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Abstract 

 

Background: Experimental studies show that lack of sleep is associated with altered pain 

perception. Studies using brain imaging techniques are needed to further the development of 

objective neurophysiological correlates of pain. 

 

Objective: This thesis investigates how restricted sleep affects perceived pain intensity and 

electrical brain responses during experimental pain stimulation.  

 

Methods: A within-subject cross-over design was used on a sample of Norwegian shift 

workers in order to compare perceived pain intensity after two nights of habitual sleep, with 

perceived pain intensity after two nights of restricted sleep. Pain was induced by a 2-min 

contact-heat stimulation to the skin. Pain intensity was rated on a visual analogue scale 

(VAS). Brain responses were recorded with electroencephalogram (EEG) through a 32-

electrode cap. Dynamic spectral analysis was performed on the EEG signals by the 

Continuous Wavelet Transform. Statistical analysis was performed by Linear Mixed Models. 

The EEG activity was analyzed in terms of the delta, theta, alpha, beta and gamma frequency 

ranges. Both the mean level of activity (static EEG indices) and the dynamics of the activity 

(dynamic EEG indices) were investigated. 

 

Results: Perceived pain intensity was significantly higher after restricted sleep as compared to 

habitual sleep. Pain intensity increased over the 2-min period. No significant sleep-dependent 

changes were found in any of the static EEG indices. The dynamic EEG indices showed that 

increased alpha activity was associated with increased pain scores after habitual sleep. 

Contrary, after restricted sleep, decreased alpha activity and decreased theta activity was 

associated with increased pain scores.  

 

Conclusion: The findings in this thesis strengthen the notion that sleep loss leads to an 

increase in perceived pain intensity. Brain mechanisms underlying the hyperalgesic effect of 

restricted sleep may involve alpha and theta activity. 

 

Keywords: hyperalgesia, restricted sleep, pain intensity, EEG, alpha band, theta band, night 

shift work 

 



 
 

  



 
 

Sammendrag 

 

Bakgrunn: Eksperimentelle studier har vist at søvnmangel er assosiert med endringer i 

smertepersepsjon. Flere hjerneavbildningsstudier trengs for å utvikle objektive 

nevrofysiologiske korrelater til smerte.  

 

Hensikt: Denne studien undersøker hvordan søvnmangel påvirker opplevd smerteintensitet 

og elektrisk hjerneaktivitet under eksperimentell smertestimulering.  

 

Metode: Et innen-gruppe design ble brukt på et utvalg norske skiftarbeidere for å 

sammenligne opplevd smerteintensitet etter to netter med normalsøvn og to netter med 

søvnmangel. Smerteintensitet ble vurdert med en visuell analog skala (VAS). Elektrisk 

hjerneaktivitet ble målt med elektroencefalogram (EEG) gjennom en elektrodehette med 32 

elektroder. Dynamisk spektralanalyse ble gjennomført på EEG signalene med Kontinuerlig 

Wavelet-Transformasjon. Statistisk analyse ble gjennomført med Mixed Models. EEG 

aktiviteten ble delt inn i de fem frekvensbåndene delta, theta, alpha, beta og gamma og 

analysert deretter. Både gjennomsnittlig aktivitetsnivå (static EEG indices) og dynamisk 

endring i aktiviteten (dynamic EEG indices) ble undersøkt.  

 

Resultater: Opplevd smerteintensitet var signifikant høyere etter to netter med søvnmangel 

enn etter to netter med normalsøvn. Opplevd smerteintensitet økte over de 2 minuttene med 

smertestimulering. Ingen signifikante endringer ble observert i de statiske EEG analysene. 

De dynamiske EEG analysene viste at økning i alfa-bånd aktivitet var assosiert med økning i 

smerteskårer etter normalsøvn. Etter søvnmangel var reduksjon i alfa-bånd aktivitet og theta-

bånd aktivitet assosiert med økning i smerteskårer. 

 

Konklusjon: Resultatene støtter tidligere funn om økt smerteintensitet etter søvnmangel. 

Aktivitet innen alfa-båndet og theta-båndet kan være assosiert med mekanismene som 

understøtter sammenhengen mellom søvn og smerte.  

 

Nøkkelord: hyperalgesi, smerteintensitet, søvnmangel, EEG, alfa aktivitet, theta aktivitet, 

nattarbeid 
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Introduction 

This thesis aims to further our understanding of how sleep affects pain perception by 

studying patterns of activity in the brain. Research has shown that chronic pain can reduce the 

quality of life significantly for those affected (Andersen et al., 2018). Furthermore, chronic 

pain and musculoskeletal pain is an increasing concern for both healthcare and social security 

systems (Vos et al., 2017). It has also become the most common cause of disability world-

wide (Mills et al., 2019). Musculoskeletal diseases and other pain related issues are one of the 

most common causes for sick leave in the work force, and can in some cases lead to early 

retirement (Bergman et al., 2001). Studies show that chronic musculoskeletal pain is a 

common complaint in the general population, and especially widespread in the industrialized 

world (Bergman et al., 2001). European studies estimate that chronic pain affects 19% of the 

adult population in the European Union (EU) (Breivik et al., 2006). Similarly, data from The 

Trøndelag Health Study (HUNT) indicates that as much as 30% of Norwegians struggle with 

chronic pain (Landmark et al., 2018). Additionally, a report by the Global Burden of Disease 

project (GBD), lists lower back pain as one of the health issues that could potentially lead to a 

reversal of the global health gains seen over the last century (Vos et al., 2017). With an aging 

population, one can only expect to see more of pain related issues as the prevalence of 

disabling diseases generally increase with age (Vos et al., 2017).   

What is causing this “epidemic of pain”? A contributing factor may be the consequences of 

disturbed sleep. Haack et al. (2009) found that voluntary sleep loss led to increased pain 

sensitivity in healthy research participants, and that these subjects reported more instances of 

spontaneous pain than the control group. A growing body of research supports this proposed 

link between sleep loss and complaints of pain (Kaila-Kangas et al., 2006; Uhlig et al., 2018). 

Additionally, multiple studies indicate that shift work is a risk factor for developing sleep 

problems (Kecklund & Axelsson, 2016). Furthermore, shift work has been linked with 

musculoskeletal injury (Trinkoff et al., 2006) and other pain disorders, such as lower back 

pain (Zhao et al., 2012). As a result of these and other findings, pain related issues are 

increasingly being understood in the context of sleep (Uhlig et al., 2018). The mechanisms 

underlying this connection are, however, still not well understood. Some put forward models 

of inflammation, others hint at negative affect and depression as possible explanations 

(Babiloni, A. H. et al., 2020). A third direction focuses on how pain and sleep affect the 

patterns of activity in the brain. This is where the focus of this thesis lies.   

This thesis will investigate how restricted sleep affects perceived pain intensity and 

electrical brain responses during experimental pain stimulation. First, I will define pain and 
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describe the pathway of which pain is transmitted. Second, I will present the sleep cycle, 

consequences of sleep loss, and potential mechanisms supporting the relationship between 

sleep and pain. Third, I will present the brain imaging method EEG and how it can be used to 

study pain perception, in addition to summarizing some relevant findings on EEG brain 

activity related to sleep and pain. Following this, the aim, objectives and hypotheses of this 

thesis will be accounted for. Subsequently, the methods that have been used to study 

perceived pain intensity and electrical brain responses will be described in detail. Lastly, the 

results are presented and discussed in the context of the presented empirical findings from the 

field of pain research.  

 

Understanding pain  

The International Association for the Study of Pain (IASP) defines pain as “an unpleasant 

sensory and emotional experience associated with actual or potential damage, or described in 

terms of such damage” (IASP Task Force, 2012).Though most pain will subside over time, a 

considerable amount of people struggle with chronic pain. The IASP defines chronic pain as 

“pain lasting for more than three months” (Nicholas et al., 2019). Chronic pain can be 

understood as the result of ongoing damage that prevail without successful healing. However, 

pain can also persist with no apparent cause after the initial healing of the damaged tissue. As 

for what causes this pathological process, researchers recognize that multiple mechanisms 

might be at play (Landmark et al., 2018). Some suggest a neurochemical imbalance in the 

central nervous system, others propose that malfunctions in the descending pain modulation 

system might be to blame (Arnold et al., 2016). The list of possible explanations goes on, and 

includes factors such as a decrease in endogenous substances, like melatonin and dopamine, 

and the impact of cognitive states, like negative affect and depression (Babiloni, A. H. et al., 

2020).  

To study the causes and effects of pain, one must find a way to measure it. The field of 

pain research often relies on the use of pain scales. Common examples are the visual analogue 

scale (VAS) and the numeric rating scale (NRS) (Haefeli & Elfering, 2006). Scales like these 

are used for patients and volunteers in pain experiments to rate the intensity of their pain. The 

end points of the scales are defined at the opposite ends of the spectrum. Commonly a scale 

will range from 0-10, with endpoints of 0=”no pain”, and 10=”worst imaginable pain”. 

Though self-reported scales are one of the most common ways to measure pain, it is a highly 

subjective measure (Xu & Huang, 2020). Moreover, identical pain stimuli are often 



3 
 

experienced differently between individuals, and each individual can exhibit different 

responses to the same pain stimulus at different points in time (Schulz et al., 2011).  

A lot of work has been done to find more objective measures of pain (Gatchel et al., 2007). 

Combining different measuring techniques has the potential to further our knowledge of the 

biological, psychological and social aspects of pain (Morton et al., 2016). Approaches such as 

subjective ratings of pain, or information on how family and friends react to the patient’s pain 

experiences, can lead to a better understanding of the psychological and social mechanisms 

involved (Gatchel et al., 2007). The biological processes are better understood in terms of 

neurophysiological recordings of the neuronal activity in the pain pathway (dos Santos et al., 

2016). An approach that is especially relevant for this thesis, is the hunt for 

neurophysiological correlates of pain through the use of brain imaging techniques. Combined, 

different techniques can help bridge the gap between our subjective experience of pain and 

the biological processes that are supporting it (Morton et al., 2016). 

 

The pain pathway 

When working with the phenomenon of pain, one must distinguish between pain and 

nociception. Pain embodies both the sensory and cognitive components of pain, as well as our 

emotional response (Melzack & Casey, 1968). Nociception strictly refers to the process of 

encoding noxious stimuli, i.e. the very biological response of the sensory nervous system as it 

comes in contact with harmful, or potentially harmful, stimuli (Ploner et al., 2017). To further 

understand the pathways that lead to pain perception, it is useful to know how the 

transduction, transmission and modulation of pain takes place.  

Transduction occurs in the periphery at the location of the pain, i.e. the nociceptive 

stimulus. We have three different types of nociceptors; (1) thermoreceptors that are activated 

by temperatures above or below certain thresholds, (2) mechanoreceptors that respond to 

mechanical pressure or distortion, and (3) polymodal nociceptors which can respond to both 

mechanical stimuli and temperature, as well as to chemicals released by tissue damage and 

inflammation (Basbaum & Jessell, 2013). Nociceptors like these can be found both externally, 

e.g. in the skin, and internally, e.g. in muscles, joints and organs etc. When nociceptors are 

activated by noxious stimuli, they translate the noxious events into chemical events and 

initiate signal transmission. The signals are sent from the periphery to the central nervous 

system (CNS) along a neuronal pathway that goes from the nociceptors, via the dorsal horn of 

the spinal cord, and then further up to the thalamus (Figure 1).  
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The first step of this cascade, the neuronal path from the nociceptors to the dorsal horn, 

gives rise to the concept of first and second pain. First pain is the result of noxious stimuli that 

is transmitted via fast myelinated A-δ fibers (33-75 m/s). This pain is perceived as brief and 

well localized. Second pain is transmitted at a slower rate through unmyelinated c-fibers (0.5-

2 m/s). This pain lasts longer than first pain, is less well localized, and can induce a burning, 

dull sensation (Basbaum et al., 2009). Regardless of the type of fiber that transmits the pain 

from the nociceptors to the dorsal horn, they enter the spinal cord via the dorsal roots. Once 

they reach the dorsal horn, they form synapses with projection neurons in lamina I and II. 

From here, the projection neurons cross the midline and ascend up to the brainstem and 

thalamus. This part of the pain pathway is known as the spinothalamic tract, and is the major 

ascending pathway of pain and temperature (Basbaum & Jessell, 2013). Third-order neurons 

localized in the thalamus project the signals further, to the somatosensory cortex and other 

brain areas. 

 
Figure 1 

  
Note. Left: Transmission of nociceptive stimuli through myelinated A-δ fibers and unmyelinated C-

fibers. Right: The pain pathway. 

 

Both the ascending path of pain transmission, as well as the descending modulatory 

pathway play a role in how pain is perceived. Pain modulation can occur in multiple ways; in 

the synaptic junctions in the ascending pain pathway, in the descending pathway, through 

hormonal or cortical activity, or in the periphery at the source of the pain. The actions taken 

by the CNS to modulation pain is referred to as endogenous pain modulation (EPM) and can 

both reduce or augment the incoming nociceptive signals (Yarnitsky, 2015). Multiple 

mechanisms and processes can trigger pain modulation, and the interactions and implications 
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of these are still being explored by the scientific community, see for example Damien et al. 

(2018) for a review on pain modulation.  

 

Theories of pain 

Theories of pain continue to evolve as we expand our knowledge of the various aspects of 

pain. Although much has been discovered regarding the first order A-δ- and C-fibers in the 

ascending pathway, much less is known when it comes to the second and third order neurons 

(Moayedi & Davis, 2013). Advances in fields such as neuroimaging and molecular medicine 

help us reject and renew our working hypotheses. In this section, I will briefly present one 

older model of great significance to the development of pain research, as well as two pain 

models that have been developed more recently.  

Melzack and Wall presented the Gate Control Theory in 1965, as an attempt to bridge the 

gap between other existing theories of the time. Melzack and Wall claimed that the fibers of 

the nociceptors synapsed in in three different regions of the dorsal horn; the substantia 

gelatinosa, the dorsal column, and with of group of cells they named transmission cells 

(Gatchel et al., 2007). The substantia gelatinosa of the dorsal horn was said to be the “gate”, 

modulating the transmission of sensory information from the nociceptors to the transmission 

cells. Interneurons would facilitate the opening and closing of the “gate”, depending on 

whether the nociceptive information exceeded the inhibitory activity. The gate control theory 

led to a spur of studies but has later been proved to be somewhat inaccurate. Amongst other 

things, statements regarding the neuronal architecture of the spinal cord were flawed, and the 

modulatory system they described does not match with newer findings on descending 

projections from the brain stem (Chen, 2011). 

The idea of the pain matrix offers an alternative way to view pain. There is no single area 

in the brain solely responsible for pain processing. Instead, pain is seen as the consequence of 

activation in a widely distributed neural network. The pain matrix consists of areas that have 

proved to consistently respond to pain when studied with various brain imaging techniques. 

This includes areas such as the primary and secondary somatosensory cortex, the anterior 

cingulate cortex, the thalamus, the insular cortex and the prefrontal cortex (Morton et al., 

2016). These areas are not only activated by pain, but also by other sensory, motor and 

cognitive functions. The pattern and distribution of activity within the pain matrix is largely 

dependent on the type of pain induced, as well as emotional and cognitive aspects, e.g. 

expectations and attention (Morton et al., 2016).  
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A second model, the biopsychosocial model of pain, is in line with this view on pain as a 

multifaceted process. In this model, pain is conceptualized as a result of the interplay between 

biological, psychological, and social factors (Hanssen et al., 2017). The biological part deals 

with the biochemical process of nociception. The psychological aspect encompasses both our 

emotional and cognitive responses. Our emotional responses are considered to be the most 

immediate reactions, while our cognitions make meaning of our pain experiences (Gatchel et 

al., 2007). Social factors include environmental stressors, social support and previous 

treatment experiences etc. (Gatchel et al., 2007).  

 

The importance of sleep 

Multiple studies have shown that pain and sleep is interconnected (Finan et al., 2013). In 

order to understand chronic pain, there is a need to understand sleep. In this section I will give 

an overview of the sleep cycle and the consequences of sleep loss in an attempt to better 

understand the link between pain and sleep. 

As humans, we spend approximately one-third of our lives sleeping. Sleep is commonly 

divided into two distinct phases; REM (rapid eye movement) and non-REM sleep (NREM) 

(Figure 2). REM-sleep is characterized by an inhibition of the motor neurons in the 

descending path of the spinal cord, resulting in an almost complete lack of movement from 

the neck and down (Kandel, Schwartz & Jesell, 2013). NREM is divided into three different 

stages, N1, N2 and N3. N1 is described in terms of drowsiness and the occurrence of low 

amplitude theta waves (Acharya et al., 2005). In N2, eye movements stop, and slower brain 

waves become apparent. Moreover, this stage is characterized by distinctive brain waves 

called sleep spindles and K-complexes (Acharya et al., 2005). Following these stages of 

lighter sleep comes the stage of deep sleep, N3, formerly known as N3 and N4. Deep sleep is 

characterized by slow wave activity, usually in the 0.5 to 4 Hz area (Saper et al., 2010). This 

is the stage where it is most difficult to wake someone from their sleep. 

During a normal night of sleep, a healthy subject will go from light sleep to deep sleep to 

REM-sleep, before cycling back to light sleep again. A full NREM to REM sleep cycle lasts 

approximately 90 min, and a typical night of sleep consists of 3-5 sleep cycles (Babiloni, A. 

H. et al., 2020). As each cycle is completed, the duration of the next REM sleep phase 

becomes longer, the amount of deep sleep is reduced, and N2 becomes more prominent 

(Saper et al., 2010). 
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Figure 2  

A typical night of sleep  

 
 

Although there is consensus on the importance of sleep, there are multiple theories as to 

why sleep is so crucial. Porkka-Heiskanen (2013) presents three main theories; a metabolic 

model, a synaptic model, and an immunological model. In short, the metabolic model states 

that sleep allows for restoration after energy depletion (Benington & Heller, 1995), the 

synaptic model claims that neural plasticity is maintained and regulated during sleep (Tononi 

& Cirelli, 2006), and the immunological model proposes that sleep plays a role in 

maintenance of certain functions of the immune system (Krueger et al., 2011).   

In other words, getting enough quality sleep is important, both to maintain good health and 

to uphold daytime functioning. Unfortunately, there are many individuals who experience 

sleep related issues. Insomnia is reported to be the highest occurring sleep complaint in most 

populations (Uhlig et al., 2014). Individuals suffering from insomnia have a difficulty falling 

asleep or staying asleep. As many as 30% of the adult population are troubled by insomniac 

symptoms, and about 10% of these meet the diagnostic criteria for insomnia (Morin et al., 

2009). Other common sleep disorders are obstructive sleep apnea, characterized by repeated 

episodes of cessation of breathing during sleep, and restless leg syndrome, where a prickling 

or burning sensation can be felt in the leg during rest and sleepiness, urging the individual to 

move (Sateia, 2014). 

Multiple studies show that these disorders and others sleep issues can lead to severe 

negative consequences (Krause et al., 2019; Orzeł-Gryglewska, 2010;Zhang et al., 2019). 

Some adverse effects include alterations in the regulatory functions of neuronal and endocrine 
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systems. This can further affect cognitive functions, such as memory and concentration, as 

well as result in emotional symptoms (Orzeł-Gryglewska, 2010). Furthermore, sleep related 

problems are a risk factor for developing pain disorders, e.g. chronic musculoskeletal pain 

(Mork & Nilsen, 2012) and headache (Ødegård et al., 2010). Additionally, sleep issues are 

repeatedly correlated with a heightened acute pain perception and more instances of 

spontaneous pain (Haack et al., 2012; Kundermann et al., 2004; Lentz et al., 1999). 

Experimental sleep restrictions have also been shown to lead to increased pain sensitivity 

(Matre et al., 2015, 2017).  

Animal studies find a consistent effect of REM sleep deprivation on pain perception, but 

there is a lack of studies on NREM sleep deprivation (Lautenbacher et al., 2006). Human 

studies have more inconsistent findings regarding REM sleep deprivation, but generally agree 

on the hyperalgesic effect of sleep deprivation. Hyperalgesia refers to the phenomenon where 

normally painful stimuli elicit pain of grater intensity (Basbaum et al., 2009). Although a lot 

of evidence indicates that pain perception is affected by sleep deprivation, more research is 

needed in order to draw a firm conclusion on whether it is general sleep deprivation that leads 

to hyperalgesia, or rather the disruption of specific sleep stages (Lautenbacher et al., 2006).  

 

Interactions between pain and sleep 

Many studies have found correlations between sleep disturbances and pain. There is 

however still a discussion regarding the directionality of the association between the two. 

Whereas some propose that sleep disturbances affect pain perception, others find that pain can 

lead to sleep loss and reduced quality of sleep (Babiloni, A. H. et al., 2020). A recent review 

article highlights that the evidence leans towards the former, namely a consistent 

unidirectionality in which sleep predicts next-day pain (Andersen et al., 2018). This 

unidirectional effect is especially strong in experimental and acute pain models. Most of the 

data does however deal with the association between insomnia and pain. More longitudinal 

studies and studies on a larger variety of sleep disturbances are needed to strengthen the claim 

of the unidirectional effect of sleep on pain. 

While the sleep-pain relationship is firmly established, the potential mechanisms that 

underlie the interaction are currently not well understood. As mentioned earlier, some point 

towards the role of inflammatory markers. Alterations in sleep are reported to lead to 

alterations in immune responses, potentially aggravating chronic pain disorders (Babiloni, A. 

H. et al., 2020). Others are considering the implications of affect and mood. Disrupted sleep 

can lead to mood disturbances, and negative affect can lead to sleep disturbances (Konjarski 
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et al., 2018). Furthermore, higher levels of negative affect is thought to increase 

hypervigilance to pain (Babiloni, A. H. et al., 2020). This can cause a sensitizing of pain to 

take place. Positive affect on the other hand, can increase the resilience of the individual, and 

attenuate both negative responses to pain and the overall perception of pain (Finan et al., 

2013; Hanssen et al., 2017).  

Alterations in endogenous pain modulation is considered as another possible explanation. 

Alterations or deficiencies in endogenous pain modulation can result in both increased 

facilitation and inhibition of pain (Babiloni, A. H. et al., 2020). Insufficient sleep over a 

prolonged period of time can impair inhibitory functions of endogenous pain modulation, and 

in turn increase vulnerability to pain (Haack et al., 2012). One way this could impact pain is 

through temporal summation, i.e. the phenomenon where continuous or repeated pain can 

evoke an increasingly intense sensation of pain (Vierck et al., 1997). A study by Staud et al. 

(2003) found that chronic pain patients, when compared to pain-free controls, had enhanced 

temporal summation. Another experimental sleep study observed that sleep deprivation 

decreases temporal summation (Haack et al., 2012). Improving our understanding of how 

electrical brain activity responds to pain stimuli after sleep loss could lead to insights 

regarding the effect of sleep on endogenous pain modulation. 

 

Electroencephalography and brain oscillations  

Studying the electrical activity of the cortex can help advance pain research, as cortical 

activity is implicated in both pain perception and modulation. In recent years, 

electroencephalography (EEG) has been widely used as a technique to measure alterations in 

brain activity related to pain perception (Xu & Huang, 2020). EEG is a non-invasive brain 

imaging technique that allows you to study brain activity down to the level of milliseconds. A 

set of small electrodes are place on the scalp, and the electrodes record the electrical activity 

of the brain. The activity that is recorded with EEG stem from the post synaptic potentials of 

cerebral cortical neurons near the scalp. Each EEG electrode records the sum of synchronized 

voltage fluctuations in the surrounding area, and the fluctuations arise as a result of ionic 

currents within the neurons (Louis & Frey, 2016). Networks of neurons synchronize and form 

overarching patterns of electrical activity. These patterns are termed oscillations and represent 

the summation of inhibitory and excitatory post synaptic potentials generated by thousands of 

nearby neurons (Louis & Frey, 2016). The oscillations do not arise as a simple product of 

summation, the neuronal activity is also regulated by interneurons. Interneurons form 

connections between different cerebral cortical neurons, as well as between cortical and 
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subcortical neurons. This develops feed-back links that can support the synchronization and 

desynchronization of large neuronal networks (Louis & Frey, 2016).  

Patterns of synchronized neuronal activity can be analyzed with EEG. In humans, the 

oscillatory activity is commonly divided into five main frequency bands; delta, theta, alpha, 

beta, and gamma (Figure 3). Researchers vary in how they define these bands in terms of 

frequency range (Babiloni, C. et al., 2020). In this thesis, the following subdivision is used; 

delta (<4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-32), and gamma (32-70 Hz) (Gram et 

al., 2015). The reader is referred to (Babiloni, C. et al., 2020)for the International Federation 

of Clinical Neurophysiology’s latest recommendations regarding the subdivision of scalp 

recorded resting EEG rhythms. The five oscillatory rhythms can be divided into two main 

categories. The delta, theta and alpha rhythms can be referred to as global processing modes, 

and are found to span large parts of the brain (Knyazev, 2012). The beta and gamma rhythms 

are often distributed over a more limited topographical area of the brain (Knyazev, 2012). The 

three global oscillatory rhythms are hypothesized to facilitate integration across the cortex., 

while the high frequency beta and gamma rhythms are postulated to be involved in 

coordination of fast and specific cognitive processes that operate within tens of milliseconds 

(Knyazev, 2012). 

 
Figure 3 

Characteristics of the five EEG frequency bands in humans (Nowack, 1995) 

 
 

The activity within the five frequency bands change according to variations in stimuli, as 

well as with changes in cognitive and behavioral processes. Enhanced synchronization 

between populations of neurons leads to an increase in power within a given frequency band, 
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while desynchronization of neural activity leads to a decrease in power. A change in power 

within one frequency band is likely to be interconnected with the activity within other bands, 

as the slower oscillatory rhythms are thought to modulate the faster ones (Knyazev, 2012).   

A lot of work has been done in an effort to uncover the functional contributions of the 

different brain rhythms. In this section I will summarize some of the general findings, before 

turning the focus back to pain research. The delta rhythm is most prominent in early 

developmental stages and during deep sleep, though it has also been implicated in processes 

of motivation, such as hunger and sexual arousal (Knyazev, 2012). The theta rhythm on the 

other hand, is indicated to be important for learning and memory processes, as well as spatial 

orientation (Kahana, 2006). Findings regarding the theta rhythm mostly stem from animal 

research on rodents, but bursts of theta activity have also been observed in humans during 

spatial orientation tasks (Kahana, 2006). The results reported from human studies are however 

more ambiguous than those involving rodents (Kahana, 2006). The alpha rhythm has been 

implicated in memory processes, more specifically in memory retrieval and attention related 

tasks (Klimesch, 1997). The activity within the beta band is less explored. A review by Engel 

and Fries (2010) summarizes the current finding on the beta rhythm and puts forward a 

hypothesis of maintenance of current sensorimotor events and cognitive states. Lastly, the 

gamma band has been linked with a range of functions. Amongst them are; attention, 

multisensory integration and preparation of movement, moreover, it has even been suggested 

tied to conscious awareness (Engel & Fries, 2010). Although the aforementioned brain 

rhythms have been associated with a wide array of different cognitive and behavioral 

correlates, a lot still remains to be discovered (Kahana, 2006). The results from this thesis 

may contribute to our understanding of how the different brain rhythms are implicated in pain 

perception.   

 

Event related potentials and continuous EEG  

While most researchers who use of EEG to study pain measure event-related potentials 

(ERPs), this thesis will analyze continuous EEG recordings. ERPs are fast electrical changes 

occurring in the brain phase-locked in response to a specific event induced by the 

experimenter. The experimenter can induce acute pain in the study subject while 

simultaneously recording the EEG activity. A short segment (a few seconds) of the EEG data 

can then be used to analyze changes in activity that is directly related to the experimental 

pain-event. This is a useful model to learn more about pain. However, a different approach 

can be taken by analyzing continuous EEG recordings of longer lasting pain stimuli. Some 
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researchers deem this approach a better fit to study chronic pain than ERPs, as it allows for an 

exploration of EEG activity patters that might only become visible over a longer period of 

time (Nir et al., 2010).  

 

Electrophysiological markers of pain and sleep loss 

With reliable electrophysiological correlates of pain, we can learn more about how pain is 

transmitted and modulated (Tracey, 2008). This knowledge could facilitate the development 

of more objective measures of pain and thus enable us to find better and more effective ways 

to detect and treat chronic pain diseases (Xu & Huang, 2020). Recent review articles highlight 

several EEG activity patterns associated with pain perception (dos Santos et al., 2016; Peng & 

Tang, 2015; van der Miesen et al., 2019; Xu & Huang, 2020). Amongst them, multiple studies 

report increased activity in the low range of the theta frequency band in patients suffering of 

neurogenic chronic pain (Llinás et al., 1999; Sarnthein et al., 2006; Stern et al., 2006). 

However, in an experimental study with healthy subjects, a decrease in theta activity was 

observed in relation to an increase in pain (Gram et al., 2015).  

Another commonly reported finding is the correlation between alpha activity and 

subjectively rated pain scores (e.g. Nir et al., 2010). This indicates that changes in alpha 

activity could reflect changes in pain intensity. In an experimental study with healthy 

subjects, a decrease in alpha activity was seen in response to a pain stimulus designed to 

mimic chronic pain (Gram et al., 2015). In addition, multiple studies report a decreased level 

of alpha activity in individuals experiencing chronic pain when they are compared with 

healthy controls (Camfferman et al., 2017; Jensen et al., 2013). Camfferman et al. (2017) 

suggest that findings regarding the theta and alpha band could be a marker of abnormal low 

frequency oscillations between the thalamus and the cortex. Both the thalamus and the cortex 

are part of the pain pathway, and abnormal signaling between the two could be involved in 

the observed changes in pain perception. 

A third frequency band implicated in the experience of pain is the beta frequency band. An 

increase in activity in the lower range of the beta frequency band has been observed in 

patients with chronic pain when compared to pain-free subjects (Stern et al., 2006). Similarly, 

increased activity in the higher frequencies of the beta band was observed in an experimental 

pain study with healthy subjects (Gram et al., 2015). Additionally, Gram et al. (2015) present 

findings which suggests that increased activity in the gamma band could be related to chronic 

pain (Gram et al., 2015).  
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EEG has also been used to study the effects of sleep loss. A decrease in alpha activity was 

seen in resting EEG recordings from individuals who experienced a 24-hour sleep deprivation 

(Kim et al., 2001). A similar decrease in alpha activity was found in a study where subjects 

stayed awake for 40 hours (Strijkstra et al., 2003). Furthermore, Strijkstra et al. (2003) report 

an increase in theta activity following sleep deprivation. 

 

Aims, objectives and hypotheses 

The aim of this thesis is to further our understanding of how sleep affects pain perception 

by studying patterns of activity in the brain. The research objectives are:  

 

 to examine whether perceived pain intensity in response to heat is increased after 

restricted sleep, compared to after habitual sleep. 

 to identify any patterns in the EEG activity that can be associated with changes in 

perceived pain intensity. 

 

These research objectives will be approached in two ways. First, analyses of static data 

will take place, i.e. comparison of mean VAS scores between sleep conditions, as well as 

mean EEG activity between sleep conditions. Second, the dynamics of the data will be 

analyzed, taking into account that VAS and EEG vary with time. This will be done with an 

exploratory data analysis approach. The purpose of looking into the dynamics of the VAS 

scores and EEG activity is to uncover potential associations between pain and sleep that are 

not visible in the static analysis. The combination of the two approaches will give a more 

nuanced view of the potential ways in which pain perception is linked to changes in EEG 

activity. 

 

 The following hypotheses were made for the static analyses: 

1) The static VAS scores will increase after restricted sleep, as compared to habitual sleep. 

2) The change in perceived pain intensity will be accompanied by changes in the static EEG 

indices. Specifically, there is an expectation to find: 

a. an increase in theta activity after restricted sleep as compared to habitual sleep. 

b. a decrease in alpha activity after restricted sleep as compared to habitual sleep. 

c. an increase in beta activity after restricted sleep as compared to habitual sleep. 

d. a change in delta and gamma activity after restricted sleep as compared to habitual 

sleep. 
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The directions of the predicted changes are based on the presented literature. The 

hypotheses regarding the delta and gamma bands are directionless, as there is insufficient 

support for a specific direction.  

  

The following hypotheses were made for the exploratory dynamic analyses: 

3) The dynamic VAS scores will show a higher rate of increase over the 2-min experimental 

pain stimulation after restricted sleep as compared to habitual sleep.  

4) Changes in the dynamic pain scores will be accompanied by changes in the dynamic EEG 

indices. 

 

Method 

Data collection was conducted between March (2013) and October (2014) by STAMI 

(National Institute of Occupational Health, Oslo, Norway). The research project was approved 

by the Norwegian Regional Committee for Medical Research Ethics (Region South-East B, 

approval # 2012/199). The subjects participated in the following tests in a standardized order; 

electrical pinprick pain, contact heat pain, cold pain, pressure pain, and pain inhibition. This 

paper will focus on the contact heat pain stimulus protocol. Further information regarding the 

complete experimental design can be found in Matre et al. (2017). A discussion regarding the 

strengths and weaknesses of the methods employed in this thesis can be found in the method 

discussion.  

 

Study subjects 

The aim of the research project at STAMI is to investigate the health effects of shift work. 

Therefore, the subjects of this study are shift workers. Various occupations of shift workers 

were considered but could not be included due to practical difficulties, e.g. the travel distance 

between their workplaces and the STAMI research lab. The research group chose to recruit a 

cohort of nurses. 

The nurses were recruited from major hospitals in the Oslo area, through wall postings or 

brief bulletins at the hospitals’ respective intranet pages. The exclusion criteria for 

participation in the study was as following; (1) Pain with intensity ≥3/10 lasting ≥3 months 

during the last two years, (2) having psychiatric, neurologic, heart or lung disease (well-

regulated asthma allowed), (3) headache of moderate intensity for >2 days per month on 

average, (4) regular use of over-the-counter analgesics, (5) hypertension (>140/90 mmHg) 
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and (6) being pregnant or breast feeding (Appendix A). All subjects signed a written informed 

consent form and received economical compensation for their participation in the study 

(Appendix B).  

In total, 58 self-reported healthy nurses volunteered to take part in the experiment. Five of 

the volunteers withdrew before the first experimental session, leaving 53 subjects who 

participated in the first experimental session (age range 24-57 years, mean = 31.6, SD = 9.0, 

41 women). Out of these 53 subjects, 40 participated in both sleep conditions and completed 

the study. Five subjects dropped out after the restricted sleep condition (RS), and eight 

subjects dropped out after the habitual sleep condition (HS) (Figure 4).   

 
Figure 4 

Flowchart of study participants 

 
Note. Five subjects withdrew before the pretest. Eleven subjects withdrew due to personal reasons 

after participating in the first sleep condition, two subjects had become pregnant and did no longer 

meet the inclusion criteria. *One participant was moved from the subsample “both sessions” to “one 

session” due to missing pain score data from the restricted sleep session. HS = Habitual sleep, RS = 

Restricted sleep. 
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Prior to analysis, one participant was moved from the subsample “participated in both 

sessions” to “participated in one session” due to missing pain score data from the restricted 

sleep session. In the statistical analysis, a total of 39 subjects were included in both sleep 

conditions and 14 subjects were included in only one sleep condition (n=9 for HS, n=5 for 

RS). The habitual sleep condition had a total of 47 unique participants (age range 24-57 

years, mean=31.98, 33 women), while there were 45 unique participants in the restricted sleep 

condition (age range 24-57 years, mean = 31.98, 36 women).  

 

Experimental protocol 

The experimental design was a paired cross-over design with block randomization (Figure 

5). Two days prior to the first experimental session, a pre-test session was conducted to 

familiarize subjects with the experimental protocol. Each subject participated in two 

experimental sessions. One session was preceded by a restricted sleep condition, while the 

other session was preceded by a habitual sleep condition. In all experimental sessions, EEG 

data and pain scores were recorded while subjects underwent a contact heat pain stimulation 

protocol lasting two minutes. All experimental sessions were carried out by the same 

experimenter. The experimenter was kept blinded with regards to sleep conditions. 

 
Figure 5  

A schematic overview of the experimental process 

 
Note. The study has a within-subject cross-over design with counter balanced order of sleep 

conditions. Subjects participated in an initial pretest and two experimental sessions, where they 

received the same experimental protocol after two nights of habitual sleep and after two nights at 

work.  
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The two sleep conditions were carried out as follows: Restricted sleep was defined as at 

least two consecutive nights at work, and the habitual sleep condition was defined as at least 

two nights of habitual sleep. Most all subjects had ≥ four nights of habitual sleep before the 

habitual sleep condition session, except for three subjects who had their last night shift three 

days before the experiment. As for the restricted sleep condition, most subjects worked two 

consecutive nights (n = 29), some worked three consecutive nights (n = 13), and a few 

worked four consecutive nights (n = 3) before the experiment. All subjects came directly from 

work to STAMI after undergoing restricted sleep (≤60 minutes with public transport). All 

subjects were instructed to abstain from alcohol in the 24-hour period prior to both 

experimental sessions.  

 

Sleepiness 

At the beginning of each experimental session, sleepiness was measured using the 

Karolinska sleepiness scale (KSS) and the psychomotor vigilance test (PVT). Results from 

KSS and PVT were used to evaluate the effects of the restricted sleep condition.  

KSS is a one-dimensional scale, with end points 1 = “extremely alert”, and 9 = ”very 

sleepy, fighting against sleep” (Åkerstedt & Gillberg, 1990). Subjects indicate their answers 

by saying an integer between 1 and 9.  

PVT is a behavioral alertness measure using a computerized version of the 10-minute 

psychomotor vigilance test. PVT is considered an objective measure of sleepiness, and 

consists of repeated measures of selected parameters of cognitive factors that are sensitive to 

sleep loss (Basner & Dinges, 2011). Prior to the PVT, subjects were instructed to focus on the 

computer screen and press the response button as soon as a white colored numbered appeared 

in a rectangular box on the red screen. Intervals between each lap varied form 2-10 seconds 

after button-press. The following measures were calculated; mean reaction time (RT), mean 

10% fastest RT, mean 10% slowest RT, and the associated inverse measure Mean 1/RT. The 

inverse reaction time was used as the preferred parameter of sleepiness (Basner & Dinges, 

2011).  

 

EEG recordings 

EEG was recorded by a standard soft 32-channel cap with active electrodes (actiCAP, 

Brain Products GmbH, Gliching, Germany) placed according to the international 10-20 

system matching the subjects head size. The continuous EEG signal was recorded at 2 kHz 

and digitally amplified (QuickAmp 40-channel amplifier and Brain Vision Recorder, Brain 
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Products GmbH, Gliching, Germany). The common reference electrode was placed at FCz, 

and two surface electrodes were placed at the upper left (VEOG) and lower right (HEOG) 

side of the eye in order to monitor ocular movements and eye blinks. Impedance was kept 

below 5 kΩ. The experimenter had a written protocol, ensuring that all subjects were given 

the same information and instructions. Subjects were seated and had their eyes open during the 

experimental protocol. 

 

Figure 6 

                
 
Note. Left: Placement of 32 electrodes according to the international 10-20 system. Right: A woman 

wearing an electrode cap. One electrode is tracking the movements of her left eye. Images courtesy 

of Brain Products GmbH, Gliching, Germany. 

 

Heat stimulation and pain6 

Contact heat pain was delivered by a 12.5 cm2 peltier thermode (MSA-II, Somedic AB, 

Solna, Sweden). The thermode was attached to the volar forearm with a blood pressure cuff 

inflated to 20 mmHg. 

 

Figure 7 

The thermode used in the experiment 

 
Note. The thermode has a 25 x 50 mm (12,5 cm²) active area. 
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In an effort to standardize the experienced pain intensity in the experiment, the temperature 

of the heat stimulation was individualized. This was done by determining each subject’s 

“pain6” temperature during the pretest session. The pain6 temperature from the pretest 

session was used in the subsequent experimental sessions. 

Pain6 was defined as the temperature which induced a pain intensity of 6 on a 0-10 verbal 

numeric rating scale (NRS, endpoints 0="no pain", 10="worst imaginable pain"). To 

determine pain6, the subjects first received three 7 second heat stimuli at 45°C, 46°C and 

47°C. If either of these temperatures induced a pain intensity of 6, this temperature was set as 

their pain6. If pain ratings were below 6 at these three temperatures, subjects received heat 

stimuli of 48°C and 49°C. Additionally, if the initial temperatures induced a pain intensity 

above 6, the subjects received heat stimuli of 44°C and 43°C. The outer limits of the heat 

stimuli were set to 43°C and 49°C.  

In the experimental sessions, the temperature of the thermode begun at 32°C and increased 

with 1°C/sec increments until it reached the subject’s pain6 temperature. The temperature 

then stayed at the pain6 temperature for 120 seconds before cooling off. All study subjects 

continuously rated the intensity of the pain during the period of heat stimulation with a 

joystick lever connected to a 10 cm visual analogue scale (VAS). The scale endpoints were 

defined as “no pain” and “worst imaginable pain”. Pain ratings were sampled electronically 

with a sample frequency of 1 Hz. Pain scores are given in cm and will be referred to as VAS 

scores.  

 

Data analysis 

The EEG signal was re-referenced to linked mastoids (electrodes TP9 and TP10), 

downsampled to 512 Hz and filtered (0.5-100 Hz) using BrainVision Analyzer (BrainVision 

Analyzer, Brain Products GmbH, Gliching, Germany). Following this, the EEG files were 

exported for further pre-processing in MATLAB (MATLAB R2019a, The MathWorks, Inc., 

Natick, Massachusetts, United States) and EEGLAB (EEGLAB version 2019.1.0, available at 

sccn.usd.edu/eeglab), an open source toolbox running under the MATLAB environment 

(Delorme & Makeig, 2004).  

In addition to the files containing EEG data, time stamps indicating events like turning 

on/off test equipment and stimulus onset were imported to MATLAB. In order to signify the 

beginning and end of the time period to be analyzed, the time stamps were used to add 

markers in each subject’s EEG file. The time period to be analyzed was defined by the two-



20 
 

minute period of pain6 heat stimulation. See Appendix C and D for MATLAB scripts made to 

import and add time markers.  

 
Importing VAS scores  

VAS-scores were imported to MATLAB and upsampled to 512 Hz to match the EEG-

sampling rate. A random selection of the upsampled VAS-scores were visually compared 

with the original VAS data to validate this procedure (Figure 8).  

 
Figure 8 

Comparison of original VAS scores sampled at 1 Hz and upsampled VAS scores at 512 Hz 

 
Note. Left panel: Original VAS scores from a randomly selected subject. Right panel: Upsampled 

VAS scores for the same subject. 

 

The VAS scores for each subject were then added to the subject’s EEG file in the form of 

an additional channel, making 33 channels in total. Adding the VAS scores as a separate 

channel made sure of accurate synchronization between the VAS-scores and the EEG-signal. 

See Appendix C and D for MATLAB scripts made to import and add VAS scores. 

To further ensure that VAS scores were imported correctly, the mean of the VAS scores 

based on the whole two-minute period was calculated for each subject. These, as well as the 

VAS scores from the first and last second of the two-minute time period, were subsequently 

investigated. With a heat-stimulus temperature of pain6, the rated pain intensity should be 

above zero throughout the whole two-minute period. All extracted VAS scores should 

consequently be above zero. One subject was found to have a VAS score of zero throughout 

the whole two-minute period. The source file of this subject’s VAS scores and the notes from 

the experimental session were checked, and an error was found in the time markers. The error 

was caused by turning the EEG equipment on, off, and on again during the experiment due to 
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technical issues. The time markers were corrected manually to correspond with the events in 

the experiment.  

 

Artifact removal and filtering 

Following this, all EEG files were subjected to artifact removal. Artifacts are defined as 

signals recorded by EEG, but which are not generated by the brain. Artifacts include activity 

occurring as a result of eye movements and eye blinking, EKG pulse, as well as other factors 

such as myogenic activity and speech. As the EEG data in question was continuous, the issue 

of losing data with artifact rejection was not of a primary concern. Other automatic methods 

of artifact removal, like ICA (independent component analysis) were considered, but found to 

be unsuitable for continuous EEG data which was not divided into epochs (Chapter 01: 

Rejecting Artifacts, 2019). “Continuous removal by eye” was thus chosen as the preferred 

method of artifact rejection. Artifacts were removed using the EEGLAB interface for 

continuous artifact removal by eye. Artifacts caused by eye blinking, as well as stretches of 

time characterized by noise across many channels, were marked and rejected (Figure 9). As 

the artifact removal was done by rejecting parts of the signal, signal length will vary between 

subjects and sessions. Prior to analysis, a threshold value of minimum 20 seconds signal 

length was set as an inclusion criterion for the statistical analysis. The method of continuous 

artifact removal by eye was employed with training and supervision by supervisor Petter Moe 

Omland (M.D).  

 
Figure 9 

An example of artifact removal 

     
Note. The bright green color represents the areas marked for rejection. Left: Artifact removal of 

multiple eye blinks. Muscle artefacts can still be seen in the frontal channels. Right: Removal of a 

larger area of the signal characterized by artifacts generated by movement or speech etc.  
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The EEG data was further processed by filtering in order to remove line noise occurring 

around 50 Hz. The standard notch filter provided by EEGLAB is known to create distortions 

around the filtered spectrums (Mitra & Bokil, 2009), and other methods are therefore 

recommended. The filtering was thus done with the MATLAB compatible “CleanLine” 

function, developed by Tim Mullen (available at https://www.nitrc.org/projects/cleanline).  

 

Spectral analysis 

Spectral analysis is a method used to analyze EEG signals by quantifying the amount of 

oscillatory activity of different frequencies in the EEG signal (Do-Won & Chang-Hwan, 

2018). To retain information about spectral dynamic over time, a continuous wavelet 

transform was carried out in MATLAB. The wavelet-function was provided by C. Torrence 

and G. Compo (available at http://atoc.colorado.edu/research/wavelets/). In short, continuous 

wavelet transform (CWT) can be used to analyze EEG data by extracting mean power 

differences from the different frequency bands. This is done by sequentially comparing small 

segments of the EEG signal with a chosen wavelet and calculating the similarity between the 

signal and the wavelet. A wavelet is a mathematical function that can be used to analyze 

continuous time signals. 

Wavelet analysis is suggested to be a better approach to spectral analysis than the Fourier 

transform (Akin, 2002). One of the advantages of wavelet-based analysis is its ability to 

estimate the power of transient signals without a loss of frequency resolution (Bassani & 

Nievola, 2008). Estimation of spectral power in CWT is reliant on the chosen mother wavelet 

and its scaling and shifting properties. The Morlet wavelet was chosen as the mother wavelet 

in this analysis (Figure 10), as it is a complex wavelet function and thus better adapted for 

capturing oscillatory behavior, such as brain activity (Torrence & Compo, 1998). 

 
Figure 10 

The Morlet wavelet at two different scales 
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The wavelet mimics different frequencies by scaling up and down, and the range of the 

scales can be set to match the frequency range that is present in the signal. The comparison 

between the wavelet and the signal is run multiple times, each time at a different scale.  

The continuous wavelet transform was applied to each channel of the EEG data in both 

sleep conditions for all subjects. The spacing between the discrete scales for the transform 

were adjusted from default settings to obtain a better scale resolution. The smallest scale of 

the wavelet was set to correspond to approximately 0.5 Hz. Following the transform, scales 

were translated to their corresponding frequencies (Table 1). The wavelet coefficients were 

split into the following frequency bands; delta (1-4 Hz), theta (4–8 Hz), alpha (8-12 Hz), beta 

(12-32 Hz) and gamma (32–70 Hz). 

 
Table 1 

Ranges for wavelet scales and their corresponding EEG bands 

EEG band Frequency Range (Hz) Corresponding Scale Range 

Delta (𝛿𝛿) 1-4 [0.783-0.211] 

Theta (θ) 4-8 [0.201-0.102] 

Alpha, (α) 8-12 [0.097-0.069] 

Beta (β) 12-32 [0.066-0.026] 

Gamma (γ) 32-70 [0.025-0.012] 

 

CWT results in a matrix of complex numbers. One part of each number represents the 

similarity of the signal (at a given time) to the Morlet wavelet (at a given scale). The other 

part represents the phase of the signal (at the given time). The sign of the value gives 

additional information regarding the phase. For further analysis, the absolute values of the 

wavelet coefficients were used. For each EEG channel, all the wavelet coefficients that 

belonged within the same frequency band were summed together. Following this, all 

coefficients within the same frequency band were summed across channels, in order to reduce 

the amount of data for further statistical analysis. With 92 unique sessions (39 subjects with 

two sessions and 14 with one session) and 5 frequency bands, this resulted in a total of 460 

observations. These observations represent the static EEG indices. See Appendix E for the 

MATLAB script used to run CWT and prepare the static data. 

To look into the dynamics of the EEG signals, the two-minute period of pain stimuli was 

divided into partially overlapping 15 second time periods. The overlap between two 

consecutive 15 second windows was set to 50% (Gram et al., 2015). This time series was then 

subjected to the continuous wavelet transform. Wavelet coefficients for each 15 sec time 
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series were collated in a 4D-matrix and summed within and across channels for each 

frequency band. These observations represent the dynamic EEG indices. Mean VAS-scores 

were calculated for the corresponding 15 sec intervals. These observations represent the 

dynamic VAS scores. See Appendix F for the MATLAB script used to run CWT and prepare 

the dynamic data. 

With CWT, the activity within the EEG bands is measured in terms of similarity between 

the Morlet wavelet and the EEG signal (Figure 11). The CWT coefficients are obtained by 

computing the product of the signal with the shifted and scaled Morlet wavelet and then 

integrating the result. When the wavelet is at a scale that closely resembles the oscillations 

that are present in the EEG signal, the absolute value of the CWT coefficient is large (phase 

shifting affects the sign of the value). When the wavelet is at a much larger or smaller scale 

than the oscillations found in the EEG signal, the value of the CWT coefficient is near zero. 

Although the CWT coefficients are a measure of similarity, they cannot be interpreted directly 

as correlation coefficients.  

 
Figure 11 

Two Morlet wavelets (of the same scale) compared to two sine waves (of different frequencies) 

 

Note. The sine waves represent the oscillatory brain activity. The two comparisons shown in this 

figure would lead to different CWT coefficients. The comparison between the sine wave and the 

Morlet wavelet in the left panel would result in a CWT coefficient with a higher absolute value than 

the comparison in the right panel. The is due to the fact that the sine wave in the left panel more 

closely resembles the given scale of the Morlet wavelet.  

 

The experimental design does not allow for observations regarding the general level of 

EEG activity in the frequency bands, as there is no baseline condition to compare with. It is, 

however, possible to tell if there has been an increase or decrease in activity after restricted 

sleep as compared to after habitual sleep within each of the frequency bands. 
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When presenting and discussing the results in this thesis, I will refer to static and dynamic 

EEG indices. "Static EEG indices" represent the CWT coefficients within each of the 

frequency bands, summed over the 2-min period. "Dynamic EEG indices" represent the CWT 

coefficients within each of the frequency bands, summed over the 15 second 

intervals.  Similarly, "alpha activity" means the power of the CWT coefficients of the alpha 

frequency band. The higher the power of the CWT coefficients in a particular frequency band; 

the more oscillatory activity of that frequency range has been detected in the EEG signal. 

Thus, an increase in the power of the CWT coefficients represents an increase in EEG 

activity. Absolute activity and changes in absolute activity will be reported in arbitrary units 

(au). "A one arbitrary unit increase in alpha activity" corresponds to an increase of 1 in the 

value of the summed CWT coefficients of the alpha frequency band.  

 

Statistics  

Statistical analyses were performed in Stata 16 (StataCorp, College Station, TX, USA). 

The author of the thesis was kept blind to which subject files belonged to which sleep 

condition during the entirety of the pre-processing and statistical analyses. For all analyses, p-

values < 0.05 were considered significant. P-values and confidence intervals are reported 

where applicable. 

 

Linear mixed model analysis of VAS scores and static EEG indices 

A mixed model analysis was used for paired comparisons of the static VAS scores between 

the habitual sleep condition and the restricted sleep condition, as well as for the static EEG 

indices. In addition, a mixed model was used for paired comparison of the dynamic VAS 

scores between the habitual sleep condition and the restricted sleep condition. For the 

dynamic VAS analysis, VAS was set to be the dependent variable, and sleep condition and 

time were included as independent variables, as well as an interaction term. Time was 

included in order to check if the VAS scores followed a significantly different pattern in one 

of the sleep conditions, i.e. whether the increase in pain intensity was steeper. 

Linear mixed models were chosen over a t-test in order to include subjects who only 

participated in one of the two experimental sessions. A regular t-test follows the complete 

case principle (CC) and would exclude these subjects due to missing data points. The 

approach taken in this thesis is the intention to treat (ITT) principle, which does not exclude 

subjects who fail to complete the experiment. Rather, these are included in the analysis in 
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order to avoid various biases that can arise when excluding subjects (Hollis & Campbell, 

1999). 

A mixed model analysis handles missing data by making inferences under the “missing at 

random” (MAR) assumption. The MAR assumption is considered true for this dataset, as the 

withdrawn subjects did not cause a substantial change of the descriptive statistics (age mean, 

age range, gender) of the data in the two sleep conditions. However, as there is no direct way 

to test the MAR assumption (Potthoff et al., 2006), one should be cautious of generalizing 

inferences from the results to the general population.  

A few other assumptions should be met in order to apply a linear mixed model to a dataset. 

The dependency structure of the model must be modelled correctly, and secondly, random 

effects and within unit residual errors should follow normal distributions and have a constant 

variance. While some of these assumptions can be checked, linear mixed models hold up 

quite robustly to violations of the second assumption (Verbeke, 1997).  

The dependency structure in this dataset is as follows: Measurements pertaining to the 

same individual are considered dependent on each other, while data gathered from different 

individuals are considered independent of one another. It could be argued that other 

dependencies exist, such as clusters of individuals from the same place of work. However, the 

focus of this thesis is to investigate the effect of restricted sleep on pain perception. Other 

contextual factors of a of psychosocial nature, such as place of work or type of shift rotation 

should be considered for future studies. 

The residual errors of the models were checked with Q-Q plots and found satisfactory 

(Appendix G). 

 

Visual inspection and linear mixed model analysis of dynamic EEG indices  

The dynamic EEG indices were investigated with the use of an explorative data analysis 

approach (EDA). EDA states that it is central to get a sense of the data by visualizing it before 

subjecting it to further statistical testing (Evans, 2007). Visualizing the data set is an 

important tool for gaining valuable insights into the data and can lead you to uncover 

underlying structures and detect important variables (Evans, 2007). Furthermore, the initial 

exploration of the visual data can aid you in choosing the appropriate statistical tests. 

In the first phase of the dynamic analyses, mean activity within each frequency band, 

based on all study subjects, was calculated and plotted along the time dimension. Each plot 

was visually inspected with regards to 1) patterns of increase and/or decrease in activity, and 

2) the adjoining VAS score dynamics. Similar plots were made for the four participants with 
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the largest VASdelta, i.e. the most prominent difference in VAS score between the beginning 

and the end of the two-minute period of pain6 stimuli. The four VASdelta subjects were 

investigated in order to see if a lager increase in VAS scores throughout the experimental 

session would result in a more evident relationship between the perceived pain intensity and 

the activity within each frequency band. VASdelta was calculated by subtracting the mean 

VAS score of the second 15 sec interval (t2) from the mean pain score of the last 15 sec 

interval(tend). t2 was chosen over t1 because the thermode reaches the pain6 temperature just 

before t1. The VAS scores in the t1-interval is influenced by this recent incline in temperature 

to a varying degree amongst the subjects. Hence, t2 gives a more accurate picture of the pain 

intensity at pain6 temperature. 

Inspecting the data plots depicting dynamic EEG activity yielded no strong leads that could 

explain the relationship between VAS scores and sleep restriction. Following the visual 

inspection, each frequency band was tested in a separate mixed model. Each model included 

VAS scores as the dependent variable. Sleep condition and one of the five frequency bands 

were included as independent variables. The interaction effect between sleep condition and 

EEG activity was also included. Time was included as a control variable. 

 

Results 

 

Artifact removal 

Descriptive statistics showed that all subjects had a signal length of more than 20 seconds 

and could be included in the analysis (Table 2). 

 
Table 2  

Descriptive statistics of EEG signal length (sec) post artifact removal 

Sleep condition Mean signal length (s) SD (s) Range (s) 

Habitual sleep 81.29 13.49 [54.48, 105.82] 

Restricted sleep 73.63 16.33 [27.11, 104.64] 

 

Sleepiness 

Sleepiness was increased with 2.9 points after restricted sleep, as measured on the 1-9 

Karolinska sleepiness scale (Table 3). Reaction time had increased by 0.03 seconds following 

restricted sleep relative to habitual sleep (Table 3). The results of these measures indicate that 
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the subjects were significantly more sleepy in the restricted sleep condition than in the 

habitual sleep condition.  

 
Table 3  

Summary of Wilcoxon signed-rank tests and descriptive statistics of subjective sleepiness and 

inverted reaction time 

 Habitual sleep (HS)  Restricted sleep (RS) za P-valuea 

 Mean SD  Mean SD   

Subjective sleepiness (KSS) 3.92 1.67  6.82 1.06 -5.2 < 0.001 

Reaction time (RT) 0.39 0.07  0.42 0.09 3.2 0.001 

Note. The descriptive statistics include the full sample (N = 53). a Wilcoxon signed-rank tests are 

calculated based on the subjects who participated in both experimental sessions (n = 39). 

 

Analysis of static VAS scores  

The linear mixed model analysis estimated an increase of 1.05 cm (95% CIs [0.49, 1.60], p 

< .001) in mean VAS score after restricted sleep, relative to habitual sleep. This corresponds 

to an estimated 24.9% increase in pain intensity. Descriptive statistics are shown in Table 4.  

 
Table 4  

Descriptive statistics of VAS-scores 

 Habitual sleep (HS)  Restricted sleep (RS) Mean Difference Percentage change 

 Mean SD  Mean SD   

VAS 4.67 2.51  5.88 2.55 1.21 25.90 

 

Analysis of static EEG indices 

None of the five frequency bands showed a significant mean change in absolute activity 

relative to sleep condition. Results from the linear mixed models are summarized in Table 5. 

Positive coefficients indicate a higher level of absolute activity in the restricted sleep 

conditions as compared to the habitual sleep condition. Descriptive statistics of absolute 

activity within the two sleep conditions and estimated changes in absolute activity is 

visualized in Figure 12. Model summaries for each of the five mixed models can be found in 

appendix H. 
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Table 5  

Linear mixed model summary of how sleep condition is associated with changes in activity within 

each of the five frequency bands 

Dependent variable Coefficient a + b 

(absolute activity in au) 

95% CI a p-value 

Delta 1.64 [-4.94, 8.22] 0.626 

Theta  0.81 [-1.05, 2.67] 0.394 

Alpha  0.09 [-0.87, 1.06] 0.850 

Beta  0.36 [-1.31, 2.03] 0.671 

Gamma  0.13 [-1.26, 1.52] 0.858 

Note. a Coefficients and CIs in this table are divided by e+07. b Coefficients represent the mean 

change in absolute activity (in au) within a frequency band between sleep conditions. HS = Habitual 

sleep, RS = Restricted sleep. The reference group for the sleep condition is habitual sleep. Positive 

coefficients indicate a higher level of absolute activity in RS than in HS. All frequency bands were 

tested in separate models. Each model included one of the five frequency bans as the dependent 

variable and sleep condition as the independent variable. Model summaries for each of the five 

mixed models can be found in appendix H. 
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Figure 12 

 

 
 

 
 

Note. Top: Average absolute EEG activity (with SD) within each frequency band relative to sleep 

condition. Bottom: Estimated difference in absolute activity (with 95% CIs) within each frequency 

band between RS and HS. A bar area above the x-axis indicates that the level of activity is higher in 

RS than in HS. HS = Habitual sleep, RS = Restricted sleep. All values in this figure are divided by 

e+07. 
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Analysis of dynamic VAS scores 

The VAS scores were estimated to be 1.25 cm higher (95% CIs [0.88, 1.61], p < .001) in 

the restricted sleep condition than in the habitual sleep condition. In addition, time was shown 

to be a significant predictor of VAS scores, with a 0.08 cm increase in VAS scores per one 

unit increase in time in the habitual sleep condition (p < .001). Furthermore, the mixed model 

estimates indicate a trend where the rate of increase in perceived pain intensity is dependent 

on sleep conditions, though this was not a significant finding at p = 0.109 (Table 6). This 

trend is visualized in Figure 13. 

 
Table 6 

Linear mixed model summary of the effect of sleep and time on dynamic VAS scores 

Fixed effects Coefficient (VAS in cm) 95% CI p-value 

Sleep 1.245 [0.879, 1.611] <.001 

Time 0.084 [0.043, 0.125] <.001 

Sleep#Time -0.041 [-0.103, 0.021] .109 

Cons 4.364 [3.656, 5.068] <.001 

Note. Reference group for the variable sleep condition is habitual sleep. A positive 

coefficient implies a higher mean value in RS when compared to HS. 

 
Figure 13 

Dynamic activity of the VAS scores 

 
Note. The black lines represent the mean based on all subjects within each sleep condition, light 

grey lines represent single participants. The x-axis represents time (s), the y-axis represents VAS 

scores (in cm). HS = Habitual sleep, RS = Restricted sleep. 
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Analysis of dynamic EEG indices 

In the static EEG analysis, the EEG activity within each frequency band is reduced to a 

single mean value. As a result of this, important dynamics in the EEG activity and potential 

correlations between this activity and the dynamics of the VAS scores are not visible. This 

necessitates the analysis of dynamic EEG data and VAS scores. The dynamics of the EEG 

activity and VAS scores are made visible by including a larger number of data points per 

subject. Using this approach, it is possible to test whether the dynamic EEG indices explain 

the differences in VAS scores between the restricted sleep condition and the habitual sleep 

condition. 

In this section I will present the graphic representations of data based on all subjects, and 

data based on the four top VASdelta subjects. Following this I will describe the statistical 

testing of the dynamic EEG indices. 

 

Graphic representation of dynamic EEG indices based on all study subjects 

The biggest difference in activity between sleep conditions can be seen in the delta band. 

The level of activity is higher in the restricted sleep condition than in the habitual sleep 

condition. However, the mean level of activity in the delta band is overall higher than in the 

other frequency bands. The range of the standard deviations are also larger (Figure 11, Left 

panel). This could account for some of the fluctuations. 

Overall, the activity in each of the EEG frequency bands showed a high degree of 

similarity between the two sleep conditions (Figure 14). Furthermore, the mean activity 

within each frequency band showed no clear patterns that matched the dynamics of the VAS 

scores seen in Figure 13.  
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Figure 14 

 Dynamic EEEG activity based on all subjects 

  
 

  
 

 
 

Note. Dynamic activity of the delta, theta, alpha, beta and gamma frequency bands within HS and RS. The black 

lines represent the mean level of activity based on all subjects within each sleep condition. Light grey lines 

represent single participants. The light gray area above and below the mean represents the full range of individual 

activity. The x-axis represents time (s), the y-axis represents absolute activity (in au) within the frequency bands. 

HS = Habitual sleep, RS = Restricted sleep. 
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Graphic representation of dynamic EEG indices based on the top four VASdelta-subjects 

Activity plots were also made for the four participants with the most prominent difference 

in VAS scores within a session (VASdelta). Data from two of the subjects were from the 

habitual sleep condition, data from the other two subjects were from the restricted sleep 

condition (Figure 15).  

In the habitual sleep condition, the delta band shows a general trend of slight increase in 

activity over time, but with a dip in activity towards the second half of the two-minute period. 

In the restricted sleep condition, the delta band has a general trend of decrease in activity from 

beginning to end. This is a contrast to the trend in the habitual sleep condition. The alpha 

band shows a general trend of slight increase in activity over time in both of the sleep 

conditions, and the peak of the alpha activity is found around the middle of the time period. 

The theta band has a general trend of slight increase in activity over time in the habitual sleep 

condition, with a dip in activity towards the second half of the two-minute period. In the 

restricted sleep condition, however, the activity is seen to be quite stable across the two-

minute period. The beta band has a relatively stable level of activity throughout in both sleep 

conditions. The activity in the gamma band is quite stable in the habitual sleep condition but 

has a dip in activity towards the second half of the two-minute period. The gamma activity is 

also quite stable in the restricted sleep condition but is leaning more towards an increase in 

activity than in the habitual sleep condition.  

The VAS scores in the habitual sleep condition follow a trend of continuous increase. The 

rate of increase is larger in the beginning than in the middle and end portion of the two-

minute period. The VAS scores also increase steadily throughout in the restricted sleep 

condition, but with a slightly different curve than in the habitual sleep condition. The 

continuous increase in pain intensity is not clearly reflected in the visualization of any of the 

frequency bands. 

In short, the VAS scores showed a general continuous increase over time, while the 

activity of the frequency bands exhibited more variability. None of the frequency bands 

seemed significantly more promising than others in their ability to explain changes in VAS 

scores. Neither when based on all subjects, nor when based on the four VASdelta subjects.  
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Figure 15 

Dynamic VAS scores and EEG activity based on VASdelta subjects 

 
Note. The black lines represent mean activity, the dotted black lines represent general trends in the 

data as calculated by the ployfit function in MATLAB. The x-axis represents time (s) and the y-axis 

represents absolute activity within the frequency bands (in au). In the plots titled “VAS scores”, the 

y-axis represents VAS scores (in cm).  
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The estimated effect of dynamic EEG activity on VAS scores 

The goal of the next stage of the analysis was to determine whether the “within subject” 

aspect of the data would make any potential associations between pain intensity, sleep, and 

EEG activity visible. This was done by running five separate mixed models, one model for 

each frequency band. Dynamic VAS scores were set as the dependent variable. Independent 

variables were sleep condition, EEG activity and sleep x EEG activity. Time was included as 

a control variable. 

 

The theta frequency band. Theta activity did not explain a significant amount of variance 

of the VAS scores in the habitual sleep condition (Table 7). However, the interaction term 

was shown to be statistically significant. The interaction term indicated that the effect of theta 

activity on the VAS scores was 0.005 cm lower after restricted sleep than after habitual sleep 

(95% CIs [-0.008, -0.003], p < .001). In other words, decreased theta activity was associated 

with heightened VAS scores in the restricted sleep condition (Figure 16, right panel). This 

effect results in a 0.4 cm increase in VAS when the power of the theta band is increased with 

100 au.  

 
Table 7 

Linear mixed model summary of variables predicting dynamic VAS-scores (theta band) 

Fixed effects Coefficient 

(VAS in cm) 

95% CI p-value 

Sleep 2.571 [1.759, 3.383] <.001 

Time 0.066 [0.034, 0.097] <.001 

Theta 0.001 [-0.002, 0.004] .557 

Sleep#Theta -0.005 [-0.008, -0.002] <.001 

Cons 6.334 [3.219, 5.270] <.001 

Note. Reference group for the variable sleep condition is habitual sleep. A positive 

coefficient implies a higher mean value in RS than in HS. 

 

The alpha frequency band. A one arbitrary unit increase in alpha activity was associated 

with a 0.005 cm (95% CIs [0.001, 0.009], p = .009) increase in VAS scores after habitual 

sleep (Table 8), when controlled for time, i.e. the general increase in VAS that occurs over the 

two-minute period. The interaction term further indicated that that this effect was 0.006 cm 

(95% CIs [-0.010, -0.002]) smaller in the restricted sleep condition. This corresponds to a 

0.001 cm decrease in VAS scores per one arbitrary unit of increase in alpha activity after 
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restricted sleep, or a 0.1 cm decrease in VAS scores per 100 arbitrary units of increase in 

alpha activity. Namely, in the habitual sleep condition, an increase in alpha activity is 

associated with an increase in VAS scores, while in the restricted sleep condition, a decrease 

in alpha activity is associated with an increase in VAS scores (Figure 16, left panel). The 

effect that alpha activity has on VAS scores is smaller after restricted sleep than after habitual 

sleep. 

 
Table 8 

Linear mixed model summary of variables predicting dynamic VAS-scores (alpha band) 

Fixed effects Coefficient 

(VAS in cm) 

95% CI p-value 

Sleep 1.788 [1.205, 2.372] <.001 

Time 0.068 [0.037, 0.099] <.001 

Alpha 0.005 [0.001, 0.009] .009 

Sleep#Alpha -0.006 [-0.010, -0.002] .006 

Cons 3.798 [2.953, 4.644] <.001 

Note. Reference group for the variable sleep condition is habitual sleep. A positive 

coefficient implies a higher mean value in RS than in HS. 

 

 
Figure 16 

 
 

Note. Left: The association between alpha activity and VAS scores in HS and RS. Right: The 

association between theta activity and VAS scores in HS and RS. The x-axis represents increase in 

activity (in au), the y-axis represents VAS scores (in cm). 
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The delta, beta and gamma band. The mixed model estimates of the delta, beta and 

gamma band models showed no significant effect of EEG activity on the VAS scores. Neither 

did they indicate any significant interaction effects between EEG activity and sleep 

conditions. Tables containing estimated coefficients, 95CIs and p-values for these three 

respective models can be found in appendix I. 

 

Discussion 

The aim of this thesis was to further our understanding of how sleep affects pain 

perception by studying patterns of activity in the brain. The results confirm previous findings 

of sleep-induced hyperalgesia, and furthermore, support the notion that alpha and theta 

activity is associated with the interaction between sleep and pain. The first research objective 

was to investigate whether perceived pain intensity in response to heat was increased after 

restricted sleep relative to after habitual sleep. The results of the analyses showed that the 

perceived pain intensity of a contact heat stimulus was significantly increased after sleep 

restriction. This effect of sleep restriction-induced hyperalgesia was found both when 

analyzing static and dynamic pain scores. The second research objective was to identify any 

patterns in the EEG activity that could be associated with changes in perceived pain intensity. 

The analyses showed no significant changes in static EEG activity between sleep conditions. 

However, results showed a significant association between dynamic alpha activity and pain 

scores. Furthermore, sleep was found to significantly affect the way in which VAS scores 

were affected by the activity of both the alpha band and the theta band.  

 

Pain intensity 

Perceived pain intensity was significantly higher after restricted sleep, compared to 

habitual sleep (Hypothesis 1 and 3, see “Aims, objectives and hypotheses”). In the static 

analysis, the pain scores were estimated to increase with about 25% after restricted sleep 

compared to after habitual sleep. The dynamic VAS analysis was in line with these results. 

Furthermore, time was indicated to be a predictor of VAS scores, suggesting that pain scores 

generally increased during the 2-min period of experimental pain, i.e. a trend of temporal 

summation was seen (Hypothesis 3, see “Aims, objectives and hypotheses”). However, the 

interaction between sleep and time was not estimated to be a significant predictor of VAS 

scores. With a p-value of .1 this could be due to a low power. This interaction should thus be 

studied further to confirm whether or not sleep restriction can affect the speed of which the 

pain intensity increases. In this analysis, time was set as a continuous variable. If one were to 
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include time as an indicator variable instead, one could gain additional insights into whether 

there are sleep-dependent changes in when the pain increases. 

The general finding of sleep restriction-induced hyperalgesia, i.e. increased sensitivity to 

pain, is consistent with previous findings. A study by Schuh-Hofer et al. (2013) found that 

one night of total sleep deprivation led to generalized hyperalgesia and a decreased threshold 

for heat pain. Others have demonstrated how acute sleep deprivation can amplify pain 

reactivity (Krause et al., 2019). The hyperalgesic effect that sleep restriction has on pain 

perception is further supported by a number of studies (e.g. Andersen et al., 2018; Finan et al., 

2013; Krause et al., 2019). 

In the present study, pain intensity was found to increase with about 25% after restricted 

sleep, compared to habitual sleep. This effect size is comparable with the results from 

previous studies. It also lines up with the general findings from the meta-analysis by Schrimpf 

et al. (2015), where they report large effect sizes for within-subject pain experiments 

involving sleep deprivation. Similar to the results in this thesis, a within-group study by Tiede 

et al. (2010) reports a 30% increase in experimental pain ratings after sleep deprivation. 

However, a study by Matre et al. (2015) reports that only the highest intensity pain stimulus 

was affected by sleep condition, and that the effect was a mere 8% increase in perceived pain 

intensity.  

Although there seems to be ample support for a general effect of sleep restriction-induced 

hyperalgesia, it is possible that the degree of increase in pain is dependent on type of stimuli. 

In the experiment by Tiede et al. (2010) laser evoked pain was used, while the study by Matre 

et al. (2015) used electrical pain stimulations. A meta-analysis by Lautenbacher et al. (2006) 

reports that the effect of sleep deprivation on pain perception was larger in experiments using 

pressure pain than in experiments using heat pain. They explain this effect with the type of 

nociceptors that are targeted by different kinds of pain stimuli. Pressure pain stimulates both 

superficial and deep tissue nociception. Pain stimuli like heat pain and electrical pain mainly 

target nociceptors in the superficial tissue of the skin. Deep tissue nociception could be 

influenced by alterations in the descending modulatory system to a higher degree than 

external nociceptors (Lautenbacher et al., 2006). 

 

Static EEG 

 The analysis of the static EEG indices showed no significant changes in EEG activity after 

restricted sleep as compared to habitual sleep (Hypothesis 2, see “Aims, objectives and 
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hypotheses”). In other words, the mean level of activity within each of the frequency bands 

was similar in both sleep conditions.   

This finding stands in contrast to previously published research on EEG correlates to pain 

and sleep deprivation. Correlations between theta activity and pain, as well as between alpha 

activity and pain have been suggested in previous studies (Nir et al., 2010; Gram et al., 2015; 

Camfferman et al., 2017; Jensen et al., 2013). Furthermore, decreased alpha activity and 

increased theta activity has been observed in studies looking into the effect of sleep 

deprivation (Kim et al., 2001; Strijkstra et al., 2003). It is possible that the lack of significant 

findings related to the alpha band in this study stems from the use of static EEG indices. One 

study on pain observes an initial increase in alpha activity, followed by a gradual decrease 

(Gram et al., 2015). When the dynamic EEG activity within a frequency band is reduced to a 

single mean, patterns like these could cancel out. Furthermore, this thesis has analyzed 

changes in absolute power, and not relative changes (i.e. the degree of change in one 

frequency band compared to the degree of change in the other frequency bands). This could 

account for the lack of findings regarding the static changes in the theta band. In the study by 

Jensen et al. (2013), changes in theta activity was only observed when analyzing the relative 

changes in power, and not when looking at absolute power.  

Associations between pain and/or sleep, and the beta and gamma band are less established 

but have been observed in some experiments. Examples regarding the beta band include a 

pain related increase in beta activity in a study comparing patients with chronic pain to 

healthy volunteers (Stern et al., 2006). A similar pain related increase in beta activity was 

reported in an experimental pain study with healthy subjects (Gram et al., 2015). The study by 

Gram et al. (2015) also found gamma band activity to be associated with measures of chronic 

pain. Additionally, a study by Zhang et al. (2012) demonstrated that gamma band activity 

recorded over the somatosensory cortex predicted subjective pain intensity. 

It is, however, important to note that most studies in the field of pain research either looks 

into the relationship between pain and sleep without the use of brain imaging, or studies EEG 

activity related to either pain or sleep deprivation. The combination of the three is less 

common. This means that direct comparison to other studies is challenging, as the present 

work represents a new approach to the topic of pain and sleep. 

Another factor that could contribute to the dissimilarity in findings is the study samples. 

Results from work with clinical patients (e.g. Stern et al., 2006) are not directly comparable to 

those of healthy research volunteers (e.g. Kim et al., 2001; Gram et al., 2015). Similarly, sleep 

restriction in an experimental setting (e.g. Strijkstra et al., 2003) does not perfectly match up 
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with sleep deprivation caused by night shift work or insomnia. Furthermore, there are 

inconsistencies in how researchers define the different frequency bands. Some researchers 

subdivide the frequency bands into smaller ranges when analyzing their EEG data, i.e. beta1, 

beta2 and beta3 (e.g. Gram et al., 2015). This could partially explain why the static EEG 

indices in this thesis contradict earlier findings, as the association between EEG activity and 

pain could be more strongly related to a specific range within a frequency band. Additionally, 

some findings are specific to certain brain areas (e.g. Gram et al., 2015; Nir et al., 2010). An 

area-specific increase in activity could be invisible in the general EEG activity-trend if there 

was a similar decrease in another area. The static EEG analysis in this thesis is based on a 

mean calculated from activity spanning a two-minute period. It is likely that the activity 

within a frequency band could both increase and decrease during this time period. Though 

this thesis does not look into area-specific changes, an effort has been made to explore 

patterns of EEG activity occurring at a smaller time scale. The results from the dynamic 

analyses could pick up on changes in activity that are not reflected in the static EEG analysis. 

 

Dynamic EEG 

The change in pain intensity after restricted sleep was accompanied by changes in some, 

but not all, of the dynamic EEG indices (Hypothesis 4, see “Aims, objectives and 

hypotheses”). The dynamic analysis revealed that activity within the alpha band explained a 

significant amount of the variance in the VAS scores. Furthermore, activity in the theta band 

was associated with changes in VAS scores in the restricted sleep condition. For both the 

theta band and the alpha band, the relationship between EEG activity and pain was dependent 

on sleep condition. In the habitual sleep condition, higher pain ratings were associated with 

higher EEG activity. The opposite was true in the restricted sleep condition, where lower 

EEG activity in the theta and alpha band was associated with higher pain ratings.  

Sleep deprived subjects have shown similar EEG characteristics in the alpha band as those 

of chronic pain patients (Camfferman et al., 2017). Several studies report a decrease in alpha 

activity after sleep deprivation (Kim et al., 2001; Strijkstra et al., 2003), and in relation to 

painful stimuli (Gram et al., 2015; Nir et al., 2010). A study by Camfferman et al. (2017) 

sought to distinguish the effect of sleep loss from that of pain on waking EEG activity. Their 

results indicate that both elevated pain intensity and poor sleep quality is related to a decrease 

in alpha activity, and more specifically, a decrease in the frontal and parietal areas of the 

cortex. The general trend of decreased alpha activity observed in Camfferman et al. (2017) are 

in line with this thesis’ observation regarding alpha activity and pain after restricted sleep. 
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However, it contrasts the interaction effect seen in the habitual sleep condition, where an 

increase in alpha activity was related to higher pain scores. This finding seems to imply that 

lack of sleep can alter the way our brains processes pain, and that this might be reflected in 

changes occurring in the alpha rhythms. Some factors simply moderate the strength of a 

connection. Sleep might have a more impactful effect, changing the direction of the 

connection between pain perception and alpha waves.  

Regarding the effect of the theta band, an increase in theta activity is found in patients 

suffering of neurogenic chronic pain (Llinás et al., 1999; Sarnthein et al., 2006; Stern et al., 

2006). An experimental study on healthy subjects have on the other hand observed a decrease 

in theta activity when subjected to pain (Gram et al., 2015). While neither of these studies 

included sleep as variable, the theta rhythm nevertheless seems to be related to pain 

perception. In contrast to this thesis, the study by Camfferman et al. (2017) found no 

significant association between theta activity and pain, nor between theta activity and sleep 

quality. This could partially stem from differences in experimental design. Camfferman et al. 

(2017) gathered information on the subjects’ sleep through a questionnaire on sleep length 

and ratings of sleep quality. Furthermore, the subjects suffered from chronic pain. In the 

present study, subjects came to the lab after two consecutive nights of habitual sleep and two 

consecutive nights at work, and none of the study subjects were affected by chronic pain 

disorders. Additionally, Camfferman et al. (2017) looked at correlations, while this thesis 

analyzed mean group differences between two distinct sleep conditions. More research is 

needed in order to determine whether this thesis’ findings on theta activity are valid and can 

be reproduced in other samples. 

When it comes to the delta, beta and gamma band, the present study observed no 

significant changes related to perceived pain intensity. The lack of significant findings 

associated with the delta band was not surprising, as there are very few studies reporting a 

connection between sleep, pain and activity within the delta band. The beta and gamma band, 

however, are more often implicated in experiments on sleep deprivation and pain perception 

(e.g. Gram et al., 2015; Stern et al., 2006). Regarding the beta band, the lack of findings could 

stem from the way the beta band is defined. The study by Gram et al. (2015), which reports a 

significant correlation between beta activity and pain, subdivides the beta band into three 

bands; beta1, beta2 and beta3. The beta3 band is the only beta band found to correlate with 

pain. Similarly, a study by Stern et al. (2006) reports changes in the lower range of the beta 

band. Their beta band is defined as activity occurring within the 12-25 Hz range. In the 

present study, the beta band was defined as activity occurring within the 12-32 Hz range. The 
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inconsistencies in how frequency bands are defined is most prominent when it comes to the 

beta and gamma bands (Babiloni, C. et al., 2020). It is thus likely that this might account for 

some of the differences in reported findings.  

The lack of significant changes in the beta and gamma band could also be affected by the 

method of artifact removal, as some muscle artifacts still remained in the data after 

preprocessing (see Figure 9). The beta and gamma bands have been associated with artifacts 

from muscle contractions which can occur in the same frequency range as beta and gamma 

activity (Dowman et al., 2008). These artifacts, potentially originating from facial expressions 

related to pain, could have obscured pain-related changes in beta and gamma activity. A 

further expansion of the present study could employ additional artifact removal methods and 

subdivide the beta band prior to analysis. This could give more answers regarding the 

association between pain and beta and gamma activity.  

 

Underlying mechanisms 

The results from this thesis support the claim that sleep loss can alter pain perception. 

Which mechanisms that are involved does however remain unclear. Circling back to the 

introduction, one possible answer is through negative affect. Negative affect could also prove 

relevant for the observed changes in alpha activity in this thesis. The alpha band has 

repeatedly been linked with negative affect and depression, especially in prefrontal areas 

(Finn & Justus, 1999; Gollan et al., 2014;Zhang et al., 2019). Most studies investigating this 

matter focus on the asymmetry of the alpha EEG activity. For example, a hypoactivation of 

the alpha rhythm in the left frontal areas can be seen in subjects who were or had been 

depressed (Gollan et al., 2014). Zhang et al. (2019) propose that findings like these suggest 

that sleep deprivation could lead to a compromised emotional regulatory process. 

Furthermore, they hypothesize that activity within the alpha band could be involved in this 

process. However, there are also studies with contrasting findings, like an experiment by 

Gollan et al. (2014) which saw no changes in alpha activity during tasks meant to induce 

negative affect. A further expansion of the present study could give an indication as to 

whether subjects who are sleep deprived also have a hypoactivation of the alpha activity in 

frontal areas, or if it’s specific to negative affect and depression. 

Disregarding negative affect, some researchers attempt to explain the link between sleep 

and pain with inflammation. However, sleep loss has been linked empirically with both 

inflammation and negative affect. Instead of pitting these explanations up against each other, 

one might gain insights by investigating their interactions. A recent paper by Albrecht et al. 
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(2019) supports this notion, and states that a growing body of evidence associates 

neuroinflammation with both chronic pain and negative affect. This further suggests that 

inflammation could be a common substrate contributing to both conditions. Chronic pain is a 

multifaceted process and experience. It is unlikely that the causes and effects of pain are 

underpinned by a single straightforward mechanism. Rather, an interplay of biological events 

and cascades, such as sleep and inflammation, in combination with psychological concepts 

like negative affect is a more likely story.  

 

Method discussion 

The experiment that provided the data for this thesis was designed to investigate how night 

shift work affects pain sensitivity. More specifically, how sleep loss affects sensitivity to 

electrically induced pain, heat pain, cold pain, and pressure pain, as well as pain inhibition. 

Furthermore, the experiment was designed with event related analysis in mind. Other results 

from the experiment have already been published (Matre et al., 2017).  

Overall, there is less pain research that use continuous EEG than there are studies utilizing 

event related EEG analysis. Analysis of continuous EEG data could be an important approach 

to use in order to uncover the mechanisms of chronic pain. Continuous EEG analysis was thus 

chosen as the focus of the present study despite the fact that the experiment was optimized for 

analysis of ERPs.  

One of the shortcomings in the design is that the experiment lacks a control condition. 

Ideally, the experiment should have included a two-minute control condition with pain-free 

continuous EEG recordings in both the habitual sleep condition and in the restricted sleep 

condition. This would have made the dataset better suited for continuous EEG analysis on 

how sleep affects pain perception. The lack of a control condition makes it challenging to 

distinguish between the effect that sleep loss and pain has on waking EEG. There is a 

possibility that potential changes in activity within some of the bands could be of opposite 

characteristics and thereby offset one another, i.e. a sleep-related increase in activity and a 

similarly sized pain-related decrease in activity. The literature does however suggest that both 

sleep deprivation and pain have similar effects on alpha and theta activity. It is thus unlikely 

that sleep-related changes would hide the effect of pain, and vice versa, in these frequency 

bands. 

A strength of the experimental design in this study is that it ensures that the study subjects 

come into the lab without having slept the night before. It is difficult to administer sleep 

restriction in studies where participants are instructed to go home and stay awake the whole 
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night, or sleep a particular number of hours. When the subjects are engaged at their work 

during the night, this is not an issue. The choice of study subjects also means that the 

generalizability of the results is currently limited to shift work, as the habitual sleep of shift 

workers could differ from the habitual sleep of non-shift workers. Studies indicate that shift 

workers may be prone to diseases relating to disrupted circadian rhythms (Baron & Reid, 

2014; Haus & Smolensky, 2006; James et al., 2017) which could affect their habitual sleep. 

As the aim of the research project at STAMI is to investigate the health effects of shift work, 

the limitations of the generalizability are not a primary topic of concern.  

Another strength of this study lies in the paired comparison of the data. With a within-

subject design the participants act as their own control subjects. This means that real 

differences caused by the experimental conditions are less likely to remain undetected or 

covered up by random noise, diminishing the chances of a type II error. 

When it comes to the specific methods employed in the preprocessing and analyses of the 

data, the method of artifact removal should be mentioned. Removing artifacts from the EEG 

signal was done manually by rejecting stretches of the signal which were highly characterized 

by artifacts. This mimics the method of Gram et al. (2015), where resting EEG was cleaned 

by selecting 2 minutes of artefact-free EEG from a 2-5 min recording (removing 20% of the 

signal). However, in some of the EEG recordings in the present study more than 20% of the 

signal had to be cut. This led to a nonuniform change in the length of the EEG signal for each 

subject. The static EEG analysis was not affected by this, but there were some consequences 

for the dynamic EEG analysis. When the EEG signal was divided into 15 second windows, 

the length of the signal dictated how many data points were made for each subject. This led to 

some challenges in how to compare individual subjects in the graphic representation of the 

data. The issue was handled by limiting the number of datapoints to be plotted per subject, 

stopping at the point where a large amount of the subjects no longer had any contributing 

data. Despite this issue, manual methods for artifact removal also have advantages. For 

example, it gives the researcher complete control over which parts of the data that is included 

in the final analysis. Future researchers dealing with continuous EEG data should consider the 

use of software that performs artifact removal through source separation and subtraction 

rather than rejection of data sections. However, software driven artifact removal can be 

complicated, and will most likely also lead to loosing parts of the signal. The use of artifact 

software was not prioritized during the present analysis, due to the extent of the thesis work.  

A last point to mention is that the focus of this thesis has been on changes in global EEG 

activity, not area-specific activity. This is due to the timeline and the scope of the thesis, and 
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as a result of the number of electrodes used when recording EEG activity. Research indicates 

that one should use at least 35 electrodes, preferably more, in order to locate sources of the 

activity with a sufficient level of precision (Lau et al., 2012). As the cap used in this 

experiment had 32 electrodes, and two of them were used to track eye movements, the 

preciseness of source localization would not have been satisfactory. With this in mind, 

analysis of global EEG activity was deemed a better fit for this dataset than the analysis of 

area specific EEG. 

 

Conclusion 

The findings in this thesis strengthen the notion that sleep loss leads to a heightened 

sensation of pain. Additionally, analysis of dynamic EEG data indicated that both the theta 

band and the alpha band play a role in the connection between sleep and pain. No significant 

effects were identified for the other frequency bands. These findings contribute to the 

development of neurophysiological correlates of pain, both by confirming established 

findings, as well as by questioning the validity of others. We know that disruptions of sleep 

impacts pain perception, but we still have a fair way to go before we can fully understand the 

underlying mechanisms supporting this link. Negative affect and inflammation are two 

promising correlates of both pain and sleep that should be studied further. 
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Se også baksiden 

Appendix A 
Health form 

Kjære forsøksdeltaker 

Vi søker i dette prosjektet etter friske forsøkspersoner mellom 18 og 45 år. Hensikten med dette 
skjemaet er å kartlegge helsesituasjonen til forsøksdeltakerne. I tillegg ønsker vi å kartlegge 
noen andre faktorer som har betydning for smertefysiologiske forsøk. Vi ber deg om å svare på 
alle spørsmålene og returnere skjemaet ved å poste det i utlevert konvolutt. 

1. Hvor gammel er du? 25 

2. Kjønn Kvinne Mann 

Sett et kryss i kolonnene til høyre for hvert spørsmål Ja Nei 
3. Er du frisk?

4. Har du hatt vedvarende (mer enn 3 mnd) smerter i noen del av
kroppen de siste 2 årene?

5. Hvis du svarte ja på spørsmålet over, hvor sterke var disse smertene
på en skala fra 0 til 10, hvor 0 er ingen smerte og 10 er verst tenkelig
smerte?

6. Har du hatt, eller har, en sykdom i en av følgende kategorier:

a. Psykiatrisk sykdom (angst, depresjon inkludert)
b. Nevrologisk sykdom
c. Hjertesykdom
d. Lungesykdom (velregulert astma er lov)

7. Har du hodepine 2 dager eller mer pr. måned (i gjennomsnitt)

8. Hvis du av og til har hodepine, hvor sterk er hodepinen du vanligvis
har:

a. Mild
b. Moderat
c. Kraftig

9. Bruker du noen form for medisiner fast (inkludert
håndkjøpsanalgetika som paracet/ibux)?
Hvis ja, hvilken type: 

10. Har du høyt blodtrykk (mer enn 140/90 mmHg)?

Vet ikke 



11. Er du gravid?

12. Ammer du?

13. Har du reagert med overfølsomhet for elektrodepasta eller
saltholdige kremer tidligere?

14. Jobber du skiftarbeid med nattevakter? Spesifiser på neste side

15. Har du en diagnostisert søvnlidelse (eks. obstruktiv søvnapne,
insomni, essensiell hypersomni, narkolepsi)
Hvis ja, hvilken: 

16. For kvinner: Dato for siste menstruasjons første dag

Vi gjør oppmerksom på at du ikke må være alkoholpåvirket de siste 24 t før hver forsøksdag. 
Vi ber deg også om å avstå fra kaffe, te og røyk/snus siste time før du møter til 
undersøkelsen.  

Skiftarbeid 

Jobber du aldri nattevakter? ___________ 

Jobber du faste nattevakter? _________ 

Jobber du av og til nattevakter (ekstravakter)? _________  Hvis du svarte ja på en av de to 
siste spørsmålene, vennligst skisser vaktplanen for de siste to måneder nedenfor. 



Appendix B 

Information and consent form 

Forespørsel om deltakelse i forskningsprosjektet 

 ”Skiftarbeid og smertefølsomhet” 

Bakgrunn og hensikt 
Dette er et spørsmål til deg om å delta i en forskningsstudie hvor formålet er å bestemme om skiftarbeid 
fører til ulike helseplager. Personer som ikke jobber skift [    ] og personer som jobber varierende dag- 
og nattskift [    ] blir spurt om å delta.  

Skiftarbeid kan være ugunstig for helsa. Vi vet i dag for lite om eventuelle mekanismer for dette 
og det er bakgrunnen for at Statens arbeidsmiljøinstitutt (STAMI) har planlagt denne studien. 

Hva innebærer studien? 
Studien innebærer deltakelse i tre laboratorieforsøk ved STAMI, samt registrering av søvn to døgn i 
forkant av hvert disse forsøkene. Det første laboratorieforsøket foregår i forbindelse med montering av 
søvnmålerutstyret og varer i ca 1,5 time. De to andre laboratorieforsøkene foregår morgenen etter siste 
søvnregistrering og varer i ca 2,5 timer. To dager før laboratorieforsøk nr 2 må du også møte på STAMI 
ca en halvtime for å få påmontert søvnmålerutstyr. Personer som ikke jobber skift vil bli bedt om å 
redusere sin normale søvnlengde i en eller begge nettene forut for et av forsøkene. Personer som jobber 
skift deltar i de samme laboratorieforsøkene etter siste nattevakt i en serie av påfølgende nattevakter og 
etter minst 3 påfølgende dagvakter. Registrering av søvn skjer ved ustyr som registrerer bevegelser 
og/eller søvnmønster. Man sover hjemme som normalt. Montering av utstyret skjer ved STAMI 2 døgn 
før hvert laboratorieforsøk.  

Under laboratorieforsøkene vil det gjennomføres flere nevrofysiologiske tester. Et eksempel på 
en slik test er trykk mot huden. Noen stimuleringer kan være smertefulle. De nevrofysiologiske testene 
vil utføres flere steder på kroppen. De fleste testene er av kort varighet (få sekunder), mens noen varer i 
5-6 minutter. De korteste testene gjentas evt. flere ganger. En deltaker kan når som helst be om at
testene avbrytes. Under testene er det innlagt flere pauser. Testene er beskrevet i vedlegg A. Som
deltaker vil du bli bedt om å vurdere intensiteten til stimuleringene vha. en skala. Under enkelte av
testene vil hjerteaktivitet (EKG), blodtrykk, svetterespons og den elektriske aktiviteten fra hjernen
(EEG) registreres.

Mulige fordeler og ulemper 
Deltakelse i studien vil ikke gi noen personlige fordeler. Erfaringene fra studien vil imidlertid kunne 
bidra til bedre kartlegging av risikofaktorer for å utvikle kroniske smerter og kunnskap om planlegging 
av skiftordninger som er mindre helseskadelige. Andre fordeler kan være redusert sykefravær. 
Deltakelse i studien vil ikke medføre andre ulemper enn at de deltakerne som ikke jobber skift får 
mindre søvn forut for en av undersøkelsene.  

Hva skjer med informasjonen om deg?  
Informasjonen som registreres om deg skal kun brukes slik som beskrevet i hensikten med studien. Alle 
opplysningene og prøvene vil bli behandlet uten navn og fødselsnummer eller andre direkte 
gjenkjennende opplysninger. En kode knytter deg til dine opplysninger og prøver gjennom en 
navneliste. Det er kun autorisert personell knyttet til prosjektet som har adgang til navnelisten og som 
kan finne tilbake til deg. Det vil ikke være mulig å identifisere deg i resultatene av studien når disse 
publiseres  

Frivillig deltakelse 
Det er frivillig å delta i studien. Du kan når som helst og uten å oppgi noen grunn trekke ditt samtykke 
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til å delta i studien. Dette vil ikke få noen konsekvenser. Dersom du ønsker å delta, undertegner du 
samtykkeerklæringen på siste side. Om du nå sier ja til å delta, kan du senere trekke tilbake ditt 
samtykke. Dersom du senere ønsker å trekke deg eller har spørsmål til studien, kan du kontakte forsker, 
ph.d. Dagfinn Matre, tlf 23 19 51 00.  
 
Ytterligere informasjon om studien finnes i kapittel A – utdypende forklaring av hva studien 
innebærer. 
Ytterligere informasjon om biobank, personvern og forsikring finnes i kapittel B – Personvern, 
biobank, økonomi og forsikring.  
 
Samtykkeerklæring følger etter kapittel B.
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Kapittel A- utdypende forklaring av hva studien innebærer 
Kriterier for deltakelse 
For å delta i studien må du være mellom 18 og 60 år og forstå norsk muntlig og skriftlig. Du kan ikke 
delta dersom du har kroniske smerter (mer enn 3 måneder i løpet av siste 2 år), er avhengig av 
narkotika, er gravid, har psykiatrisk sykdom, har nevrologisk sykdom (mild hodepine 1 - 2 dager per 
måned er tillatt), har høyt blodtrykk, har kreft, eller bruker medikamenter mot epilepsi, depresjon eller 
nevrologiske lidelser funksjon. 
 
Laboratorieforsøk 
 
Nevrofysiologiske tester 
 
Laboratorietestene ved STAMI vil bestå av følgende tester. I de fleste testene blir du bedt om å 
bestemme intensiteten til hver enkelt stimulering. 
 
Del Test1 Beskrivelse 
1 Smerteterskler 

• Trykk 
• Varme 
• Kulde 
• Elektrisk 

Smerteterskler bestemmes ved at ved at intensiteten på 
stimuleringen gradvis økes inntil moderat smerte kjennes 
og testen avbrytes. Gjentas 2-3 ganger for hver type 
stimulering. 

 EEG monteres En hette med 32 elektroder plasseres på hodet. Litt gele 
sprøytes i hver elektrode slik at vi kan registrere den 
elektriske aktiviteten fra hjernen.  

2 Elektrisk stimulering 
• 3 x 30 elektriske 

stimuleringer. 

Gjennom to elektroder klistret på armen sendes elektrisk 
strøm (1-5 mA). Hver elektrisk stimulering er veldig kort 
(noen millisekunder) og oppleves som et lite nålestikk 
mot huden.   

3 Spørreskjema Hver forsøksdag vil du bli bedt om å svare på et 
spørreskjema om helseplager. 

4 Varmestimulering + 
smerte på motsatt arm 
• Varmestim 
• Varmestim + smerte 

på motsatt arm 

Et varmelegeme legges inntil huden på armen og varmes 
opp til du kjenner moderat smerte. Dette gjentas 3-5 
ganger. Varmelegemet ligger inntil huden i 2 min. Disse 
varmetestene gjentas etter smertefull stimulering på 
motsatt arm.  

 EEG avmonteres EEG-hetten tas av og du får mulighet til å vaske håret 
med sjampo. 

1Nøyaktig rekkefølge og antall tester kan avvike noe fra det som er beskrevet her. EEG = elektroencephalografi (registrering 
av hjernens elektriske aktivitet).  
 
Søvnmåling 
Søvn registreres i 2 døgn før hver laboratorietest og montering av søvnmåler gjøres ved STAMI eller på 
din arbeidsplass om morgenen 2 dager før. Søvnmåleren består av registreringsenhet på størrelse med et 
armbåndsur og festes med en reim til ankel, håndledd eller overarm. Søvnmåleren tas av før lab-
forsøket dag 3.  
 
Dagbok 
Mellom dag 1 og i en uke etter dag 3 vil du bli bedt om å fylle ut et skjema over hvilke helseplager du 
har hatt den dagen. Skjemaet vil fylles ut på papir, via internett eller via mobiltelefon.  
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Tidsskjema 
Deltakelse i studien går over to perioder, en periode med normal søvn og en med redusert søvn. For 
deltakere som ikke jobber skift innebærer perioden med redusert søvn f.eks at du blir bedt om å sove 
halvparten av din normale nattesøvn de siste to nettene før et av lab-forsøkene. Noen deltakere vil bli 
bedt om å avstå fra søvn en natt. For deltakere som jobber skift vil perioden med redusert søvn være 
perioden med tre påfølgende nattevakter. 
 

 
 
 
Mulige bivirkninger 
Ved elektrisk- og varmestimulering som beskrevet i dette prosjektet blir huden av og til rød som ved 
solbrenthet. Dette vil være over i løpet av noen døgn og vil ikke gi noen varige skader. Huden i dette 
området kan også bli noe overfølsom for berøring, noe som varer maksimalt i noen timer. Det er lite 
sannsynlig at du vil hemmes av denne overfølsomheten. Ellers er det ikke rapportert noen kjente 
bivirkninger.  
 
Fordeler og ulemper ved deltakelse 
Studien innebærer ingen personlige fordeler ut over en økonomisk kompensasjon for å dekke tapt 
arbeidsfortjeneste og utgifter til transport. Ulempene ved å delta er knyttet til følgene av redusert søvn, 
samt laboratorietestene som innebærer noe smerte. Denne smerten er av en slik art at den ikke skader 
kroppen, men kun gir et relativt kortvarig ubehag.   
 
Eventuell kompensasjon til og dekning av utgifter for deltakere 
Det gis en kompensasjon på 150 kr/time til deltakerne for tidsbruk. Tidsbruk ved labforsøket dag 1 
(første gang) anslås til ca 1,5 time. Tidsbruk ved labforsøket dag 2 og 3 anslås til ca 2,5 timer hver gang. 
I tillegg dekkes reisekostnader med offentlig transport til/fra STAMI t.o.m. Ruters sone 4 (ruter.no). 
Godtgjørelsen blir utbetalt 2-3 uker etter siste forsøksdag.  

http://www.ruter.no/
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Kapittel B - Personvern, biobank, økonomi og forsikring 
 
Personvern 
Opplysninger som registreres om deg er fødselsdato, kjønn, samt informasjon fra ulike spørreskjema og 
undersøkelsene som blir utført. Det er kun prosjektleder og tilknyttede prosjektmedarbeidere som har 
tilgang til datamaterialet. Statens arbeidsmiljøinstitutt ved administrerende direktør er 
databehandlingsansvarlig. Vi ber også om samtykke til at du kan kontaktes for eventuell deltagelse i senere 
studier med lignende problemstillinger. 
 
Utlevering av materiale og opplysninger til andre 
Hvis du sier ja til å delta i studien, gir du også ditt samtykke til at prøver og avidentifiserte opplysninger 
utleveres til samarbeidspartnere. Dette kan være land med lover som ikke tilfredsstiller europeisk 
personvernlovgivning.  
  
Rett til innsyn og sletting av opplysninger om deg og sletting av prøver  
Hvis du sier ja til å delta i studien, har du rett til å få innsyn i hvilke opplysninger som er registrert om 
deg. Du har videre rett til å få korrigert eventuelle feil i de opplysningene vi har registrert. Dersom du 
trekker deg fra studien, kan du kreve å få slettet innsamlede prøver og opplysninger, med mindre 
opplysningene allerede er inngått i analyser eller brukt i vitenskapelige publikasjoner.  
 
Økonomi  
Studien er finansiert gjennom interne forskningsmidler fra Statens arbeidsmiljøinstitutt og/eller ved 
midler fra Norges forskningsråd. Det er ingen interessekonflikter knyttet til studiens finansiering. 
 
Forsikring 
Deltakerne er dekket av en skadeforsikring tegnet for dette prosjektet. 
 
Informasjon om utfallet av studien 
Som deltaker i prosjektet har du rett til å informeres om resultatet i studien. Dette fås ved henvendelse 
til Dagfinn Matre. 
 

Samtykke til deltakelse i studien 
 
Jeg er villig til eventuelt å bli innbudt til en ekstra forsøksdag    Ja / Nei 
 
 
Jeg er villig til å delta i studien  
 
 
---------------------------------------------------------------------------------------------------------------- 
(Signert av prosjektdeltaker, dato) 
 
 
Jeg bekrefter å ha gitt informasjon om studien 
 
 
---------------------------------------------------------------------------------------------------------------- 
(Signert, rolle i studien, dato) 



Appendix C 
MATLAB script: Importing timestamps and VAS scores from raw data files to MATLAB 

 
%% DEL 1 
% Laster inn data 
 
clear, close all 
source_dir = '/Users/elinerodsjo/Documents/MATLAB/STAMI/cpm/cpm-korr'; 
files = dir(fullfile(source_dir, '*-cpm*.xlsx'));  
SampleRate=512; %setter SampleRate 
  
%% DEL 2 
%Henter data fra excelfiler, klargjør for videre bruk 
  
for i = 1:length(files)  
    %henter subjektfil, i indikerer subjektnummer 
    data = xlsread(fullfile(source_dir, files(i).name)); 
     
    % lager tabell med verdier for VASon og pain6 for alle subjekter 
    VASon_pain6(i,1)=data(1,1); %legger subjektkode i kolonne 1 
    
    % for loopen henter VASon og pain6 timestamp 
    for ii=1:size(data,1) %ii indikerer radnummer 
        if data(ii,5)==999 & data(ii,5)>data(ii+1,5) %finner VASon 
           VASon_pain6(i,2)=data(ii+1,2); %legger VASon inn i tabellen 
  
        elseif data(ii,4)==0 & data(ii+1,4)==1 %finner pain6 
            VASon_pain6(i,3)=data(ii+1,2); %legger pain6 inn i tabellen 
        end 
    end 
     
    %% DEL 3:  
    % forberede VAS som er kompatibel med EEGdataen 
    subject = data(1,1); %brukes til å navngi filer 
    VAS_score = data(:,3); %kopierer VAS data fra excel 
    VAS_upsampled = repelem(VAS_score,SampleRate);  
    
    save(['VAS_upsampled_',num2str(subject)], 'VAS_upsampled') 
     
end 
save('VASon_pain6.mat','VASon_pain6'); 
  



Appendix D 
MATLAB script: Adding timestamps and VAS scores to EEG files 

 
 
%% DEL 1 
%Laster inn tabell med tidsmarkører 
%laster inn alle filer som benyttes i scriptet 
  
clear, close all 
cd('/Users/elinerodsjo/Documents/MATLAB/Preprosessering master EEG') 
load VASon_pain6.mat 
VASfiles = dir('*VAS_upsampled*.mat'); 
cd('/Users/elinerodsjo/Documents/MATLAB/STAMI/ExportEEG'); 
EEGfiles = dir('*cpm_512Hz*.mat'); %lister alle EEGfilene 
length_experiment=120; %120 sekunder, 2 min 
%dette scriptet kjøes før artefaktredigering av EEGfilene 
 
 
%% DEL 2 
%Legger inn VASscorer som en kanal 
%legger inn tidsmarkører i hver enkelt EEG fil 
  
for i = 1%:length(EEGfiles)                
    cd('/Users/elinerodsjo/Documents/MATLAB/STAMI/ExportEEG'); 
    load(EEGfiles(i).name)  %laster inn et subjekt om gangen 
    
    %lager markører for start- og stop-tid i eksperimentet 
    ii = (VASon_pain6(i,3));     
    %henter sekundverdi for subjekt(i) 2=VASon, 3=pain6 
    exp_start = ii*SampleRate;       
    % * sekundverdien med SampleRate fordi data er samplet til 512 Hz 
    %"SampleRate" hentes fra EEGdatafilen 
    exp_end = exp_start+(length_experiment*SampleRate);   
    %finner slutttidspunkt for eksperimentet (VASon+lengde*samplerate) 
    
    %legger til start-markør i EEGdata 
    Markers(3).Position = exp_start; 
    Markers(3).Type = 'time'; 
    Markers(3).Points = 1; 
    Markers(3).Description = 'start'; 
    Markers(3).ChannelNumber = 0; 
     
    %legger til slutt-markør i EEGdata 
    Markers(4).Position = exp_end; 
    Markers(4).Type = 'time'; 
    Markers(4).Points = 1; 
    Markers(4).Description = 'end'; 
    Markers(4).ChannelNumber = 0; 
         
    % lager VAS som "kanal" med samme lengde/sampling rate som EEGdataen 
    load(VASfiles(i).name)   
    %henter VAS_upsampled generert av forrige script (a)   
    % fører til prompt "add its folder to the MATLAB path" --> svar ja 
    VAS_x = zeros(size(VEOG)); 
    VAS_x(1:size(VAS_upsampled),1) = VAS_upsampled; 



     
    %legger til info om 'VAS_upsampled' til variablene Channels & ChannelCount  
    i EEGfilen 
    Channels(34).Phi=0; 
    Channels(34).Theta=0; 
    Channels(34).Radius=0; 
    Channels(34).Name='VAS_x'; 
    ChannelCount = 34; 
     
    %lagrer endringer permanent i EEGdatafilen for hvert subjekt 
    cd('/Users/elinerodsjo/Documents/MATLAB/Preprosessering master EEG') 
    save(EEGfiles(i).name, 'VAS_x', 'Channels', 'ChannelCount', 'Markers','- 
    append') 
     
end 
 



Appendix E 
MATLAB script: Continuous wavelet transform, static EEG analysis 

 
%dette scriptet tar i overkant av 1 time å kjøre 
%% Overordnet kodestruktur 
   
%nivå 1: Sette directory, åpne eeglab, definere konstante variabler, klargjøre 
arrays 
    % nivå 2, del 1: Batch processing loop (i) for å laste en EEGfil om gangen 
    % sett inn info som skal stå utenfor ii-loop /klargjøre arrays osv. 
       % nivå 3, del 1: Loop (ii) for analyse fra en kanal om gangen 
           % steg 1.1 + 1.2: Definere signalet 
           % steg 2: Definere nødvendig input info, gjøres også utenfor i-
loopen 
           % steg 3: Kjøre continous wavelet analysis 
           % steg 4: Produsere plots/output --> OPTIONAL 
       % nivå 3, del 2, steg 5: lagre output i matrise 
       % nivå 3, del 3: regne mean og sum for alle frekvensbånd 
       % end nivå 3 (end ii-loop) 
    % nivå 2, del 2, steg 5: Lagre nødvendige outputs i fil med tilhørende 
subjektnummer 
    % nivå 2, del 2: Slette minne av current fil før eeglab åpner ny fil 
    % end nivå 2 (end i-loop) 
 % lagre data fra alle subjekter i cross-subject-fil 
 % end nivå 1, koden er ferdig 
  
%% 
  
%nivå 1 
clear, close all; 
cd('/Users/elinerodsjo/Documents/MATLAB/eeglab2019_0'); 
eeglab; 
  
source_dir = 
'/Users/elinerodsjo/Documents/MATLAB/eeglab2019_0/EEGLABfiler_filt50Hz'; 
%sjekk at du oppgir riktig mappe 
EEGfiles_list = dir(fullfile(source_dir, '*clean1_filt50*.set')); %sjekk at 
alle filnavn har en fellesnevner 
  
%definere variabler 
plot_spectral = 0; % endre til "= 1" om jeg ønsker å plotte spectral data for 
alle kanalene per fil 
channel_nr = 1:30; %antall kanaler, definerer antall rader i x,y,z matrisen + 
antall runder ii-loopen kjører per fil 
%1:30 heller enn 32 fordi knalene for VEOG og HEOG ikke skal v√¶re med i 
analysen 
nr_of_files = length(EEGfiles_list); %antall filer som skal analyseres (antall 
unike eksperimentalsessions) 
Fs = 512; %definerer samplerate, brukes av contwt (Fs = DT = tid mellom 
datapunkter) og i utregning av EEG_total time 
VAS_channel = 34; %definere hvilken kanal som inneholder VAS-score 
  
%brukes i contwt 
deltaJ=0.07;  



%DEFAULT=0.25, brukes av contwt, setter intervallstørrelsen mellom scale-
faktorer, lavere verdi gir høyere oppløsning 
s0_scale = 0.0078;  
%DEFAULT=2*DT=(2*1/Fs), brukes av contwt, settter verdien av den minste scale-
faktoren (satt til ca 0.5 Hz, da dette er det laveste nivået jeg er 
interesserte i å analysere) 
J1_scale = 119;  
%brukes av contwt, setter antallet scale-faktorer, altså hvor mange morlet-
waves av ulike størrelse som sammenlignes med signalet 
  
%forbereder vektorer 
VAS_mean = zeros(1,1);  
%forberede array for VAS_mean  
EEG_total_time = zeros(1,1);  
%forberede array for EEG_total_time i sekunder  
all_EEGfiles_total_time = zeros(nr_of_files,2);  
%forberede array for å hente ut data om lengden av signalet (s) på tvers av 
subjekter, hensikt: enklere tilgang senere 
all_EEGfiles_mean_VAS = zeros(nr_of_files,2);  
%forberede array for å hente ut data om mean VAS på tvers av subjekter, 
hensikt: enklere tilgang senere 
all_EEGfiles_frq_avg_power_pr_channel = zeros(channel_nr(end),5,nr_of_files); 
%forberede array for å hente ut summert wavelet coefisienter på tvers av 
subjekter, hensikt: enklere tilgang senere 
check_files = zeros(length(EEGfiles_list),1);  
%forberede vektor for å markere eventuelle filer med feil i tidsmarkør 
frq_avg_power_pr_channel = zeros(channel_nr(end),6);  
%forbereder subjekt-spesifikke matriser for plassering av sum av wavelet-coeff 
per frekvensbpnd per kanal,  kolonner= 5 frekvensbånd(+ 1 kolonner for 
kanalnummer), en verdi per frekvensbånd per kanal 
  
  
%nivå 2, del 1 
for i = 1:length(EEGfiles_list) %setter antall filer som skal analyseres 
    [ALLEEG EEG CURRENTSET ALLCOM] = eeglab; 
    EEG = 
pop_loadset('filename',EEGfiles_list(i).name,'filepath','/Users/elinerodsjo/Do
cuments/MATLAB/eeglab2019_0/EEGLABfiler_filt50Hz'); %laster en fil, nummer "i" 
    [ALLEEG, EEG, CURRENTSET] = eeg_store( ALLEEG, EEG, 0 ); 
    eeglab redraw; 
       
    %forutsetning for steg 1, hensikt: sjekker at info om start og stop-      
    tidspunkt i EEG dataen ligger på forventet plass,  
    %if true --> henter ut tidspunkt for start&stop 
    if all(EEG.event(2).description == 'start') & (EEG.event(end).description  
    == 'end') 
        start = EEG.event(2).latency;  

  %finner starttidspunkt, hentes ut fra EEG.event.latency, rad 2 
        stop  = EEG.event(end).latency;  

  %finner stopptidspunkt, hentes ut fra EEG.event.latency, siste rad 
    else %if not true, legger inn subjektfilnummer i check_files, jeg sjekker  
    denne filen og kontrollerer evt filer som er markert 
        check_files(i,1) = 1; 
        continue 
    end 
  



    VAS_score = EEG.data(VAS_channel,start:stop); %henter ut VAS-score for  
    eksperimentvinduet, start & stop er definert tidligere 
    VAS_mean = mean(VAS_score); %regner gjennomsnitt for VAS-score over  
    eksperimentvinduet 
        
    %definerer signalet (finne lengde av EEGdataen etter artefaktfjerning) 
    EEG_total_time (1,1) = length(EEG.data(:,start:stop))/Fs; %gir antall sec 
  
    %nivå 3, del 1 
    for ii = 1:channel_nr(end) %definert tidligere %ii=kanalnummer 
         
        %steg 1 
        Signal = (EEG.data(ii,start:stop)); %definerer signalet, altså hvilken  
        kanal som analyseres i nåv√¶rende itterasjon av ii-loopen 
         
        %steg 3 
        [wave,period,scale,coi, dj, paramout, k] =  
        contwt(Signal,1/Fs,[],deltaJ,s0_scale,J1_scale);  
        % utfører cwt, benytter konstanter som er definert tidligere 
         
         
        if ii == 1 
            x = length(Signal);  

% representerer tid/length of signal 
            y = length(scale);  

% representerer scales -  konverteres til pseudofrekvens senere 
            z = channel_nr(end);  

% er definert tidligere, antall kanaler 
            spectral_data = zeros(x,y,z); 
  
            %konvertere scales til pseudo-frekvens 
            pf = scal2frq(scale,"morl"); 
            %følgende 2 linjer trengs ikke, med mindre man vil eksportere 
            %tabellen med oversikt over hvilke pseudofrekvenser som 
            %tilsvarer hvilke scales 
            %T = [scale(:) pf(:)]; 
            %T = array2table(T,'VariableNames',{'Scale','Pseudo_Frequency'}); 
  
            %finne grenseverier for frekvensbåndene, til bruk for å indeksere  
            i spectral_data 
            %delt inn i 5 frekvensbånd, lagt til rette for subindeling av  
            enkelte bånd dersom rom for utvidelse av analyse 
 
            find_delta = find(pf>=1 & pf<=4); %delta (1‚Äì4 Hz)  
            find_theta = find(pf>=4 & pf<=8 ); %theta (4‚Äì8 Hz) 
            find_alpha = find(pf>=8 & pf<=12 ); %alpha (8‚Äì12 Hz) 
            %find_alpha1 = find(pf>=8 & pf<=10 ); %alpha1 (8‚Äì10 Hz) 
            %find_alpha2 = find(pf>=10 & pf<=12 ); %alpha2 (10‚Äì12 Hz) 
            find_beta = find(pf>=12 & pf<=32 ); %beta (12‚Äì32 Hz) 
            %find_beta1 = find(pf>=12 & pf<=18 ); %beta1 (12‚Äì18 Hz) 
            %find_beta2 = find(pf>=18 & pf<=24 ); %beta2 (18‚Äì24 Hz) 
            %find_beta3 = find(pf>=24 & pf<=32 ); %beta3 (24‚Äì32 Hz) 
            find_gamma = find(pf>=32 & pf<=70 ); %gamma (32‚Äì70 Hz)  
        end 
               



        %steg 4 
        if plot_spectral == 1 %plotte data 
            figure(ii); clf; 
            subplot(211) 
            plot(Signal) 
            subplot(212) 
            imagesc(abs(wave));  

%dersom du ønsker plot, bytte ut "wave" med å indexe inn i et 
frekvensbånd i spectral_data      

        end 
         
        %nivå 3, del 2, steg 5 
        spectral_data(:,:,ii) = wave';  

  %plasserer wavelet-coeff inn i cross-channel variabel  
      
        %regne sum (av gjenomsnitt av absoluttveridene i wave per scale- 

  faktor) for hvert frekvensbånd innad i en kanal  + plassere i subjekt-    
  spesifikk tabell       

        %finner først gjenomsnittet over hele signalet innen hver scale per  
  Kanal, summerer derreter alle scales innen et frekvensbånd per kanal 

            
  %dyn_spectral_data(:,find_delta,p,u) - definerer område i matrisen som    
  har relevant data for et gitt frekvensbånd 

        %hvor (:,find_XX,ii) = hele lengden av signalet, alle scale-faktorer  
  som tilsvarer et gitt frekvensbånd, innad kanal ii 

        %abs(dyn_spectral_data) fordi vi ønsker absoluttvedien 
        %mean(abs(dyn_spectral_data)) fordi vi ønsker et gjenomsnittet for  

  hele signalet per scale-faktor, alså per kolonne i matrisen 
        %sum(mean(abs(dyn_spectral_data(z,x,z,w))), 'all') fordi vi ønsker en  

  samlet sum for gjenomsnittene i det definerte dataområdet 
  
        frq_avg_power_pr_channel(ii,1)=ii; %kanalnummer 
        frq_avg_power_pr_channel(ii,2) =  

  sum(mean(abs(spectral_data(:,find_delta,ii))),'all');  
  %aktivitet innen deltabåndet,  

        frq_avg_power_pr_channel(ii,3) =  
  sum(mean(abs(spectral_data(:,find_theta,ii))),'all'); 

        frq_avg_power_pr_channel(ii,4) =  
  sum(mean(abs(spectral_data(:,find_alpha,ii))),'all'); 

        %frq_avg_power_pr_channel(ii,4) =  
  sum(mean(abs(spectral_data(:,find_alpha1,p))),'all'); 

        %frq_avg_power_pr_channel(ii,5) =  
  sum(mean(abs(spectral_data(:,find_alpha2,p))),'all'); 

        frq_avg_power_pr_channel(ii,5) =  
  sum(mean(abs(spectral_data(:,find_beta,ii))),'all'); 

        %frq_avg_power_pr_channel(ii,6) =  
  sum(mean(abs(spectral_data(:,find_beta1,p))),'all'); 

        %frq_avg_power_pr_channel(ii,7) =  
  sum(mean(abs(spectral_data(:,find_beta2,p))),'all'); 

        %frq_avg_power_pr_channel(ii,8) =  
  sum(mean(abs(spectral_data(:,find_beta3,p))),'all'); 

        frq_avg_power_pr_channel(ii,6) =  
  sum(mean(abs(spectral_data(:,find_gamma,ii))),'all'); 

  
        %T_frq_avg_power_pr_channel = array2table(frq_avg_power_pr_channel,  

  'VariableNames', {'Channel_number','delta','theta','alpha1','alpha2', 



  'beta1', 'beta2', 'beta3', 'gamma'}); 
        T_frq_avg_power_pr_channel = array2table(frq_avg_power_pr_channel, 

  'VariableNames',{'Channel_number','delta', 'theta', 'alpha',  
  'beta', 'gamma'}); 

 
         
    end 
     
    %legge data i cross-subject filer med subjektkoder for EEG_total_time &   
    VAS_mean, og fil med sum for frekvensbånd(kanalvis) for alle deltagere 
     
    all_EEGfiles_total_time(i,1) = str2double(EEGfiles_list(i).name(2:4)); 
    all_EEGfiles_total_time(i,2) = EEG_total_time; 
    T_all_EEGfiles_total_time = array2table(all_EEGfiles_total_time, 
    'VariableNames', {'Subject_number','Total_time_sec'}); 
  
    all_EEGfiles_mean_VAS(i,1) = str2double(EEGfiles_list(i).name(2:4)); 
    all_EEGfiles_mean_VAS(i,2) = VAS_mean; 
    T_all_EEGfiles_mean_VAS = array2table(all_EEGfiles_mean_VAS, 
    'VariableNames',{'Subject_number','VAS_mean'}); 
  
    all_EEGfiles_frq_avg_power_pr_channel(:,:,i) =  
    (frq_avg_power_pr_channel(:,2:6));  
    %trenger ikke ta med konlonne for å skrive kanalnummer i 3Dmatrisen 
     
    %kan evt sette inn kode fra script_save_for_export her (+lenger oppe) 
     
    %nivå 2, del 2, steg 5 
    %save([(EEGfiles_list(i).name(1:end-4)),'_spectral'],'spectral_data',      
    'VAS_score', 'VAS_mean', 'EEG_total_time',  
    %spectral_data overstiger 2GB og tar lang tid å lagre 
    /ikke mulig uten MATfile version 7.3 
     
    %lagre en fil uten 'spectral data' så det går fortere å laste inn ved  
    senere bruk 
    save([(EEGfiles_list(i).name(1:end-4)),'_frq_sum_stat'],'VAS_score',  
    'VAS_mean', 'EEG_total_time', 'frq_avg_power_pr_channel', 
    'T_frq_avg_power_pr_channel'); 
     
    %nivå 2, del 2 
    EEG = pop_delset( EEG, [1] ); %fjerne minnet om feridg prosessert EEG-fil  
    før ny lastes inn 
 
end 
  
%nivå 1 
  
filename = 'all_EEGfiles_stat'; 
save(filename, 'T_all_EEGfiles_total_time', 'T_all_EEGfiles_mean_VAS', 
'all_EEGfiles_frq_avg_power_pr_channel'); 
%dersom denne koden kjøres puljevis, må "all_EEG_files_stat"-filene lagres med 
ulike navn manuelt for at de ikke skal skrives over av neste runde 
  
  



%% SAMLING AV DATA + EKSPORT AV DATA FRA .MAT TIL EXCEL 
%denne delen av scriptet tar <1 min å kjøre 
%sjekk at filer generert av scriptet over er flyttet til riktig mappe 
%Sjekk at antall filer i mappen EEGLABfiler_frq_avg(.mat) er som foventet 
(n=92) 
  
%oppgavene i dette scripet kan enten gjøres med en egen for-løkke som 
%henter inn hver enkelt subjektfil ELLER lagre underveis i 
spectralanalyseloopen (scriptet over) 
%jeg velger egen for-løkke for at det skal v√¶re enklere å kjøre koden/fikse 
feil i koden når den er delt inn i funksjonelle moduler 
  
clear, close all; 
  
cd('/Users/elinerodsjo/Documents/MATLAB/eeglab2019_0'); 
load marker_sleep_condition.mat %laster info om søvnbetingelse og ID-markør/K-
code 
  
cd('/Users/elinerodsjo/Documents/MATLAB/eeglab2019_0/EEGLABfiler_frq_sum(.mat)
'); %path til mappen med filer som skal brukes 
source_dir = 
'/Users/elinerodsjo/Documents/MATLAB/eeglab2019_0/EEGLABfiler_frq_sum(.mat)';  
EEGfiles_list = dir(fullfile(source_dir, '*_frq_sum_stat*.mat')); %velger 
hvilke filer som skal lastes inn basert på fellesnevner i filnavn 
  
data = zeros(length(EEGfiles_list),12); %forberede matrise    
%lage header-rad  
%header = 
{'ID','code','sleep_condition','VAS_mean','delta','theta','alfa1','alfa2','bet
a1','beta2','beta3','gamma','KSS','MRT'}; 
header = 
{'ID','code','sleep_condition','VAS_mean','delta','theta','alfa','beta','gamma
','KSS','MRT','time'}; 
  
%legge inn data i matrix 
        
for i=1:length(EEGfiles_list) 
    load(EEGfiles_list(i).name) %laster inn fil 
  
     
    subject_code = str2double(EEGfiles_list(i).name(2:4));  
    %finner subjektkoden, med utgangspunkti filnavn 
    if subject_code==264  
    %fjerner data fra noen kanaler fordi par-fil mangler data 
        p = [10 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30]; 
    elseif subject_code==264  
    %fjerner data fra noen kanaler fordi par-fil mangler data 
        p = [15 16 17 18 19 20 22 23 24 25 26 27 28 29 30]; 
    else 
        p = 1:30; 
    end 
     
    %regner ut sum power i frekvensbånd på tvers av kanaler (med utgangspunkt  
    i forrige script, hvor jeg regnet  gjenomsnitt av wavelet koeffisientene  
    over tid innad i hver scale-faktor, og deretter summerte gjenomsnittene  



    innad i hvert frekvensbånd per kanal 
     
    sum_delta = sum(frq_avg_power_pr_channel(p,2));  
    %summerer tall-verdier fra alle kanalene innad i delta-båndet 
    sum_theta = sum(frq_avg_power_pr_channel(p,3)); 
    sum_alpha = sum(frq_avg_power_pr_channel(p,4)); 
    %mean_alfa1 = mean(frq_avg_power_pr_channel(p,4));  
    %mean_alfa2 = mean(frq_avg_power_pr_channel(p,5)); 
    %alternavtiv dersom subindeling av frekvensbånd er inkludert i analysen 
    sum_beta = sum(frq_avg_power_pr_channel(p,5)); 
    %mean_beta1 = mean(frq_avg_power_pr_channel(p,6)); 
    %mean_beta2 = mean(frq_avg_power_pr_channel(p,7)); 
    %mean_beta3 = mean(frq_avg_power_pr_channel(p,8)); 
    %alternavtiv dersom subindeling av frekvensbånd er inkludert i analysen 
    sum_gamma = sum(frq_avg_power_pr_channel(p,6)); 
  
  
    %huskeliste for plassering av data (12 kolonner) 
        %data(:,1) = ID 
        %data(:,2) = code 
        %data(:,3) = markør for søvnbetingelse  
        %data(:,4) = VAS_mean (mean VAS) 
        %data(:,5) = d (delta) 
        %data(:,6) = t (theta) 
        %data(:,7) = a (alpha) 
        %data(:,8) = b (beta) 
        %data(:,9) = g (gamma) 
        %data(:,10) = KSS (Karolinska Sleepiness scale),  

  limes inn i excel senere 
        %data(:,11) =  mean reaction time,  
        limes inn i excel senere 
        %data(:,12) =  lengden av signalet (s) etter artefakt fjerning  
     
    %henter info om ID og søvnbetingelse fra "marker_sleep_condition.mat" 
    K = find(sleep_condition_marker(:,2)==subject_code); 
         
    %plasserer data 
    data(i,1) = sleep_condition_marker(K,1); 
    data(i,2) = str2double(EEGfiles_list(i).name(2:4)); 
    data(i,3) = sleep_condition_marker(K,3); 
    data(i,4) = VAS_mean; 
    data(i,5) = sum_delta; 
    data(i,6) = sum_theta; 
    data(i,7) = sum_alpha; 
    %data(i,X) = sum_alfa1; 
    %data(i,X) = sum_alfa2; 
    data(i,8) = sum_beta; 
    %data(i,X) = sum_beta1; 
    %data(i,X) = sum_beta2; 
    %data(i,X) = sum_beta3; 
    data(i,9) = sum_gamma; 
    data(i,12) = EEG_total_time(1,1); 
     
    %sjekk at alle subjekt-spesifikke variabler fjernes før neste iterasjon av  
    loopen.  
    %IKKE clear all, vi trenger at 'data' forblir i workspace 



    clear VAS_mean frq_avg_power_pr_channel EEG_total_time  
    T_frq_avg_power_pr_channel 
    
end 
  
%konkatenere header og datamatrix 
spectral_analysis = [header;num2cell(data)]; 
  
%lagre som .mat fil 
save('all_EEGfiles_spectral_analysis', 'spectral_analysis'); 
  
%lagre som excel fil 
  
xls_spectral_analysis =array2table(num2cell(data), 
'VariableNames',{'ID','code','sleep_condition','VAS_mean','delta','theta','alf
a','beta','gamma','KSS','MRT','time'}); 
%alternavtiv dersom subindeling av frekvensbånd er inkludert i analysen 
%xls_spectral_analysis =array2table(num2cell(data), 
'VariableNames',{'ID','code','sleep_condition','VAS_mean','delta','theta','alf
a1','alfa2','beta1','beta2','beta3','gamma','KSS','MRT'}); 
  
T=xls_spectral_analysis; 
filename = 'all_EEGfiles_spectral_analysis_1603.xlsx'; 
writetable(T,filename,'Sheet',1,'Range','A1') 
   
  



Appendix F 
MATLAB script: Continuous wavelet transform, dynamic EEG analysis 

 
%% dynamic spectral analysis (både contwt & moving average VAS) 
  
clear, close all; 
cd('/Users/elinerodsjo/Documents/MATLAB/eeglab2019_0'); 
eeglab; %åpner eeglab 
  
load marker_sleep_condition.mat  
%laster info om søvnbetingelse og ID-markør/K-code  
  
source_dir = 
'/Users/elinerodsjo/Documents/MATLAB/eeglab2019_0/EEGLABfiler_filt50Hz';  
%path til mappen med filer som skal benyttes i analysen 
EEGfiles_list = dir(fullfile(source_dir, '*clean1_filt*.set'));  
%velger hvilke filer som skal lastes inn basert på fellesnevner i filnavn 
  
%definere variabler og forberede vektorer 
VAS_channel = 34;  
%definerer hvilken kanal som inneholde VAS-score 
EEG_chan = 1:30;  
%definerer hvilke kanaler som inneholder relevant EEGdata (her er HEOG og VEOG 
kanalene fjernet) 
check_files = zeros(length(EEGfiles_list), 1);  
%forberede vektor for å markere eventuelle filer med feil i tidsmarkør 
time_length = zeros(1,length(EEGfiles_list));  
%forberede vektor for å lagre info om hvor mange 15 sek tidsperioder hvert 
signal har  
  
Fs = 512;  
%definerer samplerate, brukes av contwt (Fs = DT = tid mellom datapunkter)  
%og i utregning av EEG_total time 
win_sec = 15;  
%antall sekund for vindustørrelse som skal brukes i analysen 
win_size = Fs*win_sec;  
%antall kolonner i signalmatrisen som tilsvarer 15 sek %samplerate = 512,  
%hvert 512te kolonne = ett sekund 15 sek = 512x15 = 7680 
step_size = win_size/2;  
%gir 50% overlapp mellom hvert vindu, i dette tilfellet 7.5 sek overlapp 
  
%definere konstaner, brukes i contwt 
deltaJ=0.07; %DEFAULT=0.25 
%brukes av contwt, setter intervallstørrelsen mellom scale-faktorer,  
%lavere verdi gir høyere oppløsning 
s0_scale = 0.0078; %DEFAULT=2*DT=(2*1/Fs) 
%brukes av contwt, settter verdien av den minste scale-faktoren  
%(satt til ca 0.5 Hz, da dette er det laveste nivået jeg er interesserte i) 
J1_scale = 119;  
%brukes av contwt, setter antallet scale-faktorer 
%altså hvor mange morlet-waves av ulike størrelse som sammenlignes med 
signalet 
  
%nivå 00, del 1 
for i = 1:length(EEGfiles_list)  



    %setter antall filer i-loopen behandler = antall "obervasjoner" i studien 
    [ALLEEG EEG CURRENTSET ALLCOM] = eeglab; 
    EEG = pop_loadset('filename',EEGfiles_list(i).name,  
    'filepath','/Users/elinerodsjo/Documents/MATLAB/eeglab2019_0/ 
    EEGLABfiler_filt50Hz');  
    %laster inn subjekt-fil 
    [ALLEEG, EEG, CURRENTSET] = eeg_store( ALLEEG, EEG, 0 ); 
    eeglab redraw; 
     
    %sjekker at info om start og stoptidspunkt ligger på forventet plass,  
    %if true --> henter ut tidspunkt for start&stop 
    if all(EEG.event(2).description == 'start') & (EEG.event(end).description  
    == 'end') 
        start = EEG.event(2).latency; 
        %finner starttidspunkt, hentes ut fra EEG.event.latency, rad 2 
        stop  = EEG.event(end).latency;  
        %finner stopptidspunkt, hentes ut fra EEG.event.latency, siste rad 
    else %if not true, legger inn subjektfilnummer i check_files 
        check_files(i,1) = str2double(EEGfiles_list(i).name(2:4)); 
        continue 
    end 
     
    EEG_signal = EEG.data(EEG_chan(1:end),start:stop);  
    %lager matrise med relevant EEGdata, med tidligere definerte EEG-kanaler  
    og tidsmarkører 
    VAS_signal = EEG.data(VAS_channel,start:stop);  
    %definerer VAS-signalet,med tidligere definerte VAS-kanal og tidsmarkører 
  
    
    step_values = 1:step_size:length(VAS_signal)-win_size;  
    %finner verdien for begynnelsen av alle tidsvindu som skal analyseres,  
    brukes av for-løkka (i), %-win_size for å unngå erroren "exceeded array  
    bounds" 
  
    dyn_VAS_mean = zeros(1,length(step_values));  
    %forbereder vektor for å lagre mean VAS-score for hvert tidsvindu 
  
    subject_code = str2double(EEGfiles_list(i).name(2:4));  
    %finner subjektkode med utgangspunkt i fil-navn 
    K = find(sleep_condition_marker(:,2)==subject_code);  
    %finner indx for plassering av subjektkoden i "marker_sleep_condition.mat" 
    dyn_2D_spectral_data = zeros(length(step_values),10); 
    %forbereder matrise for å holde data om hvert frekvensbånd + id,code ++,  
    antall rader=antall tidsvindu 
    time_length(1,i) = length(step_values);  
    %plasserer info om hvor mange 15 sek tidsperioder hvert signal/subjekt har 
     
        for v = 1:step_size:length(VAS_signal)-win_size  
        % evt step_values(1:end)    
            indx = find(step_values==v);  
            %finner iterasjonnummer for loopen ved å matche verdien av ii til  
            tilsvarende verdi i step_values 
            dyn_VAS_mean(1,indx) = mean(VAS_signal(1,v:v+win_size));  
            %plasserer meanVAS for et gitt tidsvindu (v) i en subject— 
            spesifikk vektor 
        end 



  
        for ii = 1:EEG_chan(end)  

  % for-løkke for å kunne analysere en kanal om gangen 
  
                for iii = 1:step_size:length(EEG_signal)-win_size 
                    Signal_dyn = EEG_signal(ii,iii:iii+win_size-1);  
                    %ii = kanalnr, iii:iii+win_size-1 = current start av vindu  
                    til start+vindusstørrelse -1 
                    [wave,period,scale,coi, dj, paramout, k] =  

  contwt(Signal_dyn,1/Fs,[],deltaJ,s0_scale,J1_scale);  
                    %utfører CWT 
                     
                    indx = find(step_values==iii);  
                    %finner iterasjonnummer for loopen ved å matche verdien av  
                    ii til tilsvarende verdi i step_values 
                     
                    pf = scal2frq(scale,"morl");   
                    %oversetter scale-verdi til pseudo-frekvens   
                    find_delta = find(pf>=1 & pf<=4); %delta (1‚Äì4 Hz)  
                    find_theta = find(pf>=4 & pf<=8 ); %theta (4‚Äì8 Hz) 
                    find_alpha = find(pf>=8 & pf<=12 ); %alpha (8‚Äì12 Hz)             
                    find_beta = find(pf>=12 & pf<=32 ); %beta (12‚Äì32 Hz) 
                    find_gamma = find(pf>=32 & pf<=70 ); %gamma (32‚Äì70 Hz) 
  
                    %forbereder matrise for spektraldataen under første  
                    itterasjon av for-løkka 
 
                     if iii==1 
                        x = win_size; %(length(Signal_eeg));  
                        % representerer tid, lengden av signalet som       

analyseres 
                        y = length(scale); % representerer pseudo-frekvens 
                        z = EEG_chan(end); % representerer de ulike kanalene,   

er definert tidligere 
                        w = length(step_values); %er lik antall tidsvindu i i- 

loopen 
                        dyn_spectral_data = zeros(x,y,z,w); 
                        %altså er data (:,:,:,1) alle koeffisientene i  

tidsvindu 1, (:,:,:,2) = tidsvindu 2 
                     end 
                                    
                     dyn_spectral_data(:,:,ii,indx) = wave';  
                     %evt abs(wave) %plasserer koeffisientene fra output  

   "wave" i subject-spesifikk 4D-matrise 
                      
                end 
                  
        end 
         
        for u=1:length(step_values)  
        %for-løkke plasserer data fra hvert frekvensbånd innad i hvert  

  tidsvindu i en 2D-matrise 
             
            if subject_code==264  
            %fjerner data fra noen kanaler fordi par-fil mangler data 



                p = [10 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29  
    30]; 

            elseif subject_code==264  
            %fjerner data fra noen kanaler fordi par-fil mangler data 
                p = [15 16 17 18 19 20 22 23 24 25 26 27 28 29 30]; 
            else 
                p = EEG_chan; %1:30 
            end 
        
            dyn_2D_spectral_data(:,1) = sleep_condition_marker(K,1);  
            %legger inn ID-nummer, fra filen marker_sleep_condition 
            dyn_2D_spectral_data(u,2) = subject_code;  
            % legger inn K-nummer 
            dyn_2D_spectral_data(:,3) = sleep_condition_marker(K,3);  
            %legger inn søvnbetingelse 
            dyn_2D_spectral_data(u,4) = u;  
            % markerer rekkefølgen på tidsvindu (1:n) 
            dyn_2D_spectral_data(u,5) = dyn_VAS_mean(1,u);  
            %legger inn mean VAS for hvert tidsvindu 
             
            %finner gjenomsnitt av koeffisientene for signalet innad i hver  

scale-faktor,  
            %summerer deretter alle gjenomsnitt-koeffisientene innad i hvert  

frekvensbånd per kanal 
                %dyn_spectral_data(:,find_delta,p,u) - definerer område i  

    matrisen som har relevant data for et gitt frekvensbånd 
                %hvor (:,find_XX,p,u) = lengden av signalet (15 sek), alle  

    scale-faktorer som tilsvarer et gitt frekvensbånd, alle  
    kanaler i tidsvindu "u" 

                %abs(dyn_spectral_data) fordi vi ønsker absoluttvedien 
                %mean(abs(dyn_spectral_data)) fordi vi ønsker et gjenomsnittet  

    for det definerte signalet per scale-faktor, alså per rad i  
    matrisen 

                %sum(mean(abs(dyn_spectral_data(z,x,z,w))), 'all') fordi vi  
    ønsker en samlet sum for gjenomsnittene i det definerte  
    dataområdet 

  
            dyn_2D_spectral_data(u,6) = sum(mean(abs(dyn_spectral_data 

(:,find_delta,p,u))),'all'); 
            dyn_2D_spectral_data(u,7) = sum(mean(abs(dyn_spectral_data 

(:,find_theta,p,u))),'all'); 
            dyn_2D_spectral_data(u,8) = sum(mean(abs(dyn_spectral_data 

(:,find_alpha,p,u))),'all'); 
            dyn_2D_spectral_data(u,9) = sum(mean(abs(dyn_spectral_data 

(:,find_beta,p,u))),'all'); 
            dyn_2D_spectral_data(u,10) = sum(mean(abs(dyn_spectral_data 

(:,find_gamma,p,u))),'all'); 
        end 
          
    save([(EEGfiles_list(i).name(1:end-4)),'_dyn_spectral_sum'], 
    'dyn_2D_spectral_data', 'dyn_VAS_mean'); 
     
    %evt %save([(EEGfiles_list(i).name(1:end-4)),'_dyn_spectral'], 
    'dyn_spectral_data','dyn_VAS_mean');  
    % men 'dyn_spectral_data' gjør filen for stor til p lagres effektivt  
 



    EEG = pop_delset( EEG, [1] );  
    %fjerne minnet om feridg prosessert EEG-fil før ny lastes inn 
  
end 
  
  
filename = 'all_EEGfiles_dyn_stat' 
save(filename, 'time_length'); 
  
%% konkatenerer alle subjekt-spesifikke filer til en cross-subject fil 
  
clear close all 
  
load all_EEGfiles_dyn_stat.mat 
source_dir = '/Users/elinerodsjo/Documents/MATLAB/eeglab2019_0';  
%sjekk at riktig mappe er oppgitt 
EEGfiles_list = dir(fullfile(source_dir, '*_dyn_spectral_sum*.mat'));  
%sjekk at alle filnavn har en fellesnavner 
  
dyn_data_long_format = zeros(sum(time_length),10); 
  
%formatere data til lengdeformat, for statistisk testing 
for i=1:length(EEGfiles_list) 
    load(EEGfiles_list(i).name)  
    %laster inn alle subjkt-spesifikke filer, en om gangen  
    indx = find(dyn_data_long_format(:,1)==0);  
    %finner første tomme rad, legger ny "tabell" inn under forrige 
    dyn_data_long_format((indx(1):indx(1)+time_length(i)-1),:) =  
    dyn_2D_spectral_data(:,:); 
    clear dyn_2D_spectral_data dyn_VAS_mean 
end 
  
dyn_data_wide_format = zeros(length(EEGfiles_list)*6,max(time_length)+3); 
  
%breddeformat, for plotting  
% 
% for i=1:length(EEGfiles_list) 
%     load(EEGfiles_list(i).name)  
% %laster inn alle subjkt-spesifikke filer, en om gangen  
%     at = size(dyn_2D_spectral_data,1); 
%  
%     dyn_data_wide_format(i*6-5:i*6,1) = dyn_2D_spectral_data(1,1); %ID 
%     dyn_data_wide_format(i*6-5:i*6,2) = dyn_2D_spectral_data(1,2); %code 
%     dyn_data_wide_format(i*6-5:i*6,3) = dyn_2D_spectral_data(1,3); %sleep 
%     dyn_data_wide_format(i*6-5,4:3+at) = dyn_2D_spectral_data(:,5)'; %VAS 
%     dyn_data_wide_format(i*6-4,4:3+at) = dyn_2D_spectral_data(:,6)'; %delta 
%     dyn_data_wide_format(i*6-3,4:3+at) = dyn_2D_spectral_data(:,7)'; %theta 
%     dyn_data_wide_format(i*6-2,4:3+at) = dyn_2D_spectral_data(:,8)'; %alfa 
%     dyn_data_wide_format(i*6-1,4:3+at) = dyn_2D_spectral_data(:,9)'; % beta 
%     dyn_data_wide_format(i*6-0,4:3+at) = dyn_2D_spectral_data(:,10)'; %gamma 
%  
%     clear dyn_2D_spectral_data dyn_VAS_mean 
% 
% end 
  



delta_plot=zeros(length(EEGfiles_list),max(time_length)+1); 
theta_plot=zeros(length(EEGfiles_list),max(time_length)+1); 
alpha_plot=zeros(length(EEGfiles_list),max(time_length)+1); 
beta_plot=zeros(length(EEGfiles_list),max(time_length)+1); 
gamma_plot=zeros(length(EEGfiles_list),max(time_length)+1); 
VAS_plot=zeros(length(EEGfiles_list),max(time_length)+1); 
  
for i=1:length(EEGfiles_list) 
    load(EEGfiles_list(i).name)  
    %laster inn alle subjkt-spesifikke filer, en om gangen  
    at = size(dyn_2D_spectral_data,1); 
  
     
    delta_plot(i,1) = dyn_2D_spectral_data(1,3); %sleep 
    delta_plot(i,2:1+at) = dyn_2D_spectral_data(:,6)'; %delta 
    theta_plot(i,1) = dyn_2D_spectral_data(1,3); %sleep 
    theta_plot(i,2:1+at) = dyn_2D_spectral_data(:,7)'; %theta 
    alpha_plot(i,1) = dyn_2D_spectral_data(1,3); %sleep 
    alpha_plot(i,2:1+at) = dyn_2D_spectral_data(:,8)'; %alfa 
    beta_plot(i,1) = dyn_2D_spectral_data(1,3); %sleep 
    beta_plot(i,2:1+at) = dyn_2D_spectral_data(:,9)'; % beta 
    gamma_plot(i,1) = dyn_2D_spectral_data(1,3); %sleep 
    gamma_plot(i,2:1+at) = dyn_2D_spectral_data(:,10)'; % gamma 
    VAS_plot(i,1) = dyn_2D_spectral_data(1,3); %sleep 
    VAS_plot(i,2:1+at) = dyn_2D_spectral_data(:,5)'; %VAS 
     
    clear dyn_2D_spectral_data dyn_VAS_mean 
end 
  
filename = 'all_EEGfiles_dyn_stat'; 
save(filename, 'time_length', 'dyn_data_long_format', 'dyn_data_wide_format', 
'delta_plot','theta_plot', 'alpha_plot', 'beta_plot', 'gamma_plot', 'VAS_plot' 
); 
  
xls_dyn_data_long_format =array2table(num2cell(dyn_data_long_format), 
'VariableNames',{'ID','code','sleep_condition','time','VAS_mean','delta','thet
a','alfa','beta','gamma'}); 
T=xls_dyn_data_long_format; 
filename = 'all_EEGfiles_dyn_spectral_analysis.xlsx'; 
writetable(T,filename,'Sheet',1,'Range','A1') 
  
 
 



Appendix G 
Example of Q-Q plots 

 
 
Figure G1 

Q-Q plot of residuals from the static delta band model 

 
Note. Overall, the line looks straight, suggesting that the assumption of normal distribution of 

residuals is not violated. The Q-Q plot indicates that there are a couple of outliers. These could be 

investigated further and considered removed from the dataset.  

 
 
 
Figure G2 

Q-Q plot of residuals from the dynamic delta band model 

 
Note. Overall, the line looks straight, suggesting that the assumption of normal distribution of 

residuals is not violated. However, there are some deviations from the expected line towards the 

tails. To improve the relative normality of the data further, one could consider transforming the 

dataset.  



Appendix H 
Liner Mixed Model summaries of static EEG analyses 

 
 
Table H1 

Linear mixed model summary of variables predicting Delta EEG activity 

Fixed effects Coefficient 

(absolute activity in au) 

95% CI p-value 

Sleep 1.64 [-4.94, 8.22] .626 

Cons 101.00 [95.50, 107.00] <.001 

Note. Reference group for the variable sleep condition is habitual sleep. Coefficients and 

CIs in this table are divided by e+07. 

 
 
 
Table H2 

Linear mixed model summary of variables predicting Theta EEG activity 

Fixed effects Coefficient 

(absolute activity in au) 

95% CI p-value 

Sleep 0.81 [-1.05, 2.67] .394 

Cons 29.6 [0.27, 0.32] <.001 

Note. Reference group for the variable sleep condition is habitual sleep. Coefficients and 

CIs in this table are divided by e+07. 

 
 
 
Table H3 

Linear mixed analysis summary of variables predicting Alpha EEG activity 

Fixed effects Coefficient 

(absolute activity in au) 

95% CI p-value 

Sleep 0.09 [-0.87, 1.06] .850 

Cons 13.00 [12.00, 15.00] <.001 

Note. Reference group for the variable sleep condition is habitual sleep. Coefficients and 

CIs in this table are divided by e+07. 

 
 
 
 
  



 
Table H4 

Linear mixed model summary of variables predicting Beta EEG activity 

Fixed effects Coefficient 

(absolute activity in au) 

95% CI p-value 

Sleep 0.36 [-1.31, 2.03] .671 

Cons 22.60 [20.8, 24.40] <.001 

Note. Reference group for the variable sleep condition is habitual sleep. Coefficients and 

CIs in this table are divided by e+07. 

 
 
 
Table H5 

Linear mixed model summary of variables predicting Gamma EEG activity 

Fixed effects Coefficient 

(absolute activity in au) 

95% CI p-value 

Sleep 0.13 [-1.26, 1.52] .858 

Cons 13.40 [12.30, 14.50] <.001 

Note. Reference group for the variable sleep condition is habitual sleep. Coefficients and 

CIs in this table are divided by e+07. 

 
  



Appendix I 
Liner Mixed Model summaries of dynamic EEG analyses 

 
Table I1 

Linear mixed model summary of variables predicting dynamic VAS-scores (delta band) 

Fixed effects Coefficient 

(VAS in cm) 

95% CI p-value 

Sleep 1.519 [0.622, 2.414] .001 

Time 0.063 [0.031, 0.094] <.001 

Delta -0.001 [-0.001, 0.001] .620 

Sleep#Delta -0.001 [-0.002, 0.001] .320 

Cons 4.622 [3.716, 5.528] <.001 

Note. Reference group for the variable sleep condition is habitual sleep.  

 
 
Table I2 

Linear mixed model summary of variables predicting dynamic VAS-scores (beta band) 

Fixed effects Coefficient 

(VAS in cm) 

95% CI p-value 

Sleep 0.774 [0.104, 1.444] .024 

Time 0.066 [0.034, 0.098] <.001 

Beta -0.001 [-0.003, 0.002] .529 

Sleep#Beta 0.001 [-0.002, 0.005] .426 

Cons 4.619 [3.756, 5.482] <.001 

Note. Reference group for the variable sleep condition is habitual sleep.  

 
 
Table I3  

Linear mixed model summary of variables predicting dynamic VAS-scores (gamma band) 

Fixed effects Coefficient 

(VAS in cm) 

95% CI p-value 

Sleep 0.598 [0.065, 1.130] .028 

Time 0.067 [0.035, 0.098] <.001 

Gamma -0.002 [-0.006, 0.002] .248 

Sleep#Gamma 0.004 [-0.001, 0.008] .086 

Cons 4.699 [3.883, 5.514] <.001 

Note. Reference group for the variable sleep condition is habitual sleep.  
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