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Abstract

This thesis considers the maritime fleet renewal problem (MFRP) for a major liner

shipping company. The MFRP is a strategic problem with a planning horizon of

several years. The literature study shows that there is a general lack of research

about these types of problems. One hypothesis that can explain this lack, is that

the current profit maximizing or cost minimizing models presented in research does

not coincide with the objectives of the decision makers at the strategic level.

A new model that maximizes investment returns, in terms of Return on Capital

Employed (ROCE), is developed, as well as a profit maximizing model. The model

maximizing ROCE is believed to better describe the objectives of decision makers

at the strategic level than the profit maximizing or cost minimizing models found in

current literature. The profit maximizing model will be used as a comparison to the

new ROCE maximizing model, to evaluate the solutions suggested.

To be able to solve the ROCE maximizing model, which has a fractional objec-

tive formula with decision variables both in the numerator and the denominator, a

transformation method has to be applied. The inclusion of both binary and integer

variables complicates this picture further, and the transformations of these variables

have to be handled explicitly.

The computational study compares the solutions from the two models, including

testing for the impact of varying input parameter values, as well as testing expansions

of the model including charters and a second hand market, as well as using both a



two-stage and three-stage stochastic model.

The results from the computational study shows that there are major structural

differences between the solutions from the two models, with the ROCE maximizing

model being far more conservative in investments than the profit maximizing model.

The findings from using the ROCE maximizing model give new insight for operations

research considering strategic, maritime problems. This will hopefully contribute to

the development of better decision support from operations research for these types

of problems.



Sammendrag

Denne avhandlingen vurderer det maritime fl̊atefornyelseproblemer (MFFP) for et

stort shippingselskap. Det MFFP er et strategisk problem med en planleggingsho-

risont som strekker seg over flere år. Litteraturstudien viser at det er generell mangel

av forskning p̊a denne typen problemer. En hypotese som kan forklare denne man-

gelen, er at objektfunksjonen i dagens profittmaksimerende og kostnadsminimerende

modeller ikke sammenfaller med objektivene for beslutningstakere p̊a strategisk niv̊a.

En ny modell som maksimerer avkastningen p̊a investeringene, i form av avkast-

ning p̊a sysselsatt kapital (ROCE), er utviklet, samt en profittmaksimerende modell.

Den ROCE-maksimerende modellen antas å bedre beskrive objektivene for beslut-

ningstakere p̊a strategisk niv̊a, enn de profittmaksimerende og kostnadsminimerende

modellene som er presentert i litteraturstudiet. For å kunne sammenligne resultatene

fra den nye modellen, er en profittmaksimerende modell ogs̊a utviklet.

For å være i stand til å løse den ROCE-maksimerende modellen, som har en frak-

sjonell objektivformel med beslutningsvariabler b̊ade i teller og nevner, blir en trans-

formasjonsmetode tatt i bruk. Binære og heltallsvariable kompliserer dette bildet

ytterligere, transformeringen av disse h̊andteres eksplisitt.

Et resultatstudie sammenligner løsningene fra de to modellene. Det inkluderer ogs̊a

analyser for justering av parameterverdier, samt utvidelser av modellen, inklud-

ert charter-muligheter og et bruktmarked for skip, samt en to-trinns og tre-trinns

stokastisk modell.



Resultatene viser at det er store strukturelle forskjeller mellom løsningene fra de to

modellene, der den ROCE-maksimerende modellen er langt mer konservativ i in-

vesteringsbeslutningene enn den profittmaksimerende modellen. Funnene fra bruken

av den ROCE-maksimerende modellen gir ny innsikt til optimeringsfeltet innen

strategiske, maritime problemer. Dette vil forh̊apentligvis bidra til utvikling av

bedre beslutningsstøtte fra optimeringsfeltet for slike problemer.
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Chapter 1

Introduction

The shipping industry is part of the seaborne trade, and consists of transportation

of cargo by sea. The distance covered can range from local (e.g. ferries) to global

(e.g. goods from Asia to Europe) transportation. Over the last decades, seaborne

trade has been steadily increasing, from a volume of 2 605 million tons in 1970 to 8

748 million tons in 2012 (Asariotis et al., 2012). Figure 1.1 shows the development of

world trade, seaborne trade, world gross domestic product (GDP) and the growth in

OECD countries. It can be seen that world trade has been growing faster than the

world GDP. This can be explained by the increasing globalization seen over the last

decades, demanding more trade between the different geographic areas of the world.

Looking towards the future, as unpredictable as it may be, there seems no reason

to expect any major setbacks in globalization. Thus it seems reasonable to assume

that the world seaborne trade will continue to develop in line with the economic

development in the world in the future as well.
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Chapter 1. Introduction

Figure 1.1: The OECD Industrial Production Index and indices for world GDP, world merchandise

trade and world seaborne trade (1975-2012) (1990 = 100) Asariotis et al. (2012).

Even though the seaborne trade has been increasing steadily over the last decades,

the shipping industry is considered cyclical of nature, with varying peaks and troughs

(Stopford, 2008). Peaks are often recognized by increasing demand which is not met

to full extent through increase in supply, while troughs can be recognized for instance

by increasing supply with demand which cannot keep up, or even decreases. Stopford

(2008) indicates an average length of about 7 years for a cycle of a peak and a trough,

but the variance is large, and changes in market conditions can happen rapidly from

year to year. This was last shown in the downturn after the financial crisis in 2008,

leading for example to a decrease in global container trade of almost 10 % from 2008

to 2009 (Asariotis et al., 2012).

The shipping industry in general have long planning horizons when it comes to

acquisition and disposal of ships. Lead times for new ships are normally over a year,

sometimes as much as four years, from order until the ship is delivered. The lifetime

2



of a ship is often considered around thirty years. Taking this into account, it is

difficult to plan years ahead for investments that will last several decades, when one

knows that the market changes in the same period can be large and unpredictable.

It has been shown that shipowners tend to adapt to the current economic conditions

of the market by extending the lifetime of ships in their fleet in good times and

sometimes expedite scrapping of ships in bad economic times (Stopford, 2008).

In the last four years, when the world economy has seen little growth following the

financial crisis in 2008, the total supply in the shipping market has increased by 37 %,

far more than the worldwide economic growth in the same period. The oversupply in

the freight market leads to lower freight rates, pushing the margins of the shipping

companies. Figure 1.2 shows the development of container rates from 2007 to 2012.

At the same time as rates are decreasing, stable or increasing oil prices have lead to

increased fuel prices, making the bunker fuel costs a larger share of the total cost for

the shipping companies (Asariotis et al., 2012).

Figure 1.2: New ConTex Index 2007 - 2012 (Index base 2007 = 1000)(Asariotis et al., 2012)
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Chapter 1. Introduction

Shipping operations were classified into three modes by Lawrence (1972); industrial,

tramp, and liner shipping. In industrial shipping the cargo owner also controls the

fleet of ships, and tries to transport its cargo at the lowest possible cost. In tramp

shipping the ships operate where there is cargo, as a taxi operation. The companies

will usually have a large amount of the capacity tied to long term contracts, but will

also try to maximize profit from optional spot cargoes. Liner shipping companies

operate with published routes and schedules, much like a bus company. There are not

necessarily clearly defined boundaries between the three shipping modes presented,

and a company can operate with multiple modes for different parts of the fleet.

For shipping companies, we often categorize the decisions they have to make into

operational, tactical and strategic decisions. The difference between the categories

are in the timeline of planning horizon for the decisions that need to be taken.

Operational decisions look into the ”here and now” level of planning, for example

which speed should be used for a ship going from A to B. The tactical level looks into

problems with a longer planning horizon, e.g. which ships should be used to service a

trade, and fleet size and mix problems (FSMP) for shorter planning horizons. At the

strategic level one looks at decisions which spans up to several years, such as fleet size

and mix problems for planning horizons spanning over several years. With longer

planning horizons, uncertainty tends to increase, meaning that strategic problem

usually have more uncertainty involved than tactical and operational problems.

To handle the nature of the shipping industry, shipping companies must rely on op-

timal decisions at all decision levels. Increased performance of the fleet in terms of

better utilization and improving technology, leading to savings in operating costs,

will also help shipping companies in dealing with the challenges faced. Operations

research can assist shipping companies with all these aspects. As the shipping indus-

try has a high degree of uncertainty related to the future development of demand,

freight and fuel prizes and more, uncertainty should be handled. In operations

research, two main approaches to handling uncertainty has developed; robust opti-
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mization and stochastic programming. A short introduction will be given in Chapter

3.

When looking at FSMP where there exists an initial fleet that is going to be replaced

over a planning horizon spanning several years, this is referred to as a fleet renewal

problem (FRP) (Pantuso et al., 2013). FRPs have received less attention than other

categories of FSMPs. This report will consider the maritime fleet renewal problem

(MFRP) for a case company which can be said to operate in a liner shipping mode.

The case company transports goods in the roll-on/roll-off (ro-ro) category. This

shipping category is to a very high degree affected by the changes in the world

economy, as one of the major customer groups is car producers. Demand for shipping

of cars is highly correlated with the world economy. Normally, freight agreements

with car manufacturers are stated in share of production, and not absolute figures.

This means that the amount of transported cars will vary with production, which is

highly correlated with the world economy.

Current research for the shipping industry have focused more on the operational and

tactical problems that the industry face, than the strategic problems. These have

received less attention, perhaps due to a mismatch between the objectives that have

been used in the models, and the objectives of the decision makers at the strategic

level. Strategic problems cover a longer planning horizon, and may involve large

capital investment decisions, such as in the MFRP. Because of the large investment

decisions, it may be that traditional cost minimizing or profit maximizing model

does not reflect the considerations done at the strategic decision level. To address

this problem, a model will be developed for maximizing investment returns, trying

to reflect the objectives of decision makers facing strategic problems in a better way

than the traditional profit maximization and cost minimization models. It aims to

improve the decision support from operations research for decisions maker at this

level. There has been little or no work done earlier in operations research when it

comes to measuring investment returns for MFRPs, and it may thus be considered

5



Chapter 1. Introduction

of great interest to expand this field of research to assist better strategic decision

support for the industry. To be able to compare the results form the new model,

a profit maximizing model will also be developed. The model will use stochastic

programming as an approach to handle the uncertainty of future development in the

market.

This report is structured as follows: Chapter 2 will describe the MFRP in detail

and discuss the use of investment returns in the objective function. In Chapter 3

an introduction to uncertainty and how this can be implemented in models will be

given. Chapter 4 presents a short literature study for the problem. Chapter 5 will

describe the two models developed for this report. Chapter 6 will present and discuss

results of the computational study. Chapter 7 summarizes the key takeaways from

the report.

6



Chapter 2

Problem Description

This chapter will start by describing the maritime fleet renewal problem (MFRP) in

detail in Section 2.1, before discussing the use of different types of objective functions

in Section 2.2.

2.1 The Maritime Fleet Renewal Problem

The maritime fleet renewal problem (MFRP) is considered a version of the maritime

fleet size and mix problem (MFSMP). The MFSMP is the problem of optimizing

the size and mix of a fleet of ships to meet demand requirements. MFSMP can

range from tactical to strategic problems, depending on the length of the planning

horizon. When taking into account multiple time periods and an initial fleet, the

problem turns into the MFRP (Pantuso et al., 2013). The MFRP is the problem of

deciding how many and which ship types to operate in each time period to efficiently

meet demand. It includes decisions about how to acquire new ships and dispose of

old ones.

To be able to solve the MFRP, one must also consider operational decisions to es-
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timate how much capacity is needed to meet demand. The operating decisions can

be solved as either a scheduling, routing or deployment problem. The highest level

of detail is found in scheduling problems. The level of detail decreases with routing

problems, and even more so in deployment problems, which is at higher level of

abstraction. Without a good solution to the operating decisions, the solution to the

MFRP will risk not being optimal because of false assumptions regarding the oper-

ating decisions. Problems at the strategic level often use high-level models, this may

be because of several reasons: Tradeoffs between level of detail and computational

efficiency, there might not be any more detailed data available, or the data available

is so uncertain that it does not reason to use it for strategic planning.

The MFRP is solved each time the strategic planning is performed, so the emphasis

of the problem is on the decisions to be taken here and now, i.e. which ships to buy

and sell in the upcoming period. The decisions proposed for following periods are

only meant as decision support, meaning that they explain how the solution outline

the development of the fleet in the coming periods, but the final decisions for these

periods are taken at a later time.

There are several ways of obtaining new ships, one of them building new ships (the

building is done by a shipbuilder, but building will be used as term for new ships to

differ from buying ships from the second hand market). New ships must be ordered

from a shipbuilder, and have a lead time from order to delivery ranging from one

year up to perhaps four at the most. In addition to building new ships, it might

also be possible to buy ships in the second-hand market. When buying ships in

the second-hand market, there is usually no lead time, given that the seller has

received the ships in its fleet, and is ready to be delivered to the buyer as soon

as the arrangements have been made. Besides buying a new or second hand ship,

there is also a possibility of chartering in ships. Chartering in ships does not affect

the composition of the fleet, but can provide flexibility in the operating decisions.

Space, voyage, time and bareboat charter are the most common chartering types.

8



2.1. The Maritime Fleet Renewal Problem

With space charter you pay for the space needed to transport a shipment, typically

on a liner ship. Voyage charter means paying to have a ship perform one or more

voyages between specified ports at an agreed rate. With time charter, you charter

an entire boat for a specified period, paying a charter rate plus all sailing costs.

Bareboat charter means hiring a ship, usually for a longer time period, paying an

agreed rate and all fixed (capital costs, insurance, etc.) and sailing costs.

When it comes to disposing of ships, ships can be sold at the second-hand market,

or ships can be scrapped. When a company decides to scrap a ship, it is usually

paid a rate based on the current value of the steel in the ship. If a company does

not want to scrap or sell a ship, but still does not plan to sail with it, the ship can

be put in lay-up, saving the company for some of the costs due to less crew, and

minimum engine activity, it may also be possible that they are able to reduce their

insurance cost if a ship is in lay-up over a longer period. There is also the possibility

of chartering out ships the same ways as one can charter them in, and selling them

in the second hand market. The same way as with chartering in ships, this does

not affect the composition of the fleet, but provides flexibility for the operational

decisions.

The shipping company have a set of fixed costs, such as capital and operating costs.

Capital costs are related to the amount paid when buying a ship, in addition to the

way the ship is financed; through debt (loans) or equity (cash). Operating costs are

connected to manning, insurance, maintenance and repair, and administrative costs.

The possibility of putting ships in lay-up is a way of saving costs for the shipping

company when it does not want to sell or scrap a ship. The variable costs incur when

a ship is sailing, and consists of fuel costs, port and canal fees, and cargo handling

costs at ports. The fuel costs will vary with the length of the route sailed and

the operating speed, and typically make up most of the variable costs. In the case

that the shipping company does not have enough capacity to transport a contracted

demand, the company will need to use space charter to ensure transportation of the

9
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agreed amount.

In Ro-Ro shipping, one considers different types of cargoes, such as cars, high and

heavy (HH) and break bulk (BB). The different ship types have different capacities

for different types of cargoes. When taking different types of cargoes into consider-

ation, the problem is further complicated.

2.2 Introducing a new objective function

Previous work on the MFRP have mostly used profit maximization or cost min-

imization as the objective function. These types of objective functions are very

useful when the major decisions about what to do in the planning horizon are made.

When considering the MFRP, the decisions made will possibly lead to large invest-

ments in terms of new ships. These are decisions that often are made by the top

management or investors of a company.

When making strategic decisions, top management and investors will often be inter-

ested in the rate of return that investments will give, and the risk associated with

the investments. Since the MFRP only consider investments for a shipping company,

the risk rate can be considered equal for all proposed solutions, meaning that rate of

return will be an important measure for decisions. To model this reality in a better

way, the use of investment returns as objective function will give a new dimension

to using operational research to solve the MFRP.

When measuring investment returns, a wide range of measures have been developed

for this purpose. In this report, Return on capital employed (ROCE) will be used.

ROCE considers the returns from operations compared to the necessary capital em-

ployed to perform the operations. In (Coles, 1997) ROCE is defined as

10



2.2. Introducing a new objective function

ROCE =
Operating profit(POP )

Capital employed (CE)
(2.1)

Capital Employed can have many definitions, one of which is the capital investment

necessary for a business to function. When applying this to the MFRP it is rea-

sonable to define Capital Employed as the capital investments in the shipping fleet.

Other capital such as buildings will not be taken into consideration. When starting a

planning horizon, the initial fleet will have an initial value for the capital employed,

and as the planning horizon proceeds, this will be updated with the adjustments of

the fleet.

The definition in Equation (2.1) considers ROCE for one time period. When consid-

ering ROCE for the MFRP, one should consider the average Capital Employed for

the period. The definition of ROCE over the planning horizon used in this report

will therefore be:

ROCE =
∑
t∈T

POP
t

CE
t /(T + 1)

(2.2)

where POP
t is the operational profit in time t, CE

t is the capital employed in period t,

and T is the length of the planning horizon. This is more accurately named Return

on Average Capital Employed (ROACE), but the term ROCE will be used for this

report.

The formulation in Equation (2.2) gives a ROCE for the entire planning horizon.

From this it is possible to estimate the compounded annual growth rate (CAGR)

from the following formula (Luenberger, 2009):
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Chapter 2. Problem Description

(1 + CAGR)T =ROCE + 1

1 + CAGR =(ROCE + 1)
1
T

CAGR =(ROCE + 1)
1
T − 1

(2.3)

ROCE only measures the return as share of investment, so 1 is added to the right

hand side of the equation. Omitting this 1 would lead to a ROCE of 1 giving a CAGR

of 0%, which would not seem logical, considering that the returns have been positive.

CAGR is used to define the return per year, if all returns are reinvested, for instance

for money placed in a saving account. There is a difference between this type of

investment and the investments considered in the MFRP; when investing by putting

money in a bank account, the investment sum is guaranteed. When investing in a

ship fleet, the investment is tied to the ship, and it cannot be expected to have the

entire investment returned if one were to sell all the ships. Because of this, CAGR,

as used in this report, can be considered the rate of capital employed returned per

year. The ROCE measure can be said to measure how much of the capital employed

that is returned over the planning horizon. It is important to realize that the CAGR

presented in this report can not be compared directly to, for instance, the interest

rate in a bank, or the CAGR of a stock investment.
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Chapter 3

Modeling Uncertainty

As mentioned in Chapter 1, shipping companies solving the MFRP face a large degree

of uncertainty over the planning horizon considered. In optimization, uncertainty is

reflected in the parameters of the problem, which are influenced by random variables.

Two examples of this are demand and cost of sailing. Demand will be influenced

by the world economy, and the cost of sailing will be influenced by fuel prices, both

the world economy and fuel prices being parameters which are uncertain. The set

of possible outcomes of the random variables is referred to as a scenario tree. This

chapter will give an introduction to how uncertainty can be modeled when solving

the MFRP. Section 3.1 will give an introduction to stochastic programming which

will be used for the models developed in Chapter 5. In Section 3.2, methods of

building and evaluating scenario trees will be introduced.

In operations research, there are different ways of approaching uncertainty. Two of

the most commonly used approaches are stochastic programming and robust opti-

mization. Stochastic programming, starting from a probability distribution of the

random parameters, tries to describe the potential outcomes in the best possible

way, using scenarios. Stochastic programming maximizes the expected objective

value based on possible stochastic future outcomes of the random variable(s). Higle
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(2005) gives a thorough introduction to stochastic programming. Robust optimiza-

tion, on the other hand, can be said to consider uncertainty models that are not

stochastic, but deterministic and set based. Bertsimas et al. (2011) give an intro-

duction to robust optimization. Robust optimization ensures feasibility in all cases,

which is specially important if there are not good recourse actions available. For

this report, looking at the MFRP, stochastic programming is chosen because of the

dynamics of the problem, and the possibility of recourse options, such as space char-

ters.

3.1 Stochastic programming

Solving problems without handling uncertainty means solving deterministic prob-

lems (DP). DP may be used because there are little, or no uncertainty involved in

the problem faced. On the other hand, for problems such as the MFRP, which is

considered to have a large degree of uncertainty, solving the problem as a DP usually

means solving the expected value problem (EVP), which means that the expected

value of the random variables are used. If the realization of the random variables is

the same as the expected values, the EVP finds an optimal solution. The problem

is that this solution has no guarantee as to how it will perform if the realization of

the random variables differs from the expected value. Then the solution may behave

very poorly, or even be infeasible.

Implementing the possible outcomes of the future is hard to do in a perfect way, as

the realization often follows a continuous probability distribution. Think of future

demand for transportation of cars for the MFRP that is studied in this paper. That

demand is continuous over a possible very large interval. To implement the con-

tinuous probability distribution, will mean that solving an integral in the objective

function will have to be done. By using a discretization of the contribution, this is

avoided. The discretization is modeled by scenarios, and a higher number of scenar-

14



3.1. Stochastic programming

(a) Scenario representation (b) Node representation

Figure 3.1: Representation of scenarios trees

ios will possibly give a more realistic approach to the problem, but will also increase

the complexity of the problem.

The discretization of the uncertain variables is represented through a scenario tree,

where the path of each leaf node correspond to a given realization of the random

variables throughout the planning horizon. This scenario tree can be represented ei-

ther with scenarios as in Figure 3.1a or with nodes as in Figure 3.1b. These pictures

illustrate a scenario tree where one random variable can have a high or low devel-

opment from the first time period to the second, and from the second time period

to the third. This gives in total four scenarios. The scenario representation means

that each possible leaf node has its own path through the planning horizon.

The examples shown in Figure 3.1 are called three-stage scenario trees. A stage is a

time period where information is revealed or where a decision has to be made. The

first stage here is in t = 0, where all scenarios have the same information about the

random variables, which is the possible outcomes and their discrete distribution. The

second stage is t = 1, where the realization of the random variables for t = 1 is known

(high or low), the third stage is t ≥ 2, where the realization of the random variables

for t = 2 and onwards is revealed. The dotted circles in t = 0 and t = 1 in Figure
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3.1a represents non-anticipativity constraints, where decisions made in scenarios in

the same circle has to be equal at this time, since at this stage, all information about

the future realization of the random variables is the same for these two scenarios.

Both scenarios have experience a high development of the random variable from the

first to second stage, but the future outcome is uncertain for both scenarios.

In stochastic programming, the term ”recourse” is often used. Higle (2005) define

recourse as the opportunity to adapt a solution to a specific outcome. In a two

stage model, often some decisions has to be made about resources in the first stage,

before demand is known in the second stage. This is the case for the maritime

fleet renewal problem (MFRP), where investment and scrapping decisions has to be

made in the first stage, before, for instance, demand and prices are known. Recourse

actions in this case are, amongst other, the possibility to put ships on lay up in case

of overcapacity in the fleet and use space charters or charter in ships in cases of

undercapacity in the fleet.

3.2 Building and evaluating scenario trees

Kaut and Wallace (2003) present several methods of generating a scenario tree, de-

pendent on the properties of the problem and available knowledge about the true

distribution. These are conditional sampling, sampling from specified random vari-

ables and correlations, and moment matching, which will be briefly introduced here,

as well as path-based methods and optimal discretization. Conditional sampling

take samples in each node directly from the distribution, or by some explicit formula

according to for instance the current stage in the scenario tree. Conditional sampling

usually samples from each random variable, and combines them all-by-all, meaning

that the scenario tree grows exponentially with each random variable. If s scenar-

ios are being sampled for k random variables, the total number of scenarios ends up

being sk. Conditional sampling cannot handle correlations between the random vari-
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ables. It is also possible to sample from specified random variables and correlations.

In that case, the distribution of each random variable and the correlation between

the random variables is known. If the distribution is not known, it is possible to

sample using moments of the distribution for the random variables (mean, variance,

skewness, kurtosis etc.) instead.

Once a method for building the scenario tree has been chosen and scenario trees

are generated, it is possible to measure the quality of the scenario trees. Kaut and

Wallace (2003) state that the quality of the scenario tree does not depend on the

approximation of the distribution, but the quality of the decision it leads to. So

instead of looking at the scenario tree, one considers the error of the approximation,

which is defined as the difference between the value of the true objective function at

the solutions of the true and approximated problem. From Pflug (2001) a definition

of this error is given:

ef (ξ̃t, ξ̆t) = F (argmin
x

F (x; ξ̆t); ξ̃t)− F (argmin
x

F (x; ξ̃t); ξ̃t)

= F (argmin
x

F (x; ξ̆t); ξ̃t)−min
x
F (x; ξ̃t)

(3.1)

Here, ξ̆t is the ”true” scenario tree, while ξ̃t is a generated scenario tree. The for-

mulation in Equation (3.1) has one obvious problem; for most practical problems

it is impossible to calculate. Kaut and Wallace (2003) decides to evaluate a sce-

nario generation method, instead of trying to find the optimal scenario tree. They

state that one would like to know that the scenario tree has stability, and no bias.

The latter property is hard to test, because it involves solving the problem for the

true (continuous) scenario tree, and if one could do that, there would be no need to

generate other scenario trees. Stability is given both as in-sample stability and out-

of-sample stability, which both desirable. In-sample stability is given by comparing

the optimal solutions from using different scenario trees. With K scenario trees, it

is defined as
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F (x∗k; ξ̆tk) ≈ F (x∗l ; ξ̆tl) k, l ∈ 1...K (3.2)

Out-of-sample stability is given by comparing the solutions from using different sce-

nario trees. These solutions are then tested against the ”true” scenario tree, referred

to as ξ̃. With solutions from K scenario trees, it is defined as

F (x∗k; ξ̃t) ≈ F (x∗l ; ξ̃t) k, l ∈ 1...K (3.3)

In-sample stability is far easier to test for than out-of-sample, since out-of-sample

stability demands that one knows the true scenario tree, which may not be the case,

and if it is known, may be practically impossible to test because of the complexity

of the problem.

If the true distribution of the random variables is not known (which is often the

case, since the future for most cases is impossible to predict), the quality of the

scenario tree may be impossible to evaluate in a good way. Pantuso (2014) examines

which properties of the uncertainty is important in stochastic programming. Pantuso

(2014) finds that the correlations between the random variables and the shape of the

distribution does not impact the solution to a large degree, so failing to describe these

correctly does not necessarily have a large impact on the quality of the solutions from

the scenario tree. The mean value of the variables on the other hands, will have larger

impact on the solutions, if estimated incorrectly.

18



Chapter 4

Literature

This chapter provides an overview of literature relevant to the problem addressed

in this report. This chapter will try to highlight how previous work done within

the field of fleet size and mix problems (FSMP) relates to the work done in this

report.

In Section 4.1, the methodology used for finding relevant literature will be presented.

In Section 4.2, literature on FSMP will be presented. The maritime fleet renewal

problem (MFRP) is a type of FSMP. To get a broader picture of research done within

the field, a coverage of FSMP will be reviewed first, before Section 4.3 presents

literature on the MFRP.

4.1 Methodology

Two survey papers have been used as sources for this review. Hoff et al. (2010)

give a comprehensive picture of relevant literature for fleet composition and routing.

They have a general focus on the problem, including road-based and maritime prob-

lems. The survey by Pantuso et al. (2013) focuses on papers about the maritime
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fleet size and mix problem (MFMSP), including the maritime fleet renewal problem

(MFRP).

In addition to the survey papers by (Hoff et al., 2010) and (Pantuso et al., 2013),

Scopus search has been used as an extra source to provide exhaustive coverage of

all relevant literature. Scopus (Scopus) is considered one the largest and best bibli-

ographic databases available.

For the fleet size and mix and fleet renewal problem, four Scopus searches were

performed. The first search phrase required the words ”maritime”, ”fleet”, ”size”

and ”mix” to be included in the title, abstract or keywords. This gave six results,

whereof two were the survey papers by Pantuso et al. (2013) and Hoff et al. (2010),

and two were other survey papers referenced in the former two. The final two

papers were without relevance for the problem in this paper. Omitting the word

”maritime” gives 94 results, one of them being a literature survey on optimization

in container liner shipping by Tran and Haasis (2013). This survey does conclude

that there has been little interest in ship investments from the optimization field.

The most recent result for this search is the survey paper by Pantuso et al. (2013).

Substituting the word ”maritime” with ”ship” or ”shipping” gives five and seven

results respectively.

For the fleet renewal problem, four Scopus searches were performed. The first search

phrase required the words ”fleet” and ”renewal” to be included in the title, abstract

or keywords. This gave 220 results. Including the word ”maritime” gives 10 results.

Substituting the word ”maritime” with ”ship” or ”shipping” gives 48 and 17 results

respectively.

The results from the Scopus searches were manually examined to check for relevance

for this report. Most results could easily be omitted by reviewing the title and/or

abstract, finding that they had no relevance for this study. The fact that Scopus

search gave nearly no extra contribution compared to the literature presented in the

surveys by Hoff et al. (2010) and Pantuso et al. (2013), show that there is not a large
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amount of literature regarding the MFSMP and MFRP available.

4.2 Fleet size and mix problems

Hoff et al. (2010) give a comprehensive review of relevant literature for fleet compo-

sition and routing. They have a general focus, including road-based and maritime

problems. Hoff et al. (2010) find that most of the literature reviewed consider ques-

tions regarding the operational decisions about fleet composition and routing. They

state that there is a general lack of literature regarding the tactical and strategic

decisions. There might be several reasons as to why there is little work done on

strategic and tactical problems regarding fleet composition and routing. One of

them is the uncertainty involved when considering longer planning horizons, making

a more high level approach to the routing problem suitable. Another is the fact

that such problems may become far to complex to solve with the current solution

methods. A third reason might be because of the misalignment between the models

suggested and the objectives of the decision makers, as stated in Chapter 2.

The survey by Pantuso et al. (2013) focuses on papers about the maritime fleet size

and mix problem (MFMSP). The survey finds that there is a general scarcity in the

papers dealing with the MFSMP. In addition, very few papers consider an initial

fleet to be renewed, and few papers explicitly treat uncertainty.

The papers reviewed by (Hoff et al., 2010) are categorized by method (exact or heuris-

tic), problem type (fleet sizing, fleet composition, fleet composition and routing, or

heterogenous fixed fleet routing) and modality (maritime, road-based or generic).

For the purpose of this report, it is also interesting whether the papers consider the

investment decisions or not.

The findings by Hoff et al. (2010) about most papers considering the operational

decisions shows itself in the fact that most papers does not consider an initial fleet,
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or discuss the investments needed for the solutions found. Golden et al. (1984) is

referred to as the first paper that reference the fleet size and mix vehicle routing

problem. The paper consider the problem of finding the optimal fleet mix, and then

solve the routing problem using this fleet as the available fleet. The paper does

not consider an initial fleet, or expansion of the fleet, just finding the optimal fleet

size and mix. The same findings are valid, for instance, for Sigurd et al. (2005).

They solve a vehicle routing problem to estimate the best fleet for a ship scheduling

problem. The model only considers the optimal fleet size and mix to minimize the

cost of the routing problem, and does not explicitly consider the purchase price of a

new ship.

Still, there are some papers that take a strategic perspective when solving the prob-

lem. Fagerholt et al. (2010) present a decision support methodology for strategic

planning in maritime transportation. They use simulation to both generate scenar-

ios and evaluate strategic decisions. The set of strategic decisions, such as which

contracts to take and the fleet size and mix, are generated by experts before the

model is run. The model maximizes profit, for each scenario and strategic decision,

a short-term routing and scheduling problem is solved.

Another example of a paper that consider the strategic perspective is Pesenti (1995),

which include a model for the organizational setup, in terms of a hierarchical model

with cooperation between strategic, tactical and operational levels in the organiza-

tion. The problem considers purchasing and use of container ships. The strategic

level reports it decisions to the tactical level which then reports back to the strategic

level with feedback on the decisions proposed from the strategic level. The model

considers a fixed cost of buying and operating a ship. The strategic level objective

function considers the cost and revenue from buying and selling ships, expected rev-

enue from possible routes to service as well of cost of idle time and waiting time for

customers (based on fleet utilization), maximizing the total profit.
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4.3 Maritime fleet renewal problem

The survey paper by Pantuso et al. (2013) includes a section on the MFRP, where

they find that very few of the papers reviewed consider the MFRP. All papers con-

sidering the MFRP, which explicitly handles the operating decisions, use some kind

of higher level deployment model. The survey does not focus on how the objective

function is constructed, most likely because all papers consider a cost minimizing

or profit maximizing objective function. The papers that consider the MFRP have

a strategic perspective by nature, and most of the papers that consider uncertainty

explicitly looks at the MFRP. The reason for this is probably explained by the fact

that uncertainty increases with the length of the planning horizon one considers.

Papers considering strategic problems, such as the MFRP, will usually have a longer

planning horizon than papers that considers operational or tactical problems.

Not all papers on the MFRP consider operational decisions at all. Jin and Kite-

Powell (2000) present an analytical model for optimal fleet replacement and oper-

ations. The model does not take into consideration uncertainty or chartering, and

does not consider the operational decisions. The objective function maximizes profit,

and the model does not consider expansion of the fleet, only replacement.

Most papers have some way of modeling the deployment. Xinlian et al. (2000) present

a dynamic model for fleet planning. In the model they first optimize deployment

for different stages and fleet developments, before using these results to develop the

optimal strategy for fleet development. They model the deployment between routes,

much like the deployment model in this report, which will be presented in Chapter

5. The model minimizes cost of operational decisions and building up the fleet.

Meng and Wang (2011) take a similar approach as Xinlian et al. (2000) as they

introduce a scenario-based dynamic programming model. The model is intended

for liner shipping, and solves the deployment problem as a MIP. The scenarios are

generated by experts and describe different developments of the fleet and estimated
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demand. The operating decisions are taken on routes travelled, but where there is

possibility of several pick up and delivery ports along a route. The model maximizes

profit from operations.

Pantuso et al. (2014) present a model for the MFRP which handles uncertainty

explicitly. The model has a cost minimizing objective function, with no optional

demand or contracts. The operating decision is solved by deployment on trades, on

which the model in this report to a large degree follows. The deployment formulation

is similar to the one presented by Christiansen et al. (2013). Pantuso et al. (2014)

finds that using stochastic programming to handle uncertainty will improve solutions

when solving the MFRP.

Papers that handle uncertainty have different approaches as to how uncertainty is

handled. Both Pantuso et al. (2014) and Meng and Wang (2011) use stochastic pro-

gramming. Alvarez et al. (2011) on the other hand, present a robust optimization

model which handle uncertainty explicitly. The model can deal with varying degrees

of risk tolerance. The deployment is considered between markets for different com-

modities, much like the trades in this report. The model considers purchase price

as a fixed up-front cost, and does not consider lead time for delivery of new ships.

Alvarez et al. (2011) consider the investments needed in terms of a budget constraint

which limit the total net amount that can be invested in the fleet during the plan-

ning horizon. However, they do not in any way discuss the solutions in terms of

investment needed.
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Mathematical formulations

In this chapter four mathematical formulations of the MFRP will be presented.

Modeling assumptions for the formulations will be discussed in Section 5.1. Then a

model that maximizes profit will be presented with two formulations in section 5.2.1

and 5.2.2, one with a scenario representation and one with a node representation of

the scenario tree, as discussed in Chapter 3. Then a model that maximizes ROCE

will be presented with two formulations in section 5.3.1 and 5.3.3, one scenario and

one node formulation.

For the ROCEMax formulations, transformations of the variables will be needed,

as well as linearizations of the transformations for the integer and binary variables.

The transformations and linearizations will not be shown in full for all variables. All

formulations presented in this chapter can be found in full in Appendix A.

5.1 Modeling assumptions

This section will cover some of the modeling assumptions, as well as some case specific

characteristics, before the formulations are presented in Sections 5.2 and 5.3.
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It is assumed that new orders and scrappings of ships must be integer variables. It

could be argued that it is possible to order parts of a ship by selling a part of the ship

in the open market or entering an agreement with another company. This possibility

will not be considered in this report. For ships put on lay-up, chartered in or out,

these can be fractional. A fractional value of the variable will indicate that a ships

was only put on lay-up or chartered in or out for parts of the period.

The model assumes that there will be demand for three types of cargo: Cars, HH and

BB. Demand and capacity is given in the unit RT43, which is a standard measure-

ment unit for cars cargo. One RT43 is equal to 9.1 cubic metres. HH is cargo that

needs special placement because of height and/or weight, while BB is other cargo

not compatible with standard cargo sizes. The ship has different capacities for each

type of cargo, all given in RT43 units. The largest capacity of all cargo types is also

considered the total capacity for the ship, normally cars. An assumption is made

that the capacities fill up individually, up to the capacity for each type and the total

capacity of a ship. This is not completely accurate, as there is usually is an extra

restriction for the capacities of HHs and BBs. Implementing this would require a

load variable for cargo. Since the demand for cars is by far the highest of the three

cargo types, this restriction is not expected to have large impact on the solutions to

the problem. Therefore, for sake of computational effectiveness, this restriction is

omitted. Table 5.1 shows some examples of valid and invalid combinations of cargo

load for an example ship type. Example 1 is valid, since the capacity for all cargo

types is not exceeded, and the total cargo load is not above the total capacity for

the ship. Example 2 is invalid, even though all capacity restriction for the different

cargo types is not exceeded, the total load is above the total capacity of the ship.

Example 3 is invalid, since the load for BB is above the BB capacity of the ship. The

total capacity of the ship is respected, but that is not sufficient for the configuration

to be valid.

This report will use a high level version to model the deployment decisions, very
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Cars HH BB Valid/invalid

Capacities 2000 1000 500

Example 1 1000 500 500 Valid

Example 2 1500 500 500 Invalid

Example 3 500 500 1000 Invalid

Table 5.1: Examples of valid and invalid configurations of cargo load

similar to the one presented in Pantuso et al. (2014). The deployment is considered

by looking at transportation on trades. A trade consists of two geographical regions;

origin and destination. Both origin and destination usually consist of several ports.

The demand for cargo to be picked up at each origin port is aggregated into a total

demand for the trade, and is delivered to the destination ports of the trade. An

example of such a trade can be between Asia and North-America, as illustrated in

Figure 5.1, where there are several origin ports in Asia and several destination ports

in North-America. This is modeled as one trade with one demand.

Figure 5.1: An example trade between Asia and North-America.

When modeling deployment on trades, each trade is considered a node. In a trade,
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all origin ports are aggregated into a single origin, and all destination ports are

aggregated into a single destination, so that a visit to a trade node can be considered

traveling from the origin to the destination carrying cargo, and sailing back to the

destination in ballast. There might be some demand for cargo to be picked up in the

destination ports to be transported on another trade. So instead of having to sail in

ballast back to the origin and in ballast again to the destination, this time serving

as the origin on the new trade, this is referred to as sailing on loops. A loop consists

of serving one or several trades after another before sailing back in ballast to the

first trade. Figure 5.2 shows two example loops. The number of loops performed

during a given period can take fractional values. A fractional value of the number of

loops will indicate that one or more loops may have started in the previous period,

or will finish in the following period. When generating loops a maximum cardinality

of two has been used, meaning that loops consisting of up to two trades will be

generated. Pantuso et al. (2014) showed that when solving the MFRP using this

deployment model, larger cardinalities does not improve the solution much, but give

large increases to the solution time.

A shipping company usually have a set of contractual agreements for shipments on

trades. The trades will be separated into two sets; one set consisting of the trades

for which the shipping company have contractual agreements for demand for the

entire planning horizon, referenced as contractual trades. The other sets will consist

of trades where there are no contractual agreements at the start of the planning

horizon, referenced as optional trades. The shipping company may choose to service

these trades during the planning horizon. If the shipping company choose to service

an optional trade in a period, it must continue to do so for the rest of the planning

horizon.

When ships sail a loop, it services all trades on that loop, sailing in ballast between

the trades on the loops. In the model, ballast sailing between loops is not included.

This in an optimistic assumption about the total sailing. At the same time, ballast
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Figure 5.2: Two examples of loops, represented both on the map and as a graph.
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sailing from the destination port of the last trade to the origin port of the first

trade on a loop is included. If the next loop starts in a region other than the the

origin of the first trade on the former loop, this sailing is not likely not be included

in actual operating decisions. Thus a pessimistic assumption of the total sailing is

made. The optimistic and pessimistic assumptions about total sailing are assumed to

balance each other in a sufficient way for this model. A trade may include frequency

requirements, meaning that the trade must be serviced at least a certain number of

times during a time period.

The cost of buying a new ship is affected by the way the company chooses to finance

the ship. The financing decision when buying a ship is not considered in this report,

and all costs are considered in an up-front payment at the time the ship is ordered,

whether this is the cash sum of the ship or the net present value of future repayments

and interest.

The fleet consists of ships of different types, varying in capacities, speed and age. In

each period, only two types of ships will be available to build.

It is assumed that the ships have a set lifetime, and that they will leave the fleet when

the maximum age is reached. No considerations as to the possibility of extending

the lifetime of a ship is taken.

5.2 ProfitMax formulations

5.2.1 ProfitMax scenario formulation

Let T = {0, ...., T̄} be the set of periods, indexed by t. T̄ will then be the final

period of the planning horizon. TL is the lead time from order to delivery of a new

ship. When ordering new ships, these can be delivered in period t+TL if ordered in

period t. New ships are considered to enter the fleet at the start of a year, meaning
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that if a ships is ordered in time period t = 0, it is delivered at the start of period

t = TL. This means that new ships can only be ordered in periods t ≤ T̄ − TL. For

period 0, deployment considerations are not taken into account.

S is the set of scenarios, indexed by s, each scenario has probability Ps of occurring,

where
∑
s∈S

Ps = 1. The set SNA
ts consists of all scenarios that are connected to scenario

s in time t, meaning that decisions made in scenario s in time t must be the same

in all scenarios in SNA
ts .

Let Vt be the set of ships available in the market in period t, indexed by v. The set

of available ships that can be delivered in a period is denoted V N
t . This means that

ships that are part of V N
t must be ordered in period t− TL. In periods t < TL only

ships that were ordered before the start of the planning horizon can be delivered.

These are given by the parameter Y NB
vt , which is the number of ships of type v

ordered in the sunk period, delivered at the start of period t. Avt is the age of a

ship of type v in period t, and Ā the lifetime of ships. Ships are part of Vt as long

as 0 ≤ Avt ≤ Ā.

Nt is the set of all trades that the shipping company may operate in period t, indexed

by i. The subset NC
t of Nt is the set of contractual trades, which the shipping com-

pany have contractual obligations to service from the start of the planning horizon.

NO
t is then the set of optional trades. Let Rt be the set of all loops, indexed by r,

with Rvt ⊂ Rt being the loops on which a ship of type v can sail in period t. The

subset Rivt consists of all loops that can be sailed by ship v in period t that services

trade i. G is the set of all cargo types, indexed by c.

Let RD
it be the revenue made from transporting one unit of goods on trade i in period

t, where Ditcs is the demand on trade i in period t for cargo c in scenario s. CSP
it is

the cost of transporting one unit of goods by space charter. COP
vt is the operating

cost for a ship, the fixed costs for having a ship in the pool for a period. Let CCO
vts

be the cost of chartering in one ship of type v for period t in scenario s and RCO
vts

the revenue made from chartering out one ship of type v for period t in scenario s.
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CTR
rvt is the cost of sailing one loop of type r. RLU

vt is the savings made from putting

a ship on lay-up. The potential future profit of ships in the fleet at the end of the

planning horizon is modeled by the sunset value of the ships. Let RSV
vs be the sunset

value of ships of type v in scenario s. This value is calculated by taking the price

of a ship in the second hand market in the final period of the planning horizon, as

this should incorporate the potential future profit from a ship. CNB
vt is the cost of a

new ship of type v ordered in period t and RSC
vt is the revenue made when scrapping

a ship. Let RSE
vts be the revenue made from selling one ship of type v in the second

hand market in time t and scenario s, while CSH
vts is the cost of buying one ship of

type v in the second hand market in time t and scenario s.

Qcv is the capacity of cargo type c for a ship of type v. Let Fit be the frequency

requirement on trade i in period t. Zrv is the time it takes for a ship on type v

to perform one loop r, and Zv is the total available time for a ship of type v in a

period. The limits on the maximum number of ships to sell or buy in the second

hand market of a ship v in time t and scenario s is given by SEvts and SHvts, while

the limits on available ships of type v in time t and scenario s for chartering in and

demand for chartering out is given by CIvts and COvts. SEts, SH ts, CI ts and COts

gives limit on the total number of ships to buy or sell in the second hand market

and charter in or out, in each period t.

xvrt is the variable stating how many loops of type r is performed by ships of type v

in period t. yPvt is the pool variable stating how many ships are available in period t

of type v. The pool variable is initially set in period 0 by the parameter Y IP
v which

gives the initial fleet. In later periods, adjustments to the fleet are made by the

variables ySCvts , yNB
vts , ySEvts , ySHvts , which are the scrappings, new ships built, and ships

sold and bought in the second hand market, of type v in period t under scenario s.

Ships can not be traded in the second hand market the same period as it can be

delivered as a new build, but will be available from the period after. Ships that are

scrapped in period t will not be available from the following period. The variables
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5.2. ProfitMax formulations

lvt says how many ships are put on lay-up. hIvts and hOvts are variables for the number

of ships of type v to be chartered in and out respectively, in period t and scenario

s. nits is the variable for units of goods transported by space charter on trade i in

time t and scenario s. Let δits be a binary variable set to 1 if the company services

optional trade i in period t and scenario s.

Objective function

maxz =
∑
s∈S

Ps

[ ∑
t∈T,t>0

( ∑
i∈NO

t

∑
c∈G

RD
itsDitcsδits

+
∑
i∈NC

t

∑
c∈G

(RD
itsDicts − CSP

ictsnicts)−
∑
v∈Vt

(COP
vts y

P
vts

+ CCO
vts h

I
vts −RCO

vts h
O
vt

+
∑

r∈Rvts

CTR
vrtsxvrts −RLU

vts lvts)
)

−
∑

t∈T,t≤T̄−TL

∑
v∈V N

t+TL

CNB
vts y

NB
vts

+
∑
t∈T

∑
v∈Vt

(RSC
vtsy

SC
vts

+RSE
vtsy

SE
vts − CSH

vts y
SH
vts )

+
∑
v∈VT̄

RSV
vs y

P
vT̄ s

]

(5.1)

The objective function measure the operational profit, PO, as described in Chapter

2, which is the numerator in the ROCE measure. The objective function first de-

scribe the revenue and cost from all deployment decisions from t = 1. The the cost

and revenue made from decisions about obtaining or disposing of ships, before the

sunset value is included last. The problem is subject to constraints (5.2)-(5.36):
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Chapter 5. Mathematical formulations

Demand constraints∑
v∈Vt

∑
r∈Rivt

Qcvxvrts + nicts ≥ Ditcs, t ∈ T \ {0}, i ∈ NC
t , c ∈ G, s ∈ S, (5.2)

∑
v∈Vt

∑
r∈Rivt

Qcvxvrts ≥ Ditcsδits, t ∈ T \ {0}, i ∈ NO
t , c ∈ G, s ∈ S, (5.3)

Constraints (5.2) and (5.3) make sure that the demand on each trade for each cargo

type is satisfied.

Capacity constraints∑
v∈Vt

∑
r∈Rivt

max
cinG

Qcvxvrts +
∑
c∈G

ncits ≥
∑
c∈G

Ditcs, t ∈ T \ {0}, i ∈ NC
t , s ∈ S,

(5.4)∑
v∈Vt

∑
r∈Rivt

max
cinG

Qcvxvrts ≥
∑
c∈G

Ditcsδits, t ∈ T \ {0}, i ∈ NO
t , s ∈ S,

(5.5)

Constraints (5.4) and (5.5) make sure that the individual capacities for each ship,

and the total capacity of the ships are not violated.

Frequency constraints∑
v∈Vt

∑
r∈Rivt

xvrts ≥ Fit, t ∈ T \ {0}, i ∈ NC
t , s ∈ S, (5.6)

∑
v∈Vt

∑
r∈Rivt

xvrts ≥ Fitδits, t ∈ T \ {0}, i ∈ NO
t , s ∈ S, (5.7)

Constraints (5.6) and (5.7) make sure that where a trade has frequency requirements,

these are fulfilled.
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5.2. ProfitMax formulations

Time constraints∑
r∈Rvt

Zrvxvrts ≤ Zv(y
P
vts + hIvt − hOvt − lvts), t ∈ T \ {0}, v ∈ Vt, s ∈ S, (5.8)

Constraints (5.8) make sure that the total sailing time of ships of type v does not

exceed the available time in total for a ship of type v.

Optional trades constraints

δits ≤ δi,t+1,s, t ∈ T \ {0, T̄}, i ∈ NO
t , s ∈ S, (5.9)

Constraints (5.9) ensures that when the company starts to service an optional trade,

it must do so for the rest of the planning horizon.

Pool constraints

yPvts = yPv,t−1,s − ySCv,t−1,s + ySHv,t−1,s − ySEv,t−1,s, t ∈ T \ {0}, v ∈ Vt \ V N
t , s ∈ S,

(5.10)

yPvts = Y NB
vt , t ∈ T : t < TL, v ∈ V N

t , s ∈ S, (5.11)

yPvts = yNB
v,t−TL,s, t ∈ T : t ≥ TL, v ∈ V N

t , s ∈ S, (5.12)

yPv0s = Y IP
v , v ∈ V0, s ∈ S, (5.13)

yPvts = ySCvts , t ∈ T \ {0}, v ∈ Vt \ Vt+1, s ∈ S, (5.14)

lvts − hIvts + hOvts ≤ yPvts, t ∈ T \ {0}, v ∈ Vt, s ∈ S, (5.15)

Constraints (5.10)-(5.14) take care of ships leaving and joining the pool. Constraints

(5.10) represent the pool balance from year to year. Constraints (5.11) refer to ships

delivered that was ordered in periods before the planning horizon. Constraints (5.12)

refer to delivery of new orders of ships. Constraints (5.13) define the initial pool.
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Chapter 5. Mathematical formulations

Constraints (5.14) make sure that ships that reach their lifetime are scrapped. Con-

straints (5.15) make sure that the number of ships on lay-up minus balance of ships

the chartered in and out does not exceed the total number of available ships.

Charters and second hand market constraints

ySHvts ≤ SHvts, t ∈ T, v ∈ Vt, s ∈ S, (5.16)

ySEvts ≤ SEvts, t ∈ T, v ∈ Vt, s ∈ S, (5.17)

hIvts ≤ CIvts, t ∈ T \ {0}, v ∈ Vt, s ∈ S, (5.18)

hOvts ≤ COvts, t ∈ T \ {0}, v ∈ Vt, s ∈ S, (5.19)∑
v∈Vt\V N

t

ySHvts ≤ SH ts, t ∈ T, s ∈ S, (5.20)

∑
v∈Vt\V N

t

ySEvts ≤ SEts, t ∈ T, s ∈ S, (5.21)

∑
v∈Vt\V N

t

hIvts ≤ CI ts, t ∈ T \ {0}, s ∈ S, (5.22)

∑
v∈Vt\V N

t

hOvts ≤ COts, t ∈ T \ {0}, s ∈ S, (5.23)

Constraints (5.16) and (5.18) make sure that ships chartered in and ships bought in

the second hand market does node exceed the maximum number of available ships

in the market of ship type v in time period t, and constraints (5.17) and(5.19) make

sure that ships chartered out and ships sold in the second hand market does node

exceed the maximum demand for ship type v in time period p in the market. Con-

straint (5.20)-(5.23) limits the total number of ships in each time period that can be

bought or sold in the second hand market, or chartered in or out.

Non-anticipativity constraints

ySCvts = ySCvts̄ , t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts , (5.24)
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5.2. ProfitMax formulations

yNB
vts = yNB

vts̄ , t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts , (5.25)

ySHvts = ySHvts̄ , t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts , (5.26)

ySEvts = ySEvts̄ , t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts , (5.27)

Constraints (5.24) and (5.27) ensure non-anticipativity.

Convexity and integer constraints

yNB
vts ∈ Z+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , s ∈ S, (5.28)

ySCvts ∈ Z+, t ∈ T \ {T̄}, v ∈ Vt, s ∈ S, (5.29)

ySHvts ∈ Z+, t ∈ T \ {T̄}, v ∈ Vt, s ∈ S, (5.30)

ySEvts ∈ Z+, t ∈ T \ {T̄}, v ∈ Vt, s ∈ S, (5.31)

yPvts ∈ R+, t ∈ T, v ∈ Vt, s ∈ S, (5.32)

lvts ∈ R+, t ∈ T \ {0}, v ∈ Vt, s ∈ S, (5.33)

hIvts ∈ R+, t ∈ T \ {0}, v ∈ Vt, s ∈ S, (5.34)

hOvts ∈ R+, t ∈ T \ {0}, v ∈ Vt, s ∈ S, (5.35)

xvrts ∈ R+, t ∈ T \ {0}, r ∈ Rvt, v ∈ Vt, s ∈ S, (5.36)

δits ∈ {0, 1}, t ∈ T \ {0}, i ∈ NO
t , s ∈ S. (5.37)

Constraints (5.28) and (5.29) impose non-negativity and integrality for new orders

of ships and scrapping of ships. Constraints (5.32) - (5.37) restrict the related vari-

ables to real and non-negative values. Constraints (5.37) defines δits as a binary

variable.

The ProfitMax Formulation can easily be transformed into a cost minimizing formu-

lation by removing the possibility of the optional trades. The formulation will then

solve the cost minimization problem for the setup of the fleet and trades to service

at the start of the planning horizon.
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5.2.2 ProfitMax node formulation

Instead of a set of scenarios, the node formulation for ProfitMax has a set N of

nodes, indexed by n, where Pn is the probability of node n occurring. n(t) gives

all nodes n at time t in the scenario tree, and a(n, t̄) is all ancestors of node n in

the scenario tree in time t− t̄, with a(n, 1) written simply as a(n). With these new

sets and parameters, the ProfitMax formulation is exactly the same as the scenario

formulation, except that the combination of t and s has been replaced with n, and

there is no need for the non-anticipativity constraints (5.24) and (5.25). The full

formulation will then be

Objective function

maxz =
∑

t∈T\{0}

∑
n∈n(t)

Pn

[ ∑
i∈NO

t

∑
c∈G

RD
inDicnδin

+
∑
i∈NC

t

∑
c∈G

(RD
inDicn − CSP

icnnicn)−
∑
v∈Vt

(COP
vn y

P
vn

+ CCO
vn h

I
vn −RCO

vn h
O
vn

+
∑
r∈Rvn

CTR
vrnxvrn −RLU

vn lvn)

]
−

∑
t∈T,t≤T̄−TL

∑
v∈V N

t+TL

∑
n∈n(t)

PnC
NB
vn yNB

vn

+
∑
t∈T

∑
v∈Vt

∑
n∈n(t)

Pn(RSC
vn y

SC
vn

+RSH
vn y

SE
vn − CSH

vn y
SH
vn )

+
∑
v∈VT̄

∑
n∈n(T̄ )

PnR
SV
vn y

P
vn

(5.38)

The objective function (5.38) is the same as (5.1), with the changes in indexes as

mentioned.
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5.2. ProfitMax formulations

Demand constraints∑
v∈Vt

∑
r∈Rivt

Qcvxvrn + nicn ≥ Dicn, t ∈ T \ {0}, i ∈ NC
t , c ∈ G, n ∈ n(t), (5.39)

∑
v∈Vt

∑
r∈Rivt

Qcvxvrn ≥ Dicnδin, t ∈ T \ {0}, i ∈ NO
t , c ∈ G, n ∈ n(t), (5.40)

Capacity constraints∑
v∈Vt

∑
r∈Rivt

max
c∈G

Qcvxvrn +
∑
c∈G

ncin ≥
∑
c∈G

Ditn, t ∈ T \ {0}, i ∈ NC
t , n ∈ n(t),

(5.41)

∑
v∈Vt

∑
r∈Rivt

max
c∈G

Qcvxvrn ≥
∑
c∈G

Dicnδin, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t), (5.42)

Constraints (5.39) - (5.42) ensures that demand is fulfilled, and that capacity re-

strictions of the fleet is not restricted, corresponding to constraints (5.2)-(5.5) in the

scenario formulation.

Frequency constraints∑
v∈Vt

∑
r∈Rivt

xvrn ≥ Fit, t ∈ T \ {0}, i ∈ NC
t , n ∈ n(t), (5.43)

∑
v∈Vt

∑
r∈Rivt

xvrn ≥ Fitδin, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t), (5.44)

Time constraints∑
r∈Rvt

Zrvxvrn ≤ Zv(y
P
vn + hIvn − hOvn − lvn), t ∈ T \ {0}, v ∈ Vt, n ∈ n(t), (5.45)
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Chapter 5. Mathematical formulations

Optional trades constraints

δi,a(n) ≤ δin, t ∈ T \ {0, 1}, i ∈ NO
t , n ∈ n(t), (5.46)

Constraints (5.43) - (5.46) take care of frequency requirements on the trades, the

available sailing time for the fleet, and that when service on optional trades starts, it

must continue to service this trade for the rest of the planning horizon, correspond-

ing to constraints (5.6)-(5.9) in the scenario formulation.

Pool constraints

yPvn = yPv,a(n) − ySCv,a(n) + ySHv,a(n) − ySEv,a(n), t ∈ T \ {0}, v ∈ Vt \ V N
t , n ∈ n(t),

(5.47)

yPvn = Y NB
vt , t ∈ T : t < T̄L, v ∈ V N

t , n ∈ n(t), (5.48)

yPvn = yNB
v,a(n,TL), t ∈ T : t ≥ T̄L, v ∈ V N

t , n ∈ n(t), (5.49)

yPv0 = Y IP
v , v ∈ V0, (5.50)

yPvn = ySCv,a(n), t ∈ T \ 0, v ∈ Vt \ Vt+1, n ∈ n(t), (5.51)

lvn − hIvn + hOvn ≤ yPvn, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t), (5.52)

Constraints (5.47)-(5.52) take care of the pool balances, corresponding to constraints

(5.10)-(5.15) in the scenario formulation.

Charters and second hand market constraints

ySHvn ≤ SHvn, t ∈ T, v ∈ Vt, (5.53)

ySEvn ≤ SEvn, t ∈ T, v ∈ Vt, n ∈ n(t), (5.54)

hIvn ≤ CIvn, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t), (5.55)

hOvn ≤ COvn, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t), (5.56)
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5.2. ProfitMax formulations

∑
v∈Vt\V N

t

ySHvn ≤ SHn, t ∈ T, n ∈ n(t), (5.57)

∑
v∈Vt\V N

t

ySEvn ≤ SEn, t ∈ T, n ∈ n(t), (5.58)

∑
v∈Vt\V N

t

hIvn ≤ CIn, t ∈ T \ {0}, n ∈ n(t), (5.59)

∑
v∈Vt\V N

t

hOvn ≤ COn, t ∈ T \ {0}, n ∈ n(t), (5.60)

Constraints (5.53)-(5.60) sets limits to the maximum number of ships that can be

bought or sold in the second hand market, and chartered in and out in each period,

corresponding to constraints (5.16)-(5.23) in the scenario formulation.

Convexity and integer constraints

yNB
vn ∈ Z+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , n ∈ n(t), (5.61)

ySCvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t), (5.62)

ySEvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t), (5.63)

ySHvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t), (5.64)

yPvn ∈ R+, t ∈ T v ∈ Vt, n ∈ n(t), (5.65)

lvn ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t), (5.66)

hIvn ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t), (5.67)

hOvn ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t), (5.68)

xvrn ∈ R+, t ∈ T \ {0}, r ∈ Rvt, v ∈ Vt, n ∈ n(t), (5.69)

δin ∈ {0, 1}, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t). (5.70)

Constraints (5.61)-(5.70) limits the variable to either integer, binary or positive real

numbers, corresponding to constraints (5.28)-(5.37) in the scenario formulation. As

mentioned, there in no need for the non anticipativity constraints (5.24)-(5.27) with

the node formulation.
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5.3 ROCEMax formulations

5.3.1 ROCEMax scenario formulation

ROCE was defined as Operational Profit over Capital Employed in Chapter 2. The

Profitmax formulation from the previous section measured Operational Profit. To

be able to maximize ROCE, Capital Employed must be included in the objective

function (5.1), by changing it to:

maxz =
∑
s∈S

Ps

[( ∑
t∈T,t>0

( ∑
i∈NO

t

∑
c∈G

RD
itsDitcsδits

+
∑
i∈NC

t

∑
c∈G

(RD
itsDicts − CSP

its nicts)−
∑
v∈Vt

(COP
vts y

P
vts

− CCO
vts h

I
vts −RCO

vts h
O
vt

+
∑

r∈Rvts

CTR
vrtsxvrts −RLU

vts lvts)
)

−
∑

t∈T,t≤T̄−TL

∑
v∈V N

t+TL

CNB
vts y

NB
vts

+
∑
t∈T

∑
v∈Vt

(RSC
vtsy

SC
vts

+RSE
vtsy

SE
vts − CSH

vts y
SH
vts )

+
∑
v∈VT̄

RSV
vs y

P
vT̄ s

)
/
(∑

t∈T

CE
ts/(T̄ + 1)

)]

(5.71)

Where CE
ts is defined as

CE
ts =βCE

t−1,s + CNB
vt yNB

vts −RSC
vtsy

SC
vts + CSH

vts y
SH
vts −RSE

vtsy
SE
vts , t ∈ T, \{0}, s ∈ S,

(5.72)
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CE
0s =CEI + CNB

v0s y
NB
v0s −RSC

v0sy
SC
v0s + CSH

v0s y
SH
v0s −RSE

v0sy
SE
v0s, s ∈ S. (5.73)

CEI is the value of the fleet of ships at the start of the planning horizon, and β is

the yearly depreciation of the fleet.

The constraint set (5.2)-(5.37) does not change.

5.3.2 Linearization of the ROCEMax formulation

The problem is now a linear-fractional programming (LFP) problem, as shown by

(Mørch, 2013). This means that it can not be solved directly as a mixed integer

programming (MIP) problem. To be able to solve it using standard MIP solution

methods, a transformation has to be done. The Charnes-Cooper transformation

(Charnes and Cooper, 1962) will be applied.

A new variable, w is defined:

w =
T̄ + 1∑

s∈S

∑
t∈T

PsCE
ts

(5.74)

The variable w is used to transform the variables of the LFP problem, in the follow-

ing way

x̄vrts =wxvrts, t ∈ T \ {0}, v ∈ Vt, r ∈ Rvt, s ∈ S. (5.75)

The transformation will be done in the same way for the rest of the decision vari-

ables.

The result of the transformation is inserted into the objective function and the

constraints.

The transformations of δits, y
NB
vts , ySCvts , ySHvts and ySEvts are more complex than for the

other variables, because of the binary restriction on δits, and integer restrictions on
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yNB
vts , ySCvts , ySHvts and ySEvts .

Linearization of the binary variables

For the transformation of δit it is possible to use the method described by Glover

(1975). This involves expressing the relation in (5.75) through a set of linear con-

straints.

δ̄Oits should be 0 if δits = 0, and w if δits = 1. This is done by introducing the following

set of constraints:

w − δ̄Oits + δits ≤ 1, t ∈ T, i ∈ Nt, s ∈ S, (5.76)

δ̄Oits − w ≤ 0, t ∈ T, i ∈ Nt, s ∈ S, (5.77)

δ̄Oits − δits ≤ 0t ∈ T, i ∈ Nt, s ∈ S. (5.78)

Constraints (5.76) ensure δ̄Oits ≥ w if δits = 1, while constraints (5.77) makes sure

that δ̄Oits ≤ w. These two together means that δ̄Oits = w if δits = 1. Constraints (5.78)

sets δ̄Oits = 0 if δits = 0.

Linearization of the integer variables

To be able to keep the integer restrictions on variables yNB
vts , ySCvts , ySHvts and ySEvts , it

is not possible to use the same transformation as for δits directly. To be able to

use the same transformation method, the variables must be rewritten so that binary

restrictions can be used instead of integer restrictions. Assume that for each ship

to be ordered, scrapped or bought or sold in the second hand market, a decision is

made whether or not to buy that ship. modeled as a binary decision variable. With

a fixed limit of how many decisions it is possible to make in each period to order,

scrap, buy or sell ships, it is possible to rewrite the variables like this:
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yNB
vts =

∑
j∈D̄

yNB
vtsj, t ∈ T, v ∈ V N

t+TL , s ∈ S. (5.79)

Only yNB
vts is shown here, as it is done in the same way for ySCvts , ySHvts and ySEvts . Here D̄

is the set of decisions that can be made for each ship type in each time period, with∣∣D̄∣∣ the maximum number of ships to order, buy, scrap or sell in a period of type v,

and yNB
vtj , ySCvtj , ySHvtj and ySEvtj become the decisions of whether to make the jth decision

to build, scrap, buy or sell a ship of type v in period t and scenario s, respectively.∣∣D̄∣∣ is not meant to be a ship type dependent limit, but an upper bound to limit

the decision space. If there are ship dependent restrictions on how many ships that

can be ordered, scrapped, bought or sold, this has to be implemented through own

restrictions.

By making this transformation, the integer restriction on the variables is replaced

with binary restrictions, and it is possible to linearize these the same way as was

done with δits in constraints (5.76)-(5.78)

This formulation will lead to symmetry in terms of possible solutions, because a

decision of buying one ship made in any j will give the same solution (it does not

matter if the decision is made in j = 1 or j = 25). This symmetry gives a large set of

different solutions which will have the same objective value, and thus increasing the

complexity of the formulation unnecessarily. To remove as much of this symmetry

as possible, four remedies are presented here (shown only for yNB
vts , since it can be

applied for ySCvt ySHvts and ySEvts by replacing yNB
vt with ySCvt ySHvts and ySEvts ).

The first suggestion is to introduce a new set of constraints

yNB
vtsj ≤yNB

v,t,s,j−1, t ∈ T, v ∈ V N
t+TL , j ∈ D̄ \ {1}, s ∈ S (5.80)

Constraints (5.80) ensures that if j ships are to be built, only the j first yNB
vtsj, for

a given v, t and s, can be positive. This means that all other combinations of yNB
vtsj
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that will lead to the same result will not have to be evaluated, e.g. if a decision is

made to order three new ships of type v in period t, then yNB
vt1 = yNB

vts3 = yNB
vts2 = 1,

and yNB
vts4 = ... = yNB

vt|D̄| = 0. This formulation is referred to as the Anti-Symmetry

Formulation.

The other suggestion is to use this rewriting of the variables

yNB
vts =

∑
j∈D̄

jyNB
vtsj, t ∈ T, v ∈ V N

t+TL , s ∈ S (5.81)

and make the set
∑

j∈D̄ jy
NB
vtsj of type SOS1, which means that maximum one of

the variables yNB
vtj can take a positive value for all j, and the value of j will be

the number of ships scrapped or sold. This formulation is referred to as the SOS1

Formulation.

The third formulation is a combination of the first two formulations. By making

each j represent the option of buying or scrapping 2j ships, there will be no need

for anti-symmetry constraints or making the set
∑

j∈D̄ jy
NB
vtsj of type SOS1. The

formulation will then be

yNB
vts =

∑
j∈D̄

2jyNB
vtsj, t ∈ T, v ∈ V N

t+TL , s ∈ S (5.82)

This formulation is referred to as the Power Formulation.

The fourth formulation, denoted as the Pattern Formulation, takes into considera-

tion the special characteristics of this problem, where only two types of ships are

available to build each year. Patterns of different combinations of ships to buy, e.g.

[0 0], [0 1], [1 0], [1 1], ..., [25 25], are introduced, where the first number gives the

number of ships to build of the first ship type, and the second number gives the

number of ships to build of the second ship type. All patterns are then in the set
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P P , indexed by p. The binary variable pPtsp defines which pattern to use in time t

and scenario s. The output in terms of ships is given in the parameter PO
vp which

gives the number of ships of type v to buy with pattern p. This formulation is a

version of a formulation presented in Rakke et al. (2014). In Rakke et al. (2014),

there is no binary restriction on the patterns that are used, just integer restriction

on the convex combination of patterns. This is not possible to implement for the

ROCEMax formulation, so variables pPtsp will be binary. The variable yNB
vts is then

replaced by

yNB
vts =

∑
p∈PP

PO
vpp

P
tsp, t ∈ T, v ∈ V N

t+TL , s ∈ S. (5.83)

A transformation will be made, and a set of constraints to keep the relation between

w and pptsp such as was done with δits in constraints (5.76)-(5.78)

The Power Formulation and Pattern Formulation for keeping integrality will be eval-

uated against the Anti-Symmetry Formulation proposed by (Mørch, 2013) in terms

of computational efficiency in Chapter 6.

Linearization constraint

When all transformation of the variables have been made, it is needed to impose a

constraint for the value of w, as defined in (5.74):

∑
t∈T

∑
s∈S

PsC
E
tsw = T̄ + 1 (5.84)

CE
ts was defined as

CE
t s =βCE

t−1,s + CNB
vt yNB

vts −RSC
vtsy

SC
vts + CSH

vt y
SH
vts −RSE

vtsy
SE
vts (5.85)
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where

CE
t−1,s =βCE

t−2,s + CNB
v,t−1y

NB
v,t−1,s −RSC

v,t−1,sy
SC
v,t−1,s

+ CSH
v,t−1y

SH
v,t−1,s −RSE

v,t−1,sy
SE
v,t−1,s

(5.86)

This leads to

CE
ts =β(βCE

t−2,s + CNB
v,t−1y

NB
v,t−1,s −RSC

v,t−1,sy
SC
v,t−1,s

+ CSH
v,t−1y

SH
v,t−1,s −RSE

v,t−1,sy
SE
v,t−1,s

+ CNB
vt yNB

vts −RSC
vtsy

SC
vts + CSH

vt y
SH
vts −RSE

vtsy
SE
vts )

=β2CE
t−2,s + β(CNB

v,t−1y
NB
v,t−1,s −RSC

v,t−1,sy
SC
v,t−1,s

+ CSH
v,t−1y

SH
v,t−1,s −RSE

v,t−1,sy
SE
v,t−1,s

+ CNB
vt yNB

vts −RSC
vtsy

SC
vts + CSH

vt y
SH
vts −RSE

vtsy
SE
vts )

(5.87)

From this it can be shown that CE
ts can be written as

CE
ts =βtCEI + βt−1 ∗ (CNB

v,1 y
NB
v,1,s −RSC

v,1,sy
SC
v,1,s

+ CSH
v,1 y

SH
v,1,s −RSE

v,1,sy
SE
v,1,s)

+ βt−2 ∗ (CNB
v,2 y

NB
v,2,s −RSC

v,2,sy
SC
v,2,s + CSH

v,2 y
SH
v,2,s −RSE

v,2,sy
SE
v,2,s)

+ ...+ CNB
vt yNB

vts −RSC
vtsy

SC
vts + CSH

vt y
SH
vts −RSE

vtsy
SE
vts

(5.88)

From this it follows that
∑
t∈T

CE
t s may be written as:

∑
t∈T

(
βtCEI +

∑
v∈Vt

∑
t̄∈T,t̄<(T−t)

β t̄(CNB
vt yNB

vts +RSC
vtsy

SC
vts + CSH

vt y
SH
vts +RSE

vtsy
SE
vts )
)

(5.89)

So constraint (5.84) can be written as
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∑
t∈T

(
βtCEIw +

∑
s∈S

∑
v∈Vt

∑
t̄∈T,t̄<(T−t)

β t̄

Ps(C
NB
vt ȳNB

vts +RSC
vts ȳ

SC
vts + CSH

vt ȳ
SH
vts +RSE

vts ȳ
SE
vts )
)

= T̄ + 1

(5.90)

The problem is now on linear form, and the solution is found by transforming the

variables back to their original counterparts, such as in (5.75).

5.3.3 ROCEMax node formulation

The ROCEMax node formulation will have the same new sets from the scenario for-

mulation as the ProfitMax formulation presented in section 5.2.2. The ROCEMax

node formulation with the Anti-Symmetry Formulation is presented here. All for-

mulations can be found in the Appendix A.

Objective function

maxz =
∑

t∈T\{0}

∑
n∈n(t)

Pn

( ∑
i∈NO

t

∑
c∈G

RD
inDicnδ̄in

+
∑
i∈NC

t

∑
c∈G

(RD
inDicnw − CSP

icn n̄icn)−
∑
v∈Vt

(COP
vn ȳ

P
vn

+ CCO
vn h̄

I
vn −RCO

vt h̄
O
vn

+
∑
r∈Rvn

CTR
vrnx̄vrn −RLU

vn l̄vn)
)

+
∑

n∈n(T̄ )

∑
v∈VT̄

RSV
vn ȳ

P
vn

−
∑

t∈T,t≤T̄−TL

∑
n∈n(t)

∑
v∈V N

t+TL

PnC
NB
vn

∑
j∈D̄

ȳNB
vnj

+
∑
t∈T

∑
n∈n(t)

∑
v∈Vt

Pn(RSC
vn

∑
j∈D̄

ȳSCvnj

+RSE
vn

∑
j∈D̄

ȳSEvn − CSH
vn

∑
j∈D̄

ȳSHvn )

(5.91)
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The objective function is as described in section 5.3.1, with the transformation of

the variables and the new variable w. It can be noticed that the term RD
inDicn has

to be multiplied by w, since this term is only a scalar in the objective function.

All other terms of the objective function includes a variable, which means that the

transformation is included by replacing the variables with the transformed variable,

e.g. nicn is replaced by n̄icm

Demand constraints∑
v∈Vt

∑
r∈Rivt

Qcvx̄vrn + n̄icn ≥ Dicnw, t ∈ T \ {0}, i ∈ NC
t , c ∈ G, n ∈ n(t), (5.92)

∑
v∈Vt

∑
r∈Rivt

Qcvx̄vrn ≥ Dinδ̄icn, t ∈ T \ {0}, i ∈ NO
t , c ∈ G, n ∈ n(t), (5.93)

The demand constraints which correspond to constraints (5.39) and (5.40).

Capacity constraints∑
v∈Vt

∑
r∈Rivt

max
cinC

Qcvxvrn +
∑
c∈G

ncin ≥
∑
c∈G

Dicn, t ∈ T \ {0}, i ∈ NC
t , n ∈ n(t), (5.94)

∑
v∈Vt

∑
r∈Rivt

max
cinC

Qcvxvrn ≥
∑
c∈C

Dicnδ̄in, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t), (5.95)

The capacity constraints which correspond to constraints (5.41) and (5.42).

Frequency constraints∑
v∈Vt

∑
r∈Rivt

x̄vrn ≥ Fitw, t ∈ T \ {0}, i ∈ NC
t , n ∈ n(t), (5.96)

∑
v∈Vt

∑
r∈Rivt

x̄vrn ≥ Fitδ̄in, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t), (5.97)
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Frequency constraints, corresponding to (5.43)-(5.44).

Time constraints∑
r∈Rvt

Zrvx̄vrn ≤ Zv(ȳ
P
vn + h̄Ivn − h̄Ovn − l̄vn), t ∈ T \ {0}, v ∈ Vt, n ∈ n(t), (5.98)

Available time constraints, corresponding to (5.45).

Optional trades constraints

δ̄i,a(n) ≤ δ̄in, t ∈ T \ {0, 1}, i ∈ NO
t , n ∈ n(t), (5.99)

Constraint (5.99) correspond to (5.46).

Pool constraints

ȳPvn = ȳPv,a(n) −
∑
j∈D̄

(ȳSCv,a(n),j − ȳSHv,a(n),j + ȳSEv,a(n),j), t ∈ T \ {0} v ∈ Vt \ V N
t , n ∈ n(t),

(5.100)

ȳPvn = Y NB
vt w, t ∈ T : t < T̄L, v ∈ V N

t , n ∈ n(t) (5.101)

ȳPvn =
∑
j∈D̄

ȳNB
v,(a(n,TL),j, t ∈ T : t ≥ T̄L, v ∈ V N

t+TL , n ∈ n(t), (5.102)

ȳPv0s = Y IP
v w, v ∈ V0, n ∈ n(t), (5.103)

ȳPvn =
∑
j∈D̄

ȳSCv,a(n),j, t ∈ T \ 0, v ∈ Vt \ v ∈ Vt+1, n ∈ n(t), (5.104)

l̄vn − h̄Ivn + h̄Ovn ≤ ȳPvn, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t), (5.105)

Constraints (5.100)-(5.105) correspond to constraints (5.47)-(5.52). It can be noticed

that for the decision variables, the sum over D̄ has to be included, since the decision
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variables now have binary restrictions, as compared to the integer restrictions for the

corresponding variables in the ProfitMax formulation. The transformed variables in

constraints (5.100)-(5.104) are forced to be w or 0 by constraints (5.114)-(5.128),

which follow later.

Charters and second hand market constraints

∑
j∈D̄

ȳSHvnj ≤ SHvnw, t ∈ T, v ∈ Vt, (5.106)

∑
j∈D̄

ȳSEvnj ≤ SEvnw, t ∈ T, v ∈ Vt, (5.107)

h̄Ivn ≤ CIvnw, t ∈ T \ {0}, v ∈ Vt, (5.108)

h̄Ovn ≤ COvnw, t ∈ T \ {0}, v ∈ Vt, (5.109)∑
v∈Vt\V N

t

∑
j∈D̄

ySHvnj ≤ SHn, t ∈ T, n ∈ n(t), (5.110)

∑
v∈Vt\V N

t

∑
j∈D̄

ySEvnj ≤ SEn, t ∈ T, n ∈ n(t), (5.111)

∑
v∈Vt\V N

t

hIvn ≤ CIn, t ∈ T \ {0}, n ∈ n(t), (5.112)

∑
v∈Vt\V N

t

hOvn ≤ COn, t ∈ T \ {0}, n ∈ n(t), (5.113)

Constraints (5.106)-(5.113) correspond to (5.53)-(5.60).

Transformation of binary variables constraints

w − δ̄Oin + δOin ≤ 1, t ∈ T \ {0}, i ∈ Nt, n ∈ n(t), (5.114)

δ̄Oin − w ≤ 0, t ∈ T \ {0}, i ∈ Nt, n ∈ n(t), (5.115)

δ̄Oin − δOin ≤ 0, t ∈ T \ {0}, i ∈ Nt, n ∈ n(t), (5.116)
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w − ȳNB
vnj + yNB

vnj ≤ 1, t ∈ T : t ≤ T̄ − TL, v ∈ V N
t+TL , n ∈ n(t), j ∈ D, (5.117)

ȳNB
vnj − w ≤ 0, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , n ∈ n(t), j ∈ D, (5.118)

ȳNB
vnj − yNB

vnj ≤ 0, t ∈ T : t ≤ T̄ − TL, v ∈ V N
t+TL , n ∈ n(t), j ∈ D, (5.119)

w − ȳSCvnj + ySCvnj ≤ 1, t ∈ T, v ∈ Vt, n ∈ n(t), j ∈ D, (5.120)

ȳSCvnj − w ≤ 0, t ∈ T, v ∈ Vt, n ∈ n(t), j ∈ D, (5.121)

ȳSCvnj − ySCvnj ≤ 0, t ∈ T, v ∈ Vt, n ∈ n(t), j ∈ D, (5.122)

w − ȳSHvnj + ySHvnj ≤ 1, t ∈ T, v ∈ Vt, n ∈ n(t), j ∈ D, (5.123)

ȳSHvnj − w ≤ 0, t ∈ T, v ∈ Vt, n ∈ n(t), j ∈ D, (5.124)

ȳSHvnj − ySHvnj ≤ 0, t ∈ T, v ∈ Vt, n ∈ n(t), j ∈ D, (5.125)

w − ȳSEvnj + ySEvnj ≤ 1, t ∈ T, v ∈ Vt, n ∈ n(t), j ∈ D, (5.126)

ȳSEvnj − w ≤ 0, t ∈ T, v ∈ Vt, n ∈ n(t), j ∈ D, (5.127)

ȳSEvnj − ySEvnj ≤ 0, t ∈ T, v ∈ Vt, n ∈ n(t), j ∈ D (5.128)

Contraints (5.114)-(5.128) show the constraints setting the new binary decision vari-

able to 0 or w, as described in constraints (5.76)-(5.78)

Linearization constraints∑
t∈T

∑
n∈n(t)

Pn

(
βtCEIw +

∑
v∈Vt

∑
t̄∈T,t̄<(T−t)

β t̄(CNB
vn

∑
j∈D̄

ȳNB
vnj

+RSC
vt

∑
j∈D̄

ȳSCvnj + CSH
vn

∑
j∈D̄

ȳSHvnj +RSE
vt

∑
j∈D̄

ȳSEvnj)
)

= T̄ + 1
(5.129)

Convexity, integer and binary constraints

yNB
vn ∈ Z+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , n ∈ n(t), (5.130)

ySCvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t), (5.131)

ySHvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t), (5.132)
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ySEvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t), (5.133)

yNB
vnj ∈ {0, 1}, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , n ∈ n(t), (5.134)

ySCvnj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t), (5.135)

ySHvnj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t), (5.136)

ySEvnj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t), (5.137)

δin ∈ {0, 1}, t ∈ T \ {T̄} i ∈ NO
t , n ∈ n(t), (5.138)

δ̄in ∈ R+, t ∈ T \ {T̄} i ∈ NO
t , n ∈ n(t), (5.139)

ȳNB
vnj ∈ R+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , n ∈ n(t), (5.140)

ȳSCvnj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t), (5.141)

ȳSHvnj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t), (5.142)

ȳSEvnj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t), (5.143)

yPvn ∈ R+, t ∈ T v ∈ Vt, n ∈ n(t), (5.144)

lvn ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t), (5.145)

hIvt ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t), (5.146)

hOvt ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t), (5.147)

xvrn ∈ R+, t ∈ T \ {0}, r ∈ Rvt, v ∈ Vt, n ∈ n(t), (5.148)

w ∈ R+. (5.149)
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Computational Study

In this chapter the results from a computational study of the formulations presented

in Chapter 5 will be presented. The results will be analyzed to discuss the per-

formance of the formulations presented in Chapter 5, and to evaluate the value of

maximizing investment returns in the objective function.

The computational study is based on implementation of the ProfitMax and ROCE-

Max formulations in commercial optimization software. Xpress Mosel has been the

modeling language. The implementations has been solved using Xpress-IVE Version

1.24.00 64 bit with Xpress Optimizer Version 24.01.04. The code was run for differ-

ent test instances, which are introduced in Section 6.1. All runs were performed on a

computer running Windows 7 Enterprise 64-bit operating system, having an Intel R©

CoreTM i7-3770 CPU @ 3.4 GHz and 16 GB RAM.

In Section 6.1 the test instances used for the computational study are presented.

The performance of the formulations from Chapter 5 are evaluated in Section 6.2.

The scenario generation method is presented together with an evaluation of the in-

sample stability of different sizes of the scenario tree in Section 6.3. In Section 6.4

the results from ProfitMax and ROCEMax formulations are presented and discussed.

The Value of Stochastic Solution (VSS) is presented in Section 6.5. Section 6.6 will
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test the impact on the formulations for changes in parameter values. Section 6.7 and

6.8 will test the formulations with inclusion of charters and second hand market, and

using a three stage case as compared to a two stage case. Section 6.9 will discuss

the solutions from the ROCEMax formulation if an adjustment is made as to how

the ROCE is calculated.

6.1 Test instances

Different test instances were made for the computational study. The instances vary

with the size of the fleet and the number of trades with contractual obligations at

the start of the planning horizon. All data for ship types demand (i.e. new build

cost, sailing cost) and trades(i.e. demand, length) are based on data from the case

company. In total, three sets of test instances were made; small, medium and large.

The sets are described in terms of fleet composition and trades in Tables 6.1 and

6.2. A set consists of input data with 10 different scenario trees.

For each set, the types of ships and available trades are the same. There are two ship

types which will reach the maximum lifetime of a ship during the planning horizon.

The capacity of these ships will have to be replaced in some manner during the

planning horizon to be able to serve all trades with contractual obligations.

The three sets are meant to describe shipping companies of different sizes. The large

set reflects the size of a large liner shipping company, as the case company.The large

set has a fleet of 55 ships, serving 11 of 14 trades. The medium set describes a

shipping company with a fleet of 35 ships, servicing 7 of 11 trades. The small set

describes a shipping company with 27 ships, servicing 5 of 8 trades. The optional

trades in each case is adjusted so that the different set sizes offer the same relative

expansion opportunity in terms of optional trades.

Except for fleet configuration and trades, all data sets use the same input parameters.
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Capacity (Units RT43) Service Ships in initial fleet

Ship type Age Car BB HH Speed

(knots)

Large Medium Small

PCC1 26 4975 300 2200 18.5 4 4 3

PCC2 12 6800 300 2500 18.5 6 3 2

PCTC1 9 6800 300 2500 19 8 4 3

LCTC1 4 6000 1500 2000 19 10 5 5

PCTC2 4 5450 900 2200 19 12 7 2

PCTC3 14 6150 200 1800 19.6 7 3 3

RORO1 28 4853 1500 3100 20.5 6 3 2

RORO2 -1 5660 2200 4000 20.8 2 0 1

LCTC2 0 6000 1500 2000 18.5 0 2 0

RORO3 -2 5660 2200 4000 20.8 0 0 0

LCTC3 -1 6000 1500 2000 18.5 0 0 0

RORO4 -3 5660 2200 4000 20.8 0 0 0

LCTC4 -2 6000 1500 2000 18.5 0 0 0

LCTC5 -3 6000 1500 2000 18.5 0 0 0

Table 6.1: Set of ship types. The columns contains ship type, age at the beginning of the planning

horizon and capacity in cars, HHs and BBs, cruising speed, and number of ships in the fleet at the

beginning of the planning horizon for each instance set. A negative age means that the ship can

be delivered from year t = −Age.
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Trade Length Demand (Units RT43) Freq Large Medium Small

Car HH BB

T1 13,500 435,213 77,047 5,762 48 C C C

T2 11,700 103,048 14,201 4,476 0 C C C

T3 7,800 41,036 24,420 3,404 0 C C C

T4 7,500 19,200 0 0 0 C C C

T5 13,000 89,406 21,427 7,425 24 C C C

T6 6,500 469,379 67,854 20,075 52 C C -

T7 14,500 35,331 66,607 36,845 0 C C -

T8 7,800 98,000 29,240 2,689 0 C O O

T9 4,900 119,397 44,121 2,167 0 C O -

T10 9,000 60,159 7,401 1939 48 O O O

T11 8,400 24,818 10,434 3,252 0 O O O

T12 6,500 14,0508 53,928 14,115 0 O - -

T13 15,021 266,855 55,474 16,776 0 C - -

T14 19,200 397,688 123,779 66,198 48 C - -

Table 6.2: Set of trades. The columns contains name of the trade, the length of each trade, demand

for cars, HHs and BBs, frequency demand, and status at the beginning of the planning horizon for

each instance set. A ”C” means that the shipping company has contractual obligations, and must

serve the trade, while an ”O” means that the trade is optional to service.
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The planning horizon is set to five years. Revenue made from shipping goods is set

to 32 cents per nautical mile shipped, estimated by taking the trip cost per nautical

of the least efficient ship type in the fleet, and adding a profit margin on top of

this. Space charter cost is set to 2,000 USD per unit of goods transported by space

charter. All ships costs, such as trip costs, operating costs, lay up revenue etc. is

estimated using raw data from the case company. The second hand price of ships is

given in the fleet data. Second hand prices are used to calculate sunset value and

charter costs. All input values are properly discounted over the planning horizon,

using a discount factor of 12%, as suggested in Stopford (2008).

6.2 Choosing a formulation

In Chapter 5, a scenario formulation and a node formulation were presented for

both the ProfitMax model and the ROCEMax model. In addition, four alternative

formulations for how to preserve the integrality restriction on the decision variables

for the ROCEMax model were proposed. The Anti-Symmetry Formulation and

SOS1 Formulation were tested by Mørch (2013), who found that the Anti-Symmetry

Formulation outperformed the SOS1 Formulation. Therefore, only three of them will

be tested in this section, i.e. the Anti Symmetry Formulation, the Power Formulation

and the Pattern Formulation.

To test the computational effectiveness of the ROCEmax formulations, the formula-

tions were run on the full set using four scenarios. 10 scenario trees were generated,

and the results shown are the averages of these solutions. The formulations were

run with a time limit of 3,000 seconds. Four scenarios is chosen for this testing of

computational effectiveness, since it is the smallest size of the scenario tree that is

possible to generate using the method described in Section 6.3. It is assumed that

the solution time of the formulations will scale with the complexity of the problem,

such that the best formulation for a smaller instance will be as relatively good or
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Formulation Avg. gap Avg solution time

Anti Symmetry + Scenarios 0.19% 2504 s

Anti Symmetry + Nodes 0.09% 1944 s

Power+ Scenarios 0.21% 2829 s

Power + Nodes 0.16% 1870 s

Pattern + Scenarios 39.07% 3024 s

Pattern + Nodes 6.01% 3006 s

Table 6.3: Comparison of performance for the ROCEMax formulation using the three formulations

for keeping integrality discussed in Section 5.3.1 combined with a node and a scenario formulation,

tested on the large set

better for larger instances.

Table 6.3 show the results from testing the Anti-Symmetry, Power and Pattern for-

mulations combined with scenario and nodes formulations, in terms of performance.

The tests were done with 10 scenario trees. Average gap is the average of the re-

ported gap between the objective value and the best bound found. The average

solution time shows the average time to find the optimal solution (with an upper

bound of 3000 if the formulation does not find an optimal solution within the time

limit).

As it can be seen from the results in Table 6.3, the Anti-Symmetry Formulation

combined with a node formulation performs best, followed by the Power Formu-

lation combined with a node formulation. When comparing the performance of

a formulation, combined with a node formulation and a scenario formulation, the

combination with a node formulation outperformed the combination with a scenario

formulation in all cases.

The Pattern Formulation performs definitely worst of all formulations combined with

both a scenario formulation and a node formulation. This is most likely because

the ROCEMax formulation presented in this report does not allow the option of
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Avg. gap Avg solution time

Large

Anti symmetry + nodes 0.48% 381 s

Power + nodes 0.53% 1,278 s

Medium

Anti symmetry + nodes 0.49% 767 s

Power + nodes 0.65% 2,034 s

Small

Anti symmetry + nodes 0.47% 265 s

Power + nodes 0.51% 655 s

Table 6.4: Comparison of solution time to read 0.5% optimality for the Anti Symmetry Formulation

and the Power Formulation

not having binary restrictions on the patterns used, and instead only using integer

restrictions on the convex combination of patterns, as presented in Rakke et al.

(2014).

The ProfitMax Formulation presented in Chapter 5 solves much quicker, solving to

optimality within a couple of seconds for all sets with 6 scenarios.

The difference of performance between the Anti Symmetry Formulation and the

Power Formulation, combined with a node formulation, is small, so these formula-

tions have been further tested on data instances of the medium and small sets as

well. These tests have run to 0.5% optimality gap, with a time limit of 3,000 seconds,

since this will be used later on in the chapter. The results from these tests are shown

in 6.4

It can be seen that the Anti Symmetry Formulations outperforms the Power For-

mulation in terms of reaching a 0.5% optimality gap in all cases. Therefore the
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Anti Symmetry Formulation combined with a node formulation is used in what fol-

lows.

6.3 Scenario generation

To handle the uncertainty as discussed in Chapter 3, a two-stage stochastic program-

ming model has been implemented. The discretization of the random variables has

been done using a modified version of (Høyland et al., 2003), using distribution func-

tions instead of moments to control the margins. This model generates the desired

number of scenarios for the random variables, taking the distribution function of

each random variable and the correlations as input. The scenarios then each consist

of a vector with ū elements with the different realization of the random variables in

each scenario, ū being the number of random variables.

The model consists of three random variables, the market status, steel price and fuel

price. These are chosen as random variables since they affect the profit for shipping

companies to a large degree, and the development can be assumed to be uncertain.

For all t ∈ T , the correlations between the random variables are considered to be

the same. The correlation matrix is shown in Table 6.5.

Market status is assumed to have large impact on freight revenue, demand, prices for

chartering in and out ships, and second-hand prices, and some lesser impact on new

build prices. Steel prices impact the scrapping revenue, whilst fuel prices impact

the trip costs. It is assumed a very high correlation between market status and

steel prices, and between steel prices and fuel prices. Market status and fuel prices

are assumed to have a high correlation. The correlations are the same as used by

Pantuso (2014)

The first stage decisions consists of the buying, selling and scrapping decisions made

in the first time period. In this period, no tactical decisions (fleet deployment) are
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Market status Steel price Fuel price

Market status 1 0.8 0.75

Steel Price 0.8 1 0.8

Fuel Price 0.75 0.8 1

Table 6.5: Correlation matrix

Figure 6.1: Example of two stage scenario tree, for one random variable

made. The second stage consists of all decisions made from t = 1 until the end of

the planning horizon. At the beginning of the second stage, the actual development

of the random variables is revealed. In Figure 6.1, an example of the development

of a random variable in eight scenarios is shown. The bold line shows the expected

value of the variable, while the dotted lines represent a scenario each. In the first

stage (t = 0), all scenarios have the same information about current and future

prices, while in the second stage (t ≥ 1), the realization of the random variable is

revealed.

The number of scenarios to use when running the formulations is of great impor-
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Standard deviation

4 scenarios 6 scenarios 8 scenarios 10 scenarios

ROCEMax 1.0% 0.6% 0.7% 0.3%

ProfitMax 0.7% 0.3% 0.4% 0.2%

Table 6.6: Standard deviations from the optimal solutions when run on 10 data instances

tance, since having too many scenarios might make the problem unnecessary hard to

solve, while having to few scenarios might lead to unstable solutions, meaning that

a given scenario tree might impact the solution so much that results are useless for

comparison with other formulations. In-sample stability, as discussed in Chapter 3,

is a measure to evaluate if the selected scenario generation method generates suitable

scenarios trees. The ROCEMax and ProfitMax formulations have been run on 10

data instances of the large instance set, each for four, six, eight and 10 scenarios,

to see if stability is achieved. In Table 6.6, the standard deviation in percent of the

average optimal objective value is given.

From the results in Table 6.6 it is clear that increasing number of scenarios improves

stability, in terms of standard deviation. The standard deviation decreases from four

to six scenarios, increases when going from six to eight scenarios, before decreasing

again when going to 10 scenarios. The increase from six to eight scenarios is most

likely explained in the error from the scenario generation method. The standard

deviation with both six and eight scenarios is within what can be accepted, as the

difference in the Value of Stochastic Solution, presented in Section 6.5 is of a higher

order of magnitude. The computational complexity increases with increasing number

of scenarios, six scenarios is therefore used in what follows, to ensure both stability

and that the complexity does not increase unnecessarily.
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6.4 Comparison of ProfitMax and ROCEMax so-

lutions

The results from testing the ROCEMAx and ProfitMax formulations are presented in

Table 6.7. The tests are run using six scenarios, and the values shown are the average

from 10 different instances of the scenario tree. A time limit of 10,000 seconds and

an optimality gap of 0.5% is applied. The average gap from the results is lower than

0.6% for all sets.

Table 6.7 first shows the decisions made in the first period of the planning horizon

(t = 0). The results show the total amount of both ship types bought. There is a

clear trend in the results: The ROCEMax fomulation consistently buys much fewer

ships in the first period than the ProfitMax fomulation.

The next row shows the expected total number of ships that are bought during the

second stage (t ≥ 1). The results are consistent with what could be expected, that

solutions on the larger set buys more ships to renew and expand than the medium

and small sets. The ROCEMax also plans to invest in fewer ships over the entire

planning horizon compared to the ProfitMax Formulation. Compared to the number

of ships leaving the fleet during the planning horizon, and the size of the fleet, the

total investments scale reasonably between the set sizes. The results show that the

ProfitMax fomulation tends to expand the fleet to a much larger degree than the

ROCEMax fomulation, which leads to some interesting insight. The ROCEMax

formulation will only choose to invest in a new ship if the investment will lead to an

higher return than without the investment, which means that the extra profit gained

over the capital needed for the investment must be higher the return without the

investment. If it is only marginally lower, the investment will not be made. For the

ProfitMax Formulation it is enough that the extra investment gives a net profit, as

long as it is positive. So the ROCEMax Formulation can be said to have
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ROCEMax ProfitMax

Large Med Small Large Med Small

New builds ordered

t = 0 6.7 3.6 2.6 19.4 8.6 5.9

t = 1, .., T 12.1 6.4 4.4 11.9 8.5 5.6

Scrappings

t = 0 - - - - - -

t = 1, .., T 12.9 8.1 5.6 10.8 7.3 5.2

Optional trades

t = 1 0.78 1.18 0.80 0.97 1.67 1.07

t = 2 0.78 1.18 0.80 1.65 2.50 1.57

t = 3 0.80 1.20 0.82 2.00 3.00 2.00

t = 4 0.80 1.20 0.82 2.00 3.00 2.00

t = 5 0.83 1.22 0.87 2.00 3.00 2.00

Profit (MUSD) 1,994 1,054 687 2,152 1,163 754

ROCE 194 % 191 % 185 % 169 % 168 % 163 %

CAGR 24.1 % 23.8 % 23.3 % 21.9 % 21.8 % 21.4 %

CAGR Extra - - - 10.4 % 12.2 % 11.9 %

Extra Return 14.9 % 13.7 % 13.1 % - - -

Extra Profit - - - 7.9 % 10.3 % 9.8 %

VSS 11.9 % 15.9 % 21.7 % 12.6 % 3.3 % 11.7 %

Space charter cost

SS 497 205 135 300 130 89

DS 920 470 354 628 169 184

Table 6.7: Comparison of the the results from the two formulations, ROCEMax and ProfitMax
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a stricter restriction on the needed profit from an investment.

After the new build decisions, the scrapping decisions are shown. None of the for-

mulations choose to scrap any ships in the first period for any of the set sizes, but

there is a difference between the formulations in terms of the total number of ships

to scrap during the planning horizon. The ProfitMax Formulation plan to scrap

only the ships leaving the fleet, with one or a few extra ships of other types in some

cases. The ROCEMax Formulation plan to scrap more of the other types ships in

addition to the ones leaving the fleet during the planning horizon. This result builds

to the structural difference found from the new build decisions, where the ProfitMax

Formulation to a much larger degree choose to expand the fleet to meet increasing

demand and take extra optional trades compared to the ROCEMax formulation. It

can be seen that the ProfitMax formulation consistently choose to service all optional

trades, except for one, for all set sizes. The trade that is never chosen is T10, which

is explained by the relatively low demand and high frequency requirement.

Next, Table 6.7 shows the economic results from the two formulations. The results

show that there is a consistent difference between the achieved ROCE and profit

between the two formulations. The row ”CAGR Extra” shows the return that the

ProfitMax Formulation achieve for the extra capital employed needed to gain the

extra profit compared to the ROCEMax Formulation. When looking at the CAGR

that the ProfitMax Formulation achieve on the extra capital needed, this number is

significantly lower than the ROCE achieved for both the ROCEMax Formulation and

the ProfitMax Formulation. Next, the extra return from using ROCEMax compared

to ProfitMax is given. This is calculated by taking the relative increase in ROCE

from the solution of the ProfitMax Formulation to the solution of the ROCEMax

Formulation.. An increase from 13.1% to 14.9% must be considered significant. It is

also interesting to see that the relative gain in profit from ROCEMax to ProfitMax

is smaller than the relative gain in ROCE the other way around. The Value of

Stochastic Solution (VSS) will be discussed in the next section, 6.5.
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ROCEMax ProfitMax

Large Med Small Large Med Small

New builds ordered

t = 0 6.5 3.5 2.6 19.4 8.5 5.6

t = 1, .., T 11.9 6.2 4.2 9.3 5.7 4.1

Scrappings

t = 0 - - - - - -

t = 1, .., T 13.4 8.8 6.0 10.9 7.4 5.2

Profit (MUSD) 1,873 994 674 1,976 1,034 701

ROCE 194 % 188 % 183 % 168 % 167 % 163 %

CAGR 24.0 % 23.6 % 23.1 % 21.8 % 21.7 % 21.4 %

CAGR Extra - - - 8.5 % 7.5 % 7.6 %

Extra Return 14.8 % 12.9 % 12.1 % - - -

Extra Profit - - - 5.5 % 4.0 % 4.0 %

VSS 9.7 % 16.1 % 22.0 % 19.7 % 25.9 % 42.7 %

Space charter cost

SS 502 207 135 301 132 88

DS 889 474 354 861 450 384

Table 6.8: Results without optional trades
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The last part of Table 6.7 show the space charter cost incurred for the formulations.

This can be seen as an indicator of the willingness to use space charters instead of

investing in new ships. It is obvious that the ROCEMax Formulation use this option

far more often than the ProfitMax Formulation. No restriction has been set to the

amount of units shipped by space charters, it can be discussed if it is realistic for the

ROCEMax formulation to be able to use space charters to such a large degree.

Table 6.8 shows the results from running the formulations with no optional trades.

For the ProfitMax formulation, this case can be considered a cost minimizing prob-

lem, as discussed in Chapter 5. These results show that the difference in results be-

tween the ROCEMax formulation and the ProfitMax formulations are structurally

the same as in when including optional trades. This means that most of the dif-

ference in number of ships built, does not appear because of taking more optional

trades, this difference is only a few ships. When looking at the space charter cost

in Table 6.7, it can be seen that the ROCEMax formulation choose to use the space

charter option more often than the ProfitMax Formulation. This means that the

ProfitMax formulation sees that it is beneficial to buy a new ship rather than having

to use space charter, because this is profitable. It is however not profitable enough

for the ROCEMax formulation to make the same decision.

Even though the ROCEMax model performs significantly better than ProfitMax

when considering ROCE (as one should expect), these results can not be taken as

the optimal decision to the MFRP. The extra profit gained from the solutions from

the ProfitMax model is of course of value. The solutions from the ROCEMax model

can be considered to be better than the solutions from the ProfitMax Formulation if

the decision makers have an alternative investment for the reduced capital demand.

If there does not exist a viable alternative investment option, the extra profit gained

from ProfitMax would be preferable over the extra returns from the ROCEMax

model. Comparing these results give decision makers a better picture of the possible

decisions and the payoff from those. The introduction of the ROCEMax model
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clearly adds an extra dimension to the MFRP that has not been available in earlier

research.

The ProfitMax fomulation makes no consideration as to the investments needed

when investing in ships, except for the decreasing net present value of the building

cost. Therefore, it is more likely to replace ships leaving the fleet at an earlier time

than the ROCEMax fomulation. The results from the tests show that the ProfitMax

Formulation more often plan to scrap ships leaving the fleet before they reach their

lifetime.

It is also important to evaluate the results in light of the assumptions made when

modeling the problem. There has been made no considerations to the available

amount of capital for the ship companies. The ProfitMax fomulation especially

expands the fleet considerably during the planning horizon. It can be discussed if it

is realistic for a company to make investments of this size, compared to the existing

value of the fleet at the start of the planning horizon.

The results discussed in this section may also be sensitive to values of the input

parameters. Even though the input parameters has been chosen to be as realistic as

possible, it is interesting to see if changes in some of the input parameters, such as

revenue or price of new ships will lead to large changes in the results. In Section 6.6

the results will be tested for sensitivity in terms of the input parameters.

6.5 Value of stochastic solution

In this section the Value of stochastic solution (VSS), as defined in Birge (1982), from

using the stochastic implementations ROCEMax and ProfitMax will be presented.

The VSS is calculated by comparing the results from the deterministic solution (DS)

and stochastic solution (SS), when run on stochastic data instances. The DS is

found taking the first stage decisions from solving the problem using expected values
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ROCEMax ProfitMax

Large 2 8

Medium 1 7

Small - 4

Table 6.9: First stage decisions for the DS

for random variables (expected value problem). These first stage decisions are then

used as input when run on a stochastic instance with the scenario tree used for the

SS. To compare the results from different sizes of the data instances, the results are

presented as percentage of the DS. The VSS is presented in Table 6.7

The results in Table 6.7 show that the SS give a significant expected value compared

to the DS in all cases, except for the ProfitMax fomulation run on the medium

sized set. In the case of ROCEMax Formulation, the VSSs are remarkably higher,

compared to the ProfitMax fomulation, for the medium and small sets. Table 6.7 also

shows the space charter costs for the DS, the solution of the DS run on scenario trees,

and the SS, for both the ProfitMax Formulation and the ROCE formulation.

The DSs will never wait and see, since all future development is given. The invest-

ment decisions made in t = 0 will therefore not be flexible with regards to different

future development than the expected. The first stage solutions of the DS is shown

in Table 6.9. The DS invests less in new builds, leading to lesser flexibility in case on

increased demand. Since the DS only consider the expected value, no consideration

as to the effects of under capacity in case of increased demand is taken. The SSs

will consider the possibility of increased demand, since this is part of some of the

scenarios. The result is that the SS choose to build more ships, and thus incurs less

space charter costs because of too little capacity, as is shown in Table 6.7.

When considering the lower VSS for the ProfitMax formulation with the medium set

instance space charter costs, an obvious reason is the relatively lower space charter

cost in the DS as compared to the SS. For the medium set the increase in space
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charter cost is about 30% from SS to DS, while it is 105% and 96% for the large

and small sets respectively. The space charter cost also explain why the VSS for

the ROCEMax is higher than for the ProfitMax Formulation for the medium and

small sets. The ROCEMax Formulation chooses to use space charter as an option

more often than the ProfitMax Formulation, and for the medium and small sets,

the increase in space charter costs is much higher than for the large set and all

sets with the ProfitMax formulation. The smaller increase for the large set with

the ROCEMax Formulation may be explained by the larger fleet given increased

flexibility as compared to the smaller fleets in the medium and small sets.

When considering the case without optional trades, results shown in Table 6.8, the

VSS increases for the ProfitMax Formulations, but stays the same for the ROCE-

Max Formulations, compared to the base case. The reason for the increase for the

ProfitMax Formulation comes from the large increase in use of space charters. When

optional trades are available, the ProfitMax Formulation choose to invest in more

ships than without the optional trades, this is also valid for the DS. The investment

is meant to give opportunity to service optional trades, but also gives increased flex-

ibility for the DS when the demand turns out to be higher than expected in some

scenarios. Some of the optional trades that were planned to be serviced can then

be avoided, to have more capacity for the trades with contractual agreements, and

avoid using space chartering on these. Without the optional trades, the DS does

not invest as much, and space charters will have be to used in the scenarios where

demand increases. The optional trades also give a possibility to use capacity on these

trades in case of lower demand than expected. This option is not available when

optional trades are not included.
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6.6 Impact of varying input parameter values

As discussed in Section 6.4, the results from the fomulations may be sensitive to

changes in some of the input parameters. For instance, the sunset value may not

fully capture the future profit potential of ships in the fleet, a longer planning horizon

might give more return on the investments made. The revenue from shipping goods

will also be considered. This is uncertain in the model, but if the initial level is set

too low, this might impact the results to a large degree.

In Section 6.4, the results showed that the ProfitMax Formulation chose to take all

but one optional trade for all test instances, while the ROCEMax was much more

conservative in choosing optional trades. It can be interesting to see what happens

if there are more optional trades available for the medium and small instances. This

might lead to larger differences between the solutions from the two formulations, or

the increased optional trades might add flexibility that makes more optional trades

profitable also for the ROCEMax Formulation.

Table 6.7 clearly shows that the VSSs were highly affected by the space charter costs

in the DS. Setting this cost lower might give a lower VSS. It could also be seen

that the ROCEMax Formulation chose to use the space charter option more than

the ProfitMax Formulation. This might also change if the cost is set at a lower

level.

In this section, the impact of changing the values of the freight revenue, space charter

cost, the number of optional trades and the length of the planning horizon will be

tested. The changes in parameters will be done for one parameter at a time. All tests

have been done using a optimality condition of 1% and a maximum running time of

3,000 seconds. The results from Section 6.4 showed that the difference between the

ROCEMax and ProfitMax formulations differed by more than 10%, when comparing

the ROCE from the two formulations. Also, the computational tests showed that the

largest decrease in gap when the gap was as low as 1% came from decreasing
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ROCEMax ProfitMax

Large Med Small Large Med Small

New builds ordered

t = 0 0.1 - - 20.2 9.8 6.6

t = 1, .., T 15.8 8.7 5.9 13.3 9.9 7.1

Scrappings

t = 0 - - - - - -

t = 1, .., T 11.2 7.3 5.1 10.7 7.3 5.2

Optional trades

t = 1 0.60 0.88 0.58 1.05 1.73 1.17

t = 2 0.60 0.90 0.58 1.67 2.58 1.72

t = 3 0.60 0.90 0.58 2.05 3.03 2.02

t = 4 0.60 0.95 0.58 2.13 3.07 2.03

t = 5 0.63 0.95 0.62 2.40 3.35 2.27

Profit (MUSD) 4,284 2,262 1,513 4,711 2,568 1,739

ROCE 467 % 454 % 440 % 373 % 354 % 348 %

CAGR 41.5 % 40.8 % 40.1 % 36.5 % 35.3 % 35.0 %

CAGR Extra - - - 4.8 % 4.9 % 5.0 %

Extra Return 25.1 % 28.2 % 26.6 % - - -

Extra Profit - - - 10.0 % 13.5 % 14.9 %

VSS 3.7 % 5.0 % 5.4 % 3.2 % 0.0 % 0.7 %

Space charter cost

SS (MUSD) 744 327 233 297 130 88

DS (MUSD) 939 537 366 576 149 110

Table 6.10: Results from running test with increased freight revenue
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the upper bound, not by new solutions. Thus, using 1% optimality gap should

still give good enough results to be able to compare solutions between the formula-

tions.

6.6.1 Impact of increased freight revenue

The freight revenue parameter was based on data from the case company, calculated

to reflect trip costs for the least efficient ship in the fleet, plus a posit margin. The

level of freight revenue is important, because it will determine the possible profit,

and thus what investments are profitable, both for the ROCEMax Formulation and

the ProfitMax Formulation.

By increasing the freight revenue by 56%, from 32 cents to 50 cents per nautical mile

a unit is shipped, it seems reasonable to believe that investments should be more

profitable, and that the formulations will choose to buy more ships, and possibly

service more optional trades for the ROCEMax formulation (remember that the

ProfitMax formulation already service all optional trades, except one).

The results from running the same tests as in Section 6.4, using a higher freight

revenue, are shown in Table 6.10

The results in Table 6.10 show that increasing the freight revenue increases the

structural difference between the two formulations. The solutions from ProfitMax

Formulation builds more ships, and choose to service more trades, since the prof-

itability per cargo shipped has increased. The ROCEMax Formulation on the other

hand choose to buy no ships in the first stage, and fewer ships over the entire plan-

ning horizon. The ROCEMax Formulation chooses to use the space charter option

more than compared to the base case. This is the result of the space charter option

being relatively cheaper when the freight revenue increases, and the space charter

cost stays the same.

The ProfitMax Formulations also choose to service the last trade, which was not
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ROCEMax ProfitMax

Med Small Med Small

New builds ordered

t = 0 3.8 3.1 13.6 12

t = 1, .., T 6.9 4.9 14.0 9.3

Scrappings

t = 0 - - - -

t = 1, .., T 7.1 5.1 7.2 5.2

Optional trades

t = 1 1.20 0.67 1.85 1.42

t = 2 1.22 0.77 3.30 2.77

t = 3 1.22 0.78 5.00 4.00

t = 4 1.23 0.78 5.00 4.00

t = 5 1.25 0.80 5.00 4.00

Profit (MUSD) 1,072 733 1,369 983

ROCE 195 % 189 % 158 % 149 %

CAGR 24.1 % 23.6 % 20.8 % 20.1 %

CAGR Extra - - 16.0 % 17.0 %

Extra Return 23.5 % 26.2 % - -

Extra Profit - - 27.7 % 34.1 %

VSS 16.6 % 22.4 % 1.1 % 2.0 %

Space charter cost

SS 202 127 131 89

DS 470 338 157 120

Table 6.11: Results from running tests with extra optional trades
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serviced in any cases in the base case. The ROCEMax formulation, on the other,

hand services fewer optional trades, but the trades chosen has a higher demand, so

total units shipped increases.

6.6.2 Impact of increasing the number of optional trades

Optional trades are both a recourse action if the company ends up with overcapacity

in the fleet, as well as an expansion option, if the company wants to expand the

fleet by servicing more trades. In Section 6.4 it was shown that the ROCEMax

formulation most likely used the optional trades as a recourse action if the market

status turned out to be lower than expected. For the ProfitMax formulation, all

optional trades, except one, were chosen for all tests. By increasing the number of

optional trades available for the medium and small sets, it can be expected that the

difference between the ROCEMax and ProfitMax formulation increases, especially

in terms of number of ships built.

The new sets of optional trades for the medium set include T12 and T13, in addition

to the ones listed in Table 6.2. The set of new optional trades for the small set

include T9 and T13 in addition to the ones listed in Table 6.2. The result from

running the tests with a new set of optional trades is shown in Table 6.11.

The results in Table 6.11 show that increasing the number of optional trades will

increase the difference in solutions between the ROCEMax and ProfitMax formula-

tions. The numbers of new build ships have increased slightly for the ROCEMax

Formulation, while it has increased by approximately 10 ships for the entire planning

horizon for both the medium and small sets for the ProfitMax Formulation. As for

the results from the base case, the ProfitMax Formulation chooses to service all op-

tional trades, except one, while the ROCEMax Formulation uses the optional trades

mostly as a recourse action in cases of overcapacity in the fleet. There is actually

a decrease in the number of optional trades for the small set compared to the base
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ROCEMax ProfitMax

Large Med Small Large Med Small

New builds ordered

t = 0 - - - 20.4 9.1 6.2

t = 1, .., T 15.9 8.8 6.5 10.9 9.9 7.8

Scrappings

t = 0 - - - - - -

t = 1, .., T 11.4 7.4 5.2 15.9 8.5 5.9

Optional trades

t = 1 0.57 0.62 0.45 0.97 1.67 1.07

t = 2 0.57 0.62 0.47 1.63 2.35 1.53

t = 3 0.57 0.62 0.48 2.00 3.00 2.00

t = 4 0.58 0.63 0.55 2.00 3.00 2.00

t = 5 0.73 0.80 0.78 2.00 3.00 2.00

...

t = 10 0.85 0.93 0.85 2.97 3.92 2.80

Profit (MUSD) 4 515 2 340 1 605 4 928 2 711 1 841

ROCE 288 % 276 % 268 % 243 % 232 % 219 %

CAGR 14.5 % 14.2 % 13.9 % 13.1 % 12.7 % 12.3 %

CAGR Extra - - - 9.0 % 9.2 % 9.8 %

Extra Return 18.4 % 18.8 % 22.1 % - - -

Extra Profit - - - 9.2 % 15.9 % 14.7 %

VSS 3.7 % 5.0 % 5.5 % 4.6 % 1.6 % 4.4 %

Space charter cost

SS 676 319 202 301 130 90

DS 931 523 355 704 190 206

Table 6.12: Results from running the test with a planning horizon of 10 years

78



6.6. Impact of varying input parameter values

case, but this is explained by the difference in demand for the optional trades, so

units shipped has increased when increasing available optional trades also for the

small set.

When looking at the VSS in Table 6.11, the results from the ROCEMax formulations

is approximately the same, both the medium and large set both being slightly higher

than for the base case. This results is as expected, since the other results did not

differ much as well. For the ProfitMax Formulation, the VSS is significantly lower

compared to the base case. This is best explained by considering the optional trades

as recourse options. The DS will choose to invest planning to service extra optional

trades. In cases where the demand increases, these investments give flexibility in

the fleet, so that fewer optional trades can be serviced, to reduce the use of space

charters on contractual trades. This is seen by the relative small increase in space

charter cost from the SS to the DS.

6.6.3 Impact of increasing the planning horizon

The planning horizon was initially set to five years, where the potential future profit

of the ships in the fleet at the end of the planning horizon was reflected in the sunset

value. The sunset value may not necessarily be able to reflect this potential future

profit in a good way. By increasing the planning horizon from five to 10 years, it is

possible that this profit potential will be better reflected. By increasing the planning

horizon from five to 10 years, nothing is changed about the problem. The uncertainty

is still modeled the same way, and there are no ships leaving the fleet due to age

from year six to 10. Therefore, increasing the planning horizon can be considered

estimating the sunset value in a more detailed way.

The results from running the tests using a planning horizon of 10 years is shown in

Table 6.12.

The ROCE listed in Table 6.12 is lower than the correct value. This is the result of
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the linearization constraint (5.90) being wrongly implemented in terms of estimating

the average ROCE over the planning Horizon (the term T̄ + 1 was not updated from

a five year planning horizon). This error does however not influence the optimal

solutions, as it is only a scaling issue, making the average Capital Employed too

high. The error is only present in the results in this section.

The results shown in Table 6.12 show that there is no major impact of increasing the

length of the planning horizon. Since all values are discounted, the impact of profits

in the later periods of the planning horizon has less impact on the final results in

terms of profit and ROCE. On the other hand, these periods have a higher demand

(since a slight increase in the market status is implemented in the mean value), and

no investments are made, increasing the profit made in these periods.

The high profit show that the sunset value does not fully reflect the future profit

potential of a ship. The ROCEMax formulation chooses to invest in fewer ships over

the planning horizon, and none in the first stage. This result comes from the needed

return on new investment is higher in this case, since the profitability of the ships

in the fleet increase when the planning horizon increases.

The VSS is lower than for the base case. This is best explained by the longer

planning horizon giving better possibilities of correcting bad decisions in the first

stage, leading to the impact of these decisions being lower as the planning horizon

is extended.

6.6.4 Impact of changing space charter cost

Initially, the space charter cost was set to 2,000 USD per unit of cargo shipped, as

a high cost for a recourse option that is not to be used often. This approach is not

necessarily always true. In this section, the space charter costs will be estimated by

using an even higher cost, 5,000 USD per unit shipped, for HH and BB, because these

may be difficult to ship in an space charter market, and this should not be a viable

80



6.6. Impact of varying input parameter values

option unless it is an extreme case (to ensure feasibility). The space charter cost for

cars is reduced, set at a slightly higher level then the revenue made from shipping

goods, 40 cents as compared to 32 cents per nautical mile. The space charter cost

for cars is also set to vary with the market status. The total effect of these changes

in the space charter cost is most likely a reduction of the space charter cost for the

shipping company, since demand for cars is the highest.

In Section 6.4 it was shown that the ROCEMax and ProfitMax formulation had

different approaches to space charter costs vs new builds. The ROCEMax formula-

tion was more likely to use space charter than the ProfitMax Formulation, instead

of building more internal capacity. Also, Section 6.5 showed that the space charter

cost had a high impact on the VSS.

The results shown in Table 6.13 show that the ROCEMax formulation chooses not to

build any ships in the first stage, but waits until later in the planning horizon. The

total number of ships bought is also reduced. This shows that when space charter

cost is reduced, the ROCEMax formulation to an ever higher degree choose to use

space chartering as an option instead of investing in new ships. The ProfitMax

formulation also chooses to invest in fewer ships both in the first stage and the

second stage, except for the small set, where the number of new build is higher for

the second stage as compared to the base case. This may be because of the change in

space charter cost, in the case of the small set, results in postponement of investment

decisions being more profitable.

When looking at the VSS, this is significantly lower, as one would expect. The DS

still needs to take a much higher space charter cost than the SS, but as this cost is

reduced, the total impact of this increase is lower, and so the VSS ends up being

much lower than for the base case.

The result of changing the structure of the space charter cost led to larger differences

between the formulations, and lower VSS. The space charter cost was essentially

reduced, since the cost was reduced for cars, which is the cargo type with the highest
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ROCEMax ProfitMax

Large Med Small Large Med Small

New builds ordered

t = 0 - - - 10.3 5.4 4

t = 1, .., T 1.3 0.9 - 13.1 10.2 7.7

Scrappings

t = 0 3.7 0.8 - - - -

t = 1, .., T 12.9 8.1 5.6 10.3 7.1 5.1

Optional trades

t = 1 0.70 0.93 0.63 0.98 1.77 1.08

t = 2 0.72 0.93 0.63 1.23 2.03 1.33

t = 3 0.72 0.93 0.63 2.00 3.00 2.00

t = 4 0.72 0.93 0.63 2.00 3.00 2.00

t = 5 0.73 0.97 0.63 2.00 3.00 2.00

Profit (MUSD) 1,762 955 628 2,232 1,203 814

ROCE 259 % 250 % 250 % 194 % 190 % 178 %

CAGR 29.1 % 28.5 % 28.4 % 24.1 % 23.7 % 22.7 %

CAGR Extra - - - 10.3 % 10.8 % 11.3 %

Extra Return 33.5 % 31.8 % 40.2 % - - -

Extra Profit - - - 26.7 % 26.0 % 29.6 %

VSS 1.5 % 1.7 % 2.2 % 0.3 % 0.7 % 0.2 %

Space charter cost

SS 729 444 219 165 64 36

DS 880 508 241 257 69 71

Table 6.13: Results from runnings tests with updated space charter costs
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Figure 6.2: Development of VSS with increasing space charter cost

demand. It can be discussed whether the level of space chartering is realistic. No

restrictions are put on the use of space chartering, other than the cost.

The result in Table 6.13 showed the effect of reducing the space charter cost. It can

also be interesting to consider what happens if the space charter cost increases. A

test was done, for one data instance of the large set, using 10 levels of space charter

costs, to see how the results differ with the space charter cost. Only the space charter

cost for cars was changed, for HHs and BBs, the cost of 10,000 USD used in this

section is still applied. The space charter cost is set relative to the freight revenue,

starting out at the same level, and gradually increasing in 10 steps up to 20 times

the freight revenue, to test for an extreme case. The increase is small at first, and

gradually increases. Figures 6.2 and 6.3 show the result from this test in terms of

VSS and similarity between first stage decisions from the formulations. The x-axis

shows the level of space charter cost for cars, compare to the freight revenue.

Figure 6.2 show that the VSS increase with increasing space charter cost. When the

space charter cost passed went from five times to 10 times the freight revenue, the
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Figure 6.3: Comparison of new build decisions in the first stage between the ROCEMax and

ProfitMax formulations with increasing space charter costs
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VSS increased to 200% for the ROCEMax formulation, and 185% for the ProfitMax

Formulation. At four times the level of the freight revenue, the VSS is approximately

the same as for the base case.

Figure 6.3 compares the number of ships that the ROCEMax Formulation and Prof-

itMax Formulation build in the first stage. The results show that increasing space

charter cost makes the solutions from the two formulations more similar to each

other, in terms of the first stage solutions. The economic results also become more

similar as the space charter cost increases, but it takes an extreme increase to make

the solutions almost similar. The case of space charter cost at 20 times the freight

revenue practically means that the space charter option is not to be used, except

for ensuring feasibility in cases of extreme demand where there is no possibility of

having enough capacity in the fleet. Giving a realistic value to the space charter cost

is of great importance, especially when comparing the suggested solution from the

two formulations.

6.6.5 Summary of impact of parameter values

The tests done in this section show that the impact of changing the values of pa-

rameters in the manner discussed in this section did not change the structural dif-

ferences in the solutions proposed by the ROCEMax and ProfitMax Formulations.

The changes in solutions from the base case only increased the difference in solutions

between the two formulations, except for increasing the space charter cost. However,

an extreme change in the space charter cost was necessary to end up with solutions

which were not structurally different. This shows that the ROCEMax Formulation

is far more conservative than the ProfitMax Formulation, and the structure of the

solutions are not sensitive to changes in the parameter values.
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ROCEMax ProfitMax

Large Med Small Large Med Small

New builds ordered

$t=0$ 3.4 0.6 - 16.6 5.8 3.8

$t=1,..,T$ 12.3 6.0 3.7 14.7 12.1 9.8

Scrappings

$t=0$ - - - - - -

$t=1,..,T$ 12.0 7.5 5.2 10.5 7.1 5.0

Optional trades

$t=1$ 0.78 0.87 0.63 1.17 2.08 1.42

$t=2$ 0.78 0.87 0.63 1.63 2.32 1.58

$t=3$ 0.78 0.90 0.65 2.00 3.00 2.00

$t=4$ 0.78 0.90 0.65 2.00 3.00 2.00

$t=5$ 0.78 0.90 0.67 2.00 3.00 2.00

Profit (MUSD) 1,991 1,103 769 2,174 1,226 857

ROCE 219 % 237 % 250 % 179 % 180 % 178 %

CAGR 26.1 % 27.5 % 28.5 % 22.8 % 22.9 % 22.7 %

CAGR Extra - - - 14.2 % 13.2 % 12.7 %

Extra Return 22.3 % 31.6 % 40.0 % - - -

Extra Profit 9.2 % 11.2 % 11.5 %

VSS 10.5 % 18.7 % 18.7 % 6.0 % 2.5 % 2.3 %

Space charter cost

SS 289 77 49 96 13 9

DS 581 250 192 318 43 73

Table 6.14: Results from running tests with option of chartering in and out ships

86



6.7. Including charters and second hand market

6.7 Including charters and second hand market

The formulations presented in Chapter 5 included options for chartering in and out

ships, and a second hand market for buying and selling ships. For the computational

study in Chapter 6, these options were not included, by setting the limits to 0.

In this section, the option of chartering in and out ships, and buying and selling

ships in a second hand market will be included. The limits for these each of options

have been set to maximum one ship per type per period, and maximum a total of

three ships per period.

Only PCTC and LCTC type of ships are available for chartering and in the second

hand market. The exclusion of ships of type RORO comes from the fact that RORO

ships have a very specific design, accustomed to ro-ro shipping. Because of this, it

is not likely to find these type of ships available for charters or in the second hand

market. A limit of one available ship of each type, and a total of three ships per

time period to be chartered in or out is set.

When testing the formulations in Chapter 6, there existed only one recourse action

in addition to investing and disposing of ships, namely the space charter option.

By including charters of ships and a second hand market, these can be considered

additional recourse actions. Pantuso et al. (2014) showed that increasing the number

of ships available for charters decreased the value of the stochastic solution.

The inclusion of a second hand market means introducing new integer variables,

which complicates the problem, and increase the solution time. For this reason, a

space charter option is first included without a second hand market, before a second

hand market is included as well. The results from running the ROCEMax and

ProfitMax formulations with the possibility of chartering ships are shown in Table

6.14.

The results in Table 6.14 have the same structural differences as the base case and
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Charters in Charters out

t = 1 2 3 4 5 1 2 3 4 5

ROCE

Large 1.8 2.1 1.6 2.1 2.5 1.9 1.8 1.4 1.0 0.6

Med 1.5 2.2 2.1 2.4 2.9 2.6 1.7 1.3 0.8 0.7

Small 1.5 2.2 2.1 2.3 2.8 2.2 1.2 0.9 0.6 0.5

Profitmax

Large 1.9 1.1 0.5 0.4 0.1 1.9 2.7 3.4 2.8 2.0

Med 1.7 1.4 0.7 0.6 0.3 2.1 2.1 3.2 2.1 1.3

Small 1.7 1.2 0.4 0.2 0.1 1.8 2.3 3.2 2.0 1.0

Table 6.15: Charters in and out for the test with charter option

the tests done in the previous section. The ROCEMax Formulation also choose to

use the charter options far more often and to a greater degree than the ProfitMax

Formulation. The VSS decreases for the ProfitMax Formulation, which corresponds

to the findings in Pantuso et al. (2014), but not for the ROCEMax Formulations.

This is because the ROCEMax Formulation uses chartering of ships as an replace-

ment for building new ships, while the ProfitMax Formulation use the chartering

much less, and more as recourse option and while waiting for delivery of new builds,

which can be seen from the results in Table 6.15. This means that the DS for the

ROCEMax Formulation plan to charter ships, so these limits on charters are already

reached, and chartering ships does not act as an recourse option for the DS.

When a second hand market is included as well, the formulations does not reach a

1% optimality within the time limit, the gap at this time varies from 1.5% for the

small set to 5.5% for the large set. Because of this, the results from including a

second hand market should not be considered accurate results. There is still reason

to believe that the structure in the solutions proposed with this gap still reveal some

traits about the problem when a second hand market is included. The results from
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ROCEMax ProfitMax

Large Med Small Large Med Small

New builds ordered

$t=0$ 0.7 - - 10.3 2.0 1.0

$t=1,..,T$ 4.9 1.4 0.0 13.1 11.1 8.2

Scrappings

$t=0$ - - - - 0.1 0.4

$t=1,..,T$ 10.3 7.0 5.0 10.2 7.0 3.3

Optional trades

$t=1$ 0.67 0.42 0.25 1.32 2.40 1.58

$t=2$ 0.67 0.42 0.25 1.63 2.68 1.87

$t=3$ 0.67 0.42 0.25 2 3 2

$t=4$ 0.67 0.42 0.25 2 3 2

$t=5$ 0.67 0.42 0.27 2 3 2

Profit (MUSD) 2,106 1,154 819 2,294 1,314 919

ROCE 250 % 289 % 319 % 201 % 213 % 208 %

CAGR 28.5 % 31.2 % 33.2 % 24.7 % 25.6 % 25.3 %

CAGR Extra - - - 11.6 % 9.5 % 9.0 %

Extra Return 24.4 % 35.5 % 53.0 % - - -

Extra Profit - - - 8.9 % 13.8 % 12.1 %

VSS 15.0 % 12.9 % 20.0 % 7.4 % 3.1 % 1.4 %

Space charter cost

SS 278 76 14 128 8 4

DS 824 287 220 390 56 24

Table 6.16: Results from running tests with charter options and a second hand market
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Charters in Charters out

t = 1 2 3 4 5 1 2 3 4 5

ROCE

Large 1.6 1.9 1.9 2.1 2.8 2.1 1.3 0.8 0.5 0.1

Med 1.4 2.2 2.5 2.7 3.3 1.7 0.7 0.2 0.0 0.0

Small 1.3 2.0 2.4 2.4 2.8 2.4 0.7 0.1 0.0 0.0

Profitmax

Large 1.8 1.2 0.6 0.4 0.1 2.0 2.4 2.6 2.0 1.0

Med 1.5 1.4 1.1 1.1 0.5 2.2 1.4 2.2 1.6 0.6

Small 1.1 1.1 0.7 0.5 0.1 2.7 2.9 3.1 2.2 0.5

Table 6.17: Charters in and out for the test with charter option and second hand market

Second hand purchases Second hand sales

t = 0 1 2 3 4 0 1 2 3 4

ROCE

Large 3.0 1.5 2.0 2.1 2.1 0.0 1.4 1.2 1.0 0.5

Med 2.0 1.4 1.9 2.4 2.6 1.7 2.0 1.6 1.0 0.4

Small 2.0 0.9 1.5 1.9 2.5 1.7 1.9 1.1 0.8 0.3

Profitmax

Large 3.0 1.6 1.4 1.4 1.0 0.0 1.8 2.7 2.8 2.3

Med 3.0 2.3 1.8 1.9 1.3 0.0 1.7 2.6 2.4 1.8

Small 3.0 2.3 1.8 1.9 0.9 0.0 1.4 2.1 2.2 1.5

Table 6.18: Second hand purchases and sales
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running the tests with a charter option and a second hand market is shown in Table

6.16.

The results in Table 6.16 show that the inclusion of a second hand market as well

as a charter option does not change the difference between the solutions. Both

formulations build fewer ships in the first stage and for the entire planning horizon,

this is because more ships are bough in the second hand market, as well as the

charter option reduces the need for investments in the fleet.

The same remarks about the VSS as for the case with only charter option can be

made, except that the reduction is a little lower for the ProfitMax formulation, and

the ROCEMax Formulation see an increase in VSS compared to the base case. This

is most likely the result of the formulations using the second hand market both for

investments and as a recourse option. The second hand market however, have a lead

time of one period for deliveries of ships, as compared to the charters, which are

available right away. Both Formulations buy and sell in the second hand market

throughout the planning horizon. The ROCEMax Formulation buys more than it

sells, meaning that it use the second hand market as recourse option when demand

increases. The ProfitMax Formulation on the other hand sell more than in buys,

meaning that it use the second hand market as a recourse option when demand is

decreasing. These results can be seen in Tables 6.17 and 6.18

6.8 Going from a two-stage to a three-stage case

In Chapter 6, it was shown that by using a two-stage stochastic model, it was possible

to achieve a VSS ranging from 11.9 to 21.7 %. In the two-stage stochastic model

used in Chapter 6, the realization of all random variables for the rest of the planning

horizon was known from time period t = 1. In this section, a three-stage model

will be presented and tested. The three-stage model consists of an additional stage

compare to the two-stage model used in Chapter 6. The three-stage model means
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Figure 6.4: Example of three stage scenario tree, for one random variable. The expected value is

the middle black line.

that in time t = 1, only a first realization will be discovered, the random variables

further development is still uncertain for the rest of the planning horizon, this is

discovered in time t = 2. Picture 6.4 shows an illustration of the scenario three in

the three stage model.

The results from running the ROCEMax and Profit Max formulations on a three

stage data instance is shown in Table 6.19

The results show that going from a two-stage model to a three stage model does not

change the results significantly. The structural differences that were found in the

results from the base case is still present. For multistage problems, the calculation of

the VSS is more complex than for a two stage problem, as is presented in Escudero
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ROCEMax ProfitMax

Large Med Small Large Med Small

New builds ordered

$t=0$ 5.4 2.8 2.0 16.7 8.2 5.7

$t=1,..,T$ 7.6 3.4 2.4 5.6 4.8 3.3

Scrappings

$t=0$ - - - - - -

$t=1,..,T$ 9.2 5.1 3.6 8.1 5.2 3.5

Optional trades

$t=1$ 0.38 0.50 0.42 1.28 2.15 1.30

$t=2$ 0.77 0.98 0.72 1.65 2.48 1.55

$t=3$ 0.98 1.25 0.93 1.77 2.77 1.75

$t=4$ 0.80 1.05 0.80 1.75 2.72 1.80

$t=5$ 0.90 1.12 0.80 1.80 2.85 1.87

Profit (MUSD) 1,960 1,071 729 2,108 1,158 784

ROCE 205 % 205 % 201 % 185 % 183 % 178 %

CAGR 25.0 % 25.0 % 24.6 % 23.3 % 23.2 % 22.7 %

CAGR Extra - - - 14.7 % 14.8 % 15.5 %

Extra Return 11.3 % 11.9 % 12.9 % - - -

Extra Profit 7.5 % 8.1 % 7.6 %

V SS1 7.3 % 9.0 % 11.8 % 6.4 % 1.9 % 6.2 %

Space charter cost

SS 296 84 47 94 14 9

DS 576 251 192 318 42 74

Table 6.19: Results from running the tests using a three stage data instance
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et al. (2007) . The calculation of the VSS as presented in Escudero et al. (2007) will

not be done in here. The VSS presented in Table 6.19 is therefore indexed by 1,

meaning that the decisions in t = 0 for the EVP have been locked when solving with

the stochastic scenario tree. Escudero et al. (2007) show that V SS1 is lower than

V SS2 for the problem (which is not calculated), so the reduced V SS1 as compared

to the VSS for the base case, seems reasonable.

6.9 Adjusting the calculation of ROCE

All tests so far have shown that the ROCEMax Formulation is far more conservative

in building decisions as compared to the ProfitMax Formulation. When estimating

the ROCE, it can be argued that the cost of building a ship acts as a double neg-

ative factor, since it both increases the capital employed and decreases the profit.

The new build cost was included so that the ROCEMax formulation and ProfitMax

Formulation could be compared easily (PO as discussed in Chapter 2 is the profit

from the ProfitMaxFormulation). In this section, tests where the new build cost has

been omitted from the profit estimation in the ROCEMax Formulation will be done.

Investing in new builds will then just effect the capital employed. The results from

these tests are shown in Table 6.20.

The results in Table 6.20 show that omitting the cost of new building from the profit

estimation in the ROCEMax Formulation does increase the number of ships built,

as compared to the results from the base case, as presented in Section 6.4. The

increase is however only slight, and the structural difference in decisions between

the formulations is still clearly present. It should be noted that the reason this test

is not run for the ProfitMax Formulation, is that omitting the new build cost from

the ProfitMax Formulation would lead to an unbounded problem, which is not the

case for the ROCEMax Formulation. The economic results in Table 6.20 cannot be

compared directly to the results from the ProfitMax Formulation, since they have
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ROCEMax

Large Med Small

New builds ordered

t = 0 10.1 4.3 3

t = 1, .., T 13.0 9.7 6.5

Optional trades

t = 1 0.95 1.38 0.90

t = 2 1.03 1.40 0.93

t = 3 1.15 1.50 1.03

t = 4 1.25 1.68 1.167

t = 5 1.93 2.75 1.82

Profit (MUSD) 2,498 1,364 922

ROCE 239% 236% 213%

CAGR 27.7% 27.45% 27.1%

CAGR Extra - - -

Extra Return 41.8% 42.9% 43.9%

Extra Profit - - -

VSS 10.0% 12.2% 15.4%

Space charter cost

SS 412 121 54

DS 812 392 228

Table 6.20: Results from omitting new build cost from profit calculation
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different approaches to estimate profit and thus ROCE. The results suggest that

investigating the calculation of investment returns further will be of value value in

future research.

6.10 Summary of the computational study

The computational study has investigated the solutions from the two formulations

developed in Chapter 5. The solutions were based on a base case, as well as testing for

varying input parameters, including charters and a second hand market, expanding

to a three-stage case, and adjusting the calculation of ROCE.

The main finding is that the ROCEMax Formulation is far more conservative com-

pared to the ProfitMax Formulation for all cases. The solutions vary, but the struc-

tural differences between the formulations is present in all cases. The ROCEMax

Formulation choose to use the space charter option to a lager degree than the Profit-

Max Formulation, so modeling the use of this as realistic as possible will be important

for the validity of the model. Adjusting the calculation of ROCE did also have a

impact on the solutions suggested, so further studies into how this should be cal-

culated should be done. Ideally, the calculation of ROCE, or another measure for

investment returns, should be done in the same way as is done by investors.
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Concluding remarks

This thesis introduced a new model for solving the Maritime Fleet Renewal Prob-

lem (MFRP). This model maximizes investment returns in the objective function, in

terms of ROCE, as compared to profit maximization or cost minimization which

has been the only objective functions proposed by current literature about the

MFRP.

The introduction of investment returns in the objective function gave a more com-

plex formulation than the profit maximizing model that was also developed. The

objective function ends up as a fraction, so a transformation must be made, and

special solutions for handling the binary and integer variables were needed. Still,

the new ROCEMax Formulation was possible to solve for the instances developed

for this report, within reasonable time to be applicable for industry adaptation.

More focus should still be given to improve the model in terms of computational

effectiveness.

The results showed the the new ROCEMax Formulation gave structurally different

solutions from the ProfitMax Formulation. The differences were not sensitive to ad-

justments of parameter values, so the new model can be considered giving a valuable

contribution to the field of strategic maritime problems in operations research. The
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literature indicates that the use of investment returns has not been applied to these

type of problems in operations research before. The dimension of considering the

investments needed for the solutions suggested, is therefore a new addition to the

field of strategic, maritime problems.

The ROCEMax Formulation should be developed to better reflect the return mea-

sures used by shipping companies. ROCE was chosen for measure for this thesis,

but other measures may also be appropriate. The calculation of ROCE in the model

should also be given attention in the further work with the model.
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Appendix A

Formulations

A.1 ProfitMax Formulations

A.1.1 Profit Max Scenario Formulation

Sets

T set of periods, indexed by t, final period T̄

S set of scenarios, indexed by s

Vt = {0 ≤ Avt ≤ Ā} set of ship types existing in the marked in period

t, indexed by v

NC
t set of mandatory trades (where there are contractual obligations)

operated in period t, indexed by i

NO
t set of optional trades (where there are no contractual obligations)

in period t, indexed by i

Nt set of all trades in period t, indexed by i

Rt set of loops in period t, indexed by r

Rvt ⊆ Rt set of loops which can be sailed by a ship of type v in period t,

indexed by r
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Rivt set of loops servicing trade i which can be sailed by a ship of type

v in period t, indexed by r

G set of cargo types, indexed byc

Parameters

T̄ L lead time for new buildings

Ps probability of scenario s occurring

Ā lifetime of a generic ship

Avt age of a ship of type v in period t

CNB
vts building cost of a ship of type v in period t under scenario s

CSH
vt cost of a ship of type v in period t in the second-hand market

COP
vts fixed operating cost for ship of type v in period t under scenario s

CTR
vrts cost of performing a loop r for ship of type v in period t under

scenario s

CSP
its cost of voyage charter on trade i in period t under scenario s

CCI
vts cost of chartering in a ship of type v in period t under scenario s

RLU
vts lay up savings for one period t for a ship of type v under scenario s

RCO
vts charter out revenue for one period t for a ship of type v under

scenario s

RSC
vts scrapping revenue for a ship of type v in period t under scenario s

RSH
vts revenue from selling a ship of type v in period t under scenario s in

the second-hand market

RSV
vs sunset value for a ship of type v under scenario s

Fit frequency requirement for trade i in period t

Zrv total time it takes for a ship of type v to perform loop r

Zv total available time for a ship of type v in one period

Qcv total capacity for a ship of type v

CIvts limit on number of available ships for chartering in of type v in

period t under scenario s
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COvts limit on number of possible ships for chartering out of type v in

period t under scenario s

SHvts limit on number of available ships in the second hand market of

type v in period t under scenario s

SEvts limit on number of possible ships that can be sold in the second

hand market out of type v in period t under scenario s

CI ts limit of total number of ships that can be chartered in in period t

under scenario s

COts limit of total number of ships that can be chartered out in period t

under scenario s

SH ts limit of total number of ships that can be bought in the second

hand market in period t under scenario s

SEts limit of total number of ships that can be sold in the second hand

market in period t under scenario s

Dits agreed amount of cargo to be transported on trade i in period t

under scenario s

Y IP
v initial pool of ship type v

Y NB
vt new ships of type v ordered in the sunk period, to be delivered in

period t

Variables

yNB
vts number of new buildings ordered in period t under scenario s of

ship type v

ySCvts number of ships scrapped in period t under scenario s of type v

ySHvts number of ships bought in the second-hand market in period t under

scenario s of type v

ySEvts number of ships sold in the second-hand market in period t under

scenario s of type v

yPvts number of ships in the pool at the end of period t under scenario s
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xvrts number of loops r performed by ships of type v in period t under

scenario s

lvts number of ships of type v on lay up for period t under scenario s

hIvts number of ships of type v chartered in in period t under scenario s

hOvts number of ships of type v chartered out in period t under scenario

s

nits units of goods space chartered in on trade i in time t under scenario

s

δits binary variable, 1 if optional trade i is serviced in node n
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Objective function

maxz =
∑
s∈S

Ps

( ∑
t∈T,t>0

( ∑
i∈NO

t

∑
c∈G

RD
itsDitcsδits

+
∑
i∈NC

t

∑
c∈G

(RD
itsDicts− CSP

ictsnicts)−
∑
v∈Vt

(COP
vts y

P
vts

+ CCO
vts h

I
vts −RCO

vts h
O
vt

+
∑

r∈Rvts

CTR
vrtsxvrts −RLU

vts lvts)
)

+
∑
v∈VT̄

RSV
vs y

P
vT̄ s

−
∑

t∈T,t≤T̄−TL

∑
v∈V N

t+TL

CNB
vts y

NB
vts

+
∑
t∈T

∑
v∈Vt

(RSC
vtsy

SC
vts

+RSE
vtsy

SE
vts − CSH

vts y
SH
vts )
)

Demand constraints∑
v∈Vt

∑
r∈Rivt

Qcvxvrts + nicts ≥ Ditcs, t ∈ T \ {0}, i ∈ NC
t , c ∈ G, s ∈ S,∑

v∈Vt

∑
r∈Rivt

Qcvxvrts ≥ Ditcsδits, t ∈ T \ {0}, i ∈ NO
t , c ∈ G, s ∈ S,

Capacity constraints∑
v∈Vt

∑
r∈Rivt

max
cinG

Qcvxvrts +
∑
c∈G

ncits ≥
∑
c∈G

Ditcs, t ∈ T \ {0}, i ∈ NC
t , s ∈ S,∑

v∈Vt

∑
r∈Rivt

max
cinG

Qcvxvrts ≥
∑
c∈G

Ditcsδits, t ∈ T \ {0}, i ∈ NO
t , s ∈ S,

Frequency constraints∑
v∈Vt

∑
r∈Rivt

xvrts ≥ Fit, t ∈ T \ {0}, i ∈ NC
t , s ∈ S,∑

v∈Vt

∑
r∈Rivt

xvrts ≥ Fitδits, t ∈ T \ {0}, i ∈ NO
t , s ∈ S,
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Time constraints∑
r∈Rvt

Zrvxvrts ≤ Zv(y
P
vts + hIvt − hOvt − lvts), t ∈ T \ {0}, v ∈ Vt, s ∈ S,

Optional trades constraints

δits ≤ δi,t+1,st ∈ T \ {0, T̄}, i ∈ NO
t , s ∈ S,

Pool constraints

yPvts = yPv,t−1,s − ySCv,t−1,s + ySHv,t−1,s − ySEv,t−1,s, t ∈ T \ {0}, v ∈ Vt \ V N
t , s ∈ S,

yPvts = Y NB
vt , t ∈ T : t < TL, v ∈ V N

t , s ∈ S,

yPvts = yNB
v,t−TL,s, t ∈ T : t ≥ TL, v ∈ V N

t , s ∈ S,

yPv0s = Y IP
v v ∈ V0, s ∈ S,

yPvts = ySCvts , t ∈ T \ {0}, v ∈ Vt \ v ∈ Vt+1, s ∈ S,

lvts − hIvts + hOvts ≤ yPvts, t ∈ T \ {0}, v ∈ Vt, s ∈ S,

Charters and second hand market constraints

ySHvts ≤ SHvts, t ∈ T, v ∈ Vt, s ∈ S,

ySEvts ≤ SEvts, t ∈ T, v ∈ Vt, s ∈ S,

hIvts ≤ CIvts, t ∈ T \ {0}, v ∈ Vt, s ∈ S,

hOvts ≤ COvts, t ∈ T \ {0}, v ∈ Vt, s ∈ S,∑
v∈Vt\V N

t

ySHvts ≤ SH ts, t ∈ T, s ∈ S,

∑
v∈Vt\V N

t

ySEvts ≤ SEts, t ∈ T, s ∈ S,

∑
v∈Vt\V N

t

hIvts ≤ CI ts, t ∈ T \ {0}, s ∈ S,

∑
v∈Vt\V N

t

hOvts ≤ COts, t ∈ T \ {0}, s ∈ S,
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Non-anticipativity constraints

ySCvts = ySCvts̄ , t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts ,

yNB
vts = yNB

vts̄ , t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts ,

ySHvts = ySHvts̄ , t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts ,

ySEvts = ySEvts̄ , t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts ,

Convexity and integer constraints

yNB
vts ∈ Z+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , s ∈ S,

ySCvts ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ySHvt ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ySEvt ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

yPvts ∈ R+, t ∈ T v ∈ Vt, s ∈ S,

lvts ∈ R+, t ∈ T \ {0}, v ∈ Vt, s ∈ S,

hIvt ∈ R+, t ∈ T \ {0}, v ∈ Vt, s ∈ S,

hOvt ∈ R+, t ∈ T \ {0}, v ∈ Vt, s ∈ S,

xvrts ∈ R+, t ∈ T \ {0}, r ∈ Rvt, v ∈ Vt, s ∈ S.
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A.1.2 ProfitMax node formulation

Set, parameters and variables

Sets

T set of periods, indexed by t, final period T̄

N set of nodes in the scenario tree, indexed by n

Vt = {0 ≤ Avt ≤ Ā} set of ship types existing in the marked in period

t, indexed by v

NC
t set of mandatory trades (where there are contractual obligations)

operated in period t, indexed by i

NO
t set of optional trades (where there are no contractual obligations)

in period t, indexed by i

Nt set of all trades in period t, indexed by i

Rt set of loops in period t, indexed by r

Rvt ⊆ Rt set of loops which can be sailed by a ship of type v in period t,

indexed by r

Rivt set of loops servicing trade i which can be sailed by a ship of type

v in period t, indexed by r

G set of cargo types, indexed byc

Parameters

T̄ L lead time for new buildings

Pn probability of being in node n

n(t) all nodes n at time t in the scenario tree

a(n, t) all ancestors of node n in the scenario tree in time t, a(n, t) is

written simply as a(n)

Ā lifetime of a generic ship

Avt age of a ship of type v in period t

CNB
vn building cost of a ship of type v in node n

CSH
vn cost of a ship of type v in node n in the second-hand market
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COP
vn fixed operating cost for ship of type v in node n

CTR
vrn cost of performing a loop r for ship of type v in node ns

CSP
in cost of voyage charter on trade i in node n

CCI
vn cost of chartering in a ship of type v in period n

RLU
vn lay up savings for one period t for a ship of type n

RCO
vn charter out revenue for one period t for a ship of type n

RSC
vn scrapping revenue for a ship of type v in period n

RSH
vn revenue from selling a ship of type v in period n in the second-hand

market

RSV
vn sunset value for a ship of type v in node n

Fit frequency requirement for trade i in period t

Zrv total time it takes for a ship of type v to perform loop r

Zv total available time for a ship of type v in one period

Qcv total capacity for a ship of type v

CIvn limit on number of available ships for chartering in of type v in

node n

COvn limit on number of possible ships for chartering out of type v in

node n

SHvn limit on number of available ships in the second hand market of

type v in node n

SEvn limit on number of possible ships that can be sold in the second

hand market out of type v in node n

CI ts limit of total number of ships that can be chartered in in node n

COts limit of total number of ships that can be chartered out in node n

SH ts limit of total number of ships that can be bought in the second

hand market in node n

SEts limit of total number of ships that can be sold in the second hand

market in node n

Din agreed amount of cargo to be transported on trade i in node n

111



Appendix A. Formulations

Y IP
v initial pool of ship type v

Y NB
vt new ships of type v ordered in the sunk period, to be delivered in

period t

Variables

yNB
vn number of new buildings ordered in node n of ship type v

ySCvn number of ships scrapped in node n of type v

ySHvn number of ships bought in the second-hand market in node n of

type v

ySEvn number of ships sold in the second-hand market in node n of type

v

yPvn number of ships in the pool at the end of the period in node n

xvn number of loops r performed by ships of type v in node n

lvn number of ships of type v on lay up for node n

hIvn number of ships of type v chartered in in node n

hOvn number of ships of type v chartered out in node n

nin units of goods space chartered in on trade i in node n

δin binary variable, 1 if optional trade i is serviced in node n
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Objective function

maxz =
∑

t∈T\{0}

∑
n∈n(t)

Pn

( ∑
i∈NO

t

∑
c∈G

RD
inDicnδin

+
∑
i∈NC

t

∑
c∈G

(RD
inDicn − CSP

icnnicn)−
∑
v∈Vt

(COP
vn y

P
vn

+ CCO
vn h

I
vn −RCO

vn h
O
vn

+
∑
r∈Rvn

CTR
vrnxvrn −RLU

vn lvn)
)

+
∑
v∈VT̄

∑
n∈n(T̄ )

PnR
SV
vn y

P
vn

−
∑

t∈T,t≤T̄−TL

∑
v∈V N

t+TL

∑
n∈n(t)

PnC
NB
vn yNB

vn

+
∑
t∈T

∑
v∈Vt

∑
n∈n(t)

Pn(RSC
vn y

SC
vn

+RSH
vn y

SE
vn − CSH

vn y
SH
vn )

Demand constraints∑
v∈Vt

∑
r∈Rivt

Qcvxvrn + nicn ≥ Dicn, t ∈ T \ {0}, i ∈ NC
t , c ∈ G, n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

Qcvxvrn ≥ Dicnδin, t ∈ T \ {0}, i ∈ NO
t , c ∈ G, n ∈ n(t),

Capacity constraints∑
v∈Vt

∑
r∈Rivt

max
cinG

Qcvxvrn +
∑
c∈G

ncin ≥
∑
c∈G

Ditcs, t ∈ T \ {0}, i ∈ NC
t , n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

max
cinG

Qcvxvrn ≥
∑
c∈G

Dicnδin, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),

Frequency constraints∑
v∈Vt

∑
r∈Rivt

xvrn ≥ Fit, t ∈ T \ {0}, i ∈ NC
t , n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

xvrn ≥ Fitδin, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),
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Time constraints

∑
r∈Rvt

Zrvxvrn ≤ Zv(y
P
vn + hIvn − hOvn − lvn), t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

Optional trades constraints

δi,a(n) ≤ δin, t ∈ T \ {0, 1}, i ∈ NO
t , n ∈ n(t),

Pool constraints

yPvn = yPv,a(n) − ySCv,a(n) + ySHv,a(n) − ySEv,a(n), t ∈ T \ {0} v ∈ Vt \ V N
t , n ∈ n(t),

yPvn = Y NB
vt , t ∈ T : t < T̄L, v ∈ V N

t , n ∈ n(t),

yPvn = yNB
v,a(a(n)), t ∈ T : t ≥ T̄L, v ∈ V N

t , n ∈ n(t),

yPv0 = Y IP
v , v ∈ V0,

yPvn = ySCv,a(n), t ∈ T \ 0, v ∈ Vt \ v ∈ Vt+1, n ∈ n(t),

lvn − hIvn + hOvn ≤ yPvn, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

Charters and second hand market constraints

ySHvn ≤ SHvn, t ∈ T, v ∈ Vt,

ySEvn ≤ SEvn, t ∈ T, v ∈ Vt, n ∈ n(t),

hIvn ≤ CIvn, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

hOvn ≤ COvn, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),∑
v∈Vt\V N

t

ySHvn ≤ SHn, t ∈ T, n ∈ n(t),

∑
v∈Vt\V N

t

ySEvn ≤ SEn, t ∈ T, n ∈ n(t),

114



A.1. ProfitMax Formulations

∑
v∈Vt\V N

t

hIvn ≤ CIn, t ∈ T \ {0}, n ∈ n(t),

∑
v∈Vt\V N

t

hOvn ≤ COn, t ∈ T \ {0}, n ∈ n(t),

Convexity and integer constraints

yNB
vn ∈ Z+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , n ∈ n(t),

ySCvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ySEvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ySHvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

yPvn ∈ R+, t ∈ T v ∈ Vt, n ∈ n(t),

lvn ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

hIvn ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

hOvn ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

xvrn ∈ R+, t ∈ T \ {0}, r ∈ Rvt, v ∈ Vt, n ∈ n(t).
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A.1.3 ROCEMax scenario formulations

Sets

T set of periods, indexed by t, final period T̄

S set of scenarios, indexed by s

Vt = {0 ≤ Avt ≤ Ā} set of ship types existing in the marked in period

t, indexed by v

NC
t set of mandatory trades (where there are contractual obligations)

operated in period t, indexed by i

NO
t set of optional trades (where there are no contractual obligations)

in period t, indexed by i

Nt set of all trades in period t, indexed by i

Rt set of loops in period t, indexed by r

Rvt ⊆ Rt set of loops which can be sailed by a ship of type v in period t,

indexed by r

Rivt set of loops servicing trade i which can be sailed by a ship of type

v in period t, indexed by r

D̄ set of decisions for building, scrapping, selling and buying ships,

indexed by j

G set of cargo types, indexed byc

Parameters

T̄ L lead time for new buildings

Ps probability of scenario s occurring

Ā lifetime of a generic ship

Avt age of a ship of type v in period t

CNB
vts building cost of a ship of type v in period t under scenario s

CSH
vt cost of a ship of type v in period t in the second-hand market

COP
vts fixed operating cost for ship of type v in period t under scenario s
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CTR
vrts cost of performing a loop r for ship of type v in period t under

scenario s

CSP
its cost of voyage charter on trade i in period t under scenario s

CCI
vts cost of chartering in a ship of type v in period t under scenario s

RLU
vts lay up savings for one period t for a ship of type v under scenario s

RCO
vts charter out revenue for one period t for a ship of type v under

scenario s

RSC
vts scrapping revenue for a ship of type v in period t under scenario s

RSH
vts revenue from selling a ship of type v in period t under scenario s in

the second-hand market

RSV
vs sunset value for a ship of type v under scenario s

Fit frequency requirement for trade i in period t

Zrv total time it takes for a ship of type v to perform loop r

Zv total available time for a ship of type v in one period

Qcv total capacity for a ship of type v

CIvts limit on number of available ships for chartering in of type v in

period t under scenario s

COvts limit on number of possible ships for chartering out of type v in

period t under scenario s

SHvts limit on number of available ships in the second hand market of

type v in period t under scenario s

SEvts limit on number of possible ships that can be sold in the second

hand market out of type v in period t under scenario s

CI ts limit of total number of ships that can be chartered in in period t

under scenario s

COts limit of total number of ships that can be chartered out in period t

under scenario s

SH ts limit of total number of ships that can be bought in the second

hand market in period t under scenario s
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SEts limit of total number of ships that can be sold in the second hand

market in period t under scenario s

Dits agreed amount of cargo to be transported on trade i in period t

under scenario s

Y IP
v initial pool of ship type v

Y NB
vt new ships of type v ordered in the sunk period, to be delivered in

period t

Variables

yNB
vts number of new buildings ordered in period t under scenario s of

ship type v

ySCvts number of ships scrapped in period t under scenario s of type v

ySHvts number of ships bought in the second-hand market in period t under

scenario s of type v

ySEvts number of ships sold in the second-hand market in period t under

scenario s of type v

yPvts number of ships in the pool at the end of period t under scenario s

xvrts number of loops r performed by ships of type v in period t under

scenario s

lvts number of ships of type v on lay up for period t under scenario s

hIvts number of ships of type v chartered in in period t under scenario s

hOvts number of ships of type v chartered out in period t under scenario

s

nits units of goods space chartered in on trade i in time t under scenario

s

δits binary variable, 1 if optional trade i is serviced in node n
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Anti Symmetry formulation

Objective function

maxz =
∑
s∈S

Ps

( ∑
t∈T\{0}

( ∑
i∈NO

t

∑
c∈G

RD
itsDicts

¯δits

+
∑
i∈NC

t

∑
c∈G

(RD
itsDictsw − CSP

ictsn̄icts)−
∑
v∈Vt

(COP
vts ȳ

P
vts

+ CCO
vts h̄

I
vts −RCO

vt h̄
O
vts

+
∑

r∈Rvts

CTR
vrnx̄vrn −RLU

vts l̄vts)
)

+
∑

n∈n(T̄ )

∑
v∈VT̄

RSV
vts ȳ

P
vts

−
∑

t∈T,t≤T̄−TL

∑
n∈n(t)

∑
v∈V N

t+TL

CNB
vts

∑
j∈D̄

ȳNB
vtsj

+
∑
t∈T

∑
n∈n(t)

∑
v∈Vt

RSC
vts

∑
j∈D̄

ȳSCvtsj

+RSH
vts

∑
j∈D̄

ȳSEvts − CSH
vts

∑
j∈D̄

ȳSHvts

)

Demand constraints∑
v∈Vt

∑
r∈Rivt

Qcvx̄vrts + n̄icts ≥ Dictsw, t ∈ T \ {0}, i ∈ NC
t , c ∈ G, s ∈ S,∑

v∈Vt

∑
r∈Rivt

Qcvx̄vrts ≥ Ditsδ̄icts, t ∈ T \ {0}, i ∈ NO
t , c ∈ G, s ∈ S,

Capacity constraints∑
v∈Vt

∑
r∈Rivt

max
cinC

Qcvxvrts +
∑
c∈G

ncin ≥
∑
c∈G

Dicts, t ∈ T \ {0}, i ∈ NC
t , s ∈ S,

∑
v∈Vt

∑
r∈Rivt

max
cinC

Qcvxvrts ≥
∑
c∈C

Ditcsδits, t ∈ T \ {0}, i ∈ NO
t , s ∈ S,
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Frequency constraints

∑
v∈Vt

∑
r∈Rivt

x̄vrts ≥ Fitw, t ∈ T \ {0}, i ∈ NC
t , s ∈ S,∑

v∈Vt

∑
r∈Rivt

x̄vrts ≥ Fitδ̄its, t ∈ T \ {0}, i ∈ NO
t , s ∈ S,

Time constraints

∑
r∈Rvt

Zrvx̄vrn ≤ Zv(ȳ
P
vts + h̄Ivts − h̄Ovts − l̄vts), t ∈ T \ {0}, v ∈ Vt, s ∈ S,

Optional trades constraints

δi,a(n) ≤ δits, t ∈ T \ {0, 1}, i ∈ NO
t , s ∈ S,

Pool constraints

ȳPvts = ȳPv,t−1 −
∑
j∈D̄

(ȳSCv,t−1,j − ȳSHv,t−1,j + ȳSEv,t−1,j), t ∈ T \ {0} v ∈ Vt \ V N
t , s ∈ S,

ȳPvts = Y NB
vt , t ∈ T : t < T̄L, v ∈ V N

t , s ∈ S

ȳPvts =
∑
j∈D̄

ȳNB
v,t−TL,j, t ∈ T : t ≥ T̄L, v ∈ V N

t+TL , s ∈ S,

ȳPv0s = Y IP
v w, v ∈ V0, s ∈ S,

ȳPvts =
∑
j∈D̄

ȳSCv,t−1,j, t ∈ T \ 0, v ∈ Vt \ v ∈ Vt+1, s ∈ S,

l̄vts − h̄Ivts + h̄Ovts ≤ ȳPvts, t ∈ T \ {0}, v ∈ Vt, s ∈ S,
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Charters and second hand market constraints∑
j∈D̄

ȳSHvtsj ≤ SHvtsw, t ∈ T, v ∈ Vt,

∑
j∈D̄

ȳSEvtsj ≤ SEvtsw, t ∈ T, v ∈ Vt,

h̄Ivts ≤ CIvtsw, t ∈ T \ {0}, v ∈ Vt,

h̄Ovts ≤ COvtsw, t ∈ T \ {0}, v ∈ Vt,∑
v∈Vt\V N

t

∑
j∈D̄

ySHvtsj ≤ SHn, t ∈ T, s ∈ S,

∑
v∈Vt\V N

t

∑
j∈D̄

ySEvtsj ≤ SEn, t ∈ T, s ∈ S,

∑
v∈Vt\V N

t

hIvts ≤ CIn, t ∈ T \ {0}, s ∈ S,

∑
v∈Vt\V N

t

hOvts ≤ COn, t ∈ T \ {0}, s ∈ S,

Linearization of binary variables constraints

w − δ̄Oits + δOits ≤ 1, t ∈ T \ {0}, i ∈ Nt, s ∈ S,

δ̄Oits − w ≤ 0, t ∈ T \ {0}, i ∈ Nt, s ∈ S,

δ̄Oits − δOits ≤ 0, t ∈ T \ {0}, i ∈ Nt, s ∈ S,

w − ȳNB
vtsj + yNB

vtsj ≤ 1, t ∈ T : t ≤ T̄ − TL, v ∈ V N
t+TL , i ∈ Nt, s ∈ S, j ∈ D,

ȳNB
vtsj − w ≤ 0, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , i ∈ Nt, s ∈ S, j ∈ D,

ȳNB
vtsj − yNB

vtsj ≤ 0, t ∈ T : t ≤ T̄ − TL, v ∈ V N
t+TL , i ∈ Nt, s ∈ S, j ∈ D,

w − ȳSCvtsj + ySCvtsj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSCvtsj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSCvtsj − ySCvtsj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

w − ȳSHvtsj + ySHvtsj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,
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ȳSHvtsj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSHvtsj − ySHvtsj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

w − ȳSEvtsj + ySEvtsj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSEvtsj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSEvtsj − ySEvtsj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D

Anti symmetry constraints

ȳNB
vtsj ≤ ȳNB

vts,j−1, t ∈ T, v ∈ Vt, s ∈ S, , jinD̄ \ {1},

ȳSCvtsj ≤ ȳSCvts,j−1, t ∈ T, v ∈ Vt, s ∈ S, , jinD̄ \ {1},

ȳSHvtsj ≤ ȳSHvts,j−1, t ∈ T, v ∈ Vt, s ∈ S, , jinD̄ \ {1},

ȳSEvtsj ≤ ȳSEvts,j−1, t ∈ T, v ∈ Vt, s ∈ S, , jinD̄ \ {1},

Linearization of integer variables

yNB
vts =

∑
j∈D̄

yNB
vtsj, t ∈ T, v ∈ Vt, s ∈ S,

ySCvts =
∑
j∈D̄

ySCvtsj, t ∈ T, v ∈ Vt, s ∈ S,

ySHvts =
∑
j∈D̄

ySHvtsj, t ∈ T, v ∈ Vt, s ∈ S,

ySEvts =
∑
j∈D̄

ySEvtsj, t ∈ T, v ∈ Vt, s ∈ S,

Linearization constraints∑
t∈T

(βtCEI)w +
∑
t∈T

∑
v∈Vt

∑
t̄∈T,t̄<(T−t)

β t̄(CNB
vts

∑
j∈D̄

ȳNB
vtsj

+RSC
vt

∑
j∈D̄

ȳSCvtsj + CSH
vts

∑
j∈D̄

ȳSHvtsj +RSE
vt

∑
j∈D̄

ȳSEvtsj) = T̄ + 1
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Non-anticipativity constraints

ySCvtsj = ySCvts̄j, t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts , j ∈ D̄

yNB
vtsj = yNB

vts̄j, t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts , j ∈ D̄

ySHvtsj = ySHvts̄j, t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts , j ∈ D̄

ySEvtsj = ySEvts̄j, t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts , j ∈ D̄

Convexity and integer constraints

yNB
vts ∈ Z+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , s ∈ S,

ySCvts ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ySHvts ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ySEvts ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

yNB
vtsj ∈ {0, 1}, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , s ∈ S,

ySCvtsj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ySHvtsj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ySEvtsj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

δOits ∈ {0, 1}, t ∈ T \ {T̄} i ∈ NO
t , s ∈ S,

δ̄Oits ∈ R+, t ∈ T \ {T̄} i ∈ NO
t , s ∈ S,

ȳNB
vtsj ∈ R+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , s ∈ S,

ȳSCvtsj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ȳSHvtsj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ȳSEvtsj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

yPvts ∈ R+, t ∈ T v ∈ Vt, s ∈ S,

lvts ∈ R+, t ∈ T \ {0}, v ∈ Vt, s ∈ S,

hIvt ∈ R+, t ∈ T \ {0}, v ∈ Vt, s ∈ S,

hOvt ∈ R+, t ∈ T \ {0}, v ∈ Vt, s ∈ S,

xvrts ∈ R+, t ∈ T \ {0}, r ∈ Rvt, v ∈ Vt, s ∈ S,
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w ∈ R+.
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SOS1 formulation

Objective function

maxz =
∑
s∈S

Ps

( ∑
t∈T\{0}

( ∑
i∈NO

t

∑
c∈G

RD
itsDicts

¯δits

+
∑
i∈NC

t

∑
c∈G

(RD
itsDictsw − CSP

ictsn̄icts)−
∑
v∈Vt

(COP
vts ȳ

P
vts

+ CCO
vts h̄

I
vts −RCO

vt h̄
O
vts

+
∑

r∈Rvts

CTR
vrnx̄vrn −RLU

vts l̄vts)
)

+
∑

n∈n(T̄ )

∑
v∈VT̄

RSV
vts ȳ

P
vts

−
∑

t∈T,t≤T̄−TL

∑
n∈n(t)

∑
v∈V N

t+TL

CNB
vts

∑
j∈D̄

jȳNB
vtsj

+
∑
t∈T

∑
n∈n(t)

∑
v∈Vt

RSC
vts

∑
j∈D̄

jȳSCvtsj

+RSH
vts

∑
j∈D̄

jȳSEvts − CSH
vts

∑
j∈D̄

jȳSHvts

)

Demand constraints∑
v∈Vt

∑
r∈Rivt

Qcvx̄vrn + n̄icts ≥ Dictsw, t ∈ T \ {0}, i ∈ NC
t , c ∈ G, n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

Qcvx̄vrn ≥ Ditsδ̄icts, t ∈ T \ {0}, i ∈ NO
t , c ∈ G, n ∈ n(t),

Capacity constraints∑
v∈Vt

∑
r∈Rivt

max
cinC

Qcvxvrn +
∑
c∈G

ncin ≥
∑
c∈G

Dicts, t ∈ T \ {0}, i ∈ NC
t , n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

max
cinC

Qcvxvrn ≥
∑
c∈C

Ditcsδits, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),
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Frequency constraints

∑
v∈Vt

∑
r∈Rivt

x̄vrn ≥ Fitw, t ∈ T \ {0}, i ∈ NC
t , n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

x̄vrn ≥ Fitδ̄its, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),

Time constraints

∑
r∈Rvt

Zrvx̄vrn ≤ Zv(ȳ
P
vts + h̄Ivts − h̄Ovts − l̄vts), t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

Optional trades constraints

δi,a(n) ≤ δits, t ∈ T \ {0, 1}, i ∈ NO
t , s ∈ S,

Pool constraints

ȳPvts = ȳPv,t−1 −
∑
j∈D̄

(jȳSCv,t−1,j − jȳSHv,t−1,j + jȳSEv,t−1,j), t ∈ T \ {0} v ∈ Vt \ V N
t , s ∈ S,

ȳPvts = Y NB
vt , t ∈ T : t < T̄L, v ∈ V N

t , s ∈ S

ȳPvts =
∑
j∈D̄

jȳNB
v,t−TL,j, t ∈ T : t ≥ T̄L, v ∈ V N

t+TL , s ∈ S,

ȳPv0s = Y IP
v w, v ∈ V0, s ∈ S,

ȳPvts =
∑
j∈D̄

jȳSCvtj , t ∈ T \ 0, v ∈ Vt \ v ∈ Vt+1, s ∈ S,

l̄vts − h̄Ivts + h̄Ovts ≤ ȳPvts, t ∈ T \ {0}, v ∈ Vt, s ∈ S,
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Charters and second hand market constraints∑
j∈D̄

jȳSHvtsj ≤ SHvtsw, t ∈ T, v ∈ Vt,

∑
j∈D̄

jȳSEvtsj ≤ SEvtsw, t ∈ T, v ∈ Vt,

∑
j∈D̄

jh̄Ivtsj ≤ CIvtsw, t ∈ T \ {0}, v ∈ Vt,

h̄Ovtsj ≤ COvtsw, t ∈ T \ {0}, v ∈ Vt,∑
v∈Vt\V N

t

∑
j∈D̄

jySHvtsj ≤ SHn, t ∈ T, s ∈ S,

∑
v∈Vt\V N

t

∑
j∈D̄

jySEvtsj ≤ SEn, t ∈ T, s ∈ S,

∑
v∈Vt\V N

t

hIvts ≤ CIn, t ∈ T \ {0}, s ∈ S,

∑
v∈Vt\V N

t

hOvts ≤ COn, t ∈ T \ {0}, s ∈ S,

Linearization of binary variables constraints

w − δ̄Oits + δOits ≤ 1, t ∈ T \ {0}, ii ∈ NO
t , s ∈ S,

δ̄Oits − w ≤ 0, t ∈ T \ {0}, i ∈ NO
t , s ∈ S,

δ̄Oits − δOits ≤ 0, t ∈ T \ {0}, i ∈ NO
t , s ∈ S,

w − ȳNB
vtsj + yNB

vtsj ≤ 1, t ∈ T : t ≤ T̄ − TL, v ∈ V N
t+TL , i ∈ Nt, s ∈ S, j ∈ D,

ȳNB
vtsj − w ≤ 0, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , i ∈ Nt, s ∈ S, j ∈ D,

ȳNB
vtsj − yNB

vtsj ≤ 0, t ∈ T : t ≤ T̄ − TL, v ∈ V N
t+TL , i ∈ Nt, s ∈ S, j ∈ D,

w − ȳSCvtsj + ySCvtsj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSCvtsj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSCvtsj − ySCvtsj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,
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w − ȳSHvtsj + ySHvtsj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSHvtsj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSHvtsj − ySHvtsj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

w − ȳSEvtsj + ySEvtsj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSEvtsj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSEvtsj − ySEvtsj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D

Linearization of integer variables

yNB
vts =

∑
j∈D̄

jyNB
vtsj, t ∈ T, v ∈ Vt, s ∈ S,

ySCvts =
∑
j∈D̄

jySCvtsj, t ∈ T, v ∈ Vt, s ∈ S,

ySHvts =
∑
j∈D̄

jySHvtsj, t ∈ T, v ∈ Vt, s ∈ S,

ySEvts =
∑
j∈D̄

jySEvtsj, t ∈ T, v ∈ Vt, s ∈ S,

Non-anticipativity constraints

ySCvtsj = ySCvts̄j, t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts , j ∈ D̄

yNB
vtsj = yNB

vts̄j, t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts , j ∈ D̄

ySHvtsj = ySHvts̄j, t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts , j ∈ D̄

ySEvtsj = ySEvts̄j, t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts , j ∈ D̄

Linearization constraints∑
t∈T

(βtCEI)w +
∑
t∈T

∑
v∈Vt

∑
t̄∈T,t̄<(T−t)

β t̄(CNB
vts

∑
j∈D̄

ȳNB
vtsj

+RSC
vt

∑
j∈D̄

ȳSCvtsj + CSH
vts

∑
j∈D̄

ȳSHvtsj +RSE
vt

∑
j∈D̄

ȳSEvtsj) = T̄ + 1
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Convexity and integer constraints

yNB
vts ∈ Z+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , s ∈ S,

yNB
vts ∈ Z+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , s ∈ S,

ySCvts ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ySHvts ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ySEvts ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

yNB
vtsj ∈ {0, 1}, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , s ∈ S,

ySCvtsj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ySHvtsj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ySEvtsj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

jyNB
vtsj is SOS1 for j, , t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

jySCvtsj is SOS1 for j, , t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

jySHvtsj is SOS1 for j, , t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

jySEvtsj is SOS1 for j, , t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

δOits ∈ {0, 1}, t ∈ T \ {T̄} i ∈ NO
t , s ∈ S,

δ̄Oits ∈ R+, t ∈ T \ {T̄} i ∈ NO
t , s ∈ S,

ȳNB
vtsj ∈ R+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , s ∈ S,

ȳSCvtsj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ȳSHvtsj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ȳSEvtsj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

yPvts ∈ R+, t ∈ T v ∈ Vt, s ∈ S,

lvts ∈ R+, t ∈ T \ {0}, v ∈ Vt, s ∈ S,

hIvt ∈ R+, t ∈ T \ {0}, v ∈ Vt, s ∈ S,

hOvt ∈ R+, t ∈ T \ {0}, v ∈ Vt, s ∈ S,

xvrts ∈ R+, t ∈ T \ {0}, r ∈ Rvt, v ∈ Vt, s ∈ S,
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w ∈ R+.
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Power Formulation

Objective function

maxz =
∑
s∈S

Ps

( ∑
t∈T\{0}

( ∑
i∈NO

t

∑
c∈G

RD
itsDicts

¯δits

+
∑
i∈NC

t

∑
c∈G

(RD
itsDictsw − CSP

ictsn̄icts)−
∑
v∈Vt

(COP
vts ȳ

P
vts

+ CCO
vts h̄

I
vts −RCO

vt h̄
O
vts

+
∑

r∈Rvts

CTR
vrnx̄vrn −RLU

vts l̄vts)
)

+
∑

n∈n(T̄ )

∑
v∈VT̄

RSV
vts ȳ

P
vts

−
∑

t∈T,t≤T̄−TL

∑
n∈n(t)

∑
v∈V N

t+TL

CNB
vts

∑
j∈D̄

2j ȳNB
vtsj

+
∑
t∈T

∑
n∈n(t)

∑
v∈Vt

RSC
vts

∑
j∈D̄

2j ȳSCvtsj

+RSH
vts

∑
j∈D̄

2j ȳSEvts − CSH
vts

∑
j∈D̄

2j ȳSHvts

)

Demand constraints∑
v∈Vt

∑
r∈Rivt

Qcvx̄vrn + n̄icts ≥ Dictsw, t ∈ T \ {0}, i ∈ NC
t , c ∈ G, n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

Qcvx̄vrn ≥ Ditsδ̄icts, t ∈ T \ {0}, i ∈ NO
t , c ∈ G, n ∈ n(t),

Capacity constraints∑
v∈Vt

∑
r∈Rivt

max
cinC

Qcvxvrn +
∑
c∈G

ncin ≥
∑
c∈G

Dicts, t ∈ T \ {0}, i ∈ NC
t , n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

max
cinC

Qcvxvrn ≥
∑
c∈C

Ditcsδits, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),
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Frequency constraints

∑
v∈Vt

∑
r∈Rivt

x̄vrn ≥ Fitw, t ∈ T \ {0}, i ∈ NC
t , n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

x̄vrn ≥ Fitδ̄its, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),

Time constraints

∑
r∈Rvt

Zrvx̄vrn ≤ Zv(ȳ
P
vts + h̄Ivts − h̄Ovts − l̄vts), t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

Optional trades constraints

δi,a(n) ≤ δits, t ∈ T \ {0, 1}, i ∈ NO
t , s ∈ S,

Pool constraints

ȳPvts = ȳPv,t−1 −
∑
j∈D̄

(2j ȳSCv,t−1,j − 2j ȳSHv,t−1,j + 2j ȳSEv,t−1,j), t ∈ T \ {0} v ∈ Vt \ V N
t , s ∈ S,

ȳPvts = Y NB
vt w, t ∈ T : t < T̄L, v ∈ V N

t , s ∈ S

ȳPvts =
∑
j∈D̄

2j ȳNB
v,t−TL,j, t ∈ T : t ≥ T̄L, v ∈ V N

t+TL , s ∈ S,

ȳPv0s = Y IP
v w, v ∈ V0, s ∈ S,

ȳPvts =
∑
j∈D̄

2j ȳSCv,t−1,j, t ∈ T \ 0, v ∈ Vt \ v ∈ Vt+1, s ∈ S,

l̄vts − h̄Ivts + h̄Ovts ≤ ȳPvts, t ∈ T \ {0}, v ∈ Vt, s ∈ S,
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Charters and second hand market constraints

ȳSHvts ≤ SHvtsw, t ∈ T, v ∈ Vt,

ȳSEvts ≤ SEvtsw, t ∈ T, v ∈ Vt,

h̄Ivts ≤ CIvtsw, t ∈ T \ {0}, v ∈ Vt,

h̄Ovts ≤ COvtsw, t ∈ T \ {0}, v ∈ Vt,∑
v∈Vt\V N

t

ySHvts ≤ SHn, t ∈ T, s ∈ S,

∑
v∈Vt\V N

t

ySEvts ≤ SEn, t ∈ T, s ∈ S,

∑
v∈Vt\V N

t

hIvts ≤ CIn, t ∈ T \ {0}, s ∈ S,

∑
v∈Vt\V N

t

hOvts ≤ COn, t ∈ T \ {0}, s ∈ S,

Linearization of binary variables constraints

w − δ̄Oits + δOits ≤ 1, t ∈ T \ {0}, i ∈ NO
t , s ∈ S,

δ̄Oits − w ≤ 0, t ∈ T \ {0}, i ∈ NO
t , s ∈ S,

δ̄Oits − δOits ≤ 0, t ∈ T \ {0}, i ∈ NO
t , s ∈ S,

w − ȳNB
vtsj + yNB

vtsj ≤ 1, t ∈ T : t ≤ T̄ − TL, v ∈ V N
t+TL , i ∈ Nt, s ∈ S, j ∈ D,

ȳNB
vtsj − w ≤ 0, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , i ∈ Nt, s ∈ S, j ∈ D,

ȳNB
vtsj − yNB

vtsj ≤ 0, t ∈ T : t ≤ T̄ − TL, v ∈ V N
t+TL , i ∈ Nt, s ∈ S, j ∈ D,

w − ȳSCvtsj + ySCvtsj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSCvtsj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSCvtsj − ySCvtsj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

w − ȳSHvtsj + ySHvtsj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSHvtsj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,
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ȳSHvtsj − ySHvtsj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

w − ȳSEvtsj + ySEvtsj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSEvtsj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSEvtsj − ySEvtsj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D

Linearization of integer variables

yNB
vts =

∑
j∈D̄

2jyNB
vtsj, t ∈ T, v ∈ Vt, s ∈ S,

ySCvts =
∑
j∈D̄

2jySCvtsj, t ∈ T, v ∈ Vt, s ∈ S,

ySHvts =
∑
j∈D̄

2jySHvtsj, t ∈ T, v ∈ Vt, s ∈ S,

ySEvts =
∑
j∈D̄

2jySEvtsj, t ∈ T, v ∈ Vt, s ∈ S,

Non-anticipativity constraints

ySCvtsj = ySCvts̄j, t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts , j ∈ D̄

yNB
vtsj = yNB

vts̄j, t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts , j ∈ D̄

ySHvtsj = ySHvts̄j, t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts , j ∈ D̄

ySEvtsj = ySEvts̄j, t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts , j ∈ D̄

Linearization constraints∑
t∈T

(βtCEI)w +
∑
t∈T

∑
v∈Vt

∑
t̄∈T,t̄<(T−t)

β t̄(CNB
vts

∑
j∈D̄

2j ȳNB
vtsj

+RSC
vt

∑
j∈D̄

2j ȳSCvtsj + CSH
vts

∑
j∈D̄

2j ȳSHvtsj +RSE
vt

∑
j∈D̄

2j ȳSEvtsj) = T̄ + 1
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Convexity and integer constraints

yNB
vts ∈ Z+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , s ∈ S,

ySCvts ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ySHvts ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ySEvts ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

yNB
vtsj ∈ {0, 1}, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , s ∈ S,

ySCvtsj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ySHvtsj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ySEvtsj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

δOits ∈ {0, 1}, t ∈ T \ {T̄} i ∈ NO
t , s ∈ S,

δ̄Oits ∈ R+, t ∈ T \ {T̄} i ∈ NO
t , s ∈ S,

ȳNB
vtsj ∈ R+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , s ∈ S,

ȳSCvtsj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ȳSHvtsj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ȳSEvtsj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

yPvts ∈ R+, t ∈ T v ∈ Vt, s ∈ S,

lvts ∈ R+, t ∈ T \ {0}, v ∈ Vt, s ∈ S,

hIvt ∈ R+, t ∈ T \ {0}, v ∈ Vt, s ∈ S,

hOvt ∈ R+, t ∈ T \ {0}, v ∈ Vt, s ∈ S,

xvrts ∈ R+, t ∈ T \ {0}, r ∈ Rvt, v ∈ Vt, s ∈ S,

w ∈ R+.
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Pattern Formulation

Objective function

maxz =
∑
s∈S

Ps

( ∑
t∈T\{0}

( ∑
i∈NO

t

∑
c∈G

RD
itsDicts

¯δits

+
∑
i∈NC

t

∑
c∈G

(RD
itsDictsw − CSP

ictsn̄icts)−
∑
v∈Vt

(COP
vts ȳ

P
vts

+ CCO
vts h̄

I
vts −RCO

vt h̄
O
vts

+
∑

r∈Rvts

CTR
vrnx̄vrn −RLU

vts l̄vts)
)

+
∑

n∈n(T̄ )

∑
v∈VT̄

RSV
vts ȳ

P
vts

−
∑

t∈T,t≤T̄−TL

∑
n∈n(t)

∑
v∈V N

t+TL

CNB
vts

∑
p∈PP

PO
vpp̄

P
tsp

+
∑
t∈T

∑
n∈n(t)

∑
v∈Vt

RSC
vts

∑
j∈D̄

ȳSCvtsj

+RSH
vts

∑
j∈D̄

ȳSEvts − CSH
vts

∑
j∈D̄

ȳSHvts

)

Demand constraints∑
v∈Vt

∑
r∈Rivt

Qcvx̄vrn + n̄icts ≥ Dictsw, t ∈ T \ {0}, i ∈ NC
t , c ∈ G, n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

Qcvx̄vrn ≥ Ditsδ̄icts, t ∈ T \ {0}, i ∈ NO
t , c ∈ G, n ∈ n(t),

Capacity constraints∑
v∈Vt

∑
r∈Rivt

max
cinC

Qcvxvrn +
∑
c∈G

ncin ≥
∑
c∈G

Dicts, t ∈ T \ {0}, i ∈ NC
t , n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

max
cinC

Qcvxvrn ≥
∑
c∈C

Ditcsδits, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),
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Frequency constraints

∑
v∈Vt

∑
r∈Rivt

x̄vrn ≥ Fitw, t ∈ T \ {0}, i ∈ NC
t , n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

x̄vrn ≥ Fitδ̄its, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),

Time constraints

∑
r∈Rvt

Zrvx̄vrn ≤ Zv(ȳ
P
vts + h̄Ivts − h̄Ovts − l̄vts), t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

Optional trades constraints

δi,a(n) ≤ δits, t ∈ T \ {0, 1}, i ∈ NO
t , s ∈ S,

Pool constraints

ȳPvts = ȳPv,t−1 −
∑
j∈D̄

(ȳSCv,t−1,j − ȳSHv,t−1,j + ȳSEv,t−1,j), t ∈ T \ {0} v ∈ Vt \ V N
t , s ∈ S,

ȳPvts = Y NB
vt w, t ∈ T : t < T̄L, v ∈ V N

t , s ∈ S

ȳPvts =
∑
p∈PP

PO
vpp̄

P
t−1,s,p, t ∈ T : t ≥ T̄L, v ∈ V N

t+TL , s ∈ S,

ȳPv0s = Y IP
v w, v ∈ V0, s ∈ S,

ȳPvts =
∑
j∈D̄

ȳSCv,t−1,j, t ∈ T \ 0, v ∈ Vt \ v ∈ Vt+1, s ∈ S,

l̄vts − h̄Ivts + h̄Ovts ≤ ȳPvts, t ∈ T \ {0}, v ∈ Vt, s ∈ S,
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Charters and second hand market constraints

ȳSHvts ≤ SHvtsw, t ∈ T, v ∈ Vt,

ȳSEvts ≤ SEvtsw, t ∈ T, v ∈ Vt,

h̄Ivts ≤ CIvtsw, t ∈ T \ {0}, v ∈ Vt,

h̄Ovts ≤ COvtsw, t ∈ T \ {0}, v ∈ Vt,∑
v∈Vt\V N

t

ySHvts ≤ SHn, t ∈ T, s ∈ S,

∑
v∈Vt\V N

t

ySEvts ≤ SEn, t ∈ T, s ∈ S,

∑
v∈Vt\V N

t

hIvts ≤ CIn, t ∈ T \ {0}, s ∈ S,

∑
v∈Vt\V N

t

hOvts ≤ COn, t ∈ T \ {0}, s ∈ S,

Linearization of binary variables constraints

w − δ̄Oits + δOits ≤ 1, t ∈ T \ {0}, i ∈ NO
t , s ∈ S,

δ̄Oits − w ≤ 0, t ∈ T \ {0}, i ∈ NO
t , s ∈ S,

δ̄Oits − δOits ≤ 0, t ∈ T \ {0}, i ∈ NO
t , s ∈ S,

w − p̄Ptsp + pPtsp ≤ 1, t ∈ T, s ∈ S, p ∈ PO,

p̄Ptsp − w ≤ 0, t ∈ T, s ∈ S, p ∈ PO,

p̄Ptsp − pPtsp ≤ 0, tt ∈ T, s ∈ S, p ∈ PO,

w − ȳSCvtsj + ySCvtsj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSCvtsj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSCvtsj − ySCvtsj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

w − ȳSHvtsj + ySHvtsj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSHvtsj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,
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ȳSHvtsj − ySHvtsj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

w − ȳSEvtsj + ySEvtsj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSEvtsj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D,

ȳSEvtsj − ySEvtsj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, s ∈ S, j ∈ D

Transformation of patterns to new buildings constraints

yNB
vts =

∑
p∈PP

PO
vpp

P
tsp, t ∈ T, v ∈ V N

t , s ∈ S, (A.1)

∑
p∈PP

pPtsp = 1, t ∈ T, s ∈ S. (A.2)

Non-anticipativity constraints

ySCvtsj = ySCvts̄j, t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts , j ∈ D̄

yNB
vtsj = yNB

vts̄j, t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts , j ∈ D̄

ySHvtsj = ySHvts̄j, t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts , j ∈ D̄

ySEvtsj = ySEvts̄j, t ∈ T, v ∈ Vt, s ∈ S, s̄ ∈ SNA
ts , j ∈ D̄

Linearization constraints∑
t∈T

(βtCEI)w +
∑
t∈T

∑
v∈Vt

∑
t̄∈T,t̄<(T−t)

β t̄(CNB
vts

∑
p∈PP

PO
vpp̄

P
tsp

+RSC
vt

∑
j∈D̄

ȳSCvtsj + CSH
vts

∑
j∈D̄

ȳSHvtsj +RSE
vt

∑
j∈D̄

ȳSEvtsj) = T̄ + 1

Convexity and integer constraints

yNB
vts ∈ Z+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , s ∈ S,

ySCvts ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ySHvts ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ySEvts ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,
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yNB
vtsj ∈ {0, 1}, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , s ∈ S,

ySCvtsj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ySHvtsj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ySEvtsj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

δOits ∈ {0, 1}, t ∈ T \ {T̄} i ∈ NO
t , s ∈ S,

δ̄Oits ∈ R+, t ∈ T \ {T̄} i ∈ NO
t , s ∈ S,

ȳNB
vtsj ∈ R+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , s ∈ S,

ȳSCvtsj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ȳSHvtsj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

ȳSEvtsj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, s ∈ S,

yPvts ∈ R+, t ∈ T v ∈ Vt, s ∈ S,

lvts ∈ R+, t ∈ T \ {0}, v ∈ Vt, s ∈ S,

hIvt ∈ R+, t ∈ T \ {0}, v ∈ Vt, s ∈ S,

hOvt ∈ R+, t ∈ T \ {0}, v ∈ Vt, s ∈ S,

xvrts ∈ R+, t ∈ T \ {0}, r ∈ Rvt, v ∈ Vt, s ∈ S,

p̄Ptsp ∈ R+, t ∈ T \ {T̄} p ∈ PO, s ∈ S,

pPtsp ∈ {0, 1}, t ∈ T \ {T̄} p ∈ POs ∈ S,

w ∈ R+.
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A.1.4 ROCEMax node formulation

Sets

T set of periods, indexed by t, final period T̄

N set of nodes in the scenario tree, indexed by n

Vt = {0 ≤ Avt ≤ Ā} set of ship types existing in the marked in period

t, indexed by v

NC
t set of mandatory trades (where there are contractual obligations)

operated in period t, indexed by i

NO
t set of optional trades (where there are no contractual obligations)

in period t, indexed by i

Nt set of all trades in period t, indexed by i

Rt set of loops in period t, indexed by r

Rvt ⊆ Rt set of loops which can be sailed by a ship of type v in period t,

indexed by r

Rivt set of loops servicing trade i which can be sailed by a ship of type

v in period t, indexed by r

D̄ set of decisions for building, scrapping, selling and buying ships,

indexed by j

G set of cargo types, indexed byc

Parameters

T̄ L lead time for new buildings

Pn probability of being in node n

n(t) all nodes n at time t in the scenario tree

a(n, t) all ancestors of node n in the scenario tree in time t, a(n, t) is

written simply as a(n)

Ā lifetime of a generic ship

Avt age of a ship of type v in period t
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CNB
vn building cost of a ship of type v in node n

CSH
vn cost of a ship of type v in node n in the second-hand market

COP
vn fixed operating cost for ship of type v in node n

CTR
vrn cost of performing a loop r for ship of type v in node ns

CSP
in cost of voyage charter on trade i in node n

CCI
vn cost of chartering in a ship of type v in period n

RLU
vn lay up savings for one period t for a ship of type n

RCO
vn charter out revenue for one period t for a ship of type n

RSC
vn scrapping revenue for a ship of type v in period n

RSH
vn revenue from selling a ship of type v in period n in the second-hand

market

RSV
vn sunset value for a ship of type v in node n

Fit frequency requirement for trade i in period t

Zrv total time it takes for a ship of type v to perform loop r

Zv total available time for a ship of type v in one period

Qcv total capacity for a ship of type v

CIvn limit on number of available ships for chartering in of type v in

node n

COvn limit on number of possible ships for chartering out of type v in

node n

SHvn limit on number of available ships in the second hand market of

type v in node n

SEvn limit on number of possible ships that can be sold in the second

hand market out of type v in node n

CIn limit of total number of ships that can be chartered in in node n

COn limit of total number of ships that can be chartered out in node n

SHn limit of total number of ships that can be bought in the second

hand market in node n
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SEn limit of total number of ships that can be sold in the second hand

market in node n

Din agreed amount of cargo to be transported on trade i in node n

Y IP
v initial pool of ship type v

Y NB
vt new ships of type v ordered in the sunk period, to be delivered in

period t

Variables

yNB
vn number of new buildings ordered in node n of ship type v

ySCvn number of ships scrapped in node n of type v

ySHvn number of ships bought in the second-hand market in node n of

type v

ySEvn number of ships sold in the second-hand market in node n of type

v

yPvn number of ships in the pool at the end of the period in node n

xvn number of loops r performed by ships of type v in node n

lvn number of ships of type v on lay up for node n

hIvn number of ships of type v chartered in in node n

hOvn number of ships of type v chartered out in node n

nin units of goods space chartered in on trade i in node n

δin binary variable, 1 if optional trade i is serviced in node n
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Anti Symmetry formulation

Objective function

maxz =
∑

t∈T\{0}

∑
n∈n(t)

Pn

( ∑
i∈NO

t

∑
c∈G

RD
inDicnδ̄in

+
∑
i∈NC

t

∑
c∈G

(RD
inDicnw − CSP

icn n̄icn)−
∑
v∈Vt

(COP
vn ȳ

P
vn

+ CCO
vn h̄

I
vn −RCO

vt h̄
O
vn

+
∑
r∈Rvn

CTR
vrnx̄vrn −RLU

vn l̄vn)
)

+
∑

n∈n(T̄ )

∑
v∈VT̄

RSV
vn ȳ

P
vn

−
∑

t∈T,t≤T̄−TL

∑
n∈n(t)

∑
v∈V N

t+TL

PnC
NB
vn

∑
j∈D̄

ȳNB
vnj

+
∑
t∈T

∑
n∈n(t)

∑
v∈Vt

Pn(RSC
vn

∑
j∈D̄

ȳSCvnj

+RSH
vn

∑
j∈D̄

ȳSEvnj − Cvn

∑
j∈D̄

ȳSHvnj)

Demand constraints∑
v∈Vt

∑
r∈Rivt

Qcvx̄vrn + n̄icts ≥ Dictsw, t ∈ T \ {0}, i ∈ NC
t , c ∈ G, n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

Qcvx̄vrn ≥ Dinδ̄icts, t ∈ T \ {0}, i ∈ NO
t , c ∈ G, n ∈ n(t),

Capacity constraints∑
v∈Vt

∑
r∈Rivt

max
cinC

Qcvxvrn +
∑
c∈G

ncin ≥
∑
c∈G

Dicts, t ∈ T \ {0}, i ∈ NC
t , n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

max
cinC

Qcvxvrn ≥
∑
c∈C

Ditcsδin, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),
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Frequency constraints

∑
v∈Vt

∑
r∈Rivt

x̄vrn ≥ Fitw, t ∈ T \ {0}, i ∈ NC
t , n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

x̄vrn ≥ Fitδ̄in, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),

Time constraints

∑
r∈Rvt

Zrvx̄vrn ≤ Zv(ȳ
P
vn + h̄Ivn − h̄Ovn − l̄vn), t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

Optional trades constraints

δi,a(n) ≤ δin, t ∈ T \ {0, 1}, i ∈ NO
t , n ∈ n(t),

Pool constraints

ȳPvn = ȳPv,t−1 −
∑
j∈D̄

(ȳSCv,t−1,j − ȳSHv,t−1,j + ȳSEv,t−1,j), t ∈ T \ {0} v ∈ Vt \ V N
t , n ∈ n(t),

ȳPvn = Y NB
vt , t ∈ T : t < T̄L, v ∈ V N

t , n ∈ n(t)

ȳPvn =
∑
j∈D̄

ȳNB
v,t−TL,j, t ∈ T : t ≥ T̄L, v ∈ V N

t+TL , n ∈ n(t),

ȳPv0s = Y IP
v w, v ∈ V0, n ∈ n(t),

ȳPvn =
∑
j∈D̄

ȳSCv,t−1,j, t ∈ T \ 0, v ∈ Vt \ v ∈ Vt+1, n ∈ n(t),

l̄vn − h̄Ivn + h̄Ovn ≤ ȳPvn, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),
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Charters and second hand market constraints

ȳSHvn ≤ SHvnw, t ∈ T, v ∈ Vt,

ȳSEvn ≤ SEvnw, t ∈ T, v ∈ Vt,

h̄Ivn ≤ CIvnw, t ∈ T \ {0}, v ∈ Vt,

h̄Ovn ≤ COvnw, t ∈ T \ {0}, v ∈ Vt,∑
v∈Vt\V N

t

ySHvn ≤ SHn, t ∈ T, n ∈ n(t),

∑
v∈Vt\V N

t

ySEvn ≤ SEn, t ∈ T, n ∈ n(t),

∑
v∈Vt\V N

t

hIvn ≤ CIn, t ∈ T \ {0}, n ∈ n(t),

∑
v∈Vt\V N

t

hOvn ≤ COn, t ∈ T \ {0}, n ∈ n(t),

Linearization of binary variables constraints

w − δ̄in + δin ≤ 1, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),

δ̄in − w ≤ 0, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),

δ̄in − δin ≤ 0, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),

w − ȳNB
vnj + yNB

vnj ≤ 1, t ∈ T : t ≤ T̄ − TL, v ∈ V N
t+TLn ∈ n(t), j ∈ D,

ȳNB
vnj − w ≤ 0, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , n ∈ n(t), j ∈ D,

ȳNB
vnj − yNB

vnj ≤ 0, t ∈ T : t ≤ T̄ − TL, v ∈ V N
t+TL , n ∈ n(t), j ∈ D,

w − ȳSCvnj + ySCvnj ≤ 1, t ∈ T, v ∈ Vt, n ∈ n(t), j ∈ D,

ȳSCvnj − w ≤ 0, t ∈ T, v ∈ Vt, n ∈ n(t), j ∈ D,

ȳSCvnj − ySCvnj ≤ 0, t ∈ T, v ∈ Vt, n ∈ n(t), j ∈ D,

w − ȳSHvnj + ySHvnj ≤ 1, t ∈ T, v ∈ Vt, n ∈ n(t), j ∈ D,

ȳSHvnj − w ≤ 0, t ∈ T, v ∈ Vt, n ∈ n(t), j ∈ D,
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ȳSHvnj − ySHvnj ≤ 0, t ∈ T, v ∈ Vt, n ∈ n(t), j ∈ D,

w − ȳSEvnj + ySEvnj ≤ 1, t ∈ T, v ∈ Vt, n ∈ n(t), j ∈ D,

ȳSEvnj − w ≤ 0, t ∈ T, v ∈ Vt, n ∈ n(t), j ∈ D,

ȳSEvnj − ySEvnj ≤ 0, t ∈ T, v ∈ Vt, n ∈ n(t), j ∈ D,

Anti symmetry constraints

ȳNB
vnj ≤ ȳNB

vts,j−1, t ∈ T, v ∈ Vt, s ∈ S, , jinD̄ \ {1},

ȳSCvnj ≤ ȳSCvts,j−1, t ∈ T, v ∈ Vt, s ∈ S, , jinD̄ \ {1},

ȳSHvnj ≤ ȳSHvts,j−1, t ∈ T, v ∈ Vt, s ∈ S, , jinD̄ \ {1},

ȳSEvnj ≤ ȳSEvts,j−1, t ∈ T, v ∈ Vt, s ∈ S, , jinD̄ \ {1},

Linearization of integer variables

yNB
vn =

∑
j∈D̄

yNB
vnj , t ∈ T, v ∈ Vt, n ∈ n(t),

ySCvn =
∑
j∈D̄

ySCvnj, t ∈ T, v ∈ Vt, n ∈ n(t),

ySHvn =
∑
j∈D̄

ySHvnj , t ∈ T, v ∈ Vt, n ∈ n(t),

ySEvn =
∑
j∈D̄

ySEvnj, t ∈ T, v ∈ Vt, n ∈ n(t),

Linearization constraints∑
t∈T

(βtCEI)w +
∑
t∈T

∑
v∈Vt

∑
t̄∈T,t̄<(T−t)

β t̄(CNB
vn

∑
j∈D̄

ȳNB
vnj

+RSC
vt

∑
j∈D̄

ȳSCvnj + CSH
vn

∑
j∈D̄

ȳSHvnj +RSE
vn

∑
j∈D̄

ȳSEvnj) = T̄ + 1
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Convexity, integer and binary constraints

yNB
vn ∈ Z+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , n ∈ n(t),

ySCvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ySHvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ySEvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

yNB
vnj ∈ {0, 1}, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , n ∈ n(t),

ySCvnj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ySHvnj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ySEvnj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

δin ∈ {0, 1}, t ∈ T \ {T̄} i ∈ NO
t , n ∈ n(t),

δ̄in ∈ R+, t ∈ T \ {T̄} i ∈ NO
t , n ∈ n(t),

ȳNB
vnj ∈ R+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , n ∈ n(t),

ȳSCvnj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ȳSHvnj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ȳSEvnj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

yPvn ∈ R+, t ∈ T v ∈ Vt, n ∈ n(t),

lvn ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

hIvt ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

hOvt ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

xvrn ∈ R+, t ∈ T \ {0}, r ∈ Rvt, v ∈ Vt, n ∈ n(t),

w ∈ R+.
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SOS1 formulation

Objective function

maxz =
∑

t∈T\{0}

∑
n∈n(t)

Pn

( ∑
i∈NO

t

∑
c∈G

RD
inDicnδ̄in

+
∑
i∈NC

t

∑
c∈G

(RD
inDicnw − CSP

icn n̄icn)−
∑
v∈Vt

(COP
vn ȳ

P
vn

+ CCO
vn h̄

I
vn −RCO

vt h̄
O
vn

+
∑
r∈Rvn

CTR
vrnx̄vrn −RLU

vn l̄vn)
)

+
∑

n∈n(T̄ )

∑
v∈VT̄

RSV
vn ȳ

P
vn

−
∑

t∈T,t≤T̄−TL

∑
n∈n(t)

∑
v∈V N

t+TL

PnC
NB
vn

∑
j∈D̄

ȳNB
vnj

+
∑
t∈T

∑
n∈n(t)

∑
v∈Vt

Pn(RSC
vn

∑
j∈D̄

ȳSCvnj

+RSH
vn

∑
j∈D̄

ȳSEvnj − Cvn

∑
j∈D̄

ȳSHvnj)

Demand constraints∑
v∈Vt

∑
r∈Rivt

Qcvx̄vrn + n̄icts ≥ Dictsw, t ∈ T \ {0}, i ∈ NC
t , c ∈ G, n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

Qcvx̄vrn ≥ Dinδ̄icts, t ∈ T \ {0}, i ∈ NO
t , c ∈ G, n ∈ n(t),

Capacity constraints∑
v∈Vt

∑
r∈Rivt

max
cinC

Qcvxvrn +
∑
c∈G

ncin ≥
∑
c∈G

Dicts, t ∈ T \ {0}, i ∈ NC
t , n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

max
cinC

Qcvxvrn ≥
∑
c∈C

Ditcsδin, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),
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Frequency constraints

∑
v∈Vt

∑
r∈Rivt

x̄vrn ≥ Fitw, t ∈ T \ {0}, i ∈ NC
t , n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

x̄vrn ≥ Fitδ̄in, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),

Time constraints

∑
r∈Rvt

Zrvx̄vrn ≤ Zv(ȳ
P
vn + h̄Ivn − h̄Ovn − l̄vn), t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

Optional trades constraints

δi,a(n) ≤ δin, t ∈ T \ {0, 1}, i ∈ NO
t , n ∈ n(t),

Pool constraints

ȳPvn = ȳPv,t−1 −
∑
j∈D̄

(jȳSCv,t−1,j − jȳSHv,t−1,j + jȳSEv,t−1,j), t ∈ T \ {0} v ∈ Vt \ V N
t , n ∈ n(t),

ȳPvn = Y NB
vt , t ∈ T : t < T̄L, v ∈ V N

t , n ∈ n(t)

ȳPvn =
∑
j∈D̄

jȳNB
v,t−TL,j, t ∈ T : t ≥ T̄L, v ∈ V N

t+TL , n ∈ n(t),

ȳPv0s = Y IP
v w, v ∈ V0, n ∈ n(t),

ȳPvn =
∑
j∈D̄

jȳSCvtj , t ∈ T \ 0, v ∈ Vt \ v ∈ Vt+1, n ∈ n(t),

l̄vn − h̄Ivn + h̄Ovn ≤ ȳPvn, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),
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Charters and second hand market constraints

ȳSHvnj ≤ SHvnw, t ∈ T, v ∈ Vt,

ȳSEvnj ≤ SEvnw, t ∈ T, v ∈ Vt,

h̄Ivnj ≤ CIvnw, t ∈ T \ {0}, v ∈ Vt,

h̄Ovnj ≤ COvnw, t ∈ T \ {0}, v ∈ Vt,∑
v∈Vt\V N

t

ySHvn ≤ SHn, t ∈ T, n ∈ n(t),

∑
v∈Vt\V N

t

ySEvn ≤ SEn, t ∈ T, n ∈ n(t),

∑
v∈Vt\V N

t

hIvn ≤ CIn, t ∈ T \ {0}, n ∈ n(t),

∑
v∈Vt\V N

t

hOvn ≤ COn, t ∈ T \ {0}, n ∈ n(t),

Linearization of binary variables constraints

w − δ̄in + δin ≤ 1, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),

δ̄in − w ≤ 0, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),

δ̄in − δin ≤ 0, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),

w − ȳNB
vnj + yNB

vnj ≤ 1, t ∈ T : t ≤ T̄ − TL, v ∈ V N
t+TL , i ∈ Nt, n ∈ n(t), j ∈ D,

ȳNB
vnj − w ≤ 0, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , i ∈ Nt, n ∈ n(t), j ∈ D,

ȳNB
vnj − yNB

vnj ≤ 0, t ∈ T : t ≤ T̄ − TL, v ∈ V N
t+TL , i ∈ Nt, n ∈ n(t), j ∈ D,

w − ȳSCvnj + ySCvnj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

ȳSCvnj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

ȳSCvnj − ySCvnj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

w − ȳSHvnj + ySHvnj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

ȳSHvnj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

151



Appendix A. Formulations

ȳSHvnj − ySHvnj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

w − ȳSEvnj + ySEvnj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

ȳSEvnj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

ȳSEvnj − ySEvnj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D

Linearization of integer variables

yNB
vn =

∑
j∈D̄

jyNB
vnj , t ∈ T, v ∈ Vt, s ∈ S,

ySCvn =
∑
j∈D̄

jySCvnj, t ∈ T, v ∈ Vt, s ∈ S,

ySHvn =
∑
j∈D̄

jySHvnj , t ∈ T, v ∈ Vt, s ∈ S,

ySEvn =
∑
j∈D̄

jySEvnj, t ∈ T, v ∈ Vt, s ∈ S,

Linearization constraints∑
t∈T

(βtCEI)w +
∑
t∈T

∑
v∈Vt

∑
t̄∈T,t̄<(T−t)

β t̄(CNB
vn

∑
j∈D̄

ȳNB
vnj

+RSC
vt

∑
j∈D̄

ȳSCvnj + CSH
vn

∑
j∈D̄

ȳSHvnj +RSE
vt

∑
j∈D̄

ȳSEvnj) = T̄ + 1

Convexity and integer constraints

yNB
vn ∈ Z+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , n ∈ n(t),

yNB
vn ∈ Z+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , n ∈ n(t),

ySCvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ySHvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ySEvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

yNB
vnj ∈ {0, 1}, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , n ∈ n(t),
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ySCvnj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ySHvnj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ySEvnj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

jyNB
vnj is SOS1 for j, , t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

jySCvnj is SOS1 for j, , t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

jySHvnj is SOS1 for j, , t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

jySEvnj is SOS1 for j, , t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

δin ∈ {0, 1}, t ∈ T \ {T̄} i ∈ NO
t , n ∈ n(t),

δ̄in ∈ R+, t ∈ T \ {T̄} i ∈ NO
t , n ∈ n(t),

ȳNB
vnj ∈ R+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , n ∈ n(t),

ȳSCvnj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ȳSHvnj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ȳSEvnj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

yPvn ∈ R+, t ∈ T v ∈ Vt, n ∈ n(t),

lvn ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

hIvt ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

hOvt ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

xvrn ∈ R+, t ∈ T \ {0}, r ∈ Rvt, v ∈ Vt, n ∈ n(t),

w ∈ R+.
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Power Formulation

Objective function

maxz =
∑

t∈T\{0}

∑
n∈n(t)

Pn

( ∑
i∈NO

t

∑
c∈G

RD
inDicnδ̄in

+
∑
i∈NC

t

∑
c∈G

(RD
inDicnw − CSP

icn n̄icn)−
∑
v∈Vt

(COP
vn ȳ

P
vn

+ CCO
vn h̄

I
vn −RCO

vt h̄
O
vn

+
∑
r∈Rvn

CTR
vrnx̄vrn −RLU

vn l̄vn)
)

+
∑

n∈n(T̄ )

∑
v∈VT̄

RSV
vn ȳ

P
vn

−
∑

t∈T,t≤T̄−TL

∑
n∈n(t)

∑
v∈V N

t+TL

PnC
NB
vn

∑
j∈D̄

ȳNB
vnj

+
∑
t∈T

∑
n∈n(t)

∑
v∈Vt

Pn(RSC
vn

∑
j∈D̄

ȳSCvnj

+RSH
vn

∑
j∈D̄

ȳSEvnj − Cvn

∑
j∈D̄

ȳSHvnj)

Demand constraints∑
v∈Vt

∑
r∈Rivt

Qcvx̄vrn + n̄icts ≥ Dictsw, t ∈ T \ {0}, i ∈ NC
t , c ∈ G, n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

Qcvx̄vrn ≥ Dinδ̄icts, t ∈ T \ {0}, i ∈ NO
t , c ∈ G, n ∈ n(t),

Capacity constraints∑
v∈Vt

∑
r∈Rivt

max
cinC

Qcvxvrn +
∑
c∈G

ncin ≥
∑
c∈G

Dicts, t ∈ T \ {0}, i ∈ NC
t , n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

max
cinC

Qcvxvrn ≥
∑
c∈C

Ditcsδin, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),
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Frequency constraints

∑
v∈Vt

∑
r∈Rivt

x̄vrn ≥ Fitw, t ∈ T \ {0}, i ∈ NC
t , n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

x̄vrn ≥ Fitδ̄in, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),

Time constraints

∑
r∈Rvt

Zrvx̄vrn ≤ Zv(ȳ
P
vn + h̄Ivn − h̄Ovn − l̄vn), t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

Optional trades constraints

δi,a(n) ≤ δin, t ∈ T \ {0, 1}, i ∈ NO
t , n ∈ n(t),

Pool constraints

ȳPvn = ȳPv,t−1 −
∑
j∈D̄

(ȳSCv,t−1,j − ȳSHv,t−1,j + ȳSEv,t−1,j), t ∈ T \ {0} v ∈ Vt \ V N
t , n ∈ n(t),

ȳPvn = Y NB
vt , t ∈ T : t < T̄L, v ∈ V N

t , n ∈ n(t)

ȳPvn =
∑
j∈D̄

ȳNB
v,t−TL,j, t ∈ T : t ≥ T̄L, v ∈ V N

t+TL , n ∈ n(t),

ȳPv0s = Y IP
v w, v ∈ V0, n ∈ n(t),

ȳPvn =
∑
j∈D̄

ȳSCv,t−1,j, t ∈ T \ 0, v ∈ Vt \ v ∈ Vt+1, n ∈ n(t),

l̄vn − h̄Ivn + h̄Ovn ≤ ȳPvn, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),
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Charters and second hand market constraints

ȳSHvn ≤ SHvnw, t ∈ T, v ∈ Vt,

ȳSEvn ≤ SEvnw, t ∈ T, v ∈ Vt,

h̄Ivn ≤ CIvnw, t ∈ T \ {0}, v ∈ Vt,

h̄Ovn ≤ COvnw, t ∈ T \ {0}, v ∈ Vt,∑
v∈Vt\V N

t

ySHvn ≤ SHn, t ∈ T, n ∈ n(t),

∑
v∈Vt\V N

t

ySEvn ≤ SEn, t ∈ T, n ∈ n(t),

∑
v∈Vt\V N

t

hIvn ≤ CIn, t ∈ T \ {0}, n ∈ n(t),

∑
v∈Vt\V N

t

hOvn ≤ COn, t ∈ T \ {0}, n ∈ n(t),

Linearization of binary variables constraints

w − δ̄in + δin ≤ 1, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),

δ̄in − w ≤ 0, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),

δ̄in − δin ≤ 0, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),

w − ȳNB
vnj + yNB

vnj ≤ 1, t ∈ T : t ≤ T̄ − TL, v ∈ V N
t+TL , i ∈ Nt, n ∈ n(t), j ∈ D,

ȳNB
vnj − w ≤ 0, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , i ∈ Nt, n ∈ n(t), j ∈ D,

ȳNB
vnj − yNB

vnj ≤ 0, t ∈ T : t ≤ T̄ − TL, v ∈ V N
t+TL , i ∈ Nt, n ∈ n(t), j ∈ D,

w − ȳSCvnj + ySCvnj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

ȳSCvnj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

ȳSCvnj − ySCvnj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

w − ȳSHvnj + ySHvnj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

ȳSHvnj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,
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ȳSHvnj − ySHvnj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

w − ȳSEvnj + ySEvnj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

ȳSEvnj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

ȳSEvnj − ySEvnj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D

Linearization of integer variables

yNB
vn =

∑
j∈D̄

2jyNB
vnj , t ∈ T, v ∈ Vt, s ∈ S,

ySCvn =
∑
j∈D̄

2jySCvnj, t ∈ T, v ∈ Vt, s ∈ S,

ySHvn =
∑
j∈D̄

2jySHvnj , t ∈ T, v ∈ Vt, s ∈ S,

ySEvn =
∑
j∈D̄

2jySEvnj, t ∈ T, v ∈ Vt, s ∈ S,

Linearization constraints∑
t∈T

(βtCEI)w +
∑
t∈T

∑
v∈Vt

∑
t̄∈T,t̄<(T−t)

β t̄(CNB
vn

∑
j∈D̄

ȳNB
vnj

+RSC
vt

∑
j∈D̄

ȳSCvnj + CSH
vn

∑
j∈D̄

ȳSHvnj +RSE
vt

∑
j∈D̄

ȳSEvnj) = T̄ + 1

Convexity and integer constraints

yNB
vn ∈ Z+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , n ∈ n(t),

ySCvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ySHvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ySEvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

yNB
vnj ∈ {0, 1}, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , n ∈ n(t),

ySCvnj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),
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ySHvnj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ySEvnj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

δin ∈ {0, 1}, t ∈ T \ {T̄} i ∈ NO
t , n ∈ n(t),

δ̄in ∈ R+, t ∈ T \ {T̄} i ∈ NO
t , n ∈ n(t),

ȳNB
vnj ∈ R+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , n ∈ n(t),

ȳSCvnj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ȳSHvnj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ȳSEvnj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

yPvn ∈ R+, t ∈ T v ∈ Vt, n ∈ n(t),

lvn ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

hIvt ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

hOvt ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

xvrn ∈ R+, t ∈ T \ {0}, r ∈ Rvt, v ∈ Vt, n ∈ n(t),

w ∈ R+.
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Pattern Formulation

Objective function

maxz =
∑

t∈T\{0}

∑
n∈n(t)

Pn

( ∑
i∈NO

t

∑
c∈G

RD
inDicnδ̄in

+
∑
i∈NC

t

∑
c∈G

(RD
inDicnw − CSP

icn n̄icn)−
∑
v∈Vt

(COP
vn ȳ

P
vn

+ CCO
vn h̄

I
vn −RCO

vt h̄
O
vn

+
∑
r∈Rvn

CTR
vrnx̄vrn −RLU

vn l̄vn)
)

+
∑

n∈n(T̄ )

∑
v∈VT̄

RSV
vn ȳ

P
vn

−
∑

t∈T,t≤T̄−TL

∑
n∈n(t)

∑
v∈V N

t+TL

PnC
NB
vn

∑
j∈D̄

ȳNB
vnj

+
∑
t∈T

∑
n∈n(t)

∑
v∈Vt

Pn(RSC
vn

∑
j∈D̄

ȳSCvnj

+RSH
vn

∑
j∈D̄

ȳSEvnj − Cvn

∑
j∈D̄

ȳSHvnj)

Demand constraints∑
v∈Vt

∑
r∈Rivt

Qcvx̄vrn + n̄icts ≥ Dictsw, t ∈ T \ {0}, i ∈ NC
t , c ∈ G, n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

Qcvx̄vrn ≥ Dinδ̄icts, t ∈ T \ {0}, i ∈ NO
t , c ∈ G, n ∈ n(t),

Capacity constraints∑
v∈Vt

∑
r∈Rivt

max
cinC

Qcvxvrn +
∑
c∈G

ncin ≥
∑
c∈G

Dicts, t ∈ T \ {0}, i ∈ NC
t , n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

max
cinC

Qcvxvrn ≥
∑
c∈C

Ditcsδin, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),
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Frequency constraints

∑
v∈Vt

∑
r∈Rivt

x̄vrn ≥ Fitw, t ∈ T \ {0}, i ∈ NC
t , n ∈ n(t),

∑
v∈Vt

∑
r∈Rivt

x̄vrn ≥ Fitδ̄in, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),

Time constraints

∑
r∈Rvt

Zrvx̄vrn ≤ Zv(ȳ
P
vn + h̄Ivn − h̄Ovn − l̄vn), t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

Optional trades constraints

δi,a(n) ≤ δin, t ∈ T \ {0, 1}, i ∈ NO
t , n ∈ n(t),

Pool constraints

ȳPvn = ȳPv,t−1 −
∑
j∈D̄

(ȳSCv,t−1,j − ȳSHv,t−1,j + ȳSEv,t−1,j), t ∈ T \ {0} v ∈ Vt \ V N
t , n ∈ n(t),

ȳPvn = Y NB
vt , t ∈ T : t < T̄L, v ∈ V N

t , n ∈ n(t)

ȳPvn =
∑
p∈PP

PO
vpp̄

P
t−1,s,p, t ∈ T : t ≥ T̄L, v ∈ V N

t+TL , n ∈ n(t),

ȳPv0s = Y IP
v w, v ∈ V0, n ∈ n(t),

ȳPvn =
∑
j∈D̄

ȳSCv,t−1,j, t ∈ T \ 0, v ∈ Vt \ v ∈ Vt+1, n ∈ n(t),

l̄vn − h̄Ivn + h̄Ovn ≤ ȳPvn, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),
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Charters and second hand market constraints

ȳSHvn ≤ SHvnw, t ∈ T, v ∈ Vt,

ȳSEvn ≤ SEvnw, t ∈ T, v ∈ Vt,

h̄Ivn ≤ CIvnw, t ∈ T \ {0}, v ∈ Vt,

h̄Ovn ≤ COvnw, t ∈ T \ {0}, v ∈ Vt,∑
v∈Vt\V N

t

ySHvn ≤ SHn, t ∈ T, n ∈ n(t),

∑
v∈Vt\V N

t

ySEvn ≤ SEn, t ∈ T, n ∈ n(t),

∑
v∈Vt\V N

t

hIvn ≤ CIn, t ∈ T \ {0}, n ∈ n(t),

∑
v∈Vt\V N

t

hOvn ≤ COn, t ∈ T \ {0}, n ∈ n(t),

Linearization of binary variables constraints

w − δ̄in + δin ≤ 1, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),

δ̄in − w ≤ 0, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),

δ̄in − δin ≤ 0, t ∈ T \ {0}, i ∈ NO
t , n ∈ n(t),

w − p̄Pnp + pPnp ≤ 1, t ∈ T, n ∈ n(t), p ∈ PO,

p̄Pnp − w ≤ 0, t ∈ T, n ∈ n(t), p ∈ PO,

p̄Pnp − pPnp ≤ 0, tt ∈ T, n ∈ n(t), p ∈ PO,

w − ȳSCvnj + ySCvnj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

ȳSCvnj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

ȳSCvnj − ySCvnj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

w − ȳSHvnj + ySHvnj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

ȳSHvnj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,
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ȳSHvnj − ySHvnj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

w − ȳSEvnj + ySEvnj ≤ 1, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

ȳSEvnj − w ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D,

ȳSEvnj − ySEvnj ≤ 0, t ∈ T, v ∈ Vt, i ∈ Nt, n ∈ n(t), j ∈ D

Transformation of patterns to new buildings constraints

yNB
vn =

∑
p∈PP

PO
vpp

P
np, t ∈ T, v ∈ V N

t , n ∈ n(t), (A.3)

∑
p∈PP

pPnp = 1, t ∈ T, n ∈ n(t). (A.4)

Linearization constraints∑
t∈T

(βtCEI)w +
∑
t∈T

∑
v∈Vt

∑
t̄∈T,t̄<(T−t)

β t̄(CNB
vn

∑
p∈PP

PO
vpp̄

P
np

+RSC
vt

∑
j∈D̄

ȳSCvnj + CSH
vn

∑
j∈D̄

ȳSHvnj +RSE
vt

∑
j∈D̄

ȳSEvnj) = T̄ + 1

Convexity and integer constraints

yNB
vn ∈ Z+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , n ∈ n(t),

ySCvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ySHvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ySEvn ∈ Z+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

yNB
vnj ∈ {0, 1}, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , n ∈ n(t),

ySCvnj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ySHvnj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ySEvnj ∈ {0, 1}, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

δin ∈ {0, 1}, t ∈ T \ {T̄} i ∈ NO
t , n ∈ n(t),

δ̄in ∈ R+, t ∈ T \ {T̄} i ∈ NO
t , n ∈ n(t),
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ȳNB
vnj ∈ R+, t ∈ T : t ≤ T̄ − TL, v ∈ V N

t+TL , n ∈ n(t),

ȳSCvnj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ȳSHvnj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

ȳSEvnj ∈ R+, t ∈ T \ {T̄} v ∈ Vt, n ∈ n(t),

yPvn ∈ R+, t ∈ T v ∈ Vt, n ∈ n(t),

lvn ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

hIvt ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

hOvt ∈ R+, t ∈ T \ {0}, v ∈ Vt, n ∈ n(t),

xvrn ∈ R+, t ∈ T \ {0}, r ∈ Rvt, v ∈ Vt, n ∈ n(t),

p̄Pnp ∈ R+, t ∈ T \ {T̄} p ∈ PO, n ∈ n(t),

pPnp ∈ {0, 1}, t ∈ T \ {T̄} p ∈ POn ∈ n(t),

w ∈ R+.

163



Appendix A. Formulations

164



Appendix B

Attachments

Included as a ZIP file can be found:

• Mosel code for the Anti Symmetry, Power and Pattern Formulations, with

node and scenario formulation

• Three input files, one for each set size; Large, Medium and Small
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