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Abstract

With the expanding cloud computing market new business models take form, and the
focus in the market is on differentiation and adapting to the escalating demands of the
customers. To satisfy the business segment of the market the offering of some quality of
service (QoS) measures and guarantees is paramount. The next generation of brokers
will be the QoS-aware brokers with cloud connectivity.

This thesis regards the decisions of a combined broker and carrier in a cloud computing
ecosystem. Such a broker has to make decisions on the composition of his customer
portfolio, where to deploy services, and how to provide the network connectivity to
these services, while ensuring compliance with the customers’ requested QoS.

In this thesis, three mixed integer programming (MIP) models, a link-flow model (LFM),
path-flow model (PFM) and a mapping model, are presented; considering latency, avail-
ability, routing of the traffic, provisioning of backup paths, and the provider placement
of each service; in order to select a customer portfolio and maximise profits. The PFM
and the mapping model use pre-generation of paths and mappings, respectively. Three
heuristic column generation methods for the mapping model are presented, in an attempt
to provide fewer but potentially equally good columns as the pre-generation. Both C++
and the Mosel programming language have been used for implementing the MIP models,
pre-generation methods, and column generation methods.

The six resulting solution models are tested using five constructed test instances with
one varying scaling parameter. Some test cases have proven to be too hard to solve,
requiring restrictions to the number of columns pre-generated to obtain comparable
results. The solutions obtained from the tests show that the different solution methods
have different applicabilities, the column generation methods or an implementation of
the mapping model with restricted pre-generating for large problem instances seem to
be the best suited for solving the presented problem. The scaling parameter used has
its expected effect. Some of the solution methods presented provide optimal solutions
and some provide good heuristic solutions to the test instances used.





Sammendrag

Med økende bruk av nettskyen tar stadig nye forretningsmodeller form, og fokuset i
markedet er differensiering og tilpasning til de stadig økende krav som stilles av kundene.
For å tilfredsstille næringslivets krav til nettskyen er det å kunne tilby garantier p̊a
tjenestekvalitet avgjørende. Den kommende generasjonen av cloud brokers, et bindeledd
mellom kunder og tilbydere, kommer til å være de som har fokus p̊a å tilby sine kunder
garantier p̊a tjenestekvalitet.

Denne masteroppgaven ser p̊a nødvendig planlegging en kombinert nettverksoperatør og
cloud broker m̊a gjennom for å overleve i dagens og fremtidens skyverden. En slik broker
m̊a bestemme sammensetningen av sin kundeportefølje, hvilke tilbydere tjenester skal
anskaffes fra, samt hvordan oppn̊a riktig tjenestekvalitet i henhold til kundenes krav.

I denne masteroppgaven presenteres tre heltallsmodeller, en linkbasert modell, en stibasert
modell og en stikombinasjonsmodell, for å velge kundeportefølje med maksimal profitt,
med hensyn til forsinkelse, tilgjengelighet, nettverksruting, tilordning av reservekapa-
sitet i nettverket og valget av tilbyder for hver tjeneste. Den stibaserte modellen og
stikombinasjonsmodellen benytter seg begge av pregenereringsmetoder. Tre heuristiske
kolonnegenereringmetoder er utviklet i et forsøk p̊a å tilby raskere problemløsning, disse
produserer begrenset, men potensielt like god input til stikombinasjonsmodellen som
pregenereringen. Modellene, pregenereringsmetodene og kolonnegenereringsmetodene
er implementert ved hjelp av C++ og programmeringsspr̊aket Mosel.

De seks presenterte løsningsmetodene er testet ved bruk av fem konstruerte testin-
stanser og en varierende skaleringsparameter. Noen kombinasjoner av testinstanser og
løsningsmetoder har vist seg vanskelig å teste, og størrelsen p̊a pregenerert input ble be-
grenset for å kunne f̊a sammenlignbare resultater for disse kombinasjonene. Løsningene
fra testene viser at løsningsmetodene passer til forskjellig bruk, en av kolonnegenererings-
metodene eller implementasjonen av stikombinasjonsmodellen med begrenset input for
store probleminstanser viser seg å passe best å løse det presenterte problemet. Bruk
av skaleringsparameteren har den forventede effekten og gir løsninger med passende
egenskaper. Noen av løsningsmetodene presentert gir optimale løsninger, mens andre
løsningsmetoder gir gode heuristiske løsninger p̊a det presenterte problemet.
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Chapter 1

Introduction

With the expanding cloud computing market new business models emerge. Traditionally

there are the roles of providers, consumers, carriers, and in some cases brokers, that

mediate between providers and customer. Increasingly more extensive demands from

cloud customers give rise to a new level of requirements for the cloud market. This in

turn increases the need for differentiation and adaption to the demands of the customers.

In the role as a cloud broker it will be beneficial to adapt and enhance provided services to

the customers and to provide a single connection point to a customised service delivery.

Revenue potential for cloud services in the business segment increases dramatically when

quality of service (QoS) attributes involving high performance, such as low latency and

high availability, are offered. These are aspects that decrease the obstacles to extensive

use of cloud services, from a potential cloud customer’s perspective. (Undheim et al.,

2012)

According to Undheim et al. (2012) the next generation of brokers will consist of the

QoS-aware brokers with cloud connectivity who take requirements from the customers,

find the providers that can meet them and deliver the service through their own net-

work connections. Popular QoS attributes, both amongst the cloud customers and in

relevant literature, are bandwidth, latency and availability. Especially availability has

been extensively reviewed in literature, as it poses an extra challenge in linear modelling

by having a non-linear nature when computed for paths through a network. To increase

the availability provided to the customers, provisioning of backup paths, along with the

primary paths, are used for availability sensitive connections.

1
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A network QoS aware cloud broker has to decide what customers to select and which

providers that can provide the most suitable service provisioning for those customers’

service demands. In addition, such a broker has to make decisions on how to route the

traffic to and from these providers’ data centres in compliance with the requested QoS

levels for each customer. The resulting problem from this combination of decisions is

throughout this thesis referred to as a Cloud Brokering with Quality Aware Network

Routing (CSBQANR) problem. This problem includes availability consideration and

provisioning of backup to services requiring a high availability connection.

Three mixed integer programming (MIP) models are presented to address this prob-

lem, a link-flow model (LFM), a path-flow model (PFM) and a mapping model, where

mappings consists of combinations of primary and backup paths. These models handle

the non-linearity nature of the availability requirements by using different approxima-

tions. To solve the presented models, the LFM and PFM are implemented in the Mosel

programming language, the mapping model is implemented in C++ with the Xpress-BCL

Builder Component Library (BCL). The pre-generation methods for the PFM and the

mapping model implementations are also implemented in C++. In the attempt to pro-

vide faster solution methods to the problem, three heuristic column generation methods

are developed to provide the mapping model implementation with fewer, but potentially

equally good columns; these are implemented in C++.

The solution methods for solving the CSBQANR problem is tested on five constructed

test instances, the different methods are compared and their applicability in practical

planning is assessed. Given input data reflecting a real world problem, the solution

methods could provide answers to tactical decision problems. With the use of different

input networks provided from the user one can also see what effect changes in the

infrastructure will lead to, and give indications of good solutions on strategic issues.

The rest of this thesis is organised as follows. Chapter 2 gives a brief introduction

to important aspects of virtualisation, cloud computing and QoS, especially focusing

on cloud computing roles and availability. This is followed by a description in Chapter

3 of the background for the CSBQANR problem, detailing assumptions made and how

different aspects of the CSBQANR problem are modelled. Chapter 4 gives an overview of
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relevant work related to this problem with a main focus on modelling of availability and

backup path provisioning. The CSBQANR problem itself is described and detailed in

Chapter 5. The CSBQANR MIP models, the LFM, the PFM and the mapping model are

presented in Chapter 6, as well as the path and mapping pre-generating algorithms and

three heuristic column generation methods for a more effective pre-generating. This is

followed by the presentation of test instances, test setup and test cases, as well as a study

of the computational results obtained from running the tests in Chapter 7. Chapter 8

gives the concluding remarks and proposes future direction for the work presented in

this thesis.





Chapter 2

Theory

In this chapter important theoretical concepts for this thesis will be presented and

described. First virtualisation will be defined, then the focus will be on cloud computing

and the chapter ends with an introduction to QoS and availability. This chapter is based

on the theoretic study done in the specialisation project Braaten and Holmen (2013) and

so sections 2.1 and 2.2 are slightly altered sections from the specialisation project, while

Section 2.3 consists in the most part of new material. Section numbers in this thesis

does not necessarily coincide with section numbers in Braaten and Holmen (2013) and

the section numbers specified in this thesis will point to sections in this thesis only.

2.1 Virtualisation

The term virtualisation broadly describes the separation of a resource or a request for

a resource from the underlying physical delivery of that service (VMWare Staff, 2012,

Accessed: 2014-02-03). An important benefit of virtualisation is better and more flexible

utilisation of resources. The underlying physical infrastructure responsible for delivering

any virtual resource is commonly referred to as the substrate. Virtualisation is one of the

key enabling technologies of cloud computing. What makes virtualisation so important

for the cloud is that it decouples the software from the hardware, it generalises the

physical infrastructure into a virtualised pool of resources which could be shaped to fit

the demands of users at any time.

5
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A virtual machine (VM) is a software instance imitating a computer environment

which can be utilised as a real physical computer. VMs allow for multiple operating

systems to be run on a single physical system and share the underlying resources, this

is known as partitioning.

Network virtualisation decouples the logical structure of a computer network, from

the physical structure. This is done by virtualising network nodes and links, enabling

the creation of new virtual networks (VNs) on top of the physical structure. Multiple

virtual networks can coexist on the same substrate network. This technique can be used

for abstraction of network hardware, resource sharing and isolation, giving the users

exclusive access to their own networks and providing simpler interfaces.

2.2 Cloud Computing

Cloud computing is the new direction in which the computing world is evolving. The

term cloud computing is the basis of a wide range of understandings, but the National

Institute of Standards and Technology (NIST) defines it as: a model for enabling ubiqui-

tous, convenient, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider interaction

(Mell and Grance, 2011). The most obvious benefit of cloud computing is the possibility

of utilising computing resources in a more efficient manner. The idea is to dynami-

cally distribute and share a large pool of resources between users using virtualisation,

aggregating their variable demand, thus enabling a more evenly distributed load and

utilisation of a higher percentage of the pooled resources. At the same time the man-

agement and underlying structure of the cloud is hidden from the user, who can use the

amount of storage, applications and processing power he needs without considering the

underlying infrastructure.

2.2.1 Cloud Computing Roles

In a cloud market there are several different actors that interact in different ways. A cloud

consumer is a user of the cloud services provided by a cloud provider.A cloud provider is
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the organisation responsible for making a service available to interested parties. A cloud

provider acquires and manages the computing infrastructure required for providing the

services, runs the cloud software that provides the services, and makes arrangements to

deliver the cloud services to the cloud consumers through a network access.

A cloud broker is an entity between the consumer and provider that manages the

relationship between the two, either by conveying the services from the provider directly

to the consumer or providing the service in an extended or otherwise improved form.

The cloud broker also manages the use and performance of the service. Liu et al.

(2011) define three types of brokers; the intermediator who adds value to an existing

service by enhancing some of its capabilities, the aggregator who combines and integrates

fixed services from different cloud providers into a new value-added service, and the

arbitrator who combines and integrates services from different cloud providers, which can

be dynamically selected based on customer requirements and negotiated relationships.

A cloud carrier is the entity that transports the service from provider, either via a

broker or directly to the consumer through a network. A cloud auditor is an actor that

often also is defined, but it is not relevant to this thesis. Figure 2.1 illustrates how the

different cloud computing roles interact with each other.

Figure 2.1: Interaction between cloud computing roles, modified figure from Svaet
et al. (2013)
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2.2.2 Cloud Computing Service Models

NIST defines three service models in the cloud ecosystem; Software-as-a-Service(SaaS),

Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS) (Mell and Grance,

2011). In the SaaS model, the cloud user is provided with software or applications

deployed in one or several of a provider’s data centres which the user can access through

a thin client interface, for example a web browser or a program interface. The user

has no control over the underlying cloud infrastructure, network, storage, or software

configurations, with the possible exception of a few user specific settings.

With PaaS the user has a higher level of control over the applications and its en-

vironment. PaaS provides the user with the possibility to deploy consumer-created or

acquired applications in addition to managing these applications in the cloud infrastruc-

ture. A user can by using tools and programming languages provided by the provider

build its own applications and deploy these in the cloud. Access to the network, server

or operating system is still not given to the user; the configurations available to the user

are environmental or application specific.

In the IaaS model the user has access to processing, network and other computing

resources to deploy and run arbitrary applications. The user can manage and control

operating systems, storage and deployed applications, but still has no control over the

underlying cloud infrastructure; however he can have limited control over selected net-

work components.

In other literature, Network-as-a-Service (NaaS) is also defined as a service model.

International Telecommunication Union (ITU) defines NaaS as a category of cloud ser-

vices where the capability provided to the cloud service user is to use network/transport

connectivity services and/or inter-cloud network connectivity services (ITU, 2012). Ex-

amples of such services are providing virtual private networks, bandwidth on demand

and mobile network virtualisation where the network operator sells access to his network

to third party mobile virtual network operators. Figure 2.2 illustrates the interaction

between the different cloud computing service models, cloud users and virtualisation

platforms.
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Figure 2.2: Interaction between cloud computing service models and network virtu-
alisation (Baroncelli et al., 2010)

2.2.3 Cloud Computing Price Models

The cloud computing market prices its products mainly by the use of one of three price

models; pay-as-you-go, flat rate or a mixture model. In the pay-as-you-go model the

customers are charged for their actual usage. This is the analogue to most pricing found

in markets of physical goods, where market forces drives the price down to the products’

marginal cost. This price model has been problematic to introduce to the cloud market

as cloud products often have a marginal cost equal to zero. In the flat rate model the

customers are charged with a fixed amount per time unit (day, month) regardless of

their usage. This model makes billing and management easier for both the provider

and the consumer, but could seem inappropriate when resource usage is highly variable

among users. The mixture model is a combination of the latter two, where the customer

pays some fixed fee per time unit including a specified amount of usage, and is charged

additionally for all usage exceeding this limit. (Han, 2009)

2.3 Quality of Service (QoS)

Quality of service (QoS) refers to the collection of networking techniques and tech-

nologies a network needs to provide a better service to selected traffic, using different
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technologies to achieve the goal of providing guarantees on the quality of different net-

work attributes. Common QoS elements of network performance include bandwidth

(throughput), latency (delay), availability (uptime) and error rate.

Different kinds of services and customers have different needs in relation to QoS.

Services with real time interaction, like online games and videoconferencing, benefit

from low latency and high bandwidth compared to video streaming that can tolerate

high latency and jitter, but still requires a high bandwidth connection. Safety-critical

applications depend on little or no downtime while other attributes can remain less

important.

QoS requirements can either be referred to as soft or hard, depending on the degree

of strictness of guarantees that can be provided for QoS. Soft QoS may not include

any guarantees to the actual experienced QoS, similar to the best effort characteristic of

standard computer networks, while hard QoS requirements will include strict guarantees

to the experienced QoS.

2.3.1 SLA - Service Level Agreement

QoS in a business relationship is often regulated through a service level agreement (SLA)

where requirements for different QoS performance measures are agreed upon. An SLA

is an agreement where the service and delivery of a service are formally defined. It often

contains how different aspects of a service should be experienced from the customer’s

point of view. The SLA usually specifies limits and average levels of performance mea-

sures to satisfy the customers demand for the experienced quality. Average levels are

often provided based on the network history and the limits as guarantees are based on

the average level of performance where a safety margin is added to account for the vari-

ance in the performance. Several methods are developed to decide this safety margin,

see Clemente et al. (2005) and Zhou and Grover (2005).
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2.3.2 QoS with Network Virtualisation

There are many different approaches to the implementation of network virtualisation.

One of the easily identifiable differences is their approach to QoS guarantees. Some of the

known network virtualisation approaches, used in data centres network virtualisation,

that do support QoS guarantees are Oktopus, SecondNet, Gatekeeper and CloudNaaS.

(Bari et al., 2013)

The most common performance characteristics considered by different network virtu-

alisation approaches in addition to bandwidth are latency and availability (Gonzalez,

2014). Bandwidth guarantees are implemented by reserving all or parts of the required

bandwidth along assigned paths in the physical network. It is common to classify dif-

ferent services according to priority and only reserve large amount of bandwidth for

the highest priority services. The proportion of required bandwidth actually reserved is

determined by the degree of softness or hardness of the QoS guarantee.

As cloud computing services are delivered over a network their performance is highly

dependent on the performance of the delivering network. Cloud computing services are

today mainly provided over the Internet, leaving them with no better than best effort

QoS. As shown in Svaet et al. (2013) the business segment of cloud customers are willing

to pay extra for premium quality connectivity services, making a focus on QoS a valid

business venture for a cloud broker.

2.3.3 Availability

Network availability is a key performance parameter for a network and it is a good

indicator of the network resilience (Clemente et al., 2005). The availability of a system

is defined as the fraction of time the system is available for use to the user during the

entire service time and can also be defined as the probability that the system will perform

as usual during a given time period (Zhang et al., 2003). Unavailability could be caused

by failures in the network’s components, data centre failure or other circumstances.

Availability (Di) of a network component i is defined by the use two terms; mean time
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between failures (MTBF) and mean time to repair (MTTR) (Clemente et al., 2005):

Di =
MTBF

MTBF + MTTR

Let Nk be the network components along the connection path k. Assuming the fail-

ure probabilities of network components are independent, the availability (DP
k ) of a

connection path k can be determined by the product of the availability of its network

components, as shown in Equation 2.1.

DP
k =

∏
i∈Nk

Di (2.1)

The service reliability of a connection could be improved by pre-reserving extra resources

to be used in case of failure along the primary path. Several such protection schemes exist

i.e., link-rerouted vs. path-rerouted, dedicated vs. shared, etc. For the link-rerouting

scheme rerouting alternatives for each link in the path are provided and some amount of

capacity is reserved on each of these link alternative sub routes. If a link is unavailable,

its alternative sub route is used to route the traffic flow around the malfunctioning

link. In the path-rerouting scheme resources are reserved along an alternative path (the

backup path). If one or several parts of the primary path are malfunctioning the traffic is

switched to the backup path. Dedicated protection is achieved by reserving the sufficient

amount of capacity along the backup path or links to support all of the traffic along the

primary path. In the shared protection scheme several services can share the capacity

reserved for backup. This concept’s validity is based on the low probability of several

simultaneous failures in the network, and so the probability of several services needing

the backup capacity at the same time is small. This approach requires a lower amount

of capacity reserved for backup compared to the dedicated approach.

The probability of the case where at least one of the primary (A) or backup (B) path

is available at a certain time is the sum of the availabilities of each of them minus the

probability of them being available at the same time; the union probability equation.

P (A ∩ B) = P (A) + P (B) − P (A)P (B|A)
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Assuming independent failure probabilities of overlay network components, the avail-

ability of a network mapping involving a primary path k and backup path b, with the

network components Nk and Nb, respectively, can be calculated as follows.

DM
kb = DP

k + DP
b − DP

k

∏
i∈(Nb−Nk)

Di (2.2)

Note that this equation does not require the primary path and backup path to be disjoint.

This equation is correct for multiple simultaneous connection mappings when using

dedicated path protection. When using shared backup path protection, the equation will

only be an optimistic bound of the actual availability. Assuming the network components

considered is the network links along the paths. For the equation to be correct for shared

backup path protection, the Di for links that are only used in the backup path b (Nb−Nk)

must include that link’s availability, as well as the probability that the shared backup

capacity is available. That is, the probability that a link failure has not affected another

service’s primary path requiring the same backup capacity resource.





Chapter 3

Background

This chapter describes the background for the CSBQANR problem, which is introduced

in Chapter 5, and the way different aspects relevant to the optimisation models pre-

sented later in this thesis are viewed. The basis of this problem is the same as in the

specialisation project Braaten and Holmen (2013) so several of the topics mentioned here

are the same, with the exception of the business motivation, the addition of availability

and backup provision. Section 3.1 has been rewritten, but still covers many of the same

concepts as earlier work, while sections 3.2 to 3.6 have undergone minor updates only.

Sections 3.7 and 3.8 are completely new.

3.1 Business Motivation

The CSBQANR problem as well as the optimisation models modelling it, are in part

based on the network infrastructure and business positions of some large telecommunica-

tion operators. Today, some telecommunication operators offer a small range of software

services to its customers, bought from and provided by large software companies with

cloud data centres. The services are hosted by external providers, while the telecommu-

cations companies act as aggregators (see Section 2.2.2), selling these services to cloud

consumers, without necessarily providing the network connectivity to the service.

Having a large customer base in both the private and business segment in addition to

controlling a large network infrastructure, telecommunications companies could benefit

15
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from an orientation towards the role as QoS aware cloud brokers, since existing network

assets could be developed with comparatively low investments enabling this (Svaet et al.,

2013). This could be achieved through cloud computing initiatives where the telecom-

munications companies add value to the existing cloud service offerings by acting as both

brokers and carriers, supplying their customers with services in the cloud, provided by

a third party, and offering certain connectivity guarantees through carrying the network

connectivity through their own network infrastructure in combination with establishing

SLAs with the providers.

In a long term perspective, the capabilities of traditional carriers could be exploited

by bundling SaaS and cloud connectivity with assured quality. The targeted market seg-

ment of many telecommunications companies are small and medium enterprises (SMEs)

who often have a need for customer relationship management systems (CRM), office

productivity tools and telepresence services. These telecommunications companies have

a business opportunity in the convenience the SMEs will experience by buying these ser-

vices bundled with network connectivity from one broker instead of having to interact

with many different providers with different SLAs. This would ensure cost-efficiency at

the same time as relieving the customer of managing SLAs etc. The telecommunications

companies could ensure end-to-end service delivery, which is seen as important for the

SMEs. (Svaet et al., 2013)

3.2 The Role as both Broker and Carrier

According to Svaet et al. (2013), the next generation of brokers will be the QoS-aware

broker with cloud connectivity that takes requirements from the customers. Such a

joint role faces a two part problem. The assignment problem, where services are to be

allocated to providers that can support the demand from customers, and the routing

problem involving connecting the customers to the services through the network in a way

that meets QoS demands. Both the providers and customers are external actors in this

thesis. Issues like energy usage and how services are deployed within the data centres

lie with the provider and are therefore outside the scope of this thesis. In addition the

assumption that every provider has sufficient capacity to deploy all services demanded

in this problem is made. The basis of this assumption is that the demand generated by
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the customers in the CSBQANR problem, for a single Broker-Carrier (BC), is presumed

to be small compared to the aggregated demand each of the providers experience. The

combined role as broker and carrier is illustrated in Figure 3.1.

Figure 3.1: The combined role as broker and carrier, modified figure from Svaet et al.
(2013)

The cloud BC, considered in this thesis, operates and owns its own network, spanning

a large geographical region. The geographical region largely determines the customer

base to be considered, as the BC wants to exploit its existing network infrastructure to

provide better than best effort connection to cloud services. The BC owned network

will often not include direct network connections to the provider’s public clouds, thus

the network considered will often be a combination of BC owned network and leased

network links. Given SLAs for any leased links added to the network, these leased links

can be treated as regular network links in the BC owned network.

3.3 QoS Requirements

In the selection of what QoS attributes to consider several aspects have been evaluated.

The most frequently discussed QoS attributes in relevant literature are bandwidth, la-

tency and availability. These are some of the most important QoS measurements as seen

from the customers, especially those using SaaS. The services provided by telecommuni-

cation companies are mostly CRM and office services, services relying on a reliable band-

width connection, and telepresence services relying on bandwidth, high availability and

a low degree of latency in order to function satisfactory. The customers’ understanding

of the importance of the offered QoS attributes is paramount for these network products
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to sell and to give the BC a differentiation factor. Bandwidth, latency and availability

are parameters understood and appreciated by most SaaS customers in SMEs.

3.4 Customers and Demand

The BC’s customers each require one or more services that must be obtained from a

provider by the BC. Customers may demand bundles of services, requiring all of its

services to be provided for the customer to choose the BC and generate revenue for

the BC. The reason for including service bundles is to increase the cost-efficiency for the

customers, and to provide a simplified managing situation for the customers by reducing

the number and complexity of their business relationships, mentioned in Section 3.1. A

customer may offer a demand for multiple different bundles of services, and can therefore

be split into a logical customer for each service bundle, where the decision to serve each

logical customer can be made independently. Single services, not bundled into service

bundles, are for all intents and purposes considered as logical single service bundles in

this problem.

Services provided in a typical cloud computing scenario can range from simple data

backup services with traffic mostly in one direction (from the customer to the cloud)

with low availability demands, to media streaming service with traffic in the opposite

direction, and telepresence services with strict requirements on latency, availability and

bandwidth in both directions. The services reviewed in the CSBQANR problem have

requirements to the amount of bandwidth to be reserved in each direction. They also

restrict the maximum amount of latency that can be tolerated to run the requested

services effectively and the maximum allowed downtime or minimum availability.

3.5 Time Aspect

The assignment problem this thesis concerns is a one-time assignment problem that

allocates services to providers to enable servicing a customer. This allocation is consid-

ered a constant or long time static allocation, changes in the demand or customer base

will render it necessary to re-solve the CSBQANR problem. The services considered
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imitate a subscription nature, where the customer service demand is relatively constant

and does not change significantly during the period of time the problem depicts. The

variation in demand of bandwidth and the need for dynamically changing the mapping

of services to providers is assumed to be sufficiently small to be disregarded within the

time period of the CSBQANR problem.

3.6 Prices

The most common pricing schemes in the cloud computing market are prices based

either on amount of time used (in hours, days or months) or amount of storage or

processing power used (see Section 2.2.3 for more on price models). The myriad of

different price structures have made modelling with consideration to these structures a

complicated matter which often has been circumvented in relevant litterature. In a long

term perspective it is possible to approximate prices to reflect the general behaviour of

the original price structure.

The time period the CSBQANR problem regards is sufficiently short to assume place-

ment prices at each provider to be constant. Additionally, the effect different kinds of

price models would have is sufficiently small in the time frame this problem regards, so

the prices used are all translated to the same flat rate price model without considering

the variations within the period. All prices used in the CSBQANR problem are therefore

flat rate prices that do not vary through the period the problem depicts.

3.7 Availability

Network availability is defined as the fraction of the time a connection is available to the

user (see Section 2.3.3). This availability is based on the combination of several network

components which each have an expected availability. In this thesis non-failing nodes

are assumed, as argued in Schupke and Rambach (2006). Different kinds of services have

different needs in regards to availability. Safety critical services and emergency services

are examples of services with high availability requirements, while services like word

processing and customer relationship systems have less strict requirements in regard to
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availability. If the availability along a single path does not fulfil a service’s requirement,

a backup path can be provided to be used for traffic routing in the cases when the

primary path is unavailable.

A BC with an SLA with a customer is required to fulfil the availability requirement

outlined in the SLA, but has no positive incentive to provide a higher availability to the

customer. Providing the customer with a higher level of availability than needed could

have an influence on the BCs profitability, as well as the ability to take on additional

customers. Therefore it is beneficial to the BC not to provide a higher level of availability

than the level of the customers’ SLA availability requirement. Note that the term

availability in this thesis refers to the theoretical expected availability level over a long

period of time. In the short term, the experienced up-time for a majority of the users

will be 100%, while a minority of the users will experience some downtime, in which case

the measured availability will be significantly lower. Because of these large variations in

availability in the short term, a strict SLA availability limit will be extremely costly to

uphold unless one only considers the long term.

3.8 Backup Capacity

As described in Section 2.3.3 there are different ways of providing backup to a connection

in a network. Dedicated protection allows no sharing of resources shared for backup,

and will on average reserve a lot more capacity than needed. The shared protection

scheme is a more economic scheme both in relation to capacity and demands regarding

the network. In this scheme several services can use the same arcs as part of their backup

path and the capacity reserved for backup on each arc does not have to cover the demand

of all of the services at once. Shared protection schemes usually only allow overlapping

backup paths for disjoint primary paths. Based on the assumption that the possibility

of several services’ disjoint primary paths going down at once is much lower than the

probability of one link failure, the amount of reserved capacity on the shared backup

arcs does not have to be as large as the sum of the demands of the services. The amount

of backup capacity has to be sufficient to support the demand of each service alone, so

a lower limit on the reserved capacity is the largest single backup demand amongst the

services using the arc as backup, referred to as single backup path bandwidth allocation
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(Cui et al., 2002). However allowing a large number of services to share the same arc for

backup will increase the possibility of multiple failures leading to more than one service

needing the backup arc at the same time (Zhang et al., 2003). In this case it might be

beneficial to reserve more capacity than the maximum demand of the services. Several

methods for deciding the amount of backup capacity to reserve has been presented in

literature, see eg. Cui et al. (2002).

In most cases the use of backup path protection schemes is accompanied by the re-

quirement of link-disjoint primary and backup paths. This requirement ensures that a

single link failure will not lead to two services requiring the same backup resource. In

a very dense network this is not such a severe restriction on the backup provision as

there are several possible paths between customer and provider nodes. For less dense

networks, this disjoint primary and backup paths requirement may be problematic. If

there are few possible link-disjoint paths between customer and provider nodes, the

disjoint requirement can restrict the BC to only serve very few or no customers at all

unless most primary paths have sufficient availability levels on their own and backup is

not needed. Since the problem described in this thesis has the objective to use the BC

owned network as a main rule and BCs may not have a large, dense networks for cloud

use, some alternatives to the disjoint requirement will be used in solving the CSBQANR

problem. There will in every case be some restrictions in regards to overlap between

primary and backup paths, but overlap will be allowed in some cases as long as it does

not lead to too low availability levels.
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Related Work

This chapter will present some work in relation to operations research done on connection-

provisioning, backup network provisioning, backup path allocation and backup band-

width allocation, presenting both path-flow and link-flow models. Related work con-

cerning network virtualisation, embedding problems, service deployment and resource

optimising in a cloud computing setting is presented in Braaten and Holmen (2013).

In this chapter the term article always refers to the work being reviewed, and not this

thesis.

The CSBQANR problem and this thesis is based on the specialisation project report

Braaten and Holmen (2013). The report introduces important concepts and ideas rele-

vant to the cloud computing, virtualisation and QoS areas, and presents a problem for

cloud service allocation and connectivity challenges met by a joined broker and carrier

role, considering two intrinsically different QoS requirements (bandwidth and latency).

The problem presented in the report is similar to the CSBQANR problem presented

in Chapter 5, apart from some noticeable differences. The project’s problem includes

the ability to lease capacity on specified links owned by other operators than the BC

owning the main network. The resulting model is a link-flow model (LFM) in which

multi-pathing and reserving different up- and down- paths is allowed. Excluding these

aspects, this model is the starting point of the LFM presented in this thesis (Section

6.2). The solving of the problem in Braaten and Holmen (2013) is done by a Mosel im-

plementation, which is tested with different problem instances. The project report finds

that multi-pathing, combined with a maximum allowed latency, complicates the solving

23
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of real world sized problem instances when using a generic MIP solver. Some future

extensions are presented, among them adding more relevant QoS attributes, relaxing

parts of the problem, developing some pre-solving methods and providing more complex

solution methods to be able to solve real world problem instances of the problem within

a reasonable amount of time. These extensions have been attempted in this thesis.

Zhang et al. (2003) present a connection-provisioning framework to satisfy customers’

availability requirements using appropriate protection schemes. This article considers

wavelength-division multiplexing (WDM) mesh networks, but the methods proposed are

still applicable for other network topologies as in this thesis. The network resource usage

for services in the network is to be optimised for one-path-satisfiable connections, whose

availability requirements can be satisfied without using backup paths, and protection-

sensitive connections. For the one-path-satisfiable connections a linear program is pre-

sented where non-linear availability equations are linearised into a sum of costs for each

link defined as the negative logarithm of the link’s availability. This program will provide

the most-reliable primary paths. For the protection-sensitive paths dedicated protection

is used as an initial study. A mathematical formulation is presented, but the availability

requirements are in this case not possible to linearise. To resolve this issue some approx-

imation approaches are presented. The first is simply to assume satisfactory availability

levels whenever a backup path is provided for a connection. The protection scheme may

in most cases significantly improve a connection’s availability and it is assumed that this

approximation will hold for most of the connections used. Another approximation is to

maximise the availabilities of the primary paths and at the same time minimise the total

number of links used for backup. The testing of the different schemes gave good results

where most of the connections’ availability levels are fulfilled; the best results were given

by a combination of the two approximations, where the unsatisfied connections from the

linear program using the first approximation were satisfied using the latter approxima-

tion. However, an issue with these schemes is the over-provisioning of availability as

none of the proposed solutions will consider the availability of the backup paths directly

to avoid reserving paths with too good availability values. The proposed path and map-

ping models (sections 6.3 and 6.4) in this thesis will take this into account and provide

a solution where excess availability is avoided. The LFM presented in Section 6.2 uses a
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similar assumption as the first availability approximation presented in this article, and

also performs linearisation of single path availability by using logarithms.

Guo et al. (2011) propose two shared backup network provisioning schemes for virtual

network embedding; shared on-demand approach and shared pre-allocation approach.

They argue that to enable a reliable infrastructure, effective backup mechanisms must be

provided to protect against network failures and by using a shared backup bandwidth

approach, the required backup bandwidth can be reduced to free capacity to enable

the providing of more customers. Two linear program formulations are presented based

on a link embedding procedure. A set of possible bypass paths is pre-computed for

each link used in a primary path. The shared on-demand approach tries to minimise

the total amount of resource reserved for primary and backup flows, while limiting the

total bandwidth reservation on each link, and ensuring that the primary flow can sup-

port the demands and that restoration can be achieved for every primary flow. The

shared pre-allocation approach allocate backup bandwidth in advance for each link so

that the allocated bandwidth should be able to protect the maximum allowed primary

flows on each link. The objective maximises the total protected bandwidth of the net-

work and the program further ensures that all bandwidth allocated for primary flows

should be fully protected by restoration flows over bypass paths and that every network

failure can be supported by the overall allocation. The two approaches are tested in a

discrete-event simulator against two corresponding approaches using dedicated backup

instead of shared. The sharing approaches provide the best protection per revenue and

have different advantages and disadvantages. The shared on-demand needs to be im-

plemented during each VN embedding process, while this is done once with the shared

pre-allocation. However, the pre-allocation approach has to always maintain the backup

bandwidth regardless of VN requests and may therefore not be as effective at low VN

request loads.

Cui et al. (2002) address the issue of backup path allocation in an overlay network

when a failure in the physical substrate network could lead to multiple failures in the

overlay network. In this case link-disjoint primary and backup paths in the overlay

network is not sufficient to ensure that one link failure will not lead to failure in both

the primary and backup paths. A correlated overlay link failure probability model is
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presented and the joint failure probability of two links being affected by one failure

is used further in a two part integer programming problem where the primary path is

found by a shortest path algorithm and the backup path is found by minimising the joint

failure probability given the primary path. Several approaches to determine the amount

of bandwidth to reserve for backup is presented. Full backup path bandwidth allocation

and single backup path bandwidth allocation are two of them where respectively the

aggregated bandwidth demand of all connections is allocated and the maximum of the

bandwidth demand is allocated on each link. Extensive simulations are conducted to

test, and the results show that in terms of robustness the approach is near optimal and

up to 30 % better than ignoring link failure probabilities. The models presented in this

thesis regard a joint failure probability as well, though it is defined for paths and not for

links as in this article. Instead of basing them on the probability of the two links failing

as a result of a physical link failing as presented here, the models in this thesis base the

failure values on the probability of the two paths failing simultaneously, regardless of the

reason. It can however be made to include the meaning presented in this article without

loss of generality. A variant of the single backup path bandwidth allocation is also used

in all of the models presented in this thesis, however may be modified in some cases and

extended to allocate more bandwidth with the increase of number of connections using

the backup link.

Józsa and Orincsay (2001) regard the off-line global path optimisation in telecommuni-

cation networks where backup paths use shared bandwidth reservation and present three

algorithms that can solve the problem efficiently. They argue that resource reservation

can be reduced significantly without reliability degradation by using shared protection

compared to the dedicated protection scheme. The problem is formally presented sim-

ply by reserving capacity along the primary paths and minimising the sum of required

backup bandwidth reservation on each edge. The required backup reservation on an

edge is equal to the maximum bandwidth required for backup on that link for any single

link failure, referred to as single backup path bandwidth allocation by Cui et al. (2002).

To solve the problem Dijkstra’s shortest path algorithm is used to find the primary

paths; the edges in the primary paths are then removed from the network to achieve

disjoint backup paths when Dijkstra’s is run again to find backup paths. First of the

three algorithms a post-processing method is derived, which has a complete network
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configuration as its starting-point, searches for the maximum required backup reserva-

tion of each column, and tries to re-route without using the corresponding failure edge

in the primary path or backup reservation edge in the backup paths. The aim is to

decrease the sum of reserved backup capacity. The next method is an adaptive method

that uses an adaptive weight function to guide the routing of both primary and backup

paths to achieve low reservations on both the primary and backup paths. The last

method is an iterative method using the same weighted function used for backup paths

as in the previous method to avoid the links with relatively high reservation values. The

three algorithms are investigated through empirical testing and the results show that all

algorithms can considerably extend the network throughput. The adaptive method is

recommended as the best to use as it improves the network performance nearly to the

highest degree while its running time is at a low level. As mentioned, a variant of the

single backup bandwidth allocation used in this article is adopted in the models pre-

sented in sections 6.3 and 6.4. The algorithms proposed in this article are implemented

using shared protection, but are not specialised to only function with this protection

scheme; similarly, the work presented in this thesis can be used for both dedicated and

shared backup reservation. The network routing in this article uses a procedure based

on Dijkstra’s Shortest Path Search algorithm, performing the routing as a shortest path

problem, where the sole concern is to minimise bandwidth usage. In this thesis, two of

the column generation heuristics proposed, finds paths using a shortest path problem

with resource constraints, thus allowing the inclusion of additional connectivity require-

ments as limited path resources in addition to minimising costs from bandwidth usage.

In addition, the column generation heuristics guide the paths generated by adjusting

costs associated with using each link according to existing network flow, similarly to the

adaptive weight method proposed by this article, although how the adaptive weights

or costs are obtained differs. While this article attempts to find solutions guaranteeing

continued network flow for any single link failure, this thesis attempts to offer solutions

offering an expected availability of all network connections not limited to single link

failures.

Schupke and Rambach (2006) present a basic link-flow model to address the gener-

alised dedicated path protection problem with one or several disjoint paths. The model

is only developed for one connection for simplicity; it is argued that extending it further



Chapter 4: Related Work 28

is trivial. In their availability consideration both node and link availability values are

included though it is argued that one often can assume non-failing nodes. A subsequent

consideration of availability is derived based on logarithms and a path-adding heuris-

tic is presented to guarantee availability in design. However this approach can lead to

sub-optimality or even fail, so an integrated consideration of availability is done. A

non-linear availability equation is found based on an upper bound on the availability by

summing up the unavailability values of the network components. As these values are

sufficiently close to zero, the authors argue that this approximation holds. To linearise,

new variables are introduced combining the edges in the network pairwise and assuming

non-failing nodes. This increases the number of variables considerably and such the

method is best suited for solving of small problem instances. Case studies show that

the upper bound used in this method is a very accurate approximation to the actual

availability. As in the latter approach of this article, the problem presented in this thesis

assumes non-failing network nodes and focuses on the link failures. The use of logarithms

on the availabilities combined with some pre-processing of the input data to the model

presented in Section 6.3 provides a model with a different availability measure than the

heuristic presented in this article. To provide an availability level on the resulting rout-

ing alternatives of the model in Section 6.3 close to the requirements the approximation

of summing up unavailabilities is avoided as it may lead to over-provisioning in regards

to availability.



Chapter 5

Problem Description

This chapter defines the Cloud Service Brokering with Quality Aware Network Routing

optimisation problem derived from the scenario of a combined broker and carrier (BC)

that is faced with a portfolio of customers (i.e. cloud consumers) who each demand

a unique bundle of services. Most of its content is the same as in the specialisation

project Braaten and Holmen (2013) with the exception of added availability requirement

demands, the possibility of providing backup paths and the removal of leasing possibility.

The first three paragraphs are approximately the same as in the project report, the rest

are rewritten or new paragraphs.

Each unique service bundle consists of a set of unique services, each with their own

requirements for connectivity performance and potential placements, in essence defining

requirements for a virtual link connecting the service and the customer. The BC has

to choose which customers to serve and to serve a customer its whole bundle must be

provided. For a service bundle to be provided, each service must be placed at an eligible

provider and at the same time network connectivity between the customer location

and provider location, fulfilling all performance requirements, must be provided. The

decision to serve a bundle is independent from any other bundles, thus a real world

customer demanding a set different bundles can be split up into one logical customer for

each bundle. Therefore, each bundle can be considered as unique customers.

Each customer that is served generates a revenue that is modelled as a one-time

payment to the BC. This payment can be regarded as a price paid per time period the

29



Chapter 5: Problem Description 30

CSBQANR problem depicts. In addition there is specified a unique cost for placing a

service at each eligible provider covering all costs related to placing the service at that

provider, which may include buying the service from the provider, leasing of any VMs

necessary etc. These specified costs are also considered to be one-time costs for the time

period the problem considers.

The network is a general collection of nodes connected by directed arcs that represents

the underlying substrate network. Each node represents a network element that can

route network traffic, and the arcs represent links between the network elements. In

this thesis, when referring to the whole connection between two nodes, i.e. both of the

opposite arcs connecting two nodes, the term link is used. Customers, providers and

internal nodes are all represented by their own network element where network traffic

can flow through. Customer and provider nodes double as traffic flow sources and sinks

for network connections of services they consume or provide. Unless a node is acting

as a source or a sink for a specific connection, it is regarded as an internal transit node

for that connection and total traffic flow entering the node must be equal to the total

flow exiting for that connection. There is no upper limit on the amount of traffic that

can flow through a node, as the maximum flow generated in the CSBQANR problem

due to bandwidth flow constraints on links is assumed to be lower than the nodes’

bandwidth capacity. Since the arcs are directed, bandwidth capacity can be unique for

each direction between two nodes and the flow in one direction is independent of the

flow in the other direction, thus the network can be considered as a full-duplex network.

The network arcs, representing substrate links, are associated with three attributes;

the amount of available bandwidth, their expected latency values and their expected

availability. Depending on the specifications of the physical network the input data is

based on, the bandwidth requirement can be regarded as having different degrees of

hard or soft QoS guarantees. In the extreme hard QoS case the amount of bandwidth

reserved for a service must be equal to the peak load bandwidth requirement of that

service; this could lead to a lot of overhead and unused capacity. In a soft QoS case the

reserved bandwidth represents the average utilisation of the link and the variations in

used bandwidth in different services on the same link could be exploited. Substrate links

can be either be owned by the BC itself or they can be leased from another network
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operator. For modelling purposes the leasable link can be translated into network arcs,

and dummy nodes as needed, using link performance attributes according to the SLA

for the leasing agreement as basis for the arcs’ performance attributes. This will not

impact the modelling of the problem; it can be represented fully in the input data.

For each service a primary path through the network has to be chosen by reserving

capacity on the selected arcs, in essence selecting the parts of the substrate network to

be used for the routing. Each service can in addition to this primary path also require

a backup path; this is determined by a cost-availability trade-off evaluation. The traffic

routing to and from the provider is thought to use the same link in each direction, so if

arc (i, j) is used to route traffic from a customer to a provider for a service, the arc (j, i)

is used from the provider to the customer. This is the case for both the primary paths

and the backup paths. Using the same path for routing in both directions through the

network reflects the practice in most real life systems using centrally controlled network

routing (Gonzalez, 2014). There are costs for reserving capacity on arcs used both for

primary traffic and backup, in the form of a cost per unit of reserved capacity on each

arc.

Each service has certain demands to the amount of bandwidth needed to support

the traffic of the service, a maximum latency and minimum expected availability it

can tolerate. The CSBQANR problem has to ensure that these limitations are fulfilled

through the route chosen for each service. The bandwidth requirement for a service

should be met by providing bandwidth flows between the end points of the connection

between the service’s customer and the selected provider, where the flows are equal to

the service’s required bandwidth in each direction. The latency requirement is met by

ensuring that the chosen paths through the set of arcs chosen for a service has a total

round trip latency lower than the maximum latency tolerance for that service. Only

the latency of the network connection is considered, any latency in the delivery of the

service internal to the provider is considered to either be subtracted from the service’s

latency requirement or included in the latency of the network link to the provider.

The availability demand of the service is upheld by choosing a primary path that

has an equal to or higher expected availability than the availability requirement or
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alternatively the combination of a primary and a backup path that together satisfy the

availability demand of that service. Even though the network can be viewed as a full-

duplex network, the availability of a link is the same regardless of the direction of the

arc. A failure on a substrate link will for the majority of cases lead to a failure of both

directed arcs between the two affected nodes in the modelled problem. As a result, the

availability of a single network link between two nodes is only to be accounted for once,

even though both directed arcs for that link are used in a connection path.

In cases where the availability demand of a service is not upheld by the primary path

alone, a backup path is to be chosen for the service. This is done by either dedicated pro-

tection, some degree of shared protection or by single backup path bandwidth allocation

(see Section 3.8). Accompanying these protection schemes are often some restrictions

on the amount of overlapping between primary and backup paths of one service and

also between different services’ primary and backup paths. This is further discussed in

Section 3.8 and will be handled in the different models and solution methods.

The objective of the CSBQANR problem is to maximise profits of the BC by max-

imising the revenue provided from serving the chosen customers, minimising the cost of

routing the traffic through the network, reserving capacity for backup and placing the

services at the providers.



Chapter 6

Optimisation Models

This chapter introduces three mixed integer programming (MIP) models for solving the

CSBQANR problem defined in Chapter 5. In Section 6.1 some modelling regards are

discussed, in Section 6.2 a link-flow model is introduced, a path-flow model follows in

Section 6.3 and a mapping model is presented in Section 6.4. Section 6.5 finishes the

chapter with a presentation of three column generation algorithms used to applicable to

the MIP model from Section 6.4.

6.1 Modelling Regards

To design paths in network design and provisioning one can rely on different approaches.

When modelled as a mathematical optimisation problem it can be based on link-flow

models (LFMs) or path-flow models (PFMs) (Schupke, 2005). An advantage with the

LFMs is their simplicity and their readability which makes them easy to understand to a

novice reader. Consequently they are simpler to construct when the problem is not fully

explored by the modeller. The PFMs require some pre-computation to provide the paths

needed and such can be more complex to model. However, in many cases a PFM will

be easier to solve than a LFM, and such is a natural extension to a LFM when dealing

with large or complex problem instances. (Schupke and Rambach, 2006) In this chapter

both a LFM and a PFM will be presented, where the PFM is an extended and more

accurate formulation, compared to the LFM, in terms of the availability requirement.

33
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Additionally, the PFM is developed further and a mapping model is presented. This for-

mulation requires even more pre-computation, but could also prove to solve the problem

even easier, enabling the solution of larger and more complex problem instances.

Every model description (sections 6.2, 6.3 and 6.4) is written so the reader could read

each one individually, for this reason some of the descriptions for equivalent parameters,

sets or constraints are reiterated in each model description.

6.2 The Link-Flow Model

This section introduces the first MIP model for the CSBQANR problem defined in

Chapter 5, an LFM. The choice of modelling a link-flow model and doing so first is

based on the fact that it is easily understood and easier to model when one is new to

the problem, as discussed in Section 6.1. However this modelling style provides some

challenges that restricts the possibilities of for example choice of approximation methods,

this will be handled further in the following sections (Section 6.3 and Section 6.4).

First, the LFM’s indices, sets, parameters and variables are introduced, and can be

found in tables 6.1, 6.2, 6.3 and 6.4 respectively. Next, the objective function is pre-

sented, followed by the model constraints, finished by the logical constraints.

Table 6.1: Summary of the indices to the link-flow model

Index Definition

c Customer

i, j Network node

p Provider

s Service
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Table 6.2: Summary of the sets to the link-flow model

Set Definition

A Set of all arcs (i, j)

C Set of all customers c

Ic Set of internal nodes from the perspective of customer c

Qj Set of every node reachable from node j

O Set with every combination of different services (s, t) where s < t

Ps Set of all providers who can host service s

Sc Set of services demanded by customer c

Wj Set of every node that can reach node j

The nodes defining the arcs in A are numbered increasingly, so when a reference to links

is needed, a link being the undirected link between two nodes or both arcs connecting

the nodes, this is defined as ∀(i, j) ∈ A |i < j. Similarly, the services are ordered, so

when requiring all pairs of different services O, the set of all combinations of services

(s, t) where s < t is used.

Table 6.3: Summary of the parameters to the link-flow model

Parameter Definition

BU
s , BD

s Bandwidth requirement for service s in each direction

(U: up, customer to provider, D: down, provider to customer)

DL
ij (Expected) availability for link between i and j, where DL

ij = DL
ji

Eij Price per capacity unit used on arc between nodes i and j

Gs Maximum round trip latency allowed by service s

Hsp Cost of placing service s at provider p

Iij The amount of capacity available for reservation on arc (i,j)

Jp Node for provider p

Rc Revenue from serving customer c

Tij (Expected) latency on arc from node i to node j

Vc Node for customer c

Ys Required minimum availability level for service s

β Factor regulating the amount of extra capacity that must be reserved

for an increased number of services sharing a backup arc
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Table 6.4: Summary of the decision variables of the link-flow model

Variable Definition

bijs Binary variables that indicate if service s uses arc (i, j) as a part of the

backup path from customer node to selected provider node (and (j, i)

is used for the backup path in the opposite direction). The variables

are not defined for arcs going into the customer node corresponding to

service s

�st Binary variable indicating if the chosen primary paths of services s and

t overlap anywhere

rsp Binary variable indicating if a backup path is needed for service s to

provider p

uijs Binary variables that indicate if service s uses arc (i, j) as part of its

primary path from customer node to selected provider node (and (j, i)

is used for the primary path in the opposite direction). The variables

are not defined for arcs going into the customer node corresponding to

service s

xsp Binary variable that indicates if service s is placed at provider p

yc Binary variable that indicates if customer c is being served

λij Continuous variable indicating how much capacity to be reserved on

arc (i, j) for backup use

The problem is defined as a maximisation problem, and the objective function therefore

models the BCs profits consisting of the revenue from the customers being served and

the costs associated with placement and connection routing for the customers’ services.

This objective function is defined as follows:

max z =
∑
c∈C

Rcyc

−
∑
c∈C

∑
s∈Sc

∑
p∈Ps

Hspxsp

−
∑

(i,j)∈A

Eij(λij +
∑
c∈C

∑
s∈Sc

(BU
s uijs + BD

s ujis))

(6.1)

The first term covers the revenue generated by serving the chosen customers; the second

term covers the costs associated with the placement of the services of these customers
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at the chosen providers. The remaining term covers costs associated with reservation of

network capacity for primary routing as well as for backup use.

The requirement that the whole bundle of services of a customer must be served for

a customer to generate revenue is assured by the following set of constraints:

yc −
∑

p∈Ps

xsp = 0, ∀c ∈ C , ∀s ∈ Sc (6.2)

The network resource allocation to services must not exceed the capacity of the under-

lying network. That is, the sum of capacity reserved on an arc by all services, for their

routing both from and to their provider placement, and any capacity reserved for backup

must not exceed the available capacity on that arc.

∑
c∈C

∑
s∈Sc

(BU
s uijs + BD

s ujis) + λij ≤ Iij , ∀(i, j) ∈ A (6.3)

Because a path uses the same links in each direction, the uijs variable is only equal to

one for arcs used by the primary path in its up direction (routing from customer to

provider). For this reason, uijs indicates if arc (i,j) is used the up direction, while ujis

indicates if arc (i,j) is used in the down direction (routing from provider to customer).

For all nodes not acting as a sink or source, we must enforce flow preservation for

the bandwidth, meaning that if a path of a service enters such a node, it must also exit

that node. For the internal nodes (see Chapter 5) without the possibility to act as a sink

or a source, this is covered by the following constraints, for both primary and backup

bandwidth reservation. The customer and provider nodes, with the possibility of acting

as sources and sinks, are covered later by the constraints (6.6) to (6.9).

∑
i∈Wj

uijs −
∑

i∈Qj

ujis = 0, ∀c ∈ C , ∀s ∈ Sc, ∀j ∈ Ic (6.4)

∑
i∈Wj

bijs −
∑

i∈Qj

bjis = 0, ∀c ∈ C , ∀s ∈ Sc, ∀j ∈ Ic (6.5)

To ensure that the connectivity requirements are met for a service, the following con-

straints makes sure that a path, starting from the customer’s node, is created for all

services of customers that are being served. The reservation variables (uijs) are not
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defined for the arcs into the customer node, thus returning the path directly into the

customer node is avoided, and does therefore not have to be handled by additional

constraints.
∑

j∈QVc

uVcjs − yc = 0, ∀c ∈ C , ∀s ∈ Sc (6.6)

An equivalent set of constraints makes sure that a backup path, starting from the cus-

tomer’s node, is created for any services requiring a backup path. Similarly, the backup

path returning directly to the customer node is avoided by not defining the bijs-variables

for the arcs going into the customer node.

∑
j∈QVc

bVcjs −
∑

p∈Ps

rsp = 0, ∀c ∈ C , ∀s ∈ Sc (6.7)

The following constraints make sure that the equivalent requirements are met for provider

nodes providing the service; there has to be a chosen arc going into the chosen provider

node. However, the reservation variables are defined both into and out from the provider

node, as opposed to customer nodes. This allows the provider node to act as a sink for

a service if selected as that service’s provider, and to act as an internal transit node

otherwise. This added possibility is accounted for by the second term in the constraint.

This is done for both the primary and backup allocation.

∑
i∈WJp

uiJps −
∑

j∈QJp

uJpjs − xsp = 0, ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps (6.8)

∑
i∈WJp

biJps −
∑

j∈QJp

bJpjs − rsp = 0, ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps (6.9)

The latency requirement for each service is ensured by the following constraints. The

round trip latency, for either the primary path or the backup path, cannot be greater

than the latency requirement from the customer for each service. To account for the

latency in both the up and down direction, Tij has to be added both if arc (i, j) is used

in the up direction (uijs = 1) and if the same arc is used in the down direction (ujis =

1). The same requirement must also be met for the backup path.

∑
(i,j)∈A

Tij(uijs + ujis) ≤ Gs, ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps (6.10)
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∑
(i,j)∈A

Tij(bijs + bjis) ≤ Gs, ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps (6.11)

For a single path through a network, the associated availability is the product of all the

links’ availabilities along that path, which gives a nonlinear expression unfit for use in a

linear optimisation model. There is therefore a need for linearisation of the availability

expression. By using logarithms one can obtain a linear expression for one single path’s

availability. The larger issue arises when, as in this thesis, one can have both a primary

and a backup path which together should provide the necessary availability level. The

expression for the availability of such a combination will be the sum of the products of

the availabilities of the links in each path minus their joint availability and therefore

using logarithms will not solve the linearisation problem. To avoid this problem it is

in this model assumed that if a link-disjoint primary and backup path pair is used,

the availability requirement will be met, and an exact constraint for the availability

requirement will not be needed, as seen in Zhang et al. (2003) and explained in Chapter

4. However, if a backup path is not allocated for a service, this constraint ensures that

the primary path alone has an expected availability sufficient for the service. The first

term makes the constraint redundant if a backup path is introduced for the service.

Every link is only accounted for once in each constraint when using the uijs variables,

as these variables only indicate the up direction of the path.

∑
p∈Ps

MA
s rsp +

∑
(i,j)∈A

ln(DL
ij) uijs − ln Ys ≥ 0, ∀c ∈ C , ∀s ∈ Sc (6.12)

The expected availability for every link as well as the availability requirement for each

service will always be less than or equal to 1, thus the logarithms of these values will

always be non-positive. MA
s can then be defined as follows.

MA
s = ln Ys −

∑
(i,j)∈A

ln DL
ij , ∀c ∈ C , ∀s ∈ Sc

The following constraints require that the total bandwidth reserved for backup on an arc

is at least as much as the largest of the individual bandwidth demands of the services that

use the arc for backup in either the up or down direction, thus ensuring that the backup

bandwidth capacity reserved will be able to support any of the backup requirements

alone. This is referred to as the single backup bandwidth allocation in Chapter 4 and
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seen in (Cui et al., 2002) and Józsa and Orincsay (2001).

BU
s bijs + BD

s bjis − λij ≤ 0, ∀c ∈ C , ∀s ∈ Sc, ∀(i, j) ∈ A (6.13)

To regulate the degree of sharing or dedication of backup capacity on the arcs in the

network, the following constraints are used. A β value of zero will not restrict the

number of services sharing a backup link at all, and a β equal to one is equivalent to

using dedicated protection. If a backup link is highly shared it might be beneficial to

force the reservation of more than the single backup path bandwidth allocation. In such

cases β can be set to an appropriate value between zero and one, and this will force

the reserved capacity to be at least a factor β of the sum of the bandwidth demands of

the services using this backup arc. If there are many services using this arc, this will

ensure that the arc can support more than one service in case of multiple failures. This

method of using a factor regulating the amount of backup capacity to reserve for multiple

overlapping backup paths has, to the authors knowledge, not been done previously, and

the effect of it will be discussed in Chapter 7.

∑
c∈C

∑
s∈Sc

β(BU
s bijs + BD

s bjis) − λij ≤ 0, ∀(i, j) ∈ A (6.14)

In the LFM, it is assumed that having link-disjoint primary and backup paths for a

service will fulfil any requirements this service has to availability, if a primary path

alone is not sufficient. To ensure that the primary and backup paths allocated to a

service are link-disjoint, the following constraints are used.

bijs + uijs ≤ 1, ∀c ∈ C , ∀s ∈ Sc, ∀(i, j) ∈ A (6.15)

In addition, the following set of constraints is needed to make sure that the backup paths

created have the same destination as their service’s primary path.

rsp − xsp ≤ 0, ∀c ∈ C , ∀s ∈ Sc∀p ∈ Ps (6.16)

The shared protection scheme requirement of only allowing backup paths of two services

to overlap if their primary paths are disjoint, and vice versa, is incorporated in to this

model. This will ensure that a link failure affecting two services’ primary paths will not
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lead to both their backup paths requiring the same backup resource. The following con-

straints regard overlap between primary and backup paths of services pairwise, ensuring

that the primary and backup paths of two services cannot both be overlapping. To force

the variable indicating overlapping primary paths for a combination of two services to 1

if the two services have primary paths with one or several overlapping links, the follow-

ing constraints are used. As the constraints are defined for each link, the arc reservation

variable, uijs, is included for both directions.

uijs + ujis + uijt + ujit − �st ≤ 1, ∀(i, j) ∈ A |i < j, ∀(s, t) ∈ O (6.17)

The following set of constraint ensures that backup paths of two services do not overlap

if their primary paths are overlapping. As the above constraints, these constraints are

only defined once for each link, and the bijs variables are therefore included for both

directions.

bijs + bjis + bijt + bjit + �st ≤ 2, ∀(i, j) ∈ A |i < j, ∀(s, t) ∈ O (6.18)

The logical constraints in the link-flow model define yc, xsp, rsp, uijs, bijs and �st as

binary variables. The uijs and bijs variables are not defined for arcs going into the

customer node corresponding to the customer demanding service s. The variables λij

are defined as non-negative continuous variable.

yc ∈ {0, 1}, ∀c ∈ C

xsp ∈ {0, 1}, ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps

rsp ∈ {0, 1}, ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps

uijs ∈ {0, 1}, ∀c ∈ C , ∀s ∈ Sc, ∀(i, j) ∈ A | j �= Vc

bijs ∈ {0, 1}, ∀c ∈ C , ∀s ∈ Sc, ∀(i, j) ∈ A | j �= Vc

�st ∈ {0, 1}, ∀(s, t) ∈ O

λij ≥ 0, ∀(i, j) ∈ A

(6.19)
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6.3 The Path-Flow Model

The second MIP model for the CSBQANR problem presented is a PFM, where a pri-

mary path and possibly a backup path are allocated to each service being served. Where

the LFM had no possibility of modelling the joint availability of primary and backup

paths, the PFM provides the possibility to approximate these values. A PFM also has

the potential to be able to solve larger instances within a reasonable amount of time

compared to an equivalent LFM. However, the enhanced modelling accuracy incorpo-

rated in this model could leave the PFM slower than the LFM with similar input data.

The downside of a potential increase in solution time must be considered against the

upside of an increase in quality of the solutions derived from the PFM.

The links used in each path in the following model are the same from customer to

provider and in the other direction, that is, a service is routed through the same but

reversed path up and down through the network. The input to this model are sets of

latency valid paths specific for each service provider pair with corresponding values for

each path’s total costs, availability, and bandwidth capacity usage on each arc. This

input is provided by a pre-generation algorithm presented in Section 6.3.1.

This section opens with a presentation of the PFM’s indices (Table 6.5), sets (Table

6.6), parameters (Table 6.7) and variables (Table 6.8). Following this, the the objective

function and constraints are presented, finishing with the logical constraints. Lastly, a

path pre-generation algorithm is presented in Section 6.3.1.

Table 6.5: Summary of the indices to the Path-Flow Model

Index Definition

c Customer

i, j Network node

k, b Path

p Provider

s, t Service
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Table 6.6: Summary of the sets to the Path-Flow Model

Set Definition

A Set of all arcs (i, j)

C Set of all customers c

K Set of all paths k

K SP
sp Set of all paths k where service s is placed at provider p

Lij Set of all paths k using the arc (i, j)

O Set with every combination of different services (s, t) where s < t

Ps Set of all providers p who can host service s

Sc Set of services s demanded by customer c

The nodes defining the arcs in A are numbered increasingly, so when a reference to links

is needed, a link being the undirected link between two nodes or both arcs connecting

the nodes, this is defined as ∀(i, j) ∈ A |i < j. Because paths in this model use the

same links in both directions, the set Lij is symmetric, i.e. Lij = Lji. Additionally,

the services are ordered, so when requiring all pairs of different services O, the set of all

combinations of services (s, t) where s < t is used.

Table 6.7: Summary of the parameters to the Path-Flow Model

Parameter Definition

DP
k Availability for path k

DC
kb Probability of both primary path k and backup path b being available

simultaneously

Eij The cost of reserving a unit of capacity for backup on arc (i, j)

EP
k The cost of using a path k as primary path

Iij The amount of capacity available for reservation on arc (i,j)

Rc Revenue from serving customer c

UP
ijk The amount of capacity used by path k on arc (i,j)

Ys Required minimum availability level for service s

β Factor regulating the amount of extra capacity that must be reserved

for an increased number of services sharing a backup arc
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Table 6.8: Summary of the variables to the Path-Flow Model

Variable Definition

fijs Binary variable indicating if there is a need for backup capacity reser-

vation on arc (i, j) for service s

�st Binary variable indicating if the chosen primary paths of services s and

t overlap anywhere

okb Binary variable indicating if the primary and backup path combination

(k, b) is chosen

qijs Positive continuous variable displaying the amount of capacity needed

to be reserved for backup on arc (i, j) for service s. Equals zero if fijs

is zero

uk Binary variable indicating if path k is chosen as a primary path

vk Binary variable indicating if path k is chosen as a backup path

xsp Binary variable indicating if service s is provided by provider p

yc Binary variable indicating if customer c is being served

λij Positive continuous variable displaying the amount of capacity reserved

on arc (i, j)

The problem is defined as a maximisation problem, and the objective function therefore

models the BCs profits. The first term of the objective function sums up the revenue

generated from the served customers, the second term subtracts the cost of using the

selected primary paths and the third term subtracts the cost of reserving capacity for

backup on each arc.

max z =
∑
c∈C

Rcyc −
∑

k∈K

EP
k uk −

∑
(i,j)∈A

Eijλij (6.20)

The requirement that the whole bundle of services of a customer must be served for the

customer to generate revenue is the same as in the LFM and is assured by the following

set of constraints:

yc −
∑

p∈Ps

xsp = 0, ∀c ∈ C , ∀s ∈ Sc (6.21)
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The following constraints ensure that a primary path, connecting a service’s customer

and provider, must be chosen for every served service.

xsp −
∑

k∈K SP
sp

uk = 0, ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps (6.22)

To ensure that the reserved capacity of an arc does not exceed the arc’s available capacity,

the following constraints are used. The sum of every chosen primary path’s required

bandwidth capacity on an arc plus the capacity reserved for backup paths must not

exceed the arc’s bandwidth capacity.

∑
k∈Lij

UP
ijkuk + λij ≤ Iij , ∀(i, j) ∈ A (6.23)

The issue with the non-linear availability equations is in this model solved by allowing

the path pre-generation to calculate the expected availability for each path and the

expected availability of every possible combination of primary and backup paths, i.e. the

probability that both the primary and backup paths are fault free at the same time, and

using these values in a linear expression. The linear expression is based on the probability

expression presented in Section 2.3.3: P (A ∩ B) = P (A) + P (B) − P (A)P (B|A) . The

following constraints ensure that the primary or the combination of a primary and

backup path chosen for a service provides an availability level that satisfies the customer’s

availability limit for each service. This set of constraints also force the reservation

of backup for those primary paths that does not by themselves have a satisfactory

availability level.

∑
p∈Ps

∑

k∈K SP
sp

DP
k (uk + vk) −

∑
p∈Ps

∑

k∈K SP
sp

∑

b∈K SP
sp

DC
kbokb − Ysyc ≥ 0,

∀c ∈ C , ∀s ∈ Sc

(6.24)

To ensure that the variable indicating that there is a backup reservation need on an arc

for a service equals 1 if there is reserved backup capacity for a service on that arc, the

following constraints are used.

qijs − MB
ijsfijs ≤ 0, ∀(i, j) ∈ A , ∀c ∈ C , ∀s ∈ Sc (6.25)

The maximum value for the continuous backup reservation variable is the greatest of the
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individual chosen path’s bandwidth capacity requirement on that arc. MB
ijs can then be

defined as follows.

MB
ijs ≥ UP

ijk, ∀(i, j) ∈ A , ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps, ∀k ∈ K SP
sp ∩ Lij

The amount of backup capacity needed to be reserved on an arc for a service is set

by the following constraints. If a service has primary and backup paths both using the

same arc, the maximum of zero and the difference between backup and primary capacity

demand is used, since in the case where the backup path takes over the primary flow,

any resources used by the primary path will be made available. This difference can only

be different when the primary and backup paths overlap if they use the arc for opposite

routing directions (customer to placement and placement to customer), as services can

specify different bandwidth flow requirements in each direction. As an example take

the case where a service has the demands 10 and 20 in its up and down directions.

Assume its primary path uses an arc (i, j) in its up direction and the backup path

uses the same arc in its down direction. The difference to be reserved for backup on

(i, j) will then be 10, since the primary path will require 10 and the backup path will

require 20. For the opposite arc (j, i) the routing directions will be reversed, and the

difference to be reserved for backup will be -10, and there will therefore be no need for

backup reservation. Without overlap between primary and backup paths, the amount of

bandwidth capacity required for backup is simply the capacity demanded by the chosen

backup path.

∑
p∈Ps

∑

k∈K SP
sp ∩Lij

UP
ijs(vk − uk) − qijs ≤ 0, ∀(i, j) ∈ A , ∀c ∈ C , ∀s ∈ Sc (6.26)

The following constraints set the amount of backup capacity to be reserved on an arc

to be at least as much as the maximum of the individual backup capacity requirements

of the services using the arc for backup, referred to as the single backup bandwidth

allocation in Chapter 4 and seen in (Cui et al., 2002) and Józsa and Orincsay (2001).

qijs − λij ≤ 0, ∀(i, j) ∈ A , ∀c ∈ C , ∀s ∈ Sc (6.27)

The effect of decreasing availability with the increase of the numbers of services sharing

backup capacity on a link (see Section 3.8) is in some part captured by the following
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constraints, which are equivalent to the Equation 6.14 in LFM. These are as in the

LFM used to regulate the degree of sharing or dedication of backup on the links in the

network. A β value of zero will not restrict the number of services sharing a backup

link at all, and a β equal to one is equivalent to using dedicated protection. If a backup

link is highly shared it might be beneficial to force the reservation of more than the

single backup path bandwidth allocation (see Section 3.8). In such cases β can be set

to an appropriate value between zero and one, and this will force the reserved capacity

to be at least a factor β of the sum of the bandwidth demands of the services using

this backup arc. If there are many services using this arc, this will ensure that the arc

can support more than one service in case of multiple failures. This method of using

a factor regulating the amount of backup capacity to reserve for multiple overlapping

backup paths has, to the authors knowledge, not been done previously, and the effect of

it will be discussed in Chapter 7.

β
∑
c∈C

∑
s∈Sc

qijs − λij ≤ 0, ∀(i, j) ∈ A (6.28)

To set the variable indicating whether or not a combination of paths are used as primary

and backup paths the following constraints are used. These constraints ensure that the

combination variable is set to 1 whenever two paths are chosen as backup and primary

paths for a service and to 0 otherwise.

uk + vb − okb ≤ 1, ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps, ∀k ∈ K SP
sp , ∀b ∈ K SP

sp (6.29)

The constraint set of Equation 6.24 uses the combined availability of a primary and

potential backup path to determine if the availability requirement is met, and handles

link overlap between the two paths. The assumption that link-disjoint primary and

backup paths will fulfil the availability requirement, used in the LFM, is not required in

the PFM, and the link-disjoint requirement to a service’s primary and backup path is

therefore removed.

The shared path protection requirement of only allowing backup paths of two services to

overlap if their primary paths are disjoint, and vice versa, is incorporated in to the PFM.

This will ensure that a link failure affecting two services’ primary paths will not lead to

both their backup paths requiring the same backup resource. The following constraints
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regard overlap between primary and backup paths of services pairwise, ensuring that

the primary and backup paths of two services cannot both be overlapping. To force the

variable indicating overlapping primary paths for a combination of two services to 1 if

the two services have primary paths with one or several overlapping links, the following

constraints are used. These constraints are link-based because of the fact that a link

failure leads to both arcs representing the physical link to go down.

∑
p∈Ps

∑

k∈K SP
sp ∩Lij

uk+
∑

p∈Ps

∑

k∈K SP
tp ∩Lij

uk−�st ≤ 1, ∀(i, j) ∈ A |i < j, ∀(s, t) ∈ O (6.30)

The overlap between primary paths is link-based, but since the backup bandwidth reser-

vation is separate for the two arcs constituting a link, and a backup path may not need

bandwidth capacity on both arcs when overlapping with its primary path, the backup

overlap constraints are arc-based.

fijs + fijt + �st ≤ 2, ∀(i, j) ∈ A , ∀(s, t) ∈ O (6.31)

The following constraints are logical constraints for the variables used in this model.

The variables yc, xsp, uk, vb, okb, �st and fijs are binary, qijs and λij are continuous

variables greater than or equal to 0.

yc ∈ {0, 1}, ∀c ∈ C

xsp ∈ {0, 1}, ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps

uk ∈ {0, 1}, ∀k ∈ K

vk ∈ {0, 1}, ∀k ∈ K

okb ∈ {0, 1}, ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps, ∀k ∈ K SP
sp , ∀b ∈ K SP

sp

�st ∈ {0, 1}, ∀(s, t) ∈ O

fijs ∈ {0, 1}, ∀(i, j) ∈ A , ∀c ∈ C , ∀s ∈ Sc

qijs ≥ 0, ∀(i, j) ∈ A , ∀c ∈ C , ∀s ∈ Sc

λij ≥ 0, ∀(i, j) ∈ A

(6.32)
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6.3.1 Path pre-generation

The PFM presented in this section assumes a set of paths with valid latency levels for

each pair of service and eligible providers for that service. These paths include both

the path from the customer node to the provider node, as well as the return path from

the provider node to the customer node, as they are restricted to follow the same links

in the network in both directions. Algorithm 1 is the pseudo code representation of

the algorithm described in this section. Some of the parameters and sets used in the

description of this pre-generation method are taken from the LFM (Section 6.2).

A complete set of these valid paths can be pre-generated by an algorithm performed for

each possible service provider pair (s, p). This proposed algorithm starts at the customer

node of service s and performs breadth first expansions along the links of the network.

The total latency is accumulated for each path by adding up the latency of both arcs of

the link used in the path expansion. The pre-generating algorithm will keep performing

expansions as long as there are unexpanded paths not ending in the destination provider

node Jp, having links (i, j) from its current end node i, with sufficient bandwidth capacity

Iij , where j is a not an already visited node, and the resulting latency from the expansion

does not exceed the latency requirement of service s, Gs. The output of this algorithm

is the set of all the created paths having the destination provider node Jp as it final

node, and forms the basis for the paths to add to the PFM.

Equation 2.1 is used to calculate the availability level of each generated path, DP
k .

Only link failures are considered, meaning that the two arcs of a link have the same

expected availability where both share the same availability state. As a result, the set

of network components used in the calculation is the set of network links, each link

represented by only one of its arcs. DC
kb, the probability of two paths k and b both being

available simultaneously, is pre-calculated as the third term of Equation 2.2, for every

pair of two paths connecting a customer and a provider for a service.

A path k’s cost EP
k includes all costs of bandwidth usage by the path as well as the

cost of placing a service s at the provider p at the path k’s destination, Hsp. The cost

from bandwidth usage is calculated by adding the arc bandwidth cost, Eij , multiplied
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by the bandwidth usage on that arc, UP
ijk, for all arcs in both directions of path k.

The bandwidth usage of a path k on an arc (i, j), UP
ijk, is set to the service’s bandwidth

requirements BU
s and BD

s for any arc used in the from customer to provider and provider

to customer, respectively. In addition, the model uses a set of paths for each arc (i, j)

containing all paths using that arc, Lij = {k ∈ K | UP
ijk > 0}.

Algorithm 1 Path Generation
1: procedure PathGeneration(s, p) � Service s and provider p
2: setup:
3: a ← VcustomerFor(s) � Start node for up direction of path
4: t ← Jp � Destination node for up direction of path
5: l ← initial path label � Path labels: path objects with added information
6: l.latency ← 0
7: l.visited ← {a}
8: l.end ← a
9: l.upArcs ← {}

10: unfinished ← {l} � Unexpanded path labels
11: finished ← {} � Valid paths to destination node
12:
13: work:
14: while unfinished �= ∅ do
15: l ← path label removed from unfinished � For breadth first, remove oldest
16: if l.end = t then
17: k ← new path(l.upArcs)
18: finished ← finished + {k}
19: else
20: for all (i, j) ∈ A | i = l.end do
21: if j /∈ l.visited ∧ l.latency + Tij + Tji ≤ Gs ∧ BU

s ≤ Iij ∧ BD
s ≤ Iji then

22: l′ ← copy(l)
23: l′.upArcs ← l′.upArcs + {(i, j)}
24: l′.visited ← l′.visited + {j}
25: l′.end ← j
26: l′.latency ← l′.latency + Tij + Tji

27: unfinished ← unfinished + {l′}
28: return finished

In some cases the number of possible paths to add to the model may be immensely

large. For these cases it may be beneficial to limit the number of paths generated,

simplifying the problem but only providing a heuristic solution. By only including

a subset of all the possible paths, there is no guarantee of the optimal paths being

included. The subset of paths can be selected by introducing an upper limit to the

number of paths for each combination of service and provider, terminating the breadth
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first expansion once this limit has been reached for a combination. This will result in a

generated set of the shortest paths with respect to the number of links used.

A lower number of arcs in a path will, if costs and availability are in the same order

of magnitude, in general have a lower accumulated cost and provide a better availability

level than paths with many arcs. It is therefore reasonable to assume that these shorter

paths will give an input set that is more likely to include the optimal paths than sets of

the same size of paths generated at random or by other simple means of selection.
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6.4 The Mapping Model

This section presents a MIP model to the CSBQANR problem providing another level

of abstraction compared to the PFM, taking pre-generated sets of possible complete

routings for each service as input, these routing as referred to as mappings. A mapping

consists of the placement of a service and a network routing of the service that satisfies

its requirements. The network routing consists of a primary path or the combination

of a primary and backup path between the customer and provider node. The mapping

model provides another level of abstraction above the PFM and could have the potential

to solve even larger problem instances. The enhanced level of abstraction results in a

model more suited to be used in combination with a column generation algorithm.

The input to this model is a set of mappings specific to each service, which all satisfies

the availability limits given by the customers for each service. Mapping costs, revenues,

routing information, backup path capacity needs and primary path capacity usage are

also provided as input to this model. The input is created by a pre-generating algorithm

presented in Section 6.4.1 or by column generating heuristics presented in Section 6.5.

First to be presented in this section are the indices (Table 6.9), sets (Table 6.10),

parameters (Table 6.11) and variables (Table 6.12) used in this mapping model. Fol-

lowing this, the objective function and the constraints are presented, finishing with the

logical constraints. Lastly, a mapping pre-generating method for providing the model

with input is presented in Section 6.4.1.

Table 6.9: Summary of the indices to the mapping model

Index Definition

c Customer

i, j Network node

m Mapping

k, b Path

s, t Service
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Table 6.10: Summary of the sets to the mapping model

Set Definition

A Set of all arcs (i, j)

C Set of all customers c

K Set of all paths k

Lij Set of all paths using the arc (i, j)

M Set of all mappings m

M B
k Set of all mappings m using path k as backup path

M P
k Set of all mappings m using path k as primary path

M S
s Set of all mappings m that can be used by a service s

O Set with combination of all different services (s, t) where s < t

Sc Set of services demanded by customer c

The nodes defining the arcs in A are numbered increasingly, so when links are needed,

a link being the undirected link between two nodes or both arcs connecting the nodes,

this is defined as ∀(i, j) ∈ A |i < j. Because paths in this model use the same links in

both directions, the set Lij is symmetric, i.e. Lij = Lji. Additionally, the services are

ordered, so when requiring all pairs of different services O, the set of all combinations

of services (s, t) where s < t is used.
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Table 6.11: Summary of the parameters to the mapping model

Parameter Definition

Eij The cost of reserving a unit of capacity for backup on arc (i, j)

EP
k The cost of using a path k

Fijm Indicates whether mapping m needs backup capacity on arc (i,j) or

not. Equal to 1 if Qijm is larger than 0, and 0 otherwise

Iij The amount of capacity available for reservation on arc (i,j)

Qijm The amount of capacity needed to be reserved for backup on arc (i,j)

by mapping m. Equal to the maximum of zero and the difference

between backup and primary capacity demand if backup and primary

paths overlap on (i,j)

Rc Revenue from serving customer c

UM
ijm The amount of capacity used by mapping m on arc (i,j)

β Factor regulating the amount of extra capacity that must be reserved

for an increased number of services sharing a backup arc

Table 6.12: Summary of the variables to the mapping model

Variable Definition

�st Binary variable indicating if the chosen primary paths of services s and

t overlap anywhere

wm Binary variable indicating if mapping m is chosen

yc Binary variable indicating if customer c is being served

λij Positive continuous variable showing the amount of capacity reserved

on arc (ij)
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The problem is defined as a maximisation problem, and the objective function therefore

models the BCs profits. The first term of the objective function sums up the revenue

generated from the served customers, the second term subtracts the cost of using the

primary paths of the selected mappings and the third term subtracts the cost of reserving

capacity for backup on each arc.

max z =
∑
c∈C

Rcyc −
∑

k∈K

EP
k

∑

m∈M P
k

wm −
∑

(i,j)∈A

Eijλij (6.33)

The following constraints ensure that one of the available mappings for a service must

be chosen for each service of a customer that is being served.

yc −
∑

m∈M S
s

wm = 0, ∀c ∈ C , ∀s ∈ Sc (6.34)

To ensure that the sum of the capacity reserved for all primary paths of the chosen

mappings and the amount of capacity reserved for backup use on an arc do not exceed

the available capacity of that arc, the following constraints are used.

∑

m∈M S
s

UM
ijmwm + λij ≤ Iij , ∀(i, j) ∈ A (6.35)

The following constraints make sure that the amount of capacity reserved on an arc for

backup is at least as big as every individual bandwidth requirement of the services using

this arc for backup, or effectively at least as large as the largest bandwidth requirement

among these. This is referred to as the single backup bandwidth allocation in Chapter

4 and seen in (Cui et al., 2002) and Józsa and Orincsay (2001).

∑

m∈M S
s

Qijmwm − λij ≤ 0, ∀(i, j) ∈ A , ∀c ∈ C , ∀s ∈ Sc (6.36)

The effect of decreasing expected availability with the increase of the numbers of ser-

vices sharing backup capacity on an arc (see Section 3.8) is in some part captured by

the following constraints, which are equivalent to the Equation 6.14 in the LFM and

Equation 6.28 in the PFM. These are as in the LFM and PFM used to regulate the

degree of sharing or dedication of backup on the arcs in the network. A β value of zero

will not restrict the number of services sharing a backup arc at all, and a β equal to one

is equivalent to using dedicated protection. If a backup arc is highly shared it might
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be beneficial to force the reservation of more than the single backup path bandwidth

allocation (see Section 3.8). In such cases β can be set to an appropriate value between

zero and one, and this will force the reserved capacity to be at least a factor β of the

sum of the bandwidth demands of the services using this backup arc. If there are many

services using this arc, this will ensure that the arc can support more than one service

in case of multiple failing primary paths. This method of using a factor regulating the

amount of backup capacity to reserve has not yet been seen in literature, and the effect

of it will be discussed in Chapter 7.

β
∑

m∈M

Qijmwm − λij ≤ 0, ∀(i, j) ∈ A (6.37)

All mappings taken as input to this model already includes a valid combination of pri-

mary and backup paths, and the link-disjoint requirement to the primary and backup

paths used in the LFM is not included in the mapping model.

The shared path protection requirement of only allowing backup paths of two services

to overlap if their primary paths are disjoint, and vice versa, is incorporated in to the

mapping model. This will ensure that a link failure affecting two services’ primary paths

will not lead to both their backup paths requiring the same backup resource. The follow-

ing constraints regard overlap between primary and backup paths of services pairwise,

ensuring that the primary and backup paths of two services cannot both be overlapping.

To force the variable indicating overlapping primary paths for a combination of two ser-

vices to 1 if the two services have primary paths with one or several overlapping links,

the following constraints are used. These constraints are link-based because of the fact

that a link failure leads to both arcs representing the physical link to go down.

∑
k∈Lij

∑

m∈M P
k

∩M S
s

wm +
∑

k∈Lij

∑

m∈M P
k

∩M S
t

wm − �st ≤ 1, ∀(i, j) ∈ A |i < j, ∀(s, t) ∈ O

(6.38)

The overlap between primary paths is link-based, but since the backup bandwidth reser-

vation is separate for the two arcs constituting a link, and a backup path of a mapping

may not need bandwidth capacity on both arcs, the backup overlap constraints are
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arc-based.

∑
k∈Lij

∑

m∈M B
k

∩M S
s

Fijmwm +
∑

k∈Lij

∑

m∈M B
k

∩M S
t

Fijmwm + �st ≤ 2, ∀(i, j) ∈ A , ∀(s, t) ∈ O

(6.39)

The following constraints are logical constraints for the variables used in this model.

The variables yc, wm and �st are binary, and λij are continuous variables greater than

or equal to 0.

yc ∈ {0, 1}, ∀c ∈ C

wm ∈ {0, 1}, ∀m ∈ M

�st ∈ {0, 1}, ∀(s, t) ∈ O

λij ≥ 0, ∀(i, j) ∈ A

(6.40)
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6.4.1 Mapping pre-generation

The MIP-model introduced in this section is dependent on a set of pre-generated map-

pings for every service; combinations of provider placement, primary network path as

well as backup path if needed. Since a mapping also contains the provider placement

decision, only one set of mappings is needed per service (M S
s ), compared to one set of

paths for every service provider pair, needed in the PFM from Section 6.3.

The pre-generation of mappings takes as input sets of pre-generated paths for each

service provider pair, described in Section 6.3.1. The set of mappings for each service is

then generated from these pre-generated paths.

Each set of mappings is defined for a service, but the generation of mappings is

done separately for each service provider pair, adding the resulting mappings to that

service’s set of mappings. For each such service provider pair, every path for that pair

is considered. If a path alone is sufficient to fulfil a service’s requirements, a mapping is

created using the provider from the current service provider pair, the path found as the

primary path, and no backup path. If the path alone is not sufficient for the service’s

requirements, combinations with all the other paths of the same service provider pair

are tested, using the first path as the primary path, and the other paths as backup

paths. For every valid combination found, a mapping for the service is added using

the current provider and the combination of primary and backup path. A pseudo code

representation of the mapping pre-generation is shown in Algorithm 2.

The cost of a mapping is simply the cost of its primary path k; EP
k . This cost

includes both the cost from bandwidth usage as well as the provider placement cost of

the mapping’s service, as described in Section 6.3.1. Costs from backup paths are not

included in the mappings’ costs, as these are included in the global backup bandwidth

reservation costs found in the mapping model of Section 6.4.

The amount of capacity used by a mapping m on every arc (i, j), UM
ijm, is equal to its

primary path k’s bandwidth usage, UP
ijk. The amount of capacity needed to be reserved
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Algorithm 2 Mapping Generation
1: procedure MappingGeneration(s, p) � Service s and provider p
2: M S

s ← Set of mappings for service s
3: K SP

sp ← Set of all paths for service s to provider p
4:
5: for all k ∈ K SP

sp do
6: if DP

k > Ys then � Path availability DP
k from Equation 2.1

7: m ← new mapping(k) � Mapping with primary only
8: M S

s ← M S
s + {m}

9: else
10: for all b ∈ K SP

sp |k �= b do
11: if DM

kb ≥ Ys then � Mapping availability DM
kb from Equation 2.2

12: m ← new mapping(k, b) � Mapping with primary and backup
13: M S

s ← M S
s + {m}

14: return M S
s

for backup on arc (i, j) by mapping m, Qijm, is the maximum of 0 and the bandwidth

demand for a mapping’s backup path b, UP
ijb, minus the bandwidth demand of the

primary path k’s demand, UP
ijk. This is done to avoid redundant backup reservations

where the primary and backup paths of a service overlap, as a service will never need

its primary and backup paths simultaneously. Fijm indicates whether mapping m needs

backup capacity on (i, j) or not. It is set to be 1 if Qijm is larger than zero, and zero

otherwise.



Chapter 6: Optimisation Models 60

6.5 Column Generation

This section introduces three heuristic approaches to solving the CSBQANR problem,

using column generation to add feasible mappings to the mapping model presented in

Section 6.4, as opposed to including the complete set of valid pre-generated mappings.

The column generation is performed for the LP-relaxation of the model only, followed

by solving the MIP-version of the model with the generated mappings, thus only guar-

anteeing a heuristic solution to the problem. The approach described in this section can

be extended to provide better or optimal solutions, depending on the column generation

algorithm used, by incorporating the column generation into the branching tree of the

MIP-solution process, this is left for further work (see Section 8.2) and is not pursued

further in this thesis.

These column generation approaches are introduced both to reduce the dependency

on pre-generation, as well as to provide good solutions in shorter time frames compared

to the complete mapping model using pre-generation and enabling the solution of larger

problem instances. Only a small subset of possible mappings will be included in the

model by the column generation step, reducing the size of the problem when solving

the MIP-version, and potentially making the solution process simpler and faster. The

assumption that good columns in the LP-relaxation are likely to also be good in the

MIP-version is made, thus good solutions is expected even though the solution space is

greatly reduced.

The column generation methods use dual variables obtained from running the LP-

relaxation of the model. A summary of the dual variables can be found in Table 6.13.

These dual variables are used to guide the creation of, and evaluate, potential map-

pings. Three column generation approaches are suggested, the first based on partial

pre-generation (paths for service-provider pairs), followed by two approaches using no

pre-generation, generating the primary path and backup path for each new mapping as

needed.
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Table 6.13: Summary of the dual variables obtained from the model in Section 6.4

Dual Variables Originating Constraint Set Range Domain

αs Equation 6.34 free ∀c ∈ C , ∀s ∈ Sc

γij Equation 6.35 ≥ 0 ∀(i, j) ∈ A

φijs Equation 6.36 ≥ 0 ∀(i, j) ∈ A , ∀c ∈ C , ∀s ∈ Sc

ωij Equation 6.37 ≥ 0 ∀(i, j) ∈ A

θijst Equation 6.38 ≥ 0 ∀(i, j) ∈ A |i < j, ∀(s, t) ∈ O

τijst Equation 6.39 ≥ 0 ∀(i, j) ∈ A , ∀(s, t) ∈ O

To evaluate a potential new mapping, the reduced cost of that mapping’s respective

wm variable is calculated. Since the master problem is a maximisation problem, a new

mapping with positive reduced cost is wanted. The generic formula for calculating the

reduced cost vector, σ is σ = c − AT y, where c is the objective coefficient vector, A

is the constraints coefficient matrix and y is the dual variable vector. In the context

of generating columns, the reduced cost σm of a column representing a mapping m,

belonging to service s and consisting of a primary path k and a potential backup path

b, is calculated from the following equation.

σm = − EP
k

+ αs

−
∑

(i,j)∈A

UM
ijmγij

−
∑

(i,j)∈A

Qijmφijs

− β
∑

(i,j)∈A

Qijmωij

−
∑

(i,j)∈A |i<j∧UM
ijm>0

∑
(s′,t)∈O|s′=s∨t=s

θijs′t

−
∑

(i,j)∈A

∑
(s′,t)∈O|s′=s∨t=s

Fijmτijs′t

(6.41)

Three different column generation approaches are proposed in this thesis. The first

approach, presented in Section 6.5.1, adapts the mapping pre-generation algorithm from
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Section 6.4.1 to a column generation setting, in essence using column generation to filter

the large amount of mappings possible to pre-generate. The remaining two approaches

both use a series of Shortest Path Problems with Resource Constraints (SPPRC) to find

potential paths for new mappings, both presented in Section 6.5.2.

6.5.1 Column Generation by Brute Force Search

This column generation approach, referred to as the Column Generation by Brute Force

Search method, is a simple adaptation of the mapping pre-generation approach from

Section 6.4.1 to a column generation setting, and is as such dependent on pre-generated

paths. The algorithm is executed for every service provider pair and consists of looping

through all possible paths for that pair, trying to create feasible mappings, combining

the current path with different backup paths as needed. The reduced cost σm of a

feasible mapping m belonging to service s is then evaluated as in Equation 6.41. Any

mapping m with a positive, non-zero reduced cost σm is considered beneficial to add to

the model. The version of the algorithm returning the best mapping with a positive,

non-zero reduced cost is described in Algorithm 3, but can easily be modified to add the

first beneficial mapping or all of the beneficial mappings found.

Algorithm 3 Brute Force Column Generation
1: procedure BruteForceColumnGeneration(s, p) � Service s and provider p
2: m∗ ← none � Best mapping found so far
3: e∗ ← 0 � Best evaluation found so far
4: for all k ∈ K SP

sp do
5: if DP

k ≥ Ys then � Path availability DP
k from Equation 2.1

6: m ← new mapping(k) � Mapping with primary only
7: e ← σm � Reduced cost from Equation 6.41
8: if e > e∗ then
9: e∗ ← e

10: m∗ ← m
11: else
12: for all b ∈ K SP

sp |k �= b do
13: if DM

kb ≥ Ys then � Mapping availability DM
kb from Equation 2.2

14: m ← new mapping(k, b) � Mapping with primary and backup
15: e ← σm � Reduced cost from Equation 6.41
16: if e > e∗ then
17: e∗ ← e
18: m∗ ← m
19: return m∗
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6.5.2 SPPRC Column Generation

This section proposes two versions of a column generation heuristic that does not depend

on pre-generation of paths, solving SPPRCs to find paths. These two methods are simply

referred to as SPPRC Column Generation Heuristic A and SPPRC Column Generation

Heuristic B. The SPPRC is an extension of the well-known shortest path problem,

where the total usage of one or more resources along the path is constrained. SPPRCs

can be solved by dynamic programming algorithms referred to as labelling algorithms.

For a more extensive discussion of the SPPRC and labelling algorithms, see Irnich and

Desaulniers (2005). The values of the dual variables are used to assign costs to the arcs

in the network used by the SPPRCs. Note that this is a heuristic for generating new

columns to the master problem, and thus does not guarantee an optimal solution even

if incorporated in the MIP branching process.

From Equation 6.41, the equation for reduced cost, the only term that can have a

positive contribution is the second term, αs. Since the constraint in Equation 6.34 is

an equality constraint, αs has a free range, and can therefore potentially provide both

a positive and negative contribution to the reduced cost. However, due to the structure

of the problem, the ≤ part of the equality constraint is expected to be the binding

one, opposed to the ≥ version. αs will therefore have a positive value and thus also a

positive contribution to the reduced cost. All the remaining dual variables, as well as

the parameters associated with them will always be non-negative, and since they are

subtracted when calculating the reduced cost, their contribution will always be non-

positive.

Apart from the αs dual variable and the service hosting cost Hsp included in the

primary path cost EP
k , all components of the reduced cost of a mapping are dependent

on the arcs used for the primary path as well as potentially a backup path. These terms

can be modelled as costs associated with selecting an arc (i, j) in either the primary path

or backup path. Since all of these terms have a negative contribution to the reduced cost

of a potential new mapping, these costs will always be non-negative. The goal is to find

the primary path and backup path that each minimise the costs associated with the arcs

used. In addition, the paths must not exceed the maximal allowed latency, in essence
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creating a Shortest Path Problem with Resource Constraints (SPPRC) for each of the

primary and backup paths. Note that the availability requirement will be dependent on

both the choice of primary and backup path, and can therefore not be handled by the

individual SPPRCs, and is instead handled externally to the SPPRCs in the two column

generation heuristics presented.

The column generation is performed for each service provider pair (s, p), thus the αs

and the Hsp are considered as given. The remainder of the reduced cost calculation

depends on the set of arcs selected for the mapping m’s primary path k and backup

path b in the up direction, referred to as APATH
k and APATH

b , respectively. Since paths

are required to use the same links in both directions, costs for both directions can be

inferred from the selection of arcs in one direction. The reduced cost of a mapping m,

from Equation 6.41, with path k as primary path and path b as backup path, can thus

be reformulated as follows:

σm = αs − Hsp −
∑

(i,j)∈APATH
k

V P
ijs −

∑

(i,j)∈APATH
b

V B
ijsk (6.42)

Where V P
ijs and V B

ijsk are the costs for selecting an arc (i, j) for a service s in the primary

path and backup path, respectively, in the up direction. Note that V B
ijsk, is also indexed

by the primary path k, is the costs associated with selecting arcs for the backup paths

depends in the primary path. If an arc (i, j) is used in one direction, (i, j) is used in the

opposite direction, therefore V P
ijs and V B

ijs includes both the cost for using (j, i) in the

up direction and the cost for using (j, i) in the down direction.

The amount of primary bandwidth usage for a mapping m on an arc (i, j), UM
ijm, is BU

s

if (i, j) is used in the up direction, and BD
s if (i, j) is used in the down direction and 0

otherwise. V P
ijs can therefore be expressed as:

V P
ijs = BU

s Eij + BD
s Eji

+ BU
s γij + BD

s γji

+
∑

(s′,t)∈O|s′=s∨t=s

Θijs′t

(6.43)
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Where

Θijs′t =

⎧⎪⎪⎨
⎪⎪⎩

θijs′t if i < j

θjis′t if i > j

(6.44)

since the θijs′t is only defined for each link (i, j) ∈ A |i < j, and not each arc.

The amount of backup bandwidth required by a mapping m on an arc (i, j), Qijm,

depends on both the primary path k and the backup path b, as the primary path k’s

bandwidth usage on (i, j), UP
ijk, affects the backup path’s bandwidth need on (i, j) if

they are overlapping. The cost of using an arc (i, j) in the backup path for a service s

from customer to provider (and the opposite arc (j, i) from provider to customer), given

path k as primary path, V B
ijsk, is defined as:

V B
ijsk = max(0, BU

s − UP
ijk)φijs + max(0, BD

s − UP
jik)φjis

+ β max(0, BU
s − UP

ijk)ωij + β max(0, BD
s − UP

jik)ωji

+
∑

(s′,t)∈O|s′=s∨t=s

(F U
jiskτjis′t + F D

ijskτijs′t)

(6.45)

Where F U
ijsk and F D

ijsk is defined as:

F U
ijsk =

⎧⎪⎪⎨
⎪⎪⎩

1 if BU
s − UP

ijk > 0

0 otherwise
(6.46)

F D
ijsk =

⎧⎪⎪⎨
⎪⎪⎩

1 if BD
s − UP

ijk > 0

0 otherwise
(6.47)

The two column generation methods described here uses three different sub routines for

solving different SPPRCs, referred to as SPPRC-L, SPPRC-LO and SPPRC-LA. The

difference between these sub routines is the constrained resources of the SPPRC they

solve. SPPRC-L and SPPRC-LO are used by SPPRC Column Generation Heuristic

A, while SPPRC Column Generation Heuristic B is an extension of the former column

generation method which introduces SPPRC-LA. For easy reference, these sub routines
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and the constrained resources of the SPPRC they solve can be found in Table 6.14. Each

of these sub routines, as well as the SPPRCs solved by them, is discussed further in the

description of the column generation method using them.

Table 6.14: The resources of the SPPRCs solved by the different sub routines used
by SPPRC Column Generation Heuristic A and SPPRC Column Generation Heuristic

B

SPPRC Sub Routine Resources

SPPRC-L Latency

SPPRC-LO Latency, Overlap

SPPRC-LA Latency, Availability

SPPRC Column Generation Heuristic A

The column generation approach described here solves a series of SPPRCs to find a

combination of primary- and backup path for a given service and provider placement.

The bandwidth and latency requirements can be handled individually for the primary-

and backup path. The algorithm starts by finding the cheapest primary path to the

given provider placement, satisfying the requirements to bandwidth and latency. This

is done by removing any arcs with insufficient bandwidth capacity and modelling the

latency as a resource in an SPPRC. This SPPRC is solved by the sub routine referred

to as SPPRC-L. If a primary path with sufficiently low costs is found, this path is either

used alone in a new mapping, if its availability is sufficient for the requirement specified

by the service; otherwise it is used as a basis for a primary and backup path combination.

If the primary path alone does not have a sufficient availability, a second type of

SPPRC is used to find a suitable backup path, extending the original SPPRC with a

resource indicating the number of link overlaps between the primary and backup paths.

This SPPRC is solved by the SPPRC-LO sub routine. The expected availability is not

explicitly calculated by this SPPRC, but by using the same assumption as in the LFM,

where link-disjoint primary and backup paths will satisfy the availability requirement,

this column generation method tries to guide the SPPRC towards availability feasible

primary and backup paths by gradually restricting the two paths to share fewer links.

The SPPRC-LO sub routine is performed with gradually fewer overlaps allowed until
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the availability requirement is satisfied or until further restriction to overlap is no longer

possible (the last backup path found leads to a non-profitable mapping or overlap is

already fully disallowed). Pseudo code for this method is found in Algorithm 4.

Algorithm 4 SPPRC Column Generation Heuristic A
1: procedure SPPRC-CGA(s, p) � Service s and provider p
2: a ← VcustomerFor(s) � Start node for up direction of path
3: t ← Jp � End node for up direction of path
4: A ′ ← {(i, j) ∈ A |Iij ≥ BU

s ∧ Iji ≥ BD
s } � Arcs usable for s in up direction

5:
6: (k, eP ) ← SPPRC-L(
7: a, t, Gs, A ′, � Start, end, max latency, valid arcs
8: {V P

ijs∀(i, j) ∈ A ′}, � Costs of all arcs (i, j), from Eq. 6.43
9: {Tij + Tij∀(i, j) ∈ A ′} � Latency for all arcs (i, j) up

10: )
11: if αs − Hsp − eP > 0 then � Reduced cost from Eq. 6.42
12: if k �= ∅ ∧ DP

k > Ys then � Equation 2.1
13: return new mapping(k) � Mapping with primary only
14: else
15: for all (i, j) ∈ A ′ do
16: if (i, j) ∈ APATH

k ∨ (j, i) ∈ APATH
k then

17: Oij ← 1 � (i, j) in backup will create link overlap
18: else
19: Oij ← 0 � (i, j) in backup will not create link overlap
20: o ← |APATH

k | − 1 � # of allowed overlaps with k
21: while o ≥ 0 do
22: (b, eB) ← SPPRC-LO(
23: a, t, Gs, o, A ′, � Start, end, max latency, max overlap, valid arcs
24: {V P

ijsk∀(i, j) ∈ A ′}, � Costs for all arcs (i, j), from Eq. 6.45
25: {Tij + Tij∀(i, j) ∈ A ′}, � Latency for all arcs (i, j) up
26: {Oij∀(i, j) ∈ A ′} � Overlap for all arcs (i, j) up
27: )
28: if b = ∅∨ αs − Hsp − eP − eB ≤ 0 then � Reduced cost from Eq. 6.42
29: break � Profitable mapping not possible
30: if DM

kb > Ys then
31: return new mapping(k, b) � Mapping with primary and backup
32: o ← o − 1
33: return none

SPPRC Column Generation Heuristic B

For mappings only using a primary path, the availability can be modelled as a re-

source and added to the SPPRC where the accumulated availability must stay above

an availability requirement. For some problem instances it may be likely that single
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path mappings are sufficient to satisfy services’ requirements. As a result, the following

extension to version A of the SPPRC column generation heuristic is proposed, pseudo

code presented in Algorithm 5.

Algorithm 5 SPPRC Column Generation Heuristic B
1: procedure SPPRC-CGB(s, p) � Service s and provider p
2: a ← VcustomerFor(s) � Start node for up direction of path
3: t ← Jp � End node for up direction of path
4: A ′ ← {(i, j) ∈ A |Iij ≥ BU

s ∧ Iji ≥ BD
s } � Arcs usable for s in up direction

5:
6: (k, eP ) ← SPPRC-LA(
7: a, t, Gs, Ys, A ′, � Start, end, max latency, min availability, valid arcs
8: {V P

ijs∀(i, j) ∈ A ′}, � Costs of all arcs (i, j), from Eq. 6.43
9: {Tij + Tij∀(i, j) ∈ A ′}, � Latency for all arcs (i, j) up

10: {DL
ij∀(i, j) ∈ A ′} � Link availability for all arcs (i, j)

11: )
12: if k �= ∅ ∧ αs − Hsp − eP > 0 then � Reduced cost from Eq. 6.42
13: return m ← new mapping(k) � Mapping with primary only
14: else
15: return SPPRC-CGA(s, p) � Algorithm 4

The SPPRC solved by the SPPRC-LA sub routine in Algorithm 5, expands the SP-

PRC of SPPRC-L by including availability as a constrained resource. Availability is

different from the latency resource, by having a lower bound instead of an upper bound.

In addition the availability is the product of all chosen links availability. Since link avail-

ability is strictly ≤ 1.0, this product is monotonically decreasing and is therefore still

applicable to the SPPRC labelling algorithm’s label expansion step and label domination

step, so long as the expansion step implements the availability resource consumption as

a product and not a sum, and the availability dominance test handles availability in

accordance to a resource restricted with a minimum value. To allow the SPPRC-LA

sub routine to be implemented as a more generic labelling algorithm, the availability

resource can be reformulated to a summation resource with an upper bound by the use

of logarithms. The availability resource of a path k will then be formulated as follows:

∑

(i,j)∈APATH
k

− ln DL
ji ≤ − ln Ys (6.48)
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Computational Study

This chapter presents the methodology behind, and results generated from, testing the

CSBQANR solution methods presented in Chapter 6. The methodology is presented

in Section 7.1 and contains an explanation of the test instances, the test setup and

execution and the test cases. Section 7.2 presents results obtained for the test cases, as

well as a discussion of these results.

7.1 Methodology

This section presents the methodology of the testing of the CSBQANR solution meth-

ods. First the five constructed problem instances used in the testing are presented;

the dimensions of the instances, the parameters used and the structure of the networks

of the instances are detailed. Following this, the test setup and execution is detailed,

explaining the solution methods’ implementation specifics and the solver and configu-

rations used in the testing. The section is finished with an explanation of the different

test cases run in the testing of the solution methods.

7.1.1 Test Instances

The inspiration for the networks in the test instances presented in this section is the

networks of a large telecommunications operator. The instances in themselves are not

modelled directly after these networks, but the number and placements of the networks’

69



Chapter 7: Computational Study 70

nodes and arcs are realistic based on these real world wide networks. The test instances

used in this chapter were constructed using a self-produced web application, referred to

as the Visualised Data Editor (VDE), with an interactive user interface enabling the

user to visualise the network and to change it directly using the interface. The VDE is

presented in Appendix C.

Test Instance Dimensions

A total of five different test instances are used for testing the CSBQANR solution meth-

ods. These five test instances have different dimensions with varying numbers of cus-

tomers, services, internal nodes and arcs. The number of providers is kept at four,

and each customer demands between one and three services. The M-6 test instance is

thought to be a minimal version of a network and is probably too small compared to

any real world instance with market potential for a BC. However, it is useful for testing

and validating the different solution methods efficiently. Its name indicates that it is a

minimal instance with 6 customers. The naming of the rest of the test instances indi-

cates whether their internal networks are relatively dense or sparse (compared to each

other), and the number of customers each instance has. The S-20 test instance (sparse,

20 customers) has a more realistic network structure, but without excessive capacity.

The number of customers is assumed to be realistic for a small BC where customers

in most cases only require one or two services each. The S-40 test instance (sparse,

40 customers) has a larger number of customers who in average demand two services

each. This instance has a relatively sparse internal network, similar to the networks of

the M-6 and S-20 test instances, but is constructed with a larger number of customers

to test how a limited network can support larger demands. The D-20 test instance

(dense, 20 customers) is based on the S-20 test instance, but its internal network has

been extended with additional capacity both in regards to arcs and internal nodes. The

D-40 test instance (dense, 40 customers) is an extension of the D-20 test instance, with

an increased number of customers and services. Table 7.1 presents the different test

instances. The names of the test instances used here will be used throughout this thesis.
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Table 7.1: Key attributes of the different test instances

M-6 S-20 S-40 D-20 D-40

# of Customers 6 20 40 20 40

# of Services 8 24 80 25 80

# of Providers 4 4 4 4 4

# of Internal Nodes 8 17 13 30 30

# of Arcs 52 100 136 196 276

# of Internal Arcs 36 60 56 116 116

Availability and Latency

Every service in the CSBQANR problem requires a maximum latency level and a min-

imum availability level to be upheld. These values are chosen within a suitable range

based on numbers from real world cases. The availability requirement for a service,

Ys, lie in the range between 95 % and 99.9 %. The round trip latency values accepted

by a service, Gs, range between 35 ms and 105 ms. Every arc in the problem has an

expected latency value and every link has an expected availability value. The latency of

the arcs has a value between 2.5 ms and 7.5 ms, with the exception of a few select arcs

representing connection between different geographical regions where the latency values

are significantly higher. The availability of the networks’ links all have a value between

99 % and 100 %, and since only failures of links are considered, both arcs representing

a link are assigned the same expected availability value.

Customer Demand

The maximum number of services a customer can require is three in every test instance.

Each of these services requires a specified amount of bandwidth to be reserved to support

the amount of traffic it will produce. This demand can be different in the two directions;

from the customer towards the provider and from the provider to the customer. The

bandwidth demands are in the range of 2 to 40, but the majority lie between 10 and 20.

Each service is to be provided by a provider in the network, and only a subset of the

providers is eligible to provide each service. In the test instances presented here, each

service can be placed at two of the four providers.
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Revenue and Costs

Due to a lack of relevant information about prices and price levels in the business to

business cloud computing market, all costs used in the test instances are constructed

artificially and approximated by the use of common sense. The costs of reserving capac-

ity, placing a service at a provider and the revenue generated by serving a customer are

all set so that they are reasonable compared to each other. Prices on the reservation of

one bandwidth unit on an arc are in the range of 0.5 to 2, the price of placing a service

at a provider ranges from 100 to 1400, and the revenue from a customer is in the range

of 500 to 10 000. The five test instances have different ranges in which these values are

chosen, to adjust costs and revenue to each other and to enable the serving of customers

for each specific test instance.

Test Instance Structure

The structure of the test instances presented in this section is based on the network

of a large telecommunications operator with network structure in both Europe and

Asia connected by high capacity long distance links. The providers placed in Asia

have lower costs compared to providers in the European part of the network. The M-

6 test instance has its customers placed in the region corresponding to Europe, but

has provider nodes in both the European and Asian regions. The S-40 test instance

has customers in both regions, but the majority is situated in the European region.

This test instance has a limited number of connections between the regions and the

customers do in many cases share a connection point to the internal network. The S-

20 test instance has an equal number of customers in both regions, but few customers

connected to each connection point to the internal network, compared to the S-40 test

instance. The same limited number of connections between the regions is found here.

The D-20 test instance is similar to the S-20 test instance in regards to customer and

provider nodes and placement, but the number of connections in all parts of the network

is considerably increased and the number of internal nodes is higher, providing a denser

network compared to the network of the S-20 test instance. The D-40 test instance has

the same internal network as the D-20 instance, but has the same number of customers

and services as the S-40 test instance. The D-40 also has providers in both the European
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and Asian parts of the network, and the customers are distributed evenly between the

two regions. Figures 7.1 to 7.5 display the five test instances.

Figure 7.1: The M-6 test instance, the red nodes are customer nodes, the green nodes
are provider nodes and the rest are internal nodes. The numbers are node numbers

automatically generated by the VDE

Figure 7.2: The S-20 test instance, the red nodes are customer nodes, the green nodes
are provider nodes and the rest are internal nodes. The numbers are node numbers

automatically generated by the VDE
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Figure 7.3: The S-40 test instance, the red nodes are customer nodes, the green nodes
are provider nodes and the rest are internal nodes. The numbers are node numbers

automatically generated by the VDE

Figure 7.4: The D-20 test instance, the red nodes are customer nodes, the green nodes
are provider nodes and the rest are internal nodes. The numbers are node numbers

automatically generated by the VDE
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Figure 7.5: The D-40 test instance, the red nodes are customer nodes, the green nodes
are provider nodes and the rest are internal nodes. The numbers are node numbers

automatically generated by the VDE

Validity of Test Instances and Results

Because of the assumptions and estimations used to construct the test instances used in

the testing of the CSBQANR solution methods, the results obtained from solving these

test instances are not intended to be used for decision making in a real world setting. The

focus is rather to test the methods’ applicability, compare the different solution methods

to each other and test how well they handle large and complex problem instances. As

mentioned in Section 8.2, an interesting extension to this work could be to find more

realistic data to test the models and solutions methods on, but this is left for future

work.

7.1.2 Test Setup and Execution

Implementation

The LFM presented in Section 6.2 and PFM presented in Section 6.3 were implemented

in the Mosel modelling language, while the mapping model presented in Section 6.4 was

implemented in C++ using the Xpress-BCL Builder Component Library. This model

implementation was combined with a custom C++ component implementing each of the

column generation heuristics from Section 6.5.
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The pre-generation of paths and mappings, described in Section 6.3.1 and Section

6.4.1, respectively, were implemented in C++. The output from these procedures can

either be stored to data files compatible with Mosel implementations of the PFM and

mapping model, or handed directly to the BCL implementation of the mapping model,

or the column generation method of Section 6.5.1, as C data structures.

The C++ components have been bundled into a single application taking problem in-

stances in JSON-format as input. The application can pre-generate paths and mappings

for the loaded problem instance, then either output the problem instance including the

pre-generated paths and mappings to a Mosel compatible data file, or hand the prob-

lem instance directly to one of the C++ solution methods. This application is explained

further in Appendix D.

The VDE web application for visualising, creating and modifying problem instances,

mentioned in Section 7.1.1, can export problem instances to either Mosel data format,

compatible with the LFM Mosel implementation, or to a JSON data format, compatible

with the C++ application. Appendix C includes additional information about the VDE.

MIP Solver and Configuration

All optimisation models are solved using FICO R© Xpress Optimisation Suite v7.6.0 64-

bit on machines with 126.13GiB of memory, 64 AMD OpteronTM 6274 processor cores

(@ 2.2GHz) and running CentOS 6.5 x86 64-bit Linux distributions. Default settings

were used for the Xpress solver apart from a maximum time for the optimisation process

set to 10 hours and selecting primal simplex as the LP solution method when performing

LP optimisation as well as when solving the LP relaxation in the root node of the branch

and bound tree when performing MIP-optimisation.

The default setting for LP solver algorithms is to perform concurrent solve using dual

simplex, primal simplex and Newton Barrier algorithms in the branch and bound root

node, and terminating all other concurrent solves once one of them finds LP optimum.

The recommended setting is to keep the concurrent solves, as for multi-core systems, the

different algorithms are run in parallel without affecting each other, and minimal solution
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time is obtained. Due to issues experienced with concurrent solve not terminating once

optimum is found by one of the methods, the LP solution process was set to use one

algorithm only. In general, dual simplex tends to perform better for problems that are

not infeasible or near infeasible, but for the models presented in this thesis, this is not the

case. For all test cases where more than 0.5 seconds were needed to find LP optimum,

the primal simplex proved to be most efficient, and was therefore chosen as the solution

method. For test cases where LP optimum was found in less than 0.5 seconds, the dual

simplex method tended to be faster, but this is likely due to the concurrent solves being

initialised in fixed order with dual simplex being first, giving dual simplex a small, but

sufficient, head start. By selecting to only use the primal simplex for these instances,

the optimum was found equally fast as with dual simplex in concurrent solve.

In addition to the Xpress configurations described, the custom built column generation

component was also configured to limit the time spent on column generation to one

hour. This time limit was implemented so that the column generation is terminated

after the first full column generation iteration bringing the total column generation

time consumption above the time limit, thus the actual time spent may exceed the

configured time limit.

7.1.3 Test Cases

The Mosel implemented solution methods of the LFM and PFM (Section 6.2 and Sec-

tion 6.3) are henceforth referred to as m1 and m2, respectively, the mapping model

implementation using all possible pre-generated mappings, is referred to as m3. The

different column generation heuristics based on the mapping model are referred to as

cg1, cg2 and cg3. Here, cg1 represents the solution method using Column Generation by

Brute Force Search, presented in Section 6.5.1, while cg2 and cg3 represent the solution

methods using the two column generation methods from Section 6.5.2, SPPRC Column

Generation Heuristic A and SPPRC Column Generation Heuristic B, respectively. The

term test case is here used for a single run using one solution method with a specific

problem instance as input and a certain β value. Every test instance presented in Sec-

tion 7.1.1 was solved using m1, m2, m3, cg1, cg2 and cg3, and each combination of these

were run using β values of 0.0, 0.25, 0.5, 0.75 and 1.0.
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The pre-generation of input for use in m2 and m3 for the test instances D-20 and D-40

produce too many paths and mappings making it impossible to run these combinations

without exceeding the memory available on the systems used for testing if all paths

and mappings are included. The size of the pre-generated input is therefore reduced by

restricting the number of paths generated for each combination of service and provider

placement, as described in Section 6.3.1. This maximum path limit for each service

provider pair is set separately for each combination of solution methods m2 and m3

for the test instances D-20 and D-40. These path limits are set so that runs using a

higher path limit well exceed the available memory before the 10 hour limit is reached,

and are derived by the use of trial and error. A similar problem with the size of the

pre-generated data appears for cg1 for test instance D-40, where including the full size of

the pre-generated data results in excessive time consumption on each column generation

iteration. A maximum path limit is therefore also set for cg1 for the D-40 instance,

using a limit that brings the number of paths generated down to a manageable size for

the service provider pairs with excessive amounts of potential paths. The path limits

for m2, m3 and cg1 for the different solution methods, used in the instances D-20 and

D-40 can be found in Table 7.2.

A second set of such path limits is introduced for running m3 with D-20 and D-40,

based on the number of mappings the column generation methods produce for the same

test instances. This set of path limits is used to compare the solutions obtained from the

different column generation solution methods with the results from solving m3 with a

restricted set of mappings similar in size to the sets of mappings the column generation

methods produce. Tables including the numbers of mappings produced by the column

generation methods, and the resulting numbers of mappings for each path limit are

presented in Appendix B (Table B.12, Table B.13 and Table B.14). Two types of path

limits are defined for each of the two test instances. The first type aims at producing

a set of mappings with a size as close as possible to the average number of mappings

produced by all column generation solution methods for all β values for that specific test

instance, referred to as the AVG path limit. The second path limit is set to produce the

smallest set of mappings for that specific test instance that is higher than the largest

number of mappings produced by column generation, referred to as the MAX path limit.

The appropriate path limits for each of the two path limit types for D-20 and D-40 is
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obtained by iteratively performing mapping pre-generation for increasing path limits,

noting the number of mappings produced, until the appropriate limits are identified.

This set is presented in Table 7.3

Table 7.2: Maximum limits for paths and the resulting number of mappings for
running cg1, m2 and m3 on D-20 and D-40

D-20 D-40

cg1 Path Limit - 100

m2 Path Limit 5 4

m3 Path Limit 20 10

Resulting # of mappings 4788 1272

Table 7.3: Average and maximum number of mappings of the column generation
methods, comparison path limits and the resulting number of mappings for running m3

on D-20 and D-40

D-20 D-40

cg1-3 Average # of mappings 298.1 609.7

Max # of mappings 400 730

m3 AVG Path Limit 5 4

Resulting # of mappings 294 555

m3 MAX Path Limit 6 5

Resulting # of mappings 448 818

Lastly a set of test cases is run by increasing and decreasing the availability requirements

of each service in the S-20 test instance to respectively 0.995 and 0.95, and running these

extended instances on every solution method with β values of 0.0 and 0.5. This is done to

investigate the effect a change in the input to the solution methods will have on solution

values and solution times. The choice of what parameter to use fell on the availability

requirements because availability is such a central parameter in the CSBQANR problem

and because of the difference in modelling of the availability in the solution methods.

The effect of other parameters are discussed for a similar problem in Braaten and Holmen

(2013). To limit running time used, only two β values were selected, the two β values

are chosen to cover the diversification of the β range to some degree.
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7.2 Results

This section presents some of the results of testing the CSBQANR solution methods and

provides a discussion of these results. First, some general results are presented, followed

by a discussion of the performance of each of the solution methods. Following this are

discussions of the effect the β value and varying of the availability requirement have had

on the complexity of the problem and the solutions obtained. Thereafter, the scalability

of the solution methods is discussed, and the section finishes with a discussion of possible

sources of errors found in the solution values and times derived from the testing. For

the full results, see Appendix B.

Every test instance presented in Section 7.1.1 was solved using m1, m2, m3, cg1, cg2

and cg3, and each combination of these were run using β values of 0.0, 0.25, 0.5, 0.75

and 1.0. Solution values, the time at which these were found and total times for the

different combinations of the CSBQANR problem solution methods and test instances

run with β = 0.25 are presented in table 7.4. For M-6 the time at which best solution

was found is excluded because of the small margins between this time and the total

time. A maximum limit of 10 hours for the MIP process was used; in the cases where

this limit was reached, the solution process was terminated and the best found solution

within that time was recorded as the corresponding solution value. In the table these

entries have a total time of > 10h and the best bound found at termination is also given.

The D-20 test instance run with solution methods m2 and m3 and the D-40 test instance

run on cg1, m2 and m3 generate too many paths and mappings to provide results with

the test setup used. The values given in the table are from running these combina-

tions by restricting the number of paths generated for each combination of service and

provider, as described in Section 7.1.3. The total time values reported are the total times

spent on the solution process, including any pre-generation steps. Table 7.5 presents the

average solution times spent solving the different test instances for each solution method.
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Table 7.4: Results for every test instance with β value of 0.25 solved by every solution
method, time when best solution was found and total time consumption in seconds. For
the cases where optimality was not proved within 10 hours, best bound at termination
is also given. Because of the small margins, time when the solution was found is not

given for M-6.

β = 0.25 Solution Method: cg1 cg2 cg3 m1 m2 m3

M-6 Solution Value 1550 1550 1550 930 1550 1550

Total Time 0.3 0.1 0.1 0.2 343 0.5

S-20 Solution Value 10970 10840 11130 4780 11130 11170

Time Found 3.2 8.7 17.6 1.3 1498 22.4

Total Time 3.3 9.0 18.3 1.5 > 10h 27.0

Best Bound 14495

S-40 Solution Value 20588 20128 20173 9610 22583 21358

Time Found 130 134 130 18.4 17022 1908

Total Time 157 151 203 19.8 > 10h > 10h

Best Bound 32375 25279

D-20 Solution Value 9787 9216 9267 4990 9382 9941

Time Found 3279 181 83.5 64.6 618 484

Total Time 5467 187 88.1 14066 > 10h > 10h

Best Bound 9576 10060

D-40 Solution Value 16122 15022 15221 5926 13459 16279

Time Found 18100 6107 13281 1972 15612 29054

Total Time > 10h 16977 13812 > 10h > 10h > 10h

Best Bound 16970 17803 15939 17208

Table 7.5: Average total time across β values spent solving the different test instances
for each solution method in seconds or hours where specified (h)

∗solution process terminated due to time limit of 10 hours for one or more β values

Solution Method: cg1 cg2 cg3 m1 m2 m3

M-6 0.3 0.1 0.1 0.1 225.1 0.5

S-20 2.9 8.7 9.6 22.7 10h∗ 25.3

S-40 105.4 128.2 125.1 1.6 10h∗ 8.8h∗

D-20 4258 103 84.5 4.4h 9.6h∗ 5h∗

D-40 9.6h∗ 7800 4.4h∗ 10h∗ 10h∗ 8.4h∗
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The following figures (7.6 - 7.8) show the solution values obtained from solving the S-20,

D-20 and D-40 test instances using every solution method and varying the β value. The

S-40 test instance is not shown here, as it has very similar behaviour to the S-20, while

M-6 is not included since its solutions is not seemingly affected by changing the β values.

Similar figures for these test instances can be found in Appendix B as Figure B.2 and

Figure B.1, respectively.
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Figure 7.6: Solution values for the S-20 test instance run on every combination of
solution method and β

’The m2 solution method did not solve the instances to optimality within the time limit
of 10 hours
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Figure 7.7: Solution values for the D-20 test instance run on every combination of
solution method and β

∗The m2 and m3 methods are run with a maximum limit on the number of paths
pre-generated of respectively 5 and 20, as mentioned in Section 7.1.3
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Figure 7.8: Solution values for the D-40 test instance run on every combination of
solution method and β

∗The cg1, m2 and m3 methods are run with a maximum limit on the number of paths
pre-generated of respectively 100, 4 and 10, as mentioned in Section 7.1.3

7.2.1 Performance of the CSBQANR Solution Methods

This section will present some results, and discuss the performance of each solution

method based on these and the results presented above. The complete set of solution

values and solution times can be found in Appendix B.

The m1 Solution Method

Figures 7.6 to 7.8 and Table 7.4 show clearly that the LFM solution method m1 generally

provides a lower solution value compared to the other solution methods. As this the

LFM includes a link-disjoint requirement, for a service’s primary and backup paths,

m1 does not solve precisely the same problem as the other solution methods and for

some problem instances this requirement proves to be very restricting. For relatively

sparse networks, with little possibility of providing disjoint paths between customer and

provider nodes, the solution will mainly consist of services that do not require backup

paths. This is the case with the S-20 test instance, where eight customers each with

one service only using a primary path are served. No backup capacity is reserved and

so the solution does not vary across the different β values, this is also seen in the S-40

test instance. The same tendency of a relatively low solution values is seen for all the

test instances. As seen in Figure 7.9, m1 generally chooses to serve fewer customers and

thereby also place fewer services than other solution methods, in the figure, m3 is shown
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for comparison. The number of services with backup is comparably low as well, as seen

in the same figure.
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Figure 7.9: The service distribution of running m1 and m3 on every test instance
with a β value of 0.0

The test instances with solutions including backup capacity reservation are M-6, D-20

and D-40, who all have relatively dense networks compared to their number of services

and can therefore provide total link-disjoint paths from the customers to the providers.

The varying β value has seemingly no effect on the solution values obtained from the

m1 solution method when run to optimality. The m1 solution method requires totally

disjoint primary and backup paths for a service as well as no overlapping of both primary

and backup paths between two services. This results in very few overlapping backup

paths and as the β is used to decide the amount of capacity to be reserved on highly

shared backup links; it has limited effect on the solutions.

The strict disjoint requirement also effects the solution time of the m1 solution method.

The number of possible network routings is greatly reduced, and the modelling of the

amount of backup capacity required is made simpler. In the S-40 and S-20 test instances

the reduced size of the solution space and simpler modelling seems to make the com-

putation noticeably simpler, decreasing the solution time compared to the other test

instances and solution methods. However, as seen in Table 7.4, the time to find the

optimal solution for m1 is quite small compared to the total time it uses to prove that

this solution in fact is the optimal. The number of complete network routings valid in
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an integer solutions is reduced for m1, compared to the other methods, but as the link-

disjoint requirement is less restricting without binary requirements, the LP produces a

lot of non-integer solutions m1 has to investigate to be able to prove optimality.

The m2 and m3 Solution Methods

The solution methods m2 and m3 consist of specialised pre-generation algorithms (Sec-

tion 6.3.1 and Section 6.4.1) and respectively a PFM and a mapping model presented in

Section 6.3 and Section 6.4. The difference between m2 and m3 is that m2 tries to build

network resource mappings from sets of pre-generated paths for each service, while m3

selects network resource mappings from pre-generated sets for each service. Apart from

this, the two models should produce equally optimal solutions when all pre-generated

paths and mappings are included, solving equivalent problem instances and allowed to

complete their solution processes.

The most apparent difference between the m2 and m3 solution methods is thereby

their pre-generation methods. The pre-generated mappings to m3 contain data at a

higher abstraction level where more decisions have already been made compared to the

pre-generated input to m2. As one can see in Table 7.4 and in the complete result

tables found in Appendix B, the solution values of m2 and m3 run with equivalent input

data are identical when solved to optimality and very close to each other even when

not solved to optimality, with the exception of the S-40 test instance. For S-40, m2 has

found a better solution than m3 for all β values except β = 0.0. For β = 1.0, m2 even

finds a better solution than m3’s optimal solution. In every solution produced by m2 for

the S-40 instance one or more path combinations that are not allowed by m3 are used.

This leads to m2 producing higher solution values than m3. This behaviour is due to

small numerical differences in the input data for m2 and m3, and is discussed further

in Section 7.2.4. The results for S-40 are therefore disregarded when comparing m2 and

m3.

While the solution values are either identical or very similar, the total solution times

of m2 and m3 are quite different, as well as the time at which the best solution is found.

For M-6, m2 uses a total time between 0.6 and 5.7 minutes, while m3 uses less than 2.5
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seconds for all β values. Additionally, m3 consistently finds a closer best bound than m2,

as seen for cases where both solution methods are terminated due to the time limit in

Table 7.4 . In addition, the time at which the best solution is found is much less for m3

compared to m2. For the S-20 test instance m3 finishes in a matter of seconds while m2

is terminated after running for 10 hours. In this case, m2 finds the same solution as m3

with three of five β values, but fails to prove its optimality within the time limit. For the

D-20 and D-40 test instances, m2 has a best bound lower than the solution provided by

m3. As these solution methods are supposed to solve the same problem, this might seem

wrong. However, the restriction of number of paths pre-generated is much more strict for

m2 than for m3 (see Table 7.2), giving m2 a more restricted solution space. Comparing

m2 and m3, it seems that m3 is a better choice for all test cases, when S-40 is disregarded

due to misleading results. The extra level of abstraction and early decision making in

the m3 solution method seems to ease the solution process considerably compared to

the m2 solution method.

Column Generation Solution Methods

For the M-6 test instance all the column generation solution methods produce solutions

equal to the optimal solution (β equal to 0.0, 0.25, 0.5 and 1.0) or very close (within

99.98% for β = 0.75). For other test instances the different column generation solution

methods produce different results. Solution values obtained with the different column

generation solution methods, along with the best found solution across all solution meth-

ods, for test instances S-20 and D-20 are shown in Figure 7.10. In relation to the best

solution found, one can see that the column generation solution methods follow this

quite close, especially for cg1 and β ≥ 0.5. In general, cg1 seems to produce better

solutions compared to cg2 and cg3, but this is not always the case, which demonstrates

the heuristic nature of the column generation solution methods.

The minimum and average solution values, relative to the best found solution for that

specific test instance and β value, for the different methods is presented in Table 7.6.

When only regarding the solution values produced, cg1 is the better choice of method

for column generation for the instances tested, having significantly better solution values

than cg2 and cg3, where cg3 is slightly better than cg2. On average, all three column
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Figure 7.10: The solution values obtained from running the column generation so-
lution methods on the test instances S-20 and D-20 plotted against each other and

against the best found solution, of all solution methods, per β value

generation solution methods perform quite well, cg1 produces on average a solution

within 98.1% of the best found solution, cg2 is within 94.7% and cg3 within 95.4%.

Excluding the special results from the S-40 instance, where m2 produces better solutions

than allowed by m3 or any of the column generation solution methods, these numbers are

even better. The respective average relative solution values are then 99.4%, 96.3% and

96.9% for cg1, cg2 and cg3. It is worth noting that even though the column generation

solution methods produce good solutions, the solutions found with m3 are still better

for instances where m3 was terminated due to the time limit and optimum is unknown,

albeit at the cost of higher solution times.
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Table 7.6: Minimum and average solution values of cg1, cg2 and cg3 relative to the
best solution found, across all test instances. A set of results excluding S-40 is included

due to m2’s behaviour for S-40, discussed in Section 7.2.4

Test Instances Solution Method: cg1 cg2 cg3
All Minimum % of best 91.2 85.4 86.5

Average % of best 98.1 94.7 95.4

All Except S-40 Minimum % of best 97.7 89.6 92.1
Average % of best 99.4 96.3 96.9

As seen in Table 7.5, the different column generation solution methods behave quite

similar in terms of average solution time for test instances M-6, S-20 and D-40, with cg1

slightly ahead of cg2 and cg3 for the latter two instances. For the test instances D-20

and D-40, the total solution time differs significantly. For D-20, cg1 spends considerably

more time on the solution process, compared to cg2 and cg3. D-20, having a dense

network, creates a high amount of potential paths in the pre-generation step for cg1,

causing the majority of total time being spent on cg1’s process of performing exhaustive

searches through all potential mappings for each service provider pair for each column

generation iteration. Although, for β values 0.0 and 0.25, the time spent on the MIP

process alone for cg1 far exceeds the total time consumption by cg2 and cg3. For the

D-40 test instance, the number of paths used to generate columns for cg1 is restricted,

as mentioned in Section 7.1.3, making the time spent searching through all potential

mappings a smaller portion of the total time consumption, compared to D-20, resulting

in a total time consumption similar to cg2 and cg3 for these cases.

Column Generation Methods Compared to m3

To evaluate the mapping columns generated by the column generation solution meth-

ods, their solutions are compared to the solutions obtained from solving m3 using the

AVG and MAX path limits, defined in Section 7.1.3, on the D-20 and D-40 test in-

stances. Table 7.7 shows the solution values and solution times obtained from solving

m3 with the AVG path limit. The results from both the AVG and MAX path limits can

be found in Table B.7. The solution values and times of the column generation methods

with β = 0.25 can be found in Table 7.4, for all other β values, see Appendix B.
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Table 7.7: Results from m3 with maximum paths per service provider pair limit
reduced to generate number of mappings approximately equal to Column Generation

Methods average number of mappings

Instance AVG Path Limit β Solution Value Solution Time

D-20 5 0.00 9382.0 9.8
0.25 9382.0 9.1
0.50 9372.0 9.5
0.75 9245.5 9.1
1.00 9102.0 3.9

D-40 4 0.00 13907.0 1408.3
0.25 13907.0 1741.2
0.50 13881.5 1456.8
0.75 13691.0 1342.1
1.00 13475.0 583.2

For solution values obtained for the D-20 test instance, m3 with the AVG path limit

outperforms both cg2 and cg3 for β values 0.0 and 0.25, and cg2 for β = 1.0, while

cg2 and cg3 produces the best solution for the remaining β values. This implies that

the mapping columns generated by cg2 and cg3 are not necessarily better than a simi-

larly sized set of mapping columns obtained from simply limiting the number of paths

produced in the pre-generation by only accepting the first N paths produced for each

service provider combination, resulting in the N shortest paths in terms of number of

links traversed, as described in Section 6.3.1. cg1, on the other hand, outperforms m3

with AVG path limit for all β values for the D-20 test instance. When D-20 is solved

with m3 MAX path limit, cg2 is outperformed for all β values and cg3 for β values 0.0,

0.25 and 0.5, but cg1 still produces the best solution. Note that m3 with the MAX path

limit, produces 448 mappings, considerably more than cg2 and cg3, their largest number

of mappings across all β values are respectively 275 and 337 (see Table B.13 and Table

B.12). For this reason results in this case will be skewed in favour of m3 compared to

cg2 and cg3.

For the D-40 test instance, Table 7.7 shows that m3, with the AVG path limit, is

outperformed by all column generation solution methods for all β values. When the

MAX path limit is used for m3, the tendency remains the same, with the exception of

cg2 performing slightly worse than the MAX path limit restricted m3 for β = 0.75. For

this larger and more complex test instance, it is evident that the mapping columns added

by column generations do improve upon similarly sized subsets of mapping columns
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obtained from simply restricting number of paths to the N-shortest in terms of number

of links traversed.

Looking at solution times for the restricted m3 compared to the column generation

methods, they are considerably lower than the solution times for the column generation

solution methods, for both D-20 and D-40, when using the AVG path limit. This

difference in total solution time is in part due to time spent on the column generation

steps for cg1, cg2, and cg3, but the time spent on the MIP solution process in the

column generation solution methods is also considerably larger compared to the MIP

solution process of m3 with the AVG path limit. This may be due to the column

generation solution methods being performed for the LP-relaxation of the problem only,

thus resulting in mapping columns specialised for an LP-optimal solution, making the

process of finding a MIP optimal solution harder compared to other similarly sized set

of mappings. However, for D-40, when m3 uses the MAX path limit, the total solution

time of the restricted m3 is very similar to the total solution times for cg2 and cg3,

where both cg2 and cg3 produces better solution for all β values, except β 0.75 for cg2.

7.2.2 Effects of Varying β and Availability Requirements

Firstly, this section presents some results and discusses the effect of using the β scaling

parameter and indicating its influence on the solutions obtained and the solution process.

Thereafter the effect of making the availability requirements of each service both higher

and lower on the resulting solution values and solution times is discussed.

Effect of the Use of β on Solutions and Performance

The expected effect β would have on the solution values was that the values would

decrease with an increase in the β value, as the backup requirements would become

stricter. This seems to be the general tendency in the solution methods m1, m2 and m3

when these are allowed to run their full course. The solutions provided by the column

generation solution methods are heuristic and as such they cannot be expected to always

display the same behaviour as m1, m2 and m3 with the variation of β values. Figures

7.6 to 7.8 show that the solutions from these solution methods vary more randomly
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with an increase in β compared to the pre-generation based methods and m1. However,

the general tendency points towards a decrease in solution value for higher β values, at

least for β equal to one. This apparent randomness displayed by the column generation

solution methods can be explained by the fact that the column generation methods

produce different set of heuristic mappings for each β value and the quality of these can

differ. The difference between the heuristic solution values and the optimal values for

each β value can be different depending on how good the set of mappings produced by

the column generation methods is for that β value.

Figure 7.11 displays the development in solution time across the β values for two of

the five test instances. The two instances are chosen to show the spread of development

tendencies in the different test instances. For the S-20 test instance, the m2 solution

method is not included in the figure as those cases were all terminated by the time limit

of 10 hours and so has an solution time > 10h. For the same reason both m2 and m3

are excluded from the S-40 figure (Figure 7.11(b)). However, there is one exception, the

m3 solution method ran on S-40 with β = 1.0 reaches optimum after 14394 seconds,

indicating that this test case is easier to solve than S-40 with lower β values.

When regarding the solution times across different β values, especially in the S-40 test

instance (see Figure 7.11(b)), one can see that there is a specific tendency. As the value

of β increases it seems that the problem gets increasingly easier to solve and the solution

time decreases. This tendency is not equally obvious in every test instance, for the S-20

instance it is less apparent, but still present to some degree, see Figure 7.11(a). β is

used in the constraint regulating the amount of backup capacity to be reserved for an

arc and the changing of its value changes the problem to be solved. For a β equal to zero

the problem allows every arc in the network to be shared unbounded. For a β equal to

one, the problem only supports dedicated protection, disallowing any sharing of backup

resources. For values between zero and one, different degrees of sharing is allowed, and

the larger the β, the fewer mapping possibilities occur. This decreases the problem size

and solving the problem takes less time. For low β values, sharing of backup links is less

restricted, and so the LP solution tries to include as much sharing as possible to increase

the profit. The problem requires disjoint primary paths for overlapping backup paths

and vice versa, i.e. restricting the amount of sharing possible, but in the LP solution
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Figure 7.11: Solution time in seconds for S-20 and S-40, for S-40 ran with cg1, cg2,
cg3 and m1, for S-20 with m3 as well, for every β. The m2 solution method for both
test instances and m3 solution method for S-40 are excluded as they are terminated by

the time limit (solution time > 10h).

this can be circumvented by partial overlapping. This increases the difference between

the LP and MIP solutions and leads to more time being used on finding the optimal

integer solution for low β values compared to high β values.

Figure 7.12 shows the ratio between backup costs and solution value obtained from

S-20 and S-40 run with every solution method, except m1, for every β. The m1 solution

method is excluded as its solutions are the same for every β value. From the figure one

can see that for the S-40 test instance, as the β value increases, so does the backup cost

ratio. The β value was intended to regulate the degree of sharing and the amount of

backup capacity needed to be reserved, so an increase in the relative backup reservation

was expected with increasing β values. As the backup cost is a good indicator of the
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amount of backup reserved, Figure 7.12(b) indicates that β has had its expected effect.

However, regarding the equivalent figure for S-20, Figure 7.12(a), this effect seems to

not be as evident. Here, the backup cost ratio increases until β = 1.0, where every

solution method produces solutions with lower backup cost ratio. Consulting the details

of the solutions, or the values in Table B.9, one can see that for this β value every

solution value decreases considerably as well as the backup costs, indicating that a

number of services requiring backup is excluded from the solution when β becomes one

and dedicated backup is required. This in turn can explain this fall in backup cost ratio,

and one can see that β also in this case has had the expected effect.
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Figure 7.12: Backup Cost in % of solution values for S-20 and S-40 run with cg1,
cg2, cg3, m2 and m3, for every β. Solution method m1 is excluded as its solution is

the same across every β value.
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Effect of Varying the Availability Requirements

The S-20 test instance was modified to create two additional test instances, one with

lower availability requirements for every service and one with higher availability require-

ments for every service, compared to the original S-20, as mentioned in Section 7.1.3.

The results of running these test instances with every solution method for a β value of

0.0 is shown in Table 7.8. The test instances were also run with β = 0.5, the results of

those cases can be found in Table B.8 in Appendix B.

Table 7.8: Results for test instance S-20 with low, original and high availability
requirements run with every solution method for β = 0.0

∗solution times indicate the time at which the best solution was found, the solution
values of these cases are not proved to be optimal within the 10 hours’ time limit

β = 0.0 Solution Method: cg1 cg2 cg3 m1 m2 m3
Low Solution Value 16270 16270 16270 16290 16290 16290

Total Solution Time 1.3 1.6 2.5 1.4 6.3 37.6
MIP Solution Time 0.0 0.1 0.1 1.1 5.8 3.8

Original, S-20 Solution Value 10970 10840 11020 4780 11170 11170
Total Solution Time 2.9 38.8 26.6 1.4 > 10h 27.7
MIP Solution Time 1.1 1.4 0.9 1.1 2677∗ 11.3

High Solution Value 1970 1625 1625 480 2090 2909
Total Solution Time 0.8 0.9 1.2 1.2 > 10h 1.2
MIP Solution Time 0.1 0.1 0.1 0.9 1690∗ 0.9

Regarding the solution values obtained, one can see that lower availability require-

ments allow for the serving of a larger number of, or more profitable, customers, in-

creasing the solution value obtainable. The increase in availability requirements has the

opposite effect; as one can see from the table, the solution values obtained from this case

are considerably lower than the values obtained from the original test instance. This

effect is similar for every solution method, but is especially large in the m1 solution

method. For the low availability instance, the column generation methods are very close

to m2 and m3 in regards of solution value, but for the two other instances it seems like

this difference becomes larger and m2 and m3 provide the best solution values. The

identical solution values of m2 and m3 are expected and support the results presented

in Section 7.2.1. The column generation methods provide different, but similar solution
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values for the original and high availability test instances, which can be expected due

to their heuristic nature.

For the m1 solution method, the solution values obtained in the high availability and

original case are considerably lower than the values obtained from the other solution

methods. This is in compliance with the effect characteristic for m1 discussed in Section

7.2.1, where the strict link-disjoint requirement to a service’s primary and backup paths

used in m1 limits the number of services with backup paths it is possible to serve

when combined with a sparse network. However, the solution value obtained with m1

from running the case with lower availability requirements is actually better than the

value obtained from the column generation solution methods and as high as the values

obtained from m2 and m3, implying that when backup paths can be disregarded, m1

is equivalent to m2 and m3. Regarding the solution times of m1, these are almost

exactly the same for the three variations of S-20. This indicates that the difference in

availability requirements does not affect m1’s ability to solve the problem. As m1 does

not use any kind of pre-generating, the size of the problem is the same for any values

of the parameters. In addition, with its simplified availability approximation m1 does

not consider the availability of the combination of primary and backup path; which can

indicate that solving m1 is less influenced by changing the availability requirements.

When regarding the solution time values presented in Table 7.8 for the solution meth-

ods cg1, cg2 and cg3, these are about the same for both the low and high availability

instances, but for the original S-20 the total solution time is considerably higher. As the

MIP solution times do not increase as much, it is the column generation in the root node

itself that is more time-consuming in the original S-20. The reason for this can lie in the

in-between nature of the original test instance. The high availability instance gives a

smaller solution space because the high availability requirements exclude a lot of possi-

ble mappings and as a result, the column generation methods finishes its search for new

columns earlier compared to the original problem. With the low availability instance,

the decrease in the number of services requiring backup paths will simplify the process

of finding new mapping columns, as only a primary path is needed. The original S-20

has a high number of possible mappings and a large portion of these mappings require
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a primary and a backup path, so the solution time of this instance is not restricted by

either of the two properties.

Solution methods m2 and m3 react quite differently to changes in the availability re-

quirements. While lowering the availability requirements reduces the total solution time

to m2 considerably, m3 shows a slight increase in total solution time as the availability

requirement is lowered. The m3 uses input from a pre-generating method where the

resulting valid mappings are already validated in regards to availability, this makes the

number of mappings produced heavily dependent on the availability requirement, with

higher availability requirements reducing the number of possible mappings. While m2

takes its input from the path pre-generating method providing possible paths regard-

less of their availability levels, it has to evaluate the availability levels of primary- and

backup path combinations within its MIP optimisation process instead. This requires

m2 to evaluate the same large number of path combinations regardless of the actual avail-

ability requirement, and a high requirement makes finding a valid combination harder.

For m3, on the other hand, a much lower number of mappings have to be considered

in its MIP solution process as the availability requirements are increased, and explains

why m3 behaves opposite to m2 with respect to changes in the availability requirements.

Note that the time spent by the path and mapping pre-generating methods is included

in the total solution time presented in Table 7.8.

7.2.3 Scalability of the CSBQANR Solution Methods

Comparing the solution times of running the m1 solution method on the test instances

M-6, S-20 and S-40 (see Appendix B for the complete set of results) to the other solu-

tion methods it seems to be the most efficient. However, when moving on to problem

instances with denser networks as D-20 and D-40, the column generation methods solve

these faster than m1. The denseness of the networks in the test instances run seems

to impact m1’s solution time considerably, which can be explained by the fact that m1

does not use any column or pre-generating methods to produce its input and therefore

has to evaluate every possible routing during its solution process. As the denseness of

the networks increase, the number of possible routings increase. Effective use of m1 is

thus restricted to problem instances with sparse networks or few services to be placed.
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In any case, as mentioned in Section 7.2.1, m1 does not solve exactly the same problem

as the other solution methods and to provide good solutions should thereby only be used

when total link-disjoint primary and backup paths are essential.

Regarding the solution times resulting from running the m2 solution method, one can

see in Table 7.5 that the only test instance it is able to solve within the 10 hour time

limit is the minimal test instance M-6 and the single case of D-20 for β = 1.0, where

the number of pre-generated paths is restricted considerably. Even with the M-6 test

instance it uses 3.75 minutes on average, compared to the rest of the solution methods

having average solution times of less than 1 second. For D-20 with β = 1.0, the solution

time is 8.2 hours, while for all other instances, the solution process is terminated after 10

hours before optimum can be proven. The path pre-generating step of the m2 solution

method is only accountable for a minimal part of the total solution time, and is therefore

not the reason for m2’s high solution times. However, the time spent on pre-generation

grows considerably as the size of the instance increases, 2.8 seconds for D-20 vs. 545.6

seconds for D-40, and is expected to scale badly to even larger instances (see Table

B.10). Additionally, m2 has to be run with a maximum path limit for the D-20 and

D-40 test instances, as described in Section 7.1.3. This means that the solutions derived

from these test instances cannot guarantee an optimal solution to the problem even if

m2 were to run until completion of the solution process. The majority of time m2 uses

is spent on the MIP process and so this part of m2 can be held accountable for its

bad scalability. For m2, the availability requirement validation is done outside the pre-

generation, this means that m2 has to search through a solution space including every

path combination, valid or not, in its solution process. As a result, m2 has to consider

a lot more possibilities for each problem instance, compared to m3, which can exclude

all availability-invalid path combinations in its pre-generating step. Even though m2

may not be the most efficient solution method to the CSBQANR problem, the solutions

it produces with its limitations on both input and time are quite close to the column

generation methods and m3 in test instances M-6, S-20, S-40 and D-20, as seen in figures

7.6 and 7.7. In the D-40 test instance, the solutions resulting from m2 are not as good

as the column generation methods and m3, as seen in Figure 7.8.
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The m3 solution method solves small and medium problem instances within the 10

hour time limit, as seen by its average time consumption in Table 7.5. Runs with m3

for all β values for the M-6 and S-20 test instances are solved to optimum within the

time limit, and some of the highest β values for the other instances are solved within 10

hours, but for D-20 and D-40 optimality cannot be guaranteed. As for the m2 solution

method, m3 has a maximum path limit when solving D-20 and D-40, described in Section

7.1.3. The maximum path limits handled by m3 is notably higher than the maximum

path limits for m2 (see Table 7.2), thus m3 appears to scale better than m2. Even

though m3, like m2, is not able to guarantee optimal solutions to the most complex

test instances, m3 still produces better solutions than any other solution method for all

instances, including the test instances where the pre-generated number of mappings is

restricted. For larger or more complex problem instances than the D-40 test instance,

m3 will require further restrictions to the number of pre-generated mappings, and the

value of the solutions m3 is able to produce is expected to suffer accordingly.

The column generation solution methods solves every test instance except D-40 within

the 10 hour limit. The solution times of cg1 show that it handles all test instances up

to S-40 very well, but solving the D-20 test instance the solution time of cg1 increases

considerably. A limit to the maximum number of paths for each service provider pair

for D-40 is needed for cg1 to function in practice, as described in Section 7.1.3. When

cg1 is run with this restriction, the column generation is completed within 1 hour for

all β values except β = 0.25. The full solution process is completed for the case with

β = 1.0, but for every other β value it is terminated upon reaching the 10 hour time

limit.

Disregarding the D-40 test instance, the solution times of cg2 and cg3 are very close

and in the same range, every test case is then solved within 6 minutes. For the D-40

test instance, cg2 is the only solution method able to finish within the 10 hour MIP time

limit for every β value, although cg2 does exceed the 1 hour column generation time

limit for some of the β values. The solution method cg3 is terminated because of the

time limit for β = 0.0, but manages to finish with the time limit for the rest of the β

values. For β = 0.75 and β = 1.0 both cg2 and cg3 use less than 1 hour to solve the
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D-40 test instance. Figure 7.13 shows the solution time of cg2 and cg3 when run with

test instances S-40 and D-20.
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Figure 7.13: Solution time for running cg2 and cg3 with S-40 and D-20 for every
value of β

For β = 0.0 the solution times for cg2 and cg3 when run with the D-20 instance are

much lower than when they are run on the S-40 test instance, unlike every other solution

method. At β = 0.25 the solution times differ, but they are closer than with β = 0.0. For

the higher β values, the solution times from solving the D-20 test instance is generally

larger than from solving S-40, as is the tendency of the rest of the solution methods. The

number of possible disjoint paths in the S-40 test instance is low because of its sparse

quality, this in the combination with its high number of demanded services makes the

disjoint requirements very restricting for this instance. As the D-20 test instance can

provide many more disjoint paths and has a much lower number of demanded services,

the disjoint requirements are less restricting in this instance. As mentioned in the β

discussion in Section 7.2.2, low β values encourage sharing in the LP solution, which can

increase the solution time if the disjoint requirements are very restricting. Considering

the mentioned properties of S-40 and D-20, this can explain the large differences in

solution time for these instances with low β values.

Comparing all the solution methods, as seen in Table 7.5 the column generation solu-

tion methods solves every test instance in average faster than m2 and m3 and reviewing

the complete results presented in Appendix B one can see that the column generation

solution methods are always faster than m3 when m3 is run with unlimited number of
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paths. For all test instances, except D-40, all the column generation solution processes

are able to finish within the 10 hour time limit. For the larger test instances D-20 and

D-40, the solution times of cg2 and cg3 are considerably lower than those of cg1 for

D-20, while the solution time is similar for D-40 only if using limited pre-generation for

cg1. For the other test instances the solution times are in the same range. However, as

discussed in Section 7.2.1, cg1 stands out and always provides better values than cg2 and

cg3. Solution values of cg1 is generally close to the values provided by the m3 solution

method, as seen in figures 7.6 to 7.8.

A considerable part of the solution time when running cg1, cg2 and cg3 originates

from the column generation part of the solution methods, prior to solving the MIP with

the generated columns, see Table B.11 and Table B.5. The cg1 solution method has

the lowest times spent on column generation for S-20 and S-40, and is close to cg2 and

cg3 for M-6. However for D-20, cg1 spends considerably more time than cg2 and cg3,

approaching the 1 hour time limit set for column generation. For D-40, the number of

pre-generated paths needs to be restricted for cg1 to produce meaningful results within

a reasonable amount of time. With restricted pre-generated input to cg1, the time

consumption is slightly lower than those of cg2 and cg3, only exceeding the 1 hour time

limit for β = 1.0, while cg2 and cg3 exceed this time limit for β values 0.0, 0.25 and

0.5. For cg1 to finish within the same time as cg2 and cg3, as it does for D-40, it is

expected that the path limit for pre-generation for cg1 has to be even stricter as the

problem instances get larger and more complex. For D-40, the restriction imposed still

allows cg1 to produce better solutions than cg2 and cg3, but this is not expected to be

the general tendency for larger and more complex instances. The solution methods cg2

and cg3 are the only solution methods that manage to finish the solution process for

D-40 for some β values without any added restrictions, and is therefore assumed to offer

the best scalability as problem instances get larger and more complex.

The pre-generation of paths and mappings performed for solution methods m2, m3

and cg1, is only accountable for a small portion of the solution methods’ total time

consumption for solving the test instances, but there are still some results worth noting

regarding the scalability for the pre-generation methods. For M-6, S-20, S-40 and D-

20, the time spent on pre-generation never exceeds 3 seconds for m2 and m3, and is
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a maximum of 18.3 seconds for cg1. For D-40, the time spent on pre-generation is

considerably longer, approximately 545 seconds, 960 seconds and 2808 seconds for the

pre-generation of input for m2, m3, and cg1, respectively (see Table B.10). This indicates

that, even though pre-generation of data is a small portion of the total solution time

for the test instances used, this portion is expected to grow considerably as problem

instances get larger.

Both the pre-generation of paths and mappings, as well as the different column gener-

ation methods are all done separately for each service provider pair, and can therefore be

done in parallel for each such pair. For instances M-6, S-20, S-40 and to some extent D-

20, little gain is expected from implementing parallelisation, as the total time spent for

pre-generation and column generation is considered small compared to the total solution

time. However, for D-40, the time spent on both pre-generation of paths and column

generation grows considerably. As problem instances get larger and more complex, the

proportion of time spent for pre-generation or column generation is expected to increase,

and parallel implementation of the pre-generation and column generation methods are

expected to improve scalability considerably. Table B.10 found in Appendix B shows

the time used on pre-generation for m2, m3 and cg1 and Table B.11 shows the time used

for column generation for cg1, cg2 and cg3.

7.2.4 Sources of Errors

The different solution methods are implemented using different programming languages

and also use different kinds of input files. Where m3 uses the raw JSON files and calcu-

lates paths and mappings directly, m2 uses the JSON files as input for a pre-generating

step, similar to the one used by m3, but then exports the data to a Mosel data file before

handing it to the PFM implementation of m2. This affects the availability requirement

validation of the different solution methods, the result being that one solution method,

m2, accepts solutions that other methods do not.

This behaviour appears in the S-40 instance, where m2’s best found solution is better

than the optimal solution found by m3. Since m2 and m3 solve the same problem,

this should not be possible. Careful study of the solutions produced show that m2
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uses two combinations of primary and backup paths that are not included as possible

mappings for m3. The two combinations connect the same customer and provider, but

are allocated to two different services. The path combinations use the same links through

the network, and are therefore identical in terms of availability. Additionally, the two

services both have an expected availability requirement of 0.995. The path combinations

give an expected availability of exactly 0.995, when using the input data pre-generated

for m2. However, during m3’s mapping pre-generating step, the expected availability

for the equivalent mappings is calculated to 0.994999833409, and those mappings are

therefore not included as possible mappings for the m3 solution method. Hard-coding

the implementation of m3 to accept the two mapping equivalents of the infeasible path

combinations from m2 does produce a solution with a value between m2’s best found

solution value and best bound, implying that these kinds of borderline solutions is the

root cause of m2’s behaviour for this instance. Similarly, hard-coding m2 to not allow

these two path combinations, as well as similar borderline path combinations, does

indeed make m2 produce a solution in line with m3’s original solution, with a best found

solution value below, and a best bound above, the optimal solution found by m3. These

results can be found in Table B.15 in Appendix B.

All tests done in this thesis are run on machines on the Solstorm cluster, which is a

cluster shared with other students and staff associated to the Department of Industrial

Economics and Technology Management. This means that there is no guarantee that

one gets all of the computing power and memory available at a node during the full

duration of a test. It is possible to roughly monitor resource usage on computing nodes

in the cluster, but small to medium sized tasks, run simultaneously, may have gone

undetected and had a small effect on the solution times obtained. However, every

possible precaution has been made to prevent collisions on the cluster. Using a remote

cluster in this manner can include influence from uncontrollable external factors as well.

This all can affect the solution times obtained through the tests executed in the work

with this thesis, so solution times presented here might be imprecise.

The column generation solution methods are implemented so that they keep the opti-

mal basis found for each iteration, reloading the same basis once new mapping columns

have been found and added before starting the next iteration. When the LP and MIP
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root node solution methods are restricted to use primal simplex only, Xpress reports the

warning ’BCL: Warning 1570: XPRS: ?140 Warning: Basis lost - recovering’, when the

MIP process is started following the initial column generation. The solutions produced

seem to be unaffected by this warning, but the cause of this warning message may have

had minor effects on the total solution time reported for solution methods cg1, cg2 and

cg3.





Chapter 8

Conclusion and Future Work

This chapter starts with some concluding remarks of the work presented in this thesis,

followed by some suggested future work related to this thesis is presented.

8.1 Conclusions

The next generation of brokers will be the QoS-aware broker with cloud connectivity

that takes requirements from the customers. Today’s telecommunications companies,

with emerging initiatives as cloud brokers, can benefit greatly from implementing this

approach. Such a broker must not only decide placement of services, but also how to pro-

vide the connectivity between services and customers. This approach also provides the

opportunity to offer cloud services with connectivity guarantees, bundled with generic

Internet connectivity, as telecommunication companies already act as Internet service

providers in multiple regions.

There are multiple existing solutions solving parts of the challenges involved in act-

ing as a BC, like network routing handling simple QoS attributes as path latency or

bandwidth flow. Some approaches reward low average latency to some extent, but do

not consider individual services’ requirements, and other approaches have strict latency

requirements, while others allow high latency routings. Approximating availability in

network routing has been attempted and explored extensively in literature, but no known
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solutions perform both cloud resource location (e.g. service to provider) and connec-

tivity with more advanced QoS attributes including availability requirements for each

individual service.

In this thesis, three MIP models attempting to address the optimisation problem

where cloud service allocation and connectivity challenges are met by a joined broker

and carrier role, considering three intrinsically different QoS requirements (bandwidth,

latency and availability), have been presented. Derived from the models are six solution

methods, these have been tested using five test instances and different values of a scaling

parameter β. The solution method m1 is a simple link-flow model implemented in Mosel

with no pre-generation. The solution method m2 is a path-flow model implemented in

Mosel with a path pre-generation method providing paths as input to the Mosel model.

The solution method m3 is a mapping model implemented in C++ with BCL using a

mapping pre-generation method to generate path combinations as input. The three

column generation methods cg1, cg2 and cg3 use different column generation methods

to provide good mappings to the C++ implementation of the mapping model. The β

parameter is used to vary the degree of sharing of backup paths allowed and consequently

the amount of backup capacity to be reserved. The five test instances are constructed

to be used in all solution methods and have different number of customers and services,

and varying network structure.

As discussed in Section 7.2.1, the m1 solution method solves a more restricting prob-

lem compared to the other solution methods and so produces lower solution values and

serves fewer customers. In problem instances with sparse networks, m1 will avoid re-

serving capacity for backup use. Because of no or little backup capacity provisioning,

solutions obtained by m1 are not effected by β value differences for the test instances

used. However, solution times of m1 are low, compared to the other solution meth-

ods, because of smaller solution space due to added restrictions to the allowed network

routing for each service, as well as the simpler modelling of the availability requirement.

Using path and mapping pre-generation methods, m2 and m3 are the implementations

of the PFM and mapping model presented in Chapter 6. The solution methods are

supposed to be equivalent solution models, the difference being what decision are made
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in the pre-generating algorithms and in the MIP models of the two solution methods.

When solved to optimality m2 and m3 provide the same solutions, and when terminated

prematurely m3 provides equal or higher solution values and consistently provides a

smaller gap. The exception is the S-40 test instance, where m2 produces better solutions

than m3, but for this instance, m2 includes combinations of primary and backup paths

not allowed by m3. This is due to numerical differences in rounding of availability

values when storing input data for m2 and the availability values used in the mapping

pre-generating for m3.

The column generation solution methods are heuristic solution methods shown to

provide quite good solutions. The best solutions are provided by cg1, having solution

values on average within 98.1% of the best found solution for each test instance and β

value. The solution method cg1 depends on possible paths being pre-generated, while

cg2 and cg3 do not. The solution times for cg1 run on smaller test instances are low,

but the time spent on generating columns increases considerably when the problem

instances become larger and more complex. In these cases, cg2 and cg3 are the faster

solution methods, and cg1 is required to use a limited set of pre-generated paths to offer

solution times in the same range. The quality of the mapping columns generated by the

column generation solution methods was tested against the columns generated by the

pre-generating of m3, when the pre-generating was restricted to generate approximately

the same number of mappings, by selecting the shortest paths in terms of number of

links. The column generation methods are shown to produce better mapping columns

than the restricted pre-generation for the D-40 test instance. For D-20, which has less

customers and services, only cg1 consistently produces better sets of mapping columns

than produced by the restricted pre-generation. For D-20, cg2 and cg3 produces solutions

similar to m3 with restricted pre-generation.

The use of β was intended to regulate how the amount of backup capacity needed to be

reserved is affected by multiple overlapping backup paths. The general tendency is that

increasing value of β leads to problems easier to solve, having on average lower solution

time values than with lower β values. This effect is less apparent in some test instances

and for some cases with the column generation solution methods, but can be seen very

clearly in the m1, m2 and m3 for most test instances. Reviewing the ratio between
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backup costs and solution values for a selection of the test cases one can see that using

β has the expected effect as the need for backup increases as its value increases. When

β = 1.0 and dedicated backup is required, it seems that for some cases the need for

backup decreases instead of increases, but this effect can be attributed to the exclusion

of customers, no longer being profitable with increased backup needs, from the overall

solution.

Changing the values of input parameters as the availability requirements of each ser-

vice in a problem instance affects the complexity of the problem considerably. Solution

values of every solution method increases as the availability requirements become less

strict, reducing the need for backup paths and reducing the amount of services excluded

due to availability requirements. Similarly, increasing the availability requirements dis-

qualifies a lot of services from being included in the solution and reduces the solution

values for every solution method. Solution method m1 is especially sensitive to the vari-

ations in availability requirement, as the strict link-disjoint requirement to a service’s

primary and backup paths used in m1 limits the number of services with backup needs

it is possible to serve. For the column generation solution methods solution times are

reduced both when lowering and increasing the availability requirements. Lowering the

availability requirement removes backup considerations from both the column generation

and the MIP model, while making the requirements higher greatly reduces the number

of columns generated. For m2, the number of pre-generated paths is independent of

the availability requirement, thus high requirements increase the solution time, as it

gets harder to find combinations of paths fulfilling the availability requirements, while

lowering the requirements makes it easier. For m3, low availability requirements will

increase the solution time, while higher requirements decrease the solution time. This

is due to the availability requirements being handled by the pre-generating for m3 and

the number of mappings generated depends on the availability requirements. For high

availability requirements, fewer possible mappings are found, reducing the complexity of

the problem, while for low availability requirements, more possible mappings are found,

increasing the number of mappings to be evaluated by m3. For m1, no noticeable effect

in terms of solution time for the different levels of availability requirements is evident,

which can be attributed to its simplified availability handling and to the fact that no

pre-generating is used.
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Regarding the scalability of the solution methods presented in this thesis, one finds

that m1 is efficient in problem instances with sparse networks or low number of services,

but is outperformed, in terms of solution time, for the test instances larger or more

complex than the S-40 test instance. The solution times of m2 are quite high all-over

and m2 seems to scale very badly, and despite having quite good solution values, is

not suitable on problem instances larger or more complex than M-6 using more than

10 hours solving every other test instance. Solution method m3 scales better than m2,

but still has trouble solving test instances larger or more complex than S-40 without

restricting the number of paths generated. However, restricting the number of paths

to match the number of mappings produced by the column generation methods, m3

solves quite fast and still produces good solutions. Regarding cg1, it scales well up till

the size and complexity of S-40, and has tolerable solution time values with the D-20

test instance. However, to be able to find a meaningful solution for D-40, cg1 needs to

restrict the path pre-generating because of its column generation step otherwise using

several hours on each iteration. The solution methods cg2 and cg3 scales better than

cg1, being the only solution methods able to solve D-40 within the time limit for most of

the β values. Actually, cg2 is the only solution method that manages to solve every test

case within the 10 hour limit for the MIP process, but does exceed the 1 hour column

generation time limit for some β values.

All in all, m3, with restrictions for larger problem instances or one of the column

generation methods cg1, cg2 and cg3 seem to be the solution methods to recommend.

For larger problem instances than presented in this thesis, cg2 and cg3 are expected to

be a better choice than cg1.

8.2 Future Work

In this section some suggestions are presented for continuation of the work regarding

the CSBQANR problem presented in this thesis, the models derived to represent it, the

solution methods derived to solve it, and other areas which could improve its use.
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8.2.1 Problem Extensions

As the CSBQANR problem presented in this thesis only considers the case where one

service is connected to one provider location, which makes it most applicable for the

SaaS service model which is the area most telecommunication companies are focusing

on today. For the PaaS and IaaS service models, having multiple components included

in a service that require some form of interoperability is more common, so an extension

to the problem allowing separate placements of these components might be interesting in

addressing these service models. This adds the need to handle connectivity between com-

ponents as well as between customers and providers. The resulting problem including

these extensions would resemble a quadratic assignment problem where the assignment

of one component affects the assignment of others.

Three QoS attributes have been included in the work presented in this thesis, all dif-

fering in their nature and behaviour. These attributes have been chosen due to their

importance to business customers, frequency of occurrence in the literature and their

difference in behaviour and modelling approaches. An extension to the problem could in-

clude other QoS attributes directly or by generalising the problem so different attributes

can be handled and thus increasing the problem’s flexibility and area of application.

Other attributes can be jitter (important for streaming and buffer size), error rate, node

processing requirements (e.g. many small packages vs. a few big), redundancy, security

considerations etc.

8.2.2 Extensions to the Solution Methods

The column generation solution methods proposed in this thesis can only produce heuris-

tic solutions to the CSBQANR problem. By incorporating column generation in the

MIP solution process, optimal solutions may potentially be achieved, depending on the

column generation method used. Although performing reasonably well, the column gen-

eration methods of cg2 and cg3 are heuristic methods, and cannot guarantee that an

optimal set of mapping columns is found. The solution method cg1, on the other hand,

can guarantee that an LP-optimal set of mapping columns is found, but is dependent

on having all possible paths pre-generated, and does not scale as well as cg2 and cg3.

Extending the column generation methods presented in this thesis, or developing new
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column generation methods, offering mapping columns that are optimal or close to op-

timal and not dependent on pre-generation, could be interesting in the continuation of

this work.

In the pre-generation and column generation methods, the generation of columns

is done independently for each service provider pair, and thus these methods contain

considerable potential for parallelisation. For large problem instances, parallel imple-

mentations of pre-generation and column generation are expected to produce noticeable

reductions in total solution time, and could be part of a continuation of this work.

8.2.3 Numerical Study of the Effect of β

The β parameter used by all the solution methods presented in this thesis determines

the degree of sharing of the protection scheme, from fully shared protection (β = 0.0)

to dedicated protection (β = 1.0). With unlimited sharing scheme, the actual ex-

pected availability of a network connection will depend on all other connections having

a backup path overlapping with that connection’s backup path, as the overlapping part

of the backup path may be unavailable if a link failure affects the primary path of one of

the sharing connections. When there are few such overlapping paths, their effect on the

expected availability is very small, but if the number of overlapping connections is large,

the effect may be significant. The test instances used in this thesis do not produce solu-

tions where the number of overlapping backup paths is large, and the models presented

in this thesis do not explicitly handle this part when estimating the expected availability.

However, a non-zero β value can be used to reduce the effect from other overlapping

network connections, increasing the amount of bandwidth reserved for backup as the

number of overlapping backup paths increases, reducing the probability of a backup

path’s resources being unavailable. A continuation of the work presented in this thesis

could include a numerical study of the effect different β values would have for problem

instances where the number of overlapping backup paths is large. The effect different

β values has on the actual availability of primary and backup path mappings would be

especially interesting in such a study.
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8.2.4 Real World Implementation and Applications

The CSBQANR problem presented in this thesis is designed to be of help for a BC in

the tactical and possibly strategic decision making process. The obvious application is

to decide what customers to choose and how to fulfil their demands, but the model could

also be used with other intentions. The output of the solution methods is dependent on

the input data, and the solutions derived are highly dependent on the accuracy of this

data, as indicated by the variation in solutions by varying the availability requirement,

as seen in Section 7.2.2. Constructing problem instances with different network struc-

tures or other aspects, and running these using one or several of the presented solution

methods can be used to see how solutions change conditional on the input used, i.e.

using the solution methods to perform a kind of simulation. In this fashion the BCs

could use the CSBQANR solution methods to explore aspects as placement of provider

locations, where further development, improvement and expansion of the existing net-

work is needed, what kind of services are the most profitable and what effect different

price structures could have.

The CSBQANR problem presented in this thesis has a highly simplified structure

and complexity compared to the real world problem, where only three QoS attributes

are considered, and availability is only approximated. The use of more and better

information about the present cloud computing market and how it is expected to evolve

could be valuable in improving this problem and the solving of it. Other important

aspects for the experienced QoS attributes may be identified and incorporated in the

problem’s network routing. Prices, network structure, availability and latency values,

customer placement and demand and so forth are all estimated in this thesis. To be

able to support real world implementation, real world data on these aspects is needed

to provide more realistic input to the solution methods.

Technology in the cloud computing and virtualisation areas is developing fast, but as

of today some of the aspects of the presented problem and solutions may not be imple-

mentable. In the future, one should explore different network virtualisation approaches

to implement the network embedding produced by the results of solving the problem.

The CSBQANR problem presented may produce network embedding relying on rapid

backup switching, which is not supported by all approaches.
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The development of SLAs to ensure the guarantees of the QoS attributes proposed in

this thesis is a challenge the actors in the market have to address to be able to utilise

the CSBQANR solution methods to their full extent. If such SLAs are not possible to

attain, the models should be altered to fit the actual setting and match what is possible

to obtain.
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Appendix A

Complete MIP Models

This appendix provides a summary of the MIP models introduced in Chapter 6.

A.1 Link-Flow Model

A.1.1 Indices, Sets, Parameters and Variables

Table A.1: Summary of the indices to the link-flow model

Index Definition

c Customer

i, j Network node

p Provider

s Service

119
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Table A.2: Summary of the sets to the link-flow model

Set Definition

A Set of all arcs (i, j)

C Set of all customers c

Ic Set of internal nodes from the perspective of customer c

Qj Set of every node reachable from node j

O Set with every combination of different services (s, t) where s < t

Ps Set of all providers who can host service s

Sc Set of services demanded by customer c

Wj Set of every node that can reach node j

The nodes defining the arcs in A are numbered increasingly, so when a reference to links

is needed, a link being the undirected link between two nodes or both arcs connecting

the nodes, this is defined as ∀(i, j) ∈ A |i < j. Similarly, the services are ordered, so

when requiring all pairs of different services O, the set of all combinations of services

(s, t) where s < t is used.

Table A.3: Summary of the parameters to the link-flow model

Parameter Definition

BU
s , BD

s Bandwidth requirement for service s in each direction

(U: up, customer to provider, D: down, provider to customer)

DL
ij (Expected) availability for link between i and j, where DL

ij = DL
ji

Eij Price per capacity unit used on arc between nodes i and j

Gs Maximum round trip latency allowed by service s

Hsp Cost of placing service s at provider p

Iij The amount of capacity available for reservation on arc (i,j)

Jp Node for provider p

Rc Revenue from serving customer c

Tij (Expected) latency on arc from node i to node j

Vc Node for customer c

Ys Required minimum availability level for service s

β Factor regulating the amount of extra capacity that must be reserved

for an increased number of services sharing a backup arc
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Table A.4: Summary of the decision variables of the link-flow model

Variable Definition

bijs Binary variables that indicate if service s uses arc (i, j) as a part of the

backup path from customer node to selected provider node (and (j, i)

is used for the backup path in the opposite direction). The variables

are not defined for arcs going into the customer node corresponding to

service s

�st Binary variable indicating if the chosen primary paths of services s and

t overlap anywhere

rsp Binary variable indicating if a backup path is needed for service s to

provider p

uijs Binary variables that indicate if service s uses arc (i, j) as part of its

primary path from customer node to selected provider node (and (j, i)

is used for the primary path in the opposite direction). The variables

are not defined for arcs going into the customer node corresponding to

service s

xsp Binary variable that indicates if service s is placed at provider p

yc Binary variable that indicates if customer c is being served

λij Continuous variable indicating how much capacity to be reserved on

arc (i, j) for backup use

A.1.2 Constraints

max z =
∑
c∈C

Rcyc

−
∑
c∈C

∑
s∈Sc

∑
p∈Ps

Hspxsp

−
∑

(i,j)∈A

Eij(λij +
∑
c∈C

∑
s∈Sc

(BU
s uijs + BD

s ujis))

(6.1)
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yc −
∑

p∈Ps

xsp = 0, ∀c ∈ C , ∀s ∈ Sc

(6.2)

∑
c∈C

∑
s∈Sc

(BU
s uijs + BD

s ujis) + λij ≤ Iij , ∀(i, j) ∈ A

(6.3)

∑
i∈Wj

uijs −
∑

i∈Qj

ujis = 0, ∀c ∈ C , ∀s ∈ Sc, ∀j ∈ Ic

(6.4)

∑
i∈Wj

bijs −
∑

i∈Qj

bjis = 0, ∀c ∈ C , ∀s ∈ Sc, ∀j ∈ Ic

(6.5)

∑
j∈QVc

uVcjs − yc = 0, ∀c ∈ C , ∀s ∈ Sc

(6.6)

∑
j∈QVc

bVcjs −
∑

p∈Ps

rsp = 0, ∀c ∈ C , ∀s ∈ Sc

(6.7)

∑
i∈WJp

uiJps −
∑

j∈QJp

uJpjs − xsp = 0, ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps

(6.8)

∑
i∈WJp

biJps −
∑

j∈QJp

bJpjs − rsp = 0, ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps

(6.9)
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∑
(i,j)∈A

Tij(uijs + ujis) ≤ Gs, ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps

(6.10)

∑
(i,j)∈A

Tij(bijs + bjis) ≤ Gs, ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps

(6.11)

∑
p∈Ps

MA
s rsp +

∑
(i,j)∈A

ln(DL
ij) uijs − ln Ys ≥ 0, ∀c ∈ C , ∀s ∈ Sc

(6.12)

MA
s = ln Ys −

∑
(i,j)∈A

ln DL
ij , ∀c ∈ C , ∀s ∈ Sc

BU
s bijs + BD

s bjis − λij ≤ 0, ∀c ∈ C , ∀s ∈ Sc, ∀(i, j) ∈ A

(6.13)

∑
c∈C

∑
s∈Sc

β(BU
s bijs + BD

s bjis) − λij ≤ 0, ∀(i, j) ∈ A

(6.14)

bijs + uijs ≤ 1, ∀c ∈ C , ∀s ∈ Sc, ∀(i, j) ∈ A

(6.15)

rsp − xsp ≤ 0, ∀c ∈ C , ∀s ∈ Sc∀p ∈ Ps

(6.16)

uijs + ujis + uijt + ujit − �st ≤ 1, ∀(i, j) ∈ A |i < j, ∀(s, t) ∈ O

(6.17)
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bijs + bjis + bijt + bjit + �st ≤ 2, ∀(i, j) ∈ A |i < j, ∀(s, t) ∈ O

(6.18)

yc ∈ {0, 1}, ∀c ∈ C

xsp ∈ {0, 1}, ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps

rsp ∈ {0, 1}, ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps

uijs ∈ {0, 1}, ∀c ∈ C , ∀s ∈ Sc, ∀(i, j) ∈ A | j �= Vc

bijs ∈ {0, 1}, ∀c ∈ C , ∀s ∈ Sc, ∀(i, j) ∈ A | j �= Vc

�st ∈ {0, 1}, ∀(s, t) ∈ O

λij ≥ 0, ∀(i, j) ∈ A

(6.19)
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A.2 Path-Flow Model

A.2.1 Indices, Sets, Parameters and Variables

Table A.5: Summary of the indices to the Path-Flow Model

Index Definition

c Customer

i, j Network node

k, b Path

p Provider

s, t Service

Table A.6: Summary of the sets to the Path-Flow Model

Set Definition

A Set of all arcs (i, j)

C Set of all customers c

K Set of all paths k

K SP
sp Set of all paths k where service s is placed at provider p

Lij Set of all paths k using the arc (i, j)

O Set with every combination of different services (s, t) where s < t

Ps Set of all providers p who can host service s

Sc Set of services s demanded by customer c

The nodes defining the arcs in A are numbered increasingly, so when a reference to links

is needed, a link being the undirected link between two nodes or both arcs connecting

the nodes, this is defined as ∀(i, j) ∈ A |i < j. Because paths in this model use the

same links in both directions, the set Lij is symmetric, i.e. Lij = Lji. Additionally,

the services are ordered, so when requiring all pairs of different services O, the set of all

combinations of services (s, t) where s < t is used.
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Table A.7: Summary of the parameters to the Path-Flow Model

Parameter Definition

DP
k Availability for path k

DC
kb Probability of both primary path k and backup path b being available

simultaneously

Eij The cost of reserving a unit of capacity for backup on arc (i, j)

EP
k The cost of using a path k as primary path

Iij The amount of capacity available for reservation on arc (i,j)

Rc Revenue from serving customer c

UP
ijk The amount of capacity used by path k on arc (i,j)

Ys Required minimum availability level for service s

β Factor regulating the amount of extra capacity that must be reserved

for an increased number of services sharing a backup arc

Table A.8: Summary of the variables to the Path-Flow Model

Variable Definition

fijs Binary variable indicating if there is a need for backup capacity reser-

vation on arc (i, j) for service s

�st Binary variable indicating if the chosen primary paths of services s and

t overlap anywhere

okb Binary variable indicating if the primary and backup path combination

(k, b) is chosen

qijs Positive continuous variable displaying the amount of capacity needed

to be reserved for backup on arc (i, j) for service s. Equals zero if fijs

is zero

uk Binary variable indicating if path k is chosen as a primary path

vk Binary variable indicating if path k is chosen as a backup path

xsp Binary variable indicating if service s is provided by provider p

yc Binary variable indicating if customer c is being served

λij Positive continuous variable displaying the amount of capacity reserved

on arc (i, j)
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A.2.2 Constraints

max z =
∑
c∈C

Rcyc −
∑

k∈K

EP
k uk −

∑
(i,j)∈A

Eijλij

(6.20)

yc −
∑

p∈Ps

xsp = 0, ∀c ∈ C , ∀s ∈ Sc

(6.21)

xsp −
∑

k∈K SP
sp

uk = 0, ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps

(6.22)

∑
k∈Lij

UP
ijkuk + λij ≤ Iij , ∀(i, j) ∈ A

(6.23)

∑
p∈Ps

∑

k∈K SP
sp

DP
k (uk + vk) −

∑
p∈Ps

∑

k∈K SP
sp

∑

b∈K SP
sp

DC
kbokb − Ysyc ≥ 0,

∀c ∈ C , ∀s ∈ Sc

(6.24)

qijs − MB
ijsfijs ≤ 0, ∀(i, j) ∈ A , ∀c ∈ C , ∀s ∈ Sc

(6.25)

MB
ijs ≥ UP

ijk, ∀(i, j) ∈ A , ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps, ∀k ∈ K SP
sp ∩ Lij

∑
p∈Ps

∑

k∈K SP
sp ∩Lij

UP
ijs(vk − uk) − qijs ≤ 0, ∀(i, j) ∈ A , ∀c ∈ C , ∀s ∈ Sc

(6.26)
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qijs − λij ≤ 0, ∀(i, j) ∈ A , ∀c ∈ C , ∀s ∈ Sc

(6.27)

β
∑
c∈C

∑
s∈Sc

qijs − λij ≤ 0, ∀(i, j) ∈ A

(6.28)

uk + vb − okb ≤ 1, ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps, ∀k ∈ K SP
sp , ∀b ∈ K SP

sp

(6.29)

∑
p∈Ps

∑

k∈K SP
sp ∩Lij

uk +
∑

p∈Ps

∑

k∈K SP
tp ∩Lij

uk − �st ≤ 1, ∀(i, j) ∈ A |i < j, ∀(s, t) ∈ O

(6.30)

fijs + fijt + �st ≤ 2, ∀(i, j) ∈ A , ∀(s, t) ∈ O

(6.31)

yc ∈ {0, 1}, ∀c ∈ C

xsp ∈ {0, 1}, ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps

uk ∈ {0, 1}, ∀k ∈ K

vk ∈ {0, 1}, ∀k ∈ K

okb ∈ {0, 1}, ∀c ∈ C , ∀s ∈ Sc, ∀p ∈ Ps, ∀k ∈ K SP
sp , ∀b ∈ K SP

sp

�st ∈ {0, 1}, ∀(s, t) ∈ O

fijs ∈ {0, 1}, ∀(i, j) ∈ A , ∀c ∈ C , ∀s ∈ Sc

qijs ≥ 0, ∀(i, j) ∈ A , ∀c ∈ C , ∀s ∈ Sc

λij ≥ 0, ∀(i, j) ∈ A

(6.32)
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A.3 Mapping Model

A.3.1 Indices, Sets, Parameters and Variables

Table A.9: Summary of the indices to the mapping model

Index Definition

c Customer

i, j Network node

m Mapping

k, b Path

s, t Service

Table A.10: Summary of the sets to the mapping model

Set Definition

A Set of all arcs (i, j)

C Set of all customers c

K Set of all paths k

Lij Set of all paths using the arc (i, j)

M Set of all mappings m

M B
k Set of all mappings m using path k as backup path

M P
k Set of all mappings m using path k as primary path

M S
s Set of all mappings m that can be used by a service s

O Set with combination of all different services (s, t) where s < t

Sc Set of services demanded by customer c

The nodes defining the arcs in A are numbered increasingly, so when links are needed,

a link being the undirected link between two nodes or both arcs connecting the nodes,

this is defined as ∀(i, j) ∈ A |i < j. Because paths in this model use the same links in

both directions, the set Lij is symmetric, i.e. Lij = Lji. Additionally, the services are

ordered, so when requiring all pairs of different services O, the set of all combinations

of services (s, t) where s < t is used.
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Table A.11: Summary of the parameters to the mapping model

Parameter Definition

Eij The cost of reserving a unit of capacity for backup on arc (i, j)

EP
k The cost of using a path k

Fijm Indicates whether mapping m needs backup capacity on arc (i,j) or

not. Equal to 1 if Qijm is larger than 0, and 0 otherwise

Iij The amount of capacity available for reservation on arc (i,j)

Qijm The amount of capacity needed to be reserved for backup on arc (i,j)

by mapping m. Equal to the maximum of zero and the difference

between backup and primary capacity demand if backup and primary

paths overlap on (i,j)

Rc Revenue from serving customer c

UM
ijm The amount of capacity used by mapping m on arc (i,j)

β Factor regulating the amount of extra capacity that must be reserved

for an increased number of services sharing a backup arc

Table A.12: Summary of the variables to the mapping model

Variable Definition

�st Binary variable indicating if the chosen primary paths of services s and

t overlap anywhere

wm Binary variable indicating if mapping m is chosen

yc Binary variable indicating if customer c is being served

λij Positive continuous variable showing the amount of capacity reserved

on arc (ij)

A.3.2 Constraints

max z =
∑
c∈C

Rcyc −
∑

k∈K

EP
k

∑

m∈M P
k

wm −
∑

(i,j)∈A

Eijλij

(6.33)
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yc −
∑

m∈M S
s

wm = 0, ∀c ∈ C , ∀s ∈ Sc

(6.34)

∑

m∈M S
s

UM
ijmwm + λij ≤ Iij , ∀(i, j) ∈ A

(6.35)

∑

m∈M S
s

Qijmwm − λij ≤ 0, ∀(i, j) ∈ A , ∀c ∈ C , ∀s ∈ Sc

(6.36)

β
∑

m∈M

Qijmwm − λij ≤ 0, ∀(i, j) ∈ A

(6.37)

∑
k∈Lij

∑

m∈M P
k

∩M S
s

wm +
∑

k∈Lij

∑

m∈M P
k

∩M S
t

wm − �st ≤ 1, ∀(i, j) ∈ A |i < j, ∀(s, t) ∈ O

(6.38)

∑
k∈Lij

∑

m∈M B
k

∩M S
s

Fijmwm +
∑

k∈Lij

∑

m∈M B
k

∩M S
t

Fijmwm + �st ≤ 2, ∀(i, j) ∈ A , ∀(s, t) ∈ O

(6.39)

yc ∈ {0, 1}, ∀c ∈ C

wm ∈ {0, 1}, ∀m ∈ M

�st ∈ {0, 1}, ∀(s, t) ∈ O

λij ≥ 0, ∀(i, j) ∈ A

(6.40)
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Figure B.1: Solution values for the M-6 test instance run on every combination of
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Table B.1: Complete set of results for every solution method and every test instance
for β = 0.0

∗These solution methods are run with a maximum limit on the number of paths pre-
generated presented in Table B.6

β = 0.0
Test Instance Method Solution Value Total Time MIP Time

M-6 cg1 1550 0.2 0.1
cg2 1550 0.1 0.0
cg3 1550 0.1 0.0
m1 930 0.1 0.1
m2 1550 457.8 457.7
m3 1550 0.6 0.5

S-20 cg1 10970 2.9 1.2
cg2 11130 10.9 1.0
cg3 11130 10.0 0.8
m1 4780 1.4 1.1
m2 11170 36001.9 36001.3
m3 11170 27.7 11.3

S-40 cg1 20508 168.4 26.5
cg2 19803 358.0 108.4
cg3 20173 287.4 29.1
m1 9610 33.4 29.7
m2 21298 36003.9 36001.3
m3 21358 36025.5 36001.6

D-20 cg1 9707 5089.1 1923.0
cg2 9281 40.3 4.6
cg3 9199 39.3 7.4
m1 4990 2549.0 2548.4
m2* 9382 36004.3 36001.3
m3* 9941 36159.5 36001.1

D-40 cg1* 16052 42345.6 36000.8
cg2 15257 10970.5 7292.3
cg3 14980 39690.7 36002.4
m1 7665 37508.6 37502.0
m2* 13651 36550.4 36001.2
m3* 16267 36898.9 36003.4
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Table B.2: Complete set of results for every solution method and every test instance
for β = 0.25

∗These solution methods are run with a maximum limit on the number of paths pre-
generated presented in Table B.6

β = 0.25
Test Instance Method Solution Value Total Time MIP Time

M-6 cg1 1550 0.3 0.1
cg2 1550 0.1 0.0
cg3 1550 0.1 0.0
m1 930 0.2 0.1
m2 1550 343.4 343.4
m3 1550 0.5 0.5

S-20 cg1 10970 3.3 1.2
cg2 10840 9.0 1.3
cg3 11130 18.3 0.8
m1 4780 1.5 1.3
m2 11130 36002.4 36001.8
m3 11170 27.0 10.6

S-40 cg1 20588 156.6 37.5
cg2 20128 151.2 27.4
cg3 20173 203.3 81.4
m1 9610 19.8 16.4
m2 22582.5 36003.7 36001.1
m3 21357.5 36025.3 36001.8

D-20 cg1 9787 5466.9 2570.1
cg2 9216 187.4 25.5
cg3 9267 88.1 17.6
m1 4990 14065.6 14065.0
m2* 9382 36003.3 36000.3
m3* 9941 36096.2 36005.0

D-40 cg1* 16122 42423.2 36002.5
cg2 15022 16976.9 13346.1
cg3 15221 13812.1 6089.9
m1 5926 36013.7 36006.7
m2* 13459 36550.9 36001.7
m3* 16279 36885 36002.7
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Table B.3: Complete set of results for every solution method and every test instance
for β = 0.5

∗These solution methods are run with a maximum limit on the number of paths pre-
generated presented in Table B.6

β = 0.5
Test Instance Method Solution Value Total Time MIP Time

M-6 cg1 1550 0.3 0.1
cg2 1550 0.1 0.0
cg3 1550 0.1 0.0
m1 930 0.2 0.2
m2 1550 138.1 138.0
m3 1550 0.7 0.6

S-20 cg1 11110 3.8 1.1
cg2 10890 7.9 1.1
cg3 10940 8.0 1.1
m1 4780 1.6 1.3
m2 11170 36003.5 36002.9
m3 11170 27.8 12.0

S-40 cg1 20548 124.5 63.1
cg2 19633 49.8 7.8
cg3 20028 50.9 6.8
m1 9610 20.2 16.6
m2 22307.5 36003.0 36000.4
m3 21357.5 36026.1 36001.6

D-20 cg1 9876 3764.2 164.4
cg2 9464 125.2 14.8
cg3 9476 142.9 12.6
m1 4990 30607.0 30606.4
m2* 9372 36003.2 36000.2
m3* 9905 9537.5 9438.8

D-40 cg1* 16241.5 42193.9 36000.5
cg2 15290 6130.5 2380.6
cg3 15380 19027.3 15358.0
m1 5876 36032.2 36025.5
m2* 13761 36550.6 36001.5
m3* 16293.5 36900.7 36003.2
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Table B.4: Complete set of results for every solution method and every test instance
for β = 0.75

∗These solution methods are run with a maximum limit on the number of paths pre-
generated presented in Table B.6

β = 0.75
Test Instance Method Solution Value Total Time MIP Time

M-6 cg1 1549 0.4 0.3
cg2 1549 0.1 0.0
cg3 1549 0.1 0.0
m1 930 0.2 0.1
m2 1549 64.8 64.8
m3 1549 0.4 0.4

S-20 cg1 10963 2.8 0.9
cg2 10888 9.6 1.2
cg3 10928 6.9 0.9
m1 4780 1.6 1.3
m2 11048 36001.7 36001.1
m3 11048 25.0 8.6

S-40 cg1 20478 46.7 10.1
cg2 18808 41.2 4.9
cg3 19028 40.0 5.1
m1 9610 20.4 17.0
m2 21928 36003.3 36000.7
m3 21198 36024.8 36001.4

D-20 cg1 9644 2985.8 19.2
cg2 9302 110.3 5.5
cg3 9416 76.7 4.2
m1 4990 27059.7 27059.1
m2* 9246 36003.3 36000.3
m3* 9654 8132.1 7973.1

D-40 cg1* 16124 41550.2 36000.8
cg2 14496 2877.6 541.7
cg3 14901 3527.7 1276.1
m1 5966 36060.6 36053.6
m2* 13638.5 36550.4 36001.2
m3* 16172 37389.8 36003.7
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Table B.5: Complete set of results for every solution method and every test instance
for β = 1.0

∗These solution methods are run with a maximum limit on the number of paths pre-
generated presented in Table B.6

β = 1.0
Test Instance Method Solution Value Total Time MIP Time

M-6 cg1 1543 0.1 0.0
cg2 1543 0.1 0.0
cg3 1543 0.1 0.0
m1 930 0.1 0.1
m2 1543 121.4 121.4
m3 1543 0.2 0.1

S-20 cg1 10550 1.6 0.2
cg2 10215 6.3 0.3
cg3 10500 4.7 0.2
m1 4780 1.8 1.5
m2 10115 36001.7 36001.1
m3 10550 18.9 2.8

S-40 cg1 20338 30.6 6.7
cg2 18608 40.8 4.5
cg3 18838 44.1 4.2
m1 9610 19.9 16.2
m2 21787.5 36003.7 36001.2
m3 21028 14394.0 14369.5

D-20 cg1 9544 3986.9 0.9
cg2 9000 56.0 0.5
cg3 9302 75.6 0.7
m1 4990 4634.3 4633.7
m2* 9102 29558.9 29555.9
m3* 9544 109.3 5.9

D-40 cg1* 15917 4426.7 80.6
cg2 15020 2046.9 77.3
cg3 14913 2605.8 49.2
m1 7003 36018.6 36011.6
m2* 13451 36549.9 36000.8
m3* 15992 3033.8 1672.95
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Table B.6: Maximum limits for paths for running cg1, m2 and m3 on D-20 and D-40

D-20 D-40
cg1 - 100
m2 5 4
m3 20 10

Table B.7: All results from m3 with maximum path limit per service provider pair,
which are set so the pre-generation generates the number of mappings equal to column

generation methods’ average and maximum number of mappings

Instance Path Limit β Solution Value Solution Time

D-20 5 0.00 9382.0 9.8
0.25 9382.0 9.1
0.50 9372.0 9.5
0.75 9245.5 9.1
1.00 9102.0 3.9

6 0.00 9524.0 16.0
0.25 9524.0 28.1
0.50 9514.0 14.2
0.75 9380.5 9.2
1.00 9206.0 5.1

D-40 4 0.00 13907.0 1408.3
0.25 13907.0 1741.2
0.50 13881.5 1456.8
0.75 13691.0 1342.1
1.00 13475.0 583.2

5 0.00 14915.0 > 10h
0.25 14955.0 9.1h
0.50 14920.5 > 10h
0.75 14778.2 9214.3
1.00 14587.0 601.0
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Table B.8: Results for test instance S-20 with low, original and high availability
requirements run with every solution method for β = 0.0 and β = 0.5

β = 0.0 β = 0.5
Method Sol. Value Tot. Time MIP Time Sol. Value Tot. Time MIP Time

Low cg1 16270 1.3 0.0 16270 1.3 0.0
cg2 16270 1.6 0.1 16270 1.6 0.1
cg3 16270 2.5 0.1 16270 2.5 0.1
m1 16290 1.4 1.1 16290 1.4 1.1
m2 16290 6.3 5.8 16290 4.5 4.0
m3 16290 37.6 3.8 16290 38.4 3.7

S-20 cg1 10970 2.9 1.1 11110 3.8 1.1
cg2 10840 38.8 1.4 10990 14.5 1.2
cg3 11020 26.6 0.9 10950 17.6 0.9
m1 4780 1.4 1.1 4780 1.6 1.3
m2 11170 36001.9 36001.3 11130 36001.6 36001.0
m3 11170 27.7 11.3 11170 27.8 12.0

High cg1 1970 0.8 0.1 2020 1.4 0.5
cg2 1625 0.9 0.1 2063 2.3 0.1
cg3 1625 0.9 0.1 2063 2.3 0.1
m1 480 1.2 0.9 480 1.3 1.0
m2 2090 36001.3 36000.8 2090 36003.8 36003.3
m3 2090 1.2 0.9 2090 0.9 0.6

Table B.9: Profit (solution value) and Cost assosiated with backup (backup cost) for
S-20 and S-40 run with every solution method and for every β value

β = 0.0 β = 0.25 β = 0.5 β = 0.75 β = 1.0
Profit Cost Profit Cost Profit Cost Profit Cost Profit Cost

S-20 cg1 10970 1085 10970 1085 11110 1270 10963 1253 10550 795
cg2 11130 1410 10840 1320 10890 1650 10888 1683 10215 1360
cg3 11130 1440 11130 1440 10940 1630 10928 1613 10500 1315
m2 11170 1370 11130 1440 11170 1370 11048 1493 10115 900
m3 11170 1370 11170 1370 11170 1370 11048 1493 10550 880

S-40 cg1 20508 660 20588 645 20548 650 20478 760 20338 860
cg2 19803 540 20128 615 19633 630 18808 710 18608 905
cg3 20173 630 20173 610 20028 670 19028 590 18838 780
m2 21298 625 22583 610 22308 610 21928 745 21788 825
m3 21358 610 21358 605 21358 605 21198 770 21028 935
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Table B.10: Time spent on pre-generation of paths for m2, mappings for m3 and
paths for cg1 for every test instance in seconds

Path pre-gen m2 Mapping pre-gen m3 Path pre-gen cg1

M-6 0.01 0.01 0.00
S-20 0.12 0.13 0.11
S-40 0.06 0.06 0.06
D-20 2.78 2.70 18.29
D-40 545.56 960.92 2808.01

Table B.11: Time used in the column generation steps of cg1, cg2 and cg3 for every
test instance for β = 1.0

β = 1.0
cg1 cg2 cg3

M-6 0.12 0.05 0.05
S-20 1.72 7.62 8.71
S-40 74.75 95.85 98.06
D-20 3304.52 93.41 75.74
D-40 2959.23 3069.32 3974.07

Table B.12: The number of mappings produced with cg1, cg2 and cg3 for the D-20
test instance for every value of β, as well as the maximum number of mappings for each

β and solution method, and the maximum number of mappings for each β

β = 0.0 β = 0.25 β = 0.5 β = 0.75 β = 1.0 Average

D-20 cg1 329 385 400 314 352 356.0
cg2 208 269 275 246 248 249.2
cg3 239 279 337 286 305 289.2

Average 258.7 311.0 337.3 282.0 301.7 298.1
Max 329 385 400 314 352

Table B.13: The number of mappings produced by the pre-generation of m3 for test
instance D-20 by restricting the number of paths for each service provider pair

D-20 Path Limit 4 5 6 7 8

Number of Mappings 180 294 448 675 826

Table B.14: The number of mappings produced by the pre-generation of m3 for test
instance D-40 by restricting the number of paths for each service provider pair

D-40 Path Limit 4 5 6

Number of Mappings 555 818 1184
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Table B.15: Solution values and best bounds for the S-40 test instance run with m2
and m3, as well as with the hard-coded version of m2 not allowing the illegal path
combinations found in the original m2 solution, and with the hard-coded version of m3

accepting the illegal path combinations found in the original m2 solution

β = 1.0
Solution Method Solution Value Best Bound

m2 21787.5 28231.6
Hard-Coded m2 20217.5 28598.4
m3 21027.5 21028.9
Hard-Coded m3 22582.5 26216.5
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Visualised Data Editor

The test instances used for testing of the solution methods presented in Chapter 6 for

solving the CSBQANR problem described in Chapter 5, have been created and edited

using a web-application, referred to as the Visualised Data Editor (VDE), developed

specifically for that purpose. The VDE allows for creating, editing, exporting, and

importing of problem instances.

Implementation

The VDE is developed using HTML5 and javascript, and supports current versions of

all major web browsers. The VDE uses two third party javascript libraries, jQuery and

knockout.js, both open source and released under the MIT license.

Data Formats

Two data formats are supported for import and export by the VDE; JSON and Mosel

data format. Exported Mosel data is compatible with the Mosel implementation of the

LFM, presented in Section 6.2. Exported JSON data is taken as input to an independent

application (implemented in C++), implementing pre-generation of paths and mapping,

with export to Mosel data format, as well as the BCL version of the mapping model in

Section 6.4 and the column generation methods of Section 6.5. Importing and exporting

of data files is done through copy/paste from/to a text box due to technical limitations

in a pure HTML5 and javascript application.
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Usage

Figure C.1: Screenshot of the Problem Data Editor displaying the different regions
when a customer node is selected

The application can be launched by opening the ’index.htm’ file of the data editor in your

web browser of choice. As seen in Figure C.1, the interface of the VDE consists of 4 main

regions. The upper left region functions as a toolbar for performing functions such as

deleting all or selected data, generating new random data and changing the current mode

of the editor window. The middle left region is the visual editor of the data editor. Here

a visual representation of the instance is presented, where arcs and nodes can be selected,

added, removed and repositioned. The lower left region includes the text box for import

and export of data, as well as buttons for import and export actions. The right region

lists - and allows editing of - information about the network elements selected in the

visual editor. For arcs this is simply the specific characteristics of that arc, for nodes this

information indicates if the specified node represents a provider, customer or neither,
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and displays info of the node including all info of services. This information region

can also be used for editing the parameters of the network with buttons for adding the

customer or provider property to a node, adding services to a customer, adding eligible

providers to a service and changing values as revenue, bandwidth requirements, latency

and availability requirements. For links in the network its bandwidth capacity, expected

latency, expected availability and the bandwidth price can be altered.

In addition to the 4 main regions of the user interface, there is one additional region,

which is hidden as default, consisting of settings for random data generation. Here,

the number of node levels, nodes per cluster, customers and providers can be set as

well as the maximum number of services per customer, proportion of eligible providers

per service, the average arc latency and the average service latency requirement. By

the use of the button Generate network, an auto-generated network is output to the

visualisation area, corresponding to the generation settings with the use of a random

function to provide some diversification in the network parameters.





Appendix D

Cloud Broker Application

D.1 Implementation

The application has been developed with the C++ programming language. Two non-

standard C libraries have been used. An open source library released under the FreeBSD

license, libjson, is used for importing of json data files to the application. To interact

with the Xpress Optimisation Suite, the proprietary Xpress-BCL Builder Component

Library (BCL) has been used.

The main functionality of the application can be divided in to three main components;

the Pre-generation-, Mapping Model- and Column Generation Components. In addi-

tion to these components, the application also includes logic for file input and output,

task execution and configuration logic, but is not considered main components of the

application.

The pre-generation component takes a data object, representing a problem instance,

as input and can generate paths and mappings according to Algorithm 1 and Algorithm

2, respectively. This component is independent of the other application components,

and its output can be used for the Mapping Model Component or to output Mosel data

files compatible with Mosel implementations of the PFM and the mapping model.
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The Mapping Model Component builds and solves the mapping model of Section 6.4

using BCL. The model can be solved either as LP or MIP. This component can also

return dual values of its current solution as well as output a textual representation of

the solution. This component is dependent on being used in combination with either the

Pre-generation component or the Column Generation Component to produce meaningful

results.

The Column Generation Component implements three different column generation

methods for the Mapping Model Component; Brute Force, SPPRC Heuristic A and

SPPRC Heuristic B. This component depends on the Mapping Model Component for

solving the LP of the problem and provide dual values of the LP-solution.

D.2 Compiling

An executable of the application is available in the delivery of this thesis. This executable

is compiled for CentOS 6.5 x86 64-bit Linux with Xpress Suite version 7.6.0. For systems

with different specifications, a recompile may be needed.

The application is developed for Linux operating systems and does contains some

platform specific code, and as a result a Linux required for compiling and using the

application. In addition, the mapping model implementation (Section 6.4) is developed

for Xpress 7.6.0, but should be compatible with other Xpress versions supporting the

same BCL API. However, a different version of Xpress will require a recompile specific

for that system.

Compilation of the application is done through the use of a Makefile. From the source

code root directory, simply perform the command make to compile the application. The

default executable name is cloudbroker-bcl. For some system configurations, a recompile

of the libjson library may also be needed. This is done by performing the make command

in the libjson sub directory of the source code.
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D.3 Usage

The application supports three different actions, listed in Table D.1 for easy reference.

Table D.1: The actions supported by the BCL application

Action Description

mdata Generates a path and mapping model Mosel implementation compatible data

file for the provided input JSON data

solve Solves the BCL implementation of the mapping model for the provided input

JSON data, with mappings pregenerated

cgsolve Solves the BCL implementation of the mapping model for the provided input

JSON data, using column generation to provide mappings

The application uses the following command pattern for execution

<executable name> <action> <options>

Note that the application will need the appropriate permissions to be executed. This

can be done by running the following command from the directory of the application.

chmod 755 cloudbroker-bcl

Assuming an open terminal window located at the same folder as the executable, using

the default name, with a problem instance in JSON format data.json. The following

command will generate a Mosel compatible data file with pre-generated paths and map-

pings with the name moseldata.txt for the input JSON data data.json.

./cloudbroker-opt mdata -i data.json -o moseldata.txt

Similarly, the following command executed to solve the problem using the mapping

model with all mapping pre-generated and storing the result to result.txt:

./cloudbroker-opt solve -i data.json -o result.txt

To solve the problem using column generation, and storing the result to cgresult.txt and

building the model with a β model parameter value of 0.5, the following command is

executed:

./cloudbroker-opt cgsolve -i data.json -o cgresult.txt -beta 0.5
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Note that the specification of the location of the executable, as seen here with the ’./’

prefix, is not needed if the executable is added to the operating system’s path.

The application has a number of supported optional settings to alter the behaviour,

a complete list is provided in Table D.2. The settings may be provided in any order,

should any setting be given multiple times for a single action, the last value given for

the setting is used.

Table D.2: Complete list of all supported options for the bcl application.
∗ optional for actions solve and cgsolve, required for action mdata

Option Type Description Default Required
-i string Name of input data file n/a Yes
-o string Name of output data file for any result

from selected action
n/a No∗

-beta real β value used in the mapping model 0.25 No
-maxtime integer Maximum allowed time spent on the

MIP or LP solution process in seconds.
Ignored if set to = 0

0 No

-maxpaths integer Maximum allowed number of paths
pre-generated for each service provider
pair. Ignored if set to ≤ 0

-1 No

-cgmaxtime integer Maximum allowed time spent on the
column generation process in seconds.
Ignored if set to ≤ 0

-1 No

-cgmaxiters integer Maximum allowed number of iterations
for the column generation process. Ig-
nored if set to ≤ 0

-1 No

-cgmaxcount integer Maximum allowed number of mappings
generated from the column generation
process. Ignored if set to ≤ 0

-1 No

-cgalg integer Column generation method:
1: Brute Force
2: SPPRC heuristic A
3: SPPRC heuristic B

3 No

-nomapping n/a If flag is set, the pre-generation only
generates paths and not mappings

n/a No

-alg string Algorithm for LP/intial MIP LP:
’ ’: default (concurrent solve)
’d’: dual simplex algorithm
’p’: primal simplex algorithm
’b’: Newton barrier algorithm

’ ’ No
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Mosel Source Code

This appendix includes the source code of the Mosel implementation of the LFM pre-

sented in Section 6.2 and the PFM presented in Section 6.3.
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!
!! Carrier Broker Optimisation: Link Flow Model
!!
!!- The following script implements the LFM defined in Section 6.1
!!  of Mari Holmen's and Sindre Møgster Braaten's masters thesis
!!
!!- Authors: Mari Holmen and Sindre Møgster Braaten
!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

model CarrierBrokerLFM

options explterm
options noimplicit
uses "mmxprs", "mmsystem";

parameters
! Data file to read from

    Data = 'data/s2-mosel-link.txt';
! Minimum proportion of total backup requirement reserved on an arc (aka. beta)

    MinBackupProportion = 0.25;
! Time limit for runtime,  maximum number of seconds for optimisation

    TimeLimit = -1;
end-parameters

writeln("Model Parameters:");
writeln("Data:", Data);
writeln("MinBackupProportion(beta):", MinBackupProportion);
writeln("TimeLimit:", TimeLimit);

declarations
    timetracker:    real; ! used to log timestamps for time consumption output
end-declarations

writeln("Building model...");
timetracker := timestamp;

!setparam("XPRS_presolve", 0);  ! uncomment to turn of presolve
if(TimeLimit>0.0) then

setparam("XPRS_maxtime", TimeLimit);
end-if

setparam("XPRS_verbose", true); ! Turn on message printing
setparam("XPRS_MIPLOG", 2); ! 2: print information for each solution found 

!(ALT: 0: no log, 1: summary in end, 3: log each node, -N: log every Nth node)
!!!!!!!!!!!!!!!!!!!!!!!!
! SETS
!!!!!!!!!!!!!!!!!!!!!!!!

declarations
! Set sizes
    n_Customers:            integer; ! number of customers
    n_Services:             integer; ! number of services
    n_Providers:            integer; ! number of providers
    n_Nodes:                integer; ! number of nodes in total

! Sets  
    Customers:              set of integer;
    Providers:              set of integer;

! Used as shorthand for 'cc in Customers, ss in S_ServicesForCustomer(cc)' when cc is not needed 
    Services:               set of integer;

! Set of nodes in the network. 
! - First we have the customer nodes, then the internal nodes, the the provider nodes.

    Nodes:                  set of integer;
! Set of internal nodes in the network + all customer nodes 
! - usage for internal nodes for each customer cc: 'nn in I_Nodes | nn<>cc'

    I_Nodes:                set of integer;
end-declarations

initializations from Data
    n_Customers;
    n_Services;
    n_Providers;
    n_Nodes;
end-initializations

Customers:= 1..n_Customers;
Services:= 1..n_Services;  
Providers:= 1..n_Providers;
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Nodes:= 1..n_Nodes;
I_Nodes:= 1..(n_Nodes-n_Providers);

finalize(Customers);
finalize(Services);
finalize(Providers);
finalize(Nodes);
finalize(I_Nodes);

! INDEXED SETS

declarations
! set of services of for each customer cc

    S_ServicesForCustomer:      set of set of integer;
end-declarations

initialisations from Data
    S_ServicesForCustomer;
end-initialisations

!!!!!!!!!!!!!!!!!!!!!!!
! PARAMETERS
!!!!!!!!!!!!!!!!!!!!!!!

declarations
! Parameters

! Price per used capacity between nodes
    K_CapPrice:                 dynamic array(Nodes,Nodes) of real;

! R_Revenue from serving each customer
    R_Revenue:                  dynamic array(Customers) of real;

! Price of placing a service at a provider
    H_PlacePrice:               dynamic array(Services,Providers) of real;

! Latency requirement for each service from customer to provider
    G_LatencyReq:               array(Services) of real;

! Bandwidth requirement for each service from customer to provider
    B_BandwidthReqUp:               array(Services) of real;

! Bandwidth requirement for each service from provider to customer
    B_BandwidthReqDown:         array(Services) of real;

! Minimum avarage availability for each service
    Y_AvailabilityReq:          array(Services) of real;

! Lateny between each pair of nodes
    T_LinkLatency:              dynamic array(Nodes,Nodes) of real;

! Bandwidth capacity between each pair of nodes
    F_BandwidthCap:             dynamic array(Nodes,Nodes) of real;

! Expected availability for each owned link between each pair of nodes
    D_AvailabilityExp:          dynamic array(Nodes,Nodes) of real;

! Node for each provider
    E_ProviderNode:             set of integer;

! Network data interpretation configuration
    Symmetric:              boolean;

end-declarations

initialisations from Data               
    K_CapPrice;                 
    R_Revenue;              
    H_PlacePrice;                               
    G_LatencyReq;   
    B_BandwidthReqUp;
    B_BandwidthReqDown;
    Y_AvailabilityReq;                      
    T_LinkLatency;                      
    F_BandwidthCap;                     
    D_AvailabilityExp;

    Symmetric;
end-initialisations

! Provider nodes are the n_Providers last nodes in network
E_ProviderNode:=(n_Nodes-n_Providers+1)..n_Nodes;
finalize(E_ProviderNode);

! If Symmetric is set to true in provided dataset
! - duplicate all arcs in dataset in its opposite direction if opposite not already specified
if(Symmetric) then

forall(nn in Nodes, mm in Nodes) do

if(exists(K_CapPrice(nn,mm)) and not exists(K_CapPrice(mm,nn))) then
create(K_CapPrice(mm,nn));

            K_CapPrice(mm,nn):=K_CapPrice(nn,mm);
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end-if

if(exists(T_LinkLatency(nn,mm)) and not exists(T_LinkLatency(mm,nn))) then
create(T_LinkLatency(mm,nn));

            T_LinkLatency(mm,nn):=T_LinkLatency(nn,mm);
end-if

if(exists(F_BandwidthCap(nn,mm)) and not exists(F_BandwidthCap(mm,nn))) then
create(F_BandwidthCap(mm,nn));

            F_BandwidthCap(mm,nn):=F_BandwidthCap(nn,mm);
end-if

if(exists(D_AvailabilityExp(nn,mm)) and not exists(D_AvailabilityExp(mm,nn))) then
create(D_AvailabilityExp(mm,nn));

            D_AvailabilityExp(mm,nn) :=D_AvailabilityExp(nn,mm);
end-if

end-do
end-if

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! VARIABLES
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

declarations
!Variables
! - x: binary, placement of service at provider

    x_Placement:        dynamic array(Services, Providers) of mpvar;
! - u: binary, use of arc for service for uplink (and oppsite arc for downlink)

    u_UsePrimary:       dynamic array(Nodes,Nodes,Services) of mpvar;
! - y: binary, serving of a customer

    y_Serve:            dynamic array(Customers) of mpvar;
! - b : binary, use of arc for service for backup uplink (and opposite arc for downlink)

    b_UseBackup:        dynamic array(Nodes,Nodes,Services) of mpvar;
! - r : binary, is service s needs backup on its path to provider p

    r_RequireBackup:    dynamic array(Services,Providers) of mpvar;
! - l (lambda): continuous, bandwidth reserved for backup on a (owned) link

    l_BackupRes:        dynamic array(Nodes,Nodes) of mpvar;
! - l: binary, indicates if two services have overlapping primary paths

    l_Overlap:          dynamic array(Services,Services) of mpvar;
end-declarations

! - for all valid combinations of service and provider
forall (ss in Services, pp in Providers | exists(H_PlacePrice(ss,pp))) do

create (x_Placement(ss,pp));
    x_Placement(ss,pp) is_binary;

create(r_RequireBackup(ss,pp));
    r_RequireBackup(ss,pp) is_binary;
end-do

! - for evary arc in network
forall(ii in Nodes, jj in Nodes) do

create(l_BackupRes(ii,jj));
end-do

! - for every service
forall(cc in Customers, ss in S_ServicesForCustomer(cc)) do

! - for every arc in network
! -- EXCEPT: arcs in to customer node of service, as paths from customer to provider will
!            never traverse these links
forall(ii in Nodes, jj in Nodes | jj<>cc and exists(F_BandwidthCap(ii,jj))) do

create(u_UsePrimary(ii,jj,ss));
        u_UsePrimary(ii,jj,ss) is_binary;

create(b_UseBackup(ii,jj,ss));
        b_UseBackup(ii,jj,ss) is_binary;

end-do
end-do

! - for all customers
forall(cc in Customers) do

create(y_Serve(cc));
    y_Serve(cc) is_binary;
end-do

! - for every distinct pair of two services
forall (ss in Services, tt in Services | ss < tt) do

create(l_Overlap(ss,tt));
end-do

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! CONSTRAINTS
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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declarations
! Objective function
    Total_Profits:                                                              linctr;

! Constraints
    ServeCustomer:              dynamic array(Services) of linctr;
    ArcCapacity:                dynamic array(Nodes,Nodes) of linctr;
    PrimaryStartRequirement:    dynamic array(Services) of linctr;
    BackupStartRequirement:     dynamic array(Services) of linctr;
    BandwidthFlowPrimary:       dynamic array(Services,I_Nodes) of linctr;
    BandwidthFlowBackup:        dynamic array(Services,I_Nodes) of linctr;
    PrimaryEndRequirement:      dynamic array(Services,Providers) of linctr;
    BackupEndRequirement:       dynamic array(Services,Providers) of linctr;
    PrimaryLatencyRequirement:  dynamic array(Services,Providers) of linctr;
    BackupLatencyRequirement:   dynamic array(Services,Providers) of linctr;
    AllocateBackupPath:         dynamic array(Services,Providers) of linctr;
    AvailabilityRequirement:    dynamic array(Services) of linctr;
    SumBackupLimit:             dynamic array(Nodes,Nodes) of linctr;
    SingleBackupLimit:          dynamic array(Nodes,Nodes,Services) of linctr;
    LinkDisjoint:               dynamic array(Nodes,Nodes,Services) of linctr;
    PrimaryOverlap:             dynamic array(Nodes,Nodes,Services,Services) of linctr;
    BackupOverlap:              dynamic array(Nodes,Nodes,Services,Services) of linctr;
end-declarations

! OBJECTIVE FUNCTION
! - total profits from serving customers
Total_Profits := (

sum (cc in Customers) (
! R_Revenue from serving customer (if served)

            R_Revenue(cc)*y_Serve(cc)
-
! costs associated with customer's required services
sum (ss in S_ServicesForCustomer(cc)) (

! placement cost
sum (pp in Providers) (

                    H_PlacePrice(ss,pp)*x_Placement(ss,pp)
)
+
! network usage cost
sum (nn in Nodes, mm in Nodes | exists(K_CapPrice(nn,mm))) (

                    K_CapPrice(nn,mm)
*
(

                        B_BandwidthReqUp(ss)*u_UsePrimary(nn,mm,ss)
+

                        B_BandwidthReqDown(ss)*u_UsePrimary(mm,nn,ss)
)

)
)

)
-
!Backup use cost
sum (nn in Nodes, mm in Nodes | exists(K_CapPrice(nn,mm))) (

            K_CapPrice(nn,mm)*l_BackupRes(nn,mm)
)

);

! SERVE CUSTOMER CONSTRAINT
! Customers can only be served if all services for customer is provided
forall(cc in Customers) do

forall(ss in S_ServicesForCustomer(cc)) do
        ServeCustomer(ss) := sum (pp in Providers) x_Placement(ss,pp) - y_Serve(cc) = 0;

end-do
end-do

! ARC TOTAL CAPACITY CONSTRAINT
! Use of an arc must not exceed its capacity (primary + backup cap)
forall (nn in Nodes, mm in Nodes| exists(F_BandwidthCap(nn,mm)))do
    ArcCapacity(nn,mm) := (

sum (ss in Services) (
            B_BandwidthReqUp(ss)*u_UsePrimary(nn,mm,ss)

+
            B_BandwidthReqDown(ss)*u_UsePrimary(mm,nn,ss)

)
+

        l_BackupRes(nn,mm)
<=

        F_BandwidthCap(nn,mm)
);

end-do
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! CUSTOMER NODE ROUTING START CONSTRAINTS:
! primary / backup must select arc from customer node if chosen
forall (cc in Customers, ss in S_ServicesForCustomer(cc)) do
    PrimaryStartRequirement(ss) := (

sum(mm in Nodes | mm<>cc) (u_UsePrimary(cc,mm,ss) )
- y_Serve(cc)

)= 0;
    BackupStartRequirement(ss) := (

sum(mm in Nodes | mm<>cc) b_UseBackup(cc,mm,ss)
-
sum(pp in Providers) r_RequireBackup(ss,pp)

) =0;
end-do

! ROUTING FLOW CONSTRAINTS
! - routing in to a node for a service must be equal to the routing out 
!   (unless a it is a provider node or the service's customer node)
forall (cc in Customers, ss in S_ServicesForCustomer(cc), nn in I_Nodes | nn<>cc ) do
    BandwidthFlowPrimary(ss,nn) := (

sum (mm in Nodes | exists(F_BandwidthCap(nn,mm))) u_UsePrimary(nn,mm,ss)
-
sum(mm in Nodes | exists(F_BandwidthCap(mm,nn))) u_UsePrimary(mm,nn,ss)

) = 0;
    BandwidthFlowBackup(ss,nn) := (

sum (mm in Nodes | exists(F_BandwidthCap(nn,mm))) b_UseBackup(nn,mm,ss)
-
sum(mm in Nodes | exists(F_BandwidthCap(mm,nn))) b_UseBackup(mm,nn,ss)

) = 0;
end-do

! PLACEMENT SIDE ROUTING END CONSTRAINTS
! primary / backup must select arc in to placement node if chosen, or act as transit node
! if not selected / not able to be selected
! and primary and backup routing must end at same provider
forall (ss in Services, pp in Providers) do
    PrimaryEndRequirement(ss,pp) := (

sum (nn in Nodes | nn<>E_ProviderNode(pp)) (
                u_UsePrimary(nn, E_ProviderNode(pp),ss)

)
-
sum(mm in Nodes | mm<>E_ProviderNode(pp)) (

                u_UsePrimary(E_ProviderNode(pp),mm,ss)
)
-

            x_Placement(ss,pp)
) = 0;

    BackupEndRequirement(ss,pp) := (
sum (nn in Nodes | nn<>E_ProviderNode(pp)) (

                b_UseBackup(nn, E_ProviderNode(pp),ss)
)
-
sum(mm in Nodes | mm<>E_ProviderNode(pp)) (

                b_UseBackup(E_ProviderNode(pp),mm,ss)
)
-

            r_RequireBackup(ss,pp)
) = 0;

if(exists(H_PlacePrice(ss,pp))) then
! can only have backup paths to same provider as primary

        AllocateBackupPath(ss,pp):= r_RequireBackup(ss,pp) - x_Placement(ss,pp) <= 0;
end-if

end-do

! LATENCY REQUIREMENT CONSTRAINTS
! - user -> placement: for each service, latency for any used path must meet latency requirements
forall (ss in Services, pp in Providers) do
    PrimaryLatencyRequirement(ss,pp) :=

sum(nn in Nodes, mm in Nodes) (
                T_LinkLatency(nn,mm)*(u_UsePrimary(nn,mm,ss) + u_UsePrimary(mm,nn,ss))

)
<= G_LatencyReq(ss);

    BackupLatencyRequirement(ss,pp) :=
sum(nn in Nodes, mm in Nodes) (

                T_LinkLatency(nn,mm)*(b_UseBackup(nn,mm,ss) + b_UseBackup(mm,nn,ss))
)
<= G_LatencyReq(ss);

end-do
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! AVAILABILITY CONSTRAINTS
! Primary path must have sufficient availability or a link disjoint backup path must be provided
! - linearised by using logarithms
forall (ss in Services) do
    AvailabilityRequirement(ss) := (

sum( nn in Nodes, mm in Nodes | exists(D_AvailabilityExp(nn,mm))) (
ln(D_AvailabilityExp(nn,mm)) * u_UsePrimary(nn,mm,ss)

)
+
sum(pp in Providers) r_RequireBackup(ss,pp)
>=
ln(Y_AvailabilityReq(ss)));

end-do

! SUM BACKUP REQUIREMENT
! must reserve a certain proportion of the sum of backup requirements on an arc
forall (nn in Nodes, mm in Nodes) do
    SumBackupLimit(nn,mm) := (
        MinBackupProportion*

sum(ss in Services) (
            B_BandwidthReqUp(ss)*b_UseBackup(nn,mm,ss)

+
            B_BandwidthReqDown(ss)*b_UseBackup(mm,nn,ss)

)
-

        l_BackupRes(nn,mm)
<= 0);

end-do

forall (ii in Nodes, jj in Nodes, ss in Services ) do
! MAXIMUM BACKUP CONTRAINT
! Must reserve backup capacity at least as high as the maximal single backup requirement

    SingleBackupLimit(ii,jj,ss) := (
        B_BandwidthReqUp(ss)

*b_UseBackup(ii,jj,ss) ! 1 if ii,jj is used in way UP
+

        B_BandwidthReqDown(ss)
*b_UseBackup(jj,ii,ss) ! 1 if ii,jj is used in way DOWN
-

        l_BackupRes(ii,jj)
<= 0

);

! LINK DISJOINT CONSTRAINTS
! The primary and backup path (if given) for a service must be link disjoint

    LinkDisjoint(ii,jj,ss) := b_UseBackup(ii,jj,ss) + u_UsePrimary(ii,jj,ss) <=1;
end-do

! SERVICE PATH OVERLAP CONSTRAINTS
! To services have overlapping main paths if for any arc both paths are represented
! for every service combination
forall(ss in Services, tt in Services | ss < tt) do

! for every LINK ( (i,j) in A | i < j) 
forall(ii in Nodes, jj in Nodes | ii < jj and exists(F_BandwidthCap(ii,jj))) do

! PRIMARY PATH OVERLAP CONSTRAINTS
! Two services have overlapping primary paths if for any LINK both services
! has selected one of the link's two arcs

        PrimaryOverlap(ii, jj, ss, tt):=
            u_UsePrimary(ii,jj,ss)+u_UsePrimary(jj,ii,ss) ! 1 if ss uses link

+
            u_UsePrimary(ii,jj,tt)+u_UsePrimary(jj,ii,tt) ! 1 if tt uses link

-
            l_Overlap(ss, tt)

<= 1;

! BACKUP PATH OVERLAP CONSTRAINT
! backup paths may not overlap at any LINK if their primary paths overlap anywhere

        BackupOverlap(ii, jj, ss,tt):=
            b_UseBackup(ii,jj,ss)+b_UseBackup(ii,jj,ss) ! 1 if ss uses link

+
            b_UseBackup(ii,jj,tt)+b_UseBackup(ii,jj,tt) ! 1 if tt uses link

+
            l_Overlap(ss, tt)

<= 2;
end-do

end-do

writeln("Model building completed in ", timestamp - timetracker, " seconds");

writeln("Solving model...");
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timetracker := timestamp;
maximize(XPRS_PRI, Total_Profits);

if (getprobstat=XPRS_OPT) then
writeln("Model solved in ", timestamp - timetracker," seconds");

else
writeln("Model was not solved after ", timestamp - timetracker," seconds");

end-if

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!   Solution output:
! - this following part contains logic for outputting the solution as human
!   readable text and is not part of the model itself.
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

writeln("\nTotal Profits: ", getobjval);
writeln("\nBackup Costs: ",

sum(nn in Nodes, mm in Nodes) getsol(l_BackupRes(nn,mm))*K_CapPrice(nn,mm)
);

! for all customers being served
forall(cc in Customers | getsol(y_Serve(cc)) > 0.1) do

! output customer information and generated profits (excluding backup costs)
writeln("\n\nCustomer ", cc, " (node ",cc,") is being served\n - R_Revenue: ",

        R_Revenue(cc)*getsol(y_Serve(cc)),"\n - profits: ",(
            R_Revenue(cc)*getsol(y_Serve(cc))

-
! costs associated with customer's required services
sum (ss in S_ServicesForCustomer(cc))

(
! placement cost
sum (pp in Providers)

                        H_PlacePrice(ss,pp)*getsol(x_Placement(ss,pp))
+
! network usage cost
sum (nn in Nodes, mm in Nodes) (

                            K_CapPrice(nn,mm)
*(

getsol(u_UsePrimary(nn,mm,ss)*B_BandwidthReqUp(ss))
+getsol(u_UsePrimary(mm,nn,ss)*B_BandwidthReqDown(ss)))

)
)

)
);

! for all services of the served customer
forall(ss in S_ServicesForCustomer(cc)) do

! for the provider selected for the service (x only > 0.1 for one)
forall(pp in Providers | getsol(x_Placement(ss,pp)) > 0.1) do

! output information about service and placement
writeln(

"\n - Service ",ss,":\n  - Costs: ",
( ! Calculate costs for this specific service

                    H_PlacePrice(ss,pp)*getsol(x_Placement(ss,pp))
+
sum (nn in Nodes, mm in Nodes) (

                        K_CapPrice(nn,mm)
*(

getsol(u_UsePrimary(nn,mm,ss))*B_BandwidthReqUp(ss)
+getsol(u_UsePrimary(mm,nn,ss))*B_BandwidthReqDown(ss)

)
)

),
"\n  - placement: provider #", pp, " (node ",(n_Nodes-n_Providers+pp),
") - Cost: ",H_PlacePrice(ss,pp),
"    -Availability without backup: ",
exp(

sum( nn in Nodes, mm in Nodes | (exists(D_AvailabilityExp(nn,mm))) ) (
getsol(u_UsePrimary(nn,mm,ss))*ln(D_AvailabilityExp(nn,mm))

)
),
"    -Availability requirement: ", Y_AvailabilityReq(ss)

);
end-do

! output primary path network routing information for service
! - up-link
writeln("   - ARCS:\n      - primary usage up:");
forall(nn in Nodes, mm in Nodes) do
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if (getsol(u_UsePrimary(nn,mm,ss)) > 0.1) then
writeln("        - (", nn, ",", mm, ") : ",

                        B_BandwidthReqUp(ss)*getsol(u_UsePrimary(nn,mm,ss)),
"    (",

                        K_CapPrice(nn,mm)*B_BandwidthReqUp(ss)*getsol(u_UsePrimary(nn,mm,ss)),")" );
end-if

end-do
! - down-link
writeln("      - primary usage down:");
forall(nn in Nodes, mm in Nodes) do

if (getsol(u_UsePrimary(nn,mm,ss)) > 0.1) then
writeln("        - (", mm, ",", nn, ") : ",

                        B_BandwidthReqDown(ss)*getsol(u_UsePrimary(nn,mm,ss)),
"    (",

                        K_CapPrice(nn,mm)*B_BandwidthReqDown(ss)*getsol(u_UsePrimary(nn,mm,ss)),")" );
end-if

end-do

! if this service requires a backup path (given its primary path routing)
if (

sum( nn in Nodes, mm in Nodes | (exists(D_AvailabilityExp(nn,mm))) ) (
getsol(u_UsePrimary(nn,mm,ss))*ln(D_AvailabilityExp(nn,mm))

)
< ln(getsol(Y_AvailabilityReq(ss)))

) then
! output backup path network routing information
! - up-link
writeln("      - backup usage up:");
forall (nn in Nodes, mm in Nodes) do

if (getsol(b_UseBackup(nn,mm,ss))=1) then
writeln("        - (",nn,",",mm,"): ", getsol(l_BackupRes(nn,mm)));

end-if
end-do
! - down-link
writeln("      - backup usage down:");
forall (nn in Nodes, mm in Nodes) do

if (getsol(b_UseBackup(nn,mm,ss))=1) then
writeln("        - (",mm,",",nn,"): ", getsol(l_BackupRes(mm,nn)));

end-if
end-do

end-if
end-do

end-do

!! Output information about total bandwidth usage on arcs
! arcs with high bandwidth usage
writeln("\n\nArcs with high utilisation of capacity (>=90%):");
forall(nn in Nodes, mm in Nodes | exists(F_BandwidthCap(nn,mm))) do

if (sum(ss in Services) B_BandwidthReqUp(ss)*getsol(u_UsePrimary(nn,mm,ss))) >=
F_BandwidthCap(nn,mm)*0.9 then

writeln(
" - (",nn,",",mm,") ",
(

100*sum(ss in Services) (
                    B_BandwidthReqUp(ss)*getsol(u_UsePrimary(nn,mm,ss))

) / F_BandwidthCap(nn,mm)
),
" %"

);
end-if

end-do
! arcs with medium bandwidth usage
writeln("\n\nArcs with medium utilisation of capacity (< 10%, < 90%):");
forall(nn in Nodes, mm in Nodes | exists(F_BandwidthCap(nn,mm))) do

if ((sum(ss in Services)B_BandwidthReqUp(ss)*getsol(u_UsePrimary(nn,mm,ss))) >
F_BandwidthCap(nn,mm)*0.1 and

(sum(ss in Services)B_BandwidthReqUp(ss)*getsol(u_UsePrimary(nn,mm,ss))) <
F_BandwidthCap(nn,mm)*0.9) then

writeln(
" - (",nn,",",mm,") ",
(

100*sum(ss in Services)(
                    B_BandwidthReqUp(ss)*getsol(u_UsePrimary(nn,mm,ss))

) / F_BandwidthCap(nn,mm)
),
" %"

);
end-if

end-do

end-model
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!
!! Carrier Broker Optimisation: Path Flow Model
!!
!!- The following script implements the PFM defined in Section 6.2
!!  of Mari Holmen's and Sindre Møgster Braaten's masters thesis
!!
!!- Authors: Mari Holmen and Sindre Møgster Braaten
!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

model CarrierBrokerPFM

uses "mmxprs"; !gain access to the Xpress-Optimizer solver
options explterm
options noimplicit

uses "mmxprs", "mmsystem";

parameters
! Data file to read from

    Data = 'data/ml_multi.txt';
! Minimum proportion of total backup requirement reserved on an arc

    MinBackupProportion = 0.25;
! Time limit for runtime,  maximum number of seconds for optimisation

    TimeLimit = -1;
end-parameters

writeln("Model Parameters:");
writeln("Data:", Data);
writeln("MinBackupProportion(beta):", MinBackupProportion);
writeln("TimeLimit:", TimeLimit);

declarations
    timetracker:    real; ! used to log timestamps for time consumption output
end-declarations

writeln("Building model...");
timetracker := timestamp; ! assigns current "timestamp" to timetracker

!setparam("XPRS_presolve", 0);  ! uncomment to turn of presolve
if(TimeLimit>0.0) then

setparam("XPRS_maxtime", TimeLimit);
end-if

setparam("XPRS_verbose", true); ! Turn on message printing
setparam("XPRS_MIPLOG", 2); ! 2: print information for each solution found

!(ALT: 0: no log, 1: summary in end, 3: log each node, -N: log every Nth node)

!!!!!!!!!!!!!!!!!!!!!!!!
! SETS
!!!!!!!!!!!!!!!!!!!!!!!!

declarations
! Set sizes
    n_Customers:            integer; ! number of customers
    n_Services:             integer; ! number of services
    n_Providers:            integer; ! number of providers
    n_Nodes:                integer; ! number of nodes in total
    n_Paths:                integer; ! number of paths

! Sets  
    Customers:              set of integer;
    Providers:              set of integer;

! Used for shorthand for 'cc in Customers, ss in S_ServiceForCustomer(cc)' when cc is not needed 
    Services:               set of integer;

! Set of nodes in the network. 
! - First we have the customer nodes, then the internal nodes, the the provider nodes.

    Nodes:                  set of integer;
    Paths:                  set of integer;
end-declarations

initializations from Data
    n_Customers;
    n_Services;
    n_Providers;
    n_Nodes;
    n_Paths;

end-initializations
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Customers:= 1..n_Customers;
Services:= 1..n_Services;  
Providers:= 1..n_Providers;
Nodes:= 1..n_Nodes;
Paths := 1..n_Paths;

finalize(Customers);
finalize(Services);
finalize(Providers);
finalize(Nodes);
finalize(Paths);

! INDEXED SETS

declarations
! set of services of for each customer

    S_ServicesForCustomer:      set of set of integer;
! paths for each pair of service and provider

    K_PathsServiceProvider:     dynamic array(Services,Providers) of set of integer;
! set of paths using each link

    L_PathsUsingArc:            dynamic array(Nodes,Nodes) of set of integer;
end-declarations

initialisations from Data
    S_ServicesForCustomer;
    K_PathsServiceProvider;
    L_PathsUsingArc;
end-initialisations

!!!!!!!!!!!!!!!!!!!!!!!
! PARAMETERS
!!!!!!!!!!!!!!!!!!!!!!!

declarations
! R_Revenue from serving each customer cc

    R_Revenue:                  dynamic array(Customers) of real;
! Bandwidth capacity between each pair of nodes ii,jj

    F_BandwidthCap:             dynamic array(Nodes,Nodes) of real;
! bandwidth usage on arc ii,jj for path kk

    U_PathBandwidthUsage:       dynamic array(Nodes,Nodes,Paths) of real;
! cost of using path kk

    C_PathCost:                 dynamic array(Paths) of real;
! cost per bandwidth used for backup paths on arc ii,jj

    C_BackupCost:               dynamic array(Nodes,Nodes) of real;
! availability of path kk alone

    D_PathAvailability:         dynamic array(Paths) of real;
! 2d array of availability for paths kk and bb ( P(A)P(B|A) )

    D_CombinationAvailability:  dynamic array(Paths,Paths) of real;
! array of availability req for services

    Y_AvailabilityReq:          dynamic array(Services) of real;

    BigMBackup:                 dynamic array(Nodes,Nodes,Services) of real;

    Symmetric:                                                      boolean;
end-declarations

initialisations from Data   
    R_Revenue;
    F_BandwidthCap; 
    U_PathBandwidthUsage;
    C_PathCost;
    C_BackupCost;
    D_PathAvailability;
    D_CombinationAvailability;
    Y_AvailabilityReq;
    Symmetric;
end-initialisations

if(Symmetric) then
forall(ii in Nodes, jj in Nodes) do

if(exists(F_BandwidthCap(ii,jj)) and not exists(F_BandwidthCap(jj,ii))) then
create(F_BandwidthCap(jj,ii));

            F_BandwidthCap(jj,ii):=F_BandwidthCap(ii,jj);
end-if

end-do
end-if

! for every arc in network
forall(ii in Nodes, jj in Nodes | exists(F_BandwidthCap(ii,jj))) do
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! for every service
forall(ss in Services) do

! set BigMBackup(ii,jj,ss) to highest bandwidth usage of any k for s in i,j
create(BigMBackup(ii,jj,ss));

        BigMBackup(ii,jj,ss) := 0.0;
forall(pp in Providers | exists(K_PathsServiceProvider(ss,pp))) do

forall(kk in (K_PathsServiceProvider(ss,pp)*L_PathsUsingArc(ii,jj))) do
if(BigMBackup(ii,jj,ss) < U_PathBandwidthUsage(ii,jj,kk)) then

                    BigMBackup(ii,jj,ss):= U_PathBandwidthUsage(ii,jj,kk);
end-if

end-do
end-do

end-do
end-do

!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! VARIABLES
!!!!!!!!!!!!!!!!!!!!!!!!!!!!

declarations
! - x: binary, placement of service at provider

    x_Placement:        dynamic array(Services, Providers) of mpvar;
! - y: binary, serving of a customer

    y_Serve:            dynamic array(Customers) of mpvar;
! - u: binary, indicates which paths are used

    u_UsePrimaryPath:   dynamic array(Paths) of mpvar;
! - v: binary, indicates which backup paths are used

    v_UseBackupPath:    dynamic array(Paths) of mpvar;
! - o: binary, indicates if a combination of main and backup path is chosen

    o_UseCombination:   dynamic array(Paths,Paths) of mpvar;
! - lambda: continous, amount of capacity reserved on a link for backup

    l_Lambda:           dynamic array(Nodes,Nodes) of mpvar;
! f: binary, indicates if a service has a need to reserve backup capacity on a arc

    f_needsBackupOnArc: dynamic array(Nodes,Nodes,Services) of mpvar;
! - q: continous, amount of backup capacity needed on an arc for a service

    q_backupPerService: dynamic array(Nodes, Nodes, Services) of mpvar;
! - l: binary, indicates if two services have overlapping primary paths

    l_Overlap:          dynamic array(Services,Services) of mpvar;
end-declarations

! - for all combinations of service and provider
forall (ss in Services, pp in Providers) do

create (x_Placement(ss,pp));
    x_Placement(ss,pp) is_binary;
end-do

! - for all customers
forall(cc in Customers) do

create(y_Serve(cc));
    y_Serve(cc) is_binary;
end-do

! - for all paths
forall(pp in Paths) do

create(u_UsePrimaryPath(pp));
    u_UsePrimaryPath(pp) is_binary;

create(v_UseBackupPath(pp));
    v_UseBackupPath(pp) is_binary;
end-do

! - for every possible combination of two paths as primary and backup
forall (pp in Paths, bb in Paths | exists(D_CombinationAvailability(pp,bb))) do

create(o_UseCombination(pp,bb));
    o_UseCombination(pp,bb) is_binary;
end-do

! - for every arc
forall (ii in Nodes, jj in Nodes, ss in Services | exists(F_BandwidthCap(ii,jj))) do

create(l_Lambda(ii,jj));
create(q_backupPerService(ii,jj,ss));
create(f_needsBackupOnArc(ii,jj,ss));

    f_needsBackupOnArc(ii,jj,ss) is_binary;
end-do

! - for every distinct pair of two services
forall (ss in Services, tt in Services | ss < tt) do

create(l_Overlap(ss,tt));
    l_Overlap(ss,tt) is_binary;
end-do
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! CONSTRAINTS
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

declarations
! Objective function
    Total_Profits:                                                              linctr;

! Constraints
    ServeCustomer:              dynamic array(Services) of linctr;
    AllocatePrimaryPath:        dynamic array(Services,Providers) of linctr;
    AllocateBackupPath:         dynamic array(Services,Providers) of linctr;
    ArcCapacity:                dynamic array(Nodes,Nodes) of linctr;
    AvailabilityRequirement:    dynamic array(Services) of linctr;
    SumBackupLimit:             dynamic array(Nodes,Nodes) of linctr;
    SingleBackupLimit:          dynamic array(Nodes,Nodes,Services) of linctr;
    NeedsBackupCapacity:        dynamic array(Nodes,Nodes,Services) of linctr;
    NeededBackupCapacity:       dynamic array(Nodes,Nodes,Services) of linctr;
    PathComboRequirement:       dynamic array(Paths,Paths) of linctr;
    PrimaryOverlap:             dynamic array(Nodes,Nodes,Services,Services) of linctr;
    BackupOverlap:              dynamic array(Nodes,Nodes,Services,Services) of linctr;
end-declarations

! OBJECTIVE FUNCTION
! - total profits from serving customers
Total_Profits := sum (cc in Customers) (

! R_Revenue from serving customer (if served)
            R_Revenue(cc)*y_Serve(cc)

)
-
! for all paths
sum(kk in Paths) (

! add path cost if used as primary
            C_PathCost(kk)*u_UsePrimaryPath(kk)

)
-
! for eac arc
sum(ii in Nodes, jj in Nodes | exists(F_BandwidthCap(ii,jj)))(

! add cost of bandwidth reserved for backup paths
            C_BackupCost(ii, jj)*l_Lambda(ii, jj)

);

! SERVE CUSTOMER CONSTRAINT
! Customers can only be served if all services for customer is provided
forall(cc in Customers) do

forall(ss in S_ServicesForCustomer(cc)) do
        ServeCustomer(ss) :=

sum (pp in Providers | exists(K_PathsServiceProvider(ss,pp))) (
                x_Placement(ss,pp)

) = y_Serve(cc);
end-do

end-do

! for every service-provider pair
forall(ss in Services, pp in Providers | exists(K_PathsServiceProvider(ss,pp))) do

! ALLOCATE PRIMARY PATH CONSTRAINT
! If a service is placed at a provider, a primary path connecting to that provider location
! must be chosen

    AllocatePrimaryPath(ss,pp) :=
sum(kk in K_PathsServiceProvider(ss,pp)) (

            u_UsePrimaryPath(kk)
) = x_Placement(ss,pp);

! ALLOCATE BACKUP PATH CONSTRAINT
! can only select a backup path to a provider if also selected primary path to the same provider

    AllocateBackupPath(ss,pp) :=
sum(kk in K_PathsServiceProvider(ss,pp)) (

            v_UseBackupPath(kk)
)
<=
sum(kk in K_PathsServiceProvider(ss,pp)) (

            u_UsePrimaryPath(kk)
);

end-do

! ARC CAPACITY CONSTRAINT
! The total used bandwidth for main paths and reserved for backup paths must not exceed the
! arcs capacity
forall(ii in Nodes, jj in Nodes | exists(L_PathsUsingArc(ii,jj))) do
    ArcCapacity(ii,jj) :=
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! for each path
sum(kk in L_PathsUsingArc(ii,jj)) (

! add bw req for path if used as primary
            U_PathBandwidthUsage(ii,jj,kk)*u_UsePrimaryPath(kk)

)
! add bandwidth reserved for backup paths on arc
+

        l_Lambda(ii,jj)
<= F_BandwidthCap(ii,jj);

end-do

! AVAILABILITY REQUIREMENT CONSTRAINT
! The selected main path, with possible backup path, must provide an availability equal to
! or higher than requirement
! - single main path: P(A)
! - with backup path: P(A) + P(B) - P(A)P(B|A)
forall(cc in Customers) do

forall(ss in S_ServicesForCustomer(cc)) do
        AvailabilityRequirement(ss) :=

! Availability from main (and backup path): P(A) + P(B)
sum(pp in Providers | exists(K_PathsServiceProvider(ss,pp))) (

sum(kk in K_PathsServiceProvider(ss,pp)) (
                    D_PathAvailability(kk)

*
(

                        u_UsePrimaryPath(kk)
+

                        v_UseBackupPath(kk)
)

)
)
-
! subtract P(A)P(B|A) if backup path is chosen
sum(pp in Providers | exists(K_PathsServiceProvider(ss,pp))) (

sum(kk in K_PathsServiceProvider(ss,pp), bb in K_PathsServiceProvider(ss,pp))
                    D_CombinationAvailability(kk,bb)*o_UseCombination(kk,bb)

)
>= Y_AvailabilityReq(ss)* y_Serve(cc);

end-do
end-do

! BACKUP BANDWIDTH RESERVATION CONSTRAINTS
! - for every arc and service
forall (ii in Nodes, jj in Nodes, ss in Services | exists(F_BandwidthCap(ii,jj))) do

! NEEDS BACKUP CAPACITY ON ARC CONSTRAINT
! Sets the f variable to 1 if there is a need for backup capacity reservation 
!for the service on the arc 

    NeedsBackupCapacity(ii,jj,ss) :=
        q_backupPerService(ii,jj,ss) - BigMBackup(ii,jj,ss)*f_needsBackupOnArc(ii,jj,ss) <= 0;

! AMOUNT BACKUP CAPACITY NEEDED ON ARC CONSTRAINT
! a service will require a backup reservation at an arc equal to its backup arc requirement
! minus the capacity used by the primary path at the same arc (as this capacity will be released
! if the primary path goes down and the backup is needed)

    NeededBackupCapacity(ii,jj,ss) :=
! bandwidth for backup minus bandwidth for primary on arc
sum(pp in Providers | exists(K_PathsServiceProvider(ss,pp)))(

sum(kk in (K_PathsServiceProvider(ss,pp)*L_PathsUsingArc(ii,jj)))(
                U_PathBandwidthUsage(ii,jj,kk)

*
(

                    v_UseBackupPath(kk)
-

                    u_UsePrimaryPath(kk)
)

)
)
-

        q_backupPerService(ii,jj,ss)
<= 0;

end-do

! SUM SERVICE BACKUP BANDWIDTH CONSTRAINTS
! bandwidth reserved for backup paths on an arc is at least a fraction of the total bandwidth of all
! backup paths using that arc
forall( ii in Nodes, jj in Nodes | exists(L_PathsUsingArc(ii,jj))) do
    SumBackupLimit(ii,jj) :=
        MinBackupProportion*

sum(cc in Customers) (
sum(ss in S_ServicesForCustomer(cc)) (
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                q_backupPerService(ii,jj,ss)
)

)
<= l_Lambda(ii,jj);

end-do

! SINGLE SERVICE BACKUP BANDWIDTH CONSTRAINT
! bandwidth reserved for backup paths must be at least as high as the bandwidth required by the
! the most demaning single service
forall(ii in Nodes, jj in Nodes | exists(L_PathsUsingArc(ii,jj))) do

forall(ss in Services) do
        SingleBackupLimit(ii,jj,ss) :=
            q_backupPerService(ii,jj,ss) <= l_Lambda(ii,jj);

end-do
end-do

! PATH COMBINATION CONSTRAINT
! if path kk is used as main path and path bb as backup path, the corresponding combo variable
! o_UseCombination(kk,bb) must also be 1
! for any valid combination of two paths; two paths from same service-provider pair
forall(cc in Customers) do

forall(ss in S_ServicesForCustomer(cc), pp in Providers| exists(K_PathsServiceProvider(ss,pp))) do
forall(kk in K_PathsServiceProvider(ss,pp), bb in K_PathsServiceProvider(ss,pp)) do

            PathComboRequirement(kk,bb) :=
                u_UsePrimaryPath(kk) + v_UseBackupPath(bb) - o_UseCombination(kk,bb) <= 1;

end-do
end-do

end-do

! SERVICE PATH OVERLAP CONSTRAINTS
! To services have overlapping main paths if for any arc both paths are represented
! for every service combination
forall(ss in Services, tt in Services | ss < tt) do

! for every LINK (every (ii,jj) where ii < jj)
forall(ii in Nodes, jj in Nodes | exists(L_PathsUsingArc(ii,jj))) do

! only for evey link (ii < jj) (failured happen at link level -> failing both arcs)
if(ii < jj) then

! SERVICE PATH OVERLAP CONSTRAINTS
! Two services have overlapping primary paths if for any LINK both paths are represented

            PrimaryOverlap(ii, jj, ss, tt):=
sum(pp in Providers | exists(K_PathsServiceProvider(ss,pp)))(

! L_PathsUsingArc(ii,jj)=L_PathsUsingArc(jj,ii) -> need only paths using LINK ii,jj
sum(kk in (K_PathsServiceProvider(ss,pp)*L_PathsUsingArc(ii,jj))) (

                        u_UsePrimaryPath(kk)
)

)
+
sum(pp in Providers | exists(K_PathsServiceProvider(tt,pp)))(

sum(kk in (K_PathsServiceProvider(tt,pp)*L_PathsUsingArc(ii,jj))) (
                        u_UsePrimaryPath(kk)

)
)
-l_Overlap(ss, tt)
<= 1;

end-if

! BACKUP PATH OVERLAP CONSTRAINT
! backup paths may not overlap at any ARC if their primary paths overlap on any LINK

        BackupOverlap(ii,jj,ss,tt):=
            f_needsBackupOnArc(ii,jj,ss)

+
            f_needsBackupOnArc(ii,jj,tt)

+ l_Overlap(ss, tt)
<= 2;

end-do
end-do

writeln("\nModel building completed in ", timestamp - timetracker, " seconds");

writeln("\nSolving model...");
timetracker := timestamp;
maximize(XPRS_PRI, Total_Profits);

if (getprobstat=XPRS_OPT) then
writeln("\nModel solved in ", timestamp - timetracker," seconds");

else
writeln("\nModel was not solved after ", timestamp - timetracker," seconds");

end-if

writeln("\nTotal Profits: ", getobjval);
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writeln(
"\nTotal Backup Costs: ",
sum(ii in Nodes)(sum(jj in Nodes)(C_BackupCost(ii, jj)*getsol(l_Lambda(ii, jj))))

);

! for all served customers
forall(cc in Customers | getsol(y_Serve(cc)) > 0.001) do

! output served customer and generated profits for customer
writeln(

"\nCustomer ", cc, " (node ",cc,") is being served\n - R_Revenue: ",
        R_Revenue(cc)*getsol(y_Serve(cc))

);
! for all services of customer
forall(ss in S_ServicesForCustomer(cc)) do

! for the provider placement selected for service
forall(pp in Providers | getsol(x_Placement(ss,pp)) > 0.001) do

writeln(
"  - Service ",ss," is placed at provider ",pp,
"     - Availability req.: ", Y_AvailabilityReq(ss),
"     - Exp. availability: ",
( ! calculate expected availability for mapping

sum(kk in K_PathsServiceProvider(ss,pp)) (
                        D_PathAvailability(kk)

*
(

getsol(u_UsePrimaryPath(kk))
+
getsol(v_UseBackupPath(kk))

)
)
-
! subtract P(A)P(B|A) if backup path is chosen
sum(kk in K_PathsServiceProvider(ss,pp), bb in K_PathsServiceProvider(ss,pp))

                        D_CombinationAvailability(kk,bb)*getsol(o_UseCombination(kk,bb))
)

);
forall(kk in K_PathsServiceProvider(ss,pp)) do

if (getsol(u_UsePrimaryPath(kk)) > 0.001) then
writeln(

"     - Primary path: ", kk, " , cost: ",
getsol(u_UsePrimaryPath(kk))*C_PathCost(kk),
" (", getsol(u_UsePrimaryPath(kk))*100, " %)"

);
end-if

end-do
forall(kk in K_PathsServiceProvider(ss,pp)) do

if (getsol(v_UseBackupPath(kk)) > 0.001) then
writeln(

"     - Backup path: ", kk, " (",
getsol(v_UseBackupPath(kk))*100, " %)"

);
end-if

end-do
end-do

end-do
end-do

writeln("\nTotal backup usage");
writeln(

strfmt("arc ",10),
strfmt("reserved",10),
strfmt("max req",10),
strfmt("sum reqs*",10),
strfmt("cost/bw",10),
strfmt("paths",10)

);

declarations
    temp: real;
end-declarations

forall(ii in Nodes, jj in Nodes | exists(L_PathsUsingArc(ii,jj))) do
! Find the actual single maximal backup requirement on arc

    temp := 0.0;
forall(ss in Services) do

if(getsol(q_backupPerService(ii,jj,ss)) > temp) then
            temp := getsol(q_backupPerService(ii,jj,ss));

end-if
end-do
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! Print information about the arc and backup reservations
if(getsol(l_Lambda(ii,jj)) > 0.001) then

write(
strfmt("("+ ii+ ", "+ jj+ ")",10),
strfmt(getsol(l_Lambda(ii,jj)), 10),
strfmt(temp, 10),
strfmt((sum(ss in Services)getsol(q_backupPerService(ii,jj,ss))), 10),
strfmt(C_BackupCost(ii,jj), 10),
"     "

);
forall(kk in L_PathsUsingArc(ii,jj) | getsol(v_UseBackupPath(kk)) > 0.001) do

write(kk, ", ");
end-do
write("\n");

end-if
end-do

end-model
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C++ Code Samples

This appendix includes some samples of the C++ code implementing the Cloud Broker

Application, showing some of the core functionality. The complete code is made available

in the electronic delivery of this thesis.

F.1 Mapping Model with XpressBCL

The following code sample shows the implementation of the mapping model using the

XpressBCL library.

/* ***** BuildModel *******
* params :
* - dataContent * data: pointer to data to build model from
* - double beta_backupres : min fraction of total backup
* requirement to reserve on arc
*
* Builds the MIP -model from the provided dataContent and
* beta model parameter
*/

void CloudBrokerModel :: BuildModel ( dataContent * input_data ,
double beta_backupres , bool dedicated_only )

{
/* ******** SETUP ********* */
this ->data = input_data ;
this -> dedicated = dedicated_only ;
if(this -> dedicated ) {

this ->beta = 1.0; // dedicated protection scheme -> beta = 1.0
} else {

this ->beta = beta_backupres ;
}
/* w variable iterator */
list <XPRBvar >:: iterator w_itr;

169
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/* ********* CREATE VARIABLES ********* */

cout << " - creating variables ..\n";

/* Serve Customer variables
* for: every customer
*/

y_serveCustomerVars . reserve (data -> n_customers );
for(int cc = 0; cc < data -> n_customers ; cc ++) {

y_serveCustomerVars . push_back (
master_problem . newVar (

XPRBnewname (
" y_serve_customer_ %d", cc+1

),
XPRB_BV , 0, 1

)
);

}
cout << " - created " << y_serveCustomerVars .size ()

<< " y- variables \n";

/* Use Mapping variables
* for: every mapping
* [ shorthand for:
* for: every customer
* for: every service of customer
* for: every mapping of service
* ] ( global mapping list is ordered accordingly )
*/

for(int mm = 0; mm < data -> n_mappings ; mm ++) {
w_useMappingVars . push_back (

master_problem . newVar (
XPRBnewname (" m_use_mapping_ %d", mm +1) ,
XPRB_BV , 0, 1

)
);

}
cout << " - created " << w_useMappingVars .size ()

<< " w- variables \n";

/* Services overlap variables
* for: every pair of two services (s, t)
* - assume services are ordered ,
* each combination of services where s < t
*/

int l_count = 0;
/* for every service s ( except last service ) */
if(!this -> dedicated ) {

l_servicesOverlapVars . resize (data ->n_services -1);
for(int ss = 0; ss < data ->n_services -1; ss ++) {

/* for every service t | t > s */
l_servicesOverlapVars [ss]. reserve (data ->n_services -1-ss);
for(int tt = ss +1; tt < data -> n_services ; tt ++) {

l_servicesOverlapVars [ss]. push_back (
master_problem . newVar (

XPRBnewname (
" l_service_overlaps_ %d_%d",
ss+1, tt+1

),
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XPRB_BV , 0, 1
)

);
++ l_count ;

}
}
cout << " - created " << l_count << " l- variables \n";

}

/* Arc Backup Usage variable
* for: every arc a
*/

for(int aa = 0; aa < data -> n_arcs ; ++aa) {
arc * a = &data ->arcs[aa];
lambda_arcBackupRes . push_back (

master_problem . newVar (
XPRBnewname (

" lambda_backup_res_ %d_%d",
a->startNode , a-> endNode

),
XPRB_PL , 0, a-> bandwidth_cap

)
);

}
cout << " - created " << lambda_arcBackupRes .size ()

<< " lambda - variables \n";

/* ****** CREATE OBJECTIVE FUNCTION ******* */

cout << " - creating objective function ..";

XPRBexpr z_obj_expression ;

/* First term:
* - sum revenue from served customers
*/

for(int cc = 0; cc < data -> n_customers ; cc ++) {
customer * c = &data -> customers [cc];
z_obj_expression += (

Parameters :: R_RevenueForCustomer (c)
* y_serveCustomerVars [cc]

);
}

/* Second term:
* - sum cost from all used mappings primary paths
*/

w_itr = w_useMappingVars .begin ();
for(int cc = 0; cc < data -> n_customers ; cc ++) {

customer * c = &data -> customers [cc];
for( unsigned int ss = 0; ss < c-> services .size (); ss ++)
{

service * s = c-> services [ss];
for (list < mapping *>:: iterator m_itr = s-> mappings .begin (),

m_end = s-> mappings .end (); m_itr != m_end; ++ m_itr)
{

z_obj_expression -= (
Parameters :: E_PrimaryPathCost ((* m_itr)->primary )
*(* w_itr)

);
++ w_itr;

}
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}
}

/* Third term:
* - sum costs of total reserved capacity for backup paths on arcs
*/

for(int aa = 0; aa < data -> n_arcs ; ++aa) {
arc * a = &data ->arcs[aa];
z_obj_expression -= (

Parameters :: E_PerBandwidthCostForArc (a)
* lambda_arcBackupRes [aa]

);
}

/* create final objective function */
z_objective = master_problem . newCtr ("OBJ", z_obj_expression );
/* set objective function for problem */
master_problem . setObj ( z_objective );

/* ******************** CREATE CONSTRAINTS ************************ */

cout << "DONE !\n - creating constraints ..\n";

/* SERVE CUSTOMER CONSTRAINTS
* - If customer is to be served and generate revenue :
* - all services of that customer
* must be assigned a mapping
* for: every customer
* for: every service of customer
*/

cout << " - SERVE CUSTOMER CONSTRAINTS ..";
w_itr = w_useMappingVars .begin ();
serveCustomerCtr . reserve (data -> n_services );
/* for every customer */
for(int cc = 0; cc < data -> n_customers ; ++cc) {

customer * c = &data -> customers [cc];

/* for every service of customer */
for( unsigned int ss = 0; ss < c-> services .size (); ++ss) {

service * s = c-> services [ss];

/* NEW CONSTRAINT : lhs expression */
XPRBexpr map_service_expr ;

/* add serve customer var */
map_service_expr += y_serveCustomerVars [cc];

/* for every mapping of service */
for (list < mapping *>:: iterator m_itr = s-> mappings .begin (),

m_end = s-> mappings .end (); m_itr != m_end; ++ m_itr)
{

/* subtract mapping selection var
* - mapping selection var w is created in same order ,
* can therefore loop over global w list
*/
map_service_expr -= (* w_itr);
++ w_itr;

}

/* create final constraint */
serveCustomerCtr . push_back (
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master_problem . newCtr (
XPRBnewname (

" serve_customer_ctr_ %d",
s-> globalServiceIndex +1

),
map_service_expr == 0.0

)
);

}
}
cout << "DONE! (" << serveCustomerCtr .size () << " created ) \n";

/* ARC CAPACITY CONSTRAINT
* - the sum of capacity used by chosen primary paths over link
* a and bandwidth reserved for backup must not exceed the
* capacity of the arc
*
* for: every arc a
*/

cout << " - ARC CAPACITY CONSTRAINTS ..";

/* for every arc */
arcCapacityCtr . reserve (data -> n_arcs );
for(int aa = 0; aa < data -> n_arcs ; ++aa) {

arc * a = &data ->arcs[aa];

/* NEW CONSTRAINT : lhs expression */
XPRBexpr arc_bw_usage ;

/* sum bandwidth use from all used mappings primary paths */
w_itr = w_useMappingVars .begin ();
for(int cc = 0; cc < data -> n_customers ; ++cc)
{

customer * c = &data -> customers [cc];
for( unsigned int ss = 0; ss < c-> services .size (); ++ss)
{

service * s = c-> services [ss];
for(list < mapping *>:: iterator m_itr=s-> mappings .begin (),

m_end = s-> mappings .end (); m_itr != m_end; ++ m_itr)
{

mapping * m = *m_itr;

/* add bandwidth used by used mappings on arc */
arc_bw_usage += (

Parameters :: U_PrimaryBandwidthUsageOnArcForMapping (
a,m

)
*(* w_itr)

);

++ w_itr;
}

}
}

/* add bandwidth reserved for backup paths on arc */
arc_bw_usage += lambda_arcBackupRes [aa];

/* create final constraint : arc bw usage <= arc cap */
arcCapacityCtr . push_back (

master_problem . newCtr (
XPRBnewname (
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" arc_capacity_ctr_ %d_%d",
a->startNode , a-> endNode

),
( arc_bw_usage
<=
Parameters :: F_BandwidthCapacityForArc (a)
)

)
);

}
cout << "DONE! (" << arcCapacityCtr .size () << " created ) \n";

/* SINGLE BACKUP RESERVATION CONSTRAINT
* - backup capacity reserved on an arc must be large enough to
* support any single backup path using that arc
*
* for: every arc
* for: every customer
* for: every service of customer
*
* When using dedicated protection scheme
* -> beta = 1.0 -> this constraint is made irrelevant by
* SUM BACKUP RESERVATION CONSTRAINT
*/

if(!this -> dedicated ) {
cout << " - SINGLE BACKUP RESERVATION CONSTRAINTS ..";

/* for every arc */
backupSingleCtr . resize (data -> n_arcs );
int backupSingleCount = 0;
for(int aa = 0; aa < data -> n_arcs ; ++aa) {

arc * a = &data ->arcs[aa];

/* for every service */
backupSingleCtr [aa]. reserve (data -> n_customers );
w_itr = w_useMappingVars .begin ();
for(int cc = 0; cc < data -> n_customers ; ++cc) {

customer * c = &data -> customers [cc];
for( unsigned int ss = 0; ss < c-> services .size (); ++ss)
{

service * s = c-> services [ss];

/* NEW CONSTRAINT : lhs expression */
XPRBexpr service_backup_req_on_arc ;

/* for every mapping of service */
for (list < mapping *>:: iterator m_itr =

s-> mappings .begin (), m_end = s-> mappings .end ();
m_itr != m_end; ++ m_itr)

{
mapping * m = *m_itr;

/* add backup req on arc for used mapping */
service_backup_req_on_arc += (

Parameters :: Q_BackupBandwidthUsageOnArcForMapping (a, m)
*(* w_itr)

);

++ w_itr;
}

/* subtract arc backup usage variable */
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service_backup_req_on_arc -= lambda_arcBackupRes [aa];

/* create final constraint */
backupSingleCtr [aa]. push_back (

master_problem . newCtr (
XPRBnewname (

" backup_single_ctr_ %d_%d_%d",
a->startNode , a->endNode ,
s-> globalServiceIndex +1

),
service_backup_req_on_arc <= 0.0

)
);
++ backupSingleCount ;

}
}

}
cout << "DONE! (" << backupSingleCount << " created ) \n";

}

/* SUM BACKUP RESERVATION CONSTRAINT
* - a proportion of total backup requirement on an arc must
* be reserved
* for: every arc
*/

cout << " - SUM BACKUP RESERVATION CONSTRAINTS ..";

/* for every arc */
backupSumCtr . reserve (data -> n_arcs );
for(int aa = 0; aa < data -> n_arcs ; ++aa) {

arc * a = &data ->arcs[aa];

/* NEW CONSTRAINT : lhs expression */
XPRBexpr total_backup_req_expr ;

/* for every mapping */
w_itr = w_useMappingVars .begin ();
for(int cc = 0; cc < data -> n_customers ; ++cc)
{

customer * c = &data -> customers [cc];
for( unsigned int ss = 0; ss < c-> services .size (); ++ss) {

service * s = c-> services [ss];
for (list < mapping *>:: iterator m_itr =

s-> mappings .begin (), m_end = s-> mappings .end ();
m_itr != m_end; ++ m_itr)

{
mapping * m = *m_itr;

/* add backup bandwidth req on arc for used mappings
* ( multiplied with beta factor )
*/
total_backup_req_expr += (

beta
* Parameters :: Q_BackupBandwidthUsageOnArcForMapping (a, m)

*(* w_itr)
);

++ w_itr;
}

}
}
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/* subtract backup reservation on arc variable */
total_backup_req_expr -= lambda_arcBackupRes [aa];

/* create final constraint */
backupSumCtr . push_back (

this -> master_problem . newCtr (
XPRBnewname (

" backup_sum_ctr_ %d_%d",
a->startNode , a-> endNode

),
total_backup_req_expr <= 0.0

)
);

}
cout << "DONE! (" << this -> backupSumCtr .size () << " created )\n";

/* PRIMARY OVERLAP CONSTRAINT
* - if for any arc , the chosen mappings of two services uses that
* arc , the two services are said to overlap
*
* for: every pair of two services services
*
* NOTE: not needed for dedicated protection scheme as backup
* collision will never happen
*/

if(!this -> dedicated ) {
cout << " - PRIMARY OVERLAP CONSTRAINTS ..";
int primaryOverlapCtrCount = 0;

/* for every LINK
* ( for every arc where startNode < endNode )
*/

// half as many links as arcs
primaryOverlapCtr . resize (data -> n_arcs /2);

int link_index = 0;
for(int aa = 0; aa < data -> n_arcs ; ++aa) {

arc *a = &data ->arcs[aa];

// one arc per link: arcs where startNode < endNode
if(a-> startNode < a-> endNode ) {

primaryOverlapCtr [ link_index ]. resize (
data ->n_services -1

);

/* for every pair of two services (s, t) */
for(int ss = 0; ss < data ->n_services -1; ++ss) {

service *s = &data -> services [ss];
primaryOverlapCtr [ link_index ][ss]

. reserve (data ->n_services -1-ss);
for(int tt = ss +1; tt < data -> n_services ; ++tt) {

service *t = &data -> services [tt];

/* NEW CONSTRAINT : lhs expression */
XPRBexpr primary_overlap_expr ;

/* sum over mappings for service s using arc a */
for (list < mapping *>:: iterator m_itr =

s-> mappings .begin (),
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m_end = s-> mappings .end ();
m_itr != m_end; ++ m_itr)

{
mapping * m = *m_itr;
if(

Parameters :: U_PrimaryBandwidthUsageOnArcForMapping (a, m)
>= EPS
)
{
primary_overlap_expr +=

* mappingVarForMappingIndex (
m-> globalMappingIndex

);
}

}

/* sum over mappings for service t using arc a */
for (list < mapping *>:: iterator m_itr =

t-> mappings .begin (), m_end =
t-> mappings .end (); m_itr != m_end; ++ m_itr)

{
mapping * m = *m_itr;
if(

Parameters :: U_PrimaryBandwidthUsageOnArcForMapping (a, m)
>= EPS
)
{
primary_overlap_expr +=

* mappingVarForMappingIndex (
m-> globalMappingIndex

);
}

}

/* subtract primary overlap var forpair (s,t)*/
primary_overlap_expr -=

l_servicesOverlapVars [ss][tt -ss -1];

/* create final constraint */
primaryOverlapCtr [ link_index ][ss]. push_back (

master_problem . newCtr (
XPRBnewname (

" primary_overlap_ctr_ %d_%d_%d_%d",
a->startNode , a->endNode , ss , tt

),
primary_overlap_expr <= 1.0

)
);
++ primaryOverlapCtrCount ;

}
}

++ link_index ;
}

}
cout << "DONE! (" << primaryOverlapCtrCount << " created )\n";

}

/* BACKUP OVERLAP CONSTRAINT
* - if two services primary paths overlap , their backup paths
* can not have bandwidth requirements at the same arc
*
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* for: every pair of two services services
*
* NOTE: not needed for dedicated protection scheme as
* backup collision will never happen
*/

if(!this -> dedicated ) {
cout << " - BACKUP OVERLAP CONSTRAINTS ..";
int backupOverlapCtrCount = 0;
/* for every arc a */
backupOverlapCtr . resize (data -> n_arcs );
for(int aa = 0; aa < data -> n_arcs ; ++aa) {

arc *a = &data ->arcs[aa];
backupOverlapCtr [aa]. resize (data ->n_services -1);

/* for every pair of two services (s, t) */
for(int ss = 0; ss < data ->n_services -1; ++ss) {

service *s = &data -> services [ss];
backupOverlapCtr [aa][ss]

. reserve (data ->n_services -1-ss);
for(int tt = ss +1; tt < data -> n_services ; ++tt) {

service *t = &data -> services [tt];

/* NEW CONSTRAINT : lhs expression */
XPRBexpr backup_overlap_expr ;

/* sum over all mappings for service s using arc a */
for (list < mapping *>:: iterator m_itr =

s-> mappings .begin (), m_end = s-> mappings .end ();
m_itr != m_end; ++ m_itr)

{
mapping * m = *m_itr;
if(

Parameters :: Q_BackupBandwidthUsageOnArcForMapping (a, m)
>= EPS
)
{

/* add mapping selection var for mapping */
backup_overlap_expr +=

* mappingVarForMappingIndex (
m-> globalMappingIndex

);
}

}

/* sum over all mappings for service t using arc a */
for (list < mapping *>:: iterator m_itr =

t-> mappings .begin (), m_end = t-> mappings .end ();
m_itr != m_end; ++ m_itr)

{
mapping * m = *m_itr;
if(

Parameters :: Q_BackupBandwidthUsageOnArcForMapping (a, m)
>= EPS
)
{

/* add mapping selection var for mapping */
backup_overlap_expr +=

* mappingVarForMappingIndex (
m-> globalMappingIndex

);
}

}
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/* add primary overlap var for service pair (s, t) */
backup_overlap_expr +=

l_servicesOverlapVars [ss][tt -ss -1];

/* create final constraint */
this -> backupOverlapCtr [aa][ss]. push_back (

this -> master_problem . newCtr (
XPRBnewname (

" backup_overlap_ctr_ %d_%d",
a->startNode , a-> endNode

),
backup_overlap_expr <= 2.0

)
);
++ backupOverlapCtrCount ;

}
}

}
cout << "DONE! (" << backupOverlapCtrCount << " created )\n";

}

// set problem to maximise objective
master_problem . setSense ( XPRB_MAXIM );

return ;
}

F.2 Column Generation Main Loop

The following code sample shows the implementation of the column generation main

loop, containing logic common to the three column generation solution methods proposed

in this thesis.

void CloudBrokerOptimiser :: RunColumnGeneration (
int cg_alg , int cg_maxiters , int cg_maxcount ,
const char *opt_alg , int max_cg_time )

{
AbstractColumnGenerator * cg;
bool time_restricted = max_cg_time > -1;

cout << "- Column Generation By: ";
switch ( cg_alg ) {

case CG_BRUTEFORCE :
cout << "Brute Force\n";
cg = new BruteForceColumnGenerator (

&this ->model , this ->data
);
break ;

case CG_HEURISTIC_A :
cout << " Heuristic A\n";
cg = new HeuristicAColumnGenerator (
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&this ->model , this ->data
);
break ;

case CG_HEURISTIC_B :
cout << " Heuristic B\n";
cg = new HeuristicBColumnGenerator (

&this ->model , this ->data
);
break ;

default :
cerr <<" undefined cg algorithm choice : "<<cg_alg <<"\n";
return ;

}
cout << "-- max iterations : " << cg_maxiters << "\n";
cout << "-- max mappings : " << cg_maxcount << "\n";
cout << "-- max cg time: " << max_cg_time << "\n";

timer run_cg_total_start ;
double lp_time_total = 0.0;
double cg_time_total = 0.0;
double run_cg_total_time = 0.0;

double lp_opt = 0.0;

this ->model. SetColumnGenerationConfiguration (true);

int itercount = 0;
while (( cg_maxiters <= 0 || itercount < cg_maxiters ) &&

( cg_maxcount <= 0 || data -> n_mappings < cg_maxcount ))
{

++ itercount ;
bool foundColumn = false ;

// solve LP - relaxation
timer lp_start ;
cout << "\ nIteration " << itercount +1

<< ":\n-- running lp - relaxation ..\n";
this -> model. RunModel (false , 0, opt_alg );
lp_time_total += lp_start . elapsed ();

lp_opt = this ->model. GetObjectiveValue ();
this ->model. SaveBasis ();
dual_vals duals = this ->model. GetDualVals ();

cout << "-- Generating Columns ..\n";
timer cg_start ;

// generate columns for every (service , provider ) pair
for(int cc = 0; cc < this ->data -> n_customers ; ++cc)
{

customer *c = &this ->data -> customers [cc];
for( unsigned int ss = 0;

ss < c-> services .size (); ++ss)
{

service *s = c-> services [ss];

if(cg -> GenerateColumnsForService (c, s, &duals))
{

foundColumn = true;
}

}
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}

cg_time_total += cg_start . elapsed ();

if(! foundColumn )
{

cout << "\n==> No more columns found"
<< " column generation stopped \n";

/* no new column was found -> end column generation */
break ;

}

if( time_restricted )
{

double current_total_time =
run_cg_total_start . elapsed ();

if( current_total_time > max_cg_time )
{

cout << "\n!! Terminating Column Generation "
<< " due to time restriction \n";

break ;
}

}

this -> model. LoadSavedBasis ();
}

this ->model. SetColumnGenerationConfiguration (false);

run_cg_total_time = run_cg_total_start . elapsed ();

cout << "\n ########## COLUMN GENERATION COMPLETED ##########\ n";
cout << "- Total time: " << run_cg_total_time << "\n";
cout << "- Total LP solve time: " << lp_time_total << "\n";
cout << "- Total CG time: " << cg_time_total << "\n";
cout << "- Overhead time: "

<< run_cg_total_time - cg_time_total - lp_time_total << "\n";
cout << "- # iterations : " << itercount << "\n";
cout << "- # of mappings total: " << this ->data -> n_mappings << "\n";
cout << "- LP - optimum value: " << lp_opt << "\n\n";

delete cg;
}

F.3 Column Generation Brute Force Search

The following code sample shows implementation of core logic of the Column Generation

by Brute Force Search method.

bool BruteForceColumnGenerator :: GenerateColumnsForService (
customer *c, service *s, dual_vals *duals

)
{
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mapping bestFound ;
double best_eval = 0.0;

for( unsigned int pp = 0;
pp < s-> possible_placements .size (); ++pp

)
{

placement *p = &s-> possible_placements [pp];
for( unsigned int kk = 0; kk < p->paths.size (); ++kk)
{

returnPath *k = p->paths[kk];
// check if feasible mapping alone
if(k-> exp_availability >= s-> availability_req ) {

// path offers sufficient availability
// -> dont add backup path
mapping m;
m. primary = k;
m. backup = NULL;
double eval = this -> _evalMapping (

&m, s, duals
);
if(eval > best_eval ) {

best_eval = eval;
bestFound = m;

}
}
// OR try combining with other path to
// placement as backup
else {

// not sufficient availability from path
// -> look for possible backup paths
for ( unsigned int bb = 0;

bb < p->paths.size (); ++bb
)
{

returnPath * b = p->paths[bb];
// calculate combo
// availability [ P(A)*P(B|A) ]
double k_and_b =

entities :: prob_paths_a_and_b (
k, b

);
if(k-> exp_availability

+ b-> exp_availability
- k_and_b
>= s-> availability_req )

{
// combination of a and b is feasible
// -> add routing
mapping m;
m. primary = k;
m. backup = b;
double eval = this -> _evalMapping (&m, s, duals);
if(eval > best_eval ) {

best_eval = eval;
bestFound = m;

}
}

}
}

}
}
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if( best_eval >= EPS) {
cout << " --> NEW MAPPING (BF): " << best_eval << "\n";
this ->model -> AddMappingToModel (& bestFound , s);
return true;

}
return false;

}
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