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Abstract 

To comply with the regulation outlined in IFRS9 to use forward looking information to estimate 

expected loss for credit exposures, financial institutions are required to model movements over time 

in average observed default frequency for subsegments of their portfolio. In DNB, this is done 

through OLS regression using a credit cycle derived from weighted observed default frequency for 

specified segments as dependent variable and external macro variables as explanatory variables. The 

challenge is to find the correct variables to use, and further to know what transformations of these 

variables to use. Previously this was a time-consuming process in DNB that did not aid sufficiently in 

finding the optimal model to explain the credit cycle. The program developed for this paper aims to 

increase the help offered in finding OLS models through brute-force search where all possible 

combinations of likely explanatory variables are tried. The program also aims to make in-depth 

analysis of specified models more streamlined and efficient. 
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Preliminary study 

The preliminary study will provide background information about the problem the IFRS9 Macro Tool 

is intended to solve, describe DNB’s current tool for estimating IFRS9 macro models and the issues 

related to it, and lastly give a general description of how the new tool is intended to be, and argue 

why it will solve the business problem better than DNB’s current tool.  

Background 

IFRS9 is an International Financial Reporting Standard meant to provide regulation of the financial 

industry to minimize the probability of system failures on the scale of the 2008 financial crises. The 

standard has been developed by the International Accounting Standards Board (IASB) and came into 

effect from 1st of January 2018 (McGeachin & Tarce, 2019).  

One of the key principles of the IFRS9 standard regarding financial instruments accounting is that 

financial institutions are required to make impairments of expected future credit losses. In the old 

standard IAS 39 losses were only entered in the accounts when customers defaulted on their loans. 

By making impairments before the actual defaults happen, the banks are forced to build up capital to 

avoid systemic shocks to the industry on that scale witnessed in 2008.  

To calculate impairments for future credit loss and be compliant with the IFRS9 regulations, DNB has 

developed a model to calculate expected credit loss (ECL). This approach entails grouping all loan 

agreements into segments that have similar characteristics. These segments are grouped by both 

industry and geography. Each of these segments are mapped to an IFRS9 macro model, where 

segments mapped to the same IFRS9 macro model follow a similar credit cycle. A credit cycle is the 

cycle of loan default frequencies for a given segment, and is countercyclical to the business cycle of 

that segment. When the business cycle of a given segment is high, the number of defaults is low, 

hence the credit cycle is low. The opposite is true when the business cycle is low. The way credit 

cycles are predicted forward in time for each of DNB’s IFRS segments, is to use OLS regression 

models where historical Z is modelled using historical macro data, and input predictions of these 

macro variables are used to estimate future Z.   

Credit cycles, denoted as Z, are modelled as a normal distribution over a full business cycle. In order 

to estimate the OLS regression models for each segment, historical data of the observed default 

frequency (ODF) for all agreements in each segment is used to generate a historical Z time series. For 

larger segments where DNB has a sufficient amount of agreements to make unbiased a historical Z 

time series, internal default data is used. For segments where DNB has too few agreements to 

generate an unbiased historical Z timeline, external default data from the Credit Risk Initiative from 
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the Risk Management Institute of the National Institute of Singapore (RMICRI) is used to generate the 

historical Z time series.  

In order to predict future Z time series, DNB has developed a tool to transform internal DNB default 

data and default data from RMICRI to historical Z time series. The tool also does transformation on 

macro data times series provided by DNB Markets, and aids in finding intuitive OLS models with 

correlation between the macro data time series and the generated historical Z time series.  

DNB is currently in the process of rewriting the bank’s ECL model, that takes these macro models as 

an input, from SAS Enterprise Guide running on inhouse Linux servers to Python running on Amazon 

Web Servers. The format of how the coefficients of the macro models are stored will be changed in 

this process, requiring the output of the macro model estimation tool to be changed from the 

current setup.  

Current DNB tool for estimating IFRS9 macro models 

Insight into how the current DNB tool for estimating IFRS9 macro models work, and what drawbacks 

it has, have been acquired through discussions with the developers of the program, and the users of 

the program.  

The current tool DNB is using to estimate IFRS9 macro models is developed in SAS Enterprise Guide. 

It is structured as a series of individual steps that must be run in a particular order. The analysts using 

the tool to estimate the IFRS9 macro models must use industry intuition to pick out what macro 

variables and the transformation of these that are expected to correlate to the Z time series of the 

particular IFRS segment being modelled, and what time series data points are outliers, and hence 

require dummy variables. To make the program estimate the model, the analyst must insert the 

name and transformation of the macro variable, together with the dummies, into the code itself, and 

run a particular set of steps. The output of the program gives information about r-squared of the 

model, the p-values and coefficients of the give explanatory variables, and the test results of a 

number of statistical tests.  

The program also has functionality where the analyst can specify a set of macro variables, and the 

program will return a list of suggestions of models ranked by the r squared value of each model. This 

functionality does not consider the significance of the explanatory variables of the suggested models.  
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Drawbacks of DNB’s current tool for estimating IFRS9 macro models 

The main drawbacks that have been identify are twofold. It is both time consuming for analysts to 

use and it does not aid sufficiently in finding the optimal macro models.  

Because the program is structured as a series of steps the analyst must execute in a particular order, 

it requires good familiarity of the program from the analyst in order to use the tool correctly. If the 

steps are run in an incorrect order, the program might crash, or it might produce incorrect output. 

Because different models are tested by altering the code itself, it also requires analysts to have 

sufficient programming experience to use efficiently. There is also significant operational risk 

involved in using this program, as it is not always clear if the analyst has made a mistake when 

executing the program or what input data actually goes into the program. This might lead to 

inaccuracies in the output from the program that are hard to detect.  

As the program requires the analyst to manually enter the type and transformation of the macro 

variables expected to correlate with the segment Z time series, and dummies that might capture 

outliers, it is not given that the optimal combination of variables, variable transformation, and 

dummies for modelling the Z time series is found. The functionality in the program where it tests 

different transformations does little to account for this issue, as it only ranks macro models based on 

r squared, ignoring other important OLS information like p-values of the individual macro variables or 

if the variable coefficients have an expected impact on the modelled time series. It also lacks the 

possibility to aid with identifying possible outliers where dummies should be utilized.  

Future DNB tool for estimating IFRS macro models 

It is a wish from DNB for the new tool to be integrated with the new implementation of their ECL 

model. For that reason, the new tool for estimating DNB’s IFRS9 macro models will be written in 

Python, and put on DNB’s development platform along with the new ECL model to easily allow for 

the tool and the ECL model to be fully integrated in the future.  

The design of the program has not been fully landed yet at his stage, but it is a requirement from 

DNB that the new design will try to overcome the shortcomings of the program it is replacing. This 

involves creating the program in such a way that the steps associated with the current tool is 

eliminated through streamlining the entire flow. To achieve the program will have a user-centered 

design adhering to the principles outlined by Donald A.Norman(2013). This can be boiled down to 

making the program in such a way that it is adjusted to the needs and behaviour of the users, and 

not requiring the users to adjust excessively to the program. The user should only have to input 

necessary data at the start of the operation. This is intended be solved by having a terminal based 

interface, as DNB’s development platform on AWS is not currently supporting any python GUI. From 
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this interface the user will be able to interact with all functionality of the tool, without having to see 

or alter any python code. The product owner of DNB’s development platform on IPA has revealed 

that the platform might implement support for Dash during the time this project will be developed. If 

that becomes available, the macro tool will have a web interface developed through the Dash 

framework.  

The different parts of the program will still have to be executed in a designated order, but this will be 

clearly specified in the program’s user guide, and the program will return helpful error messages if 

the user interact with the program incorrectly. As all interaction with the program will happen from 

an interface, there will be no need for the users to alter the program code to use the tool. As oppose 

to the current tool, the new one will have validation of input to the program, something that will 

minimize the chance of incorrect input altering the output of the program unnoticed, while also 

making it much easier for the users to locate errors in their input.  

The new tool for estimating IFRS9 macro models must also provide more assistance to analysts for 

finding the optimal models. It will improve upon the functionality from the current tool that 

generates a list of models ranked by the value of adjusted r squared, by also generating and trying 

combinations of dummy variables on the models. Like the current model, the new model will also 

rank the models by value of adjusted r squared, but it will also discard models that have explanatory 

variables with a p value above a threshold set by the user, models with variables having variable 

coefficients not adhering to industry intuition, and models with value of adjusted r-squared bellow a 

threshold set by the user . This change is believed to greatly enhance the aid given by the program to 

the user in finding an optimal model. The ambition is to reduce the need for great industry intuition 

in order to find the optimal IFRS9 macro models, and for the users to avoid excessive use of trial and 

error to find suitable variable transformations.  

Future process flow 

Together with future users of this tool, a first draft of how the program flow will be has been 

outlined. Further documentation of the program will be in the requirement analysis and technical 

documentation.   
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• RMICRI data are excel files analysts can upload to a folder on 

DNB’s development platform. In order to get internal data, a link 

to DNB’s data warehouse is required.  

• In order to generate credit cycles, customers must first be 

mapped to the correct IFRS9 segment. This is trivial for internal 

data, but requires some logic to map RMICRI data correctly. After 

mapping, the mean for individual years and the entire time series 

are calculated to generate credit cycles.  

• When the length of the time series is found, all possible 

dummies for the given time series are calculated.  

• Macro variable time series are in excel files analysts can 

upload to a folder on DNB’s development platform.  

• These macro variables are all transformed to multiple defined 

transformations, including lag, moving average and inflation 

adjustment.  

• Credit cycle, macro variable and dummy data are stored in a 

dedicated folder on DNB’s development platform.  

• All possible combinations of variable transformations and 

dummies are tested against the credit cycle time series of the 

IFRS9 segments. As there are millions or billions of possible 

combinations of variables and dummies, there must be ways for 

the users of the program to instruct the program as to what 

variables not to include in this step for the different IFRS9 macro 

models. This is to avoid noise in the output to the user, and to 

drastically reduce execution time. Results that have significant 

explanatory variables with an expected effect on modelled Z and 

a high enough adjusted r-squared, are ranked by value of r 

squared, and saved on DNB’s development platform.   

• User can select what OLS models to analyse further. What 

additional information is needed, will be detailed on a later stage.  

• When macro model for the given IFRS segment is decided, 

the model parameters are stored in a format aligned with the 

new ECL model.  

 



 

8 
 

 

Project timeline 

The project’s timeline will use week numbers as time values. To account for potential delays, the final 

delivery for the project is set to week 21, corresponding to 24th of May. This allows for a few weeks 

delay if some project activities are more time consuming than expected.  

 

Figur 1 - GANTT diagram of scheduled timeline for project 

The project is divided into four phases. The preliminary phase is where the work is focused on getting 

a proper understanding of the business issue to be solved, and to plan for the development period 

that follows. There are two activities in the preliminary phase, developing the preliminary study 

report and developing the requirements analysis. Both of these activities are crucial in order to 

develop a program that actually solves DNB’s business problem. The preliminary phase is scheduled 

to be completed by week six, corresponding to 2nd of February.  

The development phase is divided into two distinct phases. The first phase is focused on developing 

the code to read, validate, clean, and transform data, and to store this in a format suitable for data 

analysis. There is some uncertainty as to how time consuming it will be to develop the part of the 

program generating the credit cycles, as the DNB logic for mapping internal and external data to 

IFRS9 segments is somewhat complexly implemented in SQL and lacks any documentation. The other 

activities in this phase are not expected to take more than the allocated time. This phase is expected 

to be completed by week 9, corresponding to 23rd of February.  

WEEK

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Develop preliminary report 2 2 2
50%

Develop requirements analysis 4 2
0%

Milestone - planning phase finished 6 1

Code development - Generate credit cycles 6 2
0%

Code development - Generate Dummies 8 1
0%

Code development - Variable transformation 9 1
0%

Milestone - data preparation finished 10 1

Code development - Generate list of best model fits 10 4
0%

Code development - In-depth analysis 14 2
0%

Final testing and debugging 16 2
0%

Milestone - development phase finished 18 1

Develop User documentation 7 12
0%

Develop User guide 18 1
0%

Finish paper 19 2
0%

PERCENT 

COMPLETE
ACTIVITY PLAN START

PLAN 

DURATION

ACTUAL 

START

ACTUAL 

DURATION
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The data analytics phase is expected to be the most time-consuming phase, where complex 

functionality not offered by DNB’s current model will be developed. It is allocated a generous 

amount of time to the activities in this phase, as this is the part of the development with the highest 

uncertainty regarding how challenging it will be to implement the required functionality. Finishing of 

the program and final testing will also be part of this phase. This phase is expected to be completed 

by week 18, corresponding to 26th of April 

The last phase is the documentation phase. Development of the technical documentation will be 

done in parallel with development of the program, but it will be finished in this phase. A user guide 

will also be developed in this phase, and the paper to be delivered will be finished. It is not expected 

to be any uncertainties regarding time consumption in this phase. This phase is expected to be 

finished by week 21, corresponding to 18th of May.  

 

Requirement analysis 

The requirement analysis will provide the necessary foundation to develop a program that 

sufficiently solves DNB’s business problem. Expected use of the model will be documented in user 

stories, to make sure the program can be used in all its intended roles. This will give a general 

overview of the expected use of the program. Based on the user stories, both functional and non-

functional requirements will be documented, and linked to the relevant user stories. This will specify 

what functionality is expected from the program. The user stories and requirements will also form 

the basis for later testing of the program.  

Both the user stories and the functional requirements were developed in cooperation with future 

users of the program. All the requirements specifying expected output from the program and 

execution speed was directly specified by future users in DNB, while others were specified by the 

author of this paper after discussions with future users. Particularly regarding the OLS suggestion 

functionality, linked to User story 2, as this was somewhat new functionality in the program, all of 

the requirements were specified by the author and cross checked with future users of the program 

for confirmation. The functionality describing the structure of the program, were also developed by 

the author before and under program development by taking inputs from future users as to what 

overall wishes for the program were, and discussing it further to distil it down to specific program 

requirements.  
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Users of the program 

The program will exclusively be used by a small group of analysts. These analysts will not necessarily 

have great insight into the workings of the program, nor will they have any particular knowledge of 

Python or programming in general. For that reason, it is particularly important to have extensive 

validation of all input to the model, and return informative error information to the analyst. The 

analysts are used to working with similar in-house developed software, and are not dependent on a 

graphical user interface in order to use the program, as long as the user interface is intuitive and they 

have a user guide.  

General standards of the program 

As the ECL model as a whole, including the process to estimate the OLS models, constitutes the 

majority of the yearly audit of DNB, it is paramount that the logic used in the program is sufficiently 

easy to follow. This require clearly readable code with descriptive variable, class and function names. 

It might also involve in some instances to prioritize making the code readable rather than making the 

code quick. DNB does not have a clear general coding standard one is expected to follow, but as this 

program will be integrated with the new ECL model currently under development, it is natural that 

the two programs follow a similar code practice. For the new ECL model, the PEP 8 style guide is used 

as a general guideline, although some parts of it is less strict. The same style guide will therefore be 

used for this program.  

User stories 

User story 1: Generate credit cycles 

The user must be able to generate the Z time series for each IFRS9 Macro Model based on internal 

and external data on observed default frequency (ODF). These Z time series are what will be 

modelled in the rest of the program.  

Acceptance criteria 

The user can easily generate Z time series for all DNB IFRS9 Macro Models.  

Priority 

Low 

Despite the Z time series are crucial for the working of the program as a whole, this part of the 

program is not expected to be complicated in terms of code, rather in terms of business logic. For 

that reason, this part of the program can be developed later by DNB, and the existing solution in 

SAS can be used to generate the Z values until this part of the program is developed.  
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User story 2: Generate list of best OLS models 

The user must be able to generate a list of suggestions for explanatory variables for a chosen IFRS9 

Macro Model. The list of suggestions will be sorted based on the value of adjusted r-squared of the 

model, while models with insignificant explanatory variables, unintuitive coefficient values and low 

adjusted r-squared values will be excluded.  

Acceptance criteria 

The user can easily generate a list of model suggestions given the user input. This list must be 

sorted on value of adjusted r-squared, and filtered on significance of explanatory variables, 

adjusted r-squared and variable coefficients. 

Priority 

High 

As this most likely will be the most challenging part of the program in terms of actual 

programming, this is the part of the program where DNB can have the most benefit from external 

help. 

 

 

User story 3: Do in-depth analysis and select model 

The user must be able to select a specific model for an IFRS9 Macro Model to do in depth analysis 

on. The program must return all relevant statistical information about the model in order for the 

analyst to select the optimal model. Lastly the user must have the option to save the chosen 

model.  

Acceptance criteria 

The user must be able to get all relevant statistics to have sufficient information to evaluate the 

robustness of the model and be able to save the model if it is deemed satisfactory.  

Priority 

High 

This is also a part of the program with a high degree of complexity where DNB will have good 

benefit of external help. This part of the program will also have some overlapping functionality 

with User story 2, so it might not be easily developed by DNB on their own at a later stage.  

 

User story 4: Automatic validation of existing models 

An analyst should be able to easily validate the existing OLS models, and models that have a 

significant decrease in robustness should be highlighted by the program. 
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Acceptance criteria 

The user must be able to get a list of OLS models that have changed significantly in key aspects 

specified by DNB.  

Priority 

Medium 

This is functionality that is nice to have rather than must have. Meanwhile it is functionality that 

will lead to significant time savings for analysts recalibrating the models, and the complexity of it 

might mean that it is not easily done by DNB at a later stage. DNB currently lacks a complete 

dataset of OLS results from current models, and this part of the program will thus be difficult to 

implement before that is created.  

 

User story 5: Deployment of new models 

An analyst should be able to easily get an overview of the new OLS models, and deploy the 

parameters to the new ECL program 

Acceptance criteria 

The user must be able to get an overview of the new models and deploy the new parameters in 

the format required by the new implementation of DNB’s ECL model. 

Priority 

High 

This functionality is essential for DNB in order to use this program into their new ECL model.  

 

 

Functional requirements 

Name FR 1: Generate credit cycles from ODF data 

Description The ODF data for each year of the time series must be converted to a normal 

distribution with a mean of zero and a standard deviation of 1. This is done by these 

steps: 

- The average ODF per year is calculated. 

- The inverse of the normal cumulative distribution function (cdf) is calculated 

for the average ODF for each year.  

- The average and standard deviation for the calculated values are estimated.  

- The final Z value for each year is equal to: (the calculated inverse of the 

normal cumulative distribution function value – the estimated average 
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value) / the estimated standard distribution 

 

The output must be saved in an excel file with one sheet for each IFRS9 Macro 

Model. The format must be an array with two columns, year and Z, and one row for 

each year of the Z time series.  

 

The program must also be able to validate that the input only has ODF values in the 

range 0 to 1.  

Associated 

user story 

User story 1: Generate credit cycles 

 

Name FR 2: Generate credit cycles from external data 

Description For the IFRS9 Macro Models associated with segments where DNB has insufficient 

data to accurately generate representative credit cycles, external data from RMICRI 

is used. These ODF values must be mapped to the correct IFRS Macro Models, and 

the output from this mapping must be on the same format as the input to FR 1.  

 

The external data is mapped to the specific IFRS9 Macro Models based on business 

rules sat by DNB.  

Associated 

user story 

User story 1: Generate credit cycles 

 

Name FR 3: Generate dummy variables 

Description In order to be able to account for outliers in the time series, dummy variables 

spanning all possible periods of the time series must be generated.  

 

After discussion with DNB analysts, it has been decided to set the default for 

maximum length of a dummy to five years. This must be easy for DNB to change at a 

later stage if the business requirement changes.  

Associated 

user story 

User story 2: Generate list of best OLS models 

User story 3: Do in-depth analysis and select model 

 

Name FR 4: Validation of macro data input 
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Description The macro input data from DNB Markets are located in an excel sheet. This data 

must be validated for errors before being used in the program. The validation should 

ensure the data subscribe to these requirements: 

- The macro variable time series must be continuous from first year of data to 

the last year of data, without gaps.  

- All variables specified in a meta data table must be present in the input 

sheet.  

- All variables expected to have data as specified in the meta data table must 

have data.  

- All data must be numerical 

 

The program will generate a list of errors if any are detected, and halt further 

execution of the program.  

Associated 

user story 

User story 2: Generate list of best OLS models 

User story 3: Do in-depth analysis and select model 

 

Name FR 5: Normalize macro data 

Description The macro data from DNB Markets comes in different varieties. Some are absolute 

values, some are year-on-year changes, while some have absolute values for 

historical data and year-on-year changes for predicted data. Some time series also 

denotes year-on-year changes differently by either denoting the change as a 

decimal, or as a value representing the decimal. E.G. 4% can be both 0.04 and 4. To 

make the data consistent, the macro data time series must be normalized into a 

format specified in a meta data table. The time series for the variable LTV must also 

be calculated from other time series in the DNB Markets data. 

Associated 

user story 

User story 2: Generate list of best OLS models 

User story 3: Do in-depth analysis and select model 

 

Name FR 6: Transform macro data 

Description The macro data must be possible to transformed into all possible transformations 

specified by DNB. This involves having the possibility to do the following 

transformations, and combinations of these: 

- Lag 
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- Percentage change 

- Absolute change 

- Max change 

- Moving average 

- Natural logarithm 

- Inflation adjustment (with both Norwegian and US inflation) 

 

Associated 

user story 

User story 2: Generate list of best OLS models 

User story 3: Do in-depth analysis and select model 

 

Name FR 7: Do simplified OLS regression 

Description The program must be able to perform a simplified version of OLS regression, where 

only value of adjusted r-squared, mean squared error, together with p-values and 

coefficients for the explanatory variables are calculated. The user will specify 

threshold values for adjusted r-square and for p-values, and the expected sign of the 

coefficient. If any of the calculated values are below the threshold values or if any 

coefficients have the wrong sign, the OLS model is rejected.  

If not rejected, the regression will return adjusted square, mean squared error, 

coefficients and variables used.  

In order to mitigate the problem related to bias stemming from serial correlation in 

the residuals, a Newey-West HAC estimator must be implemented.  

Associated 

user story 

User story 2: Generate list of best OLS models 

 

 

Name FR 8: Generate sorted list of IFRS9 Macro Models suggestions 

Description The program must be able to generate two lists of models suggestion sorted on 

value of adjusted r-squared based on the functionality described in RF 7. One list 

without dummies and one with dummies. These lists must contain the name of 

explanatory variables and their transformation, the sign of the coefficients for each 

explanatory variable, value of adjusted r-squared, mean squared error, and 

coefficient values.  

Associated 

user story 

User story 2: Generate list of best OLS models 
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Name FR 9: Extended OLS regression statistics 

Description In addition to the OLS requirements specified in FR 7, the following statistics must 

also be returned for the regression: 

- Residuals 

- Predictions 

- Confidence intervals with alpha=5% 

- Durbin Watson statistics 

- Jarque Bera Statistics 

- Omnibus test statistics 

- Breusch-Pagan statistics 

- Lilliefors test statistics 

- Kwiatkowski–Phillips–Schmidt–Shin and augmented Dickey–Fuller statistics 

Associated 

user story 

User story 3: Do in-depth analysis and select model 

 

Name FR 10: Do rolling regression 

Description The program must be able to do a rolling regression in order to benchmark the 

model against the two simplified models as-is and through the cycle. This is done 

through doing multiple regressions of the same variables with an increasing time 

series in order to find the estimated coefficients given that particular time series. 

The program defaults to starting the rolling regression ten years back, and works its 

way to present day. The coefficients obtained are thereafter used to predict the 

following year. The residuals from each year is compared to the residuals from the 

simplified as-is and through the cycle models. Both the mean absolute error(MAE) 

and root mean squared error(RMSE) are calculated. The as-is model assumes the Z 

value of next year will be equal to the previous year in the rolling regression. The 

through the cycle model assumes the Z value is always 0.  

The user must be able to see the comparison of the MAE and RMSE to the 

challenger models, the predictions and confidence level of the rolling regression, 

and the coefficients from each year of the rolling regression. The coefficient values 

are wanted in order to see if coefficients are relatively stable from year to year.  

Associated 

user story 

User story 3: Do in-depth analysis and select model 

 



 

17 
 

 

Name FR 11: Visualising the regression results 

Description The program must be able to make visualisations of the regression results. The 

visualisations that are requested are: 

Comparing rolling regression predicted Z with confidence levels to actual Z 

Comparing predicted regression with confidence level to actual Z 

 

 

Associated 

user story 

User story 3: Do in-depth analysis and select model 

 

Name FR 12: Saving the regression parameters 

Description The user must be able to save the regression parameters when the desired model is 

found. The parameters that have to be saved are adjusted r-squared, coefficient 

values, p-values of explanatory variables and name and transformation of 

explanatory variables.  

Associated 

user story 

User story 3: Do in-depth analysis and select model 

 

Name FR 13: Evaluating existing OLS models 

Description The program must automatically re-estimate the coefficients of the models 

currently in production with the ECL model, and compare these to a set of business 

rules to see if the models still are satisfactory. These are the business rules that will 

flag a model for re-evaluation: 

- Reduction in adjusted r-squared of more than 10 percentage points 

compared to previous model 

- Insignificant variables in model 

- Change of sign for explanatory variable coefficients 

- Not outperforming the as-is and through the cycle models in rolling 

regression.  

Associated 

user story 

User story 4: Automatic validation of existing models 
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Name FR 14: Evaluating and deploying new models 

Description The user must be able to clearly see an overview of all the IFRS9 Macro Models, with 

information of which one has been changed and not, and at what time the change 

was done. The OLS parameters for each model must also be visible. The user can 

deploy the changes, and the program will convert the information into the format 

required by the new ECL model, and store the data in the directory system of the 

ECL model ready for use.  

Associated 

user story 

User story 5: Deployment of new models 

 

Name FR 15: Structure the use of the program into projects 

Description In order to have a proper structure to the inputs and outputs to the program, and to 

make it easy for auditors to retrace what input was used in the program, the 

program must have functionality to structure each round of IFRS9 macro model 

estimation into logical projects in the program. In these project folders, all the input 

to and output from the program will be stored. The program needs user 

functionality for creating and selecting these projects in an intuitive way, eliminating 

the need for the users to come up with a suitable folder structure.  

Associated 

user story 

All 

 

 

Non-functional requirements 

 

Name NFR 1: Execution speed of program 

Description The perceived execution speed of the program must be instant. There should be no 

noticeable lag in the interaction between the user and the program. The sole 

exception being the flow for generating OLS model suggestions, as this flow, 

depending on the input from the user, can be somewhat time consuming.  

 

The flow for generating model suggestions will only have to be done a handful of 

times for each IFRS9 macro model being estimated, and it is therefore acceptable 
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for this flow to have some execution time. Despite this, it should not take more than 

10 minutes, assuming a sensible input to the functionality from the user.  

Associated 

user story 

All 

 

Name NFR 2: Flexibility of program 

Description As this program will interact with the new ECL model, it is important to make it 

sufficiently modular in order to avoid duplicating code and make it maintainable.  

Because there might be minor changes to the parameters in the future, it is 

important to avoid hard coding values. This is also important in order to avoid the 

need for the users of the program to have particular knowledge of the inner 

workings of the program or of Python in general.  

Associated 

user story 

All 

 

Name NFR 3: User friendliness of the program 

Description As the analysts using this program does not necessarily have knowledge of Python 

or coding in general, it should under no circumstances be required to alter program 

code in order to use the program for its intended purposes.  

Further it should not be required that users need particular knowledge and/or 

experience with the program in order to use it for its intended purposes. All needed 

should be general knowledge of statistics and a simple user guide. Only for future 

development of the program should it be necessary to have a deeper understanding 

of the program than what is described in the program’s user guide.  

Associated 

user story 

All 

 

Development process and redefined scope 

The Covid-19 pandemic struck society midway during the development of this program. As the writer 

of this paper and the other subject matter experts related to this program in DNB work in financial 

risk analysis, and thus was needed for more urgent tasks in the bank, development was abruptly 

halted for a while. At the same time, the pandemic highlighted weaknesses in some IFRS9 macro 
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models, in that not all existing models behaved in an expected way given the macroeconomic 

environment. Developing this tool for use in re-estimating some of the underperforming models was 

therefore given top priority later in the corona period.  

In order to satisfy the urgent needs of DNB, a new scope for the program was agreed upon. The 

priority was on the modelling itself, corresponding to User story 2, “Generate list of best OLS 

models”, and User story 3, “Do in-depth analysis and select model”. User story 5, “Deployment of 

new models” was still kept in scope as it did not require much work, while User story 1, “Generate 

credit cycles” and User story 4, “Automatic validation of existing models” was taken out of scope. 

The reasoning behind this is that it was rather obvious at the moment what IFRS9 macro models 

underperformed without the need for an automated way to detect this, and that generating credit 

cycles in the existing SAS program was trivial, while at the same time DNB started looking into if the 

logic behind it should be changed for the future. The inclusion of a web based GUI through Dash was 

also taken out of scope, as it was deemed unnecessary for the urgent needs of DNB, while at the 

same time this program was not given priority to use the new Dash functionality.  

The scope for User story 3, “Do in-depth analysis and select model” was expanded with more tests 

and visualisations of the macro model performance forward in time, in order to best account for and 

avoid unexpected behaviour from the IFRS9 macro models going forward.  

As a result of these changes, and experience gained during the development phase, the program 

differs somewhat in overall structure from the initial design outlined in the preliminary study.  

 

Technical documentation 

 

Techniques and technologies used in the program 

This program uses several techniques and technologies to solve the business problem in the best way 

possible. The following is a brief description on some of these techniques.  

Cloud computing 

This program is deployed on DNB’s development platform IPA, running on Amazon Web 

Servers(AWS). This system is a cloud computing solution where DNB rent storage and computing 

power on demand from an AWS data center in Ireland. The main benefit of cloud computing is the 

scalability of the hardware resources. When running program on traditional in-house servers, the 

computing power is limited by the processing power of the server hardware, and an increase in 
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computing power requirements will have to be resolved by upgrading the in-house servers. This 

might be justifiable if the general demand for greater computing power in the company is high, but if 

this demand is only present in smaller parts of the organisation, such an expensive upgrade might be 

unjustified. With cloud computing on the other hand, this local increase in demand for processing 

power can be resolved by upgrading the instance running the particular programs demanding greater 

computational power. The instance this particular program is running on currently has a quadcore 

CPU, that fulfils the current requirements of the program. But if DNB wants to further develop the 

OLS suggestion module of this program, by far the most computational heavy functionality in this 

program, to do more advanced filtration, or if DNB wishes to expand the number of variables to 

input to the simulation, only having four cores available might lead to an excessive increase in 

processing time on the current instance. This can easily be resolved on AWS by upgrading the current 

instance, something that is arguably cheaper and most certainly quicker than upgrading in-house 

servers.   

 

Use of map and lambda 

Several places in this code a combination of map() and lambda functions are used to apply a function 

to an iterable. The basic syntax for this is: 

 results_list = list(map(lambda x: the_operation_to_be_applied, iterable)) 

The map function is a functionality that map all elements of an iterable, E.G. a list or a dictionary, to a 

specified function. In functionality it equates a regular Python for loop, but is used extensively in this 

program as it makes the code more compact without making it noticeably less readable. Another 

option would be to use list comprehension, which arguable is the Pythonic way to apply a function 

over iterables. It is claimed by some Python enthusiasts that list comprehension is quicker than map, 

which again is quicker than a regular for loop (Mamaev 2018). List comprehension was not used 

extensively in this program as it is the personal opinion of the author of this documentation that the 

syntax for list comprehension is not intuitive for those not particularly familiar with Python. As the 

parts of the code using map does not involve iterating over large objects where this increase in 

execution speed will make a noticeable difference, the focus was kept on having easily readable 

code. See more examples of how to use map() at w3school.  

Lambda functions are small anonymous functions, and is an alternative to writing separate defined 

functions. These functions are useful when the function is only used once, or a limited number of 

times, where having a specified function would make the flow of the program more difficult to 

https://www.freecodecamp.org/news/if-you-have-slow-loops-in-python-you-can-fix-it-until-you-cant-3a39e03b6f35/#:~:text=Of%20Python's%20built%2Din%20tools,efficient%20than%20recursive%20function%20calls
https://www.freecodecamp.org/news/if-you-have-slow-loops-in-python-you-can-fix-it-until-you-cant-3a39e03b6f35/#:~:text=Of%20Python's%20built%2Din%20tools,efficient%20than%20recursive%20function%20calls.
https://book.pythontips.com/en/latest/map_filter.html
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follow, and where the functions are simple in nature, as lambda functions don’t allow for complex 

logic. See more examples of the use om lambda expressions at w3schools.   

Multiprocessing 
By default, programs are executed serially. This means that each step of the program is executed one 

by one in the order defined by the program code. But in order to take advantage of the multicore 

and superscalar architecture of modern CPUs, the program must be instructed to process certain 

tasks in parallel. There are two common ways of doing this, either to use multithreading, or to use 

multiprocessing. Multiprocessing is where the operating system creates sub processes that operates 

in isolation, that it then distributes to the CPU cores for processing. Multithreading is similar, with 

the major difference being that threads in the same process do not operate in complete isolation like 

regular processes, in that they have access to a shared memory. The program can be instructed to 

distribute execution of certain parts of the code to individual processes or threads, and thus 

benefitting from multicore and superscalar CPUs. See Arpaci-Dusseau & Arpaci-Dusseau(2018) for 

further information regarding parallelization.  

Because Python’s memory management is not thread-safe, Python has a Global Interpreter Lock that 

prevents multiple threads from executing Python code simultaneously. The consequence of this is 

that multithreading on Python is not able to take full advantage of multiprocessing. See Python.org’s 

description of Python GIL. For that reason it was decided to utilize multiprocessing to take benefit of 

the multicore CPUs available for this program.  

In order to benefit from multiprocessing, the different processes must be fully independent from 

each other, and as there is some overhead for the operating system to initialize multiprocessing, the 

processing to be done must be of a certain volume. For these reasons, it was decided to only use 

multiprocessing on the most processing heavy part of this program, the part where a large number of 

time series combinations are regressed in order to find optimal OLS model. The number of 

combinations to be tried can exceed one million, and each combination regression is completely 

independent, making this suitable for multiprocessing.  

 

Python file structure 

The program code is located on three different Python files. “Macro_Model_Tool.py” and 

“Macro_Model_Tool_User_Interface.py” are located in a designated folder named “Macro_Tool”, 

located under the path “code/Modelling”. “Macro_Model_Tool_User_Interface.py” contains the 

logic for the user to interact with the program, and to set up estimation projects, while 

“Macro_Model_Tool.py” contains the main program code itself. The program also uses functionality 

https://www.w3schools.com/python/python_lambda.asp
https://wiki.python.org/moin/GlobalInterpreterLock
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in “Dataprep_Functions.py” located together with the ECL model. The functionality of the program 

stored in “Dataprep_Functions.py” is the logic that validates, normalize, and transforms the variable 

time series. Despite being developed as part of this program, it was decided to integrate this 

functionality with the program code of the ECL model to ensure the Macro tool program and the ECL 

model have the same validation and transformation logic. This will minimize the consequences if 

there has been a misunderstanding as to how the transformations should be implemented. 

There are certain dependencies concerning the directory structure around the program. To avoid 

issues, it is important to keep these relative paths unchanged: 

- Path from main program to ECL Dataprep program: ../Dataprep 

- Path from main program to Macro tool data: ../../../data/Macro_tool_data 

- Path from main program to folder with estimation projects: 

../../../data/Macro_estimation_projects 

If the directory structure must be changed for some reason, make sure to thoroughly test the 

program after. Also make sure that the different parts of the ECL program have the same relative 

path to the folder ECL data, where both programs collects information using the same overview of 

paths. If directory structure is changed, make sure to change the paths in the parameter variable 

“default_path_dict” of the object of class User in “Macro_Model_Tool_User_Interface.py”. Also 

change the path to the file with the default paths for the entire IFRS9 project. This is given in the 

variable “default_paths_path” in the function “get_default_file_paths()” in 

“Macro_Model_Tool_User_interface.py”. The functions “create_macro_project()” and 

“set_macro_project()” in “Macro_Tool_User_Interface.py” both uses paths dependent on the 

current structure of the project. For “set_macro_project()” it is only the variable 

“macro_projects_path” that must be changed, while for “create_macro_project()” multiple 

alterations to the code will have to be done.  

Data structure and input files 

It was decided to use excel files as input and output to and from the program. This was done mainly 

because the future users of the program are very used to working with and in excel sheets, and most 

of the input to the program is already stored in such files. The amount of data going into the model is 

not extensive, so it was decided not to use csv files in order to speed up loading into the program, as 

this would lead to the files being less readable for humans.  

 There are two main storage folders for the IFRS9 Macro model tool. Both are located in the folder 

‘data’. These are “Macro_tool_data” and “Macro_estimation_projects”.  
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“Macro_tool_data” is the main data storage for the program itself. It contains the following 

subfolders:  

- Analysis_output_template – containing the excel template the program uses to write out the 

results from the in-depth analysis. It also contains a folder with old templates. It is important 

that the name of the template is “OLS_results_template.xlsx” if the template is changed in 

the future. Make sure the updated version harmonizes with the function 

“write_in_depth_results_to_excel()” in “Macro_Model_Tool.py”. In order to get dynamically 

updated graphs accounting for different lengths of time series in the template, option two of 

this guide is used: Bansal.  

 

- Macro_data – containing the macro data input to be used in the OLS regression. There can 

be multiple macro files in this folder, and there are no special naming restrictions. When 

setting up a new macro estimation project, the user setting up the project will be able to 

select what macro data file to use in that particular project. The program requests three 

scenarios as input when setting up a new macro estimation project, baseline, low and 

adverse. Make sure to have a folder for each of these scenarios in the input macro sheet.  

 

- OLS_simulation_input – containing the variable input data for use in OLS model suggestion 

module. There can be multiple variable input files, and there are no special naming 

restrictions. When setting up a new macro estimation project, the user setting up the project 

will be able to select what variable input file to use in that particular project. The selected file 

must contain one sheet for every macro model that will be part of the project. Each sheet 

must contain the headers “Variables”, “Inflation adjust”, Ln adjust”, “Expected effect”. For 

each variable that might be included for the particular IFRS9 macro model, the variable code 

must be stated, Inflation adjust must be stated(Nor, US, or nothing), Ln adjust must be 

stated(Y or N), and Expected effect must be given(+ or -).  

 

- Segment_Z – containing the excel files with the Z values to be modelled. There can be 

multiple segment Z files, and there are no special naming conventions. When setting up a 

new macro estimation project, the user setting up the project will be able to select what 

segment Z file to use in that particular project. The selected file must contain one sheet for 

every macro model that will be part of the project. The selected file must contain the name 

“Date” in cell A1 and the name “Z” in cell B1. The observation dates and the calculated Z 

https://trumpexcel.com/dynamic-chart-range/#Using-Excel-Formulas.
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values must be in the rows following this.  

 

- Suggestion_output_template - containing the excel template the program uses to write out 

the results from generate OLS suggestions. It also contains a folder with old templates. It is 

important that the name of the template is OLS_suggestions_template.xlsx if the template is 

to be changed in the future. Make sure the updated version harmonizes with the function 

“write_OLS_suggestions_to_excel ()” in “Macro_Model_Tool.py”. 

 

“Macro_estimation_projects” is the folder containing the macro estimations projects user will create 

before estimating new OLS parameters for the IFRS9 macro models. The program will create a 

subfolder in this folder with the name given by the user creating the project. The program will then 

create these subfolders with the stated excel files: 

- OLS_analysis results – containing a sub folder for each IFRS9 macro model that has been 

tried modelled in the project. These sub folders again contain the output from the in-depth 

analysis of that particular IFRS9 macro model based on the template 

“OLS_results_template.xlsx. The name of the output will be generated automatically by the 

program, and contains the input variables and a timestamp in order to ensure each file name 

is unique.  

 

- Project_model_coefficients – containing the files “Changed_models.xlsx” and 

“Macro_models.xlsx”. “Changed_models.xlsx” contains an overview of the models that have 

been changed in this project. This file is automatically generated and updated by the 

program. “Macro_models.xlsx” contains one sheet per IFRS9 macro model, with the OLS 

parameters “variable”, “variable transformation” and “coefficient” for each model. When 

project is created, the program will load the current OLS parameters from the ECL model. 

When the users finds a suitable new OLS model for an IFRS9 macro model and save these 

OLS parameters, the corresponding sheet will be updated in “Macro_models.xlsx”  and the 

file “Changed_models.xlsx” will be updated.  

 

- Project_parameters – containing the parameters that will be used in the Macro model tool. 

The files in the folder are “Macro_data.xlsx”, “Macro_sheets.xlsx”, 

“OLS_results_template.xlsx”, “OLS_suggestions_template.xlsx”, “Simulation_input.xlsx”, and 

“Z_values.xlsx”. All of these files are automatically loaded into this folder when project is 

created, and it is important that the file names stay unchanged. “Macro_data.xlsx” contains 
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the macro data to be used in the program. “Macro_sheets.xlsx” contains the mapping for the 

scenarios to be used in the in-depth analysis to the sheets in “Macro_data.xlsx”.  

“OLS_results_template.xlsx”, which is the output template for the in-depth analysis. 

“OLS_suggestions_template.xlsx”, which is the output template for the generate OLS 

suggestions. “Simulation_input.xlsx”, which is the overview of what variables that can be 

included in the generate OLS model suggestions. “Z_values.xlsx containing the Z_values to be 

modelled in the project.  

 

- Suggested_OLS_models - containing a sub folder for each IFRS9 macro model that has been 

tried modelled in the project. These sub folders again contain the output from the generate 

OLS suggestions of that particular IFRS9 macro model based on the template 

“OLS_suggestions_template.xlsx. The name of the output will be generated automatically by 

the program, and contains a timestamp in order to ensure each file name is unique. 

 

The program also uses the file “Segment_info.xlsx” from the ECL model, the file containing the 

current macro model parameters used in ECL model, and the file containing metadata used to 

validate and normalize the macro data. These are located together with the input data for the ECL 

model. See the technical documentation for the ECL model for further information.  

 

Python code documentation 

This code documentation focuses mainly on showing the logic and flow of the implemented code, 

and highlighting considerations taken during development. The code itself is extensively commented, 

and it has been a strong focus on having reasonably readable code with descriptive names of classes, 

variables, and functions. In the flow diagrams showing program logic, steps coloured blue have 

designated flows elsewhere in the documentation detailing how that particular process is 

implemented. This documentation covers little relating to the data structures in the program, as this 

is specified clearly in the docstrings of each function, where it states format of input and output. For 

this reason, it was decided to not include diagrams like class diagrams.  

In the design of the program, great emphasis has been put on splitting the program into logically 

separate pieces to have separation of concerns and enabling the different program flows to utilize 

common functionality. Examples of this include the separation of the parts of the code enabling and 

validating user input and the parts of the code executing the different flows, and splitting the 

program functionality into designated functions with clearly defined inputs and outputs. Designing 
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the program in this way enables much easier maintenance and further development of the code, as 

the dependencies in the program flow is clearly defined by the different functions, and common 

functionality only has to be changed one place. This makes it significantly easier to debug faulty code 

and enables expansion of the program without running the risk of interfering with existing 

functionality compared to the approach of creating monolithic applications where entire flows are 

combined into one single non-modular instruction flow.  

 

Python interpreter and Libraries/packages used in program 

The Python interpreter used for this program is Python 3.6.10, the current default interpreter on 

DNB’s development platform.  

These are the packages used in this program. For the program, a virtual environment has been 

created where these packages have been included. If this environment is updated, it is important to 

test the functionality of the program before putting the new virtual environment into production, as 

there might be issues concerning the versions of the different libraries. All of these packages have 

been installed on the DNB development platform itself, and is therefore deemed safe and robust by 

its administrators.  

Name Version Link to documentation 

Pandas 1.0.3 https://pandas.pydata.org/ 

Statsmodels 0.11.1 https://www.statsmodels.org/stable/index.html 

Numpy 1.18.4 https://numpy.org/ 

Itertools 3.6.10 https://docs.python.org/2/library/itertools.html 

Multiprocessing 3.6.10 https://docs.python.org/2/library/multiprocessing.html 

Time 3.6.10 https://docs.python.org/3/library/time.html 

Statistics 3.6.10 https://docs.python.org/3/library/statistics.html 

Functools 3.6.10 https://docs.python.org/3/library/functools.html 

Scipy 1.4.1 https://www.scipy.org/ 

Shutil 3.6.10 https://docs.python.org/3/library/shutil.html 

Openpyxl 3.0.3 https://openpyxl.readthedocs.io/en/stable/ 

Os 3.6.10 https://docs.python.org/3/library/os.html 

Sys 3.6.10 https://docs.python.org/3/library/sys.html 

Warnings 3.6.10 https://docs.python.org/3/library/warnings.html 

Xlrd 1.2.0 https://pypi.org/project/xlrd/ 

https://pandas.pydata.org/
https://www.statsmodels.org/stable/index.html
https://numpy.org/
https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/statistics.html
https://docs.python.org/3/library/functools.html
https://www.scipy.org/
https://docs.python.org/3/library/shutil.html
https://openpyxl.readthedocs.io/en/stable/
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/warnings.html
https://pypi.org/project/xlrd/
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Re 3.6.10 https://docs.python.org/3/library/re.html 

math 3.6.10 https://docs.python.org/3/library/math.html 

 

User interface and project administration 

The program is structured around working in projects a user creates at the start of a new round of 

estimations of IFRS9 macro models. When inside a project, the user interacts with the program 

through functions in the class User, which again calls the main logic of the program in 

“Macro_Model_Tool.py”. This is done to separate user interface and program logic. The project 

folder contains all input files used, making it easy to see what parameters have been used in a future 

audit.  

Overall flow 

The program is launched by calling the function “main()” in “Macro_Model_Tool_User_Interface.py”. 

In that function, this is the overall flow: 

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/math.html
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This entire flow is inside an infinite loop, and then again 

inside a try-except. This is in order to handle unexpected 

exceptions in the program.  

The user is prompted to select a macro project to work in, or 

create a new one.  

 

See designated flow for creating new macro project. When 

new project is created, the user is navigated into this new 

project automatically.  

 

When user has selected or created a macro project, an object 

of class User is created. A dictionary with paths to required 

files and folders is automatically created.  

The user can select what program functionality to use from a 

list.  

Based on user selection, the function in the user interface 

corresponding to that selection is called. The separate 

functions takes the required input from the user, and calls      

its designated function in “Macro_Model_Tool.py”. The logic 

used to get the required input from the user should be fairly 

easily understood from the program code. See separate flows 

for the designated functions in “Macro_Model_Tool.py” 

under.  

The flow in-depth analysis gives the user the option to call the function save_model_results() for 

saving the model parameters for the specified model for later deployment to the ECL model. This 

function should be easily understood, and hence is not described specifically in this documentation.  

The flow for deploying the new IFRS9 macro models to the ECL model calls the function 

deploy_new_models(). This function should be easily understood from the code, and hence is not 

described in this documentation. See user guide for further details on this flow.  

Function called 
from terminal

Calls function 
set_macro_project()

Select project, 
or create new

Create_macro
_project()

New project

Set selected macro 
project

Existing project

Create user object

User selects 
program flow

The selected flow is 
executed
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Create macro project 

 

 

User is asked to specify name. The program checks if an existing project has the 

same given name. The user is asked to specify all input files to the program. 

These are Macro forecast file, segment Z file and file with OLS simulation input. 

The user is also asked to specify what sheets in the macro file corresponds with 

the three scenarios; baseline, low and adverse.   

The project creates a folder with the given project name, and the subfolders: 

OLS_analysis_results, Suggested_OLS_models, Project_parameters, and 

Project_model_coefficients.  

Program uses shutil.copy() in order to copy the specified files into the project 

subfolder Project_parameters. The two templates for output to excel are also 

copied to this folder.  

Program creates an excel file with the mapping from the three scenarios to 

three sheets in the macro data input file and saves to project subfolder 

Project_parameters. The file has the headers “Type” and “Name”. The three 

types “Baseline_sheet”, “Adverse_sheet” and “Low_sheet” are mapped to 

names of sheets in macro data input file.  

File containing the current IFRS9 macro models in use in the ECL model is 

copied into the project subfolder Project_model_coefficients.  

 

Program creates an excel file to keep track on IFRS9 macro models that have 

been changed in the project. The excel file has three headers, “Model”, 

“Changed”, and “Date”, and one row for each IFRS9 macro model specified 

under “Model”. “Changed is set to “No” for all rows.  

 

 

Called from 
set_macro_project()

User sets project 
name, and project 

input files

Program creates 
project folder, with 

subdirectories

Program copies 
selected input files 

to folder 
Project_parameters 

in project folder

Creates xlsx file with 
mapping from 

scenario to sheet in 
macro data input 

file

Copies current 
macro model 

parameters from 
ECL model to 
project folder

Creates .xlsx file for 
the program to 

keep track on what 
models have been 

changed in the 
project

Navigates to user 
interface
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Generate model suggestions 

The module to generate proposed OLS models is called from the user interface with the required 

parameters. As there is a limit on processing power, several measures had to be taken in order to get 

the processing time down to an acceptable level. These includes utilizing multiprocessing where 

parallelization was possible, setting threshold values for the OLS regression in order to limit the 

overall number of regressions that have to be done, and have a program flow where all the 

combinations first were tested without including dummy variables, and thereafter only adding 

dummy variable combinations to the combinations that showed promise after that. This means that 

dummy variables will only be added to combinations that had OLS parameters above the threshold 

set for adjusted r-squared and below the threshold set for significance level. 

These alterations to the original plan significantly lowered processing time from weeks to below the 

threshold of 10 minutes set by DNB when a sensible number of input variable and transformations 

are used.  

To make combinations to be tested in OLS regression, two special functions were written to avoid 

duplication of code. combine() takes a list of variables to be combined, and depending on the input 

parameter max_combinations, combines the elements in the list to all possible combinations using 

the function combinations() from the itertools package. Combine_lists() takes a list of lists as input, 

and combines the different elements of the lists with each other in all possible ways by using the 

function product() from the itertools package. Both of these functions should be easy to understand 

by reading the code, and therefore does not have dedicated visualisations of their flows.  

Overall flow 
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The function is called with parameters specified in the function docstring 

in the code. 

Z to be modelled is imported from file in project parameter folder. 

The macro variables to be used in modelling is imported from file in 

project parameter folder.  

The macro data to be used is validated and normalized. Se separate flows 

under common functionality. If errors are found, program execution is 

halted.  

All specified transformations for each specified variables are done. Se 

separate flow.  

As Z time series might be shorter than variable time series, time series are 

shortened such that only observation dates that are in Z for the different 

variable time series are kept.  

Calls function combine() in order to combine transformations of the same 

variable with itself.  

Calls first combine() to combine the different variables, and calls 

combine_list() to combine the variable transformations of all variables.  

Generate dummy variables for the Z time series. See separate flow.  

Combine dummy variables with other dummy variables by calling 

combine() 

 In order to speed up processing, multiprocessing is done. See separate 

flow.  

OLS regression is done with all the combinations of variables, but without 

dummies for the first round of regression. See separate flow.  

The list with OLS models passing the tests in the OLS function is sorted on 

r-squared and capped to 1000 models. This was done to reduce processing 

time, and after conferring with future users.  

The list of successful models is combined with list of dummy combinations.  

Multiprocessing is done for second round of regression.  

See separate flow.  

OLS regression is done for all models passing first round of regression, and 

that was not cut in the following step. See separate flow. 

The list of models passing the second round of regression is sorted by r-

squared and capped to 10000 models.  

The results are written to excel by calling 

write_OLS_suggestions_to_excel(). This code should be unproblematic to 

follow.  

Generate_OLS_models() called 
from the user interface

Imports the Z time series to be 
modelled

Imports the macro variables that 
will be used in the OLS regression

Validate and normalize the 
macro data

Do variable transformation

Trims the transformed values 
such that the value time series are 
not longer than the time series to 

be modelled

Combines transformations of the 
same variable with itself

Combines transformations of 
different variables

Generate dummy variables

Combine dummy variables with 
other dummy variables

Do OLS regression

Combine significant models with 
dummy variables

Do OLS regression

Sort on r-squared and reduce 
number of results with dummies

Sort on r-squared and reduce 
number of models without 

dummies

Write model suggestions to excel 
file

combine()

combine_lists()

Multiprocessing 
logic
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Do variable transformation 

 

do_variable_transformations() is called with 

parameters specified in the function docstring. 

Based on information in simulation input file in 

project folder Project_parameters, a list is filled 

with Ln, inflation adjustment codes and “”. “” 

represent no Ln or inflation adjustments of the 

other transformations.  

Loop through all elements in list created in previous 

step. 

Given the lag-input, the program loops through all 

base transformations(Pct1, Lag1, Movavg2, etc.).  

For each combination of the two lists, the program 

calls transform_variable() in class 

Ols_parameter_transformation in 

Dataprep_functions.py. See separate flow under 

Common functionality.  

Each transformed time series is added to a 

dictionary with key=transformation code, 

value=transformed time series.  

 

Continuous the nested loop through both lists.  

 

Returns a dictionary with the transformed time 

series for all the variables.   

 

Generate dummy variables 

This function generates all possible dummies based on the Z to be modelled, and based on maximum 

length of dummy variables(defaulted to five years). This function has three nested loops, where the 

Function 
do_variable_transformations() is 
called with required parameters

Adds Ln, inflation adjustment, 
and the combination of ln and 
inflation adjustment to the list 

additional_transformation_list if 
specified in the function input

Loops through 
additional_transformation_list

Loops through 
transformation_list containing 
all base transformations given 

number of lags specified in input  

Transform variable to the 
specified transformation

Adds transformation to 
transformation_dict

Last 
transformation 

in 
transformation_

list?

Last 
transformation 

in 
additional_trans
formation_list?

No

Yes

No

Returns 
transformed time 

series

Yes
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first loop iterates over all possible dummy lengths based on the max_dummy_length input, and 

thereafter loops over all possible starting dates given the dummy length. Lastly the program loops 

over the entire timeseries of Z to actually generate the dummy time series.  

This is the flow of the function: 

generate_dummies() is called with parameters 

specified in the function docstring.  

Loops over all the dummy lengths specified in the 

input. So first generating dummies with length 

one year, thereafter dummies for two years, etc.  

Loop over all observation dates minus length of 

dummies, to find all possible start dates given 

the dummy length.  

Initiate a length counter to keep track of how 

many more years to add to dummy time series.  

Loop over entire time series in order to generate 

the actual dummy time series for the particular 

dummy variable.  

If date in last loop is over start date identified 

earlier, and if the length counter is above 0, the 

value 1 is added to dummy time series, and 1 is 

subtracted from the length counter. If these 

conditions are not true, meaning date is before 

start of dummy period or the particular length of 

dummy har already been created, 0 is added to 

the dummy time series.  

Continuous to loop through the three nested 

loops.  

 

Dummy name is set. If start and end date are the 

same, this variables becomes the dummy name. 

If they are different, “start_date – end_date” 

becomes the variable name.  

A dictionary with key = dummy name, and value 

= dummy time series is returned.  

 

 

Generate_dummies called with 
required parameters

Loop over the dummy lengths (1-
max_dummy_length)

Loop over entire time series (stop at 
length of time series minus dummy 

length)

Loop over all time series dates

Initiate a length counter to keep track 
of length of variable

Is date > 
start_date and is 
length counter > 

0?

Set date value to 1Set date value to 0

YesNo

Subtrack 1 from 
length counter

Length_
counter

Finished last 
time series 

date?

No

Finished last 
time series date 
minus dummy 

length?

Yes

No

Finished looping 
over all dummy 

lengths?

Yes

No

Set dummy name

Return dictionary 
with dummy time 

series

Yes
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Do OLS regression 

This function is where the actual OLS regression on the time series from earlier in the program is 

done. If the time series for each individual regression was added to the tuple that is an input to this 

function, the program had major memory issues because of the sheer number of combinations to do 

regression simulations on. To get around this issue, the class TimeSeriesLookup was created. An 

object of this class is created before the OLS simulation, and a pointer to it is added to the input to 

this function. This object contains all the different time series that will be included in the OLS 

simulation, Z, variable and dummy time series, and by calling the class function time_series() with a 

tuple of the variables to be used in the OLS simulation, the function trims the time series to the 

shortest of the time series for that particular regression, and returns them. 

This is the main flow of the function: 
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The function do_OLS() is called with the parameters 

described in the function docstring.  

Gets the trimmed time series to use in OLS regression 

by calling the function time_series() on the 

TimeSeriesLookup-object.  

Transforms the time series into the format required by 

the OLS function, and calls the function OLS() from the 

package Statsmodels to create an OLS model. Corrects 

for heteroscedastic and autocorrelation by calling the 

function get_robustcov_results() from Statsmodels.  

Extracts adjusted r-squared and p-values of explanatory 

variables from OLS object returned by the Statsmodels 

package.  

Checks if adjusted r-squared is above the defined 

threshold, and check if all explanatory variables are 

significant based on the significance level defined.  

Checks if all variables, not dummies, have the expected 

coefficients (positive or negative) as defined in the 

simulation input file stored in the project folder 

Project_parameters.  

If the model passes the above tests, a tuple containing 

OLS results are returned. If the model does not pass, 

nothing is returned from this function.  

 

Multiprocessing logic 

As Python has a global interpreter lock (GIL), using multithreading for parallelism would limit the 

computer to only using one CPU, despite having a multi-core setup. For that reason multiprocessing 

is implemented for parallelisation in this program. See chapter on Multiprocessing under Techniques 

and technologies used in the program for further information on this topic.  

It would require a disproportionate amount of overhead for the computer if very big iterables are 

passed to the multiprocessing-functionality. For that reason, the list of combinations to be passed to 

Function do_OLS() with 
required parameters

Gets time series to be used in 
OLS regression from 

TimeSeriesObject

Creates an OLS model, 
corrected for 

heteroscedasticity and 
autocorrelation with a HAC 

matrix

Extract adjusted r-squared 
and variable p-values from 

OLS object

Is adjusted r-squared 
above threshold, and 
all p-values significant

Does all variable 
coefficients of 
variables have 

expected sign(positive 
or negative)

Yes

OLS result tuple is 
returned from 

function

Nothing is returned 
from function

YesNo
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the multiprocessing-logic is divided into chunks of maximum 50’000 elements. This size is the result 

of timing of different chunk sizes. This increased execution speed considerably.  

This logic is not contained in a designated function, but is a part of the function 

generate_OLS_models() two separate places.  

The main flow of the multiprocessing logic is: 

 

 

Create a pool object from the class Multiprocessing in the 

package with the same name.  

 

Checks if length of combinations list is above the chunk size of 

50’000, and therefore if it needs to be divided into chunks 

before doing multiprocessing.  

If dividing into chunks is not required, multiprocessing is done 

on the entire combinations list. If it has to be divided before 

doing multiprocessing, (length of combinations 

list)mod(50’000) must be found to make the remaining list 

divisible by 50’000.  

Find our how many chunks to divide the combinations list into 

before doing multiprocessing.  

 

Does multiprocessing with each chunk of the combinations list.  

 

Does multiprocessing on the remainder of the combinations 

list. On the part of the list not divisible by 50’000.   

 

 

Code reached in function 
generate_OLS_models()

A pool object of the 
class 

Multiprocessing is 
created

Is lenght of 
combinations 
list <= 50'000

Do multprocessing 
on entire list using 

pool.map()

Find modulus of 
combination list 

length and 50'000

Find number of 
chuncks to divide 
combinations list 

into

Do multiprocessing 
on each chunk of 
combinations list 
using pool.map()

Do multiprocessing 
on the remaining 
data identified by 

the modulus 
function earlier 

using pool.map()

Continuous code execution in 
function generate_OLS_models()
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In-depth analysis 

The in-depth analysis returns in-depth statistical information of a chosen OLS model for a given IFRS9 

macro model. The statistical information this will write to an excel file is:   

adjusted r-squared, mean absolute error of model, root mean squared error of model, KPSS and ADF 

of residuals, Durbin Watson test statistics, Jarque-Bera normality test statistics, Omnibus normality 

test statistics, Lillefors’ test statistics, Breusch-Pagan Lagrange Multiplier test for heteroscedasticity, 

MAE and RMSE of rolling regression for model and the challenger models as-is and TTC, p-values and 

coefficients of explanatory variables, KPSS and AFD for explanatory variables time series, year on 

year coefficients of explanatory variables from rolling regression, all time series used in OLS 

regression, predicted historical Z for baseline scenario with 95% confidence interval, predicted future 

Z for baseline, low and adverse scenario, and predicted Z from rolling regression with 95% confidence 

interval. 

In order to simplify storage of data, the custom class OLS_result_object is used. An object of this class 

has get and set methods, for an organized way of storing and retrieving data during calculation and 

during writing the results of the in-depth analysis to excel.  
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Overall flow 

Function in_depth_analysis() in Macro_Model_Tool.py is called with 

parameters described in the function docstring.  

Calls custom function get_Z_values() to retrieve Z time series to be 

modelled.  

Imports macro data from all three scenarios, and validates it using the 

function Check_Macro_Input() in Dataprep_Functions.py. See separate 

flow under Common Functionality in this documentation. If errors are 

found, execution of program is stopped. If no errors, normalization of 

the data is done, see separate flow under Common Functionality.   

Loops through all explanatory variables. If variable is not dummy, 

transformation of macro data time series is done by calling 

transform_variable() in class Ols_parameter_transformation in 

Dataprep_functions.py. See separate flow under Common 

functionality. 

Time series of all macro scenarios are trimmed to the same length by 

calling function trim_time_series(). See separate flow.  

Calls function do_extended_OLS() to generate OLS regression statistics. 

See separate flow.  

Calls function rolling_regression() to get rolling regression statistics. 

See separate flow.  

Calls function write_in_depth_results_to_excel() to write OLS results 

to a copy of the excel template OLS_results_template stored in the 

project folder under Project_parameters. This code should be easy to 

follow as it just extracts data from the OLS_result_object object and 

writes it to cells in the excel file through a combination of direct cell 

references and loops using offsets.  

 

Trim time series 

Despite the flow generating OLS model suggestion has functionality for trimming time series to the 

same lengths in order to be able to do OLS regression, it was decided to make dedicated functionality 

Function in_depth_analysis() called 
with required parameters

Import Z time series to be modelled

Imports and clean macro data 
for the three scenarios 

baseline, low and adverse

Loops through all explanatory 
variables, and do specified 

transformation of time series 
for all three macro scenarios

Trim time series to be 
modelled to the same length

Does extended OLS regression 
on the time series

Does rolling regression on 
baseline macro scenario

Writes in-depth analysis results to 
excel file
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for this for the in-depth analysis flow. The reason is that the data to be handled and the 

requirements relating to execution speed differ to such an extent that to make common functionality 

to satisfy the requirements for both flows, would require complex code potentially not satisfying the 

requirements of either flow satisfactory and potentially being hard to understand and maintain for 

future development of the program. While the functionality for trimming time series is executed 

inside the OLS function in the flow for generating OLS models when fetching variable time series, the 

trimming of the time series must be done before calling the OLS function in the flow in-depth 

analysis.  

This function was subjected to multiple rounds of rewriting during development, stemming from new 

requirements to the output of the entire flow deemed necessary in light of the corona situation. For 

that reason, and a general lack of time and unwillingness to risk breaking the parts of the function 

proven to be working and thereby jeopardizing the work being done in estimating new OLS 

parameters for one of DNB’s IFRS9 macro models, the program features some duplication of code 

not aligning with best coding practice. Under Suggestions for future improvements, it is 

recommended to refactor the code in this function to avoid code duplication and generally making it 

more readable.  

This is the flow of the function: 
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Function trim_time_series() is called with parameters specified in 

function docstring.  

Sets a variable with integer value equal to length of Z time series. 

This variable will be used to shorten time series to same length.  

Loops over all time series in variable_time_series_dict, 

representing the baseline macro variable time series.  

Extract historical and projected data into separate lists. This is 

done by using the strings "_Actuals" and "_Projections" stored in 

a tuple with the time series value of that specific observation 

date.  

Finds the shortest time series. Compares the length of each 

historical time series to integer stored in variable 

shortest_time_series. 

Loops until last macro variable time series.  

If dummy variables are passed to the function in dummy_dict, 

these time series are added to the list of historical time series.  

All historical time series are cut to same length by using the 

variable shortest_time_series and cutting the start of the time 

series. It is assumed that the time series have the same end date, 

but can have different starting dates.  

Extract the projection time series for all three macro scenarios 

using the same logic as above.  

 Projection time series are independently trimmed to the same 

length using a similar logic as above. This time the end of the 

projections are trimmed, as it is assumed that projections have 

the same start date, but can have different ending dates.  

If dummy time series are passed to the function, projected 

dummy time series are added to projected time series with 

value 0, as these will have no effect on projections. As we 

know length of projected time series, the program adds the 

correct length of dummy time series.  

Function trim_time_series() called 
with required parameters

Sets variable shortest_time_series 
to length of Z time series

Loops over all time series in 
variable_time_series_dict.  

Extract historical data(Actuals) 
and projections, and populates 

one list for each

If length of any historical time 
series are shorter than value of 

shortest_time_series, this variable 
is updated

Last variable?

No

Extract projections for the 
scenarios low and adverse similar 

to above

If dummy time series are passed 
to the function, these time series 
are added to the historical time 

series of the variables

All historical time series are 
trimmed to same length by using 
the variable shortest_time_series

Projections for all three scenarios 
are independetly trimmed using 

the same logic as described above

If dummy time series are passed 
to the function, dummy time 

series with the correct length with 
value 0 is added to the projection 
time series for all three scenarios

Calculated values are returned 
from the function as a tuple
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Do extended OLS regression 

Despite the flow for generating suggested OLS models also has a function for estimating OLS 

parameters, it was decided to create a dedicated function for the in-depth analysis flow for the same 

reasons as it was decided to create a dedicated flow for trimming time series. Having a separate 

function for this ensures the functions are optimized for the individual flows, and makes the code 

much more readable and easy to maintain and expand. This function was made flexible enough to be 

able to use in a simplified way for rolling regression in addition to the more extensive analysis 

required to generate all necessary statistical parameters.  

This is the overall flow of the function: 
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Function do_extended_OLS() is called with parameters specified 

in the function docstring. 

The variable time series are transformed into a numpy array, 

transposed and a constant is added.  

Estimates model first by calling function OLS(), and then by 

calling function get_robustcov_results() to correct for 

heteroscedastic and autocorrelation.  

Creates result object and store model object, model coefficients, 

Z time series and explanatory variables time series to object.  

Checks if these parameters are passed. If not, no further analysis 

is done on the model, and result object is returned from 

function. If the parameters are passed, more extensive analysis 

is done.  

Loops through explanatory variables and calculates stationarity 

statistics(KPSS and ADF) of time series. Adds this to result object.  

 

Adds adjusted r-squared, r-squared, p-values, residuals and 

baseline historical predictions to result object.  

Calculates future predictions for all macro scenarios and adds to 

result object.  

 

Calculates mean absolute error(MAE) and root mean squared 

error and adds to result object.  

Calculates 95% confidence interval of historical predicted Z, and 

adds to result object.  

Calculates statistics from the tests Durbin-Watson, Jarque-Bera, 

Omnibus, Breusch-Pagan and Lillefors, and adds to result object. 

 

Returns result object.  

Calls function do_extended_OLS() 
with required parameters

Transform historical time series of 
explanatory variables to format 

required by statsmodels package

Generate robust OLS model

Create object of class 
OLS_result_object, and fill with 

OLS results

Is variable 
names and 

macro scenario 
projections 
passed to 
function?

Estimates stationarity of variable 
time series(KPSS and ADF) and 

saves to results object

Yes

Adds additional OLS parameters 
to result object

Calculates predictions for all 
macro scenarios and add to result 

object

Calculates MAE and RMSE of 
model, and adds to result object

Calculates confidence intervals of 
predicted Z and adds to result 

object

Calculates results of several 
statistical tests and adds to result 

object

Returns result object of type 
OLS_result_object

No
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Do rolling regression 

Rolling regression is a way to determine the forecasting properties of the model over time. It does 

ten separate OLS regression on an ever-increasing time series length in order to see how well the OLS 

regression of the shortened time is able to predict one year ahead in time. So it start by shortening 

the time series by 11 years to see how well it predicts the Z 10 years ago, then shortens the time 

series by 10 years to see how well it predicts the Z 9 years ago, etc.  

The forecasting properties of the two simplified challenger models as-is and TTC are also calculated. 

As-is assumes Z one year ahead in time is equal to the current Z, while TTC assumes no cyclicality of 

Z, and therefore that all future predictions of Z are zero.  

Mean absolute error(MAE) and root mean squared error(RMSE) of all three models for the entirety 

of the rolling regression period is calculated for the user to compare out of sample model 

performance and forecasting properties. Coefficients of the tested model are also saved, for the user 

to analyse if they fluctuate in an unpredictive way.  

The statsmodels package has functionality to do rolling regression, but it did not satisfy all 

requirements of DNB. For that reason, it was decided to create a custom function for this, that also 

can be extended in future iterations of the program.  

This is the overall flow of the function: 
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Function rolling_regression() is called with parameters 

specified in function docstring.  

Years to do rolling regression is specified in input. Loops 

downwards from this integer to 1.  

As-is model assumes next year will be equal to current year. 

Residual for that year is found by the difference in current Z 

and next year Z.  

TTC model assumes no cyclicality in Z. Residual for that year is 

found by the difference between zero and next year Z. 

Calls function do_extended_OLS(). As no prediction variables 

are included, only a simplified version of the function is done. 

See separate flow.  

Use model from last step to calculate predictions for next year 

by passing time series with one additional observation date 

and fetching last predicted Z.  

Calculates residual by the difference in predicted and actual Z. 

Extracts and saves coefficients from estimated model 

 

Loops through all years of rolling regression 

Estimates MAE and RMSE for all three models based on the 

estimated residuals.  

Estimates 95% confidence interval for the specified model.  

 

Returns a dictionary with rolling regression results.  

 

Common functionality 

This is general functionality used by multiple program flows.  

Calls function rolling_regression() 
with required parameters

Loops through years to do rolling 
regression

Calculate residual for as-is by finding 
difference between last year Z and 

current Z

Calculate residual for TTC by finding 
difference between current Z and 

zero

Calculates OLS model by calling 
do_extended_OLS() with the 

shortened time series

Adds one year to variable time 
series, and use this to predict Z on 

year ahead in time for the OLS 
model for last step

Calculates model residual by 
comparing predicted and historical Z

Extract model coefficients

Last year of 
rolling 

regression?

No

Estimates MAE and RMSE for the 
three models based on the residuals

Calculates the 95% confidence 
intervall of the model 

Returns a dictionary with rolling 
regression statistics

Yes
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Validate macro data 

This step aims to stop execution of program if obvious errors in the macro file input are found, and 

returns a list of errors that should aid the user as to how to fix the macro file. This validation will not 

detect all possible errors in the macro input file, and should be improved on as DNB gains experience 

into what are typical errors not detected in current program. It is also recommended to extend the 

functionality to also fix minor, predictable errors in the input macro file, see more on this under 

“Suggestions for future improvements”. To validate the input, the program uses an excel file stored 

on the ECL model with macro metadata. This file contains a list of all the expected variables in the 

macro input, and information on what is expected of historical and projected data for each variable. 

This program code was incorporated into the code of the new ECL model, and is stored in 

Dataprep_Functions.py. To follow the structure of the new ECL model, this functionality is organized 

in the class Datavalidation.  

This is the flow of the validation: 

The main function of the class is called with 

parameters specified in the function docstring.  

Program loops through all variables in macro 

input file and in macro metadata file, and 

compares.  

Checks if variables that are expected to have 

projections, based on metadata file, actually 

have projections.  

Checks if variables that are expected to have 

historical data, based on metadata file, actually 

have projections.  

Checks that all data values are numerical.  

Checks if there is a continuous time series from 

first data of historical data to last date of 

projected data, to avoid non-continuous time 

series.  

Returns error list. If no errors are found, this 

will be empty. 

 

Check_macro_input() 
is called with needed 

paramaters

Checks that all 
column headers are 

in macro file 

Error list

Checks that 
variables that 
should have 

projections have 
projected values

Macro meta 
data

Check
against

Check
against

Checks that 
variables have 

actuals

Checks that all 
values are 
numerical

Checks that there is 
a continious series 

of values from 
startDate to 

endDate for all 
variables

Error list is returned

Add
errors
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Normalize macro data 

In accordance with DNB wishes, this functionality was incorporated with the new ECL model, and put 

in the file Dataprep_Functions.py, and stored together with the ECL program code. To follow the 

structure of the new ECL model, this functionality was organized in the class DataNormalization, with 

the two functions transform_macro_data(), that actually normalizes the data, and 

generate_LTV_hh(), that generates a new macro variable, loan to value for households, based on 

other macro data provided by DNB Markets. Data must be normalised as the macro input data lacks 

a common format. There are two cases treated by this function. One is that actual values are given in 

the historical data, while growth rate is given for projections. These time series will be transformed 

to actual data also for projections. The other case is where both historical data and projected data 

are given as a percentage, but where the value given is 100 times as high as the format wanted for 

the macro data. E.G. 4% is denoted as 4, instead of 0.04. These time series will be divided by 100 for 

each observation date.  

The calculation of LTV_hh is fairly straightforward, and should be easy to read from the code itself, 

and does not have a visualised flow in this documentation. The formula for the variable is (C2_hh / 

C2_hh_divider) / (HPI / HPI_divider). C2_hh and HPI are both in the macro input, while C2_hh_divider 

and HPI_divider are found in the sheet IndexYears in the macro metadata file stored on the ECL 

project.  

The main flow of transform_macro_data() is: 
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Function transform_macro_data() is called with required 

parameters specified in function docstring.  

Loops through list in macro metadata file to find variables where 

projections must be transformed from growth values to actual 

values.  

Converts projections to actual values by multiplying previously 

observed value in the time series by (1 + growth rate given in 

projections).  

 

Loops through list in macro metadata file to find variables where 

entire time series must be transformed into correct format for 

percentage/growth.  

Converts time series to correct format by dividing each observation 

by 100.  

 

Returns the same data frame that was taken as input, but with 

normalised values.  

 

Transform variable time series 

In accordance with DNB wishes, this functionality was incorporated with the new ECL model, and put 

in the file Dataprep_Functions.py, and stored together with the ECL program code. To follow the 

structure of the new ECL model, this functionality was organized in the class 

Ols_parameter_transformation. It has the main function transform_variable(), which calls other 

supporting functions corresponding to each supported transformation type.  

Function transform_macro_data() is 
called with required parameters

Loops through all variables in macro 
metadata file, and appends variable 

name to list if historical data has code 
«Value» and projections has code «%»

Loops through all variables in the 
created list, and converts projections 
from growth values to actual values

Loops through all variables in macro 
metadata file, and appends variable 

name to list if historical data and 
projected data has code «%»

Loops through created list and convert 
historical and projected time series to 

corret format by dividing each 
observation date value by 100

Returns normalized data
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Function transform_variable is 

called with required parameters 

specified in function docstring. 

If transformation type contains 

“Real”, inflation adjustment is 

done using inflation data and 

inflation metadata specified in 

input, and inflation code is 

removed from transformation 

type.  

If transformation type contains 

“Ln”, the time series is converted 

using the natural logarithm, and Ln 

code is removed from 

transformation type. 

Uses transformation type as key in 

dictionary with lambda functions 

referencing all transformation 

functions, and combinations of 

these.  

Variable time series are 

transformed, and a dictionary of 

the transformed time series.  

 

Testing 

The program has been used by DNB to estimate some of the IFRS9 macro models that had model 

performance that was deemed unsatisfactory given the macroeconomic situation created by the 

corona virus. In this process all output from the macro model tool has been validated against output 

given by the current program in SAS. This involved comparing estimated r-squared values, variable p-

values, variable coefficients, variable transformations, rolling regression results, predicted Z values 

for the different scenarios, confidence ranges, and results from the various statistical tests on 

residuals and time series. OLS regression and statistical tests has also been done manually in excel in 

Function 
transform_variable 

is called with 
needed parameters

Inflation adjust 
variable?

Inflation 
metadata

US and 
norwegian 
inflation

Inflation adjust 
variable

Yes

Use data

Use data

Transform 
variable to Ln?

No

Tranforms variable 
to Ln

Yes

Call function in 
transform_function
_dict corresponding 
with transformation 

type

Transform variable 
by executing 

function

No

Return dictionary 
with transformed 

values
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order to ensure the correctness of the output from this program, and time series transformations has 

been manually calculated to ensure the transformations were implemented correctly in the program.  

Future users of the program have been involved in the development from the start of the project, all 

of whom has little to no experience with Python or working in a terminal window. This has helped to 

uncover faults and insufficiencies in the user interaction with the program during development. The 

feedback from future users has been that the final version of the program is very easy to interact 

with and intuitive to use.   

 

Assessment of program 
 

Feedback from DNB 

The feedback from DNB on this program has been overwhelmingly positive. The program 

functionality has been used extensively by DNB before the program was even finished in order to 

address IFRS9 macro models that underperformed during the economic shock. The feedback from 

analysts benefitting from the functionality in this program has been that it would be unlikely that 

these IFRS9 macro models would be possible to re-estimate in due time before 2020 quarter two 

reporting had it not been for this program. Both because of the great advantage of having a list of 

OLS models generated by the OLS suggestion functionality of the program, and the structured and 

accurate output from the in-depth analysis functionality.  

Own assessment of program 

Despite some of the program code show signs of the immense time pressure and changes in program 

requirements brought on by the corona pandemic, the author of this paper is overall very content 

with the final version of this program.  

In terms of programming quality, the functionality generating the suggestions for OLS models is the 

centrepiece of this program, and is the result of countless iterations of trial and error, and utilizing 

increasingly complex programming approaches and structural considerations rooted in an 

understanding of the problem that needed to be solved, in order to get the processing time down 

from weeks to minutes.  This approach to finding IFRS9 macro models also signals a shift in the 

approach to finding the models from just using industry intuition and manual trial and error, to using 

a combination of industry intuition and raw computing power to find optimal models, yielding both 

better models and a significant reduction in time this process takes for involved analysts. By further 
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expanding this functionality in the program and include other model criteria, DNB can use this 

approach to find even better IFRS9 macro models in a shorter time in the future.  

The storage structure behind the program is also a feature that should be highlighted. By automating 

how the output from the program is stored, and thus not relying on user of the program following 

guidelines on how to store and structure output, the probability of having a robust and sustainable 

system for storage of output has greatly increased. This in stark contrast to how the output from 

most in-house models are stored, which is often having all output files from a program being saved 

to a common directory.  

The last feature to highlight is the rudimentary way this program has an interface and visualisation of 

the output, despite being confined to a terminal and directory-based interface. The user interface 

certainly is not pretty or exciting, but the feedback has been that it is intuitive and a major step up 

from the system-centred design of the old macro tool program. The output files are in a format that 

can be attached to model change proposals being sent to internal audit, a far cry from the extensive 

copy-paste that had to be done from the old program during model change evaluations.   

User guide 

In order to structure the use of the model, the users are required to create a macro estimation 

project for that round of IFRS9 macro model estimation before gaining access to the program 

functionality. It is strongly suggested that only one project is created and used for each round of OLS 

estimation. Do not create designated projects for different models and/or for different users of the 

programs. This might lead to errors when deploying the new model parameters to the ECL model.  

There are also instruction videos showing some of these operations.  

Setting up a new macro estimation project 

1. Make sure you have uploaded these files to the program under “Macro_tool_data” before 

setting up a new project: 

 

a. The macro data from DNB Markets to be used in modelling. Make sure you have 

separate sheets for the baseline scenario, the low scenario, and the adverse 

scenario. It is not important that these sheets have these specific names, but you 

must know what sheet corresponds to what scenario. Also make sure what is in 

these sheets is just the macro data itself, and not comments etc. The macro data will 

be validated by the program to ensure it is in the correct format before use.  
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b. Z values to be modelled. This file must contain a sheet for each IFRS9 macro model to 

be modelled in the program, and the sheet name must correspond exactly to the 

name of the IFRS9 macro models. Cell A1 must contain “Date” and cell B1 must 

contain “Z”. In the following rows the observation dates and the estimated Z values 

for each date must be given.  

 

c. List of input variables to be used for suggestion module. This file must contain a 

sheet for each IFRS9 macro model to be modelled in the program, and the sheet 

name must correspond exactly to the name of the IFRS9 macro models. It must 

contain, from cell A1 to D1, “Variables”, Inflation adjust”, “Ln adjust”, “Expected 

effect”. For each variable to be used, the name of the variable, inflation 

adjustment(“Nor”, “US” or nothing), Ln adjust(“Y” or “N”) and expected effect(“+” or 

“-“) must be stated.  

 

2. When starting up the program, you are told to either choose an existing macro estimation 

project or create a new project. Type “new” in order to create a new project.  

 

3. Type in the name of the new project. The program will not allow the same name as an 

existing project.  

 

4. Select the macro file containing the macro variables to be used in modelling.  

 

5. Select the three sheets corresponding to baseline, low and adverse.  

 

6. Select the file with the Z timeseries to be modelled. 

 

7. Select the file with the variable input suggestion module in the project.  

 

8. Project is created, and all project files and folders are automatically generated.  

 

9. User is automatically routed into newly created project. 
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Generate OLS model suggestions 

This flow will generate a list of suggested OLS models for the specified IFRS9 macro model. These 

models are filtered on significance of variables and adjusted r-squared, and are sorted by adjusted r-

squared.  

1. When starting the program, you are prompted to select a project to work on. If no project 

has been created for this round of macro model estimation, see the above guide as to how to 

create a new project.  

 

2. Select “Generate model suggestions” by typing 2. 

 

3. Select the IFRS9 macro model to generate suggestions for. 

 

4. Select variables to include. These variables are from the file “Simulation_input.xlsx” stored 

under “Project_parameters” in the project folder. To select multiple variables, separate the 

variable numbers with a comma. The program will validate input and stop execution if input 

format is incorrect. Program also displays the selected variables and prompts you to confirm 

the selection with “Y” or “N”. 

 

5. Select maximum number of lags to use in variable transformation. The program supports 

zero to three lags. Shorter lags in variable transformation generally means the model reacts 

quicker to economic shocks. 

 

6. Select(Y/N) if you want to include an aim for first year of prediction, including this 

observation in OLS simulation. If aim is included, specify a target percentile for first year of 

predictions higher than 0 and lower than 1.  

 

7. Select(Y/N) if you want to use default parameters for OLS regression. If “N”, all parameter 

values must be set by user. Default parameters are: 

a. Maximum variables per regression, excluding dummies: 3  

b. Maximum number of dummies per regression: 1 

c. Maximum number of times a variable can be used in one particular regression: 1 

d. Significance level used to discard OLS models with insignificant explanatory variable: 

0.05 
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e. Minimum adjusted R-squared required for model not to be discarded: 0.65 

 

8. Program will run, printing  start of first and second round of regression, and printing timings 

for both rounds.  

 

9. Results are written out to the project folder, in the folder “Suggested_OLS_models”.  

 

Do in-depth analysis 

This flow will generate extensive statistical information for the given IFRS9 macro model and given 

explanatory variables.  

1. When starting the program, you are prompted to select a project to work on. If no project 

has been created for this round of macro model estimation, see the above guide as to how to 

create a new project.  

 

2. Select “Do in-depth analysis of specified model” by typing 3. 

 

3. Select IFRS9 macro model to work on. 

 

4. Select input option. This only has one option as of today, but this is suggested to be 

increased in future iterations to the program. 

 

5. Type the variable and variable transformations to be used in the regression in accordance 

with the format specified in the terminal. You can also copy-paste this information from the 

output from suggested OLS models. The format from both column B and C is supported.  

 

6. The results are saved to the project folder under the folder “OLS_analysis_results”.  

 

7. Some model results are printed to the terminal. This is to minimize any chance of deploying 

the wrong OLS model. The user is prompted to state if OLS parameters are to be saved for 

future deployment to the ECL model(Y/N). If “Y”, the user is prompted to confirm this by 

typing “Save”.  

 



 

55 
 

Deploy new model parameters to the ECL model 

When all IFRS9 macro models for the particular round of estimation are completed, this flow will 

save the variables to the ECL model. To minimize the chance of deploying the models by accident, a 

flow must also be done in the ECL model itself.  

1. When starting the program, you are prompted to select a project to work on. If no project 

has been created for this round of macro model estimation, see the above guide as to how to 

create a new project.  

 

2. Select “Create new model parameters” by typing 5. 

 

3. The program will print name of all IFRS9 macro models that have been changed, and date of 

change for each model. This is done as a safety mechanism to avoid deploying incorrect or 

unexpected model parameters.  

 

4. The user is prompted to select if new model coefficients should be deployed to the ECL 

model(Y/N).  

 

5. If “Y”, the user is prompted to type “Deploy” to confirm saving of parameters to the ECL 

model.  

 

Change project parameters after model estimation project is created 

Project parameters are loaded into the estimation project when the project is created. If there is a 

need to change these parameters after the project is created, E.G. if new macro projections should 

be added or if new variables to use in the functionality that generates model suggestions should be 

included, this can be done by altering the parameter files located in the project folder under 

“Project_parameters”. Make sure the file names correspond to the technical documentation 

requirements specified under “Data structure and input files”, “Project parameters”. 

 

Suggestions for future improvements 

During the development of this program, the scope has been somewhat decreased, some code has 

been sub-optimally implemented, the need for a minor rethinking relating to structuring of the code 

has arisen, and new potentially useful functionality has been identified. This is a summary of what 
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has been identified as useful future improvements to the program, with some suggestions as to how 

it can be done.  

 

Implement User story 1: Generate credit cycles 

This was originally a part of the scope of the program, but was taken out of scope due to resource 

limitations stemming from the corona virus outbreak. It was also taken out of scope due to a 

discussion around how exactly the Z value for certain IFRS9 macro models should be calculated in the 

future, and a new structure for mapping the data to the different IFRS9 macro models. This will 

involve the inclusion of several stakeholders in DNB, and will be part of a greater project. The 

program is written in a way that should easily allow for this functionality to be implemented into the 

Macro tool program.  

 

Implement user story 4: Automatic validation of existing models 

This was originally a part of the scope of the program, but was taken out of scope due to resource 

limitations stemming from the corona virus outbreak. It was also taken out of scope as the 

automated tests used to evaluate the performance is up to consideration in light of experience 

gained from the performance of some IFRS9 macro models during the corona virus outbreak. The 

program is written in a way that should easily allow for this functionality to be included into the 

Macro tool program.  

 

Add a web-based user interface using Dash 

During development of this program, DNB started rolling out the Dash-framework on their 

development platform. This project was not prioritized for the first round of projects being allowed 

to test out this functionality. When this framework becomes available for everyone on the DNB 

development platform, it is advised to implement a web GUI for this project in addition to the 

current terminal based user interface. It will make the program available to more users, as having a 

terminal based interaction with a program can discourage users unfamiliar with terminal based 

program interaction from using the program. It would be advisable to visualise the different graphs in 

the web interface, and make it an option to write out the results from in-depth analysis to an excel 

file in order to reduce unnecessary storage on the development platform.  
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Expand OLS suggestions by allowing the user to input ranges the baseline predictions 

forward in time have to fall within 

A problem discovered when using the program to actually model a credit cycle for an IFRS9 macro 

model was that it was very hard to find models that have reasonable predictions given the extreme 

economic shock stemming from the corona virus outbreak. This is due to the fact that we lack 

comparable observations in the modelled time series. Several models with an apparent high degree 

of fit, measured by the value of adjusted r-squared, either underestimated or greatly overestimated 

the expected consequences of the economic setback caused by the corona virus outbreak. This was 

initially thought to be redeemed by setting an aim for the first year of predictions. This did not yield 

the results that was hoped. A suggested solution is therefore to include an option for the users to set 

a range of values the predicted Z must be within for the first n number of years of prediction, and 

discard models with predictions outside of these ranges. This can be done with minor adjustments to 

the function “do_extended_OLS()” in “Macro_Model_Tool.py”. An even more refined approach is to 

create a weighing system where model performance is defined as a product of both r-squared and 

how close it is to an expected range, where the weight of the two parts can be given as an input by 

the user. This might especially aid in finding good dummy variables, as the program no longer just 

aims to reduce the residuals, but also adjusts coefficients of explanatory variables to make future 

predictions more reasonable.   

 

Expand OLS suggestions by filtering out variables not passing the KPSS test 

One of the requirements when modelling Z, is that the time series of the explanatory variables are 

stationary around a mean. This is due to the nature of how Z is calculated. The in-depth analysis 

returns p-values from the statistical tests Kwiatkowski–Phillips–Schmidt–Shin(KPSS) test and 

augmented Dickey–Fuller(ADF) test that will help the analyst determine if the variable time series are 

stationary around a trend. As the KPSS test is the one out of the two tests with the lowest likelihood 

of determining that a time series is not stationary around a trend, an improvement to the program 

would be to allow for the user to determine if the OLS suggestion module should automatically 

discard OLS models containing non-stationary time series. This can be done with minor adjustments 

to the function “do_extended_OLS()” in “Macro_Model_Tool.py”. 

 

Have a decomposition of the effect from each variable  

In model selection it is useful to see what effect the individual explanatory variables have on the 
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predicted Z. This involves using actual and predicted time series of the explanatory variables, and the 

variable coefficients. The required information is already stored in variables in the function 

“write_in_depth_results_to_excel()” in “Macro_Model_Tool.py”. The piece of information needed 

for this not already written to the output excel is the projected time series for the explanatory 

variables. These are stored in the variables “baseline_macro_predictions”, 

“adverse_macro_predictions” and “low_macro_predictions”. 

 

Link macro tool and ECL project to see effect of new model 

Link the Macro Tool and the ECL project in such a way that models tested in in-depth analysis can be 

tried on the ECL model in order to see the effect the new model will have on ECL on the portfolio 

using that particular model compared to the current model used by the ECL program. This will 

require some alteration of code in the ECL model in order to make it callable from outside its own 

interface, and it will require alteration of the Macro model tool. This functionality is suggested to be 

put into a designated function in the existing function “in_depth_analysis ()” in 

“Macro_Model_Tool.py”. As this will significantly increase execution time of in-depth analysis, it is 

important that this is an option for the user, and not a default. It must also be decided how the 

results should be presented. Either aggregated ECL figures can be included into the current output 

file from in-depth analysis, or more granular data can be exported to a designated excel file. Granular 

data can also be included into a designated sheet in the current output from in-depth analysis, but it 

should be taken into consideration that this might lead to performance issues in the excel file itself 

because of the large amounts of data the ECL model returns.  

 

Add possibility to select variables and transformations used in in-depth analysis from 

list 

The only way of selecting what variables and transformations to use as input into the in-depth 

analysis is to type or paste the variables in a specific format. This approach should work well for most 

users, but in order to make the program easier to use, an option to select one variable followed by 

the wanted transformation from a list, and repeat until all variables are selected could be 

implemented. A suggestion is to use the file “Simulation_input.xlsx” under “Project_parameters” in 

the project folder for each project to avoid having to write out all variables in the macro input sheets. 

All supported transformations are in dictionary “transform_functions_dict” in 

“Dataprep_functions.py”, located in the ECL project itself. This option to select variables should be 
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added to the function “in_depth_analysis()” in “Macro_Model_Tool_User_Interface.py”. Add the 

option to the dictionary “input_options” and code that is called if user_input ==”2”.  

 

Refactor duplicated code in trim_time_series() 

As the scope relating to the inclusion of more macro scenarios with varying degree of pessimism 

used for predicting Z forward in time was expanded when working on estimating the macro model in 

light of the corona virus outbreak, the emphasis was to write code that yielded the required 

information rather than write optimal code. For that reason, it is some duplicated code in the 

function “trim_time_series()” in “Macro_Model_Tool.py”. In order to get cleaner, more robust code, 

this logic should be rewritten in such a way that baseline, low and adverse time series should be 

trimmed by the same code, and avoid the code duplication currently in the program. This was not 

done for the first version because of time constraints.  

 

Add validation when adding macro sheets to estimation project 

In the first version of the program, the validation of the macro data input is done when running the 

flows “Generate model suggestions” and “Do in-depth analysis of specified model”. This validation 

should also be done when adding macro data sheets to a project. It should be kept for when doing 

the individual runs using the macro data as well, in case users update the macro data after creating 

the project, but it would identify issues with the macro data earlier if the validation is done when the 

project is created. This will involve using the function ”import_and_clean_macro_input()” in 

“Macro_Model_Tool.py” in the function “create_macro_project()” in 

“Macro_Model_Tool_User_Interface.py”. Because of time constraints, this is not implemented in the 

first version of the program. 

 

Optimize validation of input macro sheet 

During development, some common issues with the macro input was discovered that could be 

handled by the program automatically. The validation in place will reject these macro sheets, but a 

better solution would be for the program to get around these issues. The two identified issues that 

could be handled by the program is difference in end date of actual time series, and cells with 

information outside the frame with macro data. Difference in end data of actuals time series happen 

if an old macro scenario is used, which sometimes happen for low and adverse scenario. A solution 

for this is to use the actuals time series of the baseline for all actuals time series in adverse and low 
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scenario, and thereby avoiding the problem all together. The problem with cells outside of the frame 

with macro data containing information stems from certain calculations and comments inserted in 

the excel sheets for other processes in the bank. A way to get around this is to trim the pandas data 

frame with the macro data in order to remove cells outside of the macro area. As the number of 

columns in the macro input is constant, the slice on the width of the data frame is known. In order to 

know how to slice the length of the data frame, one could count the number of cells in column A, 

containing observation dates, to know what the area of the sheet actually contains macro data, and 

slice away rows under last observation date.  

 

Restructure the program into classes 

While the part of the program that eventually was included into the ECL model was structured into 

the classes Datavalidation, Ols_parameter_transformation and DataNormalization, and the user 

interface was structured into the class User, this was not done for the rest of the program. This was 

deemed unnecessary during development, but it has become obvious that the program will benefit 

from a structure where all code is in well defined classes. As the program is set to be expanded 

beyond the initial scope in the future, such a partition of the code will greatly help with the overall 

structure of the program. Proposed classes are: 

“OLS_suggestion_generator” – containing all the code specific to the flow generate OLS suggestions. 

“in-depth_analysis” – containing all the code specific to the flow in-depth analysis.  

“Macro_tool_functions” – containing all the code that is used by multiple flows.  

“Project_administration” – containing the code that has to do with creating and setting macro 

estimation projects.  

 

Sources 

A. McGeachin & A. Tarce, 2019, Guide to new Standards IFRS 9, IFRS 15, IFRS 16 and research 

opportunities, viewed June 1st 2020, https://www.ifrs.org/-/media/feature/news/2019/june/basics-

of-new-ifrs-standards-and-research-eaa-paphos.pdf 

S. Bansal, TrumpExcel, How to Create a Dynamic Chart Range in Excel, viewed June 16th 2020, 

https://trumpexcel.com/dynamic-chart-range/#Using-Excel-Formulas. 

D. Norman 2013, The Design of Everyday Things: Revised and Expanded Edition, Basic books 

https://www.ifrs.org/-/media/feature/news/2019/june/basics-of-new-ifrs-standards-and-research-eaa-paphos.pdf
https://www.ifrs.org/-/media/feature/news/2019/june/basics-of-new-ifrs-standards-and-research-eaa-paphos.pdf
https://trumpexcel.com/dynamic-chart-range/#Using-Excel-Formulas


 

61 
 

Python.org, GlobalInterpreterLock, viewed June 16th 2020, 

https://wiki.python.org/moin/GlobalInterpreterLock 

M. Mamaev 2018, If you have slow loops in Python, you can fix it…until you can’t, freeCodeCamp, 

https://www.freecodecamp.org/news/if-you-have-slow-loops-in-python-you-can-fix-it-until-you-

cant-

3a39e03b6f35/#:~:text=Of%20Python's%20built%2Din%20tools,efficient%20than%20recursive%20fu

nction%20calls 

R. Arpaci-Dusseau & A Arpaci-Dusseau 2018, Operating Systems: Three Easy Pieces, CreateSpace 

Independent Publishing Platform 

w3schools, Python Lambda, viewed June 16th 2020, 

https://www.w3schools.com/python/python_lambda.asp 

w3schools, Python map() function, viewed June 16th 2020, 

https://book.pythontips.com/en/latest/map_filter.html 

Appendix 

1. Program source code. 

2. PowerPoint presentation of project. 

3. The two templates used for program output. 

4. Example of program output.  

5. Videos showing program functionality.  

6. Time sheet and Gantt chart of project timeline 

https://wiki.python.org/moin/GlobalInterpreterLock
https://www.freecodecamp.org/news/if-you-have-slow-loops-in-python-you-can-fix-it-until-you-cant-3a39e03b6f35/#:~:text=Of%20Python's%20built%2Din%20tools,efficient%20than%20recursive%20function%20calls
https://www.freecodecamp.org/news/if-you-have-slow-loops-in-python-you-can-fix-it-until-you-cant-3a39e03b6f35/#:~:text=Of%20Python's%20built%2Din%20tools,efficient%20than%20recursive%20function%20calls
https://www.freecodecamp.org/news/if-you-have-slow-loops-in-python-you-can-fix-it-until-you-cant-3a39e03b6f35/#:~:text=Of%20Python's%20built%2Din%20tools,efficient%20than%20recursive%20function%20calls
https://www.freecodecamp.org/news/if-you-have-slow-loops-in-python-you-can-fix-it-until-you-cant-3a39e03b6f35/#:~:text=Of%20Python's%20built%2Din%20tools,efficient%20than%20recursive%20function%20calls
https://www.w3schools.com/python/python_lambda.asp
https://book.pythontips.com/en/latest/map_filter.html

