The 2DRSSP is to assign vehicles
(incoming products) to locations on the deck (storage zones) in order to minimize the
time used on shifting vehicles (undesirable relocations), which means temporarily
moving some vehicles to enable loading or unloading of other vehicles. This can be
a time-consuming procedure, as the vehicles usually are attached to the deck using
chains during the transport.

There exist also a few other studies considering optimization of stowage plans
for RoRo-ships. Øvstebø et al. (2011a) propose a mixed integer programming (MIP)
model and a heuristic method for solving this problem. In contrast to the 2DRSSP
studied in this paper, they do not have to transport all cargoes, so the objective is to
maximize the sum of revenue from optional cargoes, minus the penalty costs incurred
from shifting. For modeling purposes, Øvstebø et al. (2011a) divide the decks into
several logical lanes into which the vehicles are lined. Dividing the decks into lanes
might be a reasonable assumption when the cargoes are very similar in size (e.g. only
regular cars). However, it can be very limiting in many other practical situations, such
as for more general RoRo-ships which carry everything from cars, via trucks, military

123

An adaptive large neighborhood search heuristic for the…

and agricultural equipment, to breakbulk cargoes, as these cargoes can be very different
in size and shape. Dividing the deck into lanes with the same width would therefore
give poor capacity utilization. Therefore, the model that we propose here does not
rely upon this assumption. Øvstebø et al. (2011b) extend the work from Øvstebø et al.
(2011a) by also considering the routing and scheduling of the RoRo-ships, though
relying on the same limiting modeling assumption on dividing the deck into lanes.

Puisa (2018) introduces a mathematical model for RoRo-ship stowage planning,
which considers multiple decks, fire safety, and ship stability. However, the model
has several limitations compared with the model presented in this paper. First, each
deck is divided into a separate grid for each type of cargo, which is computationally
desirable, but may lead to poor utilization of the deck when cargoes have different
sizes and shapes. Second, shifting of cargoes in port during a voyage is not penalized
in the model, but either forbidden (which likely leads to less cargo stowed on-board
the vessel), or allowed at zero cost (which may lead to prohibitively long port stays).
Further, no solution method is presented except solving the model using a commercial
solver, which is unlikely to be computationally tractable for the larger RoRo-ships
considered in this paper.

While the 2DRSSP is categorized as a SLAP (and PSLAP), it is also closely related
to the two-dimensional Single Large Object Placement Problem (2SLOPP). In the
2SLOPP, a weakly heterogeneous set of small items (vehicles) are placed onto a large
item (deck), to maximize the total value of the items placed. This problem arises
in many industrial applications concerned with the cutting of materials such as steel,
glass,wood, and textile, see for exampleHaims andFreeman (1970) andWang (1983)).
For 2DRSSP addressed in this paper, we do not aim to maximize the total value of
the items packed, but rather constrain the solution space to ensure that all items are
packed. Instead, the objective is dependent on the items’ placements relative to one
another, i.e. shifting.

Packing problems appear also in other maritime applications, though differing from
the 2DRSSP. Bayliss et al. (2019) propose a heuristic approach for solving the vehicle
ferry revenuemanagement problemwith dynamic pricing.A packing algorithm,which
uses simulated annealing to search for the set of parameters maximizing the packing
efficiency, is used to optimize the stowage. However, since the ferry sails between only
two ports, they do not have to deal with shifting. Seixas et al. (2016) present a heuristic
for a pick-up and delivery allocation problem for platform supply vessels, where they
aim to determine the optimal cargo allocation on deck. In contrast to the 2DRSSP,
they do not have to carry all cargoes, so their problem is modeled as two-dimensional
knapsack problem. Furthermore, they do not consider shifting as the cargoes can be
accessed with a crane from above.

Yet another application of packing in maritime transportation is the stowage plan-
ning of container ships, see for example (Wei-Ying et al. 2005; Tierney et al. 2014;
Ding and Chou 2015), as well as the survey by Iris and Pacino (2015). In this problem,
containers are packed in three dimensions, and one sometimes needs to temporarily
move (shift) containers to get access to containers that are placed below. In this case,
determining the number of shifts to (un)load a container, given a stowage plan, is done
simply by counting the containers on top of it. Container stowage is not only relevant
for the shipping company, but also for the terminal operators, see for example the

123

J. R. Hansen et al.

studies by Monaco et al. (2014) and Iris et al. (2018) which consider the integrated
container stowage problem.

Our main contributions are twofold. First, we introduce a novel mixed integer pro-
gramming (MIP) model for the 2DRSSP, which considers both stowage and shifting.
Second, we present an Adaptive Large Neighborhood Search (ALNS) heuristic for
solving the 2DRSSP and demonstrate through a computational study its ability to
construct practically implementable stowage plans. The heuristic makes use of sev-
eral problem-specific destroy and repair operators, which are new to the literature.
While the problem is formulated with respect to its industrial application, the pro-
posed solution method may be applied to PSLAPs arising in other industries, such
as the aforementioned assembly block stockyard operations, vehicle yard manage-
ment (Cordeau et al. 2011; Mattfeld and Orth 2006), and general cargo storage (e.g.
unstackable pallets).

The remainder of the paper is organized as follows. We define the stowage problem
and present mathematical formulations in Sect. 2. In Sect. 3 we present an adaptive
large neighborhood search heuristic for solving the practical problem. Computational
results are presented in Sect. 4, before concluding remarks are drawn in Sect. 5.

2 Problem definition andmathematical formulations

In this section,we give a formal description of the two-dimensional RoRo ship stowage
problem (2DRSSP) with shifting cost, which is an extension of the stowage model
presented by Hansen et al. (2016). In their work, heuristic rules are used to guide
the placement of the vehicles. To determine the true objective value of a solution, an
additional optimization problem must be solved, namely the stowage plan evaluation
problem (SPEP) introducedbyHansen et al. (2017). In thiswork,we extend theoriginal
stowage model defined by Hansen et al. (2016) to account for shifting explicitly,
building on the ideas of Hansen et al. (2017).

A voyage is defined by a sequence of port calls, where P is the set of all ports,
and C is the set of cargoes (or shipments) to be transported along the voyage. Each
cargo c ∈ C is to be loaded at port PL

c and unloaded at port PU
c . A cargo c consists

of Rc identical vehicles (or units) with the same length, width, and weight, denoted
V L
c , VW

c , and V M
c , respectively. There is a minimum required clearance between the

vehicles when stowed on the deck defined by the parameter B. It is assumed that all
cargoes are mandatory to transport due to contractual terms. The deck has a given
length DL and width DW and unusable stowage spaces such as pillars, safety areas,
and ramps, are given. The objective is to place all mandatory cargoes on the deck in
such a way that the shifting cost of the stowage plan is minimized. The shifting cost
reflects the costs and/or time used to temporarily move vehicles to enable loading and
unloading of other vehicles.

The model presented below is based on a grid representation of the deck, where
I is the set of rows and J the set of columns, illustrated by the toy example in Fig.
1. A square (i, j) represents a physical area on the deck where the vehicles may
be placed, where square (1, 1) is defined as the square located at the stern of the
ship’s port side. All vehicles are modeled as rectangular objects. Thus, the number

123

An adaptive large neighborhood search heuristic for the…

Fig. 1 Illustration of the
modeling approach, highlighting
the main points

of squares needed to place a vehicle from cargo c in length and width is given by
SLc = �(V L

c + B)|I|/DL� and SWc = �(VW
c + B)|J |/DW � in the longitudinal

and latitudinal directions, respectively. The positioning of each vehicle is given by the
location of its lower left corner. Thus, if a vehicle from cargo c is placed (with its lower
left corner) in square (i, j), it spans over all squares (i ′, j ′) ∈ i ′ = i . . . i+SLc −1, j ′ =
j . . . j + SWc − 1. We see from Fig. 1 that the vehicle placed with its lower left corner
in square (5, 4) also covers squares (5, 5), (6, 4), and (6, 5). Using this approach,
we overestimate the area usage of the vehicles. However, with sufficiently high grid
resolution, this overestimation becomes negligible. We refer to Hansen et al. (2016)
for a more detailed and illustrative description of the modeling approach.

Let N ⊂ I × J be the set of all squares (i, j) where vehicles may be placed,
i.e. not unusable spaces such as pillars, safety areas, and ramps. Further, let Nc ⊆ N
be the set of squares where the lower left corner of a vehicle from cargo c may
be placed, where both unusable areas and weight limitations are accounted for. Let
Qi jc be the set of squares where placing a vehicle from cargo c would cover the
square (i, j). For example, if a cargo c consists of 2×2 sized vehicles, then Qi jc =
{(i − 1, j − 1), (i − 1, j), (i, j − 1), (i, j)}, as a vehicle from cargo c placed in any
of these squares would cover square (i, j).

We define squares placed next to square (i, j) as neighboring squares, given by the
setBi j = {(i+1, j), (i−1, j), (i, j+1), (i, j−1)}. Let the set of arcsAc ⊂ Nc×Nc

define the feasible movements for the vehicles in cargo c. Let CR
p be the set of cargoes

that is to be loaded or unloaded at port p. Further, let CN
p be the set of cargoes that is

placed on the ship at port p, given that the cargoes neither is to be loaded nor unloaded

123

J. R. Hansen et al.

Fig. 2 To the left, the stowage plan at a given port is shown, where C1 and C2 are vehicles. A vehicle in
cargo 1 (C1) is to be unloaded at this port. If the lower left corner of the vehicle from C1 (square marked
with a dashed line) uses any of the blue squares when unloading, it will initiate a shift of the vehicle from
C2. In the middle, two unloading routes that do not require any shift, are given. The location of the lower
left corner is tracked. To the right, an example of an unloading route that requires shifting is given. As the
lower left corner of vehicle C1 uses a blue square when unloading and hence, the vehicles overlap, vehicle
C2 must be shifted (Color figure online)

at port p. If a vehicle from cargo c ∈ CN
p is shifted at port p, a shifting cost CM

c per
unit of cargo c is imposed. The shifting cost is based on the vehicle’s area, as it is
usually more time-consuming to move larger vehicles than smaller ones. It is assumed
that a shifted vehicle is moved off the deck during the port call and returned to the
same location after the loading/unloading.

Let PLU = P\{1, |P|} be the set of ports where shifting may occur, i.e. every port
except the first and the last port along the voyage, since no vehicles are shifted in these
ports. Further, let PLU

c = {PL
c , PU

c } be the set of the loading and unloading port of
cargo c. Parameters E I and E J give the location of the entry/exit square on the deck,
respectively.

LetDi jcd be the set of all squares that would initiate a shift of a vehicle from cargo
d, placed in square (i, j), if the lower left corner of a vehicle from cargo c uses any
of these squares when it is loaded or unloaded, illustrated in Fig. 2. In this example,
a vehicle from cargo C2 is placed with its lower left corner in row five, column four,
i.e. square (5, 4). Thus, the setD54C1C2 contains all the squares marked in blue in Fig.
2, as using these squares when routing C1 from its initial position to the exit would
initiate a shift of the vehicle from C2. Note that the squares inside the outer edge of
the blue rectangle are not added to the set, as the vehicle from C1 would already have
used at least one of the blue squares in order to reach the inner squares.

As in Hansen et al. (2016), the following practical assumptions are made regarding
the problem. First, the ports are assumed to be separated into a loading region and
an unloading region, which is how most voyages are in RoRo-shipping. Next, it is
assumed that once a vehicle is placed, it stays in the same location during its time on

123

An adaptive large neighborhood search heuristic for the…

the vessel. A vehicle is always placed longitudinal to the deck, i.e. with its front facing
the bow, which is most common. Given these assumptions, all vehicles are placed on
the deck on the sailing leg between the last loading port and the first unloading port.
Thus, we only need to construct a stowage plan for this sailing leg, as a stowage plan
for all other sailing legs can be derived from it.

Let the binary decision variables xi jc denote whether the lower left corner of a
vehicle from cargo c is placed in square (i, j), while the binary decision variables
δi jcp is equal to 1 if this vehicle is shifted at port p, and 0 otherwise. The arc flow
variable fi jklcp represents the flow of vehicles from cargo c from square (i, j) to a
neighboring square (k, l) at port p. In Fig. 2, the arrows represent these flow variables
being equal to one. The decision variable di jcp represents the supply/demand for cargo
c at square (i, j) in port p. If di jcp > 0, square (i, j) is a supply square for cargo c at
port p; if di jcp < 0 square (i, j) is a demand square for cargo c at port pwith a demand
of −di jcp; and if di jcp = 0, square (i, j) is a transit square for cargo c at port p. For
example, if cargo c consists of five vehicles, then there is a supply of five vehicles
from cargo c at the entry square in the loading port of cargo c, i.e. dE I E J cPL

c
= 5.

Further, for each of the five squares the vehicles are placed, i.e. xi jc = 1, there is a
demand for a vehicle from cargo c at its loading port, di jcPL

c
= −1. All other squares

have zero supply/demand for cargo c.
The combined stowage and shifting model can be formulated as follows:

min z =
∑

c∈C

∑

(i, j)∈Nc

∑

p∈P LU

CM
c δi jcp (1)

subject to:
∑

(i, j)∈Nc

xi jc = Rc, c ∈ C (2)

∑

c∈C

∑

(i ′, j ′)∈Qi jc

xi ′ j ′c ≤ 1, (i, j) ∈ N (3)

δi jcp ≤ xi jc, p ∈ PLU , c ∈ CN
p , (i, j) ∈ Nc (4)

dE I E J cPL
c

= Rc c ∈ C (5)

di jcPL
c

= −xi jc c ∈ C, (i, j) ∈ Nc\{(E I , E J)} (6)

dE I E J cPU
c

= −Rc c ∈ C (7)

di jcPU
c

= xi jc c ∈ C, (i, j) ∈ Nc\{(E I , E J)} (8)
∑

(k,l)∈Bi j

fi jklcp −
∑

(k,l)∈Bi j

fkli jcp = di jcp p ∈ PLU , c ∈ CR
p , (i, j) ∈ Nc (9)

∑

c∈CR
p

∑

(k′,l ′)∈Dklcd

∑

(i, j)∈Bk′l′
(fi jk′l ′cp + fk′l ′i jcp)

≤ Mdp(1 − xkld + δkldp) p ∈ PLU , d ∈ CN
p , (k, l) ∈ Nd (10)

xi jc ∈ {0, 1}, c ∈ C, (i, j) ∈ Nc (11)

δi jcp ∈ {0, 1}, c ∈ C, (i, j) ∈ Nc, p ∈ PLU
c (12)

di jcp ∈ {0, 1}, c ∈ C, (i, j) ∈ Nc\{(E I , E J)}, p ∈ PLU
c
(13)

123

J. R. Hansen et al.

dE I E J cp ∈ R, c ∈ C, p ∈ PLU
c (14)

fi jklcp ≥ 0 p ∈ PLU , c ∈ CR
p , ((i, j), (k, l)) ∈ Ac (15)

The objective function (1) minimizes the shifting cost. Constraints (2) ensure that
all vehicles in all cargoes are placed on the deck. Constraints (3) guarantee that each
square is used by at most one vehicle. Constraints (4) guarantee that a vehicle from
cargo c may only be shifted from square (i, j) at port p if it is placed in square (i, j).
Constraints (5) set the supply of vehicles from cargo c at the entry square equal to the
number of vehicles in cargo c at the cargo’s loading port. Constraints (6) ensure that if
a vehicle from cargo c is placed in square (i, j), there is a demand at this square at the
cargo’s loading port. If no vehicle from cargo c is placed in square (i, j), the demand is
zero, which makes it a transit square. Constraints (7)–(8) state the demand and supply
for the unloading port of cargo c, similar to constraints (5)–(6). The flow balance
constraints (9) state that the outflow minus inflow must equal the supply/demand of
the square (i, j) for each cargo c that is loaded or unloaded at port p. Constraints (10)
state that for each port p, if any vehicle use a square that initiates a shift of a vehicle
from cargo d placed in (k, l) on its loading or unloading route, the blocking vehicle
from cargo d placed in (k, l) must be shifted. Finally, variable declarations are given
by constraints (11)–(15).

3 Adaptive large neighborhood search heuristic

For small instances, the combined stowage and shifting model for the 2DRSSP can be
solved to optimality by a commercialMIP solver. To solve realistically sized instances,
we propose a new adaptive large neighborhood search (ALNS) heuristic. The ALNS
heuristic was introduced by Ropke and Pisinger (2006). Given an initial solution, the
heuristic sequentially destroys and repairs the solution in order to improve the objective
and is commonly used to solve routing problems, see for example Ribeiro and Laporte
(2012) and Hemmelmayr et al. (2012). In the maritime domain, ALNS heuristics have
been used to solve two-dimensional allocation problems, see for example Mauri et al.
(2016) and Iris et al. (2017). However, to the authors’ knowledge, ALNS has not
previously been applied to stowage problems, such as the 2DRSSP.

3.1 Heuristic overview

The pseudocode for the heuristic is provided in Algorithm 1. An initial solution X 0

is generated by a greedy randomized adaptive search procedure (GRASP), described
in Sect. 3.2. We define solution X as the current solution and solution X ∗ as the best
solution found. At the beginning of each iteration, a temporary stowage plan X ′ is
created, which is a copy of the current solution. SolutionX ′ is then partially destroyed
by a destroy operator d and a repair operator r attempts to repair the solution. If
successful, the quality of the stowage plan X ′ is estimated using the functions G(X ′)
and P(X ′). If the stowage plan seems promising,we calculate the shifting cost c(X ′) of
the stowage plan. These estimation functions are included to reduce the time spent on

123

An adaptive large neighborhood search heuristic for the…

evaluating unpromising solutions, as the shifting cost evaluation is a time-consuming
procedure. We discuss the estimation and evaluation of the shifting cost in more
detail in Sect. 3.5. The shifting cost c(X ′) is then compared with the shifting cost
of the current solution and scores are awarded accordingly. Every M iterations, the
operators’ weights are updated based on the awarded scores (see Sect. 3.6). The search
is stopped when a solution with zero shifting cost is found or the computing time limit
is reached, and the best solution X ∗ is returned.

Algorithm 1 Pseudocode for the 2DRSSP ALNS
1: Construct an initial solution via GRASP X 0;X ← X 0;X ∗ ← X 0

2: Initialize weights: wdest , wrep

3: Set segment size = M , iteration counter i = 0
4: while until stopping criteria met do
5: X ′ ← X
6: Select destroy and repair operators d ∈ D, r ∈ R using wdest , wrep

7: Apply destroy operator d to X ′
8: Apply repair operator r to X ′
9: if feasible(X ′) and (P(X ′)(1+p) ≥ P(X) or G(X ′)(1 + g) ≥ G(X)) then
10: Calculate shifting cost of X ′, c(X ′)
11: if c(X ′) < c(X ∗) then
12: X ∗ ← X ′
13: X ← X ′, award score σ1 to the operators

14: end if
15: end if
16: if i % M = 0 then
17: Update weights wdest , wrep

18: end if
19: end while
20: return X ∗

3.2 Construction of an initial solution

The first step of the ALNS heuristic is to construct a feasible initial solution. In
order for a solution to be feasible, all vehicles in every cargo must be placed on the
deck. We propose using a greedy randomized adaptive search procedure (GRASP) for
constructing an initial solution. First, we give a general presentation of the GRASP.
Second, we explain how the GRASP is implemented for this stowage problem and
explain any modification done to the general framework.

The GRASP was initially proposed by Feo and Resende (1989). It is a metaheuris-
tic, in which each iteration consists of two phases: Construction and local search
(Resende and Ribeiro 2014). The construction phase builds a solution iteratively. In
each iteration, one element is added to the solution. The element is randomly selected
from a restricted candidate list (RCL) of elements, where the RCL contains the l best
candidates to be added to the solution. The list is updated after every iteration. By
selecting a random element, and not necessarily the best one in each iteration, the pro-
cedure allows for different solutions to be constructed. The length of the list defines the
degree of randomization. With increasing RCL length, diversification is added to the
search due to the increasing possible element choices. When a solution is constructed,

123

J. R. Hansen et al.

Fig. 3 The eight square sequences. Squares are evaluated according to the numbering in ascending order.
The solid arrow gives the primary direction, while the dashed line shows the secondary direction. Any
squares outside the deck outline or unusable squares are not evaluated but are numbered here for illustrative
purposes

a local search algorithm is applied to improve the solution. If it is a new best solution,
the solution is kept. The procedure of constructing a solution and improving it is then
repeated until a stopping criterion is met. We refer to Feo and Resende (1995) for a
more detailed explanation of the GRASP.

In this work, we use the ALNS for improving the solutions. Hence, we only use the
GRASP for constructing a feasible solution, and the use of a local search algorithm
is omitted. We construct the solutions from an empty deck, by repeatedly placing
vehicles on the deck until all vehicles are placed (success), or none of the remaining
vehicles can be placed (failure). In each step, two decisions must be made: (1) Which
square should we place the next vehicle on, and (2) which vehicle should we place on
the selected square. The latter decision is handled by the RCL. The list consists of the l
best insertion elements, i.e. the best cargoes to assign a given location on the deck. The
list length is implemented as a self-tuning parameter, which means that the probability
of selecting a given list length depends on the previously obtained solutions for the
same list length. This reactive feature has yielded promising results in other work (see
e.g. Prais and Ribeiro 2000), while also reducing the complexity of the parameter
setting as it self-tunes.

The decision of which square to evaluate next is handled by the square sequence
parameter. A given square sequence d is an ordered list of squares, which determines
the next square (i, j) to evaluate. Eight square sequences are predefined, that is two
directions for each of the four corners of the deck layout, illustrated in Fig. 3. The
reasoning for using fixed square sequences is that one should expect the resulting
stowage plan to have less unused squares between the vehicles, compared to randomly
drawing the next square, which is likely to increase the success rate of the construction
phase. The RCL length and the square sequence parameters are referred to as search
guiding parameters (SGP).

123

An adaptive large neighborhood search heuristic for the…

A pseudocode for the GRASP is presented in Algorithm 2. In line 2, the initial
weights of the SGPs are set. Let vectors wD andwL give the probabilities of selecting
each possible value of the corresponding SGPs, i.e. square sequence and RCL length,
respectively. For example, for the square sequence SGP, the vectorwD consists of eight
elements, i.e. one element for each square sequence. In line 3, the RCL length and
square sequence for the first iteration is set, using a roulette wheel selection method
(RWS) based on the vectorswD andwL . For the RWS, the probability pDd of selecting
square sequence d is then calculated as pDd = wD

d /
∑

d∈D wD
d , where D is the set of

square sequences. The same procedure is used for wL .

Algorithm 2 Pseudocode for the 2DRSSP GRASP
1: procedure GRASP
2: Initialize weights: wD,wL

3: d = RWS(wD), l = RWS(wL)
4: while stopping criteria not met do
5: S = N , i.e. set of all usable squares
6: X = ∅
7: Randomly select a SGP, and update the parameter using RWS
8: Sort(S) according to square sequence d
9: while S = ∅ do
10: (i, j) = first element of S. Remove this element from S
11: RCL =makeRCL((i, j), l)
12: x∗

i jc = random(RCL)

13: X = X ∪ {x∗
i jc}

14: end while
15: if AllVehiclesPlacedOnDeck(X) = true then
16: return X
17: end if
18: UpdateWeights(wd ,wl ,wr ,wo, δ)

19: end while
20: end procedure

In lines 9–14, the procedure attempts to build a feasible stowage plan. A list of
squares, sorted according to the selected square sequence d is given as input. For the
square selected in line 10, a RCL is constructed in line 11. All cargoes that have a
vehicle which may be placed in square (i, j) are added to the RCL. For a cargo c to
be in the RCL, two conditions must be satisfied: (1) All vehicles in the cargo are not
yet placed on the deck, and (2) it is possible to insert a vehicle from cargo c in the
evaluated square (i, j). This is possible if (i, j) ∈ Nc and no other vehicles use any
square (i ′, j ′) ∈ Pi jc, where Pi jc includes all squares used by a vehicle from cargo
c, if placed in square (i, j). These squares are often available as the GRASP inserts
vehicles using predefined square sequences.

Before reducing the RCL to the desired length l, defined by the RCL length SGP,
we sort the list to ensure the best possible insertions remain in the RCL. We identify
the best candidates based on the vehicles’ area usage. By inserting the largest vehicles
first, more flexibility is given in the later stages of the construction phase. Next, the
RCL is reduced to length l. In line 12, a cargo is sampled from this list and a vehicle

123

J. R. Hansen et al.

from this cargo is added to the stowage plan in line 13. This element refers to the
variable xi jc being equal to 1, for the drawn cargo from the RCL. The RCL may be
empty, meaning that no vehicles from the carried cargoes can be placed in square
(i, j). Which corner of the vehicle that is placed in the square (i, j) is determined in
the following manner: If a square sequence starting in the lower left corner is used, the
lower left corner of the vehicle is placed in the evaluated square. Following this logical
structure, the corresponding corner of the start square of the square sequence is used
when placing the vehicles. Unless otherwise is stated, the default square sequence
is set to start in the lower left corner and is used without further explanation in the
following sections.

When all squares are evaluated, a feasibility test of X is performed. If all vehicles
are placed on the deck, the stowage plan is feasible, and the algorithm terminates. If
the feasibility test fails, a new iteration of the GRASP starts. After every iteration,
the weights for each SPG vector are updated in line 18. The weights are updated
according to how well the selected SPGs performed in the current iteration, compared
to the previous iteration, where the sum of the unplaced vehicles’ area is compared.
Thus, if the sum of the unplaced vehicles’ area in the current stowage plan is less
than the previous stowage plan, the updated parameter is rewarded a positive score
δ, implying that this parameter choice increases the probability of creating a feasible
stowage plan. For the opposite outcome, a score of −δ is imposed to the parameter’s
weight. If the GRASP fails to construct a feasible solution within the time limit,
the ALNS procedure terminates. Another alternative is to limit the time used on the
GRASP and continue to the destroy and repair phase without an initial solution. The
repair operators could be used to search for a feasible solution from an empty solution
until the time limit is reached.However, preliminary testing has shown that theGRASP
heuristic is the better method for constructing feasible solutions from an empty deck.
As such, we let the GRASP run until a feasible solution is found, or the computing
time limit is reached.

Twominormodifications aremade to theGRASPwhen implementing the heuristic.
In the first eight iterations, each square sequence is used once and the RCL length is set
to one. Preliminary testing has shown that this greedy search often provides promising
solutions, given a successful feasibility test. Additionally, in the first eight iterations,
the search is not terminated if a feasible solution is found. If more than one feasible
solution is found, we evaluate the shifting cost of each solution, and the solution with
the lowest shifting cost is used as the initial solution. This is done to give the ALNS
a better starting point.

3.3 Destroy operators

This section presents the six different destroy operators that are used, where the major-
ity are motivated by some problem-specific characteristics. The destroy parameter ξ ,
0 < ξ ≤ 1, determines the percentage of vehicles removed from the solution. All
removed vehicles are inserted in the set L.

123

An adaptive large neighborhood search heuristic for the…

3.3.1 Neighbor removal

This operator removes vehicles that do not have a neighboring vehicle from the same
cargo. A vehicle placed in square (i, j) has a neighbor if a vehicle from the same cargo
is placed in any of the squares (i + SLc , j), (i − SLc , j), (i, j + SWc), or (i, j − SWc).
Let λ be the share of vehicles without a neighbor. If λ < ξ , all vehicles without a
neighbor is removed. If λ ≥ ξ , a random selection of the vehicles without neighbor is
done. The purpose of this operator is to increase the number of neighboring vehicles,
which is assumed to reduce the shifting cost of the stowage plan.

3.3.2 Area removal

The operator removes all vehicles placed within a certain area of the deck. The size
of the area is given by the destroy parameter ξ , whereas the area’s shape (length and
width) and location are randomly selected. By removing all vehicles from a certain
area, the reinsertion procedures try to improve the vehicles’ placement on a subsegment
of the deck, which could reduce the overall shifting cost of the stowage plan.

3.3.3 Random removal

The Random removal operator simply removes ξ share of the vehicles from the deck,
randomly selected. The inclusion of this operator is purely based on the fact that it
induces diversification to the search.

3.3.4 Port removal

This destroy operator removes vehicles according to their loading and unloading port.
The procedure is as follows: (1) select a port at random. (2) Until ξ share of all vehicles
on deck are removed, randomly remove a vehicle loaded or unloaded at the given port.
If all vehicles to be loaded or unloaded at the given port are removed, go to (1), else
end procedure.

3.3.5 Shifting cost removal

The shifting cost removal operator removes vehicles based on the shifting evaluation
results of the current stowage plan. The solution from this evaluation gives information
regarding which vehicles that are shifted most often during the voyage. Rearranging
the placement of these vehicles seems reasonable as they are located in areas where
many of the vehicles pass through when loading/unloading at ports. We combine this
idea with the area removal, to enable these vehicles to be moved away from their
current location. Thus, the top ξ/2 share of the vehicles with regards to shifting cost
is removed, in addition to vehicles within an area of ξ/2 of the deck size, i.e. area
removal.

123

J. R. Hansen et al.

3.3.6 Route removal

The route removal operates similarly to the shifting cost removal. However, instead of
removing the vehicles with the highest shifting cost, it removes the vehicles that are
most “costly” to load/unload. Given the solution from the SPEP of the current stowage
plan, we can calculate the cost of loading and unloading each vehicle by summing
the shifting costs of all blocking vehicles. For example, if a vehicle loaded at the last
loading port is placed at the innermost location on the deck, we expect this to cause a
lot of shifting. This operator aims to correct such decisions, which should be a good
basis for repairing solutions. As for the shifting cost removal, ξ/2 of the destruction is
allocated to the area removal, while the remaining share is used for the route removal.

3.4 Repair operators

The vehicles in the removal list are attempted reinserted by one of four repair heuristics.
If all vehicles are successfully reinserted, the repaired solution is evaluated. If the
selected repair operator fails to repair the solution, the shifting cost evaluation is
skipped, and a new iteration of the ALNS starts. The repair operators are briefly
described in the following.

3.4.1 Greedy repair

The Greedy repair operator uses a slightly altered version of the GRASP heuristic
presented in Algorithm 2 to repair the solution. As we start from a partially destroyed
solution, the solution set X is not empty, as is the case in line 6 in Algorithm 2.
Further, a construction attempt is started for each of the eight square sequences, where
the RCL list length l is set to one. The order of which the square sequences are selected
for a construction attempt is random. If a feasible solution is constructed, the search
terminates, and the repaired solution is evaluated.

3.4.2 Neighbor repair

This operator ismotivated by the expectation that the shifting cost is reduced if vehicles
from the same cargo are placed together. Given a partially destroyed solution, the
procedure iterates through a list of all empty squares. For each empty square (i, j),
the operator checks if any vehicle in the set of removed vehicles L could be placed
here. If true, the vehicle is placed here if it gets a neighbor, i.e. a vehicle from the
same cargo is placed in any of the squares (i + SLc , j), (i − SLc , j), (i, j + SWc), or
(i, j − SWc). If a square is a neighbor square for more than one vehicle, the largest
vehicle is prioritized. When all squares are evaluated, there may still be unplaced
vehicles in the list L. The greedy repair operator is then called to attempt to reinsert
these.

123

An adaptive large neighborhood search heuristic for the…

3.4.3 Placement repair

It is reasonable to assume that vehicles placed in squares located far from the entry/exit
have a lower probability of being shifted. Additionally, we want these squares to be
occupied by vehicles that are on the ship for the most sailing legs. For example, it
seems sensible to place a vehicle that is loaded in the first port and unloaded in the last
at the innermost place on the deck. A list of all empty squares is sorted by the distance
to the entry/exit in descending order. Iterating through this list, for each square, all
vehicles in the list of removed vehicles L is attempted reinserted. If possible for more
than one vehicle, the vehicle with the highest number of sailing legs (PU

c − PL
c) is

selected.

3.4.4 Random repair

This operator generates a list of all empty squares from the partially destroyed solution.
As long as the list is not empty, a square is sampled randomly from the list. For each
sampled square, the operator attempts to insert vehicles from the list of removed
vehicles L, prioritizing the largest vehicles. When all empty squares are evaluated or
all vehicles are placed on the deck, the operator terminates.

3.5 Shifting cost evaluation

Frequently in optimization problems, calculating a solution’s cost c(X ′) is trivial. In
this case, however, an optimization problem must be solved to provide the value of
c(X ′), namely the Stowage Plan Evaluation Problem (SPEP). We solve this problem
by using the shortest path solution method proposed by Hansen et al. (2017). Given
a stowage plan X ′, the method decides which vehicles to shift at each port such that
none of the loading/unloading vehicles are blocked, by solving several shortest path
problems. Hansen et al. (2017) show that the method is effective in determining the
better of two stowage plans, which is what we intend to use the method for in this
work, i.e. to compare the shifting cost of the temporary stowage plan c(X ′) with the
shifting cost of the current one c(X).

Even though the method presented by Hansen et al. (2017) is computationally
effective, the time spent evaluating the shifting cost of different solutions make up a
substantial amount of the overall runtimeof the algorithm.Hence, asmentioned inSect.
3.1, we try to ensure that only promising solutions are evaluated by implementing two
evaluation functions. We use the neighbor function G(X ′) and the placement function
P(X ′) to estimate the quality of a temporary stowage plan X ′, in order to determine
whether the shifting cost should be calculated or not. Here,G(X ′) gives the number of
neighboring vehicles in the solution X ′. A higher number of vehicles from the same
cargo placed together on the deck (neighbors) usually has a positive impact on the
shifting cost (Hansen et al. 2016). Further, Hansen et al. (2016) show that placing
cargoes which are on the ship for the most number of sailing legs farther away from
the entry/exit also has a positive impact on the shifting cost, which is estimated by
P(X ′). For each vehicle, let Dv be the rectilinear distance in squares from its location

123

J. R. Hansen et al.

(i, j) to the entry/exit (E I , E J) multiplied with the number of sailing legs the vehicle
is on the deck. Then, P(X ′) = ∑

v∈allVehicles Dv , where higher is better.
A solutionX ′ is regarded as promising if P(X ′)(1+p) ≥ P(X) or G(X ′)(1+g) ≥

G(X), where p ≥ 0 and g ≥ 0 are the placement and neighbor control parameters,
respectively. A solutionX ′ may be regarded as promising despite being worse than the
current solutionX onbothqualitymeasures. For example, given g = 0.1,G(X ′) = 95,
and G(X) = 100, the logic test returns true despite the temporary solution having less
grouped vehicles than the current solution.

3.6 Adaptiveness and acceptance criterion

As for selection of the SPGs, the RWS method is used for selecting the destroy and
repair operators in each iteration, where wom is the weight of operator o in segment
m. The destroy and repair operators are selected independently. At the start of each
segmentm, i.e. everyM iterations, the scoresπo of all operators o are set to zero. At the
end of each iteration, if a new global best solution is found, the scores of the selected
destroy operator and repair operator are incremented by the parameter σ1. At the end of
each segment m, the new weights are calculated as: wo,m+1 = wom(1− η) + ηπo/θo,
where the reaction factor η ∈ [0, 1] controls how much the current segment scores
should influence the weights, while the parameter θo counts the number of times
operator o was used within the section.

Ropke and Pisinger (2006) state that it seems sensible to accept solutions that are
worse than the current solution occasionally, not to get trapped in a local minimum.
They propose to use the acceptance criterion from simulated annealing to ensure this.
In our case, extensive preliminary testing showed that the heuristic performs better
with a simple greedy acceptance criterion than with the proposed simulated annealing
acceptance criterion. This may imply that the ALNS heuristic rarely gets stuck in local
minima for this stowage problem, and if so, a greedy strategy is sensible. Thus, we
accept any solution better than the current solution, which is known as hill-climbing
(Burke et al. 2005).

4 Computational study

We have performed a computational study using 512 test instances, generated mainly
based on data provided by Wallenius Wilhelmsen Logistics. In Sect. 4.1, the method
used to generate the test instances is presented. Next, we present the tuning of the
parameters in the ALNS heuristic in Sect. 4.2. In Sect. 4.3, we compare the perfor-
mance of the ALNS heuristic with solving the MIP using a commercial solver and
a stand-alone version of the GRASP construction heuristic. Finally, in Sect. 4.4, we
analyze how the solutions are affected by the instance-defining parameters, and the
performance of the heuristic’s operators is evaluated.

Themathematical model presented in Sect. 3 was implemented inMosel and solved
using XpressMP 1.28.12. The ALNS heuristic was implemented in Java. All compu-

123

An adaptive large neighborhood search heuristic for the…

tational experiments have been run on a computer with two Intel Xeon E5-2670v3 2.3
GHz processors, 64 GB of RAM and running on a Linux operating system.

4.1 Test instances

A test instance is defined through six parameters: the deck, # port calls along the
voyage, cargo type, # cargoes, filling degree, and grid resolution. Two real decks from
two different RoRo ships are used (denoted by A and B), which include information
regarding layout, size, unusable space and the location of the entry/exit square. The
dimensions of decks A and B are 265m × 32m and 160m × 32m, respectively.
Four voyages based on real trades with 5, 6, 8, and 10 port calls are used, These are
the trades Baltimore–Melbourne, Bremerhaven–Tacoma, Yokohama–Bremerhaven,
and Singapore–Baltimore, respectively. The cargoes to be transported are either all
standard cars (Car) or a combination of cars and high-and-heavy machinery (HH).
Further, each instance consists of either 6, 9, 12, or 15 cargoes.

We define the filling degree as the total area of all vehicles divided by the deck’s
available area, which is set to either 75% or 90% to represent two realistic levels. The
number of vehicles in each cargo is set randomly,while respecting thefilling degree and
ensuring that each cargo consists of at least one vehicle. Finally, the deck is represented
by one of the following four grid resolutions: 100 × 38, 200 × 75, 300 × 113, or
400× 150. The ratio between the number of rows and columns is based on the length
and width of a car equivalent unit (CEU), which has an approximate length–width
ratio of 4:1.5.

Now, as an example, A-8-HH-12-0.9-200 refers to an instance with deck A and the
voyage with eight ports (i.e. the Yokohama–Bremerhaven trade). The cargoes are both
cars and high-and-heavy, with a total of 12 cargoes to be handled. The cargoes occupy
90 % of the available area and a grid resolution of 200 × 75 is used to represent the
deck. One instance is created for every unique combination of the parameters, resulting
in a total of 512 instances. An asterisks (*) denote all instances within a certain set,
such that A-*-*-*-0.9-* is the set of all instances that use deck A and have a filling
degree of 90%. For all test instances, the computing time for the solution methods is
limited to 3600 s, and the search is stopped if a solution with zero shifting cost is found
before this time. For all instances, we set the cost of shifting a vehicle from cargo c
to be CM

c = Ac/AAVG , where Ac is the area of a vehicle from cargo c, and AAVG is
the area of the average size vehicle over all cargoes c. Thus, an objective value of two
might for example mean that either two average-sized vehicles or one vehicle of twice
the average size is shifted during the voyage. The instances are currently available at
the web page http://folk.ntnu.no/joneh.

4.2 Parameter tuning

Both the GRASP and the ALNS parameters are tuned on 16 representative training
instances. We follow the procedure given by Ropke and Pisinger (2006): First, a fair
parameter setting is produced by an ad hoc trial-and-error phase. Next, the parameter
setting is improved by allowing one parameter to take a number of values, while the rest

123

http://folk.ntnu.no/joneh

J. R. Hansen et al.

Table 1 Parameter tuning results

Parameter Description Value

wD Initial square sequence
weights

{0.2, 0.1, 0.1, 0.1, 0.1, 0.1,
0.2, 0.1}

wL Initial RCL length weights {0.4, 0.2, 0.2, 0.1, 0.1}
δ GRASP score parameter 0.002

ξ Destruction degree 0.2

σ1 Score when new global best
solution is found

33

η Reaction factor 0.1

p Placement parameter 0.2

g Neighbor parameter 0.2

M Segment size (number of
iterations)

50

wdest Initial destroy operator
weights

{1, 1, 1, 1, 1, 1}

wrep Initial repair operator weights {1, 1, 1, 1}

of the parameters are kept fixed. Each instance is solved five times for each setting and
the best performing setting is kept. This procedure is repeated for all the parameters
included in the test. The settings tested are reported in the following manner: For
parameters tuned over an interval, the intervals are shown in square brackets. For
parameters tuned over a set of values, curly brackets are used.

For the GRASP construction heuristic, the following parameters are tuned: The
square sequence weight parameter wD [0, 1], the RCL length weight parameter wL

[0, 1], the score parameter δ {0.0001, 0.0005, 0.001, 0.002, 0.004}, and the RCL list
length l [1, 10] to a maximum of five elements, as exceeding this length limits the
heuristic’s capabilities. The selected parameter setting is summarized in Table 1.

For the ALNS heuristic, the following parameters are tuned: The destruction degree
ξ {0, 0.1, . . . , 1.0}, the placement and neighbor parameters p and g {0, 0.05, . . . , 0.5},
and the segment size M {25, 50, 100, 150, 200}. The score parameter σ1 and the
reaction factor η are not included in the tuning. These parameters are set to values
commonly used in ALNS implementations, see e.g. Ropke and Pisinger (2006) and
Gharehgozli et al. (2014). The selected parameter setting is summarized in Table 1.

4.3 Comparing solutionmethods

In this section, we analyze the computational results of the proposed solutionmethods.
We first present the results of solving the full mathematical model as a MIP using
commercial software and comparing it with the ALNS. Then, we compare the ALNS
with the GRASP construction heuristic.

To investigate the computational complexity of the problem, we generated a set of
artificial small instances. These test instances vary from a grid resolution of 15 × 15

123

An adaptive large neighborhood search heuristic for the…

Table 2 Results of solving the
different problem instances both
as a MIP and using the ALNS

Instance MIP ALNS

LB UB Time (s) Obj Time (s)

6-0.75-15 0 0 6.8 0 1.2

8-0.75-15 0 0 67.6 0 1.1

6-0.90-15 0 0 108.4 0 4.7

8-0.90-15 0 0 86.4 0 1.0

6-0.75-20 0 0 10.1 0 1.0

8-0.75-20 0 0 160.8 0 1.2

6-0.90-20 0 0 73.0 0 1.1

8-0.90-20 0 0 1008.4 0 1.1

6-0.75-25 0 0 51.6 0 1.0

8-0.75-25 0 0 95.8 0 1.1

6-0.90-25 0 0 392.7 0 2.1

8-0.90-25 0 0 271.6 0 1.3

6-0.75-30 0 0 117.2 0 1.0

8-0.75-30 0 0 395.3 0 1.2

6-0.90-30 0 0 3250.8 0 1.2

8-0.90-30 0 39 3600.0 0 1.4

6-0.75-35 0 0 198.8 0 1.0

8-0.75-35 0 0 2805.4 0 1.2

6-0.90-35 0 18 3600.0 0 1.5

8-0.90-35 0 – 3600.0 0 4.5

6-0.75-40 0 0 894.6 0 1.1

8-0.75-40 0 0 1992.2 0 1.4

6-0.90-40 0 – 3600.0 0 1.5

8-0.90-40 0 89 3600.0 0 1.4

6-0.75-45 0 0 2270.3 0 1.3

8-0.75-45 0 11 3600.0 0 1.8

6-0.90-45 0 – 3600.0 0 1.1

8-0.90-45 0 – 3600.0 0 1.5

Average 0 57.375 1537.783 0 1.5

to 45× 45. The filling degree is set to either 75 % or 90 %, and the trade size is either
6 or 8 ports. Here, as an example, 8-0.75-25 refers to an instance with eight port calls,
a filling degree of 0.75, and a grid resolution of 25 × 25. The instances are solved
both as a MIP using a commercial solver and by the ALNS heuristic. The results are
summarized in Table 2, where we report the lower bound (LB), upper bound (UB) and
computing time (Time) used by the commercial solver, and the objetive value (Obj.)
and computing time (Time) of the ALNS heurisitc. Instances where no upper bound
was found within the time limit of 3600 s are marked with an −.

The results in Table 2 clearly show the limitations of solving the MIP model with
a commercial solver. For the instances with the smallest grid resolution, i.e. 15 × 15,

123

J. R. Hansen et al.

Table 3 Shifting cost improvement in percentage of the initial shifting cost for ALNS and GRASP

Set of instances ALNS GRASP

Time (s) Improvement (%) Time (s) Improvement (%)

--*-*-0.75-100 237.6 99.9 3600 9.1

--*-*-0.75-200 424.7 99.8 3600 7.2

--*-*-0.75-300 778.1 99.5 3600 5.2

--*-*-0.75-400 863.7 99.5 3600 3.2

--*-*-0.9-100 1079.5 99.1 3600 10.1

--*-*-0.9-200 1709.0 96.4 3600 5.4

--*-*-0.9-300 1809.6 96.8 3600 2.6

--*-*-0.9-400 2455.0 95.0 3600 4.4

Average 1169.6 98.2 3600 5.9

A score of 100% indicates a shifting cost of zero is reached
The asterisks (*) denote all instances within a certain set

the average solution time is approximately a minute. With higher grid resolution, the
computational times increase rapidly. Similarly, we see that a higher filling degree
increases the complexity. Eight of the 28 instances were not solved to optimality
within one hour (3600 s). For the ALNS heuristic, all instances are solved to optimality
within a few seconds. As the results indicate that the MIP solver can only solve small
instances, it is excluded from any further testing.

The GRASP is presented as a heuristic for constructing the initial solution in the
ALNS heuristic, where the destroy and repair operators are used in the improvement
phase. Alternatively, the GRASP could be used as a stand-alone heuristic where each
constructed promising solution is evaluated. Next, we evaluate the two heuristics’
ability to improve the initial solution. The results are summarized in Table 3.

For each instance, both heuristics starts from the same initial solution. The time
columns in Table 3 show the average computing time for each set of instances. The
results show that the GRASP’s ability to improve upon the initial solution is limited,
with an average improvement of 5.9 %. Further, the GRASP did not find the optimal
solution (with zero shifts) to any of the instances. The ALNS found a solution with
zero shifts to 381 of the 512 problem instances, with an average improvement of 98.2
%. It is not known whether there exist solutions with zero shifts for the remaining 131
instances. From the results, we see thatwith a higher filling degree, the average solution
times for the ALNS increases. More vehicles on the deck complicates the repair
procedures due to fewer placement possibilities. Similarly, higher grid resolutions
increase the time spent on destroying, repairing, and evaluating solutions, which also
affect the computational times.

It is clear that using the ALNS to improve the initial solution yields significantly
better results than iteratively creating stowage plans from scratch using the GRASP.
Further, we conclude that time is better spent on improving the initial solution using the
ALNS than searching for a better initial solution using the GRASP. Still, the GRASP
constructed at least one feasible solution to all instances, which is the primary purpose

123

An adaptive large neighborhood search heuristic for the…

of the procedure in the proposed ALNS framework. In all further analyses, only the
ALNS heuristic is used.

4.4 Extensive testing of the ALNS heuristic

In this section, we analyze the computational results from the ALNS heuristic further.
We first discuss which instance-defining parameters that influence shifting cost the
most. Next, the performances of the operators of the ALNS heuristic are analyzed,
and the shifting cost evaluation times are reported. Finally, we illustrate a solution to
the problem.

The computational results for various sets of instances are summarized in Table
4. We see that the average objective value is 1.09, where an objective value of one
means that one average-sized vehicle is shifted during the voyage. Further, we see
that the heuristic succeeded in creating a stowage plan with zero shifts for 74.41% of
the instances. On average, 0.14 vehicles are shifted per port call. We argue that this
is acceptable for any practical use, which shows the potential for planners to use the
stowage heuristic in daily operations. We discuss practical use more in detail at the
end of this section.

Two different deck layouts are used in this study. The results show no clear differ-
ence in the objective value, whether deck A or B is used. As the decks on a RoRo ship
usually are large open areas, the deck layout will most likely not have a considerable
impact on the shifting cost. However, for especially small decks with several obstacles,
the shifting cost will most likely be higher due to the layout. Further, we see that with
more port calls, the average objective value increases. More port pairs complicate the
procedure of placing vehicles from different cargoes on the deck in a smart way to
avoid shift.

We also see from Table 4 that the set of instances containing high-and-heavy vehi-
cles have more shifts on average than the instances with only cars. This is probably
because larger vehicles need more space to be loaded and unloaded. While the size of
the vehicles matter, the number of cargoes seems to have a negligible impact on the
shifting cost of a solution. We know that if only one cargo is transported, the shifting
cost is zero, as all vehicles are loaded and unloaded at the same port. Similarly, if
there are ten cargoes that are all loaded and unloaded at the same port, the shifting
cost is still zero. Hence, the number of cargoes do not directly affect the shifting cost.
However, we know that a higher number of unique port pairs impact the shifting cost
negatively. Thus, as more cargoes increase the probability of having transportation
between more unique port pairs, it indirectly influences the shifting cost.

From the results, we see that filling degree has the highest impact on the shifting
cost of a stowage plan. The average shifting costs are 0.22 and 1.96 for 75% and
90% filling degree, respectively. This is simply due to more vehicles on the deck
that potentially could induce shifting, in addition to less free space on the deck to
use for loading and unloading vehicles. Finally, it is clear that a higher grid resolution
increases the objective value,whichmay seemcounter-intuitive. This is because higher
grid resolutions increase the shifting cost evaluation times, which we discuss in more
details later. When fewer iterations are achieved within the computing time limit, the

123

J. R. Hansen et al.

Table 4 Computational results for various sets of instances solved with the ALNS heuristic

Set of instances Obj Time # Shifts per port Zero shifts %

A-*-*-*-*-* 1.17 1320.2 0.14 71.48

B-*-*-*-*-* 1.02 1019.1 0.13 77.34

-5--*-*-* 0.26 692.3 0.05 86.72

-6--*-*-* 0.59 898.9 0.10 82.81

-8--*-*-* 1.71 1532.0 0.21 63.28

-10--*-*-* 1.81 1555.3 0.18 64.84

--Car-*-*-* 0.59 1004.2 0.07 81.25

--HH-*-*-* 1.59 1335.1 0.20 67.58

--*-6-*-* 1.00 844.0 0.12 78.91

--*-9-*-* 0.94 910.1 0.12 80.47

--*-12-*-* 1.30 1450.9 0.17 71.09

--*-15-*-* 1.12 1473.5 0.14 67.19

--*-*-0.75-* 0.22 576.0 0.03 90.23

--*-*-0.9-* 1.96 1763.3 0.24 58.59

--*-*-*-100 0.27 658.6 0.03 84.38

--*-*-*-200 1.10 1066.9 0.13 75.00

--*-*-*-300 1.20 1293.8 0.14 72.66

--*-*-*-400 1.79 1659.3 0.23 65.63

Average 1.09 1169.6 0.14 74.41

The asterisks (*) denote all instances within a certain set

solution space is less explored, which reduces the probability of finding an optimal
solution.

Performance of the operators of the ALNS heuristic

The majority of the destroy and repair operators are developed specifically for the
2DRSSP, hence they are new to the literature. Table 5 summarizes each operator’s
performance for various sets of instances. Each operator’s performance is given by
the number of times it is used to reduce the shifting cost, divided by the total number
of improvements. For both the destroy and repair operators, the results show that the
cargo type and filling degree parameters impact the operators’ performance the most.

From the results, we see that theNeighbor operator, which removes vehicleswithout
a neighbor, scores best on average. This operator performs especiallywell for instances
with cars only, with scores of 28.0% and 23.2% for instances with low (75 %) and
high (90 %) filling degrees, respectively. However, for the set of instances with a
high filling degree and high-and-heavy (HH) cargoes, the score drops to 10.7%. A
reason for this may be that removing vehicles without a neighbor may give a partially
destroyed stowage plan with many holes. Repairing such a stowage plan can be hard
to accomplish when the filling degree is high. For example, the operator removes a
large high-and-heavy vehicle from the stowage plan, hence, creating a hole in the

123

An adaptive large neighborhood search heuristic for the…

Table 5 The destroy operators’ performance for different sets of instances

Set of instances Destroy operators (%)

Neighbor Area Random Port Shifting cost Route

--Car-*-0.75-* 28.0 10.8 5.3 18.0 18.9 18.9

--HH-*-0.75-* 24.7 11.5 6.8 19.5 18.7 18.8

--Car-*-0.9-* 23.2 14.3 2.9 17.8 21.0 20.8

--HH-*-0.9-* 10.7 12.3 4.1 25.3 24.2 23.3

Average 21.6 12.2 4.8 20.2 20.7 20.5

The asterisks (*) denote all instances within a certain set

Table 6 The repair operators’ performance for different sets of instances

Set of instances Repair operators (%)

Greedy Neighbor Placement Random

--Car-*-0.75-* 17.0 52.3 18.9 11.8

--HH-*-0.75-* 16.5 55.0 21.0 7.4

--Car-*-0.9-* 27.6 43.9 26.4 2.1

--HH-*-0.9-* 39.4 37.8 22.1 0.7

Average 25.1 47.3 22.1 5.5

The asterisks (*) denote all instances within a certain set

stowage plan. If a small vehicle is reinserted in this space, the remaining area around
the small vehicle becomes unusable. With less available usable area, feasibility could
now become a challenge. For this difficult set of instances, *-*-HH-*-0.9-*, the Port,
Shifting cost, and Route operators perform better. Removing vehicles that are to be
loaded or unloaded at the same port yield promising results for this specific set of
instances, with a score of 25.3%. Both the Shifting cost and Route operators use
information from the stowage plan evaluation problem to select which vehicles to
remove, either by removing the vehicles that block other loading/unloading vehicles
the most, or by removing the vehicles that require most shifts to be loaded or unloaded.
The results show that these operators perform well on all sets of instances.

Table 6 shows the repair operators’ performance. It is clear that placing vehicles
from the same cargo together has its merits, as the Neighbor repair operator has a
score of 47.3%. By placing vehicles from the same cargo together, the area is most
often better utilized. Additionally, it has a positive impact on the shifting cost. If a
vehicle can be unloaded without inducing shifting, then so will a neighboring vehicle
by following the same exit route. Though, we see that with increasing filling degree,
the Neighbor operator’s score is reduced. With limited space, forcing vehicles into
neighbor positions may create unused areas around smaller vehicles, as was also
the case for the Neighbor destroy operator. The Placement repair operator seems to
perform equallywell for different sets of instances. TheGreedy repair operateswithout
any specific logic by inserting the largest vehicles first. For more difficult instances,
this increases the probability of feasibility. Thus, by succeeding in repairing solutions

123

J. R. Hansen et al.

Table 7 The average shifting
cost evaluation time for various
sets of instances for different
grid resolutions

Set of instances Grid resolution

100 200 300 400

-5--6-*-c 0.02 0.04 0.11 0.22

-6--6-*-c 0.01 0.04 0.10 0.20

-8--6-*-c 0.01 0.04 0.11 0.25

-10--6-*-c 0.01 0.05 0.11 0.25

-5--9-*-c 0.03 0.08 0.18 0.42

-6--9-*-c 0.02 0.07 0.15 0.39

-8--9-*-c 0.02 0.09 0.16 0.27

-10--9-*-c 0.02 0.06 0.13 0.35

-5--12-*-c 0.02 0.07 0.18 0.42

-6--12-*-c 0.01 0.07 0.16 0.67

-8--12-*-c 0.02 0.06 0.17 0.67

-10--12-*-c 0.01 0.07 0.19 0.59

-5--15-*-c 0.03 0.09 0.19 0.88

-6--15-*-c 0.02 0.07 0.32 1.03

-8--15-*-c 0.02 0.08 0.19 0.94

-10--15-*-c 0.01 0.08 0.30 1.07

Average 0.02 0.07 0.17 0.54

All results are in seconds per iteration
The asterisks (*) denote all instances within a certain set
c indicates that parameter is given by the column header

more often than the other repair operators, the probability of generating stowage plans
with lower shifting cost increases. As for the Random destroy operator, the Random
repair operator scores poorly, especially for instances with a high filling degree.

Shifting cost evaluation time

The majority of the time in each iteration is spent on calculating the shifting cost
of the repaired stowage plans (i.e. solving the SPEP). Here, we examine how the
different parameters that define an instance influence the evaluation times. The results
are summarized in Table 7.

We see that the average time used to solve the SPEP ranges from 0.02 s per iteration
for the lowest grid resolution to 0.54 s per iteration for the highest grid resolution.
This parameter has a high impact on the solution times of the SPEP, as most of the
variables in the problem have a row and a column index. Further, we see that with
more cargoes, the solution times increase, even though the total number of vehicles
placed on the deck is approximately the same for the different sets of instances. The
shortest path solution method used to solve the SPEP solves two SPPs per cargo, one
for the cargo’s loading and unloading port, respectively. While the number of vehicles
in each cargo influences the solution times due to more target nodes in the network,
i.e. one target node for each vehicle, the number of cargoes greatly outweighs this

123

An adaptive large neighborhood search heuristic for the…

Fig. 4 Two solutions with zero shifts to the problem instance A-5-Car-6-0.9-200 is shown. The gray color
gives the unusable spaces, while the remaining six different colors represent vehicles from each of the six
cargoes placed on the deck

effect. Finally, we see that the number of ports does not seem to affect the evaluation
times significantly. While not reported in Table 7, the solution times seem not to be
considerably influenced by any of the other instance-defining parameters, namely deck
layout, cargo type, and filling degree.

Solving practical problems

In Fig. 4, two solutions to the problem instance A-5-Car-6-0.9-200 is illustrated. In
this problem instance, vehicles are loaded at ports 1 and 2, and unloaded at ports 3-5.
The entry/exit area is located at the stern (i.e. back of the ship), which is marked in
green in Fig. 4. The gray areas are unusable spaces. Each cargo consists of 83 to 112
vehicles and is represented by a unique color. A total of 585 vehicles are placed on the
deck after loading at port 2. At each port, the stowage plan after loading or unloading
is shown. As seen from the figure, all cargoes are onboard the ship after the second
port call.

123

J. R. Hansen et al.

SolutionA is the solution found by theALNSheuristic during computational testing
and does not require any shifting. Looking at the solution, we see that despite being
optimal with respect to the mathematical formulation, the solution is complicated to
implement in a practical setting. For example, we see that the vehicles marked in
orange are scattered in the upper part of the deck.

Solution B is also constructed using the ALNS heuristic. However, a minor alter-
ation to the stopping criteria is made. Instead of stopping the search when a solution
with zero shifts is found (or after 3600 s), we let the heuristic search for an additional
30 s. During this search, we accept any solution with a higher number of neighboring
vehicles than the current solution, given that the shifting cost remains unchanged. We
see from the figure that both solutions have the cargoes placed roughly in the same
area. However, increasing the number of neighboring vehicles has resulted in a more
structured and visually pleasing stowage plan than Solution A. From a planners per-
spective, it is clear that Solution B is the preferred stowage plan as it is easy to replicate
in a practical setting. Further, from a practical viewpoint, it may also be desirable to
load/unload all vehicles in one cargo at a time. This is more likely to be possible with a
structured stowage plan, as the probability of having a random vehicle placed within a
group of vehicles from the same cargo is lower. For example, we see from Solution A
that some light blue vehicles are placed within the group of vehicles from the orange
cargo.While it is shown that theALNSheuristic is capable of generating stowage plans
with low shifting cost as well as structured solutions, the trade-off between shifting
costs and logically structured stowage plans is not addressed in this work and is left
as a promising venue for further research.

5 Concluding remarks

We have considered the two-dimensional RoRo ship stowage problem for one deck
(2DRSSP), which is a generalized version of the planar storage location assignment
problem. The 2DRSSP considers a ship sailing along a predefined voyage, visiting a
set of ports. At each port, cargoes are to be loaded or unloaded. In order to keep the
time spent on loading and unloading vehicles to a minimum and, hence, reduce the
time spent in port, a good stowage plan should minimize unnecessary movement of
vehicles. This undesirable action of moving vehicles to enable loading or unloading
of other vehicles is referred to as shifting. In previous studies, this shifting aspect has
either been oversimplified or handled implicitly using heuristic placement strategies.
In this work, we stress the importance of handling shifting in such a manner that the
resulting stowage plans are of practical use.

We have proposed a novel mixed integer programming model for the 2DRSSP. A
new way of modeling the shifting aspect is a central part of the model. We have also
proposed an adaptive large neighborhood search (ALNS) heuristic for solving realistic
problem instances. The computational results showed that the resulting stowage plans
are of practical use, with an average of approximately one shift per instance. While
having its merits as is, the solution method could also be used as a building block in
future work, extending the problem to cover multiple decks and stability restrictions.
Stability calculations are complex issues that are usually handled by naval architects.

123

An adaptive large neighborhood search heuristic for the…

However, given a procedure for checking the stability for a given stowage arrangement,
it would be fairly easy to incorporate that into our ALNS heuristic by using this
procedure to check stability whenever the heuristic finds a new best solution. This
would also make sure that we get a solution that also respects the stability restrictions.

Acknowledgements OpenAccess funding provided by NTNUNorwegian University of Science and Tech-
nology (incl St. Olavs Hospital - Trondheim University Hospital). We are grateful to Ivar Hukkelberg who
provided input at an early stage of this work. We also acknowledge the comments and suggestions provided
by two anonymous reviewers which helped us improve the paper.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Bayliss, C., Currie, C.S., Bennell, J.A., Martinez-Sykora, A.: Dynamic pricing for vehicle ferries: using
packing and simulation to optimize revenues. Eur. J. Oper. Res. 273, 288–304 (2019)

Burke, E.K., Kendall, G., et al.: Search Methodologies. Springer, Berlin (2005)
Chen, P., Fu, Z., Lim, A., Rodrigues, B.: Two-dimensional packing for irregular shaped objects. In: Pro-

ceedings of the 36th Annual Hawaii International Conference on System Sciences, 2003. IEEE (2003)
Cordeau, J.F., Laporte, G., Moccia, L., Sorrentino, G.: Optimizing yard assignment in an automotive trans-

shipment terminal. Eur. J. Oper. Res. 215, 149–160 (2011)
Ding, D., Chou, M.C.: Stowage planning for container ships: a heuristic algorithm to reduce the number of

shifts. Eur. J. Oper. Res. 246, 242–249 (2015)
Feo, T.A., Resende, M.G.: A probabilistic heuristic for a computationally difficult set covering problem.

Oper. Res. Lett. 8, 67–71 (1989)
Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. J. Global Optim. 6, 109–133

(1995)
Gharehgozli, A.H., Laporte, G., Yu, Y., de Koster, R.: Scheduling twin yard cranes in a container block.

Transp. Sci. 49, 686–705 (2014)
Gu, J., Goetschalckx, M., McGinnis, L.F.: Research on warehouse operation: a comprehensive review. Eur.

J. Oper. Res. 177, 1–21 (2007)
Haims, M.J., Freeman, H.: A multistage solution of the template-layout problem. IEEE Trans. Syst. Sci.

Cybern. 6, 145–151 (1970)
Hansen, J.R., Fagerholt, K., Stålhane, M.: A shortest path heuristic for evaluating the quality of stowage

plans in roll-on roll-off liner shipping. In: Lecture Notes in Computer Science, vol. 10572, pp. 351–365
(2017)

Hansen, J.R., Hukkelberg, I., Fagerholt, K., Stålhane, M., Rakke, J.G.: 2d-packing with an application to
stowage in roll-on roll-off liner shipping. In: Lecture Notes in Computer Science, vol. 9855, pp. 35–49
(2016)

Hemmelmayr, V.C., Cordeau, J.F., Crainic, T.G.: An adaptive large neighborhood search heuristic for two-
echelon vehicle routing problems arising in city logistics. Comput. Oper. Res. 39, 3215–3228 (2012)

Iris, C., Pacino, D.: A survey on the ship loading problem. In: Lecture Notes in Computer Science, vol.
9335, pp. 238–251 (2015)

Iris, C., Pacino,D., Ropke, S.: Improved formulations and anAdaptive LargeNeighborhood Search heuristic
for the integrated berth allocation and quay crane assignment problem. Transp. Res. Part E Logist.
Transp. Rev. 105, 123–147 (2017)

123

http://creativecommons.org/licenses/by/4.0/

J. R. Hansen et al.

Iris,C.,Christensen, J., Pacino,D.,Ropke, S.: Flexible ship loadingproblemwith transfer vehicle assignment
and scheduling. Transp. Res. Part B 111, 39–56 (2018)

Mattfeld, D.C., Orth, H.: The allocation of storage space for transshipment in vehicle distribution. OR
Spectrum 28, 681–703 (2006)

Mauri, G.R., Ribeiro, G.M., Lorena, L.A.N., Laporte, G.: An adaptive large neighborhood search for the
discrete and continuous Berth allocation problem. Comput. Oper. Res. 70, 140–154 (2016)

Monaco, M.F., Sammarra, M., Sorrentino, G.: The terminal-oriented ship stowage planning problem. Eur.
J. Oper. Res. 239, 256–265 (2014)

Øvstebø, B.O., Hvattum, L.M., Fagerholt, K.: Optimization of stowage plans for roro ships. Comput. Oper.
Res. 38, 1425–1434 (2011a)

Øvstebø, B.O.,Hvattum, L.M., Fagerholt, K.: Routing and scheduling of roro shipswith stowage constraints.
Transp. Res. Part C Emerg. Technol. 19, 1225–1242 (2011b)

Park, C., Seo, J.: Mathematical modeling and solving procedure of the planar storage location assignment
problem. Comput. Ind. Eng. 57, 1062–1071 (2009)

Park, C., Seo, J.: Comparing heuristic algorithms of the planar storage location assignment problem. Transp.
Res. Part E Logist. Transp. Rev. 46, 171–185 (2010)

Prais, M., Ribeiro, C.C.: Parameter variation in grasp procedures. Investig. Oper. 9, 1–20 (2000)
Puisa, R.: Optimal stowage on ro-ro decks for efficiency and safety. J. Mar. Eng. Technol. (2018). https://

doi.org/10.1080/20464177.2018.1516942
Resende,M.G., Ribeiro, C.C.:Grasp: greedy randomized adaptive search procedures. In: Burke, E., Kendall,

G. (eds.) Search Methodologies, pp. 287–312. Springer, Boston (2014)
Reyes, J., Solano-Charris, E., Montoya-Torres, J.: The storage location assignment problem: a literature

review. Int. J. Ind. Eng. Comput. 10, 199–224 (2019)
Ribeiro, G.M., Laporte, G.: An adaptive large neighborhood search heuristic for the cumulative capacitated

vehicle routing problem. Comput. Oper. Res. 39, 728–735 (2012)
Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem

with time windows. Transp. Sci. 40, 455–472 (2006)
Seixas, M.P., Mendes, A.B., Pereira Barretto, M.R., Da Cunha, C.B., Brinati, M.A., Cruz, R.E., Wu, Y.,

Wilson, P.A.: A heuristic approach to stowing general cargo into platform supply vessels. J. Oper. Res.
Soc. 67, 148–158 (2016)

Tao, N., Jiang, Z., Qu, S.: Assembly block location and sequencing for flat transporters in a planar storage
yard of shipyards. Int. J. Prod. Res. 51, 4289–4301 (2013)

Tierney, K., Pacino, D., Jensen, R.M.: On the complexity of container stowage planning problems. Discrete
Appl. Math. 169, 225–230 (2014)

Wang, P.: Two algorithms for constrained two-dimensional cutting stock problems. Oper. Res. 31, 573–586
(1983)

Wei-Ying, Z., Yan, L., Zhuo-Shang, J.: Model and algorithm for container ship stowage planning based on
bin-packing problem. J. Mar. Sci. Appl. 4, 30–36 (2005)

Xiao, J., Zheng, L.: A correlated storage location assignment problem in a single-block-multi-aisles ware-
house considering bom information. Int. J. Prod. Res. 48, 1321–1338 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1080/20464177.2018.1516942
https://doi.org/10.1080/20464177.2018.1516942

	An adaptive large neighborhood search heuristic for the planar storage location assignment problem: application to stowage planning for Roll-on Roll-off ships
	Abstract
	1 Introduction
	2 Problem definition and mathematical formulations
	3 Adaptive large neighborhood search heuristic
	3.1 Heuristic overview
	3.2 Construction of an initial solution
	3.3 Destroy operators
	3.3.1 Neighbor removal
	3.3.2 Area removal
	3.3.3 Random removal
	3.3.4 Port removal
	3.3.5 Shifting cost removal
	3.3.6 Route removal

	3.4 Repair operators
	3.4.1 Greedy repair
	3.4.2 Neighbor repair
	3.4.3 Placement repair
	3.4.4 Random repair

	3.5 Shifting cost evaluation
	3.6 Adaptiveness and acceptance criterion

	4 Computational study
	4.1 Test instances
	4.2 Parameter tuning
	4.3 Comparing solution methods
	4.4 Extensive testing of the ALNS heuristic
	Performance of the operators of the ALNS heuristic
	Shifting cost evaluation time
	Solving practical problems

	5 Concluding remarks
	Acknowledgements
	References

