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Abstract 

 

 

The purpose of the survey is to support teaching and research in the department of 

Computer Science at the university, through fundamental research in recent advances in the 

machine learning field. The survey assumes the reader have some basic knowledge in 

machine learning, however, no prior knowledge on the topic of spiking neural networks is 

assumed.  The aim of the survey is to introduce the reader to artificial spiking neural 

networks by going through the following: what constitutes and distinguish an artificial 

spiking neural network from other artificial neural networks; how to interpret the output 

signals of spiking neural networks; How supervised and unsupervised learning can be 

achieved in spiking neural networks; Some benefits of spiking neural networks compared to 

other artificial neural networks, followed by  challenges specifically associated with spiking 

neural networks. By doing so the survey attempts to answer the question of why spiking 

neural networks have not been widely implemented, despite being both more 

computationally powerful and biologically plausible than other artificial neural networks 

currently available.  
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The bachelor thesis 

 

The title of the bachelor thesis is “Study of recent advances in artificial and biological neuron 

models” with the purpose of “supporting teaching and research in the department of 

Computer Science at the university through fundamental research in recent advances in the 

machine learning field”.  

Due to the nature of the thesis, the student gained a lot of freedom in how he wanted to 

approach the task. The student had completed the subject TDAT3025 “Applied machine 

learning with project” the previous semester (autumn 2019). TDAT3025 require the student 

to complete a project, and the student wrote a review article on biological neuron models 

for the project. The student became interested in biological neuron models and 

mathematical models for neurons during the project and was therefore driven towards 

research on the topic of biologically plausible spiking neuron models. Spiking neural 

networks, which is a network of spiking neurons was a prime target for a research topic for 

the survey, as the “newest” addition of artificial neural networks in terms of implemented 

neuron models. Hence this survey came to, as a natural extension of the project the student 

conducted the previous semester. The student came in closer contact with the teacher of 

TDAT3025 during the project and started planning together with the teacher for a bachelor 

thesis undertaking, supervised by said teacher. Note, the project the previous semester only 

served as a motivation for studying artificial neural models and is not required or assumed to 

have been read for this thesis and is neither referenced as a source. 
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1. Introduction 

 

Humans have throughout time taken inspiration from living organisms, including our own 

bodies, when inventing and creating new things. Inspiration include how humans in the early 

days mimicked how other animals hunted, to newer mechanical designs, such as bullet 

trains, taking inspiration from bird beaks to reduce air resistance, thereby reducing energy 

consumption. The field of artificial neural networks are no different, which can be viewed as 

an attempt to recreate parts of the biological neural network. After all, artificial neural 

networks were a direct result from researchers trying to mimic how the biological neural 

network is structured and function. Artificial neural networks implement artificial neurons 

and synapses to both learn and perform a variety of tasks. artificial neural networks see 

widespread implementation as of today, being used in tasks such as, classification, 

translation, recognition, filtering and more. 

The field of artificial neural networks was in no small part pioneered by neurophysiologist 

Warren McCulloch and mathematician Walter Pitts, in their paper “A logical calculus of the 

ideas immanent in nervous activity” (1943) [64]. In relation to their paper, they created a 

simple neural network using electrical circuits to demonstrate how the neurons in the brain 

might operate on simple logical operators. There had already existed a community of 

scientists performing mathematical work on neural networks when McCulloch and Pitts 

published their paper. The new ideas brought forth by McCulloch and Pitts was how they 

used propositional logic and computation to explain neural events. The idea of McCulloch 

and Pitts, explaining neural activity through logic gates, became the foundation for boolean 

neuron models and a network of such neuron models – the first-generation artificial neural 

networks. It is therefore understandable, that McCulloch and Pitts’ paper are often cited as 

the starting point in artificial neural network research.  

Now more than half a century has passed since the McCulloch and Pitts paper and the 

invention of, what would later be known as the “first-generation” artificial neural networks 

(1958) [43]. Since then, the field of artificial neural networks have seen both periods of rapid 

progress and periods of almost standstill. In recent times, the relatively newly success of 

deep neural networks has made the field of artificial neural networks receive a revived 

interest, both in the form of funding and amount of research [22]. The newest generation of 

artificial neural networks, the third generation, is known as spiking neural networks. 

Although spiking neural networks are known as the latest generation of artificial neural 

networks, they are still not widely used till date. The idea of spiking neuron models, the 

neuron model used in spiking neural networks, is not a new concept. The earliest spiking 

neuron model, the Hodgkin-Huxley model (1952), have been around for longer than the 

first-generation artificial neural networks. However, implementing spiking neurons in 

artificial neural networks are still quite a novel idea compared to other neuron model 

implementations. Spiking neural networks has experienced an increased interest as a 

research topic the last couple of years, as they offer an unprecedented amount of biological 
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plausibility, compared to earlier neuron models. There is no consensus, however, as to the 

future outlook for spiking neural networks. while some argue that commercialized 

implementations of spiking neural networks are right around the corner, others are sceptic 

about the implementation potential. The scepticism is often related to the lack of 

commercial implementations of spiking neural networks, even after several decades since 

they were first introduced. 

This survey aims to introduce the reader to spiking neural networks. The first topic of the 

survey is the differences between spiking neural networks and traditional artificial neural 

networks. The rest of the survey will focus on certain aspects of spiking neural networks, 

including information processing, learning, and some of the benefits and challenges 

associated specifically with spiking neural networks. By doing so, the survey attempts to 

answer the research question introduced in chapter 1.1.  

 

1.1.  Research Questions 

 

The topics included in this survey has been chosen to form a basis for answering the 

following two research questions: 

 

Research question 1: Will spiking neural networks replace sigmoidal neural networks the 

same way sigmoidal neural networks replaced its predecessor?  

The first-generation artificial neural network saw itself become essentially replaced by the 

second-generation artificial neural network, the sigmoidal neural network. It is natural to 

assume that a newer generation will replace its predecessor, which was the case when the 

sigmoidal neural network was introduced. However, spiking neural networks, the third-

generation artificial neural network, have yet to replace the sigmoidal neural network, 

despite having been around for several decades already. Hence, the first research question 

raises the question, can spiking neural networks be expected to replace sigmoidal neural 

networks eventually, or will spiking neural networks never replace the sigmoidal neural 

networks.  

 

Research question 2: If spiking neural networks are set to replace sigmoidal neural networks, 

what have held them back from doing it so far? 

The second research question can be seen as an extension of the first research question. If 

spiking neural networks are set to replace sigmoidal neural network, why has it not occurred 

yet?  
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1.2.  Thesis Organization 

 

In order to answer the research questions given in chapter 1.1, it is necessary to explore 

several topics concerning spiking neural networks. To explore said topics, the chapters are 

organized as in the contents list. This sub-chapter aim to give a short summary of all the 

main chapters included in the survey: 

 

1. Introduction 

Chapter 1 serve as an introduction and aims to give the reader an overview of what the 

survey will contain. Further, the research questions, that guided the investigation of the 

research conducted for the survey, is presented. 

 

2. From Biological Neurons to Artificial Neural Networks 

Chapter 2 starts with introducing the biological neuron, as the basis from which artificial 

neurons are modelled after. The McCulloch and Pitts neuron model will be introduced, 

followed by the artificial neuron model used for both the first- and second-generation neural 

networks. The chapter will then introduce the reader to spiking neuron models, used by the 

third-generation artificial neural networks, spiking neural networks. From reading chapter 2, 

what constitutes the three generations of artificial neural networks, and what differentiates 

them from one another, should become clear.  

 

3. Neural Coding 

Chapter 3 concerns how to interpret the output signals from spiking neurons. The output of 

spiking neuron models is not a single value, but instead a time window with distinct spike-

events. Spiking neuron models cannot make use of the same interpretation methods as 

traditional neuron models, as spiking neuron models include the temporal axis in the input 

and output. There exist several different methods of interpreting the output of artificial 

spiking neurons, which all stem from the field of neuroscience. Chapter 3 will introduce 

some of the most common interpretation methods implemented by spiking neural 

networks; rate-coding, time to first spike coding, rank order coding and latency coding.  

 

4. Learning in Spiking Neural Networks 

Chapter 4 is dedicated to methods of training spiking neural networks. Both supervised and 

unsupervised learning will be discussed. Further a way of training a spiking neural network, 

by converting an already trained traditional deep neural network to a spiking neural network 

is also included in the chapter. Lastly, the performance results of spiking neural networks will 

be discussed, by referring to accuracy results achieved on the benchmark dataset MNIST. 



4 
 

5. Benefits of Spiking Neural Networks 

Chapter 5 mention some of the benefits of spiking neural networks compared to other 

artificial neural networks.  The chapter will discuss the benefit of the gained biological 

plausibility of spiking neural networks, compared to other artificial neural networks. Further, 

the chapter will mention some of the investigation work conducted by Wolfgang Maass on 

the topic of the computational abilities of spiking neurons. The chapter will lastly mention 

how spiking neural networks can be more energy efficient, compared to other artificial 

neural networks. The energy efficiency gain of spiking neural network will be mentioned in 

relation to neuromorphic hardware. 

 

6. Challenges of Spiking Neural Networks 

Chapter 6 aim to summarise the challenges specifically associated with spiking neural 

networks. Several of the challenges of spiking neural networks will already have become 

apparent though the earlier chapters. Chapter 6 therefore, aim to focus on the challenges 

explored in less detail from other chapters. The challenges that will be discussed in more 

detail, is the titles of the sub-chapters of chapter 6. The unclear state of spiking neural 

network considers the fact that not all agree on the definition of spiking neural networks. 

The different definitions used can cause huge differences in how prominent figures in the 

field of AI view the potential of spiking neural networks. The next sub-chapter is dedicated to 

the benchmarks used for measuring the performance of artificial neural networks. Generally, 

the benchmarks used for measuring performance of artificial neural networks was not 

created with spiking neural networks in mind. Hence, the benchmarks often fail to showcase 

most of the benefits associated with spiking neural networks. Lastly, a short sub-chapter 

mention the lack of available neuromorphic hardware, which is needed for many of the 

benefits for spiking neural network implementation. 

 

7. Conclusion 

Chapter 7 try to make some conclusions about the future of spiking neural network by 

answering the research questions presented in chapter 1.1. Further, future potential areas 

of investigation not included in the survey, is mentioned. The future work can also serve as a 

starting point for further reading by the reader. The topics included as potential future work 

is: reinforcement learning in spiking neural networks, reservoir computing and the spike 

response model as a spiking neuron model.  
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2. From Biological Neurons to Artificial Neural Networks 

 

To explain what constitutes a spiking neural network, it is necessary to mention the other 

types of artificial neural networks. Further the author believes it to be constructive to start 

with a short introduction of the biological neuron, as it serves as a reference point for 

artificial neuron modelling. This chapter attempts to give the reader the information 

necessary to distinguish between what is referred to as the 1st, 2nd, and 3rd generation 

artificial neural networks. By doing so, some of the strengths and weaknesses associated 

with each generation of artificial neural network might become apparent.  

 

2.1. The Biological Neuron 

 

Our understanding of the biological neuron has changed greatly over time. From believing 

that the biological neural network was one single continuous network, as proposed in the 

Reticular theory in the 19th century, to much newer research aimed at gaining a better 

understanding of each individual component of the neuron. Hence, our understanding of the 

neuron is constantly updated with the advent of new research results. New research might 

give insight in some of the current mysteries of the biological neural network, such as how 

they learn, allow for the formation of thoughts, and make decisions. New discoveries might 

have a crucial impact on how  artificial neural networks will be created in the future. 

Nevertheless, a short summary of the current understanding of how biological neurons 

communicate and form networks  is given, as to give a rough idea of the understanding from 

which the current artificial neurons are modelled after.  

A real neuron generally consists of the soma (The cell body), a set of dendrites and one 

single axon. An action potential – a neural spike – is generated in the soma, serving as the 

signal transmitting information between neurons. This action potential, which is a short 

electrical pulse, travels down the axon of the neuron until it reaches what is called the 

synapse. The synapse connects one neuron to another by connecting the axon of the firing 

neuron, to a dendrite of the receiving neuron. The axon end of the synapse receives the 

action potential and converts it to a chemical signal, in the form of neurotransmitters, that 

travel across the synaptic cleft. The neurotransmitters then bind to receptors on the dendric 

end of the synapse. These receptors influence the membrane potential of the receiving 

neuron by opening and closing ion channels, allowing different types of ions to flow in and 

out of the membrane. Different neurotransmitters can both decrease (inhibitory 

transmitter) and increase (excitatory transmitter) the membrane potential of the receiving 

neuron. The exited or inhibited membrane of the receiving neuron will have its membrane 

potential gradually go towards its resting potential. if the incoming excitatory signal makes 

the membrane potential reach a certain threshold however, a spike is formed by the neuron 

that received the excitatory signal, sharply decreasing the membrane potential in the 
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process. The newly created spike will then in turn be passed on to another neuron repeating 

the steps in the earlier explanation. 

Several neurons can send an action potential to one receiving neuron, each influencing the 

membrane potential of the receiving neuron. Therefore, it is important to note that the 

membrane potential change with time, such that if a neuron fires a signal at 𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , and 

another at 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 0.1𝑚𝑠, they will both influence the receiving neuron. The signal from 

the two neurons will  together decide if the receiving neuron will fire. However, the 

membrane potential generated from the first neuron would already have started to change. 

It is also important to note that the axon of a neuron can be connected to several other 

neurons through different axon terminals and can even be connected to dendrites of its own 

neuron (called an autapse).   

The “passageways” for information, the links between neurons consisting of axon, synapse 

and dendrite may change over time, facilitating either a strengthening or weakening of the 

relationship between the firing of one neuron and the generation of a spike in the receiving 

neuron. The biological neural network is also able to both form new links between neurons 

that did not have a link already, as well as remove links between neurons that see sparse to 

no spike transmission. The changing in the strength of the link between neurons and the 

formation of new links is what is theorized to be the underlining principle behind learning in 

biological neural networks. However, what decides when and how much a link is 

strengthened or formed is still a debated topic. Most agree however, that whatever decides 

the change in the links between neurons, will likely vary depending on the area, as well as 

the current development of the brain in question.  

As stated before, the explanation above is meant to be rough and simplified, thereby 

possibly omitting details that might impact neural computation. The explanation of the 

neuron drew the picture of axons, dendrites and synapses to be nothing more than 

“passive” passageways, with their only function being transmitting a spike from the soma of 

one neuron, to that of another. However, it is known that dendrites have a significantly 

more active role in the formation of spikes [17]. Nevertheless, the given explanation should 

suffice to serve as a basis of artificial neural models. The reason being that all neuron models 

implemented by artificial neural networks are significantly simplified, even more so than the 

given explanation of the biological neuron. The reason for the simplification in artificial 

neuron models, is to reduce the computational cost of simulating the neurons. 

 

2.2. Traditional Neuron Models 

 

In the field of machine Learning, the terms 1st, 2nd, and 3rd generation neural networks are 

often used. However, the definition of what constitutes the different generations of neural 

networks is not unanimously agreed upon. Where the line is drawn between the different 

generations is somewhat cloudy, especially so for the 1st and 2nd generation, as both use the 

same neuron model to form neural networks. This survey will use the definitions outlined by 
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Maass in “Networks of spiking neurons: The third generation of neural network models” 

[55], for the different  generations of artificial neural networks.  

As mentioned in the introduction, the neural network designed by McCulloch and Pitts was 

the predecessor for the first generation of artificial neural networks. The neural network of 

McCulloch and Pitts consisted of artificial binary neurons, henceforth referred to as 

“McCulloch and Pitts neurons”. The McCulloch and Pitts neuron would take the sum add the 

incoming signals together, before inserting the summed value into a threshold function. If 

the value reached a given threshold, the output of threshold function would be set to 1, 

representing the McCulloch and Pitts neuron in question being “active”, as in firing a spike. If 

the value of the sum given to the threshold function failed to reach the threshold, the 

function would return 0, representing the McCulloch and Pitts neuron staying “inactive”, 

meaning no spike was formed. The reasoning for interpreting the output of the McCulloch 

and Pitts neuron as a boolean value, 1 or 0, came from an observation of the biological 

neuron: at a given time, a biological neuron either fires a pike, or not. It is not possible for a 

biological neuron to fire say half a spike. Hence the only states a biological neuron could take 

at any given moment was that of “firing a spike” or “not firing a spike”. Therefore, as the 

state of a biological neuron  only had two options regarding spike firing, it could be  

represented by a boolean value. 

The McCulloch and Pitts neuron, receiving input from other neurons and sending out its own 

output 𝑦, is visualized in fig.1: 

 

𝑔(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) =  ∑ 𝑥𝑖 

𝑛

1

= 𝐺 

𝑥𝑛 represents 𝑦 value received 

from neuron 𝑛 into the artificial 

neuron on the right 

 

𝑦 = 𝑓(𝐺) = 1 𝑖𝑓 𝑓(𝐺)  ≥ 𝑇 

                   = 0 𝑖𝑓 𝑓(𝐺)  < 𝑇 

 

𝑇 is the threshold value assigned 

to the artificial neuron. 

 

Fig.1: McCulloch and Pitts neuron model 

The function 𝑓(𝐺) in fig.1 served as the threshold function, mapping the sum of inputs to a 

boolean output 𝑦 ∈ {0,1}. 
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The McCulloch and Pitts neuron were able to make a decision based on a set of binary inputs 

and could represent several Boolean functions such as AND, OR, NOR and NOT by assigning 

different values to 𝑇 and changing the sum operation of the inputs. An example of an AND 

function with four inputs, requiring the inputs from 𝑥1 through 𝑥3, with 𝑥4 as an inhibitory 

input, can be represented by the following threshold, and sum operation given in eq.1. The 

given neuron would only fire if the inputs from 𝑥1 through 𝑥3 was all 1 and 𝑥4 was 0: 

 

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4) =  −𝑥4 + ∑ 𝑥𝑖

3

𝑖=1

= 𝐺,       𝑇 = 3                                (𝑒𝑞. 1) 

   

Although a network of McCulloch and Pitts neurons could be modelled as to perform several 

different boolean operations, it was unable to learn. The inability to learn came as a 

consequence of two flaws with the McCulloch and Pitts neuron model. The biggest factor for 

the inability to learn was due to McCulloch and Pitts neurons lacking a way of representing 

the strength of the links (henceforth referred to as the “weight”) between neurons. Since 

the model lacked a representation for weights, it was unable to assign different importance 

to given inputs. Further, as mentioned in chapter 2.1, it is the changing of weights that allow 

a biological neural network to learn. The second reason for the McCulloch and Pitts network 

being unable to learn was the fact that both the threshold value 𝑇, and sum operation 

𝑔(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛), had to be hard coded, for all neurons in the network. Since the 

threshold value and sum operation had to be hardcoded, it became impossible for the 

network itself to change them given training data.  

 

2.2.1. First Generation of Artificial Neural Networks  

 

The first-generation artificial neural networks came with the invention of the perceptron 

neuron model, proposed by Frank Rosenblatt in his paper “The perceptron: a probabilistic 

model for information storage and organization in the brain” [43]. The perceptron model 

would later be refined by Minsky and Papert in 1969, resulting in the perceptron model as it 

is known today. The perceptron neuron model solved the biggest problem of the McCulloch 

and Pitts neuron, namely the lack of weights. 

 The first-generation artificial neural networks were defined by Maass[55] as; a network of 

perceptron neuron models implementing threshold functions. The output signal from 

perceptron neurons in first-generation artificial neural networks therefore continued to be a 

boolean output {1, 0}. However, the boolean output from the perceptron neuron would be 

multiplied with a weight 𝑤𝑖, before being given as the input to another perceptron neuron in 

the network. Therefore, the input values for the perceptron neurons could be any real value 

ℝ. The real valued inputs would still be added together, before being put through the 



9 
 

threshold function, the same way as in the McCulloch and Pitts neuron models. However, 

the way a perceptron neuron received its threshold value and used it, changed from the 

McCulloch and Pitts neuron. Instead of the threshold value being hard coded, the 

perceptron model received its threshold value as a separate “threshold input”. The 

threshold value 𝑇 was represented by a weight 𝑤0 =  −𝑇. For the perceptron to know the 

threshold, the weight 𝑤0 had to be multiplied with an input signal 𝑥0 resulting in the 

threshold input. The input signal 𝑥0 was set to always equal 1, so the perceptron would 

receive the threshold input every time it received inputs. The threshold input would behave 

the same as other inputs and be added together with the rest of the inputs resulting in a 

value 𝐺. However, the value of the threshold input was −𝑇, not the threshold value itself. 

Therefore, 𝐺 is effectively the sum of the inputs, 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 minus the value of the 

threshold, represented mathematically in eq.2.  

𝐺 = ∑ 𝑤𝑖 ∗ 𝑥𝑖 

𝑛

𝑖=0

= −𝑇 + ∑ 𝑤𝑖 ∗ 𝑥𝑖

𝑛

𝑖=1

,       𝑤0 = −𝑇, 𝑥0 = 1                   (𝑒𝑞. 2) 

 

As the threshold value have already been used to calculate the value of 𝐺 in a perceptron 

neuron, the threshold function used is no longer the same as the one used by the McCulloch 

and Pitts neurons. Instead, the threshold function used by perceptrons compare the value of 

𝐺  with 0 as in eq.3. 

𝑓(𝐺) =  {
1,         𝑖𝑓 𝐺 ≥ 0
0,         𝑖𝑓 𝐺 < 0

                                                      (𝑒𝑞. 3)                                             

 

All the weights in the first-generation artificial neural networks are changeable, thereby 

allowing the threshold value to be updated by the network itself, by changing the value of 

𝑤0. Fig.2 illustrates the perceptron model with the threshold input: 

 

∑ 𝑤𝑖 ∗ 𝑥𝑖 

𝑛

𝑖=0

= 𝐺, 

 

𝑦 = 𝑓(𝐺), 

 

𝑇 𝑖𝑠 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 

 

𝑤ℎ𝑒𝑟𝑒 𝑥0 = 1 𝑎𝑛𝑑 𝑤0 = −𝑇 

 

Fig.2: The perceptron neuron model. 
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The first-generation artificial neural network could then be trained by implementing some 

form of learning rule. The learning rule should tell the network how individual weights in the 

network should be updated, given some input data and the associated output. In addition to 

making the network able to learn, the introduction of weights meant that different 

importance could be given to inputs to a perceptron neuron. As a result, first-generation 

neural networks became significantly more biologically plausible compared to networks of 

McCulloch and Pitts neurons. The reason for why being able to assign different importance 

to inputs result in more biological plausibility, is easily demonstrated with an example: 

A network of threshold perceptrons aim to make biologically plausible decisions on how to 

react, given some data received detailing a person. The firing of a single, specific neuron in 

the network 𝑁0, represent the network making the decision to run away from the person. 

The input to 𝑁0 represent the following information of the person, being presented to the 

network: 

𝑥1 = 𝑠ℎ𝑜𝑤𝑖𝑛𝑔 𝑟𝑎𝑔𝑒, 𝑥2 =  ℎ𝑎𝑠 𝑎 𝑤𝑒𝑎𝑝𝑜𝑛, 𝑥3 = 𝑖𝑠 𝑎 𝑛𝑒𝑤𝑏𝑜𝑟𝑛, 𝑥4 = 𝑖𝑠 𝑓𝑟𝑜𝑤𝑛𝑖𝑛𝑔 

It is safe to assume that a biological neural networks decision to run would be influenced in 

different degrees by if given the information in 𝑥1 through 𝑥4. Most likely 𝑥1 and 𝑥2 would 

have a bigger impact on the decision, that 𝑥4. Further, if 𝑥3 is true, the biological network 

might never decide to run away. The network of threshold perceptrons would be able to do 

the same, as each input  𝑥1 through 𝑥4 would have their own associated weights. Larger 

positive weights for 𝑥1 and 𝑥2 compared to 𝑥4, would result in bigger input values for 𝑥1 and 

𝑥2 than from 𝑥4. As a threshold perceptron firing is the based on the sum of all input values, 

𝐺, bigger numbers for the input values will influence the value of  𝐺 to a greater extent. 

Therefore, given some threshold value 𝑇 and weights 𝑤1, … , 𝑤4, for the inputs, the neuron 

could be made to fire whenever  𝑥1 is true, or give 𝑥1 twice the amount of impact as 𝑥4, all 

depending on the values of the weights. A weight being negative would result in the input 

being inhibitory for the firing of the neuron. By assigning an appropriately sized negative 

value for the weight 𝑤3, the neuron 𝑁0 could be modelled so that the neuron would never 

fire, whenever the case for 𝑥3 is true (𝑥3 = 1).  By giving an input a weight value of 0, the 

said input becomes irrelevant for the firing of the receiving neuron.  

A biological neural network deciding whether to run or is certainly more complex than being 

the result of a single neuron firing in the network. However, the example is sufficient in 

demonstrating that implementing weights in an artificial neural network result in the 

network being able to mimic biological neural networks to a greater extent. An increased 

ability to mimic biological neural networks indicate that the artificial neural network is more 

biologically plausible.  

The decision concerning whether to run or not in a biological neural network is certainly not 

decided by the firing of a single. However, the example is still adequate to illustrate that 

being able to give different importance to the inputs result in the artificial neural network 

being able to mimic a biological neural network more closely.  

An aspect of first-generation artificial neural networks that is not biologically plausible 

however, is the synchronization of neural computation in a layer of neurons. Neurons in 
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first-generation artificial neural networks compute their output for each arbitrary discrete 

time step for 𝑡 = 0, 1, 2, 3, … [31]. The reason for the synchronization is sum operation used 

by perceptron neurons to decide its own output. Therefore, every neuron in the first layer of 

the network will calculate their values before sending their outputs at 𝑡 = 0. The outputs 

from the neurons in the first layer will therefore be received synchronously by the neurons 

in the second layer. The neurons in the second layer will all send their outputs to the next 

layer at 𝑡 = 1, and so forth. Referring back to chapter 2.1, there is no reason as to why a 

biological neuron should be able to receive one signal at a given time and another half a 

millisecond later. Furthermore, calculations performed by conventional computers are done 

in a sequential manner, albeit extremely fast, resulting in some of the outputs of neurons in 

the same layer being finished computing ahead of some other. Therefore, the necessity of 

synchronizing the inputs to a layer can result in neurons being finished computing their 

output.  

The learning methods used in 1st generation neural networks, was most often based on 

Hebb’s rule, stating: “Cells that wire together, wire together”, or more accurately “When an 

axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in 

firing It, some growth process or metabolic change takes place in one or both cells such that 

A's efficiency, as one of the cells firing B, is increased” [10]. It is believed that biological 

neural networks also implement some forms of Hebb’s rule. 

Hebb’s rule can be written mathematically as in eq.4, using the same notations as in fig.2: 

∆𝑤𝑖 = 𝑛 ∗ 𝑦𝑥𝑖                                                               (𝑒𝑞. 4)                                             

 

Where the variable 𝑛 in eq.4 is a defined learning rate. A specialized case of Hebb’s rule 

called Oja’s rule, is the one usually being implemented in artificial neural networks for 

learning. Oja’s rule adds a term to eq.4 so that if cell B fire without A, the weight of the 

synapse between them is weakened. Oja’s rule can be written mathematically as in eq.5: 

∆𝑤𝑖 = 𝑛 ∗ 𝑦𝑥𝑖 − 𝑛 ∗ 𝑦 ∗ 𝑤𝑖 ∗ 𝑦 = 𝑛𝑦(𝑥𝑖 − 𝑤𝑖 ∗ 𝑦)                                    (𝑒𝑞. 5)                            

 

For two boolean perceptrons connected by a weight, perceptron B firing would mean 𝑦 = 1, 

and perceptron A firing would mean 𝑥𝑎 = 1 in eq.5. Note that in Hebb’s rule, there is no 

term for a “target value”, and as such Hebbian Learning algorithms are unsupervised in 

nature. To achieve supervised learning, one would need to add the target term, the defined 

correct output for a given input, to the equation. The perceptron learning rule [19] does this 

by adding the target value as shown in eq.6: 

∆𝑤𝑖 = 𝑛(𝑡 − 𝑦)𝑥𝑖                                                                (𝑒𝑞. 6)                                                         

 

Where 𝑡 in eq.6 is the target value for the output of the neuron, given the inputs. The 

perceptron learning rule have clear similarities to Hebb’s rule evident by comparing eq.4 
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with eq.6. An alternative to the perceptron rule for a supervised learning method, which is 

based on a similar principle to Hebb’s rule, is the correlation learning rule. The only 

difference between the two is that the correlation learning rule replace the output variable, 

𝑦 in eq.4, with the variable for the target value, 𝑡, as in eq.7: 

∆𝑤𝑖 = 𝑛 ∗ 𝑡𝑥𝑖                                                                 (𝑒𝑞. 7)                                                              

 

Supervised learning methods have existed as long as artificial neural networks. However, 

first generation artificial neural networks were unable to implement supervised learning in 

networks consisting of one or more hidden layers. The reason being supervised learning 

require some optimization technique to be implemented. For an artificial neural network to 

use optimization techniques available from calculus, the neuron outputs are required to be 

continuous. However, outputs from perceptrons in first-generation artificial neural networks 

are discontinuous, as the threshold function used, gave the output as a boolean value. First-

generation artificial neural networks lacked therefore implementable optimization 

techniques. As such, unsupervised learning methods based on Hebb’s rule were the learning 

methods that saw the most use by first generation artificial neural networks. 

 

2.2.2. Second Generation of Artificial Neural Networks  

 

The second-generation artificial neural networks would use the same perceptrons (fig.2) as 

the first-generation neural networks. The difference between the two generations as 

defined by Maass, is the function, 𝑓(𝐺), used to calculate the output values for the 

perceptrons. For second-generation artificial neural networks, the perceptrons no longer 

used a threshold function. Instead, an activation function is used, mapping the input to an 

output 𝑦 ∈ [0, 1]. The use of an activation function meant that the output of perceptrons in 

second-generation artificial neural networks became a continuous real value. Several 

activation functions exist, such as sigmoidal functions. An example of a sigmoidal function 

often used by perceptrons as an activation function, is the logistic function, given by eq.8: 

𝑓(𝐺) =  
1

1+𝑒−𝐺                                                                     (𝑒𝑞. 8)                                                                     

 

As the output value changed to real values, it was no longer possible to view the output as 

single spikes. Hence it became necessary to find a new biological interpretation of the 

output from perceptron neurons in second-generation neural networks. The biological 

interpretation became that of the “current firing rate” of the neuron [55]. Instead of giving 

an output, 1 or 0, true or false, as the first generation neural network, the output from a 

perceptron using an activation function, would give its answer as a probability. 

Second-generation neural networks would still synchronise the neuron output for each 

layer, the same way as first-generation neural networks. The only difference between the 
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two generations concerning time is the output of neurons in second-generation neural 

networks being seen as the firing rate of the neuron. As a firing rate would be achieved by 

averaging the frequency of spike-generation over a time window, it can be argued that 

second-generation artificial neural networks implement a notion of time implicitly. 

As the output of perceptrons in the second-generation artificial neural networks was no 

longer single spikes, the networks became unable to directly implement Hebbian Learning.  

Nevertheless, the fact that the output from the perceptrons changed from boolean to real 

values, allowed for the implementation of optimization techniques present in calculus based 

on gradient descent. Therefore, the most used learning method changed from unsupervised 

Hebbian learning to supervised learning algorithms based on gradient descent optimization 

techniques.  

 

As of today, nearly all the artificial neural networks used, belong to the second-generation of 

artificial neural networks. The most used learning algorithm deployed by second-generation 

artificial neural networks, is the supervised learning method called Backpropagation. 

However, the longevity, of backpropagation has come into question in recent years. 

Geoffrey Hinton, a pioneer in deep learning, credited for popularizing backpropagation by 

co-publishing “Learning Internal Representations by Error Propagation” [44] in 1986, made 

the following statement concerning backpropagation in 2017: “My view is throw it all away 

and start again” [28]. The biological plausibility of supervised learning methods was also 

questioned by Hinton. His view was to shift the focus of research, from supervised to 

unsupervised learning methods. As the main benefit of second-generation artificial neural 

networks is their ability to implement supervised learning methods, it could be worth 

considering looking for other alternatives. 

 

2.3. Third Generation of Artificial Neural Networks 

 

Third-generation artificial neural networks are defined as artificial neural networks, 

implementing spiking neuron models as computational units [55]. While the transition from 

discontinuous spike-outputs in first-generation neural networks, to continuous fire-rate 

outputs in second-generation networks lead to a big leap in training opportunities, spiking 

neuron models are back to outputting single spikes. The reversion back to discontinuous 

output, might seem counterproductive as the ability to perform optimization techniques, 

such as gradient descent, directly is thereby lost by spiking neural networks. Both the first- 

and third-generation artificial neural networks give their outputs as neuron spikes.  

The difference to the earlier generation, is that spiking neuron models implements the 

notion of time explicitly, in the form of the change in membrane potential of the neuron 

over time. Therefore, both neural inputs and outputs gain a new dimension, the temporal 

axis. The importance of the implementation of time into the model will be elaborated in 

later chapters. As spiking neural networks implements time explicitly the outputs of spiking 
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neuron models become spike-trains (a timeline showing spike-formation(s) by the spiking 

neuron at distinct time points). Since spiking neural models no longer output a single 

number, such as the perceptron model, it became necessary to find methods for interpreting 

the spike trains, as the network has to be able to form decisions based on its output. 

Therefore, chapter 3 is dedicated to discussing some of the common ways to interpret spike-

trains in spiking neural networks. There are some that argue that not all neural networks 

implementing spiking neurons should be classified as spiking neural networks, and that it 

depends on how one chose to interpret the output signals. However, for the rest of this 

survey, all artificial neural networks consisting of spiking neuron models will be considered 

as spiking neural networks, no matter the method chosen for spike-train interpretation.  

 

2.3.1. Spiking Neuron Models 

 

Spiking neuron models is not a new concept by any means. One of the first models, the 

integrate-and-fire model can be traced [52] back to the work of Lapicque (1907) [6]. 

However, Lapicque himself did not define the model, which was defined a while later. As 

such, many consider the Hodgkin-Huxley model (1952) to be the first spiking neuron model.  

As of today, many different spiking neuron models have been proposed. The names of the 

most well-known spiking neuron models are included in fig.3 below: 

Fig.3: Graph comparing spiking neuron models based on biological plausibility and 

computational cost (figure taken from [13]). 

 ““# of FLOPS” is an approximate number of floating point operations (addition, 

multiplication, ….) needed to simulate the model during a 1 ms time span.” The Hodgkin-

Huxley model have an implementation cost of 1200 flops, while the integrate and fire model 

have an implementation cost of 5 flops [13].  

It is possible to divide spiking neuron models into one of two modelling directions in 

computational neuroscience, detailed neuron models and simplified neuron models [9]. The 

Hodgkin-Huxley model, maybe the most well-known example of a detailed neuron model, 

strives to be as biologically plausible as possible. The integrate and fire model, is an example 
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of a simplified neuron model, trying to model the spiking nature of the neuron, while 

remaining as computationally inexpensive as possible. The optimal model to use for a given 

spiking neural network depends on the desired results for the network question. For 

mimicking biological neurons as closely as possible, the Hodgkin-Huxley model might be 

optimal. If the desire is to create a large spiking neural network however, the Hodgkin-

Huxley model become too computationally expensive. Therefore, for larger spiking neural 

networks simplified neuron models, such as the leaky integrate and fire model, should be 

used, as to limit the necessary computational operations for simulating the networks.    

The survey will introduce both the Hodgkin-Huxley model, the (leaky) Integrate and fire 

model, as well as a newer Izhikevich model which tries to combine the biological plausibility 

of the Hodgkin-Huxley model with the computational efficiency of the integrate and fire 

model. 

 

2.3.1.1. The Hodgkin-Huxley Model 

 

The Hodgkin-Huxley neuron model was proposed by Hodgkin and Huxley in their paper “A 

quantitative description of membrane current and its application to conduction and 

excitation in nerve” [1]. In their paper, Hodgkin and Huxley proposed a mathematical model 

for the creation of an action potential based on an input current, 𝐼𝑖𝑛𝑝𝑢𝑡 , and the sum of ionic 

currents passing through their respective ion channels of the cell membrane. In their original 

work, they included potassium (K) and sodium (Na) as well as a leak (L) as ionic currents. 

The Hodgkin-Huxley model represent the cell membrane of the neuron with a capacitor, 𝐶𝑚. 

The membrane potential at a given time 𝑡 is the voltage 𝑉𝑚 associated with the capacitor. 

The relationship between the membrane potential and the cell membrane is described by 

eq.8: 

𝐶𝑚 =  
𝑞

𝑉𝑚(𝑡)
                                                                          (𝑒𝑞. 8)                                                  

 

The equation allowing for simulating the Hodgkin-Huxley neuron (eq.9) calculate the change 

in membrane potential, and the capacitance of the capacitor at a given time 𝑡, from an input 

current and the flow of ionic currents passing through the cell membrane.  

𝐶𝑚

𝑑𝑉𝑚(𝑡)

𝑑𝑡
= 𝐼𝑖𝑛𝑝𝑢𝑡(𝑡) − 𝑔̅𝐾𝑛4(𝑉𝑚(𝑡) − 𝐸𝐾) −  𝑔̅𝑁𝑎𝑚3ℎ(𝑉𝑚(𝑡) − 𝐸𝑁𝑎) − 𝑔̅𝐿(𝑉𝑚(𝑡) − 𝐸𝐿) 

(𝑒𝑞. 9) 

By using the relationship between 𝐶𝑚 and 𝑉𝑚, as given in eq.8, it becomes possible to 

calculate the current membrane potential at any given time from eq.9. A spike is then 

generated if the value of the membrane potential reach a given threshold.  
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To explain how the Hodgkin-Huxley model allow for the simulation of neuron spike-

generation, the parameters in eq.9, as well as how the parameters change the membrane 

potential, will be given. The aim of the explanation is to demonstrate the computational 

complexity of the Hodgkin-Huxley. 

The variables 𝑛, 𝑚 𝑎𝑛𝑑 ℎ in eq.9 are gained from a set of 3 other differential equations. The 

differential equations modelling  𝑛, 𝑚 𝑎𝑛𝑑 ℎ  are not included in this survey, as it is sufficient 

to know that all the variables depend on the value of 𝑉𝑚(𝑡). The rest of the variables 𝑔̅𝑖𝑜𝑛/𝐿 , 

and 𝐸𝑖𝑜𝑛/𝐿, are all constants associated with said ion/leak. 1 

Hence to calculate if a Hodgkin-Huxley neuron will generate a spike from an input current, 

first one need to solve the differential equations for variables 𝑛, 𝑚 𝑎𝑛𝑑 ℎ, before using said 

variables in eq.9. The variables 𝑛 𝑎𝑛𝑑 𝑚 increase with 𝑉𝑚, while ℎ decrease (shown in fig. 

2.6c in [50]). Further, sodium ions flow into the cell, increasing the membrane potential, 

while potassium ions flow outwards, decreasing the membrane potential. The potassium ion 

flow reacts slower to change in the membrane potential, compared to the sodium flow 

however (shown in fig. 18 in [1]).  

The flow of sodium ions is increased by an increase in 𝑚, while the flow decreases as ℎ 

decrease. However, ℎ reacts slower than 𝑚 to a change in the membrane potential. 

Therefore, since 𝑚 increase with an increase in 𝑉𝑚, an increase in the membrane potential 

results in more sodium ions flowing into the cell, which in turn, further increase 𝑉𝑚. As such, 

a positive feedback loop is initiated where 𝑉𝑚 and 𝑚 will continue increasing in unison. 

Depending on the values of the membrane potential, and the input current, the positive 

feedback loop generated by 𝑉𝑚  and 𝑚 might result in the membrane potential exponentially 

increasing, thereby resulting in the generation of a spike [16]. The feedback loop will 

continue until either a neuron spike is generated, or the membrane potential start to 

decrease as the change in in ℎ start to limit the sodium flow, as well as the potassium flow 

start to change, decrease the membrane potential directly. 

When a spike is generated, the exponential increase in the membrane potential from the 

positive feedback loop, will come to a natural halt when 𝑉𝑚 approach 𝐸𝑁𝑎 ,  resulting in no 

more sodium ions flowing into the cell. The spike generation is followed by a sharp decrease 

in the membrane potential towards its resting value.   

Although the Hodgkin-Huxley model is the most biological plausible spiking neuron model, it 

is simply far to computationally expensive, due to the feedback loop initiated, requiring eq.9 

and the differential equations for  𝑛, 𝑚 𝑎𝑛𝑑 ℎ to be calculated continuously, in order to see 

if a spike is generated. The Hodgkin-Huxley model is therefore not a realistic implementation 

choice for any large-scale spiking neural network. 

Nevertheless, the extensive computation does have the benefit of making the Hodgkin-

Huxley model one of the most biologically plausible spiking neuron models available. As 

 
1 𝑔̅𝑖𝑜𝑛/𝐿 is an approximated constant based on the ionic conductivity, while 𝐸𝑖𝑜𝑛/𝐿 is the Nernst 

potential of the ion/ leak in question. 
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such, the Hodgkin-Huxley model can replicate a wide variety of spike shapes and patterns 

(shown in fig.2 in [13]). 

2.3.1.2. The Integrate and Fire Model 

 

The integrate and fire neuron model is far less computationally complex than the Hodgkin-

Huxley model. Therefore, a variation of the integrate and fire model, the leaky integrate and 

fire model, is the most implemented spiking neuron model in spiking neural networks so far 

[50].  The leaky integrate and fire model can be explained mathematically by eq.10 [7]: 

𝐶𝑚
𝑑𝑉(𝑡)

𝑑𝑡
=  𝐼𝑖𝑛𝑝𝑢𝑡(𝑡) −

𝐶𝑚

𝜏𝑚

(𝑉(𝑡) − 𝑉0)                                   (𝑒𝑞. 10)        

                       

In eq.10, 𝑉(𝑡) represent the membrane potential at time 𝑡,while 𝑉0 is the resting potential 

of the membrane. The variable 𝜏𝑚 is equal to the resistance of the membrane, 𝑅𝑚, 

multiplied with the capacitance, 𝐶𝑚. The variables 𝑅𝑚 𝑎𝑛𝑑 𝐶𝑚 are both assumed to be 

constant in the leaky integrate and fire model. As such, the equation can be rewritten: 

𝑉(𝑡) = 𝑅𝑚𝐼𝑖𝑛𝑝𝑢𝑡(𝑡) +  𝑉0 −  𝜏𝑚
𝑑𝑉(𝑡)

𝑑𝑡
= 𝑎 ∗ 𝐼𝑖𝑛𝑝𝑢𝑡(𝑡) − 𝑏 ∗

𝑑𝑉(𝑡)

𝑑𝑡
+ 𝑐              (𝑒𝑞. 11)          

 

Where 𝑎, 𝑏 𝑎𝑛𝑑 𝑐 in eq.11 are all constants. If 𝑉(𝑡) in eq.11 reach a certain threshold, a 

spike is generated and 𝑉(𝑡) is reset to equal 𝑉0 (often set to 0 as a common assumption 

[40]). The term −𝑏 ∗
𝑑𝑉(𝑡)

𝑑𝑡
 in eq.11 represent the cell membrane “leaking” ions, changing the 

membrane potential towards its resting value over time (hence the name leaky integrate 

and fire).  

Similarities between eq.9 and eq.11 can be drawn. Both the Hodgkin-Huxley model and the 

leaky integrate and fire model, use a capacitor for modelling the cell membrane. Both eq.9 

and eq.11 can be written as eq.12: 

 

𝐶𝑚
𝑑𝑉𝑚(𝑡)

𝑑𝑡
= 𝐼𝑖𝑛𝑝𝑢𝑡 (𝑡) − 𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔                                       (𝑒𝑞. 12)                                    

 

Although there are some similarities between the two spiking neuron models, there are 

more differences. As the leaky integrate and fire model does not require the computation of 

an extra three differential equations, and no feedback loop initiated, the model becomes 

significantly less computationally heavy compared to the Hodgkin-Huxley model. The reason 

as to why the leaky integrate and fire model does not need extra differential equations, is 

due to the model assuming the shape of the action potentials is uniform for all spikes [40]. 

However, assuming that the shape of all spikes is uniform severely limits the ability to 
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reproduce observed spiking patters (and of course spike-shapes) thereby, decreasing the 

biological plausibility of the model. Nevertheless, the assumption of spike-shape uniformity 

makes it possible for creating large spiking neural networks, as it is possible to simulate 

hundreds of thousands of leaky integrate and fire neurons[50]. 

 

2.3.1.3. The Izhikevich Model 

 

The Izhikevich model was proposed by Izhikevich in 2003 [12], which sought to be both 

computationally simple and biologically plausible (see fig. 3). The Izhikevich model is able to 

reproduce all known spiking patterns as well as spike shapes of biological cortical neurons 

(shown in fig.2 in [13]), while being close to the integrate and fire model in computational 

complexity (the integrate and fire model require 5 flops  for simulating the model over a 1ms 

time interval, while the Izhikevich model require 13 flops). 

The Izhikevich model is described by a combination of thee equations, eq.12, eq.13 and 

eq.14: 

𝑑𝑣(𝑡)

𝑑𝑡
= 0.04𝑣2 + 5𝑣 + 140 − 𝑢 + 𝐼𝑖𝑛𝑝𝑢𝑡(𝑡)                                    (𝑒𝑞. 12)                   

𝑑𝑢(𝑡)

𝑑𝑡
= 𝑎(𝑏𝑣 − 𝑢)                                                              (𝑒𝑞. 13)                                         

𝑖𝑓 𝑣 ≥ 30𝑚𝑉, 𝑡ℎ𝑒𝑛  {𝑢 ←𝑢+𝑑
𝑣 ←𝑐                                                   (𝑒𝑞. 14)                      

 

Where 𝑣 is the membrane potential at a given time, and 𝑢 is the “membrane recovery 

variable”, a variable that decide how fast the membrane potential goes towards its resting 

potential, given the current membrane potential. 𝑎, 𝑏, 𝑐 𝑎𝑛𝑑 𝑑 are constants set depending 

on what type of neuron wished to model. A spike is generated when 𝑣 in eq.12 reach a 

certain threshold, then when the membrane potential reach the value of the “spike apex” 

(30mV) both 𝑣 𝑎𝑛𝑑 𝑢 are reset according to eq.14. According to Izhikevich, they used the 

model to simulate 10 000 spiking neurons with 1 000 000 synapse-connections in real time 

(resolution of 1 ms) using a 1GHz desktop PC. 

 

2.3.2. Spiking Neural Networks: A Network of Spiking Neurons 

 

Although spiking neuron models have different degrees of biological plausibility, they are all 

notably more biologically plausible than perceptron models from both the first and second 

generation artificial neural networks. Spiking neural networks are fundamentally different 

compared to earlier generations of artificial neural networks as a result of the increased 

biological plausibility. The biggest difference would be the inclusion of the temporal axis in 

both the input and output. The addition of the temporal axis allows spiking neural networks 



19 
 

to update their neurons in an asynchronous fashion, allowing faster response times of the 

output signals compared to other artificial neural networks. However, the addition of the 

temporal axis, although a significant step towards biological plausibility and directly 

beneficial in certain applications, bring with it several new challenges that spiking neural 

networks must overcome. The rest of the survey is aimed at explaining different aspects of 

spiking neural networks, revolving around the benefits and challenges associated with the 

newly added notion of time to the networks. Chapter 3 concerns how information is 

processed in spiking neural networks, as spike-train outputs generated over time is 

inherently different than a single number generated as the output for a given arbitrary 

timestep. Chapter 4 deals with how to implement both supervised and unsupervised 

learning methods in spiking neural networks. Lastly chapter 5 and 6 summarises some of the 

specific benefits and challenges of spiking neural networks, respectively. The future of 

spiking neural networks is discussed in the last chapter, chapter 7, as a conclusion. 
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3. Neural Coding 

 

In second-generation neural networks the output layer would give a probability value for a 

given outcome. If a second-generation neural network was presented with a still image of a 

written number, the output layer of the network would contain a neuron for every possible 

solution to the image. Every neuron in the output layer would calculate an output, 

representing the probability for each possible solution. The solution associated with the 

highest output value from the output layer would then be given as the answer by the 

network. Preferably, if trained correctly, the probability of one outcome should be clearly 

higher than the rest.   

However, the situation becomes more complicated with spiking neural networks. In spiking 

neural networks, the output neurons will output sets of spikes over time, not a single 

probability value. Therefore, neural coding, a topic in the field of Neuroscience, becomes 

relevant when discussing spiking neural networks. Neural coding turns out to be an essential 

topic for spiking neural networks, as a neural network will first become useful when it is 

possible to interpret meaningful data from the network. Due to the biological plausibility of 

spiking neuron models, theories of how biological neural networks encode information in 

the form of spike events over time, become the basis for how to interpret spiking neural 

network outputs. However, the way biological neurons encode and decode spike 

information is still an unanswered question in the Neuroscience community, commonly 

referred to as the question of the neural code [5], [18].  

Currently two main theories as to how biological neurons encode information exist: The first, 

which was the main theory for a long time, is the idea that information is encoded in the 

form of the average spike frequency in a spike train. The second theory revolves around the 

idea that information is encoded in the specific timing of individual spikes in spike trains – 

the temporal information in spike trains. While spiking neural networks should in theory 

have a constant output in time, the machine used to calculate the output have to deal with 

discrete time values, therefore, a time-resolution is associated with spiking neural networks. 

Due to the need for a time-resolution, a timestep is also present in spiking neural networks. 

The timestep is equal to the time resolution of the spiking neural network. The computer 

simulating the network will not make any computations for a time 𝑡 fulfilling the conditions  

of eq.15.  

 𝑡𝑝𝑟𝑒𝑣 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 < 𝑡 <  𝑡𝑝𝑟𝑒𝑣 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 + 𝑡𝑖𝑚𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛                         (𝑒𝑞. 15)                          

 

3.1.  Rate Coding 
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Rate coding is the most implemented neural coding scheme in spiking neural networks [4]. 

Rate coding find the average spiking frequency of a neuron over a certain timeframe and use 

the calculated rate mostly in the same manner as output from second-generation neural 

networks are used. Rate coding can be applied to single spiking neurons and is easy to 

implement. However, by dealing with rates, no temporal information is gained, which is one 

of the biggest advantages spiking neuron models have over earlier neuron models. It is also 

worth to note that, due to the nature of finding rates, which require a certain time window, 

rate coding is inefficient compared to temporal coding, both when it comes to information 

capacity and transmission speed. Using rate coding instead of a form of temporal coding, 

leads to higher latency and energy consumption in deep spiking neural networks [38]. The 

introduced latency is due to the needed time to calculate an average firing rate. For 

transmitting 4 bits of data, a spiking neuron implementing rate coding would have to use 

24 = 16 timesteps. The time needed for a spiking neuron to transmit bits exponentially 

increase with the number of bitts to be transmitted.  While transmitting 4 bits took 16 

timesteps, transmitting 8 bits of data would require 28 = 256 timesteps. The rate coding 

theory which can be traced back to 1926, was the dominant theory for how the brain encode 

information in spikes for a long time. However newer research suggest that rate coding 

cannot account for everything about how information is processed in the brain [9], [53].  

 

3.2.  Spike Coding 

 

Spike coding is a set of many different temporal coding schemes. All temporal coding 

schemes suggests the information of the neuron output is encoded in the temporal 

information of individual spikes. Three of the most common spike-coding schemes will be 

mentioned, namely: time to first spike (A), rank order coding (B), and latency coding (C). A 

visualization of the three temporal coding schemes is added as fig.4: 

 

 Fig.4: Visualizing different temporal coding schemes and how they approach information encoding in 

spike trains. (figure taken from [42]) 
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A) Time to first spike: 

 

Time to first spike (TTFS) neural encoding assumes, as the name imply, that the 

information present in the spike trains is encoded by the time difference between 

stimulus onset to the first neuron spike (∆𝑡 in fig.4A). A further assumption in TTFS 

encoding is that a neuron generates only one spike for any given stimulus, therefore if 

subsequent spikes follows from said neuron, they are simply ignored [36]. TTFS has been 

implemented by several spiking neural networks, and can be implemented using just one 

single neuron. An advantage of TTFS is that it allows for very fast information processing, 

as the information is already transmitted when the first spike in the spike train(s) form 

from a stimulus. An example of a spiking neural network that use TTFS encoding is given 

in [39]: “T2FSNN: Deep Spiking Neural Networks with Time-to-first-spike Coding”. [39] 

achieved 99.33% on MNIST, using a deep neural network to spiking neural network 

(DNN-to-SNN) conversion learning method (which will be explained in chapter 3). [39] 

also showed good results in both latency and number of spikes generated compared to 

other neural coding schemes using DNN-to-SNN. 

 

B) Rank order coding: 

 

Rank order coding (ROC) cannot be implemented by a single neuron but must be used on 

a population of neurons. The idea behind it is, nevertheless, relatively simple. The exact 

timing of each spike is not considered, instead only the order of firings from a set of 

neurons is what encodes the information in ROC. From Fig.4B the order would be 

n3>n1>n4>n5>n2. ROC encoding assumes that each neuron only fires once the same way 

TTFS does. However even if every neuron only fires once, in the case of N neurons, there 

will be N! (N factorial)  possible orderings. Therefore, spiking neural networks 

implementing ROC can transmit up to 𝑙𝑜𝑔2(𝑁!) bits of information from a population of 

N neurons, all firing just once [51] . [29] is written by the one that proposed the ROC 

method, detailing a spiking neural network, implementing ROC encoding for speech 

recognition.  

 

C) Latency coding: 

 

Latency coding is the coding scheme that can contain the most information based on the 

number of spikes, from the three mentioned spike coding schemes. The idea behind 

latency coding is that the information is encoded in the relative timing between each 

output spike by a set of neurons (∆𝑡1, ∆𝑡2, ∆𝑡3 𝑎𝑛𝑑 ∆𝑡4 in fig.4C). Latency coding assumes 
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only one spike for each neuron just as TTFS and ROC does. A temporal coding scheme 

often just referred to as temporal coding, is an extension of the idea of latency coding. 

Temporal coding use the relative spike times, the same of latency coding, however, 

further include the time from stimulus-onset to the first spike, as an extra piece of 

information. To the authors knowledge,  temporal coding is the coding scheme that store 

the most information per spike generated of all spike coding schemes. Latency coding 

was used in the paper [45] that proposed the supervised learning algorithm SpikeProp 

for spiking neural networks.  

 

In a biological neural network, it is likely that both rate coding together with one, or several 

temporal coding schemes is used in combination, as to store and transmit the most amount 

of data possible. However, trying to implement several coding schemes in artificial spiking 

neural networks, result in learning methods, especially supervised learning methods 

becoming increasingly hard to implement. It is therefore not usual to implement more than 

one temporal coding scheme. However, several instances for learning methods in spiking 

neural networks, using rate coding together with one single temporal coding scheme, exist. 
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4. Learning in Spiking Neural Networks 

 

Chapter 1 and 2 dealt primarily with how one can set up a spiking neural network, from the 

elementary building blocks, the neuron models used,  as well as different ways to interpret 

the output. However, one last thing remains for spiking neural networks to be of much use, 

which is the ability to learn. Learning in spiking neural networks is also based on the notion 

of changing synaptic weights, as to facilitate strengthening or weakening of spiking 

correlation between neurons. The learning process is complicated in spiking neural networks 

compared to earlier-generation neural networks, since spiking neural networks can be 

implemented with many kinds of both neuron models as well as neural coding schemes. 

Therefore, learning methods often have to be specifically created to suit the specific type of 

spiking neural network, regarding the neuron model and coding scheme used by the 

network. There is reason to believe that spiking neural networks would benefit from the 

same learning mechanisms as biological neural networks, due to their inherent spike-based 

similarities. However, learning mechanisms deployed by our brains is still, not understood in 

much detail. Most likely, different areas of the brain deploy different kind of learning 

mechanisms, and the learning mechanism used might change during a lifetime [25].  

This chapter will focus on supervised learning as well as unsupervised learning. Further, a 

method of learning, by converting a deep neural network to spiking neural network (DNN-to-

SNN) will be mentioned. Lastly some recent performance results by spiking neural networks 

will be compared to the state-of-the-art results achieved by sigmoidal neural networks. 

Accuracy results on the MNIST benchmark will be used as a basis for comparison.   

 

4.1.  Supervised learning 

 

Supervised learning methods for training are limited to situations where both input data, 

and labelled answers of the inputs are available. Supervised learning methods feed data to 

an artificial network, and give feedback on the performance of the network, by comparing 

the actual output of the network, with the correct answers. In order for comparing the 

output of spiking neural networks with correct answers, it is necessary to both convert the 

given input data to spike-trains, as well as finding a way to compare the output spike train to 

the correct answer. Several ways for comparing spike trains with the labelled data have been 

proposed. Some, convert the labelled data to spike trains, and give feedback based on the 

difference in spike timing, others simply try to use the firing rate of spikes in the spike train 

to gain a number value for comparison. All the methods have their own associated 

challenges, making it harder for supervised learning methods for spiking neural networks to 

give accurate feedback to the network. Further, as spiking neural networks are back to 
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outputting discontinuous data, spiking neural networks cannot implement gradient descent 

without doing some extra work. 

The Hodgkin-Huxley model can give out a continuous output, in the form of the change in 

membrane potential with time, thereby solving the discontinuous output problem of spiking 

neural networks. However, the model is too computationally complex to consider using for 

any large-scale spiking neural network, as stated before.  

Solutions like Supervised Hebbian Learning and an improved version named ReSuMe, have 

been successful in creating a form of supervised learning for spiking neural networks. 

However, they are mostly limited to single-layer networks [42]. Hence, their implementation 

potential becomes limited, due to artificial neural networks mostly consisting of several 

layers, and the increasing importance of deep learning. Several other supervised learning 

methods have been developed since based on the same principles as ReSuMe and 

Supervised Hebbian Learning, while outperforming both. [30] is such an example, however, 

the newer developed methods, still suffer from the same limitations as ReSuMe and 

Supervised Hebbian Learning. 

Other solutions, such as SpikeProp, are supervised learning methods that modify  

backpropagation, as to make the method implementable by spiking neural networks. 

SpikeProp works by minimizing the difference between target spike-time and output-spike 

time using gradient descent. The method was first limited to single spike-emission, but has 

seen extensive work since its creation,  being adapted to allow for both faster learning 

convergence and multiple spike emissions [49]. However, SpikeProp place limitations on 

both the neuron model, as well as the neural encoding scheme of the spiking neural 

networks implementing SpikeProp. Many modified forms of backpropagation have been 

proposed since SpikeProp, however all modified backpropagation methods place some 

limitations on the neural network, concerning the neuron model, or the neural encoding 

scheme used. Nevertheless, modified backpropagation solutions for spiking neural models 

have seen a steady improvement of accuracy performances the last years, which can be seen 

in the table for MNIST result in chapter 3.4. The earlier versions of modified backpropagation 

models for spiking neural networks assumed that rate-coding was used. However, in recent 

times, spike-based backpropagation solutions have increasingly become the focus for 

modified backpropagation methods proposed.  All modified backpropagation learning 

methods create approximations of the output, as to make them differentiable. 

Discontinuities in the output spike-trains are often simply seen as noise, simply being 

ignored by the method. 

In “Spiking Neural Networks: Principles and Challenges” [18] it was stated that no general-

purpose (supervised) learning algorithm exist for spiking neural networks. The author has 

failed to find any newer publications that go against this statement.  
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4.2.  Unsupervised Learning 

 

Most forms of unsupervised learning in spiking neural networks is based on Hebbian 

learning. The specialized case of Hebbian learning specifically adapted for use by spiking 

neurons, is Spike-time-dependent-plasticity (STDP), sometimes referred to as the temporal 

Hebbian rule. STDP is based on the same principle of Hebbian learning – “neurons that fire 

together wire together”, the difference between STDP and Hebbian learning, is the need to 

define a timeframe for when neurons are said to “fire together” in STDP. STDP, as a 

mechanism for synaptic strength modification, has strong biological support from detailed 

experiments, such as [3]. In [11], they modelled a best-fit line for synaptic modification. The 

best-fit line was based on a set of single spike outputs from experimental data, of two 

connected neurons.  Their results were a curve similar to the illustration provided in fig.5: 

 

 

∆𝑡 = 𝑡𝑝𝑟𝑒 − 𝑡𝑝𝑜𝑠𝑡,  

 

𝑡𝑝𝑟𝑒 = 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑟𝑒𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 𝑠𝑝𝑖𝑘𝑒, 

 

𝑡𝑝𝑜𝑠𝑡 = 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑜𝑠𝑡𝑠𝑦𝑛𝑎𝑝𝑡𝑖𝑐 𝑠𝑝𝑖𝑘𝑒 

 

 

 

 

 

Fig. 5: Illustrating synaptic weight modification from STDP in percentage. (figure taken from 

[47]) 

 

The y values of the graph in fig.5 will naturally vary,  depending on the learning rate and 

defined time interval range chosen. The time interval range is the time interval that allows 

synaptic modification to occur. The focus for studying fig.5 should be the curve shape, 

illustrating the increasing change in weight, as the time difference between the two spikes 

∆𝑡 approach zero. When the time difference ∆𝑡 grows, the weight change will decrease.  
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The equation of weight change by STDP from a single spike event in two connected neurons, 

can then take the form of eq.16. 

 

∆𝑤 = {
𝐴𝑒

−|∆𝑡|

𝑇 , ∆𝑡 ≤ 0, 𝐴 > 0

𝐵𝑒
−|∆𝑡|

𝑇 , ∆𝑡 > 0, 𝐵 < 0
                                     (eq.16) 

 

The variable 𝑇 in eq. 16 is the defined timeframe for which synaptic modification should 

occur, while 𝐴 𝑎𝑛𝑑 𝐵 are constants indicating the learning rate. Eq.16 is found in both [47], 

[49], however, spiking neural networks rarely deploy the exact form of STDP given in eq.16. 

Instead, variations of eq.16 is used depending on the system needs [49]. [24] is an example 

of STDP learning being deployed in a similar manner to eq.16. A deep spiking-CNN is used for 

object recognition, achieving 98.4% accuracy on MNIST with the given STDP method. 

A STDP model for spike trains, as compared to being limited to of single spike outputs for 

each neuron as eq.16, is given in eq.17. The STDP model for spike trains was proposed in 

2002 by Gerstner and Kistler [15]: 

 
𝑑

𝑑𝑡
𝑤𝑗𝑖(𝑡) =  𝑎0 +  𝑎1𝑆𝑖(𝑡) + 𝑎2𝑆𝑗(𝑡) + 𝑎3𝑆𝑖(𝑡)𝑆𝑗̅(𝑡) + 𝑎4𝑆𝑖̅(𝑡)𝑆𝑗(𝑡)              (eq.17) 

 

In eq.17,  𝑤𝑗𝑖  is the synaptic weight between neuron 𝑖 𝑎𝑛𝑑 𝑗. 𝑆𝑖 ,  𝑆𝑗 are the spike train 

outputs by the two neurons. The spikes in the spike trains are modelled as instantaneous 

pulses in time (illustrated in fig.6). 𝑆𝑖̅ , 𝑆𝑗̅  are lowpass filters of their associated spike trains 

(also referred to as the “synaptic trace” – exponential decay of the spikes in the spike trains, 

instead of instantaneous as to retain a “spike history”). 𝑎𝑖  are constants controlling the rate 

of change in 𝑤𝑗𝑖, where 𝑎0 specifically controls the weight decay over time [42]. Eq.17 is best 

explained accompanied with an illustration, fig.6: 
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Fig.6: Illustrating STDP model given in eq.17.  The figure shows how the synaptic weight, 𝑤𝑗𝑖,  

between two neurons 𝑖 𝑎𝑛𝑑 𝑗. The change is given by a set of values for 𝑎𝑖, the spike trains 

𝑆𝑖 ,  𝑆𝑗 and their synaptic trace 𝑆𝑖̅, 𝑆𝑗̅. (figure taken from [42]) 

 

4.3. DNN-to-SNN conversion 

 

DNN-to-SNN conversion is a way to train spiking neural networks by converting an already 

trained traditional deep neural network, trained with backpropagation, to a spiking neural 

network. The spiking neural network aim to retain the trained weights from the deep neural 

network, while introducing the necessary parameters for spiking neurons [41]. The neural 

encoding scheme used by the spiking neural networks are limited by the DNN-to-SNN 

conversion method. Most DNN-to-SNN conversion methods limit spiking neural networks to 

use rate encoding. The use of rate coding makes the transformation of the deep neural 

network to an spiking neural network simpler, as the analog output of the deep spiking 

neural network, can be directly recreated by the rate coding of spike train outputs in the 

spiking neural network. Hence, although some of the best accuracy results by spiking neural 

networks are from using DNN-to-SNN, much of the benefits of spiking neural networks are 

lost using the conversion method, as the network does not retain any temporal information, 

given that rate coding was used. However, some DNN-to-SNN methods, like [61], convert 

deep neural networks to temporal-coding spiking neural networks. The trend of using 

temporal-coding in DNN-to-SNN conversion learning methods, are growing.  

 



29 
 

4.4.  Performance of Spiking Neural Networks 

 

Spiking neural networks have lagged behind traditional artificial neural networks in accuracy 

performances on datasets such as MNIST, both historically and till this day. However, the 

gap between the accuracy results achieved by spiking neural networks and traditional neural 

networks is decreasing steadily. To the authors knowledge, the current best result on the 

MNSIT dataset is an accuracy of 99.84%, achieved by a traditional neural network[8]. The 

best spiking neural network result found was 99.62% in comparison, included in table 1. The 

author could not find any unsupervised learning methods for spiking neural networks able to 

produce similar results, although spiking neural networks are well suited for unsupervised 

learning methods. The best results achieved from unsupervised learning on the MNIST 

dataset found by the author was 98.40% by [24], followed by [37] with an accuracy of 

96.80% (as average accuracies).  

DNN-to-SNN conversion methods are the learning methods that have achieved the highest 

accuracy results for spiking neural networks previously, however, direct learning on spiking 

convolutional neural networks have surpassed their conversion learning method 

counterparts. The fact that direct training of spiking neural networks has surpassed the 

conversion methods in some cases, bodes well for spiking neural networks. Although 

conversion methods have seen good improvements concerning minimizing accuracy loss, in 

the conversion between neural network types, it will not be possible for a spiking neural 

network to outperform a traditional artificial neural network by using conversion methods.  

The reasoning behind which model has been included or omitted in table 1, is to show the 

best accuracy achieved during a given year, while illustrating the gradual improvement in 

accuracy seen for spiking neural networks. For a more extensive table over spiking neural 

models up to and including 2017, the survey will simply refer to [49]. [32] includes a smaller 

table over unsupervised learning method results on the MNIST dataset. 
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Model: Architecture Learning method Year Accuracy 

Diehl [35] spiking CNN conversion 2015 99.1% 

Lee [21] spiking CNN modified backprop 2016 99.31% 

Rueckauer [2] spiking CNN conversion 2017 99.44% 

Wu [58] spiking CNN modified backprop 2017 99.42% 

Jin [57] spiking CNN modified backprop 2018 99.49% 

Zhang [60] spiking CNN modified backprop 2019 99.62% 

Chankyu Lee [27] spiking CNN modified backprop 2020 99.59% 

Diehl [35] ML-SNN conversion 2015 98.6% 

Lee [21] ML-SNN modified backprop 2016 98.88% 

Wu [58] ML-SNN modified backprop 2017 98.89% 

Jin [57] ML-SNN modified backprop 2018 98.93% 

Table 1: different accuracy achievements on MNIST dataset. ML-SNN = Multi-layer spiking 

neural network 

One must remember that due to the many differences in both neural coding and neuron 

model implementations, it might not be fair to simply list the accuracy results side by side. 

Much of the progress and research on spiking neural networks do not specifically try to 

achieve the highest possible accuracy score no matter the cost. One such example is Kulkarni 

2018 [26], achieving a respectable 98.17% accuracy on MNIST with a supervised learning 

method. The interesting part of [26], however, is that the accuracy was achieved while using 

far less learnable synapses than most other neural networks (Kulkarni used 81.120 learnable 

synapses compared to Lee 2016 [21] that used 581.520. While, the previous number one 

achiever on MNIST - DropConnect 2013 [56] used 2.508.470 learnable synapses, to achieve 

99.79% accuracy). 

Although only comparing the best achieved accuracies on MNIST by spiking neural networks 

do not give a full picture of the progress made, it should still be somewhat helpful in order to 

see the direction, as well as rate of improvement for spiking neural network performance. 

As to the reason for not including the Esser 2015 [46] and Liu 2017 [48] models in table 1 

although they achieved 99.42% and 99.10% respectively as ML-SNNs, is that they were both 

trained on neuromorphic hardware, compared to the models in table 1, which was all 

simulated on traditional hardware.  
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5. Benefits of Spiking Neural Networks 

 

In chapter 2, some different spiking neuron models was introduced, and in chapter 3 coding 

schemes necessary for interpreting spike signals, which is needed for spiking neural 

networks was covered. It became clear from those two chapters that spiking neural 

networks are more complex than conventional artificial neural networks, and as seen in 

chapter 4, although the gap between traditional neural networks and spiking neural 

networks are decreasing, spiking neural networks are still behind in terms of accuracy 

performance. The question is then raised as to why one should consider implementing a 

spiking neural network, despite the added complexity and inability to achieve performance 

results on par with traditional neural networks.  The current chapter try to summarize some 

of the advantages that spiking neural networks pose over conventional artificial neural 

networks. 

 

5.1. Brain Similarity 

 

Much of the motivation behind the development of artificial neural networks is to replicate 

[23] or, at least to some degree, mimic brain functionality. There are two main reasons for 

this: 1. To study how the human brain works, and 2. To make artificial neural networks have 

some or several desirable characteristics similar to the human brain, such as learning ability, 

adaptivity, generalization ability or low energy consumption [20]. When implementing an 

artificial neural network for achieving a specified goal, it might not always be ideal to use the 

most biological plausible model. The choice of neuron model must consider if the added 

benefits of increased biological plausibility weigh up against the associated computational 

complexity that follows using a more biologically plausible model. However, a network of 

biological neurons are able to achieve results and perform tasks well outside the range of 

what artificial neural networks are capable of. Therefore, one can argue that much is left to 

be gained by striving for increasing biological plausibility, as it might further increase the 

ability of artificial neural networks to mimic biological brain functions. Further an argument 

can be made that each generation of neural networks have seen an increase in the biological 

plausibility of the networks: The first-generation artificial neural networks implemented the 

perceptron, introducing synaptic weights that significantly improving the biological 

plausibility of the network, compared to a network of McCulloch and Pitts neurons. The 

second-generation neural networks were based on the same neuron model as the first 

generation, the perceptron, however, the output being interpreted as the firing-rates of the 

neurons, meant that a notion of time was introduced to the network, albeit only implicitly. 

The third-generation neural networks consisting of spiking neurons, then implemented time 

explicitly as a new “dimension” to the system, thereby allowing for asynchronous firing of 

neurons.   
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The added biological plausibility in spiking neural networks make them relevant in the study 

of neuroscience. While spiking neural networks might help study the human brain, it can 

also go the other way around. Some of the limitations of spiking neural networks have 

occurred due to a lack of an understanding for processes in the biological brain, such as 

information encoding and learning. Hence, if advances are made in neuroscience, it is likely 

that spiking neural networks will also benefit from the discoveries. Therefore, an argument 

can be made that spiking neural network still has untapped potential. 

 

5.2. Computational Power 

 

In order to discuss the computational power of spiking neural networks, it is necessary to 

define computational power what is meant by computational power. As found by the 

author, there is mainly two ways one can define computational power, the first is encoding 

capacity of the network for a given time window, while the second is the number of neurons 

required to perform a given task. As chapter 2 briefly mentioned the encoding capacity of 

different coding schemes used by spiking neural networks, this chapter will deal with the 

second definition of computational power. 

 

 

Fig.7: Response functions (EPSP-excitatory post synaptic potential and IPSP - inhibitory post 

synaptic potential) of a spiking neuron of type B, as defined by Maass. Note: “The particular 

shape of the ‘triangle’ is not important” [55] (figure taken from [55]) 

 

During the 1990s, Maass wrote several papers proving the theoretical computational power 

of spiking neural networks. In [55] he stated that his work implied that: “networks of spiking 

neurons (of type B) are in fact strictly more powerful than neural nets from the first two 

generations”. Maass’ statement was based mostly, on a set of findings: 

 

1. Any continuous function 𝐹: [0,1]𝑛 → [0,1]𝑘 that can be approximated arbitrarily 

close with 𝑠 sigmoidal units, with activation function π as given by eq.18, can also be 

approximated arbitrarily close by a network of 𝑂(𝑠) spiking neurons of type B. 
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𝜋(𝑦) =  {

0, 𝑖𝑓 𝑦 < 0          
𝑦, 𝑖𝑓 0 ≤ 𝑦 ≤ 1
1, 𝑖𝑓 𝑦 > 1         

                                                  (eq.18) 

 

 

2. Any given continuous function  𝐹: [0,1]𝑛 → [0,1]𝑘 can be approximated by a network 

of spiking neurons with a single hidden layer.  

 

 

3. A boolean function 𝐶𝐷𝑛: {0,1}2𝑛 → {0,1} defined by: 

 

 

𝐶𝐷𝑛(𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛) = {
1, 𝑖𝑓 𝑥𝑖 = 𝑦𝑖 = 1 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖 ∈ {1, … , 𝑛}
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                  

        (eq.19) 

 

 

The boolean function in eq.19 can be computed by a single spiking neuron. In 

comparison, a neural network of the first generation require at least 𝑛/log (𝑛 + 1) 

threshold gates, while a neural network of the second generation requires Ω(𝑛1/4) 

sigmoidal gates in order to compute eq.19. 

 

4. The “element distinctness function” - which takes in an analog input and returns a 

boolean output - 𝐸𝐷𝑛: (𝐑+)𝑛 → {0, 1} defined by: 

 

 

𝐸𝐷𝑛(𝑥1, … , 𝑥𝑛) =  {

1, 𝑖𝑓 𝑥𝑖 =  𝑥𝑗 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖 ≠ 𝑗                     

0, 𝑖𝑓 |𝑥𝑖 − 𝑥𝑗| ≥ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 𝑤𝑖𝑡ℎ 𝑖 ≠ 𝑗

𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                 

                 (eq.20) 

 

The function as given by eq.20 can be computed by a single spiking neuron. In 

comparison, a neural network of the first generation require Ω(n ∗ log(n)) threshold 

gates in its first hidden layer, while a neural network of the second generation 

require at least 
𝑛−4

2
− 1 hidden sigmoidal units. 

 

The proof for point 1 - 4 can be found in [55]. From point 1, it follows that spiking neural 

networks are at least as computationally powerful as neural networks from the two first 

generations. While point 3. And 4. Shows that spiking neural networks require far less 

computational units in some specific cases. Leading to Maass’ statement, that spiking neural 

models are strictly more powerful than earlier generation neural networks. 
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Important to note is that point 1 through 4 was strictly theoretical results.  Appropriate 

values for the weights in spiking neural networks must be chosen for the points to hold true. 

As seen in chapter 3, finding appropriate weights  by learning in a spiking neural network, 

proves a harder challenge, compared to earlier generations neural networks.  

Further, although spiking neurons are computationally more powerful than their 

predecessors, their per unit implementation cost is higher than earlier neural models. 

Therefore, depending on which spiking neuron model is chosen, a network of 𝑁 spiking 

neurons might be more computationally demanding than a network of 1000 ∗ 𝑁 sigmoidal 

units. 

 

5.3. Energy Efficiency in Event Driven Neural Processing 

 

Energy consumption is a relevant theme in most systems wishing to implement artificial 

neural networks. For mobile systems, be it robots or phones, the necessity for energy 

efficiency is clear. However, even for systems that can be plugged in, the benefit of low-

energy consumption cannot be underestimated. An increasing amount of energy usage in 

the world goes toward computing, and it is beneficial to use the minimum amount of energy 

necessary for any given task, be it for saving money, or the environment.  

Neuromorphic hardware is a relatively new form of spike-based hardware. The design 

principle of such hardware is to ideally have a dedicated processor for each spiking neuron in 

a network without a central clock [41]. Most neuromorphic hardware in production as of 

today, such as Intel’s Loihi research chip or SpiNNaker, do virtualize the neurons on their 

cores – around 1000 for each core, instead of having a one to one mapping between cores 

and neurons. However, the number of virtualized neurons per core in neuromorphic 

hardware is far below what one would see in the case of an artificial neural network 

virtualized on a normal CPU or GPU. Neuromorphic hardware can be seen as a physical 

implementation of spiking neural networks. Neuromorphic hardware also allows for on-chip 

learning and enable the neural network implemented on the hardware to be run in real 

time, increasing the application potential.  

The main differences between traditional (von Neumann based) hardware computation and 

neuromorphic hardware computation can be summarized as in table 2: 

von Neumann Neuro-inspired computing 

Very high operation frequency (GHz) Low operation frequency (KHz) 

Centric computation Distributed computation 

Low parallelism High parallelism 

Low power efficiency High power efficiency 

Table 2: Comparison between von Neumann and neuromorphic computing (table taken from 

[50]) 
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The main reasons for the difference in energy efficiency between the two architectures is 

due to the difference in operation frequency, as well as the lack of need for a central clock in 

neuromorphic systems.   

One of the main application areas where neuromorphic hardware can see potential use is for 

low-energy consumption systems that run in real-time, receiving sensory input data from the 

outside world, such as [14]. The benefit of spiking neural networks in this situation is that 

spiking neurons are event-driven by nature, meaning that they only compute when receiving 

an input spike. Hence, for situations where sensory input is sparse, one could expect a 

significant amount of energy saved, in compared to traditional artificial neural networks that 

need to update each neuron for every timestep [18]. A further benefit from event-driven 

computation is that the communication time is reduced greatly. Artificial neurons in 

traditional neural networks have to send their output value for every timestep. For a spiking 

neural network, given a certain, small time window, there should only be a small fraction of 

the spiking neural network sending information. Since only a small portion of the spiking 

neurons transmit signals at a given time, it results in a better balance between computation 

of neuron output, and communication time – erasing or limiting communication bottlenecks. 

The Loihi research chip has been successful in demonstrating a two to three orders of 

magnitude energy efficiency gain over artificial neural networks implemented on 

conventional hardware [34]. 

 Neuromorphic chips are, as of today, not available to the consumer market. However, 

Applied Brain Research (ABR) is in the process of developing what they claim to be an 

inexpensive neuromorphic board called “Brain Board”, hinted to come out in 2021 in the 

presentation “Spiking Neural Networks for More Efficient AI algorithms”2 by Dr. Chris 

Eliasmith. Dr. Chris Eliasmith is both, the current director of the centre for theoretical 

neuroscience at the university of Waterloo, and one of the founders of ABR. 

 

5.3.1 Pseudo Simultaneous Input-Outputs 

 

Lastly, another benefit from spiking neural networks that run on neuromorphic hardware is 

that the output from the network start being generated from the first instance of an input 

signal being received. To further elaborate: When spiking neural networks are run on 

neuromorphic hardware, allowing for event-driven computation of spike generation, spikes 

are immediately passed on to the receiving neuron, as the neurons do not need to 

synchronize their output. The immediate propagation of spikes, down the network, result in 

the spiking neural networks generating an approximate answer, “pseudo-simultaneously” 

[62] as the input is received. Hence, the output is generated while the network process the 

“input event flow” (input that is received over time). The pseudo-simultaneously nature of 

the input and output flow means that the event-driven spiking neural network can, at each 

moment, have an estimated “best guess” of what the output is going to be. The importance 

 
2 https://www.youtube.com/watch?v=PeW-TN3P1hk&t=336s 

https://www.youtube.com/watch?v=PeW-TN3P1hk&t=336s
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of such approximate outputs can be best seen in applications needing fast processing, such 

as autonomous bipedal robots. The approximate output would allow such a robot to make 

estimated guesses, based on already received and processed information. Therefore, if the 

robot started to lose balance, the system would not have to wait for sensory information on 

say, the hardness of the ground, or head orientation compared to the rest of the body, 

before starting to perform actions in order to regain balance. Then, when the sensory 

information on the ground hardness, or relative head orientation becomes available, the 

system can update its preferred actions to keep balance if necessary. 
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6 Challenges of Spiking Neural Networks 

 

Some of the challenges spiking neural networks face might have already become apparent in 

earlier chapters. In general, one can argue that spiking neural networks have been limited 

partly from its non-standardization. A plethora of different spiking neuron models, and 

neural encoding schemes, make spiking neural networks able to adapt more freely, to give 

the desired biological plausibility and computational complexity. However, the fact that no 

general-purpose supervised learning algorithm exist for spiking neural networks can be 

partly contributed to a lack of spiking neuron model and neural encoding scheme uniformity. 

The other important factor for the lack of a general-purpose learning algorithm, is the 

discontinuous nature of the output spike-train. However, if one assume that a leaky-

integrate and fire spiking neuron model is used, as well as limiting the encoding scheme 

options used in order to give feedback to the network, supervised learning algorithms that 

use both the temporal and rate information present in spike train outputs exist, such as [27].  

 

6.1  The State of Spiking Neural Networks 

 

Spiking neural networks are still seen as a niche of artificial intelligence research [54]. Many 

are highly sceptic of the potential use of spiking neural networks, such as Yann LeCun, chief 

AI scientist at Facebook, stating “I’m very sceptical about this (neuromorphic hardware and 

spiking neural networks)”3 at ISSCC 2019 (International Solid-Sate Circuits Conference). 

However, others, such as Michael Frank, chief architect at Arteris IP have said “SNNs have 

their domain where they will outrun a standard network. Even a digital emulation of an SNN 

is better than a classical CNN” [33]. Some of the disagreement might stem from a 

disagreement of what constitutes a spiking neural network. Disagreement in the definition 

of spiking neural networks, can lead to people having quite different views about the state of 

spiking neural networks as of today. Some claim spiking neural networks are far from being 

commercialized and maybe never will, while others, especially those working on spiking 

neural networks themselves, have a more generous outlook, such as Intel’s Loihi team and 

ABR researchers. As spiking neural networks are still regarded as a relatively niche area of 

artificial intelligence research, statements from prominent individuals in the field of AI, such 

as Yann LeCun, can make people less inclined to actually investigate on the state of spiking 

neural networks any further.  

 

 

 

 
3 https://www.youtube.com/watch?v=YzD7Z2yRL7Y&feature=youtu.be&t=2120 

https://www.youtube.com/watch?v=YzD7Z2yRL7Y&feature=youtu.be&t=2120
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6.2  Comparability 

 

Another challenge for spiking neural networks is the benchmarks, such as MNIST, used to 

compare spiking neural networks with other artificial neural networks. Benchmarks such as 

MNIST does not enable spiking neural networks to showcase many of their associated 

benefits, such as low-energy consumption or reduced latency. Such benchmarks also require 

spiking neural networks to perform some sort of input-signal mapping. Second-generation 

neural networks can easily convert images to numbers for neural input, based on the pixel 

greyscale. However, the way to convert an image into an input for a spiking neural network 

is not that easy, as one need to implement the notion of time in the input signal. The 

conversion from image to spike-train input is typically lossy and inefficient [41]. The inability 

to show the potential benefits of spiking neural networks through conventional benchmarks, 

might also be some of the reason for the difference in view of the state of spiking neural 

networks. 

Further, as stated before, these benchmarks might not be a fair way of comparing spiking 

neural networks against each other, as different networks use different neural models and 

neural encoding schemes, which cannot be compared in directly in a fair way. Hence, it is 

difficult to accurately see the progress of development of spiking neural networks. 

 

6.3  Non-Optimal Hardware 

 

the existing von Neuman based hardware available today is not optimized for spiking neural 

networks. The lack of available neuromorphic hardware has meant that much of the benefits 

one can expect from spiking neural networks is yet to been seen, mostly associated with 

temporal event-driven processing. There exist only a limited number of loihi-based test 

systems4, which means getting hold of one for research might be a challenge. For what the 

author could find, the other neuromorphic systems existing today also only exist in limited 

quantities. Although, neuromorphic hardware availability will change in the near future for 

the better, the lack of optimal hardware to-date might be a reason for a slowed down 

progress in the development and research of spiking neural networks. 

 

 

 

 

 

 
4 https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html 

https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html
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7 Conclusion 

 

More than two decades have passed since Maass wrote his influential paper “Networks of 

Spiking Neurons: The third Generation of Neural Network Models” introducing the concept 

of spiking neural networks as the third generation artificial neural network, while laying the 

foundation of further research into the topic, by theoretically proving their computational 

capacity. Nevertheless, spiking neural networks have yet to replace the second-generation 

neural networks, sigmoidal neural networks, as the main workhorse of the artificial neural 

network community. From what the author could gather, this is due to several facts:  

Firstly, sigmoidal neural networks are already really efficient in a range of tasks such as still-

image recognition. Further, as new learning methods have to be developed to be used in 

spiking neural networks, it is hard to overcome sigmoidal neural networks that has 

benefitted from many extra years of research and development.  

Secondly, although sigmoidal neural networks were mainly just an upgrade compared to the 

earlier threshold neural networks, spiking neural networks cannot be seen as a strict 

upgrade to sigmoidal neural networks in the same way. Spiking neural networks and 

sigmoidal neural networks excel at different areas. Spiking neural networks will most likely 

find its usage in real-time processing, such as self-driven cars and robots needing to respond 

differently depending on sensory input, learning while actively performing tasks. Other areas 

of use are low-power units, where the tiny gains in extra accuracy expected from sigmoidal 

neural networks is of little importance, compared to the sometimes-massive energy saving 

benefit that neuromorphic hardware can bring.  

Thirdly, as spiking neural networks are more biological plausible than sigmoidal neural 

networks, problems such as how to interpret spike-trains as an output suddenly arise. 

Machines today use almost no effort to compare value outputs and give the answer as the 

highest number. However, as there is still no conclusive theory about neural encoding, 

several different ideas are implemented, which are more costly to interpret than simple 

number values. The neural coding problem adds a new area of discussion, where spiking 

neuron models can implement different strategies, making spiking neural networks less 

uniform than their earlier generation artificial neural network counterparts. 

Then as to answer the research question of whether spiking neural networks will replace 

sigmoidal neural networks; It is the authors belief that spiking neural networks will most 

likely not replace sigmoidal neural networks the same way sigmoidal neural networks 

replaced their predecessor, at least in the foreseeable future. Newfound research in the field 

of neuroscience on how the brain learns, or encodes information might change this, 

however this is not a topic the author is able give any constructive remarks on. Although the 

author does not believe that spiking neural networks will replace sigmoidal neural networks, 

the author still believes that spiking neural networks certainly has its place in the years to 

come. Spiking neural networks will most likely see usage in real-time event-driven 

applications, as well as other temporal-associated tasks, such as speech processing. Further, 
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spiking neural networks can serve as a way to study the processes in biological neural 

networks. 

As the belief of the author is that spiking neural networks will not replace sigmoidal neural 

networks, but instead be developed alongside it, the second research question become 

obsolete. Nevertheless, the author will take the opportunity to talk about what has held 

spiking neural networks back in general. There seem to be two main reasons that has held 

back spiking neural networks thus far. 

The higher biological plausibility of spiking neural networks has meant that implementing 

learning methods have become harder as one suddenly has to deal with the temporal axis 

and are back to discontinuous outputs. There is reason to believe that this will remain a 

challenge, until a breakthrough in the understanding of how the biological neural network 

learns and encodes information occur. 

 Further another reason for spiking neural networks still being considered a niche might be 

due to the lack of available neuromorphic hardware, which can showcase the benefits of 

spiking neural networks. Applications imagined to benefit from spiking neural networks, 

such as self-driving cars, and many forms of more advanced robots needing fast processing 

for such as balancing, are still in the research phase and under constant development. While 

sigmoidal neural networks see their deployment in several areas targeting consumers such 

as social media filtering, user-targeted advertisement, and language translation, spiking 

neural networks are still mainly implemented related to research only. The lack of examples 

of successful commercial implementations of spiking neural networks so far, might have 

limited the amount of investment spiking neural networks have seen to date. Although, it 

seems that interest for spiking neural networks are growing, based on the amount of 

research papers being generated last year and during this spring (2020). 

 

7.1  Further Work 

 

Spiking neural networks touch upon several different fields of expertise, mainly focusing on 

machine learning and neuroscience. Future work expanding the survey include reading up on 

different forms of learning methods not mentioned in chapter 4, mostly Reinforcement 

learning methods, as reinforcement learning has become an increasingly important area of 

learning in the machine learning community in recent years.  

Further, another way of training spiking neural networks not touched upon in this survey is 

the idea of reservoir computing. From what the author could gather the main idea behind 

reservoir computing is based around the recurrent neural network topology. The reservoir 

computing topology consist of a set of input cells, a recurrent network, consisting of a set of 

neurons with randomly generated connections between them in a sparse and fixed manner, 

as well as a set of output neurons. The input and output neurons are connected to the 

recurrent neural network, which is called the “reservoir” (hence the name reservoir 

computing). The output neurons read the state of the reservoir at a given time and map it to 



41 
 

an output signal. What differentiates reservoir computing from recurrent neural networks is 

that the reservoir is usually treated as an “unapproachable” unit left untrained, so the only 

training required are of the output weights. The idea of only training the output weights 

makes supervised training of artificial networks implementing reservoir computing, easier 

compared to implementing supervised training on traditional recurrent neural networks. 

Reservoir computing is not limited to spiking neural networks, however, spiking neural 

networks allow for a form of STDP learning (unsupervised) to be implemented on the 

reservoir intself, without needing to understand the dynamics of the reservoir.  

 

 

Fig.8 representing reservoir computing on a spiking neural network. 𝑑(𝑡) − 𝑦(𝑡) is the error 

signal used for supervised training of the output weights, while the circle containing 

randomly interconnected neurons are the reservoir. (figure taken from [59]) 

Reservoir computing can be divided into Echo state network (ESN), which can be used by 

non-spiking neural networks as well as spiking neural networks, and liquid state machines 

(LSM), reserved for spiking neural networks. More research is needed by the author to gain a 

thorough understanding of the subject of reservoir computing in spiking neural networks. 

[65] Use LSM to perform automatic speech recognition.  

Lastly, another specific neuron model worth exploring further, not introduced in this survey, 

is the spike response model (SRM). The main difference between the SRM model and the 

other models mentioned in this survey is that the firing threshold of the neuron in question 

is not gained as an input, but instead time-dependent based on the firing history of the 

neuron. Interestingly enough, it is apparently possible to map an integrate and fire neuron 

model to an SRM model [63]. More investigation of the underlining mathematics behind the 

SRM model is needed by the author for it to be included in this survey. Hence, it is instead 

recommended as an opportunity of further reading for those interested.  
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