
Ba
ch

el
or

’s
 th

es
is TOOL FOR ESTIMATING IFRS9 MACRO

MODELS
For DNB Bank ASA

June 2020

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Simen Voltersvik

Bachelor’s thesis
2020

Bachelor’s thesis

TOOL FOR ESTIMATING IFRS9 MACRO
MODELS

For DNB Bank ASA

June 2020

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Simen Voltersvik

Abstract

To comply with the regulation outlined in IFRS9 to use forward looking information to estimate

expected loss for credit exposures, financial institutions are required to model movements over time

in average observed default frequency for subsegments of their portfolio. In DNB, this is done

through OLS regression using a credit cycle derived from weighted observed default frequency for

specified segments as dependent variable and external macro variables as explanatory variables. The

challenge is to find the correct variables to use, and further to know what transformations of these

variables to use. Previously this was a time-consuming process in DNB that did not aid sufficiently in

finding the optimal model to explain the credit cycle. The program developed for this paper aims to

increase the help offered in finding OLS models through brute-force search where all possible

combinations of likely explanatory variables are tried. The program also aims to make in-depth

analysis of specified models more streamlined and efficient.

1

Contents

Preliminary study... 3

Background .. 3

Current DNB tool for estimating IFRS9 macro models .. 4

Drawbacks of DNB’s current tool for estimating IFRS9 macro models ... 5

Future DNB tool for estimating IFRS macro models ... 5

Future process flow ... 6

Project timeline ... 8

Requirement analysis .. 9

Users of the program .. 10

General standards of the program .. 10

User stories .. 10

Functional requirements ... 12

Non-functional requirements .. 18

Development process and redefined scope .. 19

Technical documentation .. 20

Techniques and technologies used in the program .. 20

Cloud computing ... 20

Use of map and lambda... 21

Multiprocessing ... 22

Python file structure .. 22

Data structure and input files .. 23

Python code documentation ... 26

Python interpreter and Libraries/packages used in program ... 27

User interface and project administration .. 28

Generate model suggestions ... 31

In-depth analysis ... 38

Common functionality ... 45

Testing ... 49

Assessment of program ... 50

Feedback from DNB ... 50

Own assessment of program ... 50

User guide.. 51

Setting up a new macro estimation project .. 51

Generate OLS model suggestions .. 53

2

Do in-depth analysis .. 54

Deploy new model parameters to the ECL model .. 55

Change project parameters after model estimation project is created ... 55

Suggestions for future improvements .. 55

Implement User story 1: Generate credit cycles ... 56

Implement user story 4: Automatic validation of existing models ... 56

Add a web-based user interface using Dash ... 56

Expand OLS suggestions by allowing the user to input ranges the baseline predictions forward in

time have to fall within ... 57

Expand OLS suggestions by filtering out variables not passing the KPSS test 57

Have a decomposition of the effect from each variable ... 57

Link macro tool and ECL project to see effect of new model ... 58

Add possibility to select variables and transformations used in in-depth analysis from list 58

Refactor duplicated code in trim_time_series() ... 59

Add validation when adding macro sheets to estimation project .. 59

Optimize validation of input macro sheet ... 59

Restructure the program into classes ... 60

Sources .. 60

Appendix .. 61

3

Preliminary study

The preliminary study will provide background information about the problem the IFRS9 Macro Tool

is intended to solve, describe DNB’s current tool for estimating IFRS9 macro models and the issues

related to it, and lastly give a general description of how the new tool is intended to be, and argue

why it will solve the business problem better than DNB’s current tool.

Background

IFRS9 is an International Financial Reporting Standard meant to provide regulation of the financial

industry to minimize the probability of system failures on the scale of the 2008 financial crises. The

standard has been developed by the International Accounting Standards Board (IASB) and came into

effect from 1st of January 2018 (McGeachin & Tarce, 2019).

One of the key principles of the IFRS9 standard regarding financial instruments accounting is that

financial institutions are required to make impairments of expected future credit losses. In the old

standard IAS 39 losses were only entered in the accounts when customers defaulted on their loans.

By making impairments before the actual defaults happen, the banks are forced to build up capital to

avoid systemic shocks to the industry on that scale witnessed in 2008.

To calculate impairments for future credit loss and be compliant with the IFRS9 regulations, DNB has

developed a model to calculate expected credit loss (ECL). This approach entails grouping all loan

agreements into segments that have similar characteristics. These segments are grouped by both

industry and geography. Each of these segments are mapped to an IFRS9 macro model, where

segments mapped to the same IFRS9 macro model follow a similar credit cycle. A credit cycle is the

cycle of loan default frequencies for a given segment, and is countercyclical to the business cycle of

that segment. When the business cycle of a given segment is high, the number of defaults is low,

hence the credit cycle is low. The opposite is true when the business cycle is low. The way credit

cycles are predicted forward in time for each of DNB’s IFRS segments, is to use OLS regression

models where historical Z is modelled using historical macro data, and input predictions of these

macro variables are used to estimate future Z.

Credit cycles, denoted as Z, are modelled as a normal distribution over a full business cycle. In order

to estimate the OLS regression models for each segment, historical data of the observed default

frequency (ODF) for all agreements in each segment is used to generate a historical Z time series. For

larger segments where DNB has a sufficient amount of agreements to make unbiased a historical Z

time series, internal default data is used. For segments where DNB has too few agreements to

generate an unbiased historical Z timeline, external default data from the Credit Risk Initiative from

4

the Risk Management Institute of the National Institute of Singapore (RMICRI) is used to generate the

historical Z time series.

In order to predict future Z time series, DNB has developed a tool to transform internal DNB default

data and default data from RMICRI to historical Z time series. The tool also does transformation on

macro data times series provided by DNB Markets, and aids in finding intuitive OLS models with

correlation between the macro data time series and the generated historical Z time series.

DNB is currently in the process of rewriting the bank’s ECL model, that takes these macro models as

an input, from SAS Enterprise Guide running on inhouse Linux servers to Python running on Amazon

Web Servers. The format of how the coefficients of the macro models are stored will be changed in

this process, requiring the output of the macro model estimation tool to be changed from the

current setup.

Current DNB tool for estimating IFRS9 macro models

Insight into how the current DNB tool for estimating IFRS9 macro models work, and what drawbacks

it has, have been acquired through discussions with the developers of the program, and the users of

the program.

The current tool DNB is using to estimate IFRS9 macro models is developed in SAS Enterprise Guide.

It is structured as a series of individual steps that must be run in a particular order. The analysts using

the tool to estimate the IFRS9 macro models must use industry intuition to pick out what macro

variables and the transformation of these that are expected to correlate to the Z time series of the

particular IFRS segment being modelled, and what time series data points are outliers, and hence

require dummy variables. To make the program estimate the model, the analyst must insert the

name and transformation of the macro variable, together with the dummies, into the code itself, and

run a particular set of steps. The output of the program gives information about r-squared of the

model, the p-values and coefficients of the give explanatory variables, and the test results of a

number of statistical tests.

The program also has functionality where the analyst can specify a set of macro variables, and the

program will return a list of suggestions of models ranked by the r squared value of each model. This

functionality does not consider the significance of the explanatory variables of the suggested models.

5

Drawbacks of DNB’s current tool for estimating IFRS9 macro models

The main drawbacks that have been identify are twofold. It is both time consuming for analysts to

use and it does not aid sufficiently in finding the optimal macro models.

Because the program is structured as a series of steps the analyst must execute in a particular order,

it requires good familiarity of the program from the analyst in order to use the tool correctly. If the

steps are run in an incorrect order, the program might crash, or it might produce incorrect output.

Because different models are tested by altering the code itself, it also requires analysts to have

sufficient programming experience to use efficiently. There is also significant operational risk

involved in using this program, as it is not always clear if the analyst has made a mistake when

executing the program or what input data actually goes into the program. This might lead to

inaccuracies in the output from the program that are hard to detect.

As the program requires the analyst to manually enter the type and transformation of the macro

variables expected to correlate with the segment Z time series, and dummies that might capture

outliers, it is not given that the optimal combination of variables, variable transformation, and

dummies for modelling the Z time series is found. The functionality in the program where it tests

different transformations does little to account for this issue, as it only ranks macro models based on

r squared, ignoring other important OLS information like p-values of the individual macro variables or

if the variable coefficients have an expected impact on the modelled time series. It also lacks the

possibility to aid with identifying possible outliers where dummies should be utilized.

Future DNB tool for estimating IFRS macro models

It is a wish from DNB for the new tool to be integrated with the new implementation of their ECL

model. For that reason, the new tool for estimating DNB’s IFRS9 macro models will be written in

Python, and put on DNB’s development platform along with the new ECL model to easily allow for

the tool and the ECL model to be fully integrated in the future.

The design of the program has not been fully landed yet at his stage, but it is a requirement from

DNB that the new design will try to overcome the shortcomings of the program it is replacing. This

involves creating the program in such a way that the steps associated with the current tool is

eliminated through streamlining the entire flow. To achieve the program will have a user-centered

design adhering to the principles outlined by Donald A.Norman(2013). This can be boiled down to

making the program in such a way that it is adjusted to the needs and behaviour of the users, and

not requiring the users to adjust excessively to the program. The user should only have to input

necessary data at the start of the operation. This is intended be solved by having a terminal based

interface, as DNB’s development platform on AWS is not currently supporting any python GUI. From

6

this interface the user will be able to interact with all functionality of the tool, without having to see

or alter any python code. The product owner of DNB’s development platform on IPA has revealed

that the platform might implement support for Dash during the time this project will be developed. If

that becomes available, the macro tool will have a web interface developed through the Dash

framework.

The different parts of the program will still have to be executed in a designated order, but this will be

clearly specified in the program’s user guide, and the program will return helpful error messages if

the user interact with the program incorrectly. As all interaction with the program will happen from

an interface, there will be no need for the users to alter the program code to use the tool. As oppose

to the current tool, the new one will have validation of input to the program, something that will

minimize the chance of incorrect input altering the output of the program unnoticed, while also

making it much easier for the users to locate errors in their input.

The new tool for estimating IFRS9 macro models must also provide more assistance to analysts for

finding the optimal models. It will improve upon the functionality from the current tool that

generates a list of models ranked by the value of adjusted r squared, by also generating and trying

combinations of dummy variables on the models. Like the current model, the new model will also

rank the models by value of adjusted r squared, but it will also discard models that have explanatory

variables with a p value above a threshold set by the user, models with variables having variable

coefficients not adhering to industry intuition, and models with value of adjusted r-squared bellow a

threshold set by the user . This change is believed to greatly enhance the aid given by the program to

the user in finding an optimal model. The ambition is to reduce the need for great industry intuition

in order to find the optimal IFRS9 macro models, and for the users to avoid excessive use of trial and

error to find suitable variable transformations.

Future process flow

Together with future users of this tool, a first draft of how the program flow will be has been

outlined. Further documentation of the program will be in the requirement analysis and technical

documentation.

7

• RMICRI data are excel files analysts can upload to a folder on

DNB’s development platform. In order to get internal data, a link

to DNB’s data warehouse is required.

• In order to generate credit cycles, customers must first be

mapped to the correct IFRS9 segment. This is trivial for internal

data, but requires some logic to map RMICRI data correctly. After

mapping, the mean for individual years and the entire time series

are calculated to generate credit cycles.

• When the length of the time series is found, all possible

dummies for the given time series are calculated.

• Macro variable time series are in excel files analysts can

upload to a folder on DNB’s development platform.

• These macro variables are all transformed to multiple defined

transformations, including lag, moving average and inflation

adjustment.

• Credit cycle, macro variable and dummy data are stored in a

dedicated folder on DNB’s development platform.

• All possible combinations of variable transformations and

dummies are tested against the credit cycle time series of the

IFRS9 segments. As there are millions or billions of possible

combinations of variables and dummies, there must be ways for

the users of the program to instruct the program as to what

variables not to include in this step for the different IFRS9 macro

models. This is to avoid noise in the output to the user, and to

drastically reduce execution time. Results that have significant

explanatory variables with an expected effect on modelled Z and

a high enough adjusted r-squared, are ranked by value of r

squared, and saved on DNB’s development platform.

• User can select what OLS models to analyse further. What

additional information is needed, will be detailed on a later stage.

• When macro model for the given IFRS segment is decided,

the model parameters are stored in a format aligned with the

new ECL model.

8

Project timeline

The project’s timeline will use week numbers as time values. To account for potential delays, the final

delivery for the project is set to week 21, corresponding to 24th of May. This allows for a few weeks

delay if some project activities are more time consuming than expected.

Figur 1 - GANTT diagram of scheduled timeline for project

The project is divided into four phases. The preliminary phase is where the work is focused on getting

a proper understanding of the business issue to be solved, and to plan for the development period

that follows. There are two activities in the preliminary phase, developing the preliminary study

report and developing the requirements analysis. Both of these activities are crucial in order to

develop a program that actually solves DNB’s business problem. The preliminary phase is scheduled

to be completed by week six, corresponding to 2nd of February.

The development phase is divided into two distinct phases. The first phase is focused on developing

the code to read, validate, clean, and transform data, and to store this in a format suitable for data

analysis. There is some uncertainty as to how time consuming it will be to develop the part of the

program generating the credit cycles, as the DNB logic for mapping internal and external data to

IFRS9 segments is somewhat complexly implemented in SQL and lacks any documentation. The other

activities in this phase are not expected to take more than the allocated time. This phase is expected

to be completed by week 9, corresponding to 23rd of February.

WEEK

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Develop preliminary report 2 2 2
50%

Develop requirements analysis 4 2
0%

Milestone - planning phase finished 6 1

Code development - Generate credit cycles 6 2
0%

Code development - Generate Dummies 8 1
0%

Code development - Variable transformation 9 1
0%

Milestone - data preparation finished 10 1

Code development - Generate list of best model fits 10 4
0%

Code development - In-depth analysis 14 2
0%

Final testing and debugging 16 2
0%

Milestone - development phase finished 18 1

Develop User documentation 7 12
0%

Develop User guide 18 1
0%

Finish paper 19 2
0%

PERCENT

COMPLETE
ACTIVITY PLAN START

PLAN

DURATION

ACTUAL

START

ACTUAL

DURATION

9

The data analytics phase is expected to be the most time-consuming phase, where complex

functionality not offered by DNB’s current model will be developed. It is allocated a generous

amount of time to the activities in this phase, as this is the part of the development with the highest

uncertainty regarding how challenging it will be to implement the required functionality. Finishing of

the program and final testing will also be part of this phase. This phase is expected to be completed

by week 18, corresponding to 26th of April

The last phase is the documentation phase. Development of the technical documentation will be

done in parallel with development of the program, but it will be finished in this phase. A user guide

will also be developed in this phase, and the paper to be delivered will be finished. It is not expected

to be any uncertainties regarding time consumption in this phase. This phase is expected to be

finished by week 21, corresponding to 18th of May.

Requirement analysis

The requirement analysis will provide the necessary foundation to develop a program that

sufficiently solves DNB’s business problem. Expected use of the model will be documented in user

stories, to make sure the program can be used in all its intended roles. This will give a general

overview of the expected use of the program. Based on the user stories, both functional and non-

functional requirements will be documented, and linked to the relevant user stories. This will specify

what functionality is expected from the program. The user stories and requirements will also form

the basis for later testing of the program.

Both the user stories and the functional requirements were developed in cooperation with future

users of the program. All the requirements specifying expected output from the program and

execution speed was directly specified by future users in DNB, while others were specified by the

author of this paper after discussions with future users. Particularly regarding the OLS suggestion

functionality, linked to User story 2, as this was somewhat new functionality in the program, all of

the requirements were specified by the author and cross checked with future users of the program

for confirmation. The functionality describing the structure of the program, were also developed by

the author before and under program development by taking inputs from future users as to what

overall wishes for the program were, and discussing it further to distil it down to specific program

requirements.

10

Users of the program

The program will exclusively be used by a small group of analysts. These analysts will not necessarily

have great insight into the workings of the program, nor will they have any particular knowledge of

Python or programming in general. For that reason, it is particularly important to have extensive

validation of all input to the model, and return informative error information to the analyst. The

analysts are used to working with similar in-house developed software, and are not dependent on a

graphical user interface in order to use the program, as long as the user interface is intuitive and they

have a user guide.

General standards of the program

As the ECL model as a whole, including the process to estimate the OLS models, constitutes the

majority of the yearly audit of DNB, it is paramount that the logic used in the program is sufficiently

easy to follow. This require clearly readable code with descriptive variable, class and function names.

It might also involve in some instances to prioritize making the code readable rather than making the

code quick. DNB does not have a clear general coding standard one is expected to follow, but as this

program will be integrated with the new ECL model currently under development, it is natural that

the two programs follow a similar code practice. For the new ECL model, the PEP 8 style guide is used

as a general guideline, although some parts of it is less strict. The same style guide will therefore be

used for this program.

User stories

User story 1: Generate credit cycles

The user must be able to generate the Z time series for each IFRS9 Macro Model based on internal

and external data on observed default frequency (ODF). These Z time series are what will be

modelled in the rest of the program.

Acceptance criteria

The user can easily generate Z time series for all DNB IFRS9 Macro Models.

Priority

Low

Despite the Z time series are crucial for the working of the program as a whole, this part of the

program is not expected to be complicated in terms of code, rather in terms of business logic. For

that reason, this part of the program can be developed later by DNB, and the existing solution in

SAS can be used to generate the Z values until this part of the program is developed.

11

User story 2: Generate list of best OLS models

The user must be able to generate a list of suggestions for explanatory variables for a chosen IFRS9

Macro Model. The list of suggestions will be sorted based on the value of adjusted r-squared of the

model, while models with insignificant explanatory variables, unintuitive coefficient values and low

adjusted r-squared values will be excluded.

Acceptance criteria

The user can easily generate a list of model suggestions given the user input. This list must be

sorted on value of adjusted r-squared, and filtered on significance of explanatory variables,

adjusted r-squared and variable coefficients.

Priority

High

As this most likely will be the most challenging part of the program in terms of actual

programming, this is the part of the program where DNB can have the most benefit from external

help.

User story 3: Do in-depth analysis and select model

The user must be able to select a specific model for an IFRS9 Macro Model to do in depth analysis

on. The program must return all relevant statistical information about the model in order for the

analyst to select the optimal model. Lastly the user must have the option to save the chosen

model.

Acceptance criteria

The user must be able to get all relevant statistics to have sufficient information to evaluate the

robustness of the model and be able to save the model if it is deemed satisfactory.

Priority

High

This is also a part of the program with a high degree of complexity where DNB will have good

benefit of external help. This part of the program will also have some overlapping functionality

with User story 2, so it might not be easily developed by DNB on their own at a later stage.

User story 4: Automatic validation of existing models

An analyst should be able to easily validate the existing OLS models, and models that have a

significant decrease in robustness should be highlighted by the program.

12

Acceptance criteria

The user must be able to get a list of OLS models that have changed significantly in key aspects

specified by DNB.

Priority

Medium

This is functionality that is nice to have rather than must have. Meanwhile it is functionality that

will lead to significant time savings for analysts recalibrating the models, and the complexity of it

might mean that it is not easily done by DNB at a later stage. DNB currently lacks a complete

dataset of OLS results from current models, and this part of the program will thus be difficult to

implement before that is created.

User story 5: Deployment of new models

An analyst should be able to easily get an overview of the new OLS models, and deploy the

parameters to the new ECL program

Acceptance criteria

The user must be able to get an overview of the new models and deploy the new parameters in

the format required by the new implementation of DNB’s ECL model.

Priority

High

This functionality is essential for DNB in order to use this program into their new ECL model.

Functional requirements

Name FR 1: Generate credit cycles from ODF data

Description The ODF data for each year of the time series must be converted to a normal

distribution with a mean of zero and a standard deviation of 1. This is done by these

steps:

- The average ODF per year is calculated.

- The inverse of the normal cumulative distribution function (cdf) is calculated

for the average ODF for each year.

- The average and standard deviation for the calculated values are estimated.

- The final Z value for each year is equal to: (the calculated inverse of the

normal cumulative distribution function value – the estimated average

13

value) / the estimated standard distribution

The output must be saved in an excel file with one sheet for each IFRS9 Macro

Model. The format must be an array with two columns, year and Z, and one row for

each year of the Z time series.

The program must also be able to validate that the input only has ODF values in the

range 0 to 1.

Associated

user story

User story 1: Generate credit cycles

Name FR 2: Generate credit cycles from external data

Description For the IFRS9 Macro Models associated with segments where DNB has insufficient

data to accurately generate representative credit cycles, external data from RMICRI

is used. These ODF values must be mapped to the correct IFRS Macro Models, and

the output from this mapping must be on the same format as the input to FR 1.

The external data is mapped to the specific IFRS9 Macro Models based on business

rules sat by DNB.

Associated

user story

User story 1: Generate credit cycles

Name FR 3: Generate dummy variables

Description In order to be able to account for outliers in the time series, dummy variables

spanning all possible periods of the time series must be generated.

After discussion with DNB analysts, it has been decided to set the default for

maximum length of a dummy to five years. This must be easy for DNB to change at a

later stage if the business requirement changes.

Associated

user story

User story 2: Generate list of best OLS models

User story 3: Do in-depth analysis and select model

Name FR 4: Validation of macro data input

14

Description The macro input data from DNB Markets are located in an excel sheet. This data

must be validated for errors before being used in the program. The validation should

ensure the data subscribe to these requirements:

- The macro variable time series must be continuous from first year of data to

the last year of data, without gaps.

- All variables specified in a meta data table must be present in the input

sheet.

- All variables expected to have data as specified in the meta data table must

have data.

- All data must be numerical

The program will generate a list of errors if any are detected, and halt further

execution of the program.

Associated

user story

User story 2: Generate list of best OLS models

User story 3: Do in-depth analysis and select model

Name FR 5: Normalize macro data

Description The macro data from DNB Markets comes in different varieties. Some are absolute

values, some are year-on-year changes, while some have absolute values for

historical data and year-on-year changes for predicted data. Some time series also

denotes year-on-year changes differently by either denoting the change as a

decimal, or as a value representing the decimal. E.G. 4% can be both 0.04 and 4. To

make the data consistent, the macro data time series must be normalized into a

format specified in a meta data table. The time series for the variable LTV must also

be calculated from other time series in the DNB Markets data.

Associated

user story

User story 2: Generate list of best OLS models

User story 3: Do in-depth analysis and select model

Name FR 6: Transform macro data

Description The macro data must be possible to transformed into all possible transformations

specified by DNB. This involves having the possibility to do the following

transformations, and combinations of these:

- Lag

15

- Percentage change

- Absolute change

- Max change

- Moving average

- Natural logarithm

- Inflation adjustment (with both Norwegian and US inflation)

Associated

user story

User story 2: Generate list of best OLS models

User story 3: Do in-depth analysis and select model

Name FR 7: Do simplified OLS regression

Description The program must be able to perform a simplified version of OLS regression, where

only value of adjusted r-squared, mean squared error, together with p-values and

coefficients for the explanatory variables are calculated. The user will specify

threshold values for adjusted r-square and for p-values, and the expected sign of the

coefficient. If any of the calculated values are below the threshold values or if any

coefficients have the wrong sign, the OLS model is rejected.

If not rejected, the regression will return adjusted square, mean squared error,

coefficients and variables used.

In order to mitigate the problem related to bias stemming from serial correlation in

the residuals, a Newey-West HAC estimator must be implemented.

Associated

user story

User story 2: Generate list of best OLS models

Name FR 8: Generate sorted list of IFRS9 Macro Models suggestions

Description The program must be able to generate two lists of models suggestion sorted on

value of adjusted r-squared based on the functionality described in RF 7. One list

without dummies and one with dummies. These lists must contain the name of

explanatory variables and their transformation, the sign of the coefficients for each

explanatory variable, value of adjusted r-squared, mean squared error, and

coefficient values.

Associated

user story

User story 2: Generate list of best OLS models

16

Name FR 9: Extended OLS regression statistics

Description In addition to the OLS requirements specified in FR 7, the following statistics must

also be returned for the regression:

- Residuals

- Predictions

- Confidence intervals with alpha=5%

- Durbin Watson statistics

- Jarque Bera Statistics

- Omnibus test statistics

- Breusch-Pagan statistics

- Lilliefors test statistics

- Kwiatkowski–Phillips–Schmidt–Shin and augmented Dickey–Fuller statistics

Associated

user story

User story 3: Do in-depth analysis and select model

Name FR 10: Do rolling regression

Description The program must be able to do a rolling regression in order to benchmark the

model against the two simplified models as-is and through the cycle. This is done

through doing multiple regressions of the same variables with an increasing time

series in order to find the estimated coefficients given that particular time series.

The program defaults to starting the rolling regression ten years back, and works its

way to present day. The coefficients obtained are thereafter used to predict the

following year. The residuals from each year is compared to the residuals from the

simplified as-is and through the cycle models. Both the mean absolute error(MAE)

and root mean squared error(RMSE) are calculated. The as-is model assumes the Z

value of next year will be equal to the previous year in the rolling regression. The

through the cycle model assumes the Z value is always 0.

The user must be able to see the comparison of the MAE and RMSE to the

challenger models, the predictions and confidence level of the rolling regression,

and the coefficients from each year of the rolling regression. The coefficient values

are wanted in order to see if coefficients are relatively stable from year to year.

Associated

user story

User story 3: Do in-depth analysis and select model

17

Name FR 11: Visualising the regression results

Description The program must be able to make visualisations of the regression results. The

visualisations that are requested are:

Comparing rolling regression predicted Z with confidence levels to actual Z

Comparing predicted regression with confidence level to actual Z

Associated

user story

User story 3: Do in-depth analysis and select model

Name FR 12: Saving the regression parameters

Description The user must be able to save the regression parameters when the desired model is

found. The parameters that have to be saved are adjusted r-squared, coefficient

values, p-values of explanatory variables and name and transformation of

explanatory variables.

Associated

user story

User story 3: Do in-depth analysis and select model

Name FR 13: Evaluating existing OLS models

Description The program must automatically re-estimate the coefficients of the models

currently in production with the ECL model, and compare these to a set of business

rules to see if the models still are satisfactory. These are the business rules that will

flag a model for re-evaluation:

- Reduction in adjusted r-squared of more than 10 percentage points

compared to previous model

- Insignificant variables in model

- Change of sign for explanatory variable coefficients

- Not outperforming the as-is and through the cycle models in rolling

regression.

Associated

user story

User story 4: Automatic validation of existing models

18

Name FR 14: Evaluating and deploying new models

Description The user must be able to clearly see an overview of all the IFRS9 Macro Models, with

information of which one has been changed and not, and at what time the change

was done. The OLS parameters for each model must also be visible. The user can

deploy the changes, and the program will convert the information into the format

required by the new ECL model, and store the data in the directory system of the

ECL model ready for use.

Associated

user story

User story 5: Deployment of new models

Name FR 15: Structure the use of the program into projects

Description In order to have a proper structure to the inputs and outputs to the program, and to

make it easy for auditors to retrace what input was used in the program, the

program must have functionality to structure each round of IFRS9 macro model

estimation into logical projects in the program. In these project folders, all the input

to and output from the program will be stored. The program needs user

functionality for creating and selecting these projects in an intuitive way, eliminating

the need for the users to come up with a suitable folder structure.

Associated

user story

All

Non-functional requirements

Name NFR 1: Execution speed of program

Description The perceived execution speed of the program must be instant. There should be no

noticeable lag in the interaction between the user and the program. The sole

exception being the flow for generating OLS model suggestions, as this flow,

depending on the input from the user, can be somewhat time consuming.

The flow for generating model suggestions will only have to be done a handful of

times for each IFRS9 macro model being estimated, and it is therefore acceptable

19

for this flow to have some execution time. Despite this, it should not take more than

10 minutes, assuming a sensible input to the functionality from the user.

Associated

user story

All

Name NFR 2: Flexibility of program

Description As this program will interact with the new ECL model, it is important to make it

sufficiently modular in order to avoid duplicating code and make it maintainable.

Because there might be minor changes to the parameters in the future, it is

important to avoid hard coding values. This is also important in order to avoid the

need for the users of the program to have particular knowledge of the inner

workings of the program or of Python in general.

Associated

user story

All

Name NFR 3: User friendliness of the program

Description As the analysts using this program does not necessarily have knowledge of Python

or coding in general, it should under no circumstances be required to alter program

code in order to use the program for its intended purposes.

Further it should not be required that users need particular knowledge and/or

experience with the program in order to use it for its intended purposes. All needed

should be general knowledge of statistics and a simple user guide. Only for future

development of the program should it be necessary to have a deeper understanding

of the program than what is described in the program’s user guide.

Associated

user story

All

Development process and redefined scope

The Covid-19 pandemic struck society midway during the development of this program. As the writer

of this paper and the other subject matter experts related to this program in DNB work in financial

risk analysis, and thus was needed for more urgent tasks in the bank, development was abruptly

halted for a while. At the same time, the pandemic highlighted weaknesses in some IFRS9 macro

20

models, in that not all existing models behaved in an expected way given the macroeconomic

environment. Developing this tool for use in re-estimating some of the underperforming models was

therefore given top priority later in the corona period.

In order to satisfy the urgent needs of DNB, a new scope for the program was agreed upon. The

priority was on the modelling itself, corresponding to User story 2, “Generate list of best OLS

models”, and User story 3, “Do in-depth analysis and select model”. User story 5, “Deployment of

new models” was still kept in scope as it did not require much work, while User story 1, “Generate

credit cycles” and User story 4, “Automatic validation of existing models” was taken out of scope.

The reasoning behind this is that it was rather obvious at the moment what IFRS9 macro models

underperformed without the need for an automated way to detect this, and that generating credit

cycles in the existing SAS program was trivial, while at the same time DNB started looking into if the

logic behind it should be changed for the future. The inclusion of a web based GUI through Dash was

also taken out of scope, as it was deemed unnecessary for the urgent needs of DNB, while at the

same time this program was not given priority to use the new Dash functionality.

The scope for User story 3, “Do in-depth analysis and select model” was expanded with more tests

and visualisations of the macro model performance forward in time, in order to best account for and

avoid unexpected behaviour from the IFRS9 macro models going forward.

As a result of these changes, and experience gained during the development phase, the program

differs somewhat in overall structure from the initial design outlined in the preliminary study.

Technical documentation

Techniques and technologies used in the program

This program uses several techniques and technologies to solve the business problem in the best way

possible. The following is a brief description on some of these techniques.

Cloud computing

This program is deployed on DNB’s development platform IPA, running on Amazon Web

Servers(AWS). This system is a cloud computing solution where DNB rent storage and computing

power on demand from an AWS data center in Ireland. The main benefit of cloud computing is the

scalability of the hardware resources. When running program on traditional in-house servers, the

computing power is limited by the processing power of the server hardware, and an increase in

21

computing power requirements will have to be resolved by upgrading the in-house servers. This

might be justifiable if the general demand for greater computing power in the company is high, but if

this demand is only present in smaller parts of the organisation, such an expensive upgrade might be

unjustified. With cloud computing on the other hand, this local increase in demand for processing

power can be resolved by upgrading the instance running the particular programs demanding greater

computational power. The instance this particular program is running on currently has a quadcore

CPU, that fulfils the current requirements of the program. But if DNB wants to further develop the

OLS suggestion module of this program, by far the most computational heavy functionality in this

program, to do more advanced filtration, or if DNB wishes to expand the number of variables to

input to the simulation, only having four cores available might lead to an excessive increase in

processing time on the current instance. This can easily be resolved on AWS by upgrading the current

instance, something that is arguably cheaper and most certainly quicker than upgrading in-house

servers.

Use of map and lambda

Several places in this code a combination of map() and lambda functions are used to apply a function

to an iterable. The basic syntax for this is:

 results_list = list(map(lambda x: the_operation_to_be_applied, iterable))

The map function is a functionality that map all elements of an iterable, E.G. a list or a dictionary, to a

specified function. In functionality it equates a regular Python for loop, but is used extensively in this

program as it makes the code more compact without making it noticeably less readable. Another

option would be to use list comprehension, which arguable is the Pythonic way to apply a function

over iterables. It is claimed by some Python enthusiasts that list comprehension is quicker than map,

which again is quicker than a regular for loop (Mamaev 2018). List comprehension was not used

extensively in this program as it is the personal opinion of the author of this documentation that the

syntax for list comprehension is not intuitive for those not particularly familiar with Python. As the

parts of the code using map does not involve iterating over large objects where this increase in

execution speed will make a noticeable difference, the focus was kept on having easily readable

code. See more examples of how to use map() at w3school.

Lambda functions are small anonymous functions, and is an alternative to writing separate defined

functions. These functions are useful when the function is only used once, or a limited number of

times, where having a specified function would make the flow of the program more difficult to

https://www.freecodecamp.org/news/if-you-have-slow-loops-in-python-you-can-fix-it-until-you-cant-3a39e03b6f35/#:~:text=Of%20Python's%20built%2Din%20tools,efficient%20than%20recursive%20function%20calls
https://www.freecodecamp.org/news/if-you-have-slow-loops-in-python-you-can-fix-it-until-you-cant-3a39e03b6f35/#:~:text=Of%20Python's%20built%2Din%20tools,efficient%20than%20recursive%20function%20calls.
https://book.pythontips.com/en/latest/map_filter.html

22

follow, and where the functions are simple in nature, as lambda functions don’t allow for complex

logic. See more examples of the use om lambda expressions at w3schools.

Multiprocessing
By default, programs are executed serially. This means that each step of the program is executed one

by one in the order defined by the program code. But in order to take advantage of the multicore

and superscalar architecture of modern CPUs, the program must be instructed to process certain

tasks in parallel. There are two common ways of doing this, either to use multithreading, or to use

multiprocessing. Multiprocessing is where the operating system creates sub processes that operates

in isolation, that it then distributes to the CPU cores for processing. Multithreading is similar, with

the major difference being that threads in the same process do not operate in complete isolation like

regular processes, in that they have access to a shared memory. The program can be instructed to

distribute execution of certain parts of the code to individual processes or threads, and thus

benefitting from multicore and superscalar CPUs. See Arpaci-Dusseau & Arpaci-Dusseau(2018) for

further information regarding parallelization.

Because Python’s memory management is not thread-safe, Python has a Global Interpreter Lock that

prevents multiple threads from executing Python code simultaneously. The consequence of this is

that multithreading on Python is not able to take full advantage of multiprocessing. See Python.org’s

description of Python GIL. For that reason it was decided to utilize multiprocessing to take benefit of

the multicore CPUs available for this program.

In order to benefit from multiprocessing, the different processes must be fully independent from

each other, and as there is some overhead for the operating system to initialize multiprocessing, the

processing to be done must be of a certain volume. For these reasons, it was decided to only use

multiprocessing on the most processing heavy part of this program, the part where a large number of

time series combinations are regressed in order to find optimal OLS model. The number of

combinations to be tried can exceed one million, and each combination regression is completely

independent, making this suitable for multiprocessing.

Python file structure

The program code is located on three different Python files. “Macro_Model_Tool.py” and

“Macro_Model_Tool_User_Interface.py” are located in a designated folder named “Macro_Tool”,

located under the path “code/Modelling”. “Macro_Model_Tool_User_Interface.py” contains the

logic for the user to interact with the program, and to set up estimation projects, while

“Macro_Model_Tool.py” contains the main program code itself. The program also uses functionality

https://www.w3schools.com/python/python_lambda.asp
https://wiki.python.org/moin/GlobalInterpreterLock

23

in “Dataprep_Functions.py” located together with the ECL model. The functionality of the program

stored in “Dataprep_Functions.py” is the logic that validates, normalize, and transforms the variable

time series. Despite being developed as part of this program, it was decided to integrate this

functionality with the program code of the ECL model to ensure the Macro tool program and the ECL

model have the same validation and transformation logic. This will minimize the consequences if

there has been a misunderstanding as to how the transformations should be implemented.

There are certain dependencies concerning the directory structure around the program. To avoid

issues, it is important to keep these relative paths unchanged:

- Path from main program to ECL Dataprep program: ../Dataprep

- Path from main program to Macro tool data: ../../../data/Macro_tool_data

- Path from main program to folder with estimation projects:

../../../data/Macro_estimation_projects

If the directory structure must be changed for some reason, make sure to thoroughly test the

program after. Also make sure that the different parts of the ECL program have the same relative

path to the folder ECL data, where both programs collects information using the same overview of

paths. If directory structure is changed, make sure to change the paths in the parameter variable

“default_path_dict” of the object of class User in “Macro_Model_Tool_User_Interface.py”. Also

change the path to the file with the default paths for the entire IFRS9 project. This is given in the

variable “default_paths_path” in the function “get_default_file_paths()” in

“Macro_Model_Tool_User_interface.py”. The functions “create_macro_project()” and

“set_macro_project()” in “Macro_Tool_User_Interface.py” both uses paths dependent on the

current structure of the project. For “set_macro_project()” it is only the variable

“macro_projects_path” that must be changed, while for “create_macro_project()” multiple

alterations to the code will have to be done.

Data structure and input files

It was decided to use excel files as input and output to and from the program. This was done mainly

because the future users of the program are very used to working with and in excel sheets, and most

of the input to the program is already stored in such files. The amount of data going into the model is

not extensive, so it was decided not to use csv files in order to speed up loading into the program, as

this would lead to the files being less readable for humans.

 There are two main storage folders for the IFRS9 Macro model tool. Both are located in the folder

‘data’. These are “Macro_tool_data” and “Macro_estimation_projects”.

24

“Macro_tool_data” is the main data storage for the program itself. It contains the following

subfolders:

- Analysis_output_template – containing the excel template the program uses to write out the

results from the in-depth analysis. It also contains a folder with old templates. It is important

that the name of the template is “OLS_results_template.xlsx” if the template is changed in

the future. Make sure the updated version harmonizes with the function

“write_in_depth_results_to_excel()” in “Macro_Model_Tool.py”. In order to get dynamically

updated graphs accounting for different lengths of time series in the template, option two of

this guide is used: Bansal.

- Macro_data – containing the macro data input to be used in the OLS regression. There can

be multiple macro files in this folder, and there are no special naming restrictions. When

setting up a new macro estimation project, the user setting up the project will be able to

select what macro data file to use in that particular project. The program requests three

scenarios as input when setting up a new macro estimation project, baseline, low and

adverse. Make sure to have a folder for each of these scenarios in the input macro sheet.

- OLS_simulation_input – containing the variable input data for use in OLS model suggestion

module. There can be multiple variable input files, and there are no special naming

restrictions. When setting up a new macro estimation project, the user setting up the project

will be able to select what variable input file to use in that particular project. The selected file

must contain one sheet for every macro model that will be part of the project. Each sheet

must contain the headers “Variables”, “Inflation adjust”, Ln adjust”, “Expected effect”. For

each variable that might be included for the particular IFRS9 macro model, the variable code

must be stated, Inflation adjust must be stated(Nor, US, or nothing), Ln adjust must be

stated(Y or N), and Expected effect must be given(+ or -).

- Segment_Z – containing the excel files with the Z values to be modelled. There can be

multiple segment Z files, and there are no special naming conventions. When setting up a

new macro estimation project, the user setting up the project will be able to select what

segment Z file to use in that particular project. The selected file must contain one sheet for

every macro model that will be part of the project. The selected file must contain the name

“Date” in cell A1 and the name “Z” in cell B1. The observation dates and the calculated Z

https://trumpexcel.com/dynamic-chart-range/#Using-Excel-Formulas.

25

values must be in the rows following this.

- Suggestion_output_template - containing the excel template the program uses to write out

the results from generate OLS suggestions. It also contains a folder with old templates. It is

important that the name of the template is OLS_suggestions_template.xlsx if the template is

to be changed in the future. Make sure the updated version harmonizes with the function

“write_OLS_suggestions_to_excel ()” in “Macro_Model_Tool.py”.

“Macro_estimation_projects” is the folder containing the macro estimations projects user will create

before estimating new OLS parameters for the IFRS9 macro models. The program will create a

subfolder in this folder with the name given by the user creating the project. The program will then

create these subfolders with the stated excel files:

- OLS_analysis results – containing a sub folder for each IFRS9 macro model that has been

tried modelled in the project. These sub folders again contain the output from the in-depth

analysis of that particular IFRS9 macro model based on the template

“OLS_results_template.xlsx. The name of the output will be generated automatically by the

program, and contains the input variables and a timestamp in order to ensure each file name

is unique.

- Project_model_coefficients – containing the files “Changed_models.xlsx” and

“Macro_models.xlsx”. “Changed_models.xlsx” contains an overview of the models that have

been changed in this project. This file is automatically generated and updated by the

program. “Macro_models.xlsx” contains one sheet per IFRS9 macro model, with the OLS

parameters “variable”, “variable transformation” and “coefficient” for each model. When

project is created, the program will load the current OLS parameters from the ECL model.

When the users finds a suitable new OLS model for an IFRS9 macro model and save these

OLS parameters, the corresponding sheet will be updated in “Macro_models.xlsx” and the

file “Changed_models.xlsx” will be updated.

- Project_parameters – containing the parameters that will be used in the Macro model tool.

The files in the folder are “Macro_data.xlsx”, “Macro_sheets.xlsx”,

“OLS_results_template.xlsx”, “OLS_suggestions_template.xlsx”, “Simulation_input.xlsx”, and

“Z_values.xlsx”. All of these files are automatically loaded into this folder when project is

created, and it is important that the file names stay unchanged. “Macro_data.xlsx” contains

26

the macro data to be used in the program. “Macro_sheets.xlsx” contains the mapping for the

scenarios to be used in the in-depth analysis to the sheets in “Macro_data.xlsx”.

“OLS_results_template.xlsx”, which is the output template for the in-depth analysis.

“OLS_suggestions_template.xlsx”, which is the output template for the generate OLS

suggestions. “Simulation_input.xlsx”, which is the overview of what variables that can be

included in the generate OLS model suggestions. “Z_values.xlsx containing the Z_values to be

modelled in the project.

- Suggested_OLS_models - containing a sub folder for each IFRS9 macro model that has been

tried modelled in the project. These sub folders again contain the output from the generate

OLS suggestions of that particular IFRS9 macro model based on the template

“OLS_suggestions_template.xlsx. The name of the output will be generated automatically by

the program, and contains a timestamp in order to ensure each file name is unique.

The program also uses the file “Segment_info.xlsx” from the ECL model, the file containing the

current macro model parameters used in ECL model, and the file containing metadata used to

validate and normalize the macro data. These are located together with the input data for the ECL

model. See the technical documentation for the ECL model for further information.

Python code documentation

This code documentation focuses mainly on showing the logic and flow of the implemented code,

and highlighting considerations taken during development. The code itself is extensively commented,

and it has been a strong focus on having reasonably readable code with descriptive names of classes,

variables, and functions. In the flow diagrams showing program logic, steps coloured blue have

designated flows elsewhere in the documentation detailing how that particular process is

implemented. This documentation covers little relating to the data structures in the program, as this

is specified clearly in the docstrings of each function, where it states format of input and output. For

this reason, it was decided to not include diagrams like class diagrams.

In the design of the program, great emphasis has been put on splitting the program into logically

separate pieces to have separation of concerns and enabling the different program flows to utilize

common functionality. Examples of this include the separation of the parts of the code enabling and

validating user input and the parts of the code executing the different flows, and splitting the

program functionality into designated functions with clearly defined inputs and outputs. Designing

27

the program in this way enables much easier maintenance and further development of the code, as

the dependencies in the program flow is clearly defined by the different functions, and common

functionality only has to be changed one place. This makes it significantly easier to debug faulty code

and enables expansion of the program without running the risk of interfering with existing

functionality compared to the approach of creating monolithic applications where entire flows are

combined into one single non-modular instruction flow.

Python interpreter and Libraries/packages used in program

The Python interpreter used for this program is Python 3.6.10, the current default interpreter on

DNB’s development platform.

These are the packages used in this program. For the program, a virtual environment has been

created where these packages have been included. If this environment is updated, it is important to

test the functionality of the program before putting the new virtual environment into production, as

there might be issues concerning the versions of the different libraries. All of these packages have

been installed on the DNB development platform itself, and is therefore deemed safe and robust by

its administrators.

Name Version Link to documentation

Pandas 1.0.3 https://pandas.pydata.org/

Statsmodels 0.11.1 https://www.statsmodels.org/stable/index.html

Numpy 1.18.4 https://numpy.org/

Itertools 3.6.10 https://docs.python.org/2/library/itertools.html

Multiprocessing 3.6.10 https://docs.python.org/2/library/multiprocessing.html

Time 3.6.10 https://docs.python.org/3/library/time.html

Statistics 3.6.10 https://docs.python.org/3/library/statistics.html

Functools 3.6.10 https://docs.python.org/3/library/functools.html

Scipy 1.4.1 https://www.scipy.org/

Shutil 3.6.10 https://docs.python.org/3/library/shutil.html

Openpyxl 3.0.3 https://openpyxl.readthedocs.io/en/stable/

Os 3.6.10 https://docs.python.org/3/library/os.html

Sys 3.6.10 https://docs.python.org/3/library/sys.html

Warnings 3.6.10 https://docs.python.org/3/library/warnings.html

Xlrd 1.2.0 https://pypi.org/project/xlrd/

https://pandas.pydata.org/
https://www.statsmodels.org/stable/index.html
https://numpy.org/
https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/statistics.html
https://docs.python.org/3/library/functools.html
https://www.scipy.org/
https://docs.python.org/3/library/shutil.html
https://openpyxl.readthedocs.io/en/stable/
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/warnings.html
https://pypi.org/project/xlrd/

28

Re 3.6.10 https://docs.python.org/3/library/re.html

math 3.6.10 https://docs.python.org/3/library/math.html

User interface and project administration

The program is structured around working in projects a user creates at the start of a new round of

estimations of IFRS9 macro models. When inside a project, the user interacts with the program

through functions in the class User, which again calls the main logic of the program in

“Macro_Model_Tool.py”. This is done to separate user interface and program logic. The project

folder contains all input files used, making it easy to see what parameters have been used in a future

audit.

Overall flow

The program is launched by calling the function “main()” in “Macro_Model_Tool_User_Interface.py”.

In that function, this is the overall flow:

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/math.html

29

This entire flow is inside an infinite loop, and then again

inside a try-except. This is in order to handle unexpected

exceptions in the program.

The user is prompted to select a macro project to work in, or

create a new one.

See designated flow for creating new macro project. When

new project is created, the user is navigated into this new

project automatically.

When user has selected or created a macro project, an object

of class User is created. A dictionary with paths to required

files and folders is automatically created.

The user can select what program functionality to use from a

list.

Based on user selection, the function in the user interface

corresponding to that selection is called. The separate

functions takes the required input from the user, and calls

its designated function in “Macro_Model_Tool.py”. The logic

used to get the required input from the user should be fairly

easily understood from the program code. See separate flows

for the designated functions in “Macro_Model_Tool.py”

under.

The flow in-depth analysis gives the user the option to call the function save_model_results() for

saving the model parameters for the specified model for later deployment to the ECL model. This

function should be easily understood, and hence is not described specifically in this documentation.

The flow for deploying the new IFRS9 macro models to the ECL model calls the function

deploy_new_models(). This function should be easily understood from the code, and hence is not

described in this documentation. See user guide for further details on this flow.

Function called
from terminal

Calls function
set_macro_project()

Select project,
or create new

Create_macro
_project()

New project

Set selected macro
project

Existing project

Create user object

User selects
program flow

The selected flow is
executed

30

Create macro project

User is asked to specify name. The program checks if an existing project has the

same given name. The user is asked to specify all input files to the program.

These are Macro forecast file, segment Z file and file with OLS simulation input.

The user is also asked to specify what sheets in the macro file corresponds with

the three scenarios; baseline, low and adverse.

The project creates a folder with the given project name, and the subfolders:

OLS_analysis_results, Suggested_OLS_models, Project_parameters, and

Project_model_coefficients.

Program uses shutil.copy() in order to copy the specified files into the project

subfolder Project_parameters. The two templates for output to excel are also

copied to this folder.

Program creates an excel file with the mapping from the three scenarios to

three sheets in the macro data input file and saves to project subfolder

Project_parameters. The file has the headers “Type” and “Name”. The three

types “Baseline_sheet”, “Adverse_sheet” and “Low_sheet” are mapped to

names of sheets in macro data input file.

File containing the current IFRS9 macro models in use in the ECL model is

copied into the project subfolder Project_model_coefficients.

Program creates an excel file to keep track on IFRS9 macro models that have

been changed in the project. The excel file has three headers, “Model”,

“Changed”, and “Date”, and one row for each IFRS9 macro model specified

under “Model”. “Changed is set to “No” for all rows.

Called from
set_macro_project()

User sets project
name, and project

input files

Program creates
project folder, with

subdirectories

Program copies
selected input files

to folder
Project_parameters

in project folder

Creates xlsx file with
mapping from

scenario to sheet in
macro data input

file

Copies current
macro model

parameters from
ECL model to
project folder

Creates .xlsx file for
the program to

keep track on what
models have been

changed in the
project

Navigates to user
interface

31

Generate model suggestions

The module to generate proposed OLS models is called from the user interface with the required

parameters. As there is a limit on processing power, several measures had to be taken in order to get

the processing time down to an acceptable level. These includes utilizing multiprocessing where

parallelization was possible, setting threshold values for the OLS regression in order to limit the

overall number of regressions that have to be done, and have a program flow where all the

combinations first were tested without including dummy variables, and thereafter only adding

dummy variable combinations to the combinations that showed promise after that. This means that

dummy variables will only be added to combinations that had OLS parameters above the threshold

set for adjusted r-squared and below the threshold set for significance level.

These alterations to the original plan significantly lowered processing time from weeks to below the

threshold of 10 minutes set by DNB when a sensible number of input variable and transformations

are used.

To make combinations to be tested in OLS regression, two special functions were written to avoid

duplication of code. combine() takes a list of variables to be combined, and depending on the input

parameter max_combinations, combines the elements in the list to all possible combinations using

the function combinations() from the itertools package. Combine_lists() takes a list of lists as input,

and combines the different elements of the lists with each other in all possible ways by using the

function product() from the itertools package. Both of these functions should be easy to understand

by reading the code, and therefore does not have dedicated visualisations of their flows.

Overall flow

32

The function is called with parameters specified in the function docstring

in the code.

Z to be modelled is imported from file in project parameter folder.

The macro variables to be used in modelling is imported from file in

project parameter folder.

The macro data to be used is validated and normalized. Se separate flows

under common functionality. If errors are found, program execution is

halted.

All specified transformations for each specified variables are done. Se

separate flow.

As Z time series might be shorter than variable time series, time series are

shortened such that only observation dates that are in Z for the different

variable time series are kept.

Calls function combine() in order to combine transformations of the same

variable with itself.

Calls first combine() to combine the different variables, and calls

combine_list() to combine the variable transformations of all variables.

Generate dummy variables for the Z time series. See separate flow.

Combine dummy variables with other dummy variables by calling

combine()

 In order to speed up processing, multiprocessing is done. See separate

flow.

OLS regression is done with all the combinations of variables, but without

dummies for the first round of regression. See separate flow.

The list with OLS models passing the tests in the OLS function is sorted on

r-squared and capped to 1000 models. This was done to reduce processing

time, and after conferring with future users.

The list of successful models is combined with list of dummy combinations.

Multiprocessing is done for second round of regression.

See separate flow.

OLS regression is done for all models passing first round of regression, and

that was not cut in the following step. See separate flow.

The list of models passing the second round of regression is sorted by r-

squared and capped to 10000 models.

The results are written to excel by calling

write_OLS_suggestions_to_excel(). This code should be unproblematic to

follow.

Generate_OLS_models() called
from the user interface

Imports the Z time series to be
modelled

Imports the macro variables that
will be used in the OLS regression

Validate and normalize the
macro data

Do variable transformation

Trims the transformed values
such that the value time series are
not longer than the time series to

be modelled

Combines transformations of the
same variable with itself

Combines transformations of
different variables

Generate dummy variables

Combine dummy variables with
other dummy variables

Do OLS regression

Combine significant models with
dummy variables

Do OLS regression

Sort on r-squared and reduce
number of results with dummies

Sort on r-squared and reduce
number of models without

dummies

Write model suggestions to excel
file

combine()

combine_lists()

Multiprocessing
logic

33

Do variable transformation

do_variable_transformations() is called with

parameters specified in the function docstring.

Based on information in simulation input file in

project folder Project_parameters, a list is filled

with Ln, inflation adjustment codes and “”. “”

represent no Ln or inflation adjustments of the

other transformations.

Loop through all elements in list created in previous

step.

Given the lag-input, the program loops through all

base transformations(Pct1, Lag1, Movavg2, etc.).

For each combination of the two lists, the program

calls transform_variable() in class

Ols_parameter_transformation in

Dataprep_functions.py. See separate flow under

Common functionality.

Each transformed time series is added to a

dictionary with key=transformation code,

value=transformed time series.

Continuous the nested loop through both lists.

Returns a dictionary with the transformed time

series for all the variables.

Generate dummy variables

This function generates all possible dummies based on the Z to be modelled, and based on maximum

length of dummy variables(defaulted to five years). This function has three nested loops, where the

Function
do_variable_transformations() is
called with required parameters

Adds Ln, inflation adjustment,
and the combination of ln and
inflation adjustment to the list

additional_transformation_list if
specified in the function input

Loops through
additional_transformation_list

Loops through
transformation_list containing
all base transformations given

number of lags specified in input

Transform variable to the
specified transformation

Adds transformation to
transformation_dict

Last
transformation

in
transformation_

list?

Last
transformation

in
additional_trans
formation_list?

No

Yes

No

Returns
transformed time

series

Yes

34

first loop iterates over all possible dummy lengths based on the max_dummy_length input, and

thereafter loops over all possible starting dates given the dummy length. Lastly the program loops

over the entire timeseries of Z to actually generate the dummy time series.

This is the flow of the function:

generate_dummies() is called with parameters

specified in the function docstring.

Loops over all the dummy lengths specified in the

input. So first generating dummies with length

one year, thereafter dummies for two years, etc.

Loop over all observation dates minus length of

dummies, to find all possible start dates given

the dummy length.

Initiate a length counter to keep track of how

many more years to add to dummy time series.

Loop over entire time series in order to generate

the actual dummy time series for the particular

dummy variable.

If date in last loop is over start date identified

earlier, and if the length counter is above 0, the

value 1 is added to dummy time series, and 1 is

subtracted from the length counter. If these

conditions are not true, meaning date is before

start of dummy period or the particular length of

dummy har already been created, 0 is added to

the dummy time series.

Continuous to loop through the three nested

loops.

Dummy name is set. If start and end date are the

same, this variables becomes the dummy name.

If they are different, “start_date – end_date”

becomes the variable name.

A dictionary with key = dummy name, and value

= dummy time series is returned.

Generate_dummies called with
required parameters

Loop over the dummy lengths (1-
max_dummy_length)

Loop over entire time series (stop at
length of time series minus dummy

length)

Loop over all time series dates

Initiate a length counter to keep track
of length of variable

Is date >
start_date and is
length counter >

0?

Set date value to 1Set date value to 0

YesNo

Subtrack 1 from
length counter

Length_
counter

Finished last
time series

date?

No

Finished last
time series date
minus dummy

length?

Yes

No

Finished looping
over all dummy

lengths?

Yes

No

Set dummy name

Return dictionary
with dummy time

series

Yes

35

Do OLS regression

This function is where the actual OLS regression on the time series from earlier in the program is

done. If the time series for each individual regression was added to the tuple that is an input to this

function, the program had major memory issues because of the sheer number of combinations to do

regression simulations on. To get around this issue, the class TimeSeriesLookup was created. An

object of this class is created before the OLS simulation, and a pointer to it is added to the input to

this function. This object contains all the different time series that will be included in the OLS

simulation, Z, variable and dummy time series, and by calling the class function time_series() with a

tuple of the variables to be used in the OLS simulation, the function trims the time series to the

shortest of the time series for that particular regression, and returns them.

This is the main flow of the function:

36

The function do_OLS() is called with the parameters

described in the function docstring.

Gets the trimmed time series to use in OLS regression

by calling the function time_series() on the

TimeSeriesLookup-object.

Transforms the time series into the format required by

the OLS function, and calls the function OLS() from the

package Statsmodels to create an OLS model. Corrects

for heteroscedastic and autocorrelation by calling the

function get_robustcov_results() from Statsmodels.

Extracts adjusted r-squared and p-values of explanatory

variables from OLS object returned by the Statsmodels

package.

Checks if adjusted r-squared is above the defined

threshold, and check if all explanatory variables are

significant based on the significance level defined.

Checks if all variables, not dummies, have the expected

coefficients (positive or negative) as defined in the

simulation input file stored in the project folder

Project_parameters.

If the model passes the above tests, a tuple containing

OLS results are returned. If the model does not pass,

nothing is returned from this function.

Multiprocessing logic

As Python has a global interpreter lock (GIL), using multithreading for parallelism would limit the

computer to only using one CPU, despite having a multi-core setup. For that reason multiprocessing

is implemented for parallelisation in this program. See chapter on Multiprocessing under Techniques

and technologies used in the program for further information on this topic.

It would require a disproportionate amount of overhead for the computer if very big iterables are

passed to the multiprocessing-functionality. For that reason, the list of combinations to be passed to

Function do_OLS() with
required parameters

Gets time series to be used in
OLS regression from

TimeSeriesObject

Creates an OLS model,
corrected for

heteroscedasticity and
autocorrelation with a HAC

matrix

Extract adjusted r-squared
and variable p-values from

OLS object

Is adjusted r-squared
above threshold, and
all p-values significant

Does all variable
coefficients of
variables have

expected sign(positive
or negative)

Yes

OLS result tuple is
returned from

function

Nothing is returned
from function

YesNo

37

the multiprocessing-logic is divided into chunks of maximum 50’000 elements. This size is the result

of timing of different chunk sizes. This increased execution speed considerably.

This logic is not contained in a designated function, but is a part of the function

generate_OLS_models() two separate places.

The main flow of the multiprocessing logic is:

Create a pool object from the class Multiprocessing in the

package with the same name.

Checks if length of combinations list is above the chunk size of

50’000, and therefore if it needs to be divided into chunks

before doing multiprocessing.

If dividing into chunks is not required, multiprocessing is done

on the entire combinations list. If it has to be divided before

doing multiprocessing, (length of combinations

list)mod(50’000) must be found to make the remaining list

divisible by 50’000.

Find our how many chunks to divide the combinations list into

before doing multiprocessing.

Does multiprocessing with each chunk of the combinations list.

Does multiprocessing on the remainder of the combinations

list. On the part of the list not divisible by 50’000.

Code reached in function
generate_OLS_models()

A pool object of the
class

Multiprocessing is
created

Is lenght of
combinations
list <= 50'000

Do multprocessing
on entire list using

pool.map()

Find modulus of
combination list

length and 50'000

Find number of
chuncks to divide
combinations list

into

Do multiprocessing
on each chunk of
combinations list
using pool.map()

Do multiprocessing
on the remaining
data identified by

the modulus
function earlier

using pool.map()

Continuous code execution in
function generate_OLS_models()

38

In-depth analysis

The in-depth analysis returns in-depth statistical information of a chosen OLS model for a given IFRS9

macro model. The statistical information this will write to an excel file is:

adjusted r-squared, mean absolute error of model, root mean squared error of model, KPSS and ADF

of residuals, Durbin Watson test statistics, Jarque-Bera normality test statistics, Omnibus normality

test statistics, Lillefors’ test statistics, Breusch-Pagan Lagrange Multiplier test for heteroscedasticity,

MAE and RMSE of rolling regression for model and the challenger models as-is and TTC, p-values and

coefficients of explanatory variables, KPSS and AFD for explanatory variables time series, year on

year coefficients of explanatory variables from rolling regression, all time series used in OLS

regression, predicted historical Z for baseline scenario with 95% confidence interval, predicted future

Z for baseline, low and adverse scenario, and predicted Z from rolling regression with 95% confidence

interval.

In order to simplify storage of data, the custom class OLS_result_object is used. An object of this class

has get and set methods, for an organized way of storing and retrieving data during calculation and

during writing the results of the in-depth analysis to excel.

39

Overall flow

Function in_depth_analysis() in Macro_Model_Tool.py is called with

parameters described in the function docstring.

Calls custom function get_Z_values() to retrieve Z time series to be

modelled.

Imports macro data from all three scenarios, and validates it using the

function Check_Macro_Input() in Dataprep_Functions.py. See separate

flow under Common Functionality in this documentation. If errors are

found, execution of program is stopped. If no errors, normalization of

the data is done, see separate flow under Common Functionality.

Loops through all explanatory variables. If variable is not dummy,

transformation of macro data time series is done by calling

transform_variable() in class Ols_parameter_transformation in

Dataprep_functions.py. See separate flow under Common

functionality.

Time series of all macro scenarios are trimmed to the same length by

calling function trim_time_series(). See separate flow.

Calls function do_extended_OLS() to generate OLS regression statistics.

See separate flow.

Calls function rolling_regression() to get rolling regression statistics.

See separate flow.

Calls function write_in_depth_results_to_excel() to write OLS results

to a copy of the excel template OLS_results_template stored in the

project folder under Project_parameters. This code should be easy to

follow as it just extracts data from the OLS_result_object object and

writes it to cells in the excel file through a combination of direct cell

references and loops using offsets.

Trim time series

Despite the flow generating OLS model suggestion has functionality for trimming time series to the

same lengths in order to be able to do OLS regression, it was decided to make dedicated functionality

Function in_depth_analysis() called
with required parameters

Import Z time series to be modelled

Imports and clean macro data
for the three scenarios

baseline, low and adverse

Loops through all explanatory
variables, and do specified

transformation of time series
for all three macro scenarios

Trim time series to be
modelled to the same length

Does extended OLS regression
on the time series

Does rolling regression on
baseline macro scenario

Writes in-depth analysis results to
excel file

40

for this for the in-depth analysis flow. The reason is that the data to be handled and the

requirements relating to execution speed differ to such an extent that to make common functionality

to satisfy the requirements for both flows, would require complex code potentially not satisfying the

requirements of either flow satisfactory and potentially being hard to understand and maintain for

future development of the program. While the functionality for trimming time series is executed

inside the OLS function in the flow for generating OLS models when fetching variable time series, the

trimming of the time series must be done before calling the OLS function in the flow in-depth

analysis.

This function was subjected to multiple rounds of rewriting during development, stemming from new

requirements to the output of the entire flow deemed necessary in light of the corona situation. For

that reason, and a general lack of time and unwillingness to risk breaking the parts of the function

proven to be working and thereby jeopardizing the work being done in estimating new OLS

parameters for one of DNB’s IFRS9 macro models, the program features some duplication of code

not aligning with best coding practice. Under Suggestions for future improvements, it is

recommended to refactor the code in this function to avoid code duplication and generally making it

more readable.

This is the flow of the function:

41

Function trim_time_series() is called with parameters specified in

function docstring.

Sets a variable with integer value equal to length of Z time series.

This variable will be used to shorten time series to same length.

Loops over all time series in variable_time_series_dict,

representing the baseline macro variable time series.

Extract historical and projected data into separate lists. This is

done by using the strings "_Actuals" and "_Projections" stored in

a tuple with the time series value of that specific observation

date.

Finds the shortest time series. Compares the length of each

historical time series to integer stored in variable

shortest_time_series.

Loops until last macro variable time series.

If dummy variables are passed to the function in dummy_dict,

these time series are added to the list of historical time series.

All historical time series are cut to same length by using the

variable shortest_time_series and cutting the start of the time

series. It is assumed that the time series have the same end date,

but can have different starting dates.

Extract the projection time series for all three macro scenarios

using the same logic as above.

 Projection time series are independently trimmed to the same

length using a similar logic as above. This time the end of the

projections are trimmed, as it is assumed that projections have

the same start date, but can have different ending dates.

If dummy time series are passed to the function, projected

dummy time series are added to projected time series with

value 0, as these will have no effect on projections. As we

know length of projected time series, the program adds the

correct length of dummy time series.

Function trim_time_series() called
with required parameters

Sets variable shortest_time_series
to length of Z time series

Loops over all time series in
variable_time_series_dict.

Extract historical data(Actuals)
and projections, and populates

one list for each

If length of any historical time
series are shorter than value of

shortest_time_series, this variable
is updated

Last variable?

No

Extract projections for the
scenarios low and adverse similar

to above

If dummy time series are passed
to the function, these time series
are added to the historical time

series of the variables

All historical time series are
trimmed to same length by using
the variable shortest_time_series

Projections for all three scenarios
are independetly trimmed using

the same logic as described above

If dummy time series are passed
to the function, dummy time

series with the correct length with
value 0 is added to the projection
time series for all three scenarios

Calculated values are returned
from the function as a tuple

42

Do extended OLS regression

Despite the flow for generating suggested OLS models also has a function for estimating OLS

parameters, it was decided to create a dedicated function for the in-depth analysis flow for the same

reasons as it was decided to create a dedicated flow for trimming time series. Having a separate

function for this ensures the functions are optimized for the individual flows, and makes the code

much more readable and easy to maintain and expand. This function was made flexible enough to be

able to use in a simplified way for rolling regression in addition to the more extensive analysis

required to generate all necessary statistical parameters.

This is the overall flow of the function:

43

Function do_extended_OLS() is called with parameters specified

in the function docstring.

The variable time series are transformed into a numpy array,

transposed and a constant is added.

Estimates model first by calling function OLS(), and then by

calling function get_robustcov_results() to correct for

heteroscedastic and autocorrelation.

Creates result object and store model object, model coefficients,

Z time series and explanatory variables time series to object.

Checks if these parameters are passed. If not, no further analysis

is done on the model, and result object is returned from

function. If the parameters are passed, more extensive analysis

is done.

Loops through explanatory variables and calculates stationarity

statistics(KPSS and ADF) of time series. Adds this to result object.

Adds adjusted r-squared, r-squared, p-values, residuals and

baseline historical predictions to result object.

Calculates future predictions for all macro scenarios and adds to

result object.

Calculates mean absolute error(MAE) and root mean squared

error and adds to result object.

Calculates 95% confidence interval of historical predicted Z, and

adds to result object.

Calculates statistics from the tests Durbin-Watson, Jarque-Bera,

Omnibus, Breusch-Pagan and Lillefors, and adds to result object.

Returns result object.

Calls function do_extended_OLS()
with required parameters

Transform historical time series of
explanatory variables to format

required by statsmodels package

Generate robust OLS model

Create object of class
OLS_result_object, and fill with

OLS results

Is variable
names and

macro scenario
projections
passed to
function?

Estimates stationarity of variable
time series(KPSS and ADF) and

saves to results object

Yes

Adds additional OLS parameters
to result object

Calculates predictions for all
macro scenarios and add to result

object

Calculates MAE and RMSE of
model, and adds to result object

Calculates confidence intervals of
predicted Z and adds to result

object

Calculates results of several
statistical tests and adds to result

object

Returns result object of type
OLS_result_object

No

44

Do rolling regression

Rolling regression is a way to determine the forecasting properties of the model over time. It does

ten separate OLS regression on an ever-increasing time series length in order to see how well the OLS

regression of the shortened time is able to predict one year ahead in time. So it start by shortening

the time series by 11 years to see how well it predicts the Z 10 years ago, then shortens the time

series by 10 years to see how well it predicts the Z 9 years ago, etc.

The forecasting properties of the two simplified challenger models as-is and TTC are also calculated.

As-is assumes Z one year ahead in time is equal to the current Z, while TTC assumes no cyclicality of

Z, and therefore that all future predictions of Z are zero.

Mean absolute error(MAE) and root mean squared error(RMSE) of all three models for the entirety

of the rolling regression period is calculated for the user to compare out of sample model

performance and forecasting properties. Coefficients of the tested model are also saved, for the user

to analyse if they fluctuate in an unpredictive way.

The statsmodels package has functionality to do rolling regression, but it did not satisfy all

requirements of DNB. For that reason, it was decided to create a custom function for this, that also

can be extended in future iterations of the program.

This is the overall flow of the function:

45

Function rolling_regression() is called with parameters

specified in function docstring.

Years to do rolling regression is specified in input. Loops

downwards from this integer to 1.

As-is model assumes next year will be equal to current year.

Residual for that year is found by the difference in current Z

and next year Z.

TTC model assumes no cyclicality in Z. Residual for that year is

found by the difference between zero and next year Z.

Calls function do_extended_OLS(). As no prediction variables

are included, only a simplified version of the function is done.

See separate flow.

Use model from last step to calculate predictions for next year

by passing time series with one additional observation date

and fetching last predicted Z.

Calculates residual by the difference in predicted and actual Z.

Extracts and saves coefficients from estimated model

Loops through all years of rolling regression

Estimates MAE and RMSE for all three models based on the

estimated residuals.

Estimates 95% confidence interval for the specified model.

Returns a dictionary with rolling regression results.

Common functionality

This is general functionality used by multiple program flows.

Calls function rolling_regression()
with required parameters

Loops through years to do rolling
regression

Calculate residual for as-is by finding
difference between last year Z and

current Z

Calculate residual for TTC by finding
difference between current Z and

zero

Calculates OLS model by calling
do_extended_OLS() with the

shortened time series

Adds one year to variable time
series, and use this to predict Z on

year ahead in time for the OLS
model for last step

Calculates model residual by
comparing predicted and historical Z

Extract model coefficients

Last year of
rolling

regression?

No

Estimates MAE and RMSE for the
three models based on the residuals

Calculates the 95% confidence
intervall of the model

Returns a dictionary with rolling
regression statistics

Yes

46

Validate macro data

This step aims to stop execution of program if obvious errors in the macro file input are found, and

returns a list of errors that should aid the user as to how to fix the macro file. This validation will not

detect all possible errors in the macro input file, and should be improved on as DNB gains experience

into what are typical errors not detected in current program. It is also recommended to extend the

functionality to also fix minor, predictable errors in the input macro file, see more on this under

“Suggestions for future improvements”. To validate the input, the program uses an excel file stored

on the ECL model with macro metadata. This file contains a list of all the expected variables in the

macro input, and information on what is expected of historical and projected data for each variable.

This program code was incorporated into the code of the new ECL model, and is stored in

Dataprep_Functions.py. To follow the structure of the new ECL model, this functionality is organized

in the class Datavalidation.

This is the flow of the validation:

The main function of the class is called with

parameters specified in the function docstring.

Program loops through all variables in macro

input file and in macro metadata file, and

compares.

Checks if variables that are expected to have

projections, based on metadata file, actually

have projections.

Checks if variables that are expected to have

historical data, based on metadata file, actually

have projections.

Checks that all data values are numerical.

Checks if there is a continuous time series from

first data of historical data to last date of

projected data, to avoid non-continuous time

series.

Returns error list. If no errors are found, this

will be empty.

Check_macro_input()
is called with needed

paramaters

Checks that all
column headers are

in macro file

Error list

Checks that
variables that
should have

projections have
projected values

Macro meta
data

Check
against

Check
against

Checks that
variables have

actuals

Checks that all
values are
numerical

Checks that there is
a continious series

of values from
startDate to

endDate for all
variables

Error list is returned

Add
errors

47

Normalize macro data

In accordance with DNB wishes, this functionality was incorporated with the new ECL model, and put

in the file Dataprep_Functions.py, and stored together with the ECL program code. To follow the

structure of the new ECL model, this functionality was organized in the class DataNormalization, with

the two functions transform_macro_data(), that actually normalizes the data, and

generate_LTV_hh(), that generates a new macro variable, loan to value for households, based on

other macro data provided by DNB Markets. Data must be normalised as the macro input data lacks

a common format. There are two cases treated by this function. One is that actual values are given in

the historical data, while growth rate is given for projections. These time series will be transformed

to actual data also for projections. The other case is where both historical data and projected data

are given as a percentage, but where the value given is 100 times as high as the format wanted for

the macro data. E.G. 4% is denoted as 4, instead of 0.04. These time series will be divided by 100 for

each observation date.

The calculation of LTV_hh is fairly straightforward, and should be easy to read from the code itself,

and does not have a visualised flow in this documentation. The formula for the variable is (C2_hh /

C2_hh_divider) / (HPI / HPI_divider). C2_hh and HPI are both in the macro input, while C2_hh_divider

and HPI_divider are found in the sheet IndexYears in the macro metadata file stored on the ECL

project.

The main flow of transform_macro_data() is:

48

Function transform_macro_data() is called with required

parameters specified in function docstring.

Loops through list in macro metadata file to find variables where

projections must be transformed from growth values to actual

values.

Converts projections to actual values by multiplying previously

observed value in the time series by (1 + growth rate given in

projections).

Loops through list in macro metadata file to find variables where

entire time series must be transformed into correct format for

percentage/growth.

Converts time series to correct format by dividing each observation

by 100.

Returns the same data frame that was taken as input, but with

normalised values.

Transform variable time series

In accordance with DNB wishes, this functionality was incorporated with the new ECL model, and put

in the file Dataprep_Functions.py, and stored together with the ECL program code. To follow the

structure of the new ECL model, this functionality was organized in the class

Ols_parameter_transformation. It has the main function transform_variable(), which calls other

supporting functions corresponding to each supported transformation type.

Function transform_macro_data() is
called with required parameters

Loops through all variables in macro
metadata file, and appends variable

name to list if historical data has code
«Value» and projections has code «%»

Loops through all variables in the
created list, and converts projections
from growth values to actual values

Loops through all variables in macro
metadata file, and appends variable

name to list if historical data and
projected data has code «%»

Loops through created list and convert
historical and projected time series to

corret format by dividing each
observation date value by 100

Returns normalized data

49

Function transform_variable is

called with required parameters

specified in function docstring.

If transformation type contains

“Real”, inflation adjustment is

done using inflation data and

inflation metadata specified in

input, and inflation code is

removed from transformation

type.

If transformation type contains

“Ln”, the time series is converted

using the natural logarithm, and Ln

code is removed from

transformation type.

Uses transformation type as key in

dictionary with lambda functions

referencing all transformation

functions, and combinations of

these.

Variable time series are

transformed, and a dictionary of

the transformed time series.

Testing

The program has been used by DNB to estimate some of the IFRS9 macro models that had model

performance that was deemed unsatisfactory given the macroeconomic situation created by the

corona virus. In this process all output from the macro model tool has been validated against output

given by the current program in SAS. This involved comparing estimated r-squared values, variable p-

values, variable coefficients, variable transformations, rolling regression results, predicted Z values

for the different scenarios, confidence ranges, and results from the various statistical tests on

residuals and time series. OLS regression and statistical tests has also been done manually in excel in

Function
transform_variable

is called with
needed parameters

Inflation adjust
variable?

Inflation
metadata

US and
norwegian
inflation

Inflation adjust
variable

Yes

Use data

Use data

Transform
variable to Ln?

No

Tranforms variable
to Ln

Yes

Call function in
transform_function
_dict corresponding
with transformation

type

Transform variable
by executing

function

No

Return dictionary
with transformed

values

50

order to ensure the correctness of the output from this program, and time series transformations has

been manually calculated to ensure the transformations were implemented correctly in the program.

Future users of the program have been involved in the development from the start of the project, all

of whom has little to no experience with Python or working in a terminal window. This has helped to

uncover faults and insufficiencies in the user interaction with the program during development. The

feedback from future users has been that the final version of the program is very easy to interact

with and intuitive to use.

Assessment of program

Feedback from DNB

The feedback from DNB on this program has been overwhelmingly positive. The program

functionality has been used extensively by DNB before the program was even finished in order to

address IFRS9 macro models that underperformed during the economic shock. The feedback from

analysts benefitting from the functionality in this program has been that it would be unlikely that

these IFRS9 macro models would be possible to re-estimate in due time before 2020 quarter two

reporting had it not been for this program. Both because of the great advantage of having a list of

OLS models generated by the OLS suggestion functionality of the program, and the structured and

accurate output from the in-depth analysis functionality.

Own assessment of program

Despite some of the program code show signs of the immense time pressure and changes in program

requirements brought on by the corona pandemic, the author of this paper is overall very content

with the final version of this program.

In terms of programming quality, the functionality generating the suggestions for OLS models is the

centrepiece of this program, and is the result of countless iterations of trial and error, and utilizing

increasingly complex programming approaches and structural considerations rooted in an

understanding of the problem that needed to be solved, in order to get the processing time down

from weeks to minutes. This approach to finding IFRS9 macro models also signals a shift in the

approach to finding the models from just using industry intuition and manual trial and error, to using

a combination of industry intuition and raw computing power to find optimal models, yielding both

better models and a significant reduction in time this process takes for involved analysts. By further

51

expanding this functionality in the program and include other model criteria, DNB can use this

approach to find even better IFRS9 macro models in a shorter time in the future.

The storage structure behind the program is also a feature that should be highlighted. By automating

how the output from the program is stored, and thus not relying on user of the program following

guidelines on how to store and structure output, the probability of having a robust and sustainable

system for storage of output has greatly increased. This in stark contrast to how the output from

most in-house models are stored, which is often having all output files from a program being saved

to a common directory.

The last feature to highlight is the rudimentary way this program has an interface and visualisation of

the output, despite being confined to a terminal and directory-based interface. The user interface

certainly is not pretty or exciting, but the feedback has been that it is intuitive and a major step up

from the system-centred design of the old macro tool program. The output files are in a format that

can be attached to model change proposals being sent to internal audit, a far cry from the extensive

copy-paste that had to be done from the old program during model change evaluations.

User guide

In order to structure the use of the model, the users are required to create a macro estimation

project for that round of IFRS9 macro model estimation before gaining access to the program

functionality. It is strongly suggested that only one project is created and used for each round of OLS

estimation. Do not create designated projects for different models and/or for different users of the

programs. This might lead to errors when deploying the new model parameters to the ECL model.

There are also instruction videos showing some of these operations.

Setting up a new macro estimation project

1. Make sure you have uploaded these files to the program under “Macro_tool_data” before

setting up a new project:

a. The macro data from DNB Markets to be used in modelling. Make sure you have

separate sheets for the baseline scenario, the low scenario, and the adverse

scenario. It is not important that these sheets have these specific names, but you

must know what sheet corresponds to what scenario. Also make sure what is in

these sheets is just the macro data itself, and not comments etc. The macro data will

be validated by the program to ensure it is in the correct format before use.

52

b. Z values to be modelled. This file must contain a sheet for each IFRS9 macro model to

be modelled in the program, and the sheet name must correspond exactly to the

name of the IFRS9 macro models. Cell A1 must contain “Date” and cell B1 must

contain “Z”. In the following rows the observation dates and the estimated Z values

for each date must be given.

c. List of input variables to be used for suggestion module. This file must contain a

sheet for each IFRS9 macro model to be modelled in the program, and the sheet

name must correspond exactly to the name of the IFRS9 macro models. It must

contain, from cell A1 to D1, “Variables”, Inflation adjust”, “Ln adjust”, “Expected

effect”. For each variable to be used, the name of the variable, inflation

adjustment(“Nor”, “US” or nothing), Ln adjust(“Y” or “N”) and expected effect(“+” or

“-“) must be stated.

2. When starting up the program, you are told to either choose an existing macro estimation

project or create a new project. Type “new” in order to create a new project.

3. Type in the name of the new project. The program will not allow the same name as an

existing project.

4. Select the macro file containing the macro variables to be used in modelling.

5. Select the three sheets corresponding to baseline, low and adverse.

6. Select the file with the Z timeseries to be modelled.

7. Select the file with the variable input suggestion module in the project.

8. Project is created, and all project files and folders are automatically generated.

9. User is automatically routed into newly created project.

53

Generate OLS model suggestions

This flow will generate a list of suggested OLS models for the specified IFRS9 macro model. These

models are filtered on significance of variables and adjusted r-squared, and are sorted by adjusted r-

squared.

1. When starting the program, you are prompted to select a project to work on. If no project

has been created for this round of macro model estimation, see the above guide as to how to

create a new project.

2. Select “Generate model suggestions” by typing 2.

3. Select the IFRS9 macro model to generate suggestions for.

4. Select variables to include. These variables are from the file “Simulation_input.xlsx” stored

under “Project_parameters” in the project folder. To select multiple variables, separate the

variable numbers with a comma. The program will validate input and stop execution if input

format is incorrect. Program also displays the selected variables and prompts you to confirm

the selection with “Y” or “N”.

5. Select maximum number of lags to use in variable transformation. The program supports

zero to three lags. Shorter lags in variable transformation generally means the model reacts

quicker to economic shocks.

6. Select(Y/N) if you want to include an aim for first year of prediction, including this

observation in OLS simulation. If aim is included, specify a target percentile for first year of

predictions higher than 0 and lower than 1.

7. Select(Y/N) if you want to use default parameters for OLS regression. If “N”, all parameter

values must be set by user. Default parameters are:

a. Maximum variables per regression, excluding dummies: 3

b. Maximum number of dummies per regression: 1

c. Maximum number of times a variable can be used in one particular regression: 1

d. Significance level used to discard OLS models with insignificant explanatory variable:

0.05

54

e. Minimum adjusted R-squared required for model not to be discarded: 0.65

8. Program will run, printing start of first and second round of regression, and printing timings

for both rounds.

9. Results are written out to the project folder, in the folder “Suggested_OLS_models”.

Do in-depth analysis

This flow will generate extensive statistical information for the given IFRS9 macro model and given

explanatory variables.

1. When starting the program, you are prompted to select a project to work on. If no project

has been created for this round of macro model estimation, see the above guide as to how to

create a new project.

2. Select “Do in-depth analysis of specified model” by typing 3.

3. Select IFRS9 macro model to work on.

4. Select input option. This only has one option as of today, but this is suggested to be

increased in future iterations to the program.

5. Type the variable and variable transformations to be used in the regression in accordance

with the format specified in the terminal. You can also copy-paste this information from the

output from suggested OLS models. The format from both column B and C is supported.

6. The results are saved to the project folder under the folder “OLS_analysis_results”.

7. Some model results are printed to the terminal. This is to minimize any chance of deploying

the wrong OLS model. The user is prompted to state if OLS parameters are to be saved for

future deployment to the ECL model(Y/N). If “Y”, the user is prompted to confirm this by

typing “Save”.

55

Deploy new model parameters to the ECL model

When all IFRS9 macro models for the particular round of estimation are completed, this flow will

save the variables to the ECL model. To minimize the chance of deploying the models by accident, a

flow must also be done in the ECL model itself.

1. When starting the program, you are prompted to select a project to work on. If no project

has been created for this round of macro model estimation, see the above guide as to how to

create a new project.

2. Select “Create new model parameters” by typing 5.

3. The program will print name of all IFRS9 macro models that have been changed, and date of

change for each model. This is done as a safety mechanism to avoid deploying incorrect or

unexpected model parameters.

4. The user is prompted to select if new model coefficients should be deployed to the ECL

model(Y/N).

5. If “Y”, the user is prompted to type “Deploy” to confirm saving of parameters to the ECL

model.

Change project parameters after model estimation project is created

Project parameters are loaded into the estimation project when the project is created. If there is a

need to change these parameters after the project is created, E.G. if new macro projections should

be added or if new variables to use in the functionality that generates model suggestions should be

included, this can be done by altering the parameter files located in the project folder under

“Project_parameters”. Make sure the file names correspond to the technical documentation

requirements specified under “Data structure and input files”, “Project parameters”.

Suggestions for future improvements

During the development of this program, the scope has been somewhat decreased, some code has

been sub-optimally implemented, the need for a minor rethinking relating to structuring of the code

has arisen, and new potentially useful functionality has been identified. This is a summary of what

56

has been identified as useful future improvements to the program, with some suggestions as to how

it can be done.

Implement User story 1: Generate credit cycles

This was originally a part of the scope of the program, but was taken out of scope due to resource

limitations stemming from the corona virus outbreak. It was also taken out of scope due to a

discussion around how exactly the Z value for certain IFRS9 macro models should be calculated in the

future, and a new structure for mapping the data to the different IFRS9 macro models. This will

involve the inclusion of several stakeholders in DNB, and will be part of a greater project. The

program is written in a way that should easily allow for this functionality to be implemented into the

Macro tool program.

Implement user story 4: Automatic validation of existing models

This was originally a part of the scope of the program, but was taken out of scope due to resource

limitations stemming from the corona virus outbreak. It was also taken out of scope as the

automated tests used to evaluate the performance is up to consideration in light of experience

gained from the performance of some IFRS9 macro models during the corona virus outbreak. The

program is written in a way that should easily allow for this functionality to be included into the

Macro tool program.

Add a web-based user interface using Dash

During development of this program, DNB started rolling out the Dash-framework on their

development platform. This project was not prioritized for the first round of projects being allowed

to test out this functionality. When this framework becomes available for everyone on the DNB

development platform, it is advised to implement a web GUI for this project in addition to the

current terminal based user interface. It will make the program available to more users, as having a

terminal based interaction with a program can discourage users unfamiliar with terminal based

program interaction from using the program. It would be advisable to visualise the different graphs in

the web interface, and make it an option to write out the results from in-depth analysis to an excel

file in order to reduce unnecessary storage on the development platform.

57

Expand OLS suggestions by allowing the user to input ranges the baseline predictions

forward in time have to fall within

A problem discovered when using the program to actually model a credit cycle for an IFRS9 macro

model was that it was very hard to find models that have reasonable predictions given the extreme

economic shock stemming from the corona virus outbreak. This is due to the fact that we lack

comparable observations in the modelled time series. Several models with an apparent high degree

of fit, measured by the value of adjusted r-squared, either underestimated or greatly overestimated

the expected consequences of the economic setback caused by the corona virus outbreak. This was

initially thought to be redeemed by setting an aim for the first year of predictions. This did not yield

the results that was hoped. A suggested solution is therefore to include an option for the users to set

a range of values the predicted Z must be within for the first n number of years of prediction, and

discard models with predictions outside of these ranges. This can be done with minor adjustments to

the function “do_extended_OLS()” in “Macro_Model_Tool.py”. An even more refined approach is to

create a weighing system where model performance is defined as a product of both r-squared and

how close it is to an expected range, where the weight of the two parts can be given as an input by

the user. This might especially aid in finding good dummy variables, as the program no longer just

aims to reduce the residuals, but also adjusts coefficients of explanatory variables to make future

predictions more reasonable.

Expand OLS suggestions by filtering out variables not passing the KPSS test

One of the requirements when modelling Z, is that the time series of the explanatory variables are

stationary around a mean. This is due to the nature of how Z is calculated. The in-depth analysis

returns p-values from the statistical tests Kwiatkowski–Phillips–Schmidt–Shin(KPSS) test and

augmented Dickey–Fuller(ADF) test that will help the analyst determine if the variable time series are

stationary around a trend. As the KPSS test is the one out of the two tests with the lowest likelihood

of determining that a time series is not stationary around a trend, an improvement to the program

would be to allow for the user to determine if the OLS suggestion module should automatically

discard OLS models containing non-stationary time series. This can be done with minor adjustments

to the function “do_extended_OLS()” in “Macro_Model_Tool.py”.

Have a decomposition of the effect from each variable

In model selection it is useful to see what effect the individual explanatory variables have on the

58

predicted Z. This involves using actual and predicted time series of the explanatory variables, and the

variable coefficients. The required information is already stored in variables in the function

“write_in_depth_results_to_excel()” in “Macro_Model_Tool.py”. The piece of information needed

for this not already written to the output excel is the projected time series for the explanatory

variables. These are stored in the variables “baseline_macro_predictions”,

“adverse_macro_predictions” and “low_macro_predictions”.

Link macro tool and ECL project to see effect of new model

Link the Macro Tool and the ECL project in such a way that models tested in in-depth analysis can be

tried on the ECL model in order to see the effect the new model will have on ECL on the portfolio

using that particular model compared to the current model used by the ECL program. This will

require some alteration of code in the ECL model in order to make it callable from outside its own

interface, and it will require alteration of the Macro model tool. This functionality is suggested to be

put into a designated function in the existing function “in_depth_analysis ()” in

“Macro_Model_Tool.py”. As this will significantly increase execution time of in-depth analysis, it is

important that this is an option for the user, and not a default. It must also be decided how the

results should be presented. Either aggregated ECL figures can be included into the current output

file from in-depth analysis, or more granular data can be exported to a designated excel file. Granular

data can also be included into a designated sheet in the current output from in-depth analysis, but it

should be taken into consideration that this might lead to performance issues in the excel file itself

because of the large amounts of data the ECL model returns.

Add possibility to select variables and transformations used in in-depth analysis from

list

The only way of selecting what variables and transformations to use as input into the in-depth

analysis is to type or paste the variables in a specific format. This approach should work well for most

users, but in order to make the program easier to use, an option to select one variable followed by

the wanted transformation from a list, and repeat until all variables are selected could be

implemented. A suggestion is to use the file “Simulation_input.xlsx” under “Project_parameters” in

the project folder for each project to avoid having to write out all variables in the macro input sheets.

All supported transformations are in dictionary “transform_functions_dict” in

“Dataprep_functions.py”, located in the ECL project itself. This option to select variables should be

59

added to the function “in_depth_analysis()” in “Macro_Model_Tool_User_Interface.py”. Add the

option to the dictionary “input_options” and code that is called if user_input ==”2”.

Refactor duplicated code in trim_time_series()

As the scope relating to the inclusion of more macro scenarios with varying degree of pessimism

used for predicting Z forward in time was expanded when working on estimating the macro model in

light of the corona virus outbreak, the emphasis was to write code that yielded the required

information rather than write optimal code. For that reason, it is some duplicated code in the

function “trim_time_series()” in “Macro_Model_Tool.py”. In order to get cleaner, more robust code,

this logic should be rewritten in such a way that baseline, low and adverse time series should be

trimmed by the same code, and avoid the code duplication currently in the program. This was not

done for the first version because of time constraints.

Add validation when adding macro sheets to estimation project

In the first version of the program, the validation of the macro data input is done when running the

flows “Generate model suggestions” and “Do in-depth analysis of specified model”. This validation

should also be done when adding macro data sheets to a project. It should be kept for when doing

the individual runs using the macro data as well, in case users update the macro data after creating

the project, but it would identify issues with the macro data earlier if the validation is done when the

project is created. This will involve using the function ”import_and_clean_macro_input()” in

“Macro_Model_Tool.py” in the function “create_macro_project()” in

“Macro_Model_Tool_User_Interface.py”. Because of time constraints, this is not implemented in the

first version of the program.

Optimize validation of input macro sheet

During development, some common issues with the macro input was discovered that could be

handled by the program automatically. The validation in place will reject these macro sheets, but a

better solution would be for the program to get around these issues. The two identified issues that

could be handled by the program is difference in end date of actual time series, and cells with

information outside the frame with macro data. Difference in end data of actuals time series happen

if an old macro scenario is used, which sometimes happen for low and adverse scenario. A solution

for this is to use the actuals time series of the baseline for all actuals time series in adverse and low

60

scenario, and thereby avoiding the problem all together. The problem with cells outside of the frame

with macro data containing information stems from certain calculations and comments inserted in

the excel sheets for other processes in the bank. A way to get around this is to trim the pandas data

frame with the macro data in order to remove cells outside of the macro area. As the number of

columns in the macro input is constant, the slice on the width of the data frame is known. In order to

know how to slice the length of the data frame, one could count the number of cells in column A,

containing observation dates, to know what the area of the sheet actually contains macro data, and

slice away rows under last observation date.

Restructure the program into classes

While the part of the program that eventually was included into the ECL model was structured into

the classes Datavalidation, Ols_parameter_transformation and DataNormalization, and the user

interface was structured into the class User, this was not done for the rest of the program. This was

deemed unnecessary during development, but it has become obvious that the program will benefit

from a structure where all code is in well defined classes. As the program is set to be expanded

beyond the initial scope in the future, such a partition of the code will greatly help with the overall

structure of the program. Proposed classes are:

“OLS_suggestion_generator” – containing all the code specific to the flow generate OLS suggestions.

“in-depth_analysis” – containing all the code specific to the flow in-depth analysis.

“Macro_tool_functions” – containing all the code that is used by multiple flows.

“Project_administration” – containing the code that has to do with creating and setting macro

estimation projects.

Sources

A. McGeachin & A. Tarce, 2019, Guide to new Standards IFRS 9, IFRS 15, IFRS 16 and research

opportunities, viewed June 1st 2020, https://www.ifrs.org/-/media/feature/news/2019/june/basics-

of-new-ifrs-standards-and-research-eaa-paphos.pdf

S. Bansal, TrumpExcel, How to Create a Dynamic Chart Range in Excel, viewed June 16th 2020,

https://trumpexcel.com/dynamic-chart-range/#Using-Excel-Formulas.

D. Norman 2013, The Design of Everyday Things: Revised and Expanded Edition, Basic books

https://www.ifrs.org/-/media/feature/news/2019/june/basics-of-new-ifrs-standards-and-research-eaa-paphos.pdf
https://www.ifrs.org/-/media/feature/news/2019/june/basics-of-new-ifrs-standards-and-research-eaa-paphos.pdf
https://trumpexcel.com/dynamic-chart-range/#Using-Excel-Formulas

61

Python.org, GlobalInterpreterLock, viewed June 16th 2020,

https://wiki.python.org/moin/GlobalInterpreterLock

M. Mamaev 2018, If you have slow loops in Python, you can fix it…until you can’t, freeCodeCamp,

https://www.freecodecamp.org/news/if-you-have-slow-loops-in-python-you-can-fix-it-until-you-

cant-

3a39e03b6f35/#:~:text=Of%20Python's%20built%2Din%20tools,efficient%20than%20recursive%20fu

nction%20calls

R. Arpaci-Dusseau & A Arpaci-Dusseau 2018, Operating Systems: Three Easy Pieces, CreateSpace

Independent Publishing Platform

w3schools, Python Lambda, viewed June 16th 2020,

https://www.w3schools.com/python/python_lambda.asp

w3schools, Python map() function, viewed June 16th 2020,

https://book.pythontips.com/en/latest/map_filter.html

Appendix

1. Program source code.

2. PowerPoint presentation of project.

3. The two templates used for program output.

4. Example of program output.

5. Videos showing program functionality.

6. Time sheet and Gantt chart of project timeline

https://wiki.python.org/moin/GlobalInterpreterLock
https://www.freecodecamp.org/news/if-you-have-slow-loops-in-python-you-can-fix-it-until-you-cant-3a39e03b6f35/#:~:text=Of%20Python's%20built%2Din%20tools,efficient%20than%20recursive%20function%20calls
https://www.freecodecamp.org/news/if-you-have-slow-loops-in-python-you-can-fix-it-until-you-cant-3a39e03b6f35/#:~:text=Of%20Python's%20built%2Din%20tools,efficient%20than%20recursive%20function%20calls
https://www.freecodecamp.org/news/if-you-have-slow-loops-in-python-you-can-fix-it-until-you-cant-3a39e03b6f35/#:~:text=Of%20Python's%20built%2Din%20tools,efficient%20than%20recursive%20function%20calls
https://www.freecodecamp.org/news/if-you-have-slow-loops-in-python-you-can-fix-it-until-you-cant-3a39e03b6f35/#:~:text=Of%20Python's%20built%2Din%20tools,efficient%20than%20recursive%20function%20calls
https://www.w3schools.com/python/python_lambda.asp
https://book.pythontips.com/en/latest/map_filter.html

