
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Ba
ch

el
or

’s
pr

oj
ec

t

Mathias Braathen
Eyvind Nikolai Holt

A Study on AI Behaviour & Complex
Navigation

Bachelor’s project in Computer Engeneering

Supervisor: Ole Christian Eidheim

May 2020

Mathias Braathen
Eyvind Nikolai Holt

A Study on AI Behaviour & Complex
Navigation

Bachelor’s project in Computer Engeneering
Supervisor: Ole Christian Eidheim
May 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Preface

Riddlebit, a fairly new game development company, is in the making of a game called Setback.
It’s a first person shooter game, with a goal of reaching a set amount of checkpoints in a map and
eliminate other potential enemies on the way. As they want players to be able to practice, the
option of being able to play against a computer controlled enemy is desired. We were therefore
tasked with finding a solution for an Artificial Intelligence, that can take on the role of an enemy
in the game.

Our initial goal was to implement a fully functioning AI for the game, but the game world isn’t
just flat with a few slopes. There are several obstacles and unique ways to move around, and so
figuring out a practical way to represent the world, quickly became the largest task at hand. The
focus of the paper was in the early stages originally to present a working AI for Riddlebit, but after
discovering the insufficiency of Unreal Engine’s navigation system, we decided to change focus to
showing what is possible with Unreal Engine and started research into a suitable improvements
or alternatives.

Acknowledgments

We would like to thank Riddlebit for continuous cooperation and help throughout the writing of
this thesis, especially from Jonathan Jørgensen.

We would also like to thank our supervisor Ole Christian Eidheim for feedback and guidance.

Mathias Braathen Eyvind Nikolai Holt

1

Problem Description

Our task is to create a solution for bots for Setback, to provide players with an option to play
against a computer controlled enemy for practice. The contribution will be in the form of a
plugin for Riddlebit to use in their development of Setback, using the game development engine
Unreal Engine 4.

We will in addition to our solution for the bot using the systems currently available in Unreal
Engine, explore other possible approaches for AI behavior and navigation. The field has substan-
tial research, but there has yet to be implemented a complete solution. Therefore the the focused
changed from the development of a plugin into research on how to represent the environment in
a graph.

Abstract

AI behavior and navigation is a relatively new subject in the scope of video games, as their
popularity has risen since the late 20th century. There are many different methods used for
controlling an AI, and representing the game world for the pathfinding method to give the AI
a route to follow. In the thesis, we explore different system for controlling AI behavior and
compare them, and test out if the behavior tree that Unreal Engine provides is sufficient. We
implement navigation for the AI using what system are already available in Unreal Engine, and
compare them to other implementations and potential alternatives. We observe how jumping
and other actions related to navigation are difficult to implement and limited with the current
Navigation Mesh system. Then discussing some of the improvements that can be done to the
connections in the Navigation Mesh or if voxels is a better solution.

Sammendrag

AI oppførsel og navigasjon er et relativt nytt tema innenfor dataspill, siden populariteten deres
har steget betydelig siden slutten av 1900-tallet. Det finnes mange forskjellige m̊ater å kontrollere
AI p̊a, samt å finne en m̊ate å representere verden i spillet p̊a slik at det er mulig å finne en
vei AI’en kan følge. I denne oppgaven skal vi utforske systemer for å kontrollere AI oppførsel
og sammenlikne dem, for å teste om Behavior treet Unreal Engine tilbyr er tilstrekkelig. Vi
ser p̊a hvordan hopping og andre handlinger knytttet til navigasjon er vanskelig å implementere
og begrenset med det eksisterende Navigation Mesh systemet. Vi diskuterer deretter noen av
de forbedringene som kan gjøres med kobling av Navigation Mesh eller om voxler er en bedre
løsning.

2

Contents

1 Introduction 9
1.1 Research questions . 9
1.2 Thesis Outline . 10

2 Background 11
2.1 Action space . 11

2.1.1 GOAP . 11
2.1.2 Behavior Tree . 12

2.2 Pathfinding . 13
2.2.1 Dijkstra . 13
2.2.2 A-star . 14

2.3 Discretization . 14
2.3.1 Waypoint graph . 15
2.3.2 Visibility graphs . 15
2.3.3 Navigation mesh . 16
2.3.4 Regular grid . 20
2.3.5 Voxel grid . 21

3 Related work 23
3.1 AI behaviour . 23
3.2 Runtime jump calculation . 23
3.3 Generating Jump Links . 24
3.4 Different sized agents in a navmesh . 25
3.5 Voxel Grid . 26

4 Method 28
4.1 Action Space . 28
4.2 Navigation . 28

4.2.1 Increasing step height . 29
4.2.2 Jump detection . 30
4.2.3 Different sized agents . 33
4.2.4 Navigation testing . 33

5 Results 35
5.1 Shooting . 35
5.2 Navigation . 35

6 Discussion 37
6.1 Behavior . 37
6.2 Navigation . 37

6.2.1 Jumping . 38
6.2.2 Perfomance . 39

6.3 Cooperation . 39

7 Conclusion 40
7.1 Future work . 40

A Blueprint of the jump function 45

3

B Resource Appendix 50

4

List of Figures
1 Choosing actions in GOAP[12] . 12
2 Behavior tree example from Unreal Engine . 13
3 Dijkstra’s algorithm (heuristic cost of zero) . 14
4 A* algorithm (heuristic cost using Euclidean distance) 14
5 Waypoints graph . 15
6 Visibility graph . 16
7 Navmesh . 17
8 Navmesh in Unreal Engine 4. Green lines markes the edge of the navmesh, black

lines mark the edge of the polygons and white lines markes the edge of the triangles
the polygon is built from . 18

9 Navmesh in Unreal Engine 4 with filled polygons and polygon edges set to visible 18
10 The Nav Link Proxy used in Unreal Engine 4 . 19
11 The Off-Mesh Link used in Unity. The multiple links to the right is the links

generated by Unity, while the single link on the left is the manually added link . 19
12 The NavMesh Link used in Unity . 20
13 Regular grid, the blocked squares marked in red. Containing 183 tiles 20
14 Quadtree grid with 4 levels, the blocked squares marked in red. Containing 228

tiles, if we had only used 3 levels it would have contained 145 tiles 21
15 A voxel grid containing 64 cubes and a voxel octree containing 22 cubes 22
16 Jump trajectories drawn over a grid as visualization of the lookup table, Budde

2013[4] . 24
17 An unsmoothed path (purple) and a smoothed path (pink), both traveling through

a jump link (green area). Budde 2013[4] . 25
18 Multiple navmeshes to let agents of multiple sizes move around 26
19 Example of a portal in NEOGEN[25]. The portal P is restricted by the agent

radius r and is defined as the line between point a and b 26
20 Standard step height in Unreal Engine 4 . 29
21 Increased step height in Unreal Engine 4 . 30
22 The line traces used to determine if a jump should be performed. The blue line

is to check if the object is too tall, teal for checking that it is tall enough and the
red line is to check if a edge should be jumped. 31

23 Our testing map as seen from the top . 34
24 Our testing map as seen from the side . 34
25 Behavior tree for AI behavior in Tom Clancy’s The Division 41
26 Combination of all the jump functions . 45
27 First part of the Jump Check Blueprint . 46
28 Second part of the Jump Check Blueprint . 47
29 This is run to check if obstacle is too high . 48
30 This runs to make it jump if its right in front of a wall 49
31 Functions to add for bot in BP SBPlayer . 50

List of Tables
1 Average results from shooting tests with different weapons over 5 tests per weapon 35
2 Results from tests of navigating a test map with different methods 35
3 Results from tests of navigating a test map with different methods, was run on

the laptop specified in table 4 . 36
4 Specifications of the laptop the runtime test, Table 3, was run on 36

5

Listings
1 Pseudocode of the test if a jump should be performed 32

6

Definitions
Complex Navigation Navigation that requires more than just walking on the

navmesh. An example is jumping.
Unreal Engine 4 (UE4) A Game development platform and a 3D graphics engine.
Character A representation of a person in the game world, often also

referenced as a pawn.
Behavior tree A visual representation of a tree that determines a decision

or behavior.
Environment The world that our character moves around in.
Navigation Mesh A representation of the environment that we can traverse

with a pathfinding algorithm. Most often referred to as a
navmesh.

Discretization Making a continuous environment into a graph that can
be traversed.

Link A way to connect two unconnected edges of a navmesh.
Portal The connection that is between the edges of the polygons

that make a navmesh.
Waypoint A point in the environment that acts as a goal to move

towards for an agent. Is also a type of discretization
Checkpoint The game representation of a waypoint, in Setback the

nodes a player need to reach.
Jump pad A pad that launches a character higher than it can nor-

mally jump.
Runtime The time it takes for a action to complete in milliseconds.
Frame A picture that is shown on a screen
Heuristic A way to solve a problem that may not be optimal, here

used for a method used to determine the length between
two points.

Euclidean distance The straight line between two points
A.I. Artificial Intelligence, in this thesis this is a character con-

trolled by a behavior tree and is navigating on a navigation
mesh.

Controller The term in UE4 that says who is controlling a character.
Agent An agent is what we call a character where the controller

is a behavior tree and not a person.
Blueprint A node-based scripting interface system for creating game-

play elements in the UE4 editor.
AIPerception A component in UE4 which allows an agent to perceive

certain objects or characters around it in certain ways
AISense Sight An element that can be added to the AIPerception com-

ponent, giving it the ability to making an event trigger
when something enters within its sight.

AIPerceptionStimuliSource A component i UE4 which allows an agent to be perceived
by other agents.

7

Action space A list of the actions an agent may take, we also use it as
the umbrella term for the technique that decides which
action should be taken.

Line Trace A way to determine if there is an object between two
points. A line is drawn between the two points and deter-
mines if it hits anything.

Sphere Trace The same as a line trace, but with a sphere instead of a
single line. The sphere has a radius.

8

1 Introduction

From the old classic games like Pong and Super Mario Bros, to the more modern approaches to
video games like Skyrim and the Witcher, the AI in the game is a central part of all of them.
Whether its to get a ping pong ball past the opponents side, or lure the player into a dangerous
area where they can be killed, AI can be what sets these games apart. Nobody wants to get
their asses kicked every time they press ”play”, but its not like they want to easily take the win
every time either. Providing a challenging, but fair environment to the player is not always an
easy task. Therefore, the demand for a system which provides a game with a suitable AI is high.

In this paper we will be taking a look at the two essential parts of what makes an AI what it is.
The first one is behavior; what makes the AI do what, and when? Since the era of video games
started, there have been invented different ways of designing AI behavior, and we will explore
some of them. The next is navigation; how does the AI maneuver through the world? Moving
from point A to point B in itself is no big hurdle, but we want the enemies in the game to seem
intelligent and act like they know where they are going.

Development and testing will be done through the Unreal Engine 4 (UE4) game development
platform. The environment we will be using is the game Setback1. Setback gives us some of
the challenges through their complex level design, movement system and multiple weapons. By
complex level design and movement, we refer to the fact that there is more to it than just walking
on a flat floor. Obstacles and alternate ways of traversing the map, like walking on jump pads
or swinging across gaps with your grappling hook, are very much a big part of moving around
in the game.

1.1 Research questions

Winning in a game does directly correspond to fun for the player, and neither does losing -
overcoming a challenge does. How the AI in a game behaves and reacts to the player in a fitting
manner is a central piece in the puzzle to give that player an enjoyable experience. While defining
our research question for the behavior part of this paper, we need to make sure we have the right
focus.

• What systems are available for implementing behavior for an AI, and which one is most fitting
for a game like Setback?

There are several methods aimed at AI behavior implementation, and so we need to seek out the
most relevant ones and compare them. In addition, we also need to figure out which one will be
the best option for Setback, which will be the environment used for this thesis.

An agent needs to be able to find the best path to its current goal. Given the complex environment
that Setback has there are some limitations to the representation that the current solution
provides. Our second research question then becomes:

• How well can we navigate in the current representation of the environment that Unreal Engine
gives us?

By this we mean that we are mainly focused on how well the graph represents the environment
for the pathfinding. Are there parts of the environment that are not represented, and how do
we then represented these? And with these representations, we look at how long the agent uses
around a route.

1Link to Setback page: https://setback.riddlebit.net

9

1.2 Thesis Outline

This paper is constructed of 7 chapters, and some appendices at the end. The first chapters,
1 and 2, are theory and introductions, and will acquaint the reader with necessary knowledge
to properly understand the following chapters. Chapter 3 introduces to the related work on
the subject. Many others have explored this subject, and the ones most related to our focus
are mentioned here, with their methods and results. Following is chapter 4, where we show
our implementation and methods used to achieve results. This includes how we implemented
AI behavior, navigation, and how testing was executed. After methods we show results with
implementation of the current system for navigation in the engine. The discussion is chapter 6,
where we discuss the result, and evaluate our methods to others. Lastly in chapter 7 we have
our conclusion, and discuss potential future work.

10

2 Background

There are many parts that needs to work together to get the best experience for the player from
an AI. In shooting games one can simply make an AI unbeatable by always hitting the player
perfectly the moment the player is visible to the AI, but it is not a good experience for the player
if the game feels unfair. F.E.A.R.[24, 27] and Halo[11, 13] are two games that stand out for many
when they think about good AI and a good experience when you play.

F.E.A.R. had the problem that the AI was too good and thinking too tactical, they solved much
of the problem with this by making the AI shout what they were doing so the player felt that
they could read the movement of the AI, and outmaneuver the AI agents.

Halo also had problems with the AI, but almost at the other scale. The players felt that the
AI too easy. Through playtesting they found out that the player was killing the enemies too
quickly. By simply making the AIs tougher, the amount of players that thought the AI was
”Very Intelligent” increased from 8% to 43%.

2.1 Action space

For an AI to be able to do something in a game, it first needs a set of actions it is allowed to
perform, also known as an action space. The action space will consist of all actions available to
the AI, which will be used through methods such as GOAP or Behaviour Tree to determine its
behaviour.

2.1.1 GOAP

Developed for F.E.A.R. in 2004 by Jeff Orkin [26, 27], and later used for other large game fran-
chises as Tomb Raider and Middle-earth: Shadow of Mordor[12], Goal-Oriented Action Planning
focuses on setting up goals for the AI in the game, with desired world states to aim for, using
the actions available from the assigned action space. For example the goal could be to kill the
enemy, therefore the desired world state would be ”attacking target X”, where X is the player.
The actions used to complete this goal could be a melee or a ranged attack, which then again are
dependent on certain world states. Both actions will satisfy the world state ”attacking target
X”, with the melee attack action requiring other world states like ”at target X” indicating that it
is or is not at the location of the target and ”equipped melee” checking if it has a viable weapon
for melee combat, making a melee attack possible.

11

Figure 1: Choosing actions in GOAP[12]

From Figure 1 we can see an example of how different actions are chosen, based on world states,
through the use of A-star. Based on the example situation, we see that not much is going
on, except for the fact that the AI has a suitable melee weapon equipped. Running through a
list of goals, the AI realizes it has an opportunity to kill an enemy, and starts to explore the
opportunities. To be able to accomplish this the A-star algorithm can explore the two nodes
”Melee Attack” and ”Ranged Attack”, both having a cost of one for keeping it simple, and both
having required world states. Seeing that the ”Melee Attack” node only need one more required
world state, the A-star will prioritize exploring deeper that way first. Assuming we have another
action such as ”Goto Target” available in the action space, the A-star finds that node as a
neighbour to ”Melee Attack”. Noticing that the ”Goto Target” action will make the ”At Target
X” world state true, giving the AI a plan; using the action ”Goto Target” and ”Melee Attack”
resulting in killing the enemy, assuming only one attack is necessary.

Applying this planning method for AIs in games, especially large ones as Tomb Raider and
Middle-earth: Shadow of Mordor, can be quite performance heavy as both world states and plan
lengths needs to constantly be calculated and changed.

2.1.2 Behavior Tree

Behaviour trees are excessively used in the game industry for determining behaviour for an AI.
Games mentioned above like F.E.A.R and Halo are excellent examples of games utilizing this
tool. The use of the behaviour trees are quite popular, due to the fact that they are easy to set
up, debug and utilize, as well as giving the developer an easy way to view the AI’s behaviour.
The only thing required to use a behaviour tree is to first create an action space for the AI.

12

Figure 2: Behavior tree example from Unreal Engine

In Figure 2 we see an example of a behavior tree from UE4. The sequence is set to react to two
conditions; either the ”CanSeePlayer” variable is true or false. If it’s false, the AI will hold up
its shield. If it’s true, the AI will focus its camera on the player, start shooting at it and follow
the player as long as its within sight, following the actions from the set action space in order
though the sequence.

2.2 Pathfinding

Without pathfinding an agent would be just moving in random directions and would have
no information about the world that it is occupying. There are many different pathfinding
techniques[1] and which pathfinding method that is used is often dependent on the problem that
is in need of solving.

2.2.1 Dijkstra

Dijkstra’s algorithm is an algorithm for finding the shortest path between nodes in a graph[34],
used often to solve problems relating to network routing, navigation through networks of roads or
in games. Using Figure 3 as an example, we see Dijkstra’s algorithm in effect[44]. In this case the
cost of every node is equal, and therefore all neighboring nodes will be explored in all directions
until the goal is located, causing the ”flooding” effect of Dijkstra’s algorithm one can see from

13

the figure. Observing Figure 3 it’s worth noting that a large amount of the nodes explored are
not in the right direction of the goal, and so variations to the algorithm has been made to solve
this problem of having explored unnecessary nodes.

Figure 3: Dijkstra’s algorithm (heuristic cost of zero)

2.2.2 A-star

A-star is a variant of Dijkstra’s algorithm which uses the same logic[33], except it also takes
into account a heuristic, often euclidean distance to the goal, to force the algorithm to prioritize
nodes closer to the target. Observing Figure 4 we see that the algorithm immediately starts
focusing on the nodes with a shorter euclidean distance to the goal. A-star substantially reduces
the search area, resulting in finding the optimal path faster. Since the A-star algorithm takes an
extra variable into account, its major drawback is the time used to explore each node is a little
higher. However, due to the fact that the A-star algorithm is more efficient than Dijkstra’s in
terms of what nodes it explores by only exploring the promising ones, it’s the one preferred to
use in most cases[44].

Figure 4: A* algorithm (heuristic cost using Euclidean distance)

2.3 Discretization

This is one of the first problems of pathfinding[23], and it is how to represent the world in a
way that keeps almost all the granularity of the world but represents it in the most lean way.
The less data you keep of the world, the faster the resulting graph would be to traverse, but the
pathfinding algorithm may find a sub-optimal path, as the graph is lacking about data about the
world. On the other hand if the graph contains too much data about the world, the pathfinding
algorithm may find the optimal path, but at the cost of having too high of a runtime.

14

2.3.1 Waypoint graph

Waypoint graphs [3, 47] are created by placing graph nodes in the world. Each node in the graph
should have no obstacle between it and at least one other node. One can choose which nodes are
connected to each node to simplify the graph as much as possible. One of the largest benefits of
using waypoints is that it is simple to select which nodes that give an advantage[16, 43] to the
agent.

There are two problems that arise with these kinds of graphs. They require a lot of time to make,
as each node and what node is its neighbors needs to be manual added, and they limit the paths
that the agent may take. Figure 5 gives an example of the path the agent can take on a simple
waypoint graph. One can increase the number nodes in the graph until you get a finely grained
graph, but his will take even more time to make and will significantly slow down the search[23].

(a) A coarsly grained waypoint graph (b) Waypoint path, red. True path, blue.

Figure 5: Waypoints graph

2.3.2 Visibility graphs

Visibility graphs[28, 9, 10] are graphs where each node in the graph is connected with all the
other nodes that are visible to that node. More precisely this means that each node that can be
reached from our node in a straight line that is not obstructed by any obstacle is visible to our
node. An example of a visibility graph is in figure 6

When drawing the edge between our node and all the nodes visible to it, we compute the
Euclidean distance between our nodes and the nodes visible. This lets us find the shortest
Euclidean path through the graph.

The problem that arises with computing the edges and their weights is that the runtime of the
algorithm suffers greatly[7, 17, 19].

15

(a) Visibility graph (b) Visibility and true path, blue

Figure 6: Visibility graph

2.3.3 Navigation mesh

A navigation mesh[32, 5, 14], or navmesh, is a discretization of a 2D or 3D world, transformed
to a 2D graph that consists entirely of convex polygons. By creating a graph made entirely of
convex polygons, we are sure that we can draw a line across the polygon at any angle and not be
blocked by any obstacle. Figure 7 shows an example of a navmesh in a 2D world, while Figure
8 and 9 shows a navmesh in Unreal Engine.

There are multiple ways to compute a navmesh[41]. One of the more widely used is Recast[22]
and a new generator for near optimal generation of navigation meshes is NEOGEN[25]. With
one of the main differnces between them being that NEOGEN manages to create navmeshes with
fewer polygones, because when generating the navmesh one can relax the definition of what is a
convex polygon.

When generating a navmesh it is also important to take into account Agent height, so that the
agent doesn’t try to walk where the roof is too low, Agent step height, to determine how high
of an object the agent can step on, and the walkable slope to differentiate between too steep
and walkable surfaces. Only Recast also need to take into consideration Agent radius. This is
because Recast shrinks the navmesh equal to agent radius, to hinder the agent from bouncing
into walls.

A problem with navmeshes is what points are going to be used to generate the path. One can
use the middle of the edges as the nodes, the corners, the center of the polygon, or all at the
same time. If one uses all of these points one would produce a lot of additional nodes that
the pathfinding would need to search through in addition to not producing the optimal path.
Therefore often the center of the polygon is used, so that the graph is as lean as possible. Then
after a path is found it is smoothed with SSF[21] or another string pulling algorithm.

The next problem for navmesh is that it is only a 2D structure describing 3D space, therefore
it lacks the connection between areas that are disconnected by gaps in the ground or edges that
are steeper than the given slope.

16

(a) Navmesh of triangles, 38 triangles (b) Navmesh of polygons, 17 polygons

(c) Navmesh and true path, blue

Figure 7: Navmesh

Nav Link Proxy [8, 42] Figure 10, is the simplest solution to this problem of connecting these
unconnected areas. Nav Link proxies are links that you can place by selecting the start and end
point of the link, if it is going to be traversable both ways and if it shall trigger any special
actions when the character enters one of the defined points. The Nav Link Proxy is treated by
the pathfinding as a part of the navmesh, and the only difference is that the pathfinder has an
additional node to check.

The Nav Link Proxy gives the option to limit the movement of the agent, by only adding the
option to jump up or drop down where one might feel that it is correct. On the other hand this
also has the drawback that it takes a lot of time and testing to get these links to seem natural
and not too limited. As the agent in addition to only being able to follow the line that the Nav
Link Proxy is created with. The agent will stop when it is over the end point of the link, instead

17

Figure 8: Navmesh in Unreal Engine 4. Green lines markes the edge of the navmesh, black lines
mark the edge of the polygons and white lines markes the edge of the triangles the polygon is
built from

Figure 9: Navmesh in Unreal Engine 4 with filled polygons and polygon edges set to visible

of trying to move as far as possible in the air.

In Unity[39] these simple links are called Off-Mesh links, Figure 11 is an example. Unity also has
the ability to automatically generate some types of Off-Mesh Links. These are jump across links
and drop down links and can be turned on and off for each object in the environment. Unity also
has what they call NavMesh Links, see Figure 12, these are somewhat more advanced way of
connecting two navmeshes and creates an area that connect two navmeshes. You can determine
the width of these areas and the agent may traverse the NavMesh Link diagonally. This is in
contrast to the Nav Link Proxies and Off-Mesh Links, which only lets the agents traverse the

18

Figure 10: The Nav Link Proxy used in Unreal Engine 4

link in a single line.

Figure 11: The Off-Mesh Link used in Unity. The multiple links to the right is the links generated
by Unity, while the single link on the left is the manually added link

How the agent reacts to links in UE4 and Unity is a bit different. In UE4 the link is simply
treated as a link and without any further action does nothing more than specify that the agent
may walk between these formerly unconnected areas, but one can add events to the end points of
the link, to make the agent jump or take other actions2. Unity on the other hand treats the link
as a portal and simply transports the agent between the two nodes and if you want the agent to
look like it is jumping you have to create a special animation for that. This applies to both the

2Nav Link Proxy video: https://youtu.be/iPPwf3aWFu4

19

Figure 12: The NavMesh Link used in Unity

Off-Mesh Link3 and the NavMesh Links4.

2.3.4 Regular grid

A regular grid or a tile grid is used in many video games[46]. There are many ways to represent
a regular grid, some of the more popular are tile, see Figure 13, hexagonal and octile. A tile grid
is the normal checkerboard representation with squares laid all over the map. Hexagonal is the
same, but you use hexagons instead of a square tile as it gives six degrees of movement instead
of four. Octile is represented in the same way as tiles, but all the eight squares that are directly
and diagonally next to a node is its neighbours.

(a) Regular grid (b) Grid path, red. True path, blue.

Figure 13: Regular grid, the blocked squares marked in red. Containing 183 tiles

There is a fourth method called a tex grid[45], which can be called a tile grid with the advantages

3Off-Mesh Link video: https://youtu.be/-aPSwrHybVk
4NavMesh Link video: https://youtu.be/Fyi7LjUJjYw

20

of a hex grid. To create a tex grid you can shift every second row a half a tile upwards so that
each node has six neighbors.

An improvement to tile grids is quadtrees[30, 31], as seen in Figure 14. A quadtree can give
additional granularity in a map without increasing the size of the graph quadratically and often
it can even reduce the size of the graph. This is because by using a quad tree structure you can
split every tile into four subtiles and each of those tile into four tiles and so on, to a specified
max number of child nodes. You can therefore use a bigger standard tile size and still get the
same, or higher, granularity of the map.

(a) Quadtree grid (b) Quadtree path, red. True path, blue.

Figure 14: Quadtree grid with 4 levels, the blocked squares marked in red. Containing 228 tiles,
if we had only used 3 levels it would have contained 145 tiles

2.3.5 Voxel grid

A voxel grid is a 3D version of the 2D tile grid. Instead of being built by tiles, it is built by
cubes. See Figure 15a for an example. An important difference between a tile grid and a voxel
grid is that as you increase the size of the grid it increases by n3 instead of n2, but you map the
whole 3d space instead of a representation of the walkable surfaces of the 3d space as a 2d graph.

There is a optimization of voxels grids, equals to the quadtrees of tile grids, these are called
octrees. As each cube is divided into eight subcubes, as seen in Figure 15b, instead of the four
that a tile is divided into. A memory optimized form of an octree is a sparse voxel octree(SVO)[2].
This lets us represent large open spaces with as little memory as possible in addition to reducing
the search time. As the number of nodes we need to search can be significantly reduced.

21

(a) Voxel grid, single voxel in red (b) Voxel octree, 3 levels

Figure 15: A voxel grid containing 64 cubes and a voxel octree containing 22 cubes

Leenknegt[15] proposed a solution for using a 3D navmesh instead of a voxel grid and shows
that this can significantly reduce the search time of A*, but at the cost of more memory space,
compared to a voxel grid.

22

3 Related work

What an agent is supposed to do is just as important as how an agent does it. An agent that
randomly or in inopportune moments does an action not fitting to the situation that plays out
in the game is just as jarring as an agent that can’t complete an action that is expected of it.

An agent doing the correct actions correctly is an important part of an agent, the second part is
how an agent moves. As modern game design have advanced, so has the demand for a functioning
and efficient way to represent the environment. Through the last couple of decades there have
been developed numerous ways of handling graph generation and algorithms for 2D/3D game
environments [1], ergo the selection of tools at disposal is vast. The pathfinding for the agent is
efficient enough that the agent does not need to stop randomly, and so the problem now is that
the discretization of the environment contains too little information.

It should be noted that while this area has extensive research as video games’ popularity have
skyrocketed the last decades, papers on the subject rarely expose their method if they solved
a problem related to game development. Potential implementation will require substantially
more work, since the source code is rarely published. Most of these implementations also tightly
integrates animation and navigation to give the best product[4].

3.1 AI behaviour

One of the cornerstone methods for determining AI behavior in video games today are Behavior
trees, with games as Alien: Isolation[36] and Halo[35] being prime examples. With its streamlined
logic and designer friendliness, its hard to pass up when deciding what sort of method you want
to use to control the AI. Enemies in mentioned games are not required to come up with some
intricate plan to do their job; in most cases, all they need to do is being able to react when
the player does something and engage them in combat. The amount of enemies also sets a
limit to what sort of method that can be applied, as planners implementing GOAP can be quite
performance heavy depending on how many agents that are supposed to use it.

In 1998 Valve released their first game in the popular video game franchise ”Half-Life”[38], using
a Finite State Machine(FSM) to control the AI’s behavior, which was the inspiration for Jeff
Orkin’s implementation of Goal-Oriented Action Planning(GOAP) for F.E.A.R. later in 2005[27].
The main difference between the two systems being that FSMs number of active states are not
limited to one. Actions, or tasks as defined in the public SDK for Half-Life[40], may lead to
several states, which can quickly affect performance considering there are over 80 different tasks
for each enemy, with each task resulting in one or more of the many states possible within the
game.

F.E.A.R.’s GOAP implementation on the other hand only have 3 states; Goto, Animate and Use
Smart Object. Goto representing actions such as walking, climbing swimming, or any action
really which is meant for travelling somewhere. Animate is for playing animations such as when
taking damage or noticing a player, and Use Smart Object being when the AI interacts with
objects like knocking a table over or throwing something. When executed in sequence, these 3
states will enable the AI so look intelligent to the player.

3.2 Runtime jump calculation

Dynamically planning the jumps for an agent may lead to a too high runtime[18], but gives the
agent a good possibility to navigate a dynamic environment and using the dynamic objects in
the environment to achieve the shortest path.

23

An UE4 plugin creator called Rama showcased[29] in 2015 a way to connect disconnected navmesh
areas in runtime. He only published code for how to get all the navpolygons generated and did
not publish anything about the performance cost of this method of getting jump links. Because
of the lack of data it is an interesting solution, but it needs further investigation and verification.

3.3 Generating Jump Links

The method that seems most plausible at the moment is to make all the jump links in the
navmesh when building the level, but at the same time we want to avoid the drawbacks of
having to place navlinks. Sarah Budde[4] wrote a master thesis about jump link generation. One
of the important aspects of Budde’s thesis is that she talk about jump links being a single link
that cover an area, in addition to having a jump trajectory lookup table, see figure 16. This
means that each link can contain as little data as possible, reducing memory space and search
time. The jump trajectory lookup table is then accessed during the path smoothing to be sure
that the smoothed path is withing the jump limitations.

Figure 16: Jump trajectories drawn over a grid as visualization of the lookup table, Budde
2013[4]

Budde’s generation process uses multiple steps. First it checks for locations that can be jumped
down into, when these links have been found it checks if any of the links are low enough to be
jumped up. The links that can be jumped up will be marked as bidirectional links, while the rest
is just single direction downward links. The third step is for edge to edge jump links. Here all
edges that are not facing each other is discarded, as they have either been found when searching
for locations that can be jumped down into, or they will not be reachable from the edge.

The thesis shows that the generation of the jump link are good, but with higher density of
obstacles there may be a redundancy of jump links generated. This redundancy leads to that in
a lot of environments the amount of edges have doubled. Most of the redundant edges comes

24

from the edge to edge generation of jump links. Her conclusion is that if one could set a way to
classify all the jump links and then discard jump links using this classification could reduce the
number drastically. The runtime for the link generation scales quadratically with the amount of
edges in the environment and leads to the runtime in most of the test environments to average
around 20s for jump link generation.

Figure 17: An unsmoothed path (purple) and a smoothed path (pink), both traveling through a
jump link (green area). Budde 2013[4]

She show in the thesis not only that it is possible to generate jumps of arbitrary length, shown
in Figure 16, but also lets the agent select the shortest path over the jump link, Figure 17. This
is in stark contrast to Nav Link Proxies, Off-Mesh Links and NavMesh Links as the way to
traverse these are created when building(UE4) or baking(Unity) the navmesh. When looking at
a character performing the jumps, this greatly increases the fluidity of the movement.

Budde concluded that with her solution, she could generate complex jump possibilities in arbi-
trary and complex 3D environments. Her algorithm was proven to be fast enough as well, so
performance was not an issue. If jumping was the only phenomenon present in Setback, this
would have been the solution, but alas there are other complex ways to move in the air required
by the game. A solution for taking into account events and movement while airborne would be
desirable.

3.4 Different sized agents in a navmesh

The navmesh made with Recast is limited considering the agent size, as the mesh is generated
with the consideration of the agent size. If you then have multiple agent sizes you need multiple
navmeshes as the larger agents would crash into the walls if they are using the navmesh of smaller
agents, Figure 18 is an example of this. This is because on the creation of the navmesh with
Recast the navmesh shrinks the navigable area considering the radius of the agent.

NEOGEN does not have this limitation as the radius of the the agents is taken into consideration
at runtime. Instead of shrinking the navmesh with half the size of the agent, NEOGEN creates
portals at each edge of a polygon, the size of each portal is defined at runtime and is determined
based on the radius of the agent, see Figure 19.

25

Figure 18: Multiple navmeshes to let agents of multiple sizes move around

Figure 19: Example of a portal in NEOGEN[25]. The portal P is restricted by the agent radius
r and is defined as the line between point a and b

3.5 Voxel Grid

In 2019 Gabriel Silva published paper on jumping mechanics for AI in UE4 [6]. In his paper he
also delves into the theory of pathfinding techniques, specifically related to games where jumping
is essential. He compares how Navigation links can be used to connect two point in the NavMesh
in UE4 to enable agents in the environment to traverse between the points, with a voxel grid to be
able to account for where the agent moves in the air. Setting up Navigation links in the NavMesh
not only means you have to disconnect the agent form the NavMesh during, for example, a jump,
but it also leads to more work for developers as the links has to be places manually throughout
the environment. Furthermore, this implies that the agent will only have a set amount of spots
to jump to or from, which may reduce players immersion in the game. Budde’s solution to this
would solve the problem of having to manually set up the links, but still not take into account
events where the character is not in direct contact with the surface.

While testing his voxel-grid implementation, he concluded that not only does it make for an
efficient pathfinding alternative, but it is achievable in runtime, which means it will not affect
performance. Implementing a good pathfinding method accounts for little to nothing if the game

26

needs to take breaks to calculate paths for agents. And considering the fact that we know runtime
will not be a problem when using voxel-grids.

Daniel Brewer published a paper on how to solve aerial pathfinding with Sparse Voxel Octrees
(SVO) for Warframe [2], which turns out to be an excellent solution for cases where most or all
of the movement is executed in the air. With setback being a game with options like being able
to grapple to certain points and swing yourself in the air, as well as a lot of jumping and aerial
mechanics, this too is a game where a large part of the gameplay takes place in the air. Brewer’s
solution does not account for gravity, which is something absolutely present in setback.

One possible solution would be to try and integrate Silva’s solution with a SVO to speed up the
runtime of the pathfinding further. This would make it applicable to even larger environments
and one could use the same representation of the environment for walking and flying creatures.

27

4 Method

4.1 Action Space

For controlling the AI’s behaviour in Setback we used Behavior trees, due to the fact that it
is the superior choice for a game like Setback. Behavior tree’s will give the AI a more reactive
play style, which is the most practical solution in cases where no intricate plans are needed.
Implementing a GOAP technique for the AI is more time consuming compared to setting up
a Behavior tree, especially since the game engine used for this paper offers Behavior trees as a
standard solution for controlling the AI.

Debugging and understanding a Behavior tree is also substantially easier compared to a GOAP
implementation. Since we are not technically directly writing the rules ourselves, it can at times
seem like we lose control of the AI. For example, say if we used GOAP and wanted to AI to
kill a player, the plan it devises might become more effective than what the developer originally
meant for, making the game seem unfair. With the Behavior tree it’s easy to oversee each action
taken and when it will execute what. Generally, as long as the action space is not too large, and
the number of rules required for each action is not too complicated, a Behaviour tree will be the
easiest and most optimal choice.

We started with basic functions like recognizing when a player enters within sight range of the
AI, aiming, shooting, shielding and chasing the player. With basic functions down, we could
move on to actually making the AI navigate through the world.

Considering the fact that Setback is still a game in development at the time of writing this thesis,
not all functions were implemented when we started using it as a test environment. All actions
currently implemented, were only designed so that they would trigger when designated keys on
keyboard and mouse were pressed, so for the AI to be able to reproduce all these actions, we
had to replicate and modify them to be able to call the as functions for the AI to utilize. This
was an easy fix for most of the actions, except for a couple like reloading. When reloading a
gun in Setback, in one of the checks developers had coded they added a check for verifying if the
current character had a the reticle UI element. And since none of the UI elements the player has
are loaded when an AI controls the character in game, we had to temporarily modify weapons
for the AI to have unlimited ammunition until a fix goes live.

To make and AI i UE4 be able to perceive other characters in game, we also had to modify the
current character in game. This was done by adding two components to the AI; ”AIPerception”
and ”AIPerceptionStimuliSource”. The first one is a component for assigning the AI senses, and
so the only one needed for us at the moment of writing was sight, so we added ”AISense Sight”
to that component. The latter component ”AIPerceptionStimuliSource” gives the character the
trait of being able to be recognized by character with the ”AIPerception” component. Again, in
our case we are after sight so we also gave that component the ”AISense Sight” element. Now
the AI can see and react with something when a player gets within range.

4.2 Navigation

The engine we are implementing the agent in is Unreal Engine 4. We are using a navmesh
created by Recast to represent the environment, and Detour to implement the pathfinding with
A*. Detour uses an extra step with SSF too smooth the path, this lets the agent take the shortest
path through the nodes found by A*.

The navmesh is good at describing the walkable area of the map. In a normal environment, or

28

map, the generator will only connect those areas that one can walk to and from. This means
that if there are any cracks, pits or ledges this will produce a gap in the navmesh. It may even
produce areas that are completely disconnected. This is why we need a method to link these
gaps or unconnected areas. Most often a character has the ability to jump so that it can traverse
such obstacles as a gap or pit by jumping over them. An agent can often also jump up or down
a ledge, depending on the height of the ledge. We then need a way to add all of these undefined
links to the navmesh, so that we may traverse the environment in the most optimal way and
without adding to much data so that the pathfinding becomes too complicated.

4.2.1 Increasing step height

In UE4, when generating the navmesh one can decide on an important factor the step height.
The step height is meant to represent the maximum height off a wall that an agent can just step
on top of. This lets the generator treat stairs and small objects that may be spread around in
the map as something the agent can walk over. By then increasing this to the height that the
agent can jump, the navmesh gives navigable routes that include all the objects that the agent
can jump up on. The problem that then arises is that the agent just know that it can jump up
on these objects, but it has no trigger for a jump action. This is not a problem when the step
height is set to the actual step height as the agent in UE4 have the ability to step up on low
objects as a part of the walking system.

Figure 20: Standard step height in Unreal Engine 4

As the generator then sees all objects that are lower than the step height as flat terrain this
gives the navmesh an unexpected representation when it is drawn. Since the navmesh generator
tries to simplify the navmesh as much as possible it doesn’t take the high step edges into any
consideration and instead treats two flat surfaces that has some elevation between them as a
slope. When the step height is low, Figure 20, this doesn’t really stand out. When we instead
use the step height in a way that is different from the expected use. The navmesh looks a lot
more erratic, Figure 21, but it did not seem to negatively impact the pathfinding.

29

Figure 21: Increased step height in Unreal Engine 4

4.2.2 Jump detection

Detecting jump scenarios is then the next task. When doing this detection it is best to start
with the basic and then build on that. First and foremost we need to detect if there is an object
in front of the player. This can be done in UE4 by using Line Trace, a tool that traces a line
between two vectors and determines if it hits anything. By doing this in the height that is the
same as the height that the agent can step, we can say if the object is this high jump. An
additional line trace at the same height as our max jump height, we can know if the object is to
tall to jump over. There are multiple additional checks that is need or else the agent may jump
when it is not wanted. See Figure 22 for a visualisation of the different line traces.

30

Figure 22: The line traces used to determine if a jump should be performed. The blue line is to
check if the object is too tall, teal for checking that it is tall enough and the red line is to check
if a edge should be jumped.

When increasing the step height to the maximum jump height, the agent now have a graph that
includes all the routes the agent can take when running and jumping. We use the equations of
motion to calculate the time before we hit the apex of the jump. Here v means reached velocity,
u is the starting velocity for the jump upwards. a is the acceleration from gravity and t is the
time. Equation 1 gives us the time before we hit the apex of the jump. We set v to 0 as we want
to reach the top of the jump and that is when the agent stops having any upward speed.

v = u + at⇒ t = −u

a
(1)

Changing this to UE4 variables, and adding that gravity is downwards, we get Equation 2

time =
jumpZVelocity

gravity
(2)

We then calculate max jump height, Equation 3, here s is the jump height.

s =ut +
1

2
at2 ⇒ s = u(−u

a
) +

1

2
a(−u

a
)2

⇒ s =− u2

a
+

1

2

u2

a
⇒ s = −1

2

u2

a

(3)

Then changing the name of our values to something more relevant for our problem. We get the
max jump height, Equation 4

31

maxJumpHeight =
1

2

jumpZVelocity2

gravity
(4)

Then at runtime, using line traces, we check if a jump is to be performed when following the
path. An important factor when running the line trace is how long the line trace is going to be.
We want the agent to be at the apex of the jump when it is above the edge that it is trying to
jump on top of. We get the simple function, Equation 5

s = vt⇒ s = v(−u

a
) (5)

Using more relevant variable names and changing the sign because of gravity, Equation 6

lineTraceLength = forwardVelocity
jumpZVelocity

gravity
(6)

We use Function 6 to set the length of the line trace. The line trace we use is a bit longer than
this as we run it angled towards and through the floor. This is to try and detect some of the
scenarios that can arise when jumping between two platforms at the same height. We run a
second trace in the max jump height to avoid trying to jump, when the object in front of the
agent is too high. The third trace we need to run is a sphere trace. The sphere trace length is
limited by the maximal slope we want to walk on and the step height. The longest the sphere
trace can be away from the center of the character is defined in Equation 7

maxShortSphereTraceLength =
stepHeight× cos(maxSlopeAngle)

sin(maxSlopeAngle)
(7)

We call the SphereTraceLength max as this is the limit to how far we can put it in front of the
agent, but the trace can safely be shorter. Pseudocode of the function can be seen in Listing 1.

JumpTest (agent)
tooHigh = LineTrace (maxJumpHeight)
i f ! tooHigh

imediateWall = shortSphereTrace (maxStepHeight)
i f immediateWall

agent . jump ()
return

i f moving
hit , s lope , r e l a t i v e H e i g h t , d i s t anc e = \

LineTrace (f e e tHe i gh t)
i f h i t && s l ope > 30

i f he ight < 0
agent . jump ()
return

else
hit2 , s lope2 , d i s t ance2 = \

LineTrace (maxStepHeight)
i f h i t 2 && s lope2 > 30 && \

abs (d i s t anc e − d i s tance2) < 10

32

agent . jump ()
return

Listing 1: Pseudocode of the test if a jump should be performed

A short explanation of the function: Every tick of game there is performed a line trace to check
first if the object is too tall to be jumped. If true any further jump checks is stopped, because
the wall is to high to jump. If the check doesn’t hit anything we check if there is an wall or
a platform right in front of the agent. If not we continue with the check for a standard jump.
First line tracing if there is any object that in front of the agent that has a slope larger than 30
degrees. We then check if the object is higher than the step height of the agent with a second
line trace. If this is also blocked by an object, with a slope steeper than 30 degrees and that the
length of the first and second line trace is about as long. To also check if the two line traces is
about as long is for avoiding jumping when walking up stairs.

There is an addition action that runs on every tick to improve the jumping of the agent, by
giving the agent a small amount of forward momentum when it is in the air. It is able to get on
top of a obstacle even if the jump is not performed at the perfect length.

We now look towards a second problem that occurs, because there is no damage to the agent
from falling, it should always try to jump down from an obstacle. This means that we need to
connect the navmesh of these obstacles to the navmesh on the ground beneath them. This can
be performed with Nav Link Proxies, but as mentioned there are some significant drawbacks.
Placing these links strategically in the path of the agent we can get a very different path than
the one chosen if the agent has to never drop down from a high object. We can even use the
links to make the agent use some of the jump pads that exist in the path. Some of these jump
pads is even needed for the agent to be able to complete some maps.

4.2.3 Different sized agents

In most competitive shooters all the agents is of the same height and width. This is so the game
is as fair as possible. The same is correct for Setback and we therefore only need to create one
navmesh as the agents only has one size.

4.2.4 Navigation testing

The test method we will be using is with no change in the generation of the navmesh, increasing
the step height to be the same as max jump height, just using Nav Link Proxies and using both,
increasing the step height and Nav Link Proxies. In addition we will have test time with a human
that is only allowed to use the standard movement, jumping and the elements in the map, and
a second human time where the use of all the tools available in Setback is allowed, the most
important additional tool is to look down and bash the shield into the ground to bounce.

We look at the time of completion, the number of checkpoints reached and the number of Nav
Link Proxies that we needed to place. But we only use a minimal amount of Nav Link Proxies
as a guideline for how many links is needed for the simplest solution with each method. This is
important as each Nav Link Proxy represent a time investment.

The checkpoints the agent needs to pass through is marked 1-13. In the top down view in Figure
23 we can see the gray lines where the navmesh doesn’t cover. This is edges that can either be
jumped or dropped down from. As seen in Figure 24 two of the checkpoints is in the air. This

33

is checkpoint 6 and 13, they are only reachable when using a jump pad. The jump pads are the
yellow squares.

Figure 23: Our testing map as seen from the top

Figure 24: Our testing map as seen from the side

34

5 Results

5.1 Shooting

Shooting results
Weapon
name

Magazine
size

Bullet
Spread

Bullet velocity Hits on still
target

Hits on
moving
target

Handgun 15 bullets None Medium speed 15/15 3/15
Revolver 6 bullets None High speed 6/6 4/6
Machine
pistol

80 bullets Large Medium speed 12/80 8/80

Table 1: Average results from shooting tests with different weapons over 5 tests per weapon

After having implemented the Behavior tree with the desired action space, testing performance
was the next step. While testing shooting, the AI was set to notice the player and start shooting
when within a 30m range. We tested for 3 weapons with different behavior; the handgun, the
revolver and the machine pistol. With the handgun and revolver were semi-automatic so there
was no bullet spread present, and the machine pistol being the only automatic weapon tested
with bullet spread. Check out the video appendix located in the end of this paper for access to
a video preview of the shooting.

5.2 Navigation

Navigation results
Method Time Checkpoints Reached Nav Links
Default 1 m 8 s 6/13 -
Step height 1 m 12 s 11/13 -
Nav Link 1 m 20 s 13/13 24
Both 1 m 9 s 13/13 4
Human only jumping 1 m 5 s 13/13 -
Human Record[20] 0 m 32 s 13/13 -

Table 2: Results from tests of navigating a test map with different methods

When testing we timed how long the agent used around the map by making the agent follow a
set of waypoints placed at the same places as the checkpoints. When using the default settings
the agent was unable to reach a lot of the checkpoints so the waypoints had to be moved to
let the agent somewhat complete the map. All the other methods use the same placing of the
waypoints. Some of the checkpoints are placed in the air, so when placing the waypoints for
these checkpoints, we have to place the corresponding waypoint on the ground. This limitation
is because the agent is moving on a navmesh. The different times, the checkpoints reached and
the Nav Link Proxies used, are shown in table 25.

5Video of 10 agents: https://youtu.be/h4kGkTUewmw

35

Runtime
Number of
agents

Game Average
Runtime

Game Max
Runtime

Frame Average
Runtime

Frame Max
Runtime

0 7 ms 8 ms 17 ms 17 ms
1 9 ms 10 ms 17 ms 21 ms
5 10 ms 11 ms 17 ms 21 ms
10 13 ms 14 ms 17 ms 22 ms
15 15 ms 20 ms 17 ms 22 ms
20 17 ms 23 ms 17 ms 23 ms

Table 3: Results from tests of navigating a test map with different methods, was run on the
laptop specified in table 4

An important note to the worst runtimes is that the first five seconds are excluded. This is
because the max runtime is very high when the level is loaded for starting to play. The test was
done on a laptop with the specifications listed in Table 4.

Specifications
Component Name
Laptop MSI GT62VR
CPU Intel i7 7700HQ
GPU NVIDIA GeForce GTX 1060 6GB
Memory 16 GB 2400 MHz
Storage Samsung SSD PM871a

Table 4: Specifications of the laptop the runtime test, Table 3, was run on

36

6 Discussion

In the following chapter we will discuss results on the implemented methods used for behavior
and navigation, and evaluate potential flaws and improvements to be made. Lastly, we go over
how teamwork between the two of us went over the course of writing the thesis.

6.1 Behavior

Observing the shooting results from Table 1 we can first take notice of the fact that while moving,
the number of hits are generally lower than when standing still. Main reason for this, is that
the bullets in Setback are not instant and have a certain velocity. The revolver is the only one
still being able to hit the majority of bullets on a moving target, due to the fact that its bullets
velocity is higher. While the machine pistol does not hit as near as good as the two others, it
doesn’t to that much worse on the moving target, because of the bullet spread the weapon has
which makes some of the bullets hit even when not going directly in the direction of the reticle.
Lastly, the handgun, was the one experiencing the highest difference in bullets hit when hitting
a moving target compared to a still target. The handguns bullet velocity is not very high, and
since the implemented shooting action does not try to make up for bullet velocity by aiming
ahead of the target, it will miss a majority of the shots.

However, neither missing a lot or hitting a lot of the bullets incline that the current shooting
implementation is desired. As mentioned before, both a too bad, and a too good AI, will
decrease the players immersion in the game. You want the game to be challenging, but not
unfair. Considering the fact that, in most cases, the target will be moving, the current AI will
lean towards performing too bad. By implementing a function to take into account the enemy’s
current velocity, direction and the current weapons bullet speed and spread, one could make the
AI make up for distance and speed by aiming ahead of the target.

So, let’s say the latter function is implemented. Now we currently have an AI that hits all the
shots no matter how far away you are and how fast you move, making it seem unfair to the
player. This is where we need to implement measures to make the AI make mistakes sometimes,
like players often do. One simple way is to add something called ”fuzzing” to the function that
decides where the AI aims. Fuzzing, or fuzz testing, is often used to generate unexpected or
invalid inputs for checking that programs run as they should, but we can also use it to add an
offset to the AI’s aim. If difficulty were to be implemented, increasing or decreasing the amount
of fuzzing would be one simple step to make the AI better or worse, depending on the skill level
of the player.

6.2 Navigation

When looking at the navigation results one of the first things one might notice is that the method
without any modifications is the best time for the agent. This is because the total path is much
shorter as the agent doesn’t reach a lot of the waypoints. To complete the level you have to
get all the checkpoints even though you might somewhat get around the map. We also see that
when only increasing the step height we are also missing two checkpoints. That is because these
two checkpoints are in the air and only accessible by using jump pads that are spread around
the map. There is no way to represent a jump pad with the current solution.

When using Nav Link Proxies we can get to all the checkpoints, this is because with Nav Link
we can make a path that walks over the jump pads. This is the only way we found in UE4 that
we could get the agent to use the jump pads. This is one of the biggest benefits of the Nav Link

37

Proxies as we can make paths that can go through checkpoints that we can’t represent in the
navmesh, since they are in the air. As we have now reached all the checkpoints we have finally
completed the map. The problem now is that we can see that the time has suffered. The time
can be improved by placing as many Nav Link Proxies as there are jumps and drop possibilities.
Placing all these Nav Links would take a lot of time and is limited to the paths the developer
see as they place the Nav Links.

By using both increased step height and Nav Link Proxies we cover all the possibilities of places
that can be jumped up. The problem now is to add the places that can be jumped edge to edge,
and dropped down. Doing this change we see that the minimal amount of Nav Link Proxies
decreases drastically. In addition to the amount of Nav Link proxies decreasing the time to
finish the route also decreases. This is the result of the fact that the pathfinding is better at
finding an optimal paths than when guessing the optimal path when placing Nav Link Proxies.

We see that the the agent almost achieves the same time as a human player, under the same
constraints. On the other hand when a human player have been able to train for an extended
period of time and may use all the movement options, the humans time is halved in comparison
to the agents best time.

6.2.1 Jumping

How well the jumping of the agent works was mostly as expected. There are some edge cases
that still is not optimal, and because of this it would be better to let the map tell the agent to
jump instead of the agent guessing that it should jump. One of the problems that arise is that
if the agent jumps and misses where it is going, it may get stuck next to a wall. This is because
the path isn’t redrawn when the agent loses the path. The agent continues to follow the path
for a while before it times out and redraws the path. It can also might get stuck in a loop of
jumping over a little plateau, this is because we give the agent some forward momentum when
it is in the air. When it then tries to jump on top of the plateau it may turn around and use the
momentum in the wrong direction.

You can still avoid these lockups, but this is done by moving the waypoints around and sometimes
placing volumes that removes the possibility of walking in an area to avoid it taking a shortcut
where it hits an edge and gets knocked out of the path. We can add an event to the Nav Link
Proxies to trigger jumps, avoiding having the agent guess when it should jump, but this would
bring with it all the drawbacks of the Nav Link Proxies.

Floating platforms are a weak point. Most of this is solved with running sphere traces in the
correct height. The problem is that these sphere traces need to be close to the agent or they
might trigger on a slope. So the agent can’t really jump long before it hit the floating platform.

The method proposed by Budde seems to be one of the best ways to implement navigation
links in a game without using too much time and laying the burden of when a jump should be
performed at the map instead of checking at runtime. The problem is that Budde‘s solution does
not include a way to integrate jump pads and points that need to be reachable in the air. The
solution that de Silva presented will gives us the possibility to have waypoints in the air, but
then we meet the second problem of how should we plan a path that lets us get to the waypoint.
In addition to the problems of actually planning a path that is possible, de Silva uses a voxel grid
which may create too large graphs in addition to not representing the environment well enough.

38

6.2.2 Perfomance

The performance of one agent is well within the constraints of using less time than it takes to
draw a single frame at 60 frames per second. The goal of all real time agents is to be finished
with their planning within the time it takes to draw one frame at 60 frames per second, which is
17 ms. We see in Table 3 that we are within this margin with up to fifteen agents. With twenty
agents, the time it takes the game to perform all its actions, is the same as the draw time of
one frame. We start to be reliant on the speed of the game instead of how long it takes to draw
each frame of the game. With up to fifteen agents without any loss to performance is within the
bounds of the game, as most of the time you would not use more than 7 agents at the time.

We felt that the actual runtime of the game was a better performance metric and better showed
the impact multiple agents had. In contrast to saying that a single agent on average uses 0.01 ms
to search the behavior tree and then an average of 0.08 to find the path to the next checkpoint,
the time it takes to find the path varies with 0.03 ms. This time is much lower than one agent
actually uses as we are running multiple line traces, and the performance hit of the line traces
is not represented in the time when just looking at the traversing of the behavior tree and the
time it takes to find a path. We only need to traverse the behavior tree and find a path each
time the agent has passed a checkpoint.

Most of all the extra runtime goes to running the line traces, without these we would decrease
the runtime that the agent uses when it moves around. This gives an additional argument to
generating the jump links before we start to play. As the in game performance hit would be
lower from just using links instead of running multiple line traces per agent.

6.3 Cooperation

Finding a workflow between the two of us was fairly easy, as we have cooperated on other
projects together before. In addition to having worked on a machine learning project together last
semester, we also meet in real life rather frequently. Therefore because we know each other well,
even if we disagree on certain aspects of a problem, we are quick to come to an agreement. We
have focused on keeping the bar for letting the other person know when something is wrong low,
so any disagreements or differences in view may be dealt with early for an optimal collaboration.
As time was of the essence during the project cycle, we made sure to regularly stay in contact
to keep communication up. We had status updates through voice chat daily, and at times met
up in person to discuss larger problems. If one of us were having a problem, we made sure that
asking for help or advice should be easy. Because of that, we were able to make up for each other
weaknesses, and sustain a very efficient development process.

39

7 Conclusion

In this paper we have delved into theories behind behavior for AI’s in games, and researched
different ways to implement a working pathfinding method for AI’s in a complex 3D environ-
ment, using Setback as an example. We used methods currently available from Unreal Engine 4,
like Behavior trees and the Navmesh system. We then compared them to other current imple-
mentations with the same purpose in mind. Behavior trees are undoubtedly, from what we have
learned throughout writing this thesis, the best current option for controlling AI Behavior for a
game like Setback. With its easy of use and implementation making it the superior choice over
methods as Goal-Oriented Action Planning.

The navigation gives us more problems. This is much because of the limitations of how a navmesh
represents the environment. It only represents the walkable surfaces without any connection
between areas that can be moved between by a jump or dropping down. We try to solve this
with increasing the step height, but we still need to place additional Nav Link Proxies to drop
down. To take a qualified guess when the agent need to jump by using line traces is not an optimal
solution. Budde’s[4] solution with generating jump links that can be traversed diagonally and let
the agent jump different trajectories, would solve the problem of guessing when the agent need
to jump by integrating this in the navmesh. Furthermore we need a way to represent interactable
objects in the world that would help the agent, like jump pads and places where it can swing.
In addition to this, we are being limited to only have checkpoints on the ground, as having them
in the air disconnects them from the navmesh. We conclude that the current service for map
representation from Unreal Engine 4 is not enough to satisfy a game such as Setback, and an
alternative need to be developed to allow for taking events in the air into account.

7.1 Future work

Further improvement of the shooting can be done by implementing said functions in discussion
to make up for slow bullet velocity and high bullet spread. Figuring out how well the AI needs
to perform to give players the challenge they want will need substantial testing with users of
different skill sets. The current behavior tree in itself could also be further improved upon
to include more ways to interact with players in the world, which in turn will give players an
impression of an even more intelligent opponent in the game. Looking at the Behavior tree from
the AI of ”Tom Clancy’s The Division”[37] as seen in Figure 25, it goes to show that Behavior
trees can achieve quite complex AI responses and behavior. It should be noted that that while
the Behavior tree can be improved upon, it will not require near as much depth as the AI in The
Division, as it in itself is a more complex game with a large number of mechanics to take into
consideration. It would also be interesting to send the action space through a machine learning
algorithm to observe how the behavior changes, which is something Unreal Engine 4 at the time
of writing this is not a function it offers. Tactics are a big part of games, and letting machine
learning have a go at it and observing the results may yield in new ideas one wouldn’t have
thought of to implement originally as an event or trigger for an action in the behavior tree.

40

Figure 25: Behavior tree for AI behavior in Tom Clancy’s The Division

Implementing and testing Budde’s[4] thesis in Setback would be the next step, then trying to
add the generation of jump pad links and swinging links using the same idea Budde presented
and test if the graph is still lean enough. It would also be interesting to see if it would be possible
to create links that would let the agent find paths to find reachable points in the air. The second
part of this would be to try and implement de Silva’s[6] solution with voxels. Then comparing
navmesh with Budde’s links with de Silva’s solution. Which would make it possible, and with
the lowest runtime when implementing jump pads, swinging, and navigating to checkpoints in
the air.

41

References
[1] Zeyad Abd Algfoor, Mohd Shahrizal Sunar, and Hoshang Kolivand. A comprehensive study

on pathfinding techniques for robotics and video games. Int. J. Comput. Games Technol.,
2015, January 2015.

[2] Daniel Brewer. Simplified 3d movement and pathfinding using navigation meshes. Game
Ai Pro 3, page 21:265–274, 2017.

[3] Mat Buckland. Programming Game AI by Example, pages 333–340. Wordware, Sudbury,
2004.

[4] Sara Budde. Automatic Generation of JumpLinks in Arbitrary 3DEnvironments for Naviga-
tionMeshes. ”http://www.shock-tactics-game.com/theses/Sara_Budde_Thesis.pdf”,
2013.

[5] Xiao Yan Cui and Hao Shi. An overview of pathfinding in navigation mesh, 2012.

[6] Gabriel Quaresma Moreira da Silva. Jumping AI for Unreal Engine. ”https:
//www.iconline.ipleiria.pt/bitstream/10400.8/4545/1/gabriel_silva_2162071_

Jumping_AI_for_Unreal_Engine.pdf”, 2019.

[7] K. Daniel, A. Nash, S. Koenig, and A. Felner. Theta*: Any-angle path planning on grids.
Journal of Artificial Intelligence Research, 39:533–579, Oct 2010.

[8] Epic Games. Nav link proxies. ”https://docs.unrealengine.com/en-US/Resources/
ContentExamples/NavMesh/1_2/index.html”.

[9] Subir Ghosh. Visibility algorithms in the plane. Visibility Algorithms in the Plane, 01 2007.

[10] Subir K. Ghosh and Partha P. Goswami. Unsolved problems in visibility graphs of points,
segments, and polygons. ACM Comput. Surv., 46(2), December 2013.

[11] J. Greisemer and C. Butcher. Creating the illusion of intelligence: The integration of ai and
level design in halo. In In the Proceedings of the Game Developers Conference, 2002.

[12] Peter Higley. Goal-oriented action planning: Ten years old and no fear! ”https://www.
youtube.com/watch?v=gm7K68663rA”, 2017.

[13] D. Islam. Handling complexity in the halo 2 ai. In GDC 2005 Proceedings, 2005.

[14] Marcelo Kallmann and Mubbasir Kapadia. Navigation meshes and real-time dynamic plan-
ning for virtual worlds, 2014.

[15] Tijs Leenknegt. Three-dimensional path planning in complex enviroments. ”https://lib.
ugent.be/fulltxt/RUG01/002/033/150/RUG01-002033150_2013_0001_AC.pdf”, 2013.

[16] Lars Lidén and Valve Software. Strategic and tactical reasoning with waypoints. AI Game
Programming Wisdom, Charles River Media, pages 211–220, 2002.

[17] Yun-Hui Liu and Suguru Arimoto. Path planning using a tangent graph for mobile robots
among polygonal and curved obstacles: Communication. The International Journal of
Robotics Research, 11(4):376–382, 1992.

42

http://www.shock-tactics-game.com/theses/Sara_Budde_Thesis.pdf
https://www.iconline.ipleiria.pt/bitstream/10400.8/4545/1/gabriel_silva_2162071_Jumping_AI_for_Unreal_Engine.pdf
https://www.iconline.ipleiria.pt/bitstream/10400.8/4545/1/gabriel_silva_2162071_Jumping_AI_for_Unreal_Engine.pdf
https://www.iconline.ipleiria.pt/bitstream/10400.8/4545/1/gabriel_silva_2162071_Jumping_AI_for_Unreal_Engine.pdf
https://docs.unrealengine.com/en-US/Resources/ContentExamples/NavMesh/1_2/index.html
https://docs.unrealengine.com/en-US/Resources/ContentExamples/NavMesh/1_2/index.html
https://www.youtube.com/watch?v=gm7K68663rA
https://www.youtube.com/watch?v=gm7K68663rA
https://lib.ugent.be/fulltxt/RUG01/002/033/150/RUG01-002033150_2013_0001_AC.pdf
https://lib.ugent.be/fulltxt/RUG01/002/033/150/RUG01-002033150_2013_0001_AC.pdf

[18] Thomas Lopez, Fabrice Lamarche, and Tsai-Yen Li. Space-time planning in changing en-
vironments : using dynamic objects for accessibility. Computer Animation and Virtual
Worlds, 23(2):87–99, 2012.

[19] Tomás Lozano-Pérez and Michael A. Wesley. An algorithm for planning collision-free paths
among polyhedral obstacles. Commun. ACM, 22(10):560–570, October 1979.

[20] Mew. Setback - 32:23 run. ”https://www.youtube.com/watch?v=2jxVfvGNoy0”.

[21] Mikko Mononen. Simple stupid funnel algorithm. ”http://digestingduck.blogspot.
com/2010/03/simple-stupid-funnel-algorithm.html”, 2010.

[22] Mikko Mononen. Recast navigation. ”https://github.com/recastnavigation/
recastnavigation”, 2019.

[23] Christoph Niederberger, Dejan Radovic, and Markus Gross. Generic path planning for real-
time applications. In Proceedings of the Computer Graphics International, CGI ’04, page
299–306, USA, 2004. IEEE Computer Society.

[24] Christian Nutt. The technology of f.e.a.r. 2: An interview on engine and ai develop-
ment. ”https://www.gamasutra.com/view/feature/132280/the_technology_of_fear_
2_an_.php”, 2008.

[25] Ramon Oliva Mart́ınez. A framework for navigation of autonomous characters in complex
virtual environments, 2016.

[26] Jeff Orkin. Applying goal-oriented action planning to games. ”https://alumni.media.
mit.edu/~jorkin/GOAP_draft_AIWisdom2_2003.pdf”, 2003.

[27] Jeff Orkin. Three states and a plan: The a.i. of f.e.a.r.1 game developers conference 2006.
In GDC 2006 Proceedings, 2006.

[28] Joseph O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, New
York, 1987.

[29] Rama. Rama custom pathfinding. ”https://forums.unrealengine.com/
development-discussion/c-gameplay-programming/34485”.

[30] Hanan Samet. The quadtree and related hierarchical data structures. ACM Comput. Surv.,
16(2):187–260, June 1984.

[31] Ivan Simecek, Daniel Langr, and Pavel Tvrdik. Minimal quadtree format for compression
of sparse matrices storage. In 14th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, pages 359–364, 09 2012.

[32] Greg Snook. Simplified 3d movement and pathfinding using navigation meshes. Game
Programming Gems, page 1:288–304, 2000.

[33] Peter Norvig Stuart Russel. Artificial Intelligence, A Modern Approach, page 93. Pearson
Education Inc., 2010.

[34] Ronald L. Rivest Clifford Stein Thomas H. Cormen, Charles E. Leiserson. Introductions to
Algorithms, page 658. MIT Press and McGraw-Hill, 2001.

[35] Tommy Thompson. Outsmarting the covenant: The ai of halo 2. ”https://medium.com/
the-cube/theaiofhalo2-33e824209a4c”, 2017.

43

https://www.youtube.com/watch?v=2jxVfvGNoy0
http://digestingduck.blogspot.com/2010/03/simple-stupid-funnel-algorithm.html
http://digestingduck.blogspot.com/2010/03/simple-stupid-funnel-algorithm.html
https://github.com/recastnavigation/recastnavigation
https://github.com/recastnavigation/recastnavigation
https://www.gamasutra.com/view/feature/132280/the_technology_of_fear_2_an_.php
https://www.gamasutra.com/view/feature/132280/the_technology_of_fear_2_an_.php
https://alumni.media.mit.edu/~jorkin/GOAP_draft_AIWisdom2_2003.pdf
https://alumni.media.mit.edu/~jorkin/GOAP_draft_AIWisdom2_2003.pdf
https://forums.unrealengine.com/development-discussion/c-gameplay-programming/34485
https://forums.unrealengine.com/development-discussion/c-gameplay-programming/34485
https://medium.com/the-cube/theaiofhalo2-33e824209a4c
https://medium.com/the-cube/theaiofhalo2-33e824209a4c

[36] Tommy Thompson. The perfect organism: The ai of alien: Isolation. ”https:
//www.gamasutra.com/blogs/TommyThompson/20171031/308027/The_Perfect_

Organism_The_AI_of_Alien_Isolation.php”, 2017.

[37] Tommy Thompson. Enemy ai design in tom clancy’s the division. ”https:
//www.gamasutra.com/blogs/TommyThompson/20181203/331725/Enemy_AI_Design_

in_Tom_Clancys_The_Division.php”, 2018.

[38] Tommy Thompson. The ai of half-life: Finite state machines. ”https://www.youtube.
com/watch?v=JyF0oyarz4U”, 2019.

[39] Unity. Nav link proxies. ”https://docs.unity3d.com/Manual/nav-Overview.html”.

[40] Valve. Half-life source code. ”http://metamod.sourceforge.net/files/sdk/”, 2013.

[41] Wouter van Toll, Roy Triesscheijn, Marcelo Kallmann, Ramon Oliva, Nuria Pelechano,
Julien Pettré, and Roland Geraerts. A comparative study of navigation meshes. In Proceed-
ings of the 9th International Conference on Motion in Games, MIG ’16, page 91–100, New
York, NY, USA, 2016. Association for Computing Machinery.

[42] Walldiv. Nav link proxies. ”https://forums.unrealengine.com/unreal-engine/
feedback-for-epic/109539”.

[43] Dustin White. Clarifications and extensions to tactical waypoint graph algorithms for video
games. In Proceedings of the 45th Annual Southeast Regional Conference, ACM-SE 45, page
316–320, New York, NY, USA, 2007. Association for Computing Machinery.

[44] Hao Shi Xiao Cui. Direction oriented pathfinding in video games. ”https://www.
researchgate.net/publication/267405818_Direction_Oriented_Pathfinding_In_

Video_Games”, 2011.

[45] Peter Yap. Grid-based path-finding. In Proceedings of the 15th Conference of the Canadian
Society for Computational Studies of Intelligence on Advances in Artificial Intelligence, AI
’02, page 44–55, Berlin, Heidelberg, 2002. Springer-Verlag.

[46] Peter Yap. New ideas in pathfinding. ”https://www.aaai.org/Papers/Symposia/Spring/
2002/SS-02-01/SS02-01-018.pdf”, 2002.

[47] Weiping Zhu, Daoyuan Jia, Hongyu Wan, Tuo Yang, Cheng Hu, Kechen Qin, and Xiaohui
Cui. Waypoint graph based fast pathfinding in dynamic environment. International Journal
of Distributed Sensor Networks, 11(8):238727, 2015.

44

https://www.gamasutra.com/blogs/TommyThompson/20171031/308027/The_Perfect_Organism_The_AI_of_Alien_Isolation.php
https://www.gamasutra.com/blogs/TommyThompson/20171031/308027/The_Perfect_Organism_The_AI_of_Alien_Isolation.php
https://www.gamasutra.com/blogs/TommyThompson/20171031/308027/The_Perfect_Organism_The_AI_of_Alien_Isolation.php
https://www.gamasutra.com/blogs/TommyThompson/20181203/331725/Enemy_AI_Design_in_Tom_Clancys_The_Division.php
https://www.gamasutra.com/blogs/TommyThompson/20181203/331725/Enemy_AI_Design_in_Tom_Clancys_The_Division.php
https://www.gamasutra.com/blogs/TommyThompson/20181203/331725/Enemy_AI_Design_in_Tom_Clancys_The_Division.php
https://www.youtube.com/watch?v=JyF0oyarz4U
https://www.youtube.com/watch?v=JyF0oyarz4U
https://docs.unity3d.com/Manual/nav-Overview.html
http://metamod.sourceforge.net/files/sdk/
https://forums.unrealengine.com/unreal-engine/feedback-for-epic/109539
https://forums.unrealengine.com/unreal-engine/feedback-for-epic/109539
https://www.researchgate.net/publication/267405818_Direction_Oriented_Pathfinding_In_Video_Games
https://www.researchgate.net/publication/267405818_Direction_Oriented_Pathfinding_In_Video_Games
https://www.researchgate.net/publication/267405818_Direction_Oriented_Pathfinding_In_Video_Games
https://www.aaai.org/Papers/Symposia/Spring/2002/SS-02-01/SS02-01-018.pdf
https://www.aaai.org/Papers/Symposia/Spring/2002/SS-02-01/SS02-01-018.pdf

A Blueprint of the jump function

This is the jump appendix, with blueprint of the jump function needed for the AI to jump over
obstacles in the game.

Figure 26: Combination of all the jump functions

45

Figure 27: First part of the Jump Check Blueprint

46

Figure 28: Second part of the Jump Check Blueprint

47

Figure 29: This is run to check if obstacle is too high

48

Figure 30: This runs to make it jump if its right in front of a wall

49

B Resource Appendix

Should you want to see some of the implemented functions in actions, check out the following
links for youtube videos with a preview.
Machine pistol shooting: https://youtu.be/LyFaUFn3WK8
Revolver shooting: https://youtu.be/CzNIN959LRs
Shield-bashing: https://youtu.be/BxLzeKcCIL8
Nav Link Proxy: https://youtu.be/iPPwf3aWFu4
Off-Mesh Link: https://youtu.be/-aPSwrHybVk
NavMesh Link: https://youtu.be/Fyi7LjUJjYw
Agents completing map: https://youtu.be/h4kGkTUewmw

To utilize all actions currently implemented for a player in Setback, these functions need to be
added to the ”BP SBPlayer” blueprint in the Setback project files if the bot is to gain access to
them, as seen in Figure 31.

Figure 31: Functions to add for bot in BP SBPlayer

50

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Ba
ch

el
or

’s
pr

oj
ec

t

Mathias Braathen
Eyvind Nikolai Holt

A Study on AI Behaviour & Complex
Navigation

Bachelor’s project in Computer Engeneering

Supervisor: Ole Christian Eidheim

May 2020

	Introduction
	Research questions
	Thesis Outline

	Background
	Action space
	GOAP
	Behavior Tree

	Pathfinding
	Dijkstra
	A-star

	Discretization
	Waypoint graph
	Visibility graphs
	Navigation mesh
	Regular grid
	Voxel grid

	Related work
	AI behaviour
	Runtime jump calculation
	Generating Jump Links
	Different sized agents in a navmesh
	Voxel Grid

	Method
	Action Space
	Navigation
	Increasing step height
	Jump detection
	Different sized agents
	Navigation testing

	Results
	Shooting
	Navigation

	Discussion
	Behavior
	Navigation
	Jumping
	Perfomance

	Cooperation

	Conclusion
	Future work

	Blueprint of the jump function
	Resource Appendix

