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Registration is a ubiquitous operation in Visual Computing, with applications in 3D object retrieval among 

others. Registration is the process of overlaying two or more datasets taken from different viewpoints, 

at different times or by different sensors into a common reference frame. Multimodal registration is 

a special case where the data to be matched do not belong to the same modality and is challenging 

due to the diverse nature of the modalities involved which makes the creation of a distance function 

harder. Due to the large number of possible modality combinations and application fields, a considerable 

number of multimodal registration techniques have been proposed in diverse fields, including medicine 

and archaeology. This survey aims to unify 3D multimodal registration techniques (i.e. where at least 

one of the modalities is in 3D) across application domains, with the hope of providing an application- 

independent view and the potential for cross-fertilization. The problem of 3D multimodal registration is 

explicitly defined and the various methods are systematically categorized and described in terms of a 

number of important properties. Methods with publicly available source code have been compared on 

common datasets. A discussion on trends, observations and challenges for further research concludes the 

review. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The technological progress of the last decades has led to an

xplosion in volume, variety and complexity of data. There is

 massive amount of highly heterogeneous 2D and 3D datasets

onsisting of multimodal samples acquired by a variety of different

ensors. 3D data can exist in different domains, in different types

f format, characteristics and possess different sources of error.

or such data to be exploited, the proper alignment in a common

oordinate system is often essential. 

This alignment, or registration , has become a fundamental task

n computer vision and computer graphics and a host of applica-

ions use alignment techniques before visualizing, comparing or

rocessing data. Registration techniques are utilized in multiple

perations, such as 3D object retrieval [1] , 3D mapping [2–4] , 3D

bject scanning [5] , 3D model reconstruction [6,7] , which are ba-
� This work has received funding from the European Union’s Horizon 2020 re- 

earch and innovation programme under the Marie Skłodowska-Curie grant agree- 

ent No. 813789. 
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ic components of applications such as cultural heritage [8–10] and

edical imaging [11,12] . 

Registration is the process of aligning two or more similar ob-

ects or two or more instances of the same object taken at different

imes (multi-temporal data), from different viewpoints (multi-view

ata) or by different sensors (multi-sensor data) into a common

eference system. Given a target and source/reference dataset, a

egistration technique can be described by three components: the

ransformation which relates the two datasets, the similarity met-

ic that evaluates the similarity of the datasets and an optimization

ethod which determines the optimal transformation parameters

s a function of the similarity metric. Thus, a registration method

eometrically aligns two datasets by finding an optimal transfor-

ation that minimizes the error of a similarity metric. 

Multimodal registration is a special category of registration,

here the data to be aligned are of the same object but of dif-

erent modality ( Fig. 1 ). Multimodal data may have different data

tructure, dimension, density, noise and types of error in their ge-

metry. Multi-modality is also referred in the literature as inter-

odality or cross-modality. Compared to unimodal registration,

he multimodal case is more challenging because it is not straight-

orward to define a general registration framework for relating the

ifferent modalities. 
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Multimodal data registration as presented in [13] . 
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There has been significant growth in research on registration of

3D data both unimodally and multimodally. Several surveys have

been published covering aspects of image registration [14,15] and

3D unimodal registration [16–19] . Registration of images has been

extensively researched in the medical imaging domain, resulting in

multiple reviews, focused on medical applications [11] or modal-

ities [20] . Refer to [21–23] for surveys covering the main issues

and methods related to medical image registration techniques. Re-

cently a lot of attention has been directed into utilizing deep learn-

ing for registration of medical images, also leading to some surveys

[24–27] . 

Due to the breadth of the registration research field and the

volume of research performed and published each year, we focus

this review on methods for multimodal 3D registration as defined

below, a topic that has not been covered by a survey before to the

best of our knowledge. At the same time, we strive to be open to

all application areas where such techniques have been developed

with the aim of showing commonalities as well as potential for

cross-fertilization. We restrict ourselves to techniques where one

or both modalities are three dimensional as this is arguably the

most common and useful dimensionality; such techniques are ei-

ther concerned with different 3D modalities or work across 2D and

3D. We take as starting point the work of Kotsas et al. [28] for reg-

istration techniques of different dimensionality (2D/3D) as well as

the review of Andrade et al. [21] , both specifically for medical im-

age registration. 

The remainder of this paper is organized as follows: In Sec-

tion 2 the 3D multimodal registration problem is defined and ana-

lyzed. Section 3 presents applications of 3D multimodal registra-

tion while Section 4 presents multimodal registration attributes.

In Section 5, public datasets and performance evaluation measures

are presented. Section 6 overviews the multimodal registration

methods; optimization-based registration techniques in subsection

6.1 and learning-based approaches in subsection 6.2. Section 7

compares methods with publicly available source code on common

datasets while, finally, in Section 8 we reflect on the past and an-

ticipate on future perspectives for multimodal 3D registration. 

2. Multimodal 3D data registration 

The term multimodal registration has largely been ’abused’ in

the literature, referring to such aspects as the same object from

different viewpoints, the same object at different moments in time

or the same object scanned by different sensors. Thus the data

may share the same geometric characteristics and even the same
ata structure (e.g. registering dense 3D point clouds produced

y terrestrial laser scanners at different times and from different

iews [29] or registering CT and cone-beam CT (CBCT) spine im-

ges which have different fields of view [30] ). Although, different

ensors can produce variations in terms of density, scale, noise and

eformation, the data are often geometrically similar and within

he same family of data structure (e.g. a low resolution 3D point

loud and a high resolution 3D mesh generated from 3D scanning

5] ). 

What should then be the characteristics of two modalities in

rder to be considered different? To answer this question, we

ave tried to locate what makes multimodal registration a more

hallenging task than unimodal registration. It has been observed

hat registration methods that perform well in the unimodal case

31,32] , do not necessarily perform well when they are applied to

ultimodal datasets [33] . In unimodal registration, data have sim-

lar or correlated statistical properties and it is rather straightfor-

ard to recognize correspondences or a similarity metric. The core

ifficulty in multimodal registration is in identifying structure cor-

espondences across modalities or defining a general rule to iden-

ify similarity between two modalities with different physical prin-

iples. 

Therefore, we will herein use the term multimodal to refer to

wo datasets with qualitative variability in shape and appearance;

hus having different dimension (e.g. 3D/2D images, X-ray / MRI),

ifferent data structure (e.g. 3D point cloud and an MRI volume) or

ifferent physical and anatomical principles (e.g. MRI and CT vol-

mes). We shall thus not include methods that register the same

odalities generated by different acquisition devices (e.g. [34] ),

ame modalities with different resolutions (e.g. alignment of a low

esolution point cloud/mesh with high resolution point cloud/mesh

35] ) or the same modalities with different imaging parameters

e.g. registration of T1 and T2 weighted MRI volumes [36] ). More-

ver, challenges like missing data, varying scaling factors and den-

ities, variation due to different viewpoints, noise and outliers are

onsidered difficulties confronting both unimodal and multimodal

egistration, and thus will not be included. 

The spectrum of modalities that need to be aligned is large. In

eneral purpose registration, the most popular modality in two di-

ensions is the 2D image and in three dimensions the 3D point

loud and 3D mesh. The 2.5D RGB-D image (i.e. 2D color image

lus depth) is also a common modality; such images are often

eferred as being 2.5D since they are essentially an image with

epth information per point. A variety of modalities are derived

rom medical imaging applications. Anatomical images such as ul-

rasound (US), X-ray, magnetic resonance (MR) and computed to-

ography (CT) expose the structure of entire areas. Functional im-

ges like single-photon emission computed tomography (SPECT)

nd positron emission tomography (PET) show the physiological

ctivity of certain body areas. Some of the most common data rep-

esentations for 3D and 2D data (the most common dimensionali-

ies) are: 

• 3D Data 
• 3D point clouds 
• 3D meshes 
• 2.5D RGB-D images 
• Computed Tomography (CT) scans 
• Magnetic Resonance Imaging (MRI) scans 
• Single Photon Emission Tomography (SPECT) volumes 
• Positron Emission Tomography (PET) volumes 

• 2D Data 
• Images 
• Points 
• X-rays 
• Ultrasounds (US) 
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Fig. 2. The Stanford Bunny in Different Modalities as presented in [37–40] . 

Fig. 3. Different Modality Representations of Brain Anatomy [44] . 
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Fig. 4. Medical fusion of MRI and PET modalities. (A) MRI and (B) PET images are 

registered and fused (C) [50] . 
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• 2D slices of a 3D volume (i.e. slice of CT) 
• Painting 
• 2D Projections of 3D models 

Figs. 2 and 3 present examples of different modalities for the

tanford bunny and brain anatomy respectively. 

ultimodal 2D/3D Registration 

The most common case of multimodal registration across dif-

erent dimensions is 3D to 2D, e.g. 3D mesh to 2D image. Thus,

he problem can also be found with the terms model-to-image or

olume-to-slice registration [41] . This is a challenging task with a

ariety of applications. Its complexity arises from both the differ-

nt dimensionality and different visual sensors that the data are

btained from, but also from differences in structure, format, and

oise characteristics of the data. 

The aim of registering a 3D model against a 2D image is to

ocalize the acquired image in the 3D scene and/or to compare the

wo. Another aspect of the 2D/3D registration problem is the cam-

ra localization problem: estimating the pose of a calibrated cam-

ra that produces the 2D image, from 3D-to-2D point correspon-

ences between a 3D model and the 2D image. 2D/3D registration

an be solved by aligning the visual correspondences extracted

rom the 3D model and the 2D image. A set of correspondences is

sually obtained from features which are extracted from both data

odels and matched. When the set of correspondences is known,

he problem is the well studied perspective-n-point (PnP) problem

42] . However, more challenging is when the correspondences are

ot known, and the registration method needs to find simultane-

usly the correspondences and the pose of the data. This review is

ocused on algorithms for solving the more challenging problem of

he correspondence-free registration; for more details on the PnP

roblem, we refer the reader to a recent survey on the topic [43] . 

. Applications of multimodal 3D registration 

Multimodal 3D registration has proved vital to many applica-

ions as well as generalized operations within multiple application

reas. 

By far the largest application area is medical imaging where CT,

RI, 3D Rotational X-ray and other modalities are used [45–47] .

linical practice can benefit from the integrated visualization and

nalysis of different modalities of the same anatomy in order
o make the diagnostic and treatment process more efficient.

ultimodal registration is an essential tool in image-guided

inimally invasive therapy, image-guided radiation therapy and

mage-guided surgery [41] , to name a few. The different modalities

nvolved, such as CT and MRI are based on different physical prin-

iples and capture complementary but non-overlapping informa-

ion. By fusing the different modalities, all related information can

e presented in a consistent way, in order to ease the functional

nalysis and diagnosis and obtain complete information about

he patient [4 8,4 9] ( Fig. 4 ). Furthermore, multimodal registration

s an important step in the majority of computer-aided surgery

CAS) systems, where the main goal is to align pre-operative and

ntra-operative data sets so that they can be used in the operating

oom for image-guided navigation and robot positioning. 

Another important application domain is cultural heritage . Here

ultimodal 3D registration is used in visualization, where 2D and

D sensing modalities are combined (e.g. multispectral images

nd 3D models) [8,10] . Also in the reconstruction of 3D models

rom range and color images which must be aligned with the 3D

esh/point cloud derived from 3D scanning; this is applied to dig-

tal preservation [51] , restoration [52] , or to create Virtual Reality

VR) environments (e.g. a museum for multimedia exhibitions or a

istorical building) [53,54] . 

Other application areas include remote sensing where aerial or

atellite data are registered onto maps and urban mapping where

ccurate registration between panoramic images, laser scanning

ata (LiDAR) or radio detection and ranging (Radar) is crucial for

utonomous navigation [55–57] , 3D building and terrain modelling

58] , 3D city change detection [59] , etc. 
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Fig. 5. Attributes of Registration Methods. 
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Generalized operations that exploit multimodal 3D registration

include 3D object retrieval with the query being of different modal-

ity to the 3D object gallery [1,60,61] , the visualization of big multi-

modal datasets [13,62] , object recognition [9,63,64] , motion segmen-

tation [65] and camera localization [66] and tracking [67–69] . 

4. Registration attributes 

In the vast literature of registration methods, some attributes

can be identified that characterize such methods. Earlier schemes

used subsets of these attributes to classify registration algorithms

[11,70,71] ; we diverge by proposing a classification mainly based

on their algorithmic strategy, see Fig. 5 . 

Dimensionality 

Based on the dimensionality of the data involved, registration

techniques can be distinguished into 2D/2D, 2D/3D and 3D/3D. An

exhaustive amount of research has been conducted on 2D/2D reg-

istration of two images or slices taken from 3D volumes (e.g. slices

from tomographic datasets). 3D/3D registration techniques most

commonly involve the registration of 3D point clouds or meshes.

3D/3D registration has many applications in medical imaging

where most of the modalities used for alignment are 3D vol-

umes. A special case of registration is 2D/3D registration or, as it is

known in the medical imaging community, ’slice-to-volume’ align-

ment. 4D image registration is the process of aligning sequences

of 3D images, i.e. 3D meshes or point clouds across time (3D+t).

4D image registration is utilized in medical health treatments

[72] . 

Nature of Transformation 

Registration techniques usually fall into two categories: rigid

or non-rigid, depending on the underlying transformation model.

Rigid approaches assume a rigid environment such that the trans-

formation can be modeled using only 6 Degrees of Freedom

(6DOF), i.e. translations and rotations only. If the objects can be of

different shape or deformable, then non-rigid transformations are

used. Non-rigid methods can cope with articulated objects or soft

bodies that change shape over time. 

Domain of Transformation 

Two types of registration algorithms can be recognized based

on the proportion of data that is used during the registration pro-

cess. An algorithm is global if it applies to the entire data set (im-

age, voxels, etc.) and local if registration is applied to only a part

of the data set. 

Type of Correspondence 

Recognizing the correspondence between the datasets is crucial

for any registration technique. As correspondence we refer to the

explicit relation between parts of the data (elements), structure
r context. According to the type of correspondence, registration

ethods may be feature-based or intensity-based. Feature-based

ethodologies extract feature correspondences based on local

ppearance and utilize them to determine the misalignment

etween datasets. Intensity-based methodologies try to identify

ontext similarity between the datasets by utilizing a similarity

etric that is a function of the transformation parameters and

hen search the extrema of this function. 

1. Feature-based Registration methods aim to find the transfor-

mation that minimizes the distance between the features ex-

tracted from the datasets to be aligned. The features are ge-

ometrical entities, with the most commonly used ones being

points, lines or contours. Due to the significant differences be-

tween multimodal datasets, it is non trivial to detect features

that are common across different modalities. 

2. Intensity-based Registration utilizes statistical intensity pat-

terns within the datasets to compute similarity. These meth-

ods are based on the assumption that the datasets will be most

similar at the optimal alignment. The main goal is to define a

measure of intensity similarity between the datasets and adjust

the transformation until the value of the measure is maximized.

Commonly used similarity metrics that perform well in uni-

modal registration (e.g. Mean Squared Difference (MSD), Nor-

malized Correlation (NC)), do not give the same results in the

multimodal case. For multimodal registration, statistical simi-

larity measures based on minimizing the distance between in-

tensity probability distributions give better results. Mutual in-

formation (MI) and Normalized Mutual Information (NMI) are

the most popular metrics due to their robustness, accuracy and

universality. Mutual information (MI) [73,74] is considered as

the gold standard similarity measure for multimodal alignment.

It is a statistical measure of similarity between two sets of data,

which measures the mutual dependence of the underlying im-

age intensity distributions by catching the non-linear correla-

tions between them. MI assumes that the co-occurrence of the

most probable values in the two datasets is maximized when

they are aligned. Normalized Mutual Information (NMI) im-

proves the robustness of MI by avoiding some mis-registrations

by being independent of overlapping areas of the two datasets.

An interesting use of NMI was proposed by Zhao et al. [75] who

used similarity measurements between a chosen set of 2D/3D

attribute-pairs which could be dominant in a specific scene. The

method has a preliminary training phase where the attribute-

pairs are chosen and then combined into NMI. Other varia-

tions of MI have been applied for multimodal registration of

urban scenes, like Weighted Normalized Mutual Information

(WNMI) [76] and Normalised Combined Mutual Information

(NCMI) [77] . 

The Mutual Correspondence (MC) approach, proposed by [78] ,

combines sparse correspondences and Mutual Information (MI)
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measures. Mutual Correspondence is simply defined as the

weighted sum of the average distance in pixels between the 2D

image point and the corresponding 3D point projected in 2D,

and the MI. The method combines the correspondence based

method with Mutual Information maximization in order to ben-

efit from both, be robust and flexible but also automatic and

fast. 

. Public datasets and performance evaluation 

.1. Public datasets 

Techniques tested on the same datasets can be compared more

eliably. However, the lack of a ’golden standard’ large-scale pub-

icly available multimodal dataset makes the comparison of the

tate-of-the-art approaches non-trivial. In recent years, there has

een some progress towards the creation of benchmark multi-

odal datasets, as outlined below. 

KITTI Vision Benchmark [79] : This dataset contains scan se-

uences of different objects and was presented in 2013 [75,80] .

ive different object categories are defined and 3D range scans, as

ell as 2D images, are provided for each frame of a sequence. The

D images are stored in PNG [81] format while the 3D range scans

s binary float matrices (BFM). 

Data61/2D3D Dataset [82] : Data61 / 2D3D dataset was intro-

uced in 2015 [83] and consists of a series of 2D panoramic images

in TIFF format) with corresponding 3D LIDAR point clouds (in LAR

84] format). There are ten outdoor scenes, each of which includes

 block of 3D point clouds together with several panoramic images.

he number of 3D points in the scenes varies from 1 to 2 million,

nd each scene is accompanied by 11 to 21 panoramic images. 

RGB-D 7-Scenes Dataset [85] : This dataset was introduced in

013 [86] . It involves 7 different indoor scenes given as RGB-D im-

ges. The extracted images are in PNG format. Each scene was cap-

ured using an RGB-D Kinect camera with 640x480 resolution. The

cenes were recorded in several sequences each one containing

rom 500 to 10 0 0 frames. The dataset provides a dense 3D model

er scene in TSDF format [87] and the ’ground truth’ was obtained

y an implementation of the KinectFusion system [88,89] . 

Cambridge Landmarks Dataset [90] : This dataset was created

n 2017 and contains the 3D models of 6 Cambridge University

andmarks [91] . The data for each landmark includes its 3D model

nd a number of corresponding images from different points of

iew. The images are in PNG format while 3D reconstructions are

tored in NVM [92] format. 

Stanford 3D Scanning Repository [37] : It contains nine differ-

nt objects as 3D models captured either by various 3D scanners

r by the XYZ-RGB [93] auto-synchronized camera. The data are

tored in the form of PLY [94] files. There are a variable number of

cans for each model. The dataset also contains 2D photographs of

elected models along with CT scans of the famous Stanford bunny.

t was initially constructed in 1996 [87,95,96] but was further en-

anced in 2003 [97] . 

BrainWeb [98] : The BrainWeb dataset consists of 3D brain vol-

mes (MRI scans) of 270 simulated subjects and was introduced

ack in 1997 [99] . There are three different MRI image sequences

T1-w, T2-w, and PD-w) for healthy as well as subjects with Mul-

iple Sclerosis. The technical characteristics of the produced se-

uences (slice thickness, noise) are determined by the user. The

ata are given in MINC [100] format. 

NLM-NIH-VHP [101] : The National Library of Medicine (NLM)

isible Human Project (VHP) is a dataset containing complete,

natomically detailed, 3D Volumes (CT and MRI) and 2D anatomi-

al images of high resolution obtained from one male and one fe-

ale cadaver [102] . The dataset was introduced back in 1994 for

he male and was extended in 1995 for the female. For the male,
here are more than 1800 anatomical slices, while for the female

here are more than 50 0 0. PNG format is used. 

RIRE Dataset [103] : The Retrospective Image Registration Eval-

ation (RIRE) project delivered a dataset specifically designed to

ompare 3D volume (CT-MR and PET-MR) registration techniques.

he data were acquired from seven different patients and have

een available since 2007. It was previously called ”Retrospective

egistration Evaluation Project (RREP)” [104] . The data format is

ICOM [105] . 

IXI Dataset [106] : The Information eXtraction from Images (IXI)

ataset was presented in 2018 [107] . It utilizes 3D volumes of MRI,

RA and Diffusion-Weighted (DW) images in 15 directions. For the

ata gathering, 600 healthy subjects were recruited. The data is in

IFTI [108] format. 

VIPS Dataset: The Virtual Implant Planning System (VIPS)

ataset was also introduced in 2018 [109] . It contains a CAD

110] model of a volar plate implant, accompanied by seven X-ray

mages (in PNG format). Thus, the dataset can be used for apply-

ng 2D/3D registration to match the 3D virtual implant with the

eal one. 

SmartTarget Dataset [111] : The SmartTarget [112] is a recent

ataset (introduced in 2019) which contains 3D volumes of MRI

nd US images. The data were recorded from 129 male patients.

he initial purpose of this dataset was to compare the two imag-

ng methods for analyzing prostate cancer, but it turned out to be

seful for assessing registration methods as well. The data is en-

oded in the DICOM format. 

RESECT Dataset [113] : The RESECT dataset also includes MRI

nd US scans in the form of 3D volumes. The data were acquired

rom 23 patients. In addition, anatomical landmarks were identi-

ed across US images and between MRI and US. These landmarks

an be used to validate image registration algorithms. The dataset

as introduced in 2017 [114] and the data is stored in NIFTI for-

at. 

Table 1 provides an overview of the aforementioned publicly

vailable datasets. 

.2. Evaluation measures 

To evaluate registration methods, one needs to define how ac-

urately two objects coincide after a registration technique has

een applied. This can be done by determining the difference be-

ween the predicted values of the transformation that the regis-

ration method finds and the actual values that are provided by

he dataset ground truth. This difference can be computed using a

istance measure for the registration error. Several such measures

xist in the literature; in general, the lower the registration error

s, the better the accuracy of the registration method. Commonly

sed registration error measures are listed below: 

• Target registration error (TRE) : measures alignment deviation

[115] as the distance of a certain point P under the ground- 

truth (GT) registration transformation T ground and the estimated

registration T reg [116] . Real units (e.g. mm) are often used.

Based on the modalities to be registered, methods choose dif-

ferent distance equations, with the Euclidean, Maximum Sym-

metric (MSD) and Average Symmetric (ASD) being the most

common. 

TRE = ‖ T reg (P ) − T ground (P ) ‖ (1)

• Mean Target registration error (mTRE) : is the average dis-

tance between the points in the ground truth and the esti-

mated registration. mTRE is calculated by averaging the values

of Eq. 1 over all the N points P i of the dataset. 

mTRE = 

1 

N 

N ∑ ‖ T reg (P i ) − T ground (P i ) ‖ (2)
i =1 
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Table 1 

Publicly available datasets for multimodal 3D registration. 

Dataset Name Modality Data Format # Subjects Year 

The KITTI Vision Benchmark 2D Images / 3D Range Scans PNG / BFM 5 2013 

Data61/2D3D 2D Images / 3D Point Clouds TIFF / LAR 10 2015 

RGB-D 7-Scenes RGB-D Images / 3D Models PNG / TSDF 7 2013 

Cambridge Landmark 2D Images / 3D Models PNG / NVM 6 2017 

Stanford Scanning Repository 3D Models/ CT scan / 2D images PLY 9 1996 2003 

BrainWeb 3D Volume MRI/2D slices MINC 270 1997 

NLM-NH-VHP 3D Volume MRI, CT / 2D Images PNG 2 1994 - 1995 

RIRE 3D Volume CT-MR and PET-MR DICOM 7 2007 

IXI 3D Volume MRI, MRA and DW NIFTI 600 2018 

VIPS 2D Images / 3D Models PNG / CAD 1 2018 

SmartTarget 3D Volume MRI and US DICOM 129 2019 

RESECT 3D Volume MRI and US NIFTI 23 2017 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Modality Gap Strategies. 
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• Mean Target Registration Error in the projection direction

(mTREproj) : is used when registration is between 2D and 3D

modalities; it is the mean distance between re-projected 3D

points P i into 2D [46] . mTREproj is computed as the average

across all points of the angle between the displacement vector

and the normal to the projection plane ˆ n . 

mTREproj = 

1 

N 

N ∑ 

i =1 

‖ (T reg P i − T ground P i ) · ˆ n ‖ (3)

• Root Mean Square Distance (RMSD) : is a measure of the aver-

age distance between two or more structures. It measures the

similarity between the after-registration transformation param-

eters and the transformation that is provided from the ground

truth data. 

RMSD = 

√ 

1 

N 

N ∑ 

i =1 

‖ (T reg P i − T ground P i ) ‖ 

2 (4)

• Dice similarity coefficient (DSC) : is a spatial overlap index and

is a useful evaluation measure between volumes where the

ground truth data is unknown. DSC ranges from 0, indicating

no spatial overlap between the two datasets, to 1, indicating

complete overlap and thus a successful registration. Given two

datasets X, Y to be registered, the DSC is defined as in Eq. 3 ,

where | X | and | Y | refere to the cardinalities of the respective

datasets [117] . 

DSC = 

2 | X 

⋂ 

Y | 
| X | + | Y | (5)

• Success Rate (SR) : is defined as the overall percentage of suc-

cessful registrations. As successful is considered a registration

which has a registration error below a certain threshold. The

success rate can be determined using various registration error

measures, with mTRE being the most popular. According to the

application and the modalities involved, each method defines

an explicit criterion for measuring the success rate. 
• Failure Rate (FR) : is defined as the percentage of aligned

cases having registration error greater that a certain value. In

[118] the FR is calculated as the proportion of cases with TRE

greater than 10mm. 
• Convergence Rate (CR) : is defined as the range of starting po-

sitions from which an algorithm finds a sufficiently accurate

registration transformation [46] . It is defined as the number of

initial guesses that converge to a success relative to the total

number of initial guesses. A method with high CR is generally

more efficient, as it converges quickly to correct transforma-
tions. p  
. Multimodal 3D registration techniques 

Dealing with data from different modalities is a challenging

ask due to the lack of a general rule for measuring similarity

cross different modalities. There have been two main approaches

o bridge the multimodality gap [11] : (a) use of information theo-

etic measures, and (b) reduction to a unimodal registration prob-

em by reconstructing one modality to the other or by mapping

oth modalities to another common representation ( Fig. 6 ). 

Information theoretic approaches try to use statistical measures,

ike MI or NMI in order to identify similarity across modalities

nd maximize their statistical dependency to achieve registration

74] . Alternatively, there are methods that instead of finding cor-

espondences between the different modalities, try to simplify the

ultimodal registration into unimodal, and then solve it with the

espective state-of-the-art unimodal techniques [119] . In order to

chieve this, two strategies have been followed. The first one con-

erts one modality to the other. The most straightforward such op-

ration is in 2D/3D registration, where the 3D modality is mapped

nto 2D by projection, or the 2D points are back-projected into 3D

pace. The other tactic is to map both modalities into a common

epresentation, in an initial step before the registration technique

s performed [120] . 

To solve the multimodal registration problem without prior

nowledge of the correspondences, two major algorithmic strate-

ies can be identified: optimization-based and learning-based. In

he former case, the value of a function that quantifies the align-

ent quality between the two datasets is maximized while in the

atter case, a neural network is typically utilized to find the best

lignment. At the top level, we shall base our categorization on

his distinction which is presented in Fig. 7 . 

.1. Optimization-based registration 

Optimization-based methods iteratively optimize the align-

ent transformation parameters over a scalar-valued metric func-

ion representing the quality of the registration. Particularly for

D/3D registration, the problem can be subdivided into two sub-

roblems: finding correspondences and estimating the pose (align-
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Fig. 7. A classification of presented multimodal registration strategies. 
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f  
ent transformation) given the correspondences. These two sub-

roblems are intertwined, and the solution of one depends on the

ther. A mathematical function based on the transformation pa-

ameters is optimized using an optimization technique. Optimiza-

ion plays a fundamental role in registration because it determines

he accuracy, robustness and convergence. We therefore further

lassify optimization-based registration methods in the subsections

elow based on the optimization technique that they use. Table 2

rovides an overview of optimization-based multimodal 3D regis-

ration methods. 

.1.1. Expectation-Maximization (EM)-based registration 

EM-based Registration is the most popular methodology for

ultimodal registration and is a local deterministic method which

ttempts to find the best alignment with an iterative optimization

trategy. It starts from an initial solution (a guess/computation of

ose/point correspondence) and iteratively tries to find a solution

hat optimizes an objective function locally. Although such meth-

ds are generally accurate, they depend on initialization in order to

onverge to the best solution and finding the global minimum can-

ot be guaranteed. One more limitation of these methods is their

eavy computation cost. 

An early solution to the 2D/3D registration problem is proposed

y Beveridge [163] , where a random-start local search procedure

s used to arrive at a local optimum. The method uses a hybrid

ose estimation algorithm with both full-perspective and weak-

erspective camera models. The weak-perspective pose algorithm

anks neighbor points in the search space and the full-perspective

ose algorithm updates the object’s pose after moving to a new set

f correspondences. The authors investigated how easy this prob-

em is by evaluating expected run-time as a function of the num-

er of lines and the amount of clutter. A more restrictive approach

as proposed by Christmas et al. [168] , where the detected lines

re viewed as edges on a graph, leading to a graph matching prob-

em. However, using a graph structure cannot guarantee an optimal

egistration for 2D/3D registration. 

The most effective algorithm to solve the correspondence-free

egistration problem is the SoftPosit algorithm [142] , which is one

f the best approaches to correspondence-free registration using
oints. It locally searches the transformation space while simulta-

eously determining the correspondences between the 2D and 3D

oints. At each iteration, it first uses the SoftAssign technique to

etermine the point correspondences [169] ; multiple weighted cor-

espondences are hypothesized based on the pose. Then, the Posit

170] algorithm is used to iteratively estimate the pose. The Soft-

osit algorithm stands out due to its accuracy, but it cannot guar-

ntee a global minimum and tends to fail in the presence of large

mounts of clutter, occlusions or repetitive patterns. Moreover, it is

uite slow because it needs to randomly try hundreds of different

nitial poses. 

An extension of the SoftPosit algorithm with line features was

roposed by David et al. [164] . The method is iterative and, in each

tep the given 2D to 3D line correspondence problem is mapped

o a new 2D to 3D point correspondence problem and the Soft-

OSIT algorithm is utilized to find the registration parameters. In

143] the same authors assumed that all lines are orthogonal in

rder to speed up the algorithm in high-clutter environments. 

More recently, Dong et al. presented an iterative algorithm in-

pired by SoftPosit, named SoftOI [152] . Like SoftPosit, the SoftAs-

ign algorithm [169] is used for determining the correspondences,

ut for computing the pose another pose estimation algorithm,

amed OI (Orthogonal Iteration) [171] , is employed. The SoftOI al-

orithm first introduces an assignment matrix that describes the

orrespondences for the OI algorithm. The pose and correspon-

ences are then evolved iteratively from an initial pose to an op-

imum value by minimizing the objective function based on the

eighted object space collinearity error and by applying a deter-

inistic annealing technique. The method exhibits efficiency and

ccuracy even in cases with occlusions. 

Moreno-Noguer et al. proposed another Expectation- 

aximization algorithm, the BlindPnP [119] , where local optimality

s alleviated in each iteration. The method models an initial set of

oses as a Gaussian mixture model from which a Kalman filter is

nitialized and progressively refined by hypothesizing correspon-

ences. Each new candidate is incorporated in a Kalman filter,

hich reduces the number of potential 2D matches for each 3D

oint and makes it possible to search the pose space sufficiently

ast. Eventually, the method determines a solution with high con-
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Table 2 

Overview of Optimization-based Registration Methods, grouped by evaluation measure and dataset used. 

Optimization-based Registration Methods 

Method Modality A Modality B Nature Domain Type Of Modality Gap Optimization-based Dataset Initial Evaluation Value of Execution 

of Transform. of 

Transform. 

Correspondence Strategy Strategy Application Measure Eval.Measure time (sec) 

Parmehr et al [77] . 3D model 2D image rigid local intensity: NCMI mapping one 

modality 

intensity-based private urban TRE 0.12m - 

0.0051 °
n/a 

(LIDAR point 

cloud) 

(aerial 

photograph) 

to another distance 

optimization 

navigation 

Sottile et al [78] . 3D model 2D image rigid local intensity: MC mapping one 

modality 

intensity-based private general TRE 4.8pixels 2sec 

to another distance 

optimization 

Wachowiak et al [121] . 3D volume MRI 2D US rigid global intensity: NMI mapping one 

modality 

Stochastic/ 

HPSO 

BrainWeb 

[98 , 122] , 

medical TRE 2.36mm 350sec 

to another NLM-NIH 

VHP [101] 

Wachowiak et al [121] . 3D volume MRI 2D CT rigid global intensity: NMI mapping one 

modality 

Stochastic / HPSO BrainWeb 

[98 , 122] , 

medical TRE 2.14 230sec- 

500sec 

to another NLM-NIH 

VHP [101] 

Schwab et al [116] . 3D volume MRI 3D volume CT rigid global intensity: NMI learning multimodal Stochastic / PSO RIRE [104] medical TRE 9.57mm n/a 

similarity measure SR 78% 

Chen et al [123,124] . 3D volume MRI 3D volume CT rigid, global learning multimodal Stochastic /HPSO RIRE [104] medical TRE 2.36mm n/a 

non rigid similarity measure 

Lin et al [125] . 3D volume MRI 3D volume CT rigid, global learning multimodal Stochastic /HPSO RIRE [104] medical TRE 2.36mm 1893.637sec 

non rigid similarity measure 

Liu et al [126] . 3D model 2D image rigid global features: points mapping one 

modality 

BnB [52] general TRE 14.18mm - 

1.55 °
40sec-200sec 

to another SR 81% 

Corsini et al [120] . 3D model 2D image rigid local reconstruction Multiview with 

SFM 

[127] cultural TRE 10.92cm - 

0.27 °
21600sec 

modality strategy heritage 

Pintus and Gobbetti 3D model 2D image rigid global features: points reconstruction Multiview with 

SFM 

[128,129] cultural TRE 3.19cm - 0.26 ° 1140sec- 

24960sec 

[130] modality strategy heritage 

Klima et al [131] . 3D volume CT 2D x-rays non rigid local intensity:NMI mapping one 

modality 

NL / LM method private medical mTRE 1.23mm 3.19sec- 

15.77sec 

to another 

DePose [132] 3D model 2D image rigid global mapping one 

modality 

Stochastic / GA private general mTRE 0.6cm - 1.0 ° 1.25sec- 

1.99sec 

to another SR 75% 

EvoPose [133] 3D model 2D image rigid global mapping one 

modality 

Stochastic / GA private general mTRE 1.28 cm - 2.2 ° 0.68sec- 

4.11sec 

to another SR 25% 

Crombez et al [134] . 3D model 2D image rigid global intensity: MI mapping one 

modality 

Stochastic / PSO private general mTRE 6.5cm-0.61 ° n/a 

to another 

Toth et al [135] . 3D volume MRI 2D x-rays rigid global reconstruction BnB private medical mTRE 3.87 ± 1.22mm 95.24sec 

modality strategy 

Wang et al [136] . 3D volume 2D x-rays rigid global mapping one 

modality 

intensity-based [52,137] medical mTRE 0.17mm 

to another distance 

optimization 

SR 94.68% n/a 

( continued on next page ) 
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Table 2 ( continued ) 

Optimization-based Registration Methods 

Method Modality A Modality B Nature Domain Type Of Modality Gap Optimization-based Dataset Initial Evaluation Value of Execution 

of Transform. of 

Transform. 

Correspondence Strategy Strategy Application Measure Eval.Measure time (sec) 

Schaffert et al [138] . 3D volume 2D x-rays rigid global mapping one 

modality 

Multiview with 

SFM 

[139] medical mTRE 0.22mm 

[140,141] to another SR 98.4% 7.0sec- 

35.0sec 

SoftPosit [142] 3D model 2D image rigid local feature: mapping one 

modality 

EM-based private general SR 75% 36sec 

points, lines to another 

David et al [143] . 3D model 2D image rigid local feature: lines mapping one 

modality 

EM-based private general SR 70% 72sec-100sec 

to another 

Mastin et al. 3D model 2D image rigid local intensity: joint 

entropy 

mapping one 

modality 

NL / Downhill 

Simplex 

private urban SR 98.5% 6.50sec- 

15.0sec 

(LIDAR point 

cloud) 

(aerial 

photograph) 

to another navigation 

Parmehr et al [76] . 3D model 2D image rigid local intensity: WNMI mapping one 

modality 

intensity-based private urban SR 92% n/a 

(LIDAR point 

cloud) 

(aerial 

photograph) 

to another distance 

optimization 

navigation 

Enqvist et al [144] . 3D model 2D image rigid global features: points mapping one 

modality 

BnB [145] general SR 96% 2sec-4sec 

to another 

Brown et al. 3D model 2D image rigid global features: mapping one 

modality 

BnB [146,147] general SR 25% 500sec- 

1000sec 

[148,149] points, lines to another 

GOPAC [150] 3D model 2D image rigid global mapping one 

modality 

BnB DATA61/2D3D general TRE 2.30m - 2.08 ° 477sec 

to another [83] SR 82% 

BlindPnP [119] 3D model 2D image rigid local feature: points mapping one 

modality 

EM-based private general CR 65% 20sec-100sec 

to another 

Sanchez et al [151] . 3D model 2D image non rigid local feature: points mapping one 

modality 

EM-based private general CR 90% 600sec- 

1500sec 

to another 

SoftOI [152] 3D model 2D image rigid local feature: points mapping one 

modality 

EM-based private general CR 75% 10sec-60sec 

to another 

Corsini et al [153] . 3D model 2D image rigid local intensity:MI mapping to a NL / Powell’s 

method 

private cultural CR 80% 4sec 

common space heritage 

Palma et al [154] . 3D model 2D image rigid local intensity:MI mapping to a NL / Powell’s 

method 

private cultural CR 70% n/a 

common space heritage 

Yang et al [155] . 3D model 2D image rigid global mapping one 

modality 

Stochastic / GA private general CR 97% 20sec-39sec 

to another 

Marques et al. 3D model 2D image rigid feature: points mapping one 

modality 

NL / Linear 

Regression 

private general FS 25% n/a 

to another 

Enqvist et al [156] . 3D model 2D image rigid global features: points mapping one 

modality 

BnB [157] general FS 20% 5sec-15sec 

to another 

( continued on next page ) 
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Table 2 ( continued ) 

Optimization-based Registration Methods 

Method Modality A Modality B Nature Domain Type Of Modality Gap Optimization-based Dataset Initial Evaluation Value of Execution 

of Transform. of 

Transform. 

Correspondence Strategy Strategy Application Measure Eval.Measure time (sec) 

Kisaki et al [158] . 3D volume CT 3D volume MRI rigid local intensity:NMI mapping one 

modality 

NL / LM method private medical MI 0.294 n/a 

to another 

Talbi et al [159] . 3D volume MRI 3D volume CT rigid global learning multimodal Stochastic / HPSO private medical MI 0.6349 n/a 

similarity measure 

Talbi et al [159] . 3D volume MRI 3D volume 

SPECT 

rigid global learning multimodal Stochastic / HPSO private medical MI 0.6789 n/a 

similarity measure 

Talbi et al [159] . 3D volume MRI 3D volume PET rigid global learning multimodal Stochastic / HPSO private medical MI 0.6431 n/a 

similarity measure 

Khoo and Kapoor [160] 3D model 2D image rigid global mapping one 

modality 

NL / Convex [37] , private medical RMSD 6.9mm n/a 

to another medical 

datasets 

Ayatollahi et al [161] . 3D volume MRI 3D volume CT rigid global intensity: MNMI learning multimodal Stochastic/ 

HPSO 

[162] medical RMSD 44% n/a 

similarity measure 

Zhao et al [75] . 3D range 2D image rigid local intensity: CMI mapping one 

modality 

intensity-based KITTI [80] urban projection 14% n/a 

scans (aerial 

photograph) 

to another distance 

optimization 

navigation error 

RANSAC [67] 3D model 2D image rigid local feature: points mapping one 

modality 

Stochastic private general n/a n/a 3600sec- 

36000sec 

to another 

Beveridge et al [163] . 3D model 2D image rigid local feature: lines mapping one 

modality 

EM-based private urban n/a n/a n/a 

to another navigation 

David et al [164] . 3D model 2D image rigid local feature: lines mapping one 

modality 

EM-based private general n/a n/a 100sec 

to another 

SoftSI [165] 3D model 2D image rigid local feature: points mapping one 

modality 

EM-based private general n/a n/a 0.6sec- 

10.01sec 

to another 

Pan et al [166] . 3D 

Volume(CT/MRI) 

2D x-rays rigid global mapping one 

modality 

BnB private medical n/a n/a 4.12sec- 

12.09sec 

to another 

Zhao et al [167] . 4D video 3D point cloud local features: points reconstruction Multiview with 

SFM 

private general n/a n/a n/a 

modality strategy 
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E  
dence. The authors also introduced priors on the camera pose,

or example the camera is always above the ground and pointing

owards the object. The BlindPnP algorithm outperforms SoftPosit

hen large amounts of clutter, occlusions and repetitive patterns

xist. However, it is susceptible to local optima, requires a pose

rior and cannot guarantee global optimality. 

Sánchez-Riera et al. proposed a solution [151] inspired by

oreno-Noguer’s method for rigid object pose estimation and ex-

ended it to non-rigid objects. The method uses weak priors on

ose and shape, that have been learned from training data, and

odels them as Gaussian Mixture Models. These priors can define

 region in the image where the algorithm searches for the poten-

ial 2D candidates that may be assigned to each 3D point. Using a

alman filter strategy (as also done by BlindPnP) this search region

s progressively shrunk while the estimation of the pose and shape

re refined. 

The SoftSI algorithm [165] is based on minimizing a global ob-

ective function, like SoftPosit, but is based on the combination of

wo singular value decomposition (SVD)-based shape description

heorems, and the PnP algorithm proposed in their paper (SI). Due

o the use of the SI algorithm, the method avoids pose ambigu-

ty and quickly eliminates bad initial values, according to the stan-

ard deviation of the translation vector at the first iterations. The

ethod is fast and robust to noise, but assumes no occlusion or

lutter. 

.1.2. Non-Linear (NL) optimization 

Several non-linear optimizers have been applied to the registra-

ion problem, such as Powell’s method, downhill simplex and the

evenbergMarquardt algorithm. 

Corsini et al [153] took inspiration from medical imaging and

xtended the use of MI to a generic image registration case, in par-

icular to align a 3D model to a given image for Cultural Heritage

pplications. The main idea is to use different renderings of the 3D

odel and then align them with a grey-scale version of the input

mage. The similarity measure that the method uses is mutual in-

ormation (MI), where the camera parameters are iteratively opti-

ized using Powell’s method [172] by maximizing the correlation

etween a real image and different attributes of illumination of the

D model (i.e. ambient occlusion, specularity, normal field). The

pproach is robust and fast, but the global minimum of the reg-

stration may be different from the best solution. An improvement

n [153] was proposed by Palma et al. in [154] for aligning 2D real

mages with a rendering of a 3D model. The method computes the

radient map of the 3D rendering and the gradient map of the im-

ge and, within an iterative optimization algorithm, it tries to max-

mize their MI until registration is achieved. The method increases

he performance and the quality of the original technique. 

Mastin et al. [173] introduced the use of MI for registering ur-

an scenes of LiDAR 3D point clouds and aerial imagery. In each

teration, the algorithm renders 3D points that are projected onto

he image plane and then uses the downhill simplex optimiza-

ion scheme [174] for maximizing a mutual information metric.

he authors proposed three metrics for measuring mutual infor-

ation between LiDAR and optical imagery in urban scenes, with

he most promising being the one that measures the joint entropy

mong optical image luminance, LiDAR depth information and Li-

AR probability of detection values. 

In the field of medical model reconstruction, [131] proposed a

ew automatic image registration method between 3D CT and 2D

-rays. The registration is formulated as a non-linear least squares

roblem, and is then solved with the Levenberg-Marquardt (LM)

ptimization algorithm . Kisaki et al. [158] performed registration

n 3D CT and MRI volumes by applying a global matching method

ased on Levenberg-Marquardt. The method consists of two steps,

 coarse registration based on the proposed similarity criterion
amed ratio image uniformity (RIU); RIU measures the deviation

nd a fine registration based on the maximization of normalized

utual information (NMI). 

The above methods have modelled the similarity measure as a

onvex function and then utilize optimization algorithms to find

he optimum. Khoo and Kapoor [160] proposed a methodology

o convert a non-convex function into a convex one in order to

btain global optimality when the correspondences are unknown.

heir framework formulates the 2D/3D registration problem as a

ixed-integer nonlinear programming problem and relaxes it to

 convex semi-definite problem that can be solved efficiently by

he interior-point method. The algorithm solved simultaneously

he pose and correspondence problems. However, only the rotation

s recovered and the method achieved superior results only when

here is no noise, which is an unrealistic assumption for most ap-

lications. Marques et al [175] viewed the problem as an instance

f correspondence permutation, which they solved by a convex re-

axation procedure. Their method considers the noiseless observa-

ion model and shows that if the permutation matrix maps a suffi-

iently large number of positions to themselves, then the solution

atrix can be recovered. However, the algorithm assumes that no

utliers are present, which is unreasonable in most scenarios. 

.1.3. Stochastic registration 

Another approach similar to hypothesize-and-test considers all

ossible correspondences, and then searches the parameter space

o find the best solution. Different to the EM-based logic, in each

teration a hypothesis correspondence set is generated and tested;

he heuristic algorithms generate most likely correspondences and

hen try to find the optimal solution within the search space. As

xhaustive search is infeasible [176] , most strategies search the pa-

ameter space more efficiently; genetic algorithms [155] , differen-

ial evolution algorithms [132] and pose clustering are examples.

hen prior pose information is provided, they are more robust

o occlusions, clutter [177] and repetitive patterns [119] . Stochastic

ptimization methods produce solutions closer to the global opti-

um and can be applied efficiently in cases with noise. 

A traditional approach to 2D/3D registration is the hypothesis-

nd-test RANSAC algorithm [67] . RANSAC is a re-sampling tech-

ique that randomly selects a small set of 2D/3D correspondences,

stimates the transformation parameters and verifies the trans-

ormation against the rest of the features. If the original and the

ransformed image features are sufficiently similar, the pose is ac-

epted, otherwise a new correspondence set is hypothesized and

he process is repeated. As pointed out by Fischler and Bolles [67] ,

ANSAC uses the smallest data set possible and proceeds to en-

arge this set with consistent data points. RANSAC inspired a wide

ariety of registration methods, mainly in deep-learning field for

ultimodal registration. 

Genetic (or Evolutionary) Algorithms (GA) [178] are a class

f widely used parallel search methods that solve complicated

lobal optimization problems, so they are also deployed to

orrespondence-free 2D-3D registration. GAs simulate the natural

volution process in which the stronger individuals are most likely

o survive in a competitive environment. They maintain a popu-

ation of possible solutions (called individuals) and in each itera-

ion an evolutionary procedure is performed until some criteria are

atisfied. In the iterative evolutionary procedure, each individual is

ssigned a measure of quality and those with the best scores are

elected for reproduction in order to generate a new population.

eneration after generation, the solutions approach the optimum.

enetic Algorithms are simple, effective and do not need a good

nitial alignment in order to guarantee a result of good quality, but

earching over the pose space is generally expensive. 

Rossi et al. proposed an evolutionary based procedure called

voPose [133] . The authors formulated the pose estimation prob-
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B  
lem as an optimization problem and solved it with a Genetic Algo-

rithm, enhanced with heuristic rules in order to improve conver-

gence. EvoPose constructs an objective function of reprojection er-

rors according to the perspective projection model, and in each it-

eration the population with the minimum mean distance between

the model and the image is selected to be evolved. The algorithm

converges to a good pose solution after some generations. EvoPose

has low computational cost and its performance is comparable to

the SoftPosit method [142] . 

Inspired by EvoPose [133] , Xia et al. proposed a Differential

Evolution based solution for the model-to-image registration prob-

lem without any correspondence information. The method is called

DePose [132] and enhances the evolutionary algorithms with a

new efficient scheme called ”DE/bests/I”. The candidate solution is

evolved only when the offspring outperforms its parent, so the sur-

vival probability of good pose offspring is increased. DePose was

compared to EvoPose and outperformed it in accuracy and robust-

ness. Although, both methods improve the convergence rate, they

tend to be slow and converge to false solutions due to local min-

ima, especially when missing or false image points exist. 

Yang et al. used the Genetic Algorithm methodology for deter-

mining the initial pose of 3D objects from 2D images [155] . The

authors state that a good initial guess is necessary in order for

the global optimum to be reached and for the objective function

not to fall into local optima. This is because when the initial guess

is selected randomly, the relationships between each guess are

neglected, so an appropriate initial correspondence may not be

selected in a long time if there are many local optima. Also, a

correspondence may be randomly selected even if a similar one

has already been selected and discarded, which leads to extra

iterations. In this method, the initial pose is calculated based on

GA and then an iterative method is used to solve the registration

by minimizing a global objective function. The algorithm first

generates a set of random initial guesses and then, for each of

these candidate solutions, it computes the assignment matrix and

the perspective projection error. The solution with the best result

is selected for evolution until convergence. Compared with the

traditional random start initialization methods, this technique has

higher convergence rate and lower number of iterations. 

Particle Swarm Optimization (PSO) is a relatively recent

population-based evolutionary computation technique for solving

optimization problems, which is inspired by the swarming or col-

laborative behavior of biological populations [179] . PSO algorithms

share many similarities with GAs; they are both population-based

search methods and search for the optimal solution by updating

generations. However, GAs exploit the competitive characteristics

of biological evolution in terms of survival of the fittest, while PSO

techniques do not use evolution operators such as crossover and

mutation. The PSO strategy emulates the swarm behavior of in-

sects when they search for food in a collaborative manner. Each

member in the swarm is referred to as a particle and represents

a potential solution. Each particle flies through the search space

in an adaptable way (velocity) that is dynamically altered by its

own experience and other members’ flying experience. So, starting

from a diffuse randomly generated population, each particle tends

to improve itself by imitating traits of its successful peers. PSO it

is an iterative technique, where in each iteration a particle moves

by the addition of a velocity vector, which is a function of the best

position (position with the lowest objective function value) found

by this particle and the best position found so far among all parti-

cles. Compared to GAs, PSO techniques seem to perform better and

converge to an optimal solution within fewer iterations. However,

the PSO computational time increases more rapidly than GAs due

to the communication between the particles after each generation.

Moreover, the PSO algorithms tend to get trapped into local optima
 i  
n case of multimodality due to the significant nonlinear intensity

ifferences between multimodal images. 

Crombez [134] proposed a robust multimodal 2D/3D registra-

ion method that takes advantage of both geometrical and dense

isual features instead of trying to develop a new similarity mea-

ure. The method uses a PSO approach, where a swarm of virtual

ameras moves inside the 3D model and tries to reach a desired

ose represented by the 2D image. At each iteration, the virtual

ameras move in the direction of the camera with the highest sim-

larity score (based on dense visual features) but their movement

s also influenced by the best particle in their nearest neighbor-

ood. The particle velocities updated in this way are expected to

teratively move the swarm towards the best solution. 

Wachowiak et al. [121] used the PSO strategy to register single

lices of 3D volumes to whole 3D volumes of medical images. They

roposed a hybrid particle swarm technique with the addition of

A concepts such as crossover and mutation. The method outper-

ormed the evolutionary strategies that was compared to, both in

erms of accuracy and efficiency. However, user guidance is needed

n order to position the images in approximately the right vicinity.

Chen and Lin [124] stated that the conventional PSO is effi-

ient for 2D/2D multimodal registration but when transferred to

hree dimensions cannot find he global optimum efficiently; they

hus proposed a hybrid method by integrating two methods from

he GAs into the standard PSO algorithm [123,125,180] . The hy-

rid particle swarm optimization (HPSO) method incorporates sub-

opulation and crossover from GAs into the conventional PSO. The

articles are not standalone, but are divided into a number of sub-

opulations. Each sub-population has its own best optimum and

he PSO process is performed for each sub-population. The optima

f each sub-population are sorted and the sub-populations with

he top two optima are selected as parents for crossover. The HPSO

as used for registering MRI and CT volumes showing better re-

ults that classical GA and PSO algorithms. 

A similar method was proposed by Ayatollahi et al. at [161] but

hey introduced two new similarity metrics, Modified Normalized

utual Information (MNMI) and Logarithmic Normalized Mutual

nformation (LNMI). Experiments showed that MNMI had better

esults for multimodal registration than LNMI or MI. Moreover, hy-

rid registration can be automatic, more accurate, and faster than

ither of its registration components used separately. However, the

esults were inaccurate in the presence of large shear distortion

etween images. 

Schwab et al. [116] presented four variants of the PSO algo-

ithm for registering 3D CT and MRI volumes. The first version was

he initial standard PSO algorithm [181] , the second version was a

odification of PSO where the inertia weight monotonically de-

reases during the iterations, the third and fourth versions utilize

xternal intervention in order to improve the initial orientation.

he test results showed that the classical PSO reach their limits for

he multimodal 3D registration, but when influence of the initial

rientation was introduced the results improved. 

Another hybrid scheme of PSO algorithms was introduced by

albi and Batouche [159] . Different from the above methods that

ixed PSO algorithms with GA, this technique integrates PSO with

ifferential Evolution (DE) operator for registering MRI images

ith a variety of medical modalities (CT, PET, SPECT). The proposed

lgorithm follows the classical PSO iterative scheme but the DE op-

rator is applied only to the best particle obtained in each iteration

or alternate generations. 

.1.4. Branch-and-Bound (BnB)-based registration 

Several optimization-based registration methods use the

ranch-and-Bound (BnB) framework due to its theoretical optimal-

ty guarantees. Assuming that the correct alignment belongs to a
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nown volume of the search space, first all correspondences and

he transformation space are generated. The search space is recur-

ively subdivided into smaller subsets and is reduced according

o lower bounds of the registration error in order to be used for

runing. In the end, the only remaining branch will include the

ligned solution. The method depends on how tight the bounds

re and how quickly they can be computed. The BnB algorithm

orms the transformation space as a decision tree where each

ode is a possible correspondence and then searches it recursively,

ounding the objective function at each stage and discarding parts

f the transformation in which the solution does not exist. At the

nd, the remaining transformation space is tightly bounded and

ncludes the globally optimal solution. 

An early algorithm, similar to BnB, was proposed by Jurie

182] for 2D/3D alignment with a linear approximation of perspec-

ive projection. First, an initial volume of pose space is guessed

nd all of the correspondences compatible with this volume are

onsidered. Then the method recursively reduces the pose volume

ntil only a single pose remains. The Gaussian error model is used

o calculate the score of each sub-volume (named as box) and in

ach iteration the sub-volumes (boxes) of pose space are pruned.

hus, boxes of pose space are not pruned by counting the number

f correspondences, but based on the probability of having an ob-

ect model in the image within the range of poses defined by the

ox. Due to the use of the Gaussian error model, the approach is

ot robust to outliers. 

Enqvist et al. [144,156] formulated the registration problem as

 graph vertex cover problem and provided an optimal solution.

he algorithm makes use of the observation that any two point

orrespondences generate a 3D surface of the possible camera po-

itions. The main approach is to compute pairwise constraints be-

ween pairs of potential correspondences and employ BnB search

ver the possible camera positions. The method creates a graph of

ll possible pairs of correspondences and the optimal solution is

ound by determining the largest set of pairwise consistent corre-

pondences. Finally, the transformation is computed for the found

orrespondences. 

A method that guarantees the global optimality of the regis-

ration in case of both points and lines within indoor scenes has

een proposed by Brown et al. [148,149] . The method applies a BnB

ramework in order perform 2D/3D registration without any corre-

pondence knowledge. In order to increase the efficiency, a nested

nB structure was utilized. An outer BnB searches over the rotation

pace and, for each rotation branch another BnB algorithm is used

or searching the camera position. While the approach is not sus-

eptible to local minima, it requires the inlier fraction to be speci-

ed in order to trim outliers, which is rarely known in advance. 

Similar to Brown’s approach [148] , a BnB framework was pro-

osed by Campbell et al. in [150] , but they introduced new bounds

hich are proven to be tighter than those used in Brown’s formu-

ation. The authors proposed a globally-optimal inlier maximiza-

ion framework which maximizes the cardinality of the set of fea-

ures that are within a set inlier threshold from a projected 3D

eature. The authors pointed out that the global optimum of a

rimmed objective function may not occur at the true pose, partic-

larly when an incorrect objective function is used. So, the main

dvantage of the method is that no trimming is necessary, so

he estimation of the proportion of inliers is not necessary. Both

149] and [150] formulate the 2D/3D registration problem as a

amera pose estimation problem, in which the 3D points are fixed

nd the optimal camera orientation and position are sought so that

he image of the 3D points captured by the camera matches the 2D

oint set. This formulation, however, has as drawback that in order

o cover the whole relative angle space between the 3D points and

he camera, the camera position needs to move all around the 3D
t  
oints, and thus the range of transformation parameters that needs

o be searched gets very large. 

The idea of the nested BnB structure in order to accelerate

he optimization was also utilized for medical registration of MRI

nd X-rays in [135] . The method generates a 3D model from MRI

mages and another one by reconstruction from the X-ray images.

he two meshes are then registered by using a globally optimal

terative closest points (Go-ICP) method [183] . The method en-

apsulates two BnB algorithms and the standard ICP in a globally

ptimized registration technique. The outer BnB algorithm oper-

tes on the rotation space and the inner one on the translation

pace. The ICP algorithm is called when the upper bound is below

he current best estimate. 

Liu et al. [126] introduced a 2D/3D registration method based

n a globally optimal rotation search algorithm utilizing the

ranch-and-Bound (BnB) optimization scheme with four new pro-

osed upper bounds in order to make the search of BnB more ef-

ective. The problem is formulated in a similar way to a camera

ose estimation problem [149,150] , but instead of searching for the

ptimal camera orientation and position with fixed 3D points, the

D points and the camera’s coordinate system are fixed instead.

he pose of the 3D points is then searched for as the rigid trans-

ormation that best aligns their projections with the 2D points. The

ethod uses as objective function the cardinality of the inlier set

f the 2D projection plane and tries to maximize it with a BnB

trategy. Moreover, a synchronized searching schema in translation

pace is proposed; the translation space is divided into a series of

locks, smaller than the covering region of the search algorithm

nd a rotation search is run at the center of each block in a syn-

hronized way. A search is terminated and the corresponding block

s omitted when its upper bound is smaller than the universal best

alue of the objective function. 

Recently, Pan et al. [166] extended the method of [126] into a

ulti-view setting to make the registration more feasible in real

orld applications [52,137,139,184] . The method makes full use of

ifferent views to accelerate the searching process and reduces the

equired iterations. The search space is divided into subspaces and

ach view shares the same branches, but the upper and lower

ounds are different. Each view follows the classic BnB pipeline to

pdate its current best upper bound. When one of the views faces

he case that the upper bound is lower than the current best, the

orresponding branch is pruned. With the introduction of multiple

iews instead of only one, the accuracy is improved, and the itera-

ions are reduced. However, no experiments have been conducted

n real world applications. 

.1.5. Multiview registration using SfM 

Multiview geometry can be applied for registering multiple 2D

mages with a 3D model. The approach is generally divided into

hree steps, Structure from motion (SfM), rough registration and

ne registration. In the first stage, SfM is utilized in order to re-

onstruct a 3D point cloud from the 2D images. The problem is

hen simplified to 3D/3D registration, in which the 3D point cloud

roduced from the first stage and the initial model have differ-

nt scales, reference frames, and resolutions. Due to the sparse-

ess and noise of the point clouds produced via SfM, the resulting

lignment of the second step may be rather approximate, so a fi-

al stage is needed to refine the solution. SfM approaches show

igh registration accuracy and robustness, but are computationally

xpensive and demand a large collection of images for the SfM re-

onstruction. 

In 2013, Corsini et al. [120] proposed an automatic 2D/3D regis-

ration pipeline, which can handle scale changes between datasets.

nstead of aligning each single image with the 3D geometry, the

ethod starts with a group of images as an input, taking advan-

age also of the relations between the images. At the first stage, the
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images are used to compute a sparse point cloud by using Struc-

ture from Motion (SfM). Afterwards, this point cloud is aligned to

the 3D object with a modified version of the 4 Point Congruent

Set (4PCS) algorithm [185] . The 4PCS extension accounts for mod-

els with different scales and unknown amount of overlapping re-

gions. The transformation that aligns the sparse point cloud (that

resulted from the 2D images) to the dense 3D object is applied

to the extrinsic parameters of the cameras. In the final stage, a

global refinement method is applied based on Mutual Information

(MI), which improves the accuracy of the final 2D/3D alignment.

The main advantage of this framework is that there is no need for

user intervention, no prior knowledge is necessary and there are

no requirements regarding the geometry and the visual features in-

volved. However, the initial step of reconstructing the sparse point

cloud can be time-consuming in some cases. 

The method of Pintus and Gobbetti [130] is another fully au-

tomatic framework for image-to-geometry alignment that uses a

GPU-based global affine 3D point set stochastic registration ap-

proach. The method consists of three steps. In the first step, an

SfM algorithm is applied to the collection of images to construct a

sparse 3D model; this is achieved by matching features across the

images, merging all camera poses in a common reference frame

and estimating the intrinsic parameters of the cameras. The sec-

ond step aligns the sparse 3D model generated from the SfM by

utilizing a stochastic global registration method for point clouds

[186] . An extra local refinement step is then performed in order to

compute correspondences in the newly aligned point clouds. The

method utilizes the approximate GPU-accelerated method of [187] .

In the final step, a Specialized Sparse Bundle Adjustment (SBA)

calculates the final registration in a non-rigid deformable manner,

constraining the features detected in the images to lie on the 3D

model. Compared to Corsini et al. [120] , this strategy does not re-

quire heavy pre-processing for altering the sparse 3D point cloud

into a dense model. This is due to the global registration method

used that recovers the globally optimal scale, rotation and transla-

tion alignment parameters. 

A similar approach was proposed by Zhao et al. [167] for align-

ing a video sequence with a 3D point cloud obtained from a 3D

sensor (i.e. LiDAR). First, the camera pose is estimated and sec-

ondly, 3D structure is reconstructed from the video sequence via

a SfM/stereo algorithm. Then, the ICP algorithm is applied to regis-

ter the input point cloud with the reconstructed one. This method

has some limitations, like the computationally expensive process

of generating 3D point clouds from video. Also, due to the use of

ICP, the initial poses of the point clouds should be close in order to

find a good solution while the alignment may fail in scenes with

discontinuities. 

A depth-aware 2D/3D registration technique is proposed in

[136] that utilizes a Point-to-Plane (PPC) model introduced in

[188] . The method measures the local misalignment between the

projection of a 3D volume and a 2D image (X-ray), followed by the

computation of the 3D rigid transformation using the PPC model

required to align them. In the initialization step, the method com-

putes a set of 3D feature points from the 3D volume, which are

then used to identify the salient structures to be further regis-

tered. Then, in each iteration, first a set of contour generator points

are selected, as a subset of the initially computed points, and pro-

jected onto the image plane, with their depths and 3D gradient

preserved (depth aware gradient projections (DGP)). Afterwards,

the local misalignment is measured between the DGP and the X-

ray image. The goal is to minimize the visual misalignment be-

tween the DGP and the actual contour points from the 2D X-ray

image. This iterative scheme is accurate in single-view scenarios

and robust against outliers but only when they are a minority. 

In [141] and [138] the authors extended the [136] method to

multi-view registration. In [141] , the method performs single-view
egistration for all views, selects the most promising results and

efines the out-of-plane parameters using the other view(s). Alter-

atively, in [138] , a variant of [141] has been proposed, which first

omputes the transformation sequentially for each view and then

ach iteration alternates between the different views. The result is

hen selected as the iteration which leads to the best alignment. 

.2. Learning-based registration 

Recently, machine learning approaches have been increasingly

pplied to multimodal registration, instead of the conventional

ptimization-based techniques, in order to overcome the chal-

enges of prolonged running time and the risk of falling into local

inima. 

Two common strategies exist, the first one is to estimate a

imilarity metric via deep learning techniques and the other is to

redict the transformation parameters directly with deep learning.

he former approach utilizes deep learning methods so as to learn

 similarity metric from training data and then feed it in a tra-

itional registration framework. The latter uses deep learning net-

orks to predict without iteration the transformation parameters,

o a deep neural network acts like a regressor to find the trans-

ormation that aligns the datasets. This can be further classified,

ccording to the training process, into reinforcement learning, su-

ervised and unsupervised. 

Table 3 provides an overview of multimodal 3D registration

ethods according to the above categorization. 

.2.1. Learning of similarity metric 

As a first attempt to use deep learning (DL) in registration,

esearchers used neural networks to learn similarity metrics be-

ween the data to be registered from a large set of paired labeled

round-truths. The estimated similarity measure between modali-

ies is then used within a typical iterative optimization registration

ethod. The strategy followed is to seek a similarity metric that

est suits the multimodal datasets, thus taking into consideration

he differences in intensity per case study. The similarity metric is

hen provided to an iterative optimization registration framework

n order to determine the transformation parameters [212,213] in

 conventional way, without the use of neural networks. Combin-

ng deep learning with conventional registration, these methods

chieved better performance and accuracy than conventional, itera-

ive, intensity-based registration techniques, especially in the mul-

imodal case, where it is difficult to find a general similarity metric

hat can be successfully deployed in different modalities. 

Lee et al. [197] presented a supervised technique to learn a

imilarity function based on features extracted from the neighbor-

oods around the voxels of interest. The problem of learning a sim-

larity metric was formulated as binary classification, where the

oal is to discriminate between aligned and misaligned patches.

upport vector machine (SVM) regression was employed to learn

he similarity metric and then used within a standard rigid reg-

stration algorithm. Experiments have been performed on CT-MRI

nd PET-MRI image volumes showing accuracy and robustness. 

Chou et al. [200] presented a 2D/3D deformable registration

ethod that rapidly detects an objects 3D rigid motion or defor-

ation from a 2D projection image or a small set of them. The

ethod computes the residual between the DRR and X-ray images

s a feature and trains linear regressors to estimate the transfor-

ation parameters to reduce the residual. The method consists of

wo stages: registration pre-processing by shape space and regis-

ration via regression. The method is based on producing limited-

imension parameterization of geometric transformations based on

he regions 3D images. A Riemannian metric is learned for each

eformation parameter and is used in the kernel regression for
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Table 3 

Overview of Learning-based Registration Methods, grouped by evaluation measure and dataset used. 

Learning-based Registration Methods 

Method Modality A Modality B Nature Domain ML Method Dataset Initial Evaluation Value of Training Execution 

of Transform. of Transform. Strategy Application Measure Eval. Measure time time (sec) 

Haskins et al. [189] 3D MRI 3D TRUS rigid global DL of Similarity Metric Supervised private medical TRE 3.82mm ± 1.63 n/a n/a 

Zheng et al. [190] 3DCT 2D X-rays rigid global PTR-Reinforcement learning private medical TRE 5.65mm n/a n/a 

FR 11.20% 

Ma Kai et al. [191] 3D CT 2.5D image rigid global PTR-Reinforcement learning private medical TRE 4days 0.06sec-1.60sec 

Miao et al. [192] 3D volume 2D X-rays rigid global PTR-Reinforcement learning private medical TRE 1.76mm 17hours 0.6sec- 2.5sec 

Hu et al [193] . 3D MRI 3D TRUS non rigid global PTR-Supervised GAN private medical TRE 6.3 mm n/a 0.25sec 

Dice 0.82 

Yan et al. [194] 3D MRI 3D TRUS rigid global PTR-Supervised GAN private medical TRE 3.48mm 8hours n/a 

Salehi et al. [195] 3D MRI 2D slice of MRI non rigid global PTR-Supervised CNN private medical TRE 12.32mm n/a 0.30sec 

Sedghi et al. [196] 3D MRI 3D US rigid global DL of Similarity Metric IXI [106] medical TRE 1.43mm ± 0.64 n/a n/a 

Lee et al. [197] 3D CT 3D MRI rigid local DL of Similarity Metric Supervised RIRE [104] medical TRE 1.40mm n/a n/a 

Lee et al. [197] 3D PET 3D MRI rigid local DL of Similarity Metric Supervised RIRE [104] medical TRE 2.52mm n/a n/a 

Hu et al. [198] 3D MRI 3D TRUS non rigid global PTR-Supervised CNN SmartTarget medical TRE 4.2 mm n/a 0.25sec 

[112] Dice 0.88 

Hu et al [199] . 3D MRI 3D TRUS non rigid global PTR-Supervised CNN SmartTarget medical TRE 4.8 mm n/a 0.25se 

[112] Dice 0.82 

Chou et al [200] . 3D CBCT 2D image rigid global DL of Similarity Metric Supervised private medical mTRE 0.34mm Ø 0.24 linear 2.61sec 

Wright et al. [201] 3D MRI 3D US rigid global DL of Similarity Metric private medical mTRE 1.8 mm,7.9 ° n/a n/a 

Cao et al. [202] 3D MRI 3D CT non rigid global PTR-Reinforcement learning CNN private medical mTRE 1.23mm ± 0.43 40hours 15sec 

Dice 0.905 

Pei et al. [203] 3D CBCT 2D X-rays non rigid global PTR-Supervised CNN private medical mTRE 0.41mm ± 0.12 n/a 

POINT 2 [118] 3D CT/CBCT 2D X-rays rigid global PTR-Supervised private medical mTRE 5.67mm n/a 2.50sec 

FR 2.7% 

Fan et al. [204] 3D MRI 3D CT rigid global PTR-UnSupervised GAN private medical mTRE 1.57mm ± 0.44 

Dice 0.86 n/a 

DSAC [205] 3D scene 2D image rigid global PTR-Reinforcement learning CNN 7-Scenes [86] general mTRE 4.1cm, 1.1 ° n/a 0.1sec 

SR 58.5% 

PoseNet [206] 3D scene 2D image rigid global PTR-Supervised 7-Scenes [86] general mTRE 2.31m, 2.69 ° 1hour 0.005sec 

Melekhov et al. [207] 3D scene 2D image rigid global PTR-Supervised CNN 7-Scenes [86] general mTRE 0.24mm, 10.24 n/a n/a 

Kendall et al. [91] 3D scene 2D image rigid global PTR-Supervised 7-Scenes [86] , general mTRE 1.49m 4hours- 

1day 

0.2sec 

Cambridge 

Landmarks 

[90] 

Sun et al. [208] 3D MRI 3D US non rigid global PTR-UnSupervised CNN RESECT [114] medical mTRE 3.91mm 2.66sec 1.21sec 

Shotton et al. [86] 3D scene 2.5D image rigid global PTR-Supervised 7-Scenes [86] general SR 92.6% 10min 0.5sec 

Miao et al. [209] 3D model 2D X-rays rigid global PTR-Supervised CNN VIPS [109] medical mTREproj 0.282mm n/a 0.08sec 

Miao et al. [47] 3D CT 2D X-rays rigid global PTR-Supervised CNN VIPS [109] mTREproj 0.106 mm non trivial 0.1sec 

Yu et al. [210] 3D CT 3D PET non rigid global PTR-UnSupervised CNN private medical NCC 0.567 ± 0.038 

MI 2.340 ± 0.349 n/a 2.60sec 

DenseRegNet [211] 3D CT 3D PET non rigid global PTR-UnSupervised DenseNet private medical NCC 0.633 ± 0.068 n/a n/a 
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registering. The method operates via iterative, multi-scale regres-

sion, where the regression matrices are learned in a way specific to

the 3D image(s) for the specific patient. The method only applies

to affine deformations and low-rank approximations of non-linear

deformations. 

Sedghi et al. [196] utilized special data augmentation tech-

niques called dithering and symmetrizing to train a CNN to learn

a similarity metric from roughly aligned data. The framework was

used for registering unimodal 3D MRI images but also experiments

were performed for aligning MRI with US volumes. 

Haskins et al. [189] proposed to use CNN to learn a similar-

ity metric for multimodal rigid registration of MRI and transrec-

tal (TRUS) volumes. The determination of the similarity is formu-

lated as a deep CNN-based problem, so the designed CNN with a

skip connection outputs an estimate of the target registration error

(TRE), which is used to assess the quality of the registration. Then,

the alignment is performed with a traditional optimization frame-

work, that uses an evolutionary algorithm to explore the solution

space. A multi-pass approach is used in order to address the issue

that the learnt metric could be non-convex and non-smooth. 

Different from the above strategies, Wright et al. [201] proposed

a Long Short-Term Memory (LSTM) spatial co-transformer network

to iteratively align MRI and US volumes group-wise to a com-

mon space. The recurrent spatial co-transformer consists of three

components, initially an image wraper, then the parameter predic-

tion network and finally the parameter composer, which updates

the transformation estimates. The method is robust and successful,

even on initially randomly aligned objects. 

6.2.2. Predictive transformation registration (PTR) 

This registration framework uses deep neural networks as a re-

gressor so as to directly predict the transformation parameters ac-

cording to a loss function. The methods can be either iterative,

such as Reinforcement Learning techniques that train the agent it-

eratively with award or penalty, or one-off, such as Supervised and

Unsupervised neural network frameworks. 

Reinforcement Learning-based registration 

Reinforcement learning methods utilize a trained agent to per-

form the registration in a manner similar to an expert. This type of

machine learning technique enables the agent to learn from its ac-

tions and experiences and is focused on predicting the best actions

to be followed in an environment for each state. A typical fram-

ing of reinforcement learning includes an agent with some internal

states, transition probabilities, and a reward/penalty rate [214] . The

agent learns iteratively to interact with the environment so as to

produce the final transformation, which maximizes the similarity

of the two datasets. At each iteration, the agent chooses the best

action, which is the one with the highest probability to get reward

from its application in the environment. In terms of registration,

the deep reinforcement learning agent can be applied to rigid/non-

rigid transformations, where the states are finite and the agent can

converge to an optimal solution where the similarity measure is

maximized. In contrast to the deep learning of similarity metric

techniques, where deep learning is used to identify the measure to

be provided in the conventional registration method, this approach

uses a given similarity metric (i.e. MI or CC) to directly predict the

transformation parameters. 

Liao et al. [30] were the first to use reinforcement learning-

based registration to perform alignment of 3D CT volumes. Ma

et al. [191] , extended their work via a Q-learning framework that

automatically learns to extract optimal feature representation in

order to reduce the appearance discrepancy between different

modalities. The data modalities that are used are the 2.5D depth

images and 3D CT/MRI volume data. Initially, for speed up reasons,

the method reformulates the 3D volume to a 2D image through a
rojection process and thus the registration problem is simplified

o 2D image registration. The method is derived from Q-learning

215] that automatically extracts compact features, but uses the

ueling network architecture of [216] with some modifications

o as to minimize the effect of intensity distribution discrepancy

cross different modalities. This approach outperforms registration

ethods based on ICP, landmarks, deep Q-networks and dueling

etwork, but a huge amount of state-action histories have to be

aved during training. 

DSAC [205] algorithm is a combination of the RANSCAC al-

orithm [67] with the reinforcement learning approach. DSAC

earns both the scoring function and the transformation predic-

ions within the RANSAC framework. The method replaces the

eterministic RANSAC hypothesis with a smooth, differential ob-

ective function. The system is broadly applicable, ranging from

mall objects to entire scenes. However, this method is designed

o mimic RANSAC rather than outperform it. 

Instead of training a single agent, [192] proposed a multi-agent

ystem with the auto attention mechanism to register a 3D vol-

me and 2D X-ray images. The 2D/3D registration is formulated as

 Markov Decision Process (MDP) [30,217] and multiple agents are

sed to solve it. Each individual agent is trained with dilated fully

onvolutional network (FCN) to observe a local region of the image.

inally, the registration is driven based on the proposals from mul-

iple agents. While the method achieves a high robustness and out-

erforms approaches that use the state-of-the-art similarity metric

f [218] , registration accuracy remains challenging. 

Zheng et al. trained a CNN model under a pairwise domain

daptation (PDA) technique [190] to improve the performance gen-

ralization of the CNN model, to limit the training data needed and

o cope with the discrepancy between synthetic training data and

eal testing data. The adaptation module can be trained using a few

airs of real and synthetic data and learn effective representations

or multimodal registration. The method showed flexibility and can

e adopted in a variety of applications (though clinical oriented)

specially when only little training data is available. 

Cao et al. [202] developed a deep learning method for mul-

imodal 3D image registration by transforming the problem into

nimodal registration tasks. Instead of using ground truth samples,

he method uses unimodal image similarity to supervise the multi-

odal deformable registration of CT and MRI volumes. Specifically,

rior to network training, the multimodal registration is simplified

o unimodal by using a pre-aligned CT and MRI dataset, in which

ach pair of CT and MRI is registered as paired data. Thus, an MRI

as a pre-aligned CT and a CT has a pre-aligned MRI. Moreover, the

ethod utilizes dual supervision, where the similarity guidance is

elivered from not only the MRI modality, but also the CT modal-

ty, so they can both train the network effectively. Although the

ramework outperforms traditional registration methods in partic-

lar applications, it is limited to bi-modal images. 

upervised transformation prediction 

Both strategies mentioned in the previous subsections (learn-

ng the similarity metric and reinforcement learning) are iterative

aking them computationally expensive. In contrast, supervised

egistration methods train deep neural networks (DNNs) to predict

he transformation parameters in one-shot. In supervised learn-

ng, ground-truth data with known transformation parameters is

equired for the training process. The larger the amount of such

ata and the more representative it is, the better the accuracy and

recision of the registration result. 

Shotton et al. [86] made a first attempt to use machine learning

echniques in 2D/3D registration without known correspondences.

hey introduced the concept of scene coordinates for camera lo-

alization and a random forest regressor to predict initial 2D/3D

orrespondences from image appearance. The method uses depth
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mages to create scene coordinate labels which map each pixel

rom the camera coordinates to the global scene coordinates. This

s then used to train a regression forest in order to regress these

abels and finally localize the camera. The limitation on using only

GB-D images makes it unsuitable for outdoor scenes. 

PoseNet of Kendall et al. [206] trains a CNN to directly regress

he 6D pose of a scene from an RGB image. The scene is a scene

btained by Structure-from-Motion (SfM). To train their model,

hey automatically generated training labels from a video regis-

ered to the scene using SfM and combined with transfer learn-

ng from recognition to registration for increased efficiency and ac-

uracy. Although PoseNet overcomes many limitations of the tra-

itional approaches, its performance still lacks behind traditional

eature-based approaches where local features perform well. 

Later the authors extended PoseNet [206] by learning the

eight between the camera translation and rotation loss and incor-

orating the reprojection loss [91] . Thus, PoseNet became scene-

eometry aware by minimizing the reprojection error of 3D points

n multiple images. 

Another improvement of PoseNet has been proposed by

elekhov et al. [207] with the training of an hourglass network

f ResNet34 architecture. Their method used skip connections be-

ween the encoder and decoder, to directly regress the camera

ose. 

Pei et al. [203] presented a CNN regression based method for

he non rigid registration between 2D X-rays and 3D volumes,

y integrating a mixed residual CNN and an iterative refinement

cheme. The regression is performed directly on image slices, with-

ut feature extraction. Instead, of the one-shot registration esti-

ation, an iterative feedback scheme is used, where the deforma-

ion parameters are iteratively fine tuned. The proposed method

chieves reliable and efficient online non rigid registration. 

A CNN regression approach, named Pose Estimation via Hier-

rchical Learning (PEHL), was proposed by Miao et al. [47,209] to

irectly predict the registration transformation parameters, reach-

ng a large capture range and high accuracy in real time. Different

rom optimization-based methods, which iteratively optimize the

ransformation parameters, Miao et al. were the first to use deep

earning to predict the rigid transformation matrix that aligns a 3D

odel to 2D X-rays. Initially, an automatic feature extraction step

alculates a Digitally Reconstructed Radiograph (DRR) from the 3D

T image. The CNN regressors are then trained to predict the trans-

ormation of 2D/3D X-ray attenuation maps and 2D X-ray images.

he ground truth data used were synthesized by transforming al-

eady aligned data. Hierarchical regression was proposed in which

he six transformation parameters (2 translational, 1 scaling and 3

otation angles) are partitioned into three groups. In this way, the

omplex regression task is divided into multiple simpler sub-tasks

hat can be learned independently. This method has significantly

igher regression success rates than the traditional optimization-

ased methods, like MI, CC and gradient correlation. 

Salehi et al. [195] proposed a deep residual regression network

nd a bi-invariant geodesic distance based loss function to per-

orm 2D/3D rigid registration. A CNN is used to predict both rota-

ion and translation using extracted image features. The regression

ethod learns the relation between slice pose and 3D image ac-

ording to the appearance of the 2D slice. The method uses both

ean squared error (MSE) and the geodesic distance as loss func-

ion. The addition of geodesic distance improved the performance

f the registration method. 

Yan et al. [194] proposed an adversarial image registration of

RI and TRUS, inspired by the GAN framework. The method trains

wo deep networks simultaneously, one for transformation param-

ter estimation and the other for the discriminator component,

hich evaluates the quality of the alignment. The paired training

ata is manually registered by experts and are used as ground-
ruth. The trained discriminator provides an adversarial loss for

egulation and a discriminator score for alignment evaluation, thus

he discriminator serves as a certainty evaluator during testing. 

Hu et al. [198,199] labeled corresponding structures for train-

ng the network for registering MRI and TRUS volumes. The frame-

ork requires the anatomical labels and full image voxel intensi-

ies as training data so that the end-to-end registration network

nly requires a pair of MRI and TRUS images without any labels.

ater, in [193] they directly regressed the multimodal deformable

egistration via a weakly supervised anatomical label driven GAN.

n adversarial approach is used to constrain CNN training for 3D

mage registration. During training the registration network simul-

aneously maximizes the similarity between anatomical labels, and

inimizes an adversarial generator loss that measures divergence

etween the predicted and simulated deformation. However, the

egistration performance of framework [193] was inferior to [198] . 

Recently, Liao et al. [118] proposed to address multi-view 2D/3D

igid registration via a Point-of-Interest (POI) Network for Tracking

nd Triangulation (POINT2). POINT2 directly aligns the 3D CT data

ith the 2D X-ray by using DNNs to establish a point to point cor-

espondence between multiple views of them, and then performs

 shape alignment between the matched points to estimate the 3D

T pose. For 3D correspondence, a triangulation layer projects the

racked POIs in the X-ray images of multiple views back into 3D.

hile this method achieves an improved performance, it requires

 large training set and is only applicable to multi-view registra-

ion. 

nsupervised transformation prediction 

The lack of large datasets with known transformations to be

sed as a training data, motivated the development of unsu-

ervised registration methods [219] . In unsupervised registration,

NNs are trained without ground-truth data to construct regres-

ion models in order to predict the transformation parameters.

he methods use data augmentation techniques to overcome the

bsence of large ground-truths. Moreover, conventional similarity

etrics are used as the loss function of the network. However,

efining the proper loss function for a network without ground-

ruth transformations is not trivial, especially in the case of mul-

imodal registration where defining a similarity metric suitable for

ifferent modalities is challenging. Thus, methods using unsuper-

ised learning are still limited. 

Sun and Zang [208] proposed an unsupervised method for 3D

RI/US registration with a 3D CNN. The framework is composed of

hree components, a feature extractor, a deformation field genera-

or and a spatial sampler. Initially, for feature extraction, two fully

onvolutional neural networks are used to extract higher level rep-

esentative features from MRI and US images respectively. Then,

he features are fed into the deformation field generator, where

 deformation field is generated and finally, a spatial sampler is

sed to apply the deformation field to a regular spatial grid. The

etwork is trained using a similarity metric that incorporates both

mage intensity and gradient, thus it allows accurate and fast reg-

stration. 

Yu et al. [210] proposed an unsupervised deep learning method

or automatic image registration between 3D PET and CT images.

he framework consists of two modules, a low-resolution displace-

ent vector field (LR-DVF) estimator and a 3D spatial transformer

nd resampler. The LR-DVF estimator uses a 3D deep convolutional

etwork (ConvNet) to directly estimate the voxel-wise displace-

ent (3D vector field) between PET and CT images, and the spa-

ial transformer and resampler warps the PET images to match the

natomical structures in the CT images by using the estimated 3D

ector field. The method improves the deep learning network DIR-

et of de Vos et al. [220] , but the use of Normalized Cross Correla-
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Fig. 8. 7-Scenes dataset sample images from left to right: Chess, Fire, Heads, Office, Pumpkin, Red Kitchen and Stairs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Information about the scenes and the data of the 7- 

Scenes dataset. 

Scene Spatial # Frames 

Extent (m) Train Test 

Chess 3 × 2 × 1m 4000 2000 

Fire 2.5 × 1 × 1m 2000 2000 

Heads 2 × 0.5 × 1m 1000 1000 

Office 2.5 × 2 × 1.5m 6000 4000 

Pumpkin 2.5 × 2 × 1m 4000 2000 

Red Kitchen 4 × 3 × 1.5m 7000 5000 

Stairs 2.5 × 2 × 1.5m 2000 1000 
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tion (NCC) as a similarity metric results in over-deforming the PET

images. 

Kang et al. [211] improved the work of [210] in terms of net-

work structure, loss function and evaluation measures. The method

utilizes a ’DenseNet’-based architecture as the displacement vector

field (DVF) regressor, for predicting 3D displacement fields. Then,

a spatial transformer for warping 3D images is used to obtain the

registration result. Moreover, a two-level similarity measure is pro-

posed to optimize the training process, Normalized Cross Corre-

lation (NCC) is used to measure the similarity of voxels at the

global level and Maximum Mean Discrepancy (MMD) measures the

similarity of data distributions at the higher dimensional level. As

for evaluation measures, two anatomical measures are used along

with NCC to evaluate the registration results. 

Fan et al. [204] proposed an adversarial similarity network to

automatically predict the deformation in one-pass, without us-

ing any arbitrary similarity metric. The network, which is inspired

by generative adversarial networks (GAN), is trained in an adver-

sarial and unsupervised way and does not need ground-truth. A

registration network and a discrimination network are connected

with a deformable transformation layer. The registration network

takes two input 3D images and outputs similarly sized predicted

deformations. The registration network is trained with the feed-

back from the discrimination network, which is designed to judge

whether a pair of images are sufficiently aligned. The discrimina-

tion network is trained from the registration network’s output. The

framework is applicable to both unimodal and multimodal registra-

tion. Specifically, for multimodal registration, positive image align-

ments are pre-defined by using paired CT and MRI images. The

method effectively registers multimodal images and the use of ad-

versarial loss increases performance. 

7. Experimental evaluation of 2D/3D registration methods 

Although many authors provide evaluation of their methods,

only few of these experiments and results allow a direct compari-

son against the state-of-the-art. The main reasons are that most of

the algorithms are only evaluated on private datasets, they are as-

sessed using different measures and their source code is not pub-

licly available. 

In order to provide a useful comparison, we have tested meth-

ods with publicly available source code on the same dataset.

The only methods with publicly available source code are

[67,86,91,126,142,195,199,205,206] [199] . and [195] are medically

oriented methods that register 3D MRI volumes with 3D TRUS

and 2D slices of MRI respectively. These methods could not be

compared with the rest of the methods to align 3D models or

scenes with 2D images or points, so experiments have been per-

formed only on the seven remaining methods. Even these methods

were not exactly aligning the same modalities. More specifically,

[91,205,206] register 3D scenes and 2D images, [86] registers 3D

scenes and 2.5D images, while [67,126,142] register 3D point clouds

and 2D points. Thus, the main challenge was to identify a pub-

licly available dataset that could be used for our tests. The dataset

that fitted best was the 7-Scenes dataset [85,86] , sample frames of

which are shown in Fig. 8 . 
Shotton et al. in [86] also propose a method for aligning a

D scene with a 2.5D image, with experiments on the 7-Scenes

ataset that they also provide. Apart from this, DSAC, [205] ,

oseNet [206] and [91] also register 3D scenes but with 2D images

not 2.5D), thus the 7-Scenes dataset can also be used by ignoring

he depth information. The authors of these three methods have

lso used the 7-Scenes dataset themselves for evaluating their re-

ults. However, SoftPOSIT [142] , RANSAC [67] and [126] are regis-

ration methods between a 3D point cloud and 2D points. In order

o test those methods on 7-Scenes, we had to alter the modalities

f the dataset from 3D scene and 2D image into 3D point cloud

nd 2D points. We converted the 3D models from the so called

SDF volume [87] into 3D point clouds with the technique pre-

ented in [221] while the 2D points were detected from the PNG

mages using the Harris Detector [222] . 

The 7-Scenes dataset consists of RGB-D images (RGB images in

NG format and depth files) of 7 indoor environments and a 3D

odel (TSDF volume) of each scene. Each scene contains multi-

le sequences of RGB-D images that represent independent cam-

ra paths. Each image frame is annotated with its 6D camera pose,

hat defines the ground truth for our experiments. The data of each

cene are partitioned into testing or training subsets, with RGB-

 image numbers varying from 1k to 7k ( Table 4 ). However, the

ataset does not include an explicit image set for validation. Test-

ng took place on a random selection of 10% of the images of one

equence per scene. 

The results of the 2D/3D registration experiments are summa-

ized in Tables 5 and 6 . The results were evaluated by compar-

ng the final registration errors, expressed as translation and ro-

ation error ( Table 5 ) and mean target registration error mTRE

 Table 6 ), see Eq. 2 . The registration results of RANSAC [67] , Soft-

OSIT [142] and [126] should be seen with caution as these meth-

ds were developed for slightly different data. In order for future

ultimodal registration methods to be more fairly compared, the

reation of a publicly available dataset with more modalities and

pecified ground truth is necessary. 

As an additional measure, Shotton et al. proposed the Success

ate (SR), defined as the percentage of test frames for which the

egistration is considered ’correct’ [86] . In particular, for the 7-

cenes dataset, a registered pose is considered ’correct’ if it has

o more than 5cm translational error and 5 °angular error. Not all

ethods reach the bound as defined by Shotton, so we consider

t unfair to provide a comparison on this measure. Table 7 , gives



E. Saiti and T. Theoharis / Computers & Graphics 91 (2020) 153–178 171 

Table 5 

Summary of the experimental results of the 2D/3D registration methods. Mean registration error of translation and rotation are given in meters and 

degrees respectively. 

Scene Registration Error of Methods 

RANSAC [67] Shotton et al [86] . PoseNet [206] Kendal et al [91] . DSAC [205] SoftPOSIT [142] Liu et al [126] . 

Chess 0.042m, 1.4 ° 0.022m, 1.0 ° 0.32m, 4.06 ° 0.13m, 4.48 ° 0.042m, 1.1 ° 9.43m, 1.10 ° 0.95m, 0.02 °
Fire 0.371m, 2.1 ° 0.051m, 2.4 ° 0.47m, 7.33 ° 0.27m, 11.3 ° 0.067m, 3.1 ° 2.46m, 1.57 ° 0.72m, 1.09 °
Heads 0.098m, 3.1 ° 0.125m, 5.1 ° 0.29m, 6.00 ° 0.17m, 13.0 ° 0.125m, 4.1 ° 5.85m, 1.72 ° 0.90m, 4.71 °
Office 0.089m, 1.6 ° 0.046m, 1.4 ° 0.48m, 3.84 ° 0.19m, 5.55 ° 0.098m, 2.7 ° 4.26m, 1.26 ° 1.17m, 1.47 °
Pumpkin 0.045m, 1.7 ° 0.065m, 3.7 ° 0.47m, 4.21 ° 0.26m, 4.75 ° 0.040m, 1.5 ° 9.94m, 1.35 ° 1.14m, 1.29 °
Red Kitchen 0.087m, 2.4 ° 0.072m, 2.1 ° 0.59m, 4.32 ° 0.23m, 5.35 ° 0.078m, 2.6 ° 20.7m, 1.29 ° 0.64m, 1.18 °
Stairs 0.65m, 3.2 ° 0.149m, 2.6 ° 0.47m, 6.93 ° 0.35m, 12.4 ° 0.493m, 3.1 ° 9.02m, 1.53 ° 1.00m, 1.48 °

Table 6 

Summary of experimental results of 2D/3D registration methods, using mTRE (in meters). 

Scene mTRE of Methods 

RANSAC [67] Shotton et al [86] . PoseNet [206] Kendal et al [91] . DSAC [205] SoftPOSIT [142] Liu et al [126] . 

Chess 0.03m 0.032m 0.45m 0.24m 0.04m 6.68m 2.94m 

Fire 0.4m 0.045m 0.34m 0.45m 0.07m 4.26m 1.07m 

Heads 0.12m 0.210m 0.52m 0.29m 0.14m 4.60m 1.09m 

Office 0.07m 0.121m 0.67m 0.17m 0.19m 3.99m 3.56m 

Pumpkin 0.03m 0.256m 0.49m 0.36m 0.03m 9.80 3.29m 

Red Kitchen 0.09m 0.06m 0.61m 0.25m 0.06m 20.96m 5.55m 

Stairs 0.75m 0.161m 0.58m 0.46m 0.04m 10.58m 3.17m 

Table 7 

Summary of experimental results of 2D/3D registration methods, using 

the SR measure. 

Scene SR of Methods 

RANSAC [67] Shotton et al [86] . DSAC [205] 

Chess 96.8% 92.6% 97.4% 

Fire 71.8% 82.9% 71.6% 

Heads 66.7% 49.4% 67.0% 

Office 57.6% 74.9% 59.4% 

Pumpkin 59.0% 73.7% 58.3% 

Red Kitchen 40.1% 71.8% 42.7% 

Stairs 12.8% 27.8% 13.4% 

t  

[

 

w  

t

8

 

1  

d

 

3  

o  

i  

t  

p  

g  

a  

i  

d  

p  

r  

b  

g  

s  

m  

y  

t  

t  

o

 

t  

t  

t  

t  

i  

c  

o  

b  

t  

p

 

l  

m  

m  

S  

i  

s  

l  

s  

e  

i  

a  

m  

t  

t  

t  

a  

t  

l  

t  

o  

c  

m  

t  

i  
he SR measures as they have been stated in the related papers

86,205] . 

Although the execution time is very important, the experiments

ere performed in a non-optimized environment, thus execution

ime results are not reported. 

. Discussion 

3D registration has been an active research field since the

980s; multimodal 3D registration gained popularity in the past

ecade, while in the last few years it has been really active. 

Some useful conclusions can be extracted from Tables 2 and

 . To begin with, 63% of the presented methods belong to the

ptimization-based category which leaves the learning-based reg-

stration category with 37% of the methods (see Fig. 9 ). Even

hough optimization-based techniques are well studied, several

roblems remain unresolved. First, the iterative nature of such al-

orithms leads to high computational complexity and thus these

lgorithms cannot be used in real-time applications like medical

maging. Second, most optimization-based techniques are depen-

ent on the initial pose of the data to be aligned. If the initial

osition of the data to be registered is not proper, the resulted

egistration is not accurate. Research is focused on trying to gain

etter registration results by adjusting traditional optimization al-

orithms for the multimodal case [149,166] or by proposing new

imilarity metrics [136] that show better results on the chosen

odalities. The trend in the number of methods published each
ear shows a consistent interest in conventional techniques; thus

his area appears to still have prospects. Further investigation in

his area should focus on improving the robustness of the meth-

ds and decrease computational cost. 

Learning-based methods are more recent, with a strong trend in

he last 5 years in this category. This trend is supported by the fact

hat learning-based techniques achieve, in general, better results in

erms of registration errors and computational time. We believe

hat learning-based methods have become particularly attractive

n multimodal registration, because it is quite challenging to write

ode that defines correspondences across different modalities. An-

ther factor that may have hastened the introduction of learning-

ased methods in multimodal registration, is recent breakthroughs

hat allowed deep learning networks to consume 3D meshes or 3D

oint clouds, such as Geometric Deep Learning [223] . 

In Fig. 10 more statistics of registration methods using deep-

earning are illustrated. The supervised methodology is most com-

only used. The main reason for this could be that supervised

ethods perform registration non-iteratively and are thus faster.

upervised registration methods are practically real time, thus it

s easier to utilize them in applications such as computer-aided

urgery and image-guided therapy. Methods that employ the deep-

earning of a similarity measure are also increasing in number

ince the first DL techniques appeared in 2013. This kind of strat-

gy uses deep learning to identify the similarity measure that

s then passed to a traditional optimization-based method. They

re thus easier to be understood and implemented. Particularly in

ultimodal registration, these techniques can be trained to iden-

ify structural differences between modalities and result in bet-

er registration accuracy. However, they also inherit the compu-

ational burden of iterative approaches. Both the aforementioned

pproaches, are dependent on large datasets of annotated ground

ruth for their training phase. This is the reason why reinforcement

earning and the unsupervised category are gaining popularity in

he last 3 years. Unsupervised methods avoid the large amount

f annotated data needed for the training process and the asso-

iated computational cost for training. Although the unsupervised

ethodology appears to become a new trend in multimodal regis-

ration, it also has its challenges. Unsupervised methods use sim-

larity measure(s) as loss function to guide the learning process.
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Fig. 9. Overview of the number of publications in multimodal 3D registration based on their algorithmic strategy . 

Fig. 10. Overview of the number of proposed learning-based methods for multimodal 3D registration . 
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However, the multimodal case is more complicated and the tradi-

tional similarity measures are not applicable and inefficient; novel

similarity measures are expected to be introduced in the future. 

Regarding the datasets upon which experiments were con-

ducted by the presented techniques, it should be highlighted that

53% are private while 47% are publicly available (see Fig. 11 ). The

lack of large-scale open datasets is the most frequent challenge of

3D registration. From Fig. 11 , it is obvious that there is no sin-

gle dataset that is most commonly used for testing and bench-

marking analysis. The majority of state-of-the-art methodologies

use their own small-size proprietary datasets for experiments. The

use of different datasets, makes comparison between the different

approaches hard. Also, the use of small datasets for evaluation, re-

sults in less significant and unreliable findings. Moreover, due to

the lack of a unified dataset consisting of multiple modalities, it

is not possible to test if the state-of-the-art techniques can be ex-

tended to work efficiently with other modalities. Multimodal regis-

tration encompasses a variety of modalities, with the same or dif-

ferent dimensions. Most of the techniques focus on aligning two

modalities and their evaluation datasets contain only these modal-

ities. From Table 1 , it can be seen that there are a few datasets

with 3D models and 2D images that are used for testing 2D/3D

registration techniques. The rest of the datasets are medically ori-

ented, consisting also of two modalities in most cases. Having al-

gorithms tested on the same benchmark dataset(s) provides di-

rect and reliable comparisons. Furthermore, having a benchmark
ith multiple modalities would ease the testing of the registration

echniques across different modalities. Thus, a public benchmark

ith gold standard annotations would allow new approaches to be

airly tested against the state-of-the-art. So, it appears that there

s a strong need for the creation of better benchmark multimodal

atasets. 

Various evaluation measures have been used for measuring the

ccuracy of registration results ( Fig. 12 ) with the TRE, mTRE and SR

eing the top three in terms of popularity. The variety in evalua-

ion measures challenges fair comparisons even further, especially

hen combined with the above mentioned variety in evaluation

atasets. Since there are significant differences between modalities

e.g. appearance, scale, dimension), it is difficult to define a sin-

le measure that could apply to different modality combinations.

uture techniques are expected to adopt the aforementioned mea-

ures (TRE, mTRE and SR) along with well-defined ground truth

egistration databases in order to be easily comparable against the

tate-of-the-art. 

The efficiency of registration is also an important attribute for

omparing the techniques, in addition to registration accuracy. Un-

ortunately, most researchers focus on accuracy results and do not

eport the computational cost and complexity of their approaches

n detail. Moreover, computational time can only provide a rough

stimate of performance because there is high dependency on the

ardware used, which is quite different among researchers, as well

s on the server load at the time of the experiments. In addition,
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Fig. 11. Overview of the datasets used to implement/test the presented techniques. 

Fig. 12. Overview of evaluation measures used in the presented multimodal 3D registration methods. 
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he comparison of computational time is not fair because the ex-

eriments have been executed on different datasets with differ-

nt modalities, scale and complexity. This leads once again to the

onclusion that the creation of a large scale benchmark database,

long with the corresponding ground truth, would be a very posi-

ive addition to this thriving field. 

In terms of implementation hardware, most of the latest meth-

ds utilize GPUs in order to speed up the registration process.

PUs are highly parallel computing engines, which can execute

ultiple threads in parallel. Although, GPUs offer a good acceler-

tion vehicle, not all algorithmic parts of multimodal registration

an be implemented on the GPU. Hybrid CPU-GPU implementa-

ions appear to achieve the best performance, so a common im-

lementation strategy of recent years is to use the CPU for execu-

ion of optimization algorithms and the GPU to calculate similarity

easures in parallel. 

The majority of the methods are implemented in C++ or Python

nd a small portion in Matlab. Matlab is suitable for API proto-

yping and proof-of-concept, but it is rather slow, which makes it

nappropriate for integration with third party software tools. C ++
nd Python are widely applicable and suitable for real-time ap-

lications. Most deep-learning methods chose Python because it
rovides many open frameworks, especially for DL. TensorFlow, Py-

orch and Caffe are the most popular packages because they pro-

ide efficient implementations for deep-learning techniques; it is

xpected that they will continue to be used for registration in fu-

ure research. 

Finally, with respect to the originating applications, the medi-

al one seems by far the biggest group with 50% of the methods,

ollowed by the general category with 30% (see Fig. 13 ). Naturally,

n the medical field, there are many body scanning modalities that

eed to be registered in order to acquire an integrated view of the

ody. As shown in the right hand chart of Fig. 13 , registration of

D models to 2D images is the most common case across appli-

ations. This is due to the general nature of these modalities, that

an be applied in many fields. Moreover, the vast variety of sensors

i.e. digital cameras, 3D laser scanners, Kinect-like RGB-D sensors)

roduce 3D models (point clouds, meshes). Other than that, there

s no single modality that is most commonly used for registra-

ion across applications; however, many methods have focused on

odalities like MRI, CT and X-rays. These modalities are medically

riented, so most of the methods focus on registration of a specific

ody organ and do not easily generalize. Taking into consideration

he modalities of the publicly available datasets and the number of
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Fig. 13. Pie Charts of applications and modalities registered per application. 
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subjects that each one contains ( Table 1 ) it can be said that most

of such public datasets contain only a small number of subjects in

one or two different modalities. The medical field could offer the

opportunity of building a dataset with multiple modalities and ob-

jects, but there may be challenges related to privacy. The most re-

cent multimodal datasets, IXI [106] and SmartTarget [111] , consist

of a large number of subjects (600 and 129 respectively). However,

even such an amount of data is not sufficient for training and test-

ing of deep-learning registration methods. Also, datasets with Cul-

tural Heritage objects are not large enough, because this kind of

object faces many challenges, e.g. too fragile or too large for scan-

ning. The limited availability of large-scale datasets is expected to

lead to more methods focusing on transfer learning for registering

multimodal data in the near future. 

Given the importance of the medical area and available funding,

we expect it to remain strong in multimodal registration research.

Another significant source of multimodal registration methods has

been Cultural Heritage and, given the fact that there are many Eu-

ropean projects and open calls in this field [224,225] , we expect it

to remain strong. 

9. Conclusions 

Multimodal registration has significantly grown within the last

decade. It is a core procedure in multiple applications, like medi-

cal imaging, cultural heritage and autonomous navigation. As each

modality has its own unique characteristics and each application

its own requirements, it is challenging to develop a general regis-

tration framework that applies to all modalities and uses. 

In this paper, the problem of 3D multimodal registration has

been explicitly defined, and the most representative, classical and

up-to-date algorithms have been surveyed. The methods were clas-

sified according to their nature and strategy followed. The two

main categories presented are optimization-based and learning-

based, each of which is further sub-categorized. The approaches in

each category mostly share the same algorithmic philosophy, prin-

ciples, advantages and drawbacks. Using such a classification, sev-

eral aspects of multimodal registration were examined and useful

insights regarding future trends were extracted. 
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