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Sammendrag

Akuttmedisinske tjenester har veert av interesse for operasjonsanalyse siden midten av 1960-
tallet. Siden den gang har det blitt publisert en rekke artikler som omhandler lokalisering
av ambulansestasjoner, allokering av ambulanser til stasjoner, reallokering av ambulanser,
samt evalueringsmetoder. Denne avhandlingen presenterer et nytt problem for lokalisering
av ambulansestasjoner og allokering av ambulanser i heterogene omrader. Det nye problemet
er kalt "the Maximum Expected Performance Location Problem for Heterogeneous Regions
(MEPLP-HR)". Problemet plasserer ut ambulanser pa bakgrunn av flere prestasjonsmal og
regner ut sannsynligheten for at det vil vaere en ambulanse ledig ved en gitt stasjon. MEPLP-
HR er mer realistisk for heterogene omrader enn tidligere problemer ettersom MEPLP-HR

regner ut behandlingsraten til ambulanser pa bakgrunn av omradet de dekker.

En blandet heltall og lineser modell er utviklet for a lgse problemet. Sannsynligheten for
ledige ambulanser er funnet ved & benytte kgteori sammen med behandlingsraten og ankom-
straten av innringninger for hver ambulansestasjon. I motsetning til tidligere modeller blir
sannsynligheten for ledige ambulanser beregnet inne i modellen. Pa grunn av dette er det
ikke ngdvendig & bruke iterative metoder for a lgse modellen. Modellen er gjort strammere
ved hjelp av gyldige ulikheter og en omformulering av en restriksjon. Med omformuleringen

og de gyldige ulikhetene blir bade lgsningene og de optimistiske grensene forbedret.

Modellen er testet pa Sgr-Trgndelag. For dette fylket er modellen i stand til & finne en
realistisk lgsning som har en hgyere forventet prestasjonsoppnaelse enn dagens lgsning for
hver av de gitte prestasjonsmalene. Modellen er ogsa testet med forskjellig vekting av de ulike
prestasjonsmalene, og det viser seg at vektingen har mye a si for hvordan ambulansestasjonene

og ambulansene blir plassert ut.

Modellen har blitt brukt til & analysere tre konkrete utfordringer og lgsninger knyttet til
akuttmedisinske tjenester. Den fgrste utfordringen er hvorvidt man skal ta flere tidsperioder
i betraktning ved lokalisering av ambulansestasjoner. Resultatene fra analysen indikerer at
det er tilstrekkelig & planlegge for den travleste perioden. Den andre utfordringen omhan-

dler tiltak som kan kompensere for & legge ned et lokalt akuttmottak. Ved a legge ned det

il



lokale akuttmottaket vil transporttiden til neermeste akuttmottak gke betraktelig for sonene
i neerheten av det nedlagte akuttmottaket, men ved a gi det bergrte omradet en ekstra am-
bulanse og ambulansestasjon kan effekten til en viss grad reduseres. Den tredje utfordringen
gar ut pa at ambulanser ofte er opptatt med vanlige transportoppdrag. En lgsning pa denne
utfordringen er & overfgre alle vanlige transportoppdrag til dedikerte transportkjoretgy. Anal-
ysen av denne lgsningen viser at det er potensiale for a redusere antallet ambulanser med en

femtedel dersom dedikerte transportkjoretgy innfgres.

Denne avhandlingen bestar av en rapport og to artikler. Rapporten er den viktigste delen
av oppgaven og inneholder alle vare resultater og analyser. Artiklene er vedlagt i slutten av
denne avhandlingen. Den fgrste artikkelen er "Strategic ambulance location for heterogenous
regions". Artikklen presenterer problemet, den foreslatte modellen og tekniske egenskaper.
Den andre artikkelen, "Strategic Emergency Medical Service Planning - Three Case Studies",
presenterer hvordan modellen kan brukes som et beslutningsstotteverktgy. Artiklene er basert

pa rapporten og derfor vil artiklene og rapporten veere delvis overlappende.
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Summary

Emergency medical services (EMS) have been of interest for operations research since the
middle of the 1960°‘s. Since then there have been published numerous articles on the loca-
tion of ambulances stations, allocation of ambulances, dispatching of vehicles, re-deployment
of ambulances and evaluation methods. This thesis presents a new problem for the loca-
tion of ambulance stations and allocation of ambulances in heterogeneous regions, referred
to as the Maximum Expected Performance Location Problem for Heterogeneous Regions
(MEPLP-HR). The problem applies multiple performance measures as well as station spe-
cific probabilities for the availability of ambulances at a station. Compared with earlier
problems, the MEPLP-HR is more realistic for heterogeneous regions as the service rate of

ambulances in the problem depends on the area a station covers.

A mixed integer linear model is proposed to solve the problem. The probability for available
ambulances is found by utilizing queuing theory together with the service rate and arrival
rate of calls for each station. In contrast to recent models, the probability for available
ambulances is calculated within the model. Hence, it is not necessary to use iterative solution
approaches. The formulation is strengthened using valid inequalities and a reformulation of
a restriction. With the strengthening constraints, both the solutions and the best bounds

are improved.

The computational studies are performed on the heterogeneous region of Sgr-Trgndelag in
Norway. For this region, the model is able to find a realistic solution that has a higher
expected performance than the current solution on each of the given performance measures.
The model is also tested with different weights for the performance measures, with the
conclusion that the weights significantly affect the locations and allocation of stations and

ambulances.

By using the model as a decision support tool, three real managerial cases are analyzed
together with potential solutions. The first case concerns the importance of taking multiple
time periods into account when planning. The results from the computational study indicate

that it is sufficient to plan for the busiest period. The second case analyzes the consequences



and potential mitigating actions for closing down a local emergency room (ER). By closing
the local ER, the travel time to ER will increase significantly for the zones close to the local
ER. However, adding an extra ambulance and ambulance station can to some degree mitigate
this effect. The third case concerns the benefit of transferring all non-urgent transport calls
to designated non-urgent transport vehicles. The analysis in this case shows that there is a
potential to reduce the number of ambulances by one fifth if designated non-urgent vehicles

are introduced.

This thesis consists of a report and two articles. The report is the main part of the thesis and
contains all of our results and analyses. The articles are found as separate works after the
report. The first one, "Strategic ambulance location for heterogeneous regions", presents the
problem, the proposed model and technical characteristics. The second article, "Strategic
Emergency Medical Service Planning - Three Case Studies", presents how the model can be
applied as a decision support tool. The articles are based on the report, hence the report

and articles are to some degrees overlapping.

vi
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1 Introduction

Emergency medical services (EMS) refers to the provision of out-of-hospital acute medical care
and the transport of patients to hospitals for definitive care. In 1792, Dominique Jean Larrey,
a surgeon in Napoleon Bonaparte’s Imperial Guard, was the first to develop ambulances, in
the modern sense of specially equipped vehicles for carrying sick or injured people, usually
to hospital. In the 220 years since, EMS has evolved and expanded to become a significant

component of modern health-care systems. (Ingolfsson, 2013)

The general objective for EMS is to provide the best possible service to the public. However,
what is defined as the best possible service depends on which perspective is used. From a
medical perspective the best possible service can be to save as many as possible. From an
economical perspective it can be to maximize social welfare, or utilize the resources in the
most effective and efficient way. From a political perspective the best possible service can
be to give the public a fair and trusting service. Hence, there are several different views on
what is characterized as high performance for EMS. Performance is in this context defined

as to which degree an organization is achieving its objectives.

To quantify the level of performance, performance measures are used. A performance mea-
sure can be defined as a quantifiable indicator used to assess how well an organization is
achieving its desired objectives (WebFinance, 2014). As the different perspectives have dif-
ferent objectives, the performance measures are also different. For EMS, examples of different
performance measures used are the number of survivors from cardiac arrest, percentage of
population covered within a response time, annual turnover rate, average defibrillation rate

and patient satisfaction rate.

To achieve the desired performance, decision support tools are used. Decision support tools
help the decision maker to analyze problems and make robust and well founded decisions.
For EMS, operations researchers have developed decision support tools for several decades.
Operations Research (OR) has in general focused on strategic, tactical and, in the later
years, operational problems. The main strategic problem has been the location of ambulance

stations and ambulances. Tactical problems include sizing the fleet of ambulances and which
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areas the different stations should cover. Among the operational problems that have been
investigated are which ambulance should be dispatched to a call and the reallocation of
ambulances. In the recent years EMS has tracked more data and the computational power
have increased. This has increased the opportunities for applying the results of OR as decision
support, and the number of publications of OR on EMS has grown rapidly the last decade
(Ingolfsson, 2013).

The focus in this report is the strategic and tactical problem of locating ambulance stations
and allocating ambulances to the stations. In essence, the problem can be described as
deploying a limited number of ambulances and ambulance stations so that the performance of
the emergency medical services is maximized. The decisions made about strategic problems
affect the solution space for both tactical and operational decisions. Hence, to construct
robust solutions for strategic location problems, it is important to incorporate tactical and
operational aspects. These aspects are for instance which areas the different stations should

cover and the probability that there is an available ambulance at a specific station.

In an OR context, the problem consist of a set of zones with demand for EMS as well as a set
of potential locations for ambulance stations. The demand for EMS is the expected number
of calls for EMS. There is a certain performance value of that an ambulance from a specific
station responds to a call from a specific zone. This value depends on which performance
measure is used. Each zone with demand for EMS has a ranked list of stations. If there is an
available ambulance at the primary (first ranked) station, an ambulance from that station
will respond to the call. If not, an ambulance from the secondary (second ranked) station
will respond if there are any ambulances available there, and so on. The probability of having
an available ambulance at a station is referred to as the available probability and depends on
the number of ambulances on the station, the number of calls the station receives, as well as
the time spent on each call. The number of calls the station receives per hour is referred to

as arrial rate, while the average time spent on a call is referred to as service time.

In the recent developments of location and allocation problems, the focus has been on the
performance measures. The earliest models maximized the number of people covered within

a given response time threshold, while the models presented in Erkut et al. (2008) maxi-
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mized the expected number of survivors from cardiac arrest. Knight et al. (2012) built on
the research of Erkut et al. (2008) and combined the survival measure with cover measures
and demonstrated the benefit of using heterogeneous outcome measures. However, these
problems considered homogeneous regions where the service time was assumed constant. For
heterogeneous regions, i.e. regions with urban and rural areas, the assumption of homoge-
neous service time is incorrect. In addition, the most advanced models are non-linear and

require iterative solution approaches that do not guarantee convergence.

This report presents a new problem for the location of ambulance stations and allocation
of ambulances for heterogeneous regions. In particular, the problem takes into account that
the service time depends on the area a station covers as well as the distance to the hospital.
The problem is referred to as the maximum expected performance location problem for
heterogeneous regions (MEPLP-HR). Furthermore, a mixed integer linear model is proposed
to solve the problem. The model is tested on the heterogeneous county of Sgr-Trgndelag.
The focus of this report is on explaining the problem and model, exploring the the key
characteristics of the model, and showing how the model can be applied as a decision support
tool. The characteristics include the model’s ability to estimate the available probabilities,
the impact of the key parameters and how the model can be reformulated and strengthened.

Summarized, this report contributes to the literature in the following way:

e Formalizing a new ambulance station location and ambulance allocation problem. The
problem is more realistic for heterogeneous regions than earlier problems as the service

time depends on the area the station covers.

e Proposing a mixed integer linear program (MIP) model for the problem that can be

solved using commercial software and does have theoretical convergence.

e Exploring the key characteristics of the model by performing a case study on the het-

erogeneous county of Sgr-Trgndelag

e Showing how the proposed model can be used as a decision support tool for real man-

agerial cases.
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Figure 1: Map of Norway in grey and the county of Sgr-Trgndelag in blue

The region used for the computational study in this report is the county of Sgr-Trgndelag.
The county of Sgr-Trgndelag is seen as the blue area in Figure 1. There are approximately
300,000 inhabitants in Sgr-Trgndelag, with two thirds living in urban areas (Segr-Trgndelag
Fylkeskommune, 2012). The EMS administrator in Ser-Tregndelag is Akuttmedisinsk Kom-
munikasjonssentral (AMK). AMK receives approximately 30,000 calls for EMS yearly, with
one third being categorized as red, one third being yellow, and one third being green non-
urgent transport calls. The red calls are the most time critical calls. When the AMK receives

a call, the general response process is as follows:

1. Call is screened, classified and allocated to one or more available ambulance(s)
2. Ambulance departs for incident scene
3. Ambulance arrives at scene and intervention by paramedics starts

4. Ambulance returns to hospital, station or is dispatched to new incident

However, this is just an overview of the key operational EMS process. In addition, there are

several other key processes for EMS, such as planning and training. All these processes are
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important for AMK to be performing well. As the scope of work for AMK contains several
different processes, the performance of AMK is divided into several performance objectives.
The list beneath presents the objectives as defined by one of the AMK centrals in Norway,

and the sequence is based on relative importance.

1. The patient should receive timely and correct treatment
2. Partners and the public should have confidence in the organization
3. The employees should have a good working environment and professional development

4. The organization should appear transparent and be cost-effective

To provide the best possible service to the public, all of these performance objectives are
important. Nonetheless, for OR and this report the performance objective of primary interest

is number 1.

In the next chapter the development of strategic ambulance location problems and models is
presented. Chapter 3 describes the problem for the MEPLP-HR, while Chapter 4 proposes a
mathematical model for the problem. In Chapter 5 the Hypercube Queuing Model (HQM)
is explained. Chapter 6 presents the input data for the model, while Chapter 7 explains the
implementation of the model and the HQM. Chapter 8 presents the computational studies
performed in this report. Chapter 9 presents how the model can be applied to analyze
and find solutions to two managerial cases. Finally, Chapter 10 is concluding remarks and

proposes ideas for further work.

There have also been prepared two articles in this thesis. They are found as separate works
after the report. The first one, "Strategic ambulance location for heterogeneous regions",
presents the problem, the proposed model and technical characteristics. The second article,
"Strategic Emergency Medical Service Planning - Three Case Studies", present how the
model can be applied as a decision support tool. The articles are based on this report, hence

the report and articles are to some degrees overlapping.



2 Literature Review

This chapter contains a brief overview over relevant literature for this report. EMS has been
of interest for OR since the middle of the 1960‘s. Since then there have been published nu-
merous articles on the location of ambulances stations, allocation of ambulances, dispatching
of vehicles, re-deployment of ambulances and evaluation methods. A review on strategic, tac-
tical and operational problems and models is presented in Brotcorne et al. (2003). For this
report the strategic and tactical problems of location and allocation are considered relevant
and are reviewed. There is also a section on how a given location and allocation is evaluated.
The aim of this chapter is to introduce the reader to important models and how they have

developed over time.

This chapter starts with a presentation of non-probabilistic models that elaborate on the
maximum covering location problem (MCLP), the P-median problem and the maximum
survival location problem (MSLP). After that probabilistic models are reviewed with focus
on the maximal expected survival location model for heterogeneous patients (MESLMHP).
The chapter ends with a review of evaluation methods, in particular the Hypercube Queuing

Model.

2.1 Non-probabilistic Models

In the beginning the research focused on non-probabilistic models. These models consider
the non-probabilistic situation, thus the probability for busy ambulances is not considered.
The problem is to locate either ambulance stations or ambulances to geographical locations,
referred to as zones. However, the models are the same for both ambulance stations and

ambulances.

2.1.1 Covering Models

Covering models focus on covering parts of or whole populations within a given time limit.

Toregas et al. (1971) introduced a location set covering model (LSCM). The LSCM minimizes
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the number of ambulances or ambulance stations needed to cover all zones within a given
time limit, and it is formulated as a traditional set covering problem. Later, the maximal
covering location problem (MCLP) was introduced by Church and ReVelle (1974). The
MCLP searches to maximize covered demand within certain response time, 7. The number
of ambulance stations is given as input, and the model searches to locate them in the best

way to maximize demand covered. The MCLP formulation is given by (1) to (5).

Max Z D;y; (1)

el
s.t. ZBij:Ej >y, 1€1 (2)
jed
daj=A (3)
j€J
z;€{0,1} jeJ (4)
v € {01} iel (5)

D; denote the demand for EMS in zone ¢ and y; are binary variables equal to 1 if an ambulance
cover zone i. B;; are parameters equal to 1 if zone j can cover zone ¢ within a given time
limit. x; are binary variables and equal to 1 if an ambulance station is located in zone j. The
sets I and J denote the zones with demand and the zones where ambulances can be located,
respectively. Constraints (2) are the traditional covering constraints, while constraints (3)
ensure that only the available number of ambulances, A, are located. Constraints (4) and (5)
are binary constraints for x; and y; respectively. Both the LSCM and MCLP assume that a

zone is covered as long as one ambulance is located within the given time limit.

Non-probabilistic models were later developed to consider different types of vehicles. The
tandem equipment location model (TEAM) was introduced by Schilling et al. (1979). The
TEAM searches to maximize demand covered by two different types of vehicles. Daskin and
Stern (1981) and Hogan and ReVelle (1986) proposed two varieties of MCLP that incorporate
that several vehicles can cover one zone and maximize number of zones covered by two

vehicles. Hogan and ReVelle (1986) also introduced two backup coverage problems called

7
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BACOP1 and BACOP2. The models maximize the number of zones covered by more than
two ambulances, given that every demand zone must be covered at least once. This is
an improvement from earlier models due to more robust preparedness. Gendreau et al.
(1997) developed the double standard model (DSM). DSM maximizes zones covered by two
ambulances within a time standard r*. All zones have to be covered within a time standard
of 2, where r' < 2. The DSM also makes sure that at least a given part of the demand is

covered within r!.

2.1.2 P-median Models

While the covering models focus on the proportion of the population within a given time
limit, the P-median problem focuses on minimizing the total travel time or average travel
time. The P-median problem was first described by Hakimi (1965) and later formulated by
ReVelle and Swain (1970). The P-median problem formulation is given by (6) to (11).

i€l JjeJ
iel
jeJ
d z=A (9)
jeJ
z;€{0,1} jelJ (10)
yije{(),l} rel jeJ (11)

D, denote the demand of EMS in zone ¢. Tj; is the travel time from zone j to zone ¢, while
y;; are binary variables and equal to one if an ambulance in zone j covers zone ¢. The sets
I and J denote the zones with demand and the zones where ambulances can be located,
respectively. The objective function (6) minimizes the total travel time. Constraints (7)

ensure that only zones with ambulances can cover other zones. F'is a Big-M parameter that

8
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for this problem would be equal to the number of zones with demand for EMS. All zones have
to be covered at least once. This is ensured through constraints (8). Constraint (9) makes
sure that the number of ambulances located is equal to the given number of ambulances
available. The number of ambulances available is denoted A. Constraints (10) and (11) are

binary constraints for x; and y;; respectively.

2.1.3 Survival Models

In recent years, some researchers have changed focus from covering and P-median models
towards survival models. Erkut et al. (2008) introduced a model that maximizes overall
probability of survival from cardiac arrest with respect to an exponential survival function.

The maximum survival location problem (MSLP) formulation is given by (12) to (17).

Max Y D; Y S(Ti; + Ta)yis (12)

iel jeJ
st. Y yy<Fax; jel (13)
i€l
doyy=1 i€l (14)
jedJ
d ay=A (15)
Jj€J
z;€{0,1} jeJ (16)
szE{O,l} rel jeld (17)

D, denote the demand for EMS in zone i. S(T}; + T}) is the survival function with respect
to response time, 7Tj;, from zone j to zone 4, and the pretravel delay for an ambulance, T}.
y;; are binary variables and equal to 1 if an ambulance in zone j covers zone 7. The sets
I and J denotes the zones with demand and the zones where ambulances can be located,
respectively. The objective function maximizes the overall survival probability. Constraints
(13) ensure that only zones with an ambulance can cover other zones. F'is a Big-M parameter

that for this problem would be equal to the number of zones with demand. Constraints (14)

9
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ensure that all zones have to be covered once. Constraint (15) ensures that the number of
ambulances located is equal to the number of ambulances available. The number of available
ambulances is denoted A. Constraints (16) and (17) are binary constraints for x; and y;;

respectively.

Note that the P-median model and the MSLP share the same structure. The main difference
is MSLP’s objective function. S(7;; + T;) denotes the survival function according to cardiac
arrest and does only depend on response time. In Erkut et al. (2008) different survival func-
tions are compared. The different functions included one or several variables, such as time
from collapse to CRP, time from collapse to defibrillation, time from collapse to advanced
cardiac life support at hospital, and whether the collapse was witnessed by a paramedic.
However, the main driving variable was found to be the response time. Because of this, it is
possible to compare the different survival functions with respect to response time. A com-
parison from Erkut et al. (2008) is shown in Figure 2. The different survival functions start
between 30 and 60% survival probability and decrease exponentially with time. However, the
shape is similar for all and the resulting survival probability for response time of 10 minutes
is below 10% for all tested survival functions. In the computational studies, Erkut et al.

(2008) found the same optimal locations regardless of the survival function used.

100% -

90% - Standard cover
Larsen et al.

80% A

—-—-- Valenzuela et al.
- —-- Waaelwijn et al.
De Maio et al.

70%

60%

50% A

40% -

Probability of survival

30% A
20% A

10% -

0% +————TTT T T T T T T T e
012 3 456 7 8 9 10111213 141516 17 1819 20
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Figure 2: Comparison of four different survival functions. Source: Erkut et al. (2008)
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2.2 Comparison of the Non-Probabilistic Models

The MCLP, P-median and MSLP can be modeled with the same general objective function,
(18), with respect to the constraints (13)-(17), but with different values for the parameter
H;j. The different H;; for the respective models are presented in Table 1.

Max Z Di Z Hijyij (18)

iel jed

Table 1: Values for the parameter H;;

Model H;;
1 for0<T; <T
MCLP
0 forTj; >T
p-median —T5;
MSLP S(T5j + ta)

To illustrate the difference between the covering model and survival model, an example from
Erkut et al. (2008) is used: Assume that demand locations A and B in Figure 2 are 18
min apart, and a station is located at X, halfway between them. A covering model with a
covering radius of 9 min would count all demand at A and B as covered, so X is the optimal
location, regardless of the magnitude of the demands. Suppose the demand at A is 10, the
demand at B is 1, and the survival probability as a function of response time ¢ is e *. Hence,
if the emergency facility is located at X, then P{survival at A} = P{survival at B} = e =
0.000123, and the expected number of survivors in the system is 11 x 0.000123 = 0.001358.
If a station is located at A instead, then the expected number of survivors increases to 10,
which is over 7000 times better. Even though the survival function used in the example

is fictional, the example demonstrates the difference between the covering model and the

survival model.

Both the covering and the survival measure are based on response time as the parameter

for patient outcome. However, the validity of response time as a parameter for patient

11
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A X B

O | O

Figure 3: Example demonstrating the difference between MCLP and MSLP. Source: Erkut
et al. (2008)

outcomes has been the background for several articles. Weiss et al. (2013) and Pons and
Markovchick (2002) found that response time did not play an important role for patient
survival after traumatic injuries. However, by using distance from ambulance station to
patient as a proxy for response time, Wilde (2013) shows that response time significantly
affects mortality of patients in need of emergency services. Hence, theoretical attainable

response time is important for patient outcome.

The non-probabilistic models are easy to understand, easy to implement and usually solved
in short time. The LSCM could be useful on the strategic level, as LSCM gives the minimum
number of ambulances to provide full coverage. The MCLP can be tested with different values
of A, and give insight about costs compared to coverage. The MCLP has been successfully
used in planning of EMS, such as in Austin, Texas (Eaton et al., 1985). The average response
time was reduced, despite increasing demand. The plan also saved the city $3.4 million in
construction and $1.2 million in annual operating costs in 1984. However, the solutions from
the non-probabilistic models such as LSCM, MCLP and MSLP are only valid when there
always is an available ambulance at the respective locations. Hence, the non-probabilistic
models provide an optimistic bound to the real problem. On the basis of this, a new set
of probabilistic models were developed. The probabilistic models are reviewed in the next

section.

2.3 Probabilistic Models

A decade after the first location models were introduced, probabilistic models were developed.

These models incorporate the possibility for ambulances being busy and focus on the expected

12
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outcome instead of the deterministic outcome.

2.3.1 Covering Models

One of the first probabilistic models for ambulance location, the maximum expected covering
location problem (MEXCLP), is presented in Daskin (1983). The MEXCLP is a further
development of the MCLP. In this model, the ambulances are independent and have the
same probability for being busy. The probability for being busy, P, is referred to as the
busy probability. When an ambulance is busy it will not be able to respond to calls. In
the MEXCLP several vehicles can be located in the same zone. The MEXCLP maximizes
demand covered by expected available vehicles. The model formulation of the MEXCLP is
given by (19) to (23).

A
Max Y ) Di(1—P)P" 'y (19)
i€l k=1
A
st. > yx <> Byz; i€l (20)
k=1 jedJ
<A (21)
J€J
x; € integer j € J (22)
yr €{0,1}ie [Lk=1,..,A (23)

D, denotes the demand in zone 7. The sets I and J denote the zones with demand and
the zones where ambulances can be located, respectively. P denotes the probability for an
ambulance being busy. If zone ¢ is covered by k ambulances, the expected covered demand
is D;(1 — P*), where P* is the probability that all k¥ ambulances are busy. The marginal
contribution of the kth ambulances to the expected availability is given by D;(1 — P)P*L.
Y, is binary variable and equal to 1 if zone ¢ is covered by at least & ambulances. B;;
are parameters equal to 1 if zone j can cover zone ¢ within a given time limit. z; is an

integer variable for the number of ambulances located in zone j. The probability P is

13
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assumed constant. Constraints (20) ensure that only the ambulances within a given time
limit can cover zone i. Constraint (21) make sure that no more than the available number
of ambulances, A, can be located. Constraints (22) are integer constraints for z;, while (23)

are binary constraints for ;.

2.3.2 Survival Models

The idea of MEXCLP is combined with the idea of MSLP in Erkut et al. (2008), and the result
is a model for the maximum expected survival location problem (MEXSLP). Knight et al.
(2012) develop this model further and present the maximal expected survival location model
for heterogeneous patients (MESLMHP). The MESLMHP maximizes the overall expected
survival probability for several patient categories. Knight et al. (2012) present the benefits
of using multiple patient classes compared with a single outcome measure. The MESLMHP

formulation is given by (24) to (26).

j—1
Max > WY ) DaSi(Ti,,) (1 — P07) [[ Por (24)
leL iel jeJ r=1

s.t. ij =A (25)

j€J

x; € integer j € J (26)

L denotes the set of performance measures, such as covering and survival. I denotes the set
of demand zones and J denotes the set of possible locations of ambulance stations. In the
objective function W, denotes the weight for performance measure [ according to the EMS
providers preferences. Dy is the demand of type L in zone i, while Sj(T;,,;) is the survival
function for performance measure [, with respect to travel time from the j preferred station
to zone 4. p;; is the j preferred ambulance location of zone i. Hence, py;=4 corresponds to
ambulance location 4 is the first preferred ambulance location of zone 2. x; is the number of
ambulances allocated in zone j, and P,i;” denotes the probability for all ambulances being

busy in the p{? preferred ambulance station for demand node i. Constraint (25) ensures that

14
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the available number of ambulances, A, is located. Constraints (26) are integer constraints

for x;.

Examples of weights and survival functions are shown in Table 2. In the example, a survival
function according to cardiac arrest (Maio et al., 2003) is given the weight 8. Other emergen-
cies corresponding to a time limit 7' = 12, are given weight 1. The ratio between the weights
has to be set according to the preferences of the EMS provider. The value of S;(7;;) starts
lower than S5(7T;;), hence if the probability of survival from cardiac arrest is important, W,

should take a relatively high value compared to Wj.

Table 2: Example of performance measures, survival function and weights

Performance measure Survival function Weights

Cardiac arrest Si1(T35) = H_om% W, =38
e 1

. 1 for0<7T; <12
Cover of population So(T55) = Wy =1
0 for Tj; > 12

The MESLMHP formulation is nonlinear and requires the probability for busy ambulances
as input. The probability for busy ambulances depends on demand connected to a station,
the service rate of the ambulances and the number of ambulances at the station. As Hogan
and ReVelle (1986) stated, predefined busy probabilities are difficult and unrealistic to give.
This problem is solved by Knight with an iterative version of MESLMHP, referred to as
MESLMHP-I, which calculates the updated busy probabilities in each iteration. The busy
probabilities were calculated using a hypercube queuing model approach with constant service
rates. The hypercube queuing model is elaborated on in subsection 2.5.1 and Chapter 5.
However, to calculate and use the exact busy probabilities was found to not converge due to
the cyclic nature of demand calculated as a function of busy probabilities. Because of this,

the authors decided to only run the model for a fixed number of iterations.
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2.4 Comparison of the Probabilistic Models

The advantage of the probabilistic models is that they include the probability for busy ve-
hicles, thus yielding more robust solutions than non-probabilistic models. They can also be
used to find solutions that provide equal workloads for the different ambulances stations.
The probabilistic models have also introduced the possibility to handle different kinds of
performance measures, which gives the EMS provider more flexibility. However, the models
either have to take an a priori busy probability or iteratively construct the probabilities with
queuing models. To use predetermined busy probabilities is not preferred because it is hard
to determine the right probabilities for busy vehicles. Some of the probabilistic models are

also nonlinear which makes them more difficult to solve.

2.5 Evaluation Models

After the optimization models propose a certain location and allocation, the location and
allocation can be evaluated by the use of stochastic models and simulation models. Simula-
tion is applied by Davis (1981) and Goldberg et al. (1990) among others, while the stochastic
hypercube queuing model (HQM) was introduced by Larson (1974). The aim of such eval-
uation models is to compute the probability that an ambulance in location j responds to a
call from zone i (Ingolfsson (2013)). On the basis of that information the average response
time, probability of survival or other performance measures are computed. Both simulation
models and stochastic models have their uses, but as argued by Ingolfsson (2013), a primary
advantage of stochastic models is that they can be solved analytically. Because of that, the

HQM is the primary interest of this report.

2.5.1 Hypercube Queuing Model

In the HQM, ambulances are modeled as servers in a queuing system, and the system is
then be described as a continuous time Markov chain. This allows the model to be solved by
applying well known techniques. The general HQM can be adapted to fit various considera-

tions, such as preferred ambulances, as shown by Chiyoshi et al. (2011). Validation studies

16



2 LITERATURE REVIEW

of certain hypercube models have shown that they are accurate with less than 5% deviation

compared with the actual system (Goldberg, 2004).

In addition to evaluate the performance of the solution of optimization models, the HQM
has been used as a part of the solution algorithm. Saydam and Aytug (2003) incorporate the
hypercube methodology into a genetic algorithm for solving a MEXCLP. The probabilities
for available ambulances at the respective stations were calculated in each iteration and
used to find new candidate solutions. The use of a hypercube incorporated genetic algorithm
yielded high-quality results, and the approach has also been used in Geroliminis et al. (2011).
lannoni et al. (2009) and Knight et al. (2012) among others. The HQM is explained in depth
in Chapter 5.

There has been a significant development in operations research models for EMS, both non-
probabilistic, probabilistic, and evaluation models, since they first were introduced in the
1960- and 1970’s. This development can among other factors be seen in relation to the
increase in computing power, as well as the need for more advanced models. There are
however still a number of elements that could be improved, as the newest models are nonlinear
and require iterative processes. In the next chapter, a new problem, referred to as the
maximum expected performance location problem for heterogeneous regions (MEPLP-HR),
is presented. After that, a model is proposed for the MEPLP-HR that addresses the challenges
of the probabilistic models by calculating the probabilities for available ambulances within

the model.
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3 Problem Description

The problem solved in this paper is a new ambulance station location and ambulance alloca-
tion problem. The problem is referred to as the Maximum Expected Performance Location
Problem for Heterogeneous Regions (MEPLP-HR). With a limited number of ambulance sta-
tions, S, and ambulances, A, the objective is to give the population the best possible EMS
according to a set of chosen performance measures, L. The problem consists of a set of zones
I, with given demand for EMS, and a set of zones where ambulance stations can be located,
J. A demand zone has a primary station and at least one secondary station, where the
ranking of stations belong to the set (). A call from a demand zone will receive an ambulance
from its primary station if there are any available ambulances at this station. If not, it will
receive an ambulance from its secondary station. The probability for available ambulances
depends on the arrival rate of calls to a station, the service time of the ambulances and the
number of ambulances allocated to the station. The arrival rate depends on the demand in
the zones the station covers, and the service time depends on the travelling distances in the
area the station covers and the distance to the nearest emergency room. This problem is
more realistic for heterogeneous regions than earlier problems as the service time is variable

and not constant.

Compared to the real problem faced by the EMS managers, this problem description contains
a several simplifications. To simplify the operational management of the fleet, it is assumed
that an ambulance is busy as long as it is not located at a station. If the primary station is
busy, an ambulance from the secondary station will always be able to respond to a call. This is
a simplification as there is a probability that the second station has no available ambulances.
However, it is assumed that the few calls that are not responded to by the primary and
secondary stations are covered by a support vehicle with response time equal to an ambulance
at the secondary station. This is an extension of the assumption of Iannoni et al (2008)
that lost calls are covered by another system. This results in that all assignments originate
from a station. It is also assumed that one ambulance responds to one incident. The fleet of

ambulances is assumed homogenous and different ambulance types are not considered.
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4 Model Description

The model for the MEPLP-HR builds on the models discussed in the literature review. There
are however several important differences between the proposed model and the existing mod-
els. The three most apparent differences are that the proposed model is a mixed integer
linear program, handles the probability for available ambulances within the model, and com-
putes the service rate of calls based on the zones a station covers. This chapter starts by
formulating the model. In Section 4.2 the model is strengthened using a reformulation and
valid inequalities. After that, it is showed how the model can be adjusted to solve earlier
problems from the literature. Finally, the model is extended to take multiple time periods

into account. The complete model formulation is found in Appendix A.

4.1 Model Formulation

The proposed model for the MEPLP-HR is formulated as a mixed integer linear program.
The formulation is divided into several subsections for readability. These include deployment-
, covering-, arrival rate-, service rate- and available probability constraints. The deployment
constraints consider the requirements to the number of stations and ambulances, while the
covering constraints focus on covering the demand for EMS in different zones. The arrival
rate constraints handle the arrival rate of calls to a station, and the service rate constraints
handle the service time of calls at each station. The available probability constraints combine
the arrival and service rates to calculate the probability of having an available ambulance at
a station. In addition to these five subsections, 4.1.1 presents the main variables and sets,

and 4.1.7 describes the objective function.

4.1.1 Overview of Main Variables and Sets

The main decision variables of the location and allocation problem are where to locate the
stations and how many ambulances to allocate to each station. If a station is located in zone
J € J the binary station location variable z; is assigned value 1. For a station located in zone

J, the integer variable z; denotes the number of ambulances allocated to the station.
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The variables yff) denote the proportion of the demand from zone ¢ that is covered by an
ambulance allocated to a station in zone j, given that station in zone j is the gth ranked
station for zone i. (@) is the set of rankings, which in this model includes primary and
secondary station(s). Hence, yfﬁg = 0.7 states that a station in zone 5 is the primary station
of zone 4 and covers 70% of the demand in that zone. All zones have one primary station and
at least one secondary station. The binary variable p;; is assigned value 1 if station in zone
J is the primary station of zone i. The arrival rate of calls to a station in zone j is given by

the variable 6;, while the service rate of an ambulance at the station is given by the variable

-

4.1.2 Deployment Constraints

The deployment constraints make sure that no more than the available number of stations

and ambulances are located and allocated.

ij <A (27)

JjEJ
d 4<S (28)
JjeJ
v, <Az jeld (29)
rj €ELsy jEJ (30)
2z e{0,1} jeJ (31)

Constraints (27) and (28) make sure that no more than the maximum number of available
stations and ambulances are deployed. The logical restriction that an ambulance cannot be

allocated to a zone without a station is handled by constraints (29).

4.1.3 Covering Constraints

The covering constraints keep track of which zones the different stations cover, as well as the

primary and secondary stations for each zone.
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X oul =1 iel (32)

J€J q€Q
piy >y i€l je] (33)
L—py >y i€l jel) (34)
d py=1 iel (35)

jeJ
oy => ) el (36)

jedJ JjeJ

y >0 iel,jedqgeq (37)
py €{0,1} iel,jeJ (38)

All calls from each zone have to be covered by a station. This is taken care of in constraints
(32). For each zone there is one primary station. The secondary station(s) cannot be the
same as the primary station. These properties are handled in constraints (33) to (35). In
addition, the primary station has to receive a higher proportion of calls than the secondary

station(s). This is ensured by constraints (36).

4.1.4 Arrival Rate Constraints

A station receives all calls from a zone that has the station as primary station, as well as the
proportion of calls it covers from a zone that has it as secondary station. This is given by

constraints (39). \; is the rate of calls associated with zone 1.

0; = Z()\ipij + )\Zyz(f)) JjeJ (39)

el

4.1.5 Service Rate Constraints

The service time depends on the distance to the nearest hospital and the distance between

the station and the origin of the call. The inverse of the service time is the service rate,
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defined as how many calls can be done per hour. The average service rate j; of a station is
given by equation (40). R;; is the average time it takes for an ambulance at a station in zone

j to service calls from zone 1.

. Aiy'?
Hj = Zoict gz M jed (40)

Zie[ quQ AiRijyf}l)

This expression is nonlinear and has been linearized through constraints (41)-(46). The
numerator and denominator are discretized using Special Ordered Sets of type 2 (SOS2)

(Beale and Tomlin, 1970). These discrete values are combined to f;, as shown below.

N Buvmy =YY Akl jed (41)

meM i€l qeq
Z Crpwnj = Zz/\iRijyg‘]) jed (42)
neN i€l qeq
D Conj=wnj jEJNEN (43)
meM
> Comj=Vmj JEJTmEM (44)
neN
meM neN
B, ,
Wi = Z Z C—Cmnj jed (46)
meMneN "
{Vlja --'7V|M|j} is SOS2 ] eJ (47)
{wlj, "‘7W‘N|j} is SOS2 j eJ (48)
Conj >0 je€JmeMmneN (49)

The variables v,,; are used to discretize the numerator (41), while w,; are used to discretize
the denominator (42). B,, and C,, are the respective values of the numerator and denominator
of the discrete points m € M and n € N. v,,; and w,,; are variables in SOS2 of M and N. At

most two neighboring points in a SOS2 set can be positive. Hence, the two positive variables
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4 MODEL DESCRIPTION

Vpyj and vy, in M give the total demand served, B,V + Bpyy1Vp414, for a station
located in zone j. The same logic applies the set of N where the two positive variables w,,;
and wy41; give the total time spent on calls, Cyywy/; + Crrp1wy 1, for a station located in
zone j. The discrete points of the numerator and denominator are combined into one set of
variables, (. , through constraints (43)-(45). The variables (,,; then contain information
about the value of both the total demand and the total time spent on calls. Constraints (46)

connect (,n; to the original variables.

4.1.6 Available Probability Constraints

The proportion of calls covered has to be less than or equal to the long time probability
that there is an ambulance available at a station. The long time probability that there is
an available ambulance at a station depends on the arrival rate of calls to the station, the
service rate of the ambulances at the station, as well as the number of ambulances at the
station. This is given by equation (50), where the function f is the long time probability

that there is an ambulance available at a station.

yl(;l) S f(@j,ﬂj,l‘j) 1€ ],j S J,q € Q (50)

The expression f(6;, it;, ;) is nonlinear and based on the Poisson process of the hypercube
queuing model. The arrival rate and service rate are discretized using SOS2. The probability
of having an available ambulance at a station is then found by using precalculated proba-
bilities for the discrete values together with the number of ambulances on the station. The
precalculated probabilities are described in Section 5.3 and Section 7.2, and the probability

for available ambulances is modeled by constraints (51)-(57).
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ZRUBUJ' - (9]' j € J (51)
veV
Y Subui=n; jeJ (52)
uelU
ZC(uvj:ﬂvj jGJ,’UEV (53)
uclU
Y =6y, jeJucl (54)
veV
YD awi=1 jelJ (55)
uelU veV
yZ(Jq) S 1-— Z Z Puvk:auvj + 5jk
uelU veV
iel,jeJk=0,.,AqeQ (56)
A
Z(Sjk < Z; 7€ J (57)
k=0
{51]‘, '”7ﬁ|V\j} is SOS2 ] eJ (58)
Qy; >0 jeJuelUwveV (60)
Sie{0,1} jeJk=0,.,4 (61)

Constraints (51)-(55) are discretization constraints similar to the service rate discretization.
Bv; and ¢,; are variables in SOS2 with regards to V' and U, where the variables in the set
V' constitute the arrival rate and the variables in the set U constitute the service rate. The
variables «,,; are used to combine the SOS2 sets into one variable. The parameters R, and
S, connects the discretization variables to the original variables.

Constraints (56) ensure that yg-l) is less than or equal to the long time probability that there
is at least one ambulance available at the station. ¢;; are binary variables equal to 1 if
there are more than k£ ambulances allocated to station in zone j, and P, is the probability
that there is no ambulances available at a station given an arrival rate associated with v,

service rate associated with u, and k£ ambulances allocated to the station. P, is visualized
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4 MODEL DESCRIPTION

with Py, and P, in Figure 4 and 5 for k = 1 — 5. As P, is strictly decreasing with k,
the 1 — > > vey Puvkuyj With the lowest value of & will be the active constraint for the
station in zone j unless there are more than & ambulances there. If there are more than &

ambulances, d,;, will equal 1 and make the constraint inactive.

100 %
20 %
80%
70%
60 % 1 Ambulance

50% 2 Ambulances
40 % 3 Ambulances

30% / —4 Ambulances
20% —5 Ambulances
10% /

0% _/ E—

0 0.5 1 15 2 2.5 3

Arrival rate [calls/hour]

Probability of no available ambulances

Figure 4: Arrival rate, with service rate fixed to 2
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90% -

80% -

70% - \\
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50 % \\ \ 2 Ambulances
40%

\\ \ 3 Ambulances
30%

——4 Ambulances
20% \h\ \\ —5 Ambulances
10%

0% .N. .

0 0.5 1 1.5 2 2.5 3
Service rate [calls/hour]

Probability of no available ambulances

Figure 5: Service rate, with arrival rate fixed to 2
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The relationship between d;; and the number of ambulances allocated to station in zone j
is described by constraints (57). As 1 — P,k is more restrictive than 1 — Py, 4105,
0;k+1 is always less than or equal to J;;. Note that P, is 1 for all values of u,v. Logically,

a station without any ambulances cannot cover any zones.

4.1.7 Objective Function

The objective function (62) maximizes the total value of the location of stations and allocation

of ambulances, given the performance measures of the EMS provider.

Max ZW}ZZZDuHmyg) (62)

leL i€l jedJ qeq

There is a certain performance value per call, H;j;;, of zone 7 being covered by the station in
zone j with regards to performance measure [. The parameters D; denote the number of
calls that is relevant for performance measure [ in zone i. Each performance measure is given
a certain weight, W, that represents the relative importance of the performance measure for
the EMS provider. The objective function calculates the total performance of the location
and allocation by multiplying these parameters with the respective proportion of calls being
covered by the different stations and then summing over all performance measures, zones,

stations and rankings.

4.2 Strengthening the Formulation

The model formulation can be tightened by reformulating a restriction and adding valid
inequalities. In this subsection one reformulation and five sets of valid inequalities are iden-
tified, while in Subsection 8.1.1, the effectiveness of the inequalities and the reformulation is

explored.

The reformulation is to change (56) to (63). As only one yl?

i; can be positive for a pair 1, j,

this is valid. The number of rows in the reformulated constraints (63) is only half of the
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4 MODEL DESCRIPTION

number of rows in the original constraints (56).

Zyz(]q) S 1 - ZZPuvkauv]’ + 5jk

qeQ uel veV

iel,jeJk=0,..,A (63)

The first set of valid inequalities is to not allow zones where there are no stations to cover

zones with a demand for EMS. This is formulated by constraints (64).

Syl <z ieljeld (64)
q€Q

The second and third sets of valid inequalities are to limit the service and arrival rate of a
station. Constraints (65) force the service rate of ambulances in a zone to 0 if no station
is located there, and (66) do the same for the arrival rate of calls to the zone. i and @ are

upper bounds on the service rate and arrival rate, respectively.

py < pzp ged (65)
0, <0z jelJ (66)

The fourth set of valid inequalities are similar to (64), and restrict a zone to be the primary
station for zones with a demand if there are no stations in the zone. The valid inequality is

formulated as (67).

pijgzj iEI,jEJ (67)

The last set of valid inequalities is to force the d,; to 0 if there is no station in zone j. This
is formulated in (68), where A is the maximum number of ambulances that can be allocated

to a station.

A
d op< Az jeld (68)
k=0
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4 MODEL DESCRIPTION

4.3 Comparison to Similar Models

Even though the problem considered in this thesis differs from earlier problems with regards
to service rate, the proposed model can be altered to fit those problems. Hence, the problems
considered in the literature review can be solved by the model for the MEPLP-HR. To make
the model for MEPLP-HR fit the most advanced of the earlier problems, the only adjustment
needed is to set the service rate to a given constant instead of a variable. Hence, constraint
(41) to (46) would be removed together with the relevant variables, and a parameter for
the service rate would be introduced. However, the MEPLP-HR only allows primary and
secondary stations, while the iterative model from Knight et al. (2012) can use any number
of preferred stations for a zone. This is a shortcoming in the model for MEPLP-HR com-
pared to the iterative models, but as concluded in Section 8.3, using only 2 stations seems

reasonable.

4.4 Multi-period Model

The model presented in Section 4.1 only considers one time period. However, the expected
number of calls and the available resources change throughout the day. The number of
ambulances change, but the number of ambulance stations is constant. Because the demand
and resources change throughout the day and week, it is interesting to develop the model
to take multiple time periods into account. If the model takes multiple time periods into
account, it can be referred to as a two-stage model. The first stage is to locate the stations

and the second stage is to allocate ambulances to the stations.

To extend the model to take multiple time periods into account, a new set, T', is introduced.
t € T are the different time periods. The allocation, cover of zones, arrival rates, service rates
and available probabilities are separate for each time period. Hence, all parameters, variables
and constraints related to these parts needs to be changed. All variables except z; get an
extra index, ¢, and all constraints except (28) apply for all ¢ € T' as well. The parameters
A, Dy, and \; are changed to A;, D;;, and )\;. In addition, the objective function is also
summed over all t € T. The complete formulation for the multi-period model is found in

Appendix B.
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5 Hypercube Queuing Model Description

As described in Section 2.5, a hypercube queuing model (HQM) can be used to evaluate
the solution from strategic location problems. In this report HQM is used as input for the
available probability function of the proposed model and as basis for evaluating the solutions.
This chapter starts by describing the HQM with a simple example to give the reader an
introduction to HQM. After that, the HQM that is appropriate for evaluating the results
from the MEPLP-HR is presented. The chapter ends with a section on how the HQM is used

to find the parameters for the available probability function of the model.

5.1 Introduction to HQM

The idea behind the HQM is to model the operation of ambulances as a continuous time
Markov chain. A continuous time Markov chain describes the transition between different
states of a system. For an ambulance system, these states would correspond to if specific
ambulances are busy or not. The transition rates between the states for an ambulance system
would be the rate at which ambulances finish assignments, and the rate of which ambulances
are given new assignments. These rates are known as service rate and arrival rate. The
service rate is the inverse of the service time. In a continuous time Markov chain, the arrival

rate is a Poisson distribution and the service time is exponentially distributed.

The aim of modelling the operation of ambulances as a continuous time Markov chain is to
find the average proportion of time the system is in each state. The proportion the system is
in each state can further be used to analyze the performance of a given set of locations and
allocation. At steady state, the rate at which the systems transitions into a state has to equal
the rate at which it transitions out of the same state. This is used to calculate the steady state
proportions. The steady state proportions are also referred to as steady state probabilities,
as the proportion of time spent in a state in the long run is equal to the probability to end up
in that state after a long time. To illustrate the calculation of the steady state probabilities,

an example with two independent ambulances is constructed.
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5 HYPERCUBE QUEUING MODEL DESCRIPTION

5.1.1 Example with Two Independent Ambulances

The ambulances cover different areas, and they are not allowed to help each other out. If
an ambulance is available and gets an assignment, it will serve that assignment. However,
if the ambulance is busy and gets an assignment, it will not serve that assignment, and the
assignment is considered lost. That means that the assignment needs to be served another
system than the one considered here. Let \; and Ay be the arrival rate of calls to ambulance
1 and 2. That is, the average number of calls the ambulances are asked to respond to each
day. p; and po are the service rate of ambulance 1 and 2. That is, the average number
of assignments an ambulance is able to complete each day, given that it always has an
assignment. Also, let {01} denote that ambulance 1 is busy and 2 is available, {11} denote
that both ambulance 1 and 2 are busy, etc. Note that the last digit corresponds to the first

ambulance. The transitions between the states are visualized in Figure 4.

1 1
A4 A
OOMOMO
M 1y
sy Hy

Figure 6: Transition rate graph for two ambulances

On the basis of the transition rate graph, the steady state equations can be constructed. The
rate into a state has to equal the rate out of a state. For {01}, the steady state equation is

given by equation (69).
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5 HYPERCUBE QUEUING MODEL DESCRIPTION

(A2 + pa) P{01} = (A1) P{OO} + (p2) P{11} (69)

The rate of which the system transitions out of {01} is equal to the probability of the system
being in that state multiplied by the rate of which ambulance 2 gets an assignment plus
the rate of which ambulance 1 finishes assignments. Likewise, the rate of which the system
transitions in to {01} is equal to the probability of the system being in {00} times the rate of
which ambulance 1 gets an assignment, plus the probability of the system being in {11} times
the rate of which ambulance 2 finishes assignments. The steady state equation for {00}, {10}
and {11} can be established using the same method. By solving the system of equations with
the extra restriction the steady state probabilities sum to one, the steady state probabilities
are found. The system of equations can be written in matrix form, as shown in Table 3. The

matrix is referred to as the transition rate matrix.

Table 3: Transition rate matrix for two ambulances

State {00} {01} {10} {11}

{00} -Ai—Xy G} iz

{01} Al -Ae—in H2
{10} A2 -\ — o Ha
{11} A2 AL -2

The rows represent the steady state equations and sum to zero, while the columns represents
the rate at which the system transfer from the state of that column to the other states. To
find the steady state probabilities by using the transition rate matrix, equation (70) and (72)
are solved. P is the steady state probability of being in state ¢, and A;; is the transition rate

matrix.
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5 HYPERCUBE QUEUING MODEL DESCRIPTION

> ) Ap=0 (70)

icl jeJ

Y p=1 (71)

el

In the long run, the average probability for ambulance 1 being available is given by P{00} +
P{10}, and similarly the probability for ambulance 1 being busy is P{01} + P{11}.

5.2 HQM for the MEPLP-HR

For the HQM that is appropriate for the MEPLP-HR, there are several differences from the
simple toy model in Section 5.1. Firstly, the arrival rate of calls is connected to stations
and not ambulances. This is important as there might be more than one ambulance at each
station. Then there is equal probability for any of the available ambulances to respond to a
call. Secondly, each zone with a demand for ambulance has one primary station as well as
a secondary station. Hence, if the primary station is busy, the secondary station may serve
the zone. However, if both the primary and secondary station is busy, the assignment is

lost.

5.2.1 Constructing the Transition Rate Matrix

To further explain the HQM for the proposed model, an example with two stations (1,2),
three ambulances and three demand zones (A,B,C) is used. The allocation of ambulances
and service rates are presented in Table 4, while the demand and the primary and secondary
stations for the areas are presented in Table 5. The service rate of ambulance ¢ is denoted
1i, and the aggregated service rate for all the ambulances is p. The arrival rate of calls from

zone i is denoted \;, and the aggregated arrival rate for the whole system is .

For the representation of the system, the two first ambulances are allocated to station 1, and
the last ambulance is allocated to station 2. Hence, {011} represents the state where both

ambulances of station 1 is busy, and the ambulance at station two is available. The two last
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5 HYPERCUBE QUEUING MODEL DESCRIPTION

Table 4: Allocation of ambulances for the example

Station #£ ‘ Ambulances Service rate

1 2 M1, 2
2 1 H3

Table 5: Demand data for the example

Area | Demand Primary (station #) Secondary (station #)

A A 1 2
B AB 2 1
C Ao 2 Only primary station

digits represent station 1. For the steady state situation, the rate which the system transfers
into a state has to equal the rate which the system transfers from the state. This has been
used to calculate the transition rate matrix, as given by Table 6. Note that the arrival rate of

calls to the ambulances in station 1 is divided equally if both ambulances are available.

The steady state equations can be found in the transition rate matrix. For {101}, the steady

state equation is given by (72), and is found in row 6 of Table 6.

(A + Ap + -+ 3) P{101} = (A + Ae) P{001} + (%‘ + )\7B)P{100} + wP{111}  (72)

As before, the left side of the equation is the rate at which the system transfers out of the
state, while the right side is the transfer rate into the state. The corresponding equations for
the other states can be found in the same matrix. To find the steady state probability for

the different states, equation (70) and (71) are solved.
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5 HYPERCUBE QUEUING MODEL DESCRIPTION

5.2.2 Analysis of the Steady State Probabilities

When the probabilities are calculated from the HQM, it is possible to evaluate the location
of stations and allocation of ambulances. The main parameters of interest are then the prob-
ability for the different ambulances to respond to an incident in a given zone, as well as
the probability for a lost call. The probability for an ambulance at the primary station to
respond is equal to the probability for that an ambulance at the primary station is available.
Similarly, the probability for an ambulance at the secondary station to respond is equal to
the probability for that all ambulance at the primary station are busy, but an ambulance at
the secondary station is available. The probability for a lost call equals the probability for
that the ambulances at both the primary and secondary station are busy. For zone A from
the example in Section 5.2.1, the probability for a call being responded to by an ambulance
at the primary station, an ambulance at the secondary station, or being lost, is given by

equations (73) to (75).

A
P rimary =P{000} + P{001} + P{010} + P{100} + P{101} 4+ P{110} (73)
Psﬁcondary :P{Oll} (74>
Py =P{111} (75)

The validity of the busy probabilities depends on the input data, as well as the validity of the
assumption that the arrival rates are a Poisson process and the service rates are exponentially
distributed. In addition, the probability of lost calls is problematic for ambulance dispatch,
as there in reality are no lost calls. However, this can be seen as an "extraordinary event" if

the probability is low enough.

5.3 HQM Probability Function

For the model for the MEPLP-HR, the probability that there are no available ambulances at
a station is of main interest. The model for the MEPLP-HR applies a linearized probability
function, where the busy probability of a station depends on the number of ambulances at the

station, the arrival rate of calls to the station, as well as the service rate of the ambulances
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5 HYPERCUBE QUEUING MODEL DESCRIPTION

at the station. The available probability can then be calculated by the use of HQM for each
level of ambulances, arrival rate and service rate. A station is modeled as a system where

there is equal probability for any of the ambulances to respond to a call.

An example of the transition rate matrix for a station with three ambulances, an arrival
rate of calls, A, and service rate per ambulance, u, is given by Table 12. The steady state
probabilities can be found by applying equation (70) and (71). The number of interest is
then the steady state probability for all ambulances being busy. For the system described by

the transition rate matrix in Table 7, this corresponds to P{111}.

Table 7: Transition rate matrix for the HQM probability function

State | {000} {001} {010} {100} {o11} {101} {110} {111}
{000} -A 1 1 L 0 0 0 0
{001} 3 A 0 0 m m 0 0
{010} 2 0 -A—pu 0 m 0 I 0
{100} 2 0 0 -A—pu 0 1 1 0
{o11} 0 2 2 0 -A—2pu 0 0 [
{101} 0 3 0 2 0 -A—2u m
{110} 0 0 2 2 0 0 -A—2pu I
{111} 0 0 0 0 A A A -3p

In the proposed model from Section 4, P, is equal to P{1...1} for a station with k£ ambu-
lances and arrival rate and service rate associated with v and v. P{1...1} is the probability
for all ambulances being busy at that station. The argument in the model is that a station
cannot cover a higher proportion of calls in the long run than the steady state probability for
that at least one ambulance is available. The main problem with this modelling approach is
that it only considers one station at a time, and therefore not the probability that both the
primary and secondary station are busy at the same time. However, as argued in Section 3,
this is acceptable if this probability is sufficiently low. Then the validity of the HQM as an
input for the proposed model only depends on the validity of the assumption that the system

can be modeled as a continuous time Markov chain.
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6 Data

The basis for the computational study is AMK data from 2010 to 2013 for the county of
Sgr-Trgndelag. However, some parts of Sgr-Trgndelag are geographically separated from the
rest and do not share ambulances. Because of this, these are not included. The region
considered is shown in Figure 7. In the computational study, most tests are performed on
the whole region, but some tests are performed on the urban area of Trondheim and Malvik.
The dataset contains the time, date, location and severity (red, yellow and green) of each
call. For most tests, it is the busiest period of the week, workdays from 08:00 to 16:00 that

is relevant.

lalznes

Figure 7: Sgr-Tregndelag with Trondheim and Malvik within the dashed area. The triangles

represent the emergency rooms, and the dots represent the center of zones with demand.

6.1 Zones with Demand for EMS

The postal code zones of Sgr-Trgndelag are used as the zones in the model. The zones are

modeled as points located at the population center of the zones. Hence, all calls from a zone
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are simplified to originate from a single point. The population and the coordinates for the
postal codes are obtained from erikbolstad.no (Bolstad, 2012). For Sgr-Trgndelag there are
139 zones with demand for EMS, while in Trondheim and Malvik there are 67 zones. The
expected demand for EMS for each zone is the historical number of calls per hour from the

zone. The expected demand for the zones is found in Appendix C.

6.2 Potential Locations for Stations

Basically, all zones are potential locations for stations. However, for various reasons there are
some zones that never will be used as station locations. These are removed, resulting in 76
potential station locations in Sgr-Trgndelag and 44 potential station locations in Trondheim

and Malvik. The rules for removing potential locations are listed below.

e For the zones close to the borders of Sgr-Trgndelag: If there are less than 1000 inhab-
itants in the zone and the zone does not lead to zones closer to the border with more
than 1000 inhabitants in total, the zone is removed as a potential location. This is due

to problems with recruiting in such areas.

e For the zones close to existing stations: If the center of the zone is less than 5 minutes
away from where there currently is a station, the zone is removed as a potential location.
This is due to the fact that it is not realistic to move stations such small distances. For
such small distances, it is more important with local geography such as available land,

buildings and infrastructure.

The complete list of potentital locations for stations, as well as excluded zones is found in

Appendix D.

6.3 Number of Stations and Ambulances

In Segr-Trondelag today, there are 16 stations. The number of ambulances varies throughout
the day and week, but for the busiest period there are 24 ambulances available. Hence, the

basis for the tests is 16 stations and 24 ambulances.
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6.4 Response Time

Response time is the time from a call is placed in the dispatching call center until the
ambulance arrives at the incident. The time from a call is placed in the dispatching call
center until the ambulance is dispatched, also known as the pretravel delay, is assumed to
be 0. The travel times between the zones were found using a tool developed in Python that
gather the travel times between all zones from Google Maps. The code is found in Appendix
E. Some adjustments have been done manually, such as allowing the ambulances to travel over
Ceciliebrua, also known as "the hospital bridge". The travel times correspond to the average
travel time between the coordinates for normal traffic. As pretravel delay is considered to be
0 and varying traffic is not considered, no adjustments have been done regarding the higher
speeds of ambulances. The response time for an ambulance station to an incident within the

same zone is simplified to be 2 minutes for all zones.

6.5 Average Service Time

The average service time R;; is calculated by using the travel times between the zones,
stations and hospitals, as well as adding a constant that represent the time on the scene. For
Ser-Trendelag, 43% of all calls end at a hospital, and the average time spent on the scene of
a call is 16 minutes. Hence, R;; can be formulated as equation (76), where 7}; is the travel
time from zone j to i, Tj. is the travel time from zone i to the nearest emergency room (ER),

and T¢; is the travel time from the ER to zone j.

6.6 Performance Measures

The performance measures used are heterogeneous, as they are demonstrated to be effective
(Knight et al., 2012). For the time critical red calls, a survival function from Maio et al.

(2003) for cardiac arrest is used. The survival function obtained from Maio et al. (2003)
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is one of many functions that can be used, however, the exponential slope of the curve is
the most important feature, not the constants (Erkut et al., 2008). For the yellow calls,
traditional cover measures of 12 minutes for urban areas and 25 minutes for rural areas
are used. The reason for this is that for yellow calls, it is sufficient that the ambulance
arrives within the given thresholds. There are no performance measures for green calls as
these mainly consist of normal transport of patients. The number of calls that is relevant
for the performance measures, D;;, is the arrival rate of red calls per hour for the survival
measure and the arrival rate of yellow calls per hour for the cover measure. The weights for
the different performance measures varies for different tests, however, the basis is that the
weight for the survival measure, W, is 2 and the weight for the cover measure, W, is 1. The
ratio between the weights is based on the work of Knight et al. (2012). The summarized
parameters for the performance measures are given in Table 8, where ¢ is the response time

of the ambulances.

Table 8: Performance measures

Performance | Function W, Dy
Measure
Survival H(th) = L 2 red calls

1+ 6—0.679+0.262tR
for 0 < ¢t < 12

1
Cover urban | H(t?) =
0 for t® =12

1 | yellow calls

1 for0 <t <25
Cover rural | H(t®) = 1 | yellow calls
0 for t# =25

6.7 Time Periods

For the multi-period model, the week has to be divided in to distinct time periods. For
Sgr-Tregndelag, the cumulative number of calls for the different hours and days of the week
in 2013 are shown in Appendix F. The key characteristics is that the demand for EMS is low
from 00:00 to 08:00, medium from 16:00 to 24:00, and high from 08:00 to 16:00. In addition,
Saturday and Sunday have slightly different demand patterns than the other days. Hence,
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it makes sense to split each day into three periods, and also split between workdays and

weekends. The number of ambulances at disposal does also fit well with this splitting. The

percentage demand and number of ambulances at disposal for each period is shown in Table

9.

Table 9: Periods and available resources

Period Ambulances % of demand
Workday 00:00 - 08:00 17 6.9%
Workday 08:00 - 16:00 24 32.6%
Workday 16:00 - 24:00 19 15.6%
Weekend 00:00 - 08:00 17 9.9%
Weekend 08:00 - 16:00 22 19.7%
Weekend 16:00 - 24:00 19 15.3%

As there are five workdays each week and only two days in the weekend, the D;; have to be

adjusted for this. This is because it is based on arrival rate per hour. Hence, the D;; for

workdays are multiplied with 5, while the D;; for weekends are multiplied with 2.
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7 Implementation

The computational studies are performed by using optimization software and Excel. In ad-
dition, Matlab and Python have been used to obtain parameters. The following sections
describe how the mathematical model and the hypercube queuing model have been imple-

mented.

7.1 Model Implementation

The model is implemented and tested for a variety of different instances using available
commercial software. The model is written in Mosel and solved by Xpress-Optimizer Version
7.6.0. The model is run on HP dl165 G6, 2 x AMD Opteron 2431 2,4 GHz, with 24 Gb RAM.
The results from Xpress are exported to Excel, where the solutions are studied further. If

not specified otherwise, the stopping criteria in the computational study is 8 hours.

In both the service rate constraints and the available probability constraints, variables are
discretized and linearized. The variables in the linearization and discretization sets are re-
ferred to as breakpoints. To achieve an accurate and smooth linearization, the number of
breakpoints should be high. However, this increases solution time, as there are more vari-
ables. Because of this, the number of breakpoints should not be more than necessary to
achieve a sufficiently smooth linearization. On the basis of this, an appropriate number of
breakpoints in the service rate discretization sets is found to be 11, while an appropriate
number of breakpoints for the available probability constraints is found to be 7. Hence, | M|

and |N| are 11, and |U| and |V| are 7.

7.2 HQM Implementation

The calculation of the discrete values P, is done in Matlab. The matrix is set up as shown
in Chapter 5 and solved for each combination of u, v and k. The number of interest is then

the probability that all ambulances are busy, P{1...1}.

To evaluate the solutions from the model and find the correct number of missed calls, a full
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7 IMPLEMENTATION

HQM is set up for Sgr-Trgndelag. The information about the ranking of stations for each
zone, as well as arrival rate and service rate are used to complete the transition rate matrix
in a similar way as in Section 5.2. However, for the 24 ambulances in Sgr-Trgndelag, the
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matrix contains columns and 2%* + 1 rows. This results in a matrix that is not solvable

within reasonable time for Matlab.

Because of the problems with solving the HQM analytically in Matlab, a simulation model
was developed in Excel to evaluate the solutions and find the correct number of missed calls.
The simulation model is based on the same assumptions as the HQM and implemented as
a discrete event simulation. The key events in the simulation build on the essential steps of

the EMS response process:

1. A zone calls for an ambulance
2. An available ambulance responds to the call
3. Ambulance departs for incident scene

4. Ambulance arrives at scene and intervention by paramedics starts. In some cases, the

patient is taken to hospital.

5. Ambulance returns to station

The location and allocation, as well as the ranked stations (primary, secondary, ...) for each
station is given as input data. A rand() function determines where and when the next call will
happen, and the time between calls from a zone is exponentially distributed. An ambulance
from the primary station will respond if there are any ambulances available there. If not, an
ambulance from the secondary station will respond, and so on. If there are no ambulances
available at any of the stations that cover the zone, the call is categorized as missed. The
ambulance that responds to the call is busy until it arrives at the station again. The time an
ambulance is occupied with a call is given by R;; from equation (76). The simulation is run
for approximately 38,000 calls. The pseudo code for how the simulation model determines

the next event (new call, new available ambulance, missed call) can be seen in Appendix

G.
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8 Computational Studies

The computational study begins with technical tests of the model for MEPLP-HR. The
objective of these tests is to explore how the model can be solved effectively and general
characteristics of the model. After the technical tests, the importance of using multiple time
periods is explored using the multi-period model from Section 4.4. In Section 8.3 the best
solution from the model is evaluated in an Excel simulation model to investigate the impact
of one of the key operational simplifications. In Section 8.4, the solution from the model is
compared to the current locations and allocation in Sgr-Tregndelag. The chapter ends with

analyses of the impact of key parameters.

8.1 Technical Characteristics

In this section the strengthening constraints from Section 4.2 are tested. The tests have
been performed on Trondheim and Malvik for 15 and 30 minutes, and Ser-Trgndelag for 4
and 8 hours. The results are presented in Table 10 and 11, respectively. TO is the test with
the model in its’ proposed form. T1, T2, T3, T4, T5 and T6 correspond to tests with the
constraints (63), (64), (65), (66), (67) and (68), respectively. X0 is the test with all proposed
strengthening constraints. X1, X2, X3, X4, X5 and X6 correspond to test with all constraints
except (63), (64), (65), (66), (67) and (68), respectively. The tables present the tests with
the objective LP solution, rows and columns after presolve, the number nodes in the branch
and bound tree, the number of solutions, the best solution value, best bound and gap for all

tests. The gap is defined as (best bound - objective value) / objective value.

8.1.1 Impact of Strengthening Constraints

From the results in Tables 10 and 11 a number of interesting characteristics can be seen.
One of the most apparent characteristics is the impact of the reformulation (63). Of all the
single constraints, this is the most effective in producing a low gap for all tests on Trondheim
and Malvik, and Sgr-Trgndelag. It also reaches the highest number of nodes in 3 out of

4 tests. The effect of the reformulation can be seen in connection to the number of rows
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8 COMPUTATIONAL STUDIES

in the model. Applying the reformulation (63) instead of the original constraints (56) cuts
away approximately 40% of the rows of the original problem, making the problem easier to
solve. Constraints (64) have the largest impact on the linear relaxation in both the test on
Trondheim and Malvik, and Sgr-Trgndelag. However, the linear relaxation has little impact

on the best bound after the solver’s root cutting and heuristics.

For the test on Trondheim and Malvik in Table 10, the solver performs in general better with
more constraints as the best bound decreases with more constraints. However, the constraints
have limited effect on the best solution. In the 30 min test, the maximum relative difference
between the best solutions is less than 0.2%. This can be seen in connection to that the
solver is able to find strong solutions on this relatively small instance without any help, and

the strengthening constraints are just tightening the best bound.

For the tests on Ser-Trgndelag on the other hand, the constraints do not significantly impact
the best bound, except for in the test with all constraints, X0. They have however a large
impact on the number of solutions found and the value of the best solution. The number
of solutions found is in general higher with one or zero strengthening constraints, and the
values of the best solutions are more mixed for several constraints. This can be an indication
of that on large instances the extra constraints makes the problem harder to solve. This
can also be seen by the number of nodes reached, which are in general higher for one or
zero strengthening constraints. It is also noticeable that the best gap when using the best
solution and best bound from any of the tests is approximately half of the best gap from any
of the single tests for the 8 hours run. This indicates that it might be effective to use many

constraints to provide a good bound, but few constraints to provide strong solutions.

8.1.2 Objective Function

Another characteristic of the solutions is that there are many possible locations and allocation
configurations that are almost equally good. As seen from the 30 minute test on Trondheim
and Malvik, the maximum relative difference between the best solutions is 0.2%. This can
be explained by that there are many station locations that are close to each other and

almost equally good. Hence, swapping one station location for another will not change the
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8 COMPUTATIONAL STUDIES

objective value significantly. In addition, there might be situations where it is equally good
to allocate a second ambulance to several different stations, resulting in many equally good

solutions.
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8 COMPUTATIONAL STUDIES

8.2 Multiple Time Periods

A common approach when locating ambulance stations has been to focus on the busiest
period of the week, as done in 8.1. This is done despite that both the demand for EMS and
the available EMS resources varies throughout the day. The demand for EMS and number of
ambulances in Sgr-Trgndelag for different time periods are shown in Table 12. The demand
for EMS is typically highest from 08:00 to 16:00 during normal workdays and lowest during
the night of the workdays. The areas with demand may also change as most people are at
work during the day and at home in the night. Because of this, it is interesting to consider
multiple time periods. The problem with considering multiple time periods is however that
the problem becomes much harder to solve. This is also the reason why most models only

consider the busiest period. Nonetheless, it is not known if it is a valid approach.

Table 12: Available resources and demand for different periods

Period Ambulances % of demand
Workday 00:00 - 08:00 11 6.9%
Workday 08:00 - 16:00 17 32.6%
Workday 16:00 - 24:00 13 15.6%
Weekend 00:00 - 08:00 11 9.9%
Weekend 08:00 - 16:00 15 19.7%
Weekend 16:00 - 24:00 13 15.3%

To analyze the value of considering multiple time periods, the ambulance station locations
from the five best solutions for the busiest period have been evaluated for all 6 periods. The
stations are then locked to the locations from the busiest period, and the model allocates the
given number of ambulances that are available for each period to the stations. The objective
value for each period is then summed. The total objective value for each of the five best
solutions is compared to the best solution from the model when all 6 periods are taken into
account at once. When all 6 periods are taken into account at once, the problem can be
referred to as a two-stage problem. The first stage is to locate stations that are permanent

for all periods and the second stage is to allocate ambulances in each period. To solve the
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two-stage problem, the model was run for 48 hours with the reformulation (63). In addition,
to reduce the size of the problem, variables that included pair of 4, j with very high travel
time were not created. The objective value, best bound and gap for the five best solutions

from the busiest period and the two-stage problem are shown in Table (13).

Table 13: Objective value, best bound and gap for multiple time periods

Test Obj. value Best bound Gap

Solution 1 22.086 22.458 1.68 %
Solution 2 22.100 22.426 1.47 %
Solution 3 21.848 22.399 2.52 %
Solution 4 22.067 22424 1.62 %
Solution 5 22.080 22437 1.62 %
Two-stage problem 21.656 22579 4.27 %

As seen from the results in Table 13, all solutions for the busiest period are better than what
the solver found for the two-stage problem. This is due to the complexity of the two-stage
problem and it shows the motivation for only considering one period. The optimal solution
from the two-stage problem can not be worse than the solutions from the busiest period,
as the two-stage problem always can find the same solution as the busiest period problem.
Because of this, it only makes sense to compare the objective values from the busiest period
with the best bound of the two-stage problem. By comparing the objective value of the
least good solution from the busiest period (Solution 3) to the best bound of the two-stage
problem, a gap of only 3.35% is found. This small gap for the least good solution shows that
the optimal objective value for the two-stage problem and the objective value from solutions
for the busiest period are not very different. Hence, the problem for the busiest period is

consistent in producing strong solutions for all 6 periods.

Based on the results from this analysis, it appears sufficient to only take the busiest period into
account for Sgr-Trgndelag when locating ambulance stations. This can partly be explained
by that for this region the areas with high demand do not greatly change throughout the

day. One could expect different results if there were greater differences between where people
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lived and where they worked.

8.3 Impact of a Key Operational Simplification

The MEPLP-HR simplifies the operational management of the ambulances to calculate the
probability of having an available ambulance at a station. It assumes that calls that are not
covered by the primary station can always be covered by the secondary station. This has two
consequences: The first consequence is that the problem does not account for that both can
be busy. If both are busy, the call will be categorized as missed. In reality the EMS providers
does not accept missed calls, but it has been argued that these "missing calls" are taken by
extra ambulances or other vehicles (Iannoni et al., 2009). However, if the probability of both
being busy is low, missed calls are not an important factor. The second consequence is that
there are only two elements in the set ), as the secondary station(s) always will respond to a
call if the primary station is busy. Hence, the problem is not able to determine which station

should be the tertiary station, quaternary station, and so on.

For the best allocation from the case of Sgr-Trondelag, these two consequences were inves-
tigated in a developed Excel simulation model. In the Excel simulation model, there are no
restrictions on the number of elements in (). The simulation was run with 1 - 5 elements in
the set ), i.e. allowing 1 - 5 stations to cover a given zone. The stations were ranked for each
zone based on the travel time, where the closest station is the primary station. The objective
value and average percentage of missed calls as a function of the number of elements in the

set @) is shown in Figure 8.

As expected, the number of missing calls decreases with the number of elements in the set
@, as a result of that there are more ambulance stations as backup. However, the average
missing is low if 2 or more stations can cover a zone. The objective value is stable if 2, 3, 4
or 5 stations can cover a zone. This is because the tertiary, quaternary and quinary stations
are in many cases too far away to contribute to the objective value. Because of this it is
not given that the number of station that can cover a zone should be as high as possible.
For instance, an ambulance from a quaternary station is unlikely to arrive fast enough to

provide significant value to a call, and if it is dispatched it will leave its original area more
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Figure 8: Test on the number of ranked stations

exposed.

It is difficult to exactly replicate all operational aspects in simulation models, but as indicated
by Figure 8, this operational simplification seems reasonable. However, as this is a strategic
problem, it is not vital that it takes in every operational aspect. The important factor is

that it is able to replicate the key features of how the ambulances will operate.

8.4 Evaluation of Solutions

When comparing the best solution from the model to the current locations and allocation, the
model was able to find a solution that outperformed the current solution on the expectation
for both performance measures. The performance measure values are shown in Table 14.
Clurrent locations refers to only locking the ambulance stations to the current locations,
while Current allocation refers to locking both the stations and the number of ambulances at
each station to the current solution. The best solution for Sgr-Trgndelag from the model is
referred to as Best solution. Compared to the current allocation, the objective value is 8.2%
higher in the best solution, while with only the current locations, the objective value is 6.9%

higher in the best solution.
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A comparison of the cumulative response times for the red calls in the best solution and the
current allocation is presented in Figure 9. The best solution has a much higher proportion of
calls within the interval between 4-10 minutes. This explains the higher value on the survival

measure in Table 14.

Table 14: Performance measure values for best solution, current locations and current

allocation

Performance measure Best solution Current locations Current allocation

Survival 0.209 0.166 0.157
Cover 1.224 1.174 1.167
Total 1.433 1.340 1.324
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Figure 9: Cumulative response time for best solution and current allocation

The percentage of yellow calls covered within the cover thresholds is presented for in Table
15 for the best solution and current allocation. The bold rows represent the actual cover
measure for urban and rural areas. For urban areas, the expected number of calls covered
within 12 minutes is higher for the best solution. The expected number of calls covered within

25 minutes for the rural areas is marginally higher for the best solution than for the current
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allocation. Hence, the expected performance of the best solution is superior to the expected

performance of the current allocation for every element of both performance measures.

Table 15: Percentage of yellow calls covered within cover threshold

Best solution Current allocation

Urban within 12 minutes 98% 92%
Rural within 12 minutes 56 % 72 %
Urban within 25 minutes 98 % 98 %
Rural within 25 minutes 91% 90%

To investigate the reason for the differences in the expected performance, the number of
ambulances and stations in the urban and rural areas were analyzed. The results are presented
in Table 16 and provide insightful information: The model puts a higher value on having a
higher number of ambulances and ambulance stations in the urban areas. This can partly be

explained by that the demand for EMS is significantly higher there.

Table 16: Comparison of best solution and current location

Best solution Current locations Current allocation
Amb Stat Amb Stat Amb Stat
Urban 10 7 9 3 7 3
Rural 14 9 15 13 17 13

To see the importance of having a higher number of ambulances in the urban areas, the
workload and probabilities of having at least one available ambulance at a station were
calculated. The results are shown in Figures 10 and 11 for the best solution and the current
allocation, respectively. The average workload of the ambulances at the stations in the urban
areas is noticeably higher for the current allocation than for the best solution, with an average
of 2.6 hours active time versus 1.7 hours active time for the best solution. However, the
probability of having an available ambulance at a station is approximately the same. Hence,

the number of ambulances in urban areas cannot explain the difference in the performance
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measures. This is also shown by the difference between the performance measure values of
the current locations and the best solution in Table 14, as the number of ambulances in urban

areas is almost the same for these solutions.

- 100 %
LA
2 _ | 90%
- 80%
B L 70% 2= mmm Passive Time
& 5 - 60% 3
> - 60% g
3 o
o4 - 50% 2o Active Time
= @
K - 40% B
— >
2 2 30% < Available
L 20% probability
1 - 10%
0 L T D D D O I O N D D D R B 0%
d4 N MY N XU o YU s re 8 3
EEEEEE>CE=C828g8¢La
2222223372323 55¢243
T T T T T O = ==§8o00©°
= = f = = j = [ — @
g eppoeop =
F FEFFFEF B
=
\ A J
f Y
Urban Rural

Figure 10: Workload and probability for available ambulances for the best solution

The difference between the expected performances is better explained by the number of
ambulance stations in the urban areas. In the rural areas the population is too scattered to
obtain a high score on the survival measure, and most of the population is covered within
the threshold of the cover measure. However, in the densely populated urban areas, extra
ambulance stations contribute significantly to the survival measure, as the ambulances are
then able to reach a higher number of calls within few minutes. This can also be seen in Table
14 as the difference between the survival measure values for the best solution and current

allocation is 33.1%, while the difference between the cover measure values is 4.9%.
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Figure 11: Workload and probability for available ambulances for the current allocation

8.5 Impact of Key Parameters

To understand what determines the objective value and the locations and allocation of sta-
tions and ambulances, the impact of key parameters are analyzed. This is done through
changing the weights of the performance measures, as well as changing the number of am-
bulances and stations at disposal. The analyses are presented in the two following subsec-

tions.

8.5.1 Impact of the Performance Measures

To see how the performance measures affect the solutions, the model is tested with only the
cover measure (Wiypivar = 0, Weoper = 1), only the survival measure (Wsypivar = 1, Weoper = 0),
and the base case (Wsypivat = 2, Weover = 1). The tests were performed with reformulation
(63), and with 16 stations and 24 ambulances. The locations and allocation for all the test

are shown in maps in Appendix H. Note that the combined urban areas are small compared

56



8 COMPUTATIONAL STUDIES

to the rural areas in Sgr-Tregndelag, as shown in Figure 7. However, the urban area contains

70% of the demand.

An overview of the location and allocation of stations and ambulances to urban and rural
areas for the tests is presented in Table 17. The unweighted values for cover and survival
are shown in the columns to the right. These values multiplied with the associated weights

constitute the objective value.

Table 17: Location and allocation for the performance measures tests

Test Urban Rural Unweighted value

Stations Ambulances Stations Ambulances Cover Survival

Cover measure 6 11 10 13 1.2365 0.0496
Survival measure 12 16 4 8 1.0771 0.1183
Base case 8 11 8 13 1.2242 0.1046

As all tests have different sets of locations and allocations, it is clear that the different weights
affect the solutions. The cover measure scatters the stations in order to cover as large demand
as possible. This is seen from Table 17 as it has more stations in the rural areas than the
other tests. However, it allocates more ambulances per station in the urban areas than in
the rural areas, as it is more critical if the ambulances are busy in areas with high density of

demand for EMS.

The survival measure maximizes the number of survivors according to the exponential survival
function. For this performance measure, the performance value of responding to a call within
3 minutes is twice as high as the performance value of responding within 6 minutes. Hence,
it is essential to have stations located very close to zones with high demand. Because of this,

12 out of 16 stations were located in the urban areas for this test.

The base case uses a combination of the cover and the survival measure, and search to both
cover large areas and achieve short response time to the zones with high demand. Compared

with the cover measure the base case put the same number of ambulances in urban and rural
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areas, but allocates 2 more stations to the urban area. This is because the model searches to

be closer to the high demand zone due to the survival measure.

When comparing the cover value from the survival test (1.0771) with the cover value from
the cover test (1.2365), it is 12.9% lower. However, when comparing the survival value from
the cover test (0.0496) with the survival value from the survival test (0.1183), it is 58.1%
lower. This shows that when only considering the cover measure the solution fails to give
quick response to zones with high demand, while when only considering the survival measure
the solution achieves decent coverage. This can be explained by that 70% of the demand
come from the urban areas. The base case achieves a cover value (1.2242) that is 0.99% lower
than the cover value (1.2365) in the cover test, and 11.6% lower survival value (0.1046) than
the survival test (0.1183). Hence, using both performance measure achieve decent values for

both cover and survival.

8.5.2 Sensitivity to the Number of Ambulances and Stations

To test the MEPLP-HR’s sensitivity to the restrictions on the resources of the EMS provider,
the model is tested for a range of ambulances and stations. The model is tested for 16 to 30
ambulances with 16 station, and for 10 to 24 stations with 24 ambulances. To find strong
objective values and best bounds, all tests are performed three times; with the reformulation
(63), with all strengthening constraints except (67) and with (63) and (64) combined. The
highest objective value and lowest best bound are recorded. The results from the respective
tests are presented in Figure 12 and 13. The figures show the the value of the cover and
survival measure, optimality gap and the average available probability. Together, the cover
and survival value constitue the objective value. The optimality gap in these figures is defined

as Best bound - Objective value.

As seen from Figure 12 the objective value increases from 16 to 23 ambulances, while from
23 to 30 ambulances the effect is decreasing. This can be explained by that the average
available probability is increasing for 16 to 23 ambulances, while it is stable for 23 to 30
ambulances. The best bound is not significantly affected by the number of ambulances. This

can be explained by that the solver calculates the best bound based on that there always is
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Figure 12: Results from varying the number of ambulances with 16 stations

an available ambulance at a station. As there are 16 stations for all tests, the best bound

stays the same.

It is the survival value that contributes the most to the increase in objective value. This
can be explained by that it is more critical for this measure to have an available ambulance
at a station located close to zones with high demand. The small increase in cover value is
also explained by that available probability increases. The primary stations are then able to

reach more calls that are not covered by two stations within the cover threshold.

In Figure 13 the effect from varying the number of stations is presented. As seen from the
figure, the objective value increases with the number of stations, while the gap is relatively
stable for all number of stations. As there are 24 ambulances for all tests, the average
available probability is generally high. The fluctuations in the average available probability

can be explained by how the ambulances are allocated to the stations.

As the for the test with increasing ambulances, the cover value is fairly stable. This is due
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Figure 13: Results from varying the number of stations with 24 ambulances

to that the zones with high demand is covered within the cover threshold even with a low
number of stations. The increase in the objective value is a result of the increase in the
survival value. The survival value increases as more stations are located in areas with high

density of demand. Hence, a larger part of the demand are covered within few minutes.
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9 Application of the model

In this section two case studies are performed using the model. The first concerns the
consequences and mitigating actions of closing down a local trauma center, while the second

focuses on the benefits of introducing non-urgent transport vehicles for green calls.

9.1 Closing a Local Emergency Room

There are several small local ERs in Norway today. These local ERs are controversial as
they are expensive, and there are discussions about the competence of such small facilities
compared to the regional hospitals. However, there are substantial local political forces that
want to keep these facilities, as they fear that the emergency medical services for their local
area will be weakened if the facility is closed down. For Sgr-Trgndelag, the local ER under
discussion is the one located in Orkdal. The ER in Orkdal is approximately 35 minutes from
the regional hospital of Sgr-Trgndelag. 40 of the 139 zones has this as its nearest ER, and
these 40 zones counts for 13.7% of the red and yellow calls in Sgr-Trgndelag.

A proposed mitigating action for closing local ERs is to procure additional ambulances and /or
stations for the area affected by the closing. In this manner, the extra stations and ambulances
should weigh up for the longer distance to the ER. A share of the savings from the closed
ER can finance these additional resources. However, it is important to emphasize that the

closing of local ERs is not solely based on cost cutting.

The traditional performance measures of the ambulance station location are only based on
response time. However, if the ambulances should weigh up for closing down a local ER, it
is the time from a call arrives until the patient arrives at the ER that is of greatest interest.
This makes sense when considering e.g. stroke, where the time until a CT-scan is performed
is of great importance (Saver and Levine, 2010). It is also important for local politicians, as
the time until a person arrives at the ER affects the perceived safety and convenience for the

population.
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9 APPLICATION OF THE MODEL

To analyze the effect of closing the local ER, a new performance measure is introduced. The
new performance measure is based on the time from a call arrives until the patient is at
the ER. With this performance measure, the idea is that people far from the ER will be
compensated by having an ambulance closer to reduce the time to ER. A cover measure
is used because the objective is to get as many as possible to the ER within a reasonable
time, not to minimize the average time to ER. However, there are no official guidelines to
what should be defined as a reasonable time to the ER. For Sgr-Trgndelag, some interest
groups claims that 60 minutes are reasonable, while others claim that more than 120 minutes
are reasonable. Based on this, the performance measure is implemented as being 1 if an
ambulance from a specific station can get a person from a specific zone to the ER within 90
minutes, and 0 otherwise. The weight is set to be the same as for the response time cover
measure, and the number of calls relevant for this measure is both the red and yellow calls.
The summarized performance measures used in this case are given in Table 18. tf is the

2fER

reponse time, and is the time to ER and defined as the reponse time plus the travel time

from the zone to the closest ER.

Table 18: Performance measures for local ER case

Performance | Function Wi | Dig
Measure
Survival H(th) = L 2 | red calls

1+ 6—0.679+0.262tR

1 for0<th <12

Cover urban | H(t%) = 1 | yellow calls
0 for tf >12
for 0 < ¢t < 25
Cover rural H(tF) = 1 | yellow calls
0 for tf* =25

_ 1 for 0 < tFE <90
Time to ER | H(t"F) = 1 | red and

0 for tPR =90

yellow calls

To analyze the mitigating actions, one extra ambulance and one extra station have been
made available for the zones that are affected by the closing of the local ER, i.e. the zones

with the closed local ER as its closest ER. At first, the model is run with the existing ERs
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9 APPLICATION OF THE MODEL

and current location and allocation to get a base case. Then, the proposed closed ER is
removed from the data and the model is run again to see how the objective value is changed.
After that, the model is run with one extra ambulance and one extra ambulance and station.
This is done to see how the mitigating actions work. The objective values for the different
performance measures and tests are shown in Table 19. The tests are named Base case,
X00, X10 and X11, and refer to the current situation, the situation without the ER, the
situation without ER and an extra ambulance, and the situation without the ER and an
extra ambulance and station, respectively. The optimality gap is defined as (best bound -
objective value) / objective value, and the objective value is the sum of the values of the

performance measures.

Table 19: Performance values and optimality gap for the tests

Survival Cover Time to ER  Objective value Optimality gap

Base case 0.156 1.169 2.014 3.339 0.36%
X00 0.155 1.168 1.971 3.294 0.35%
X10 0.157 1.167 1.972 3.296 0.45%
X11 0.162 1.198 2.005 3.365 0.42%

The results in Table 19 show that there is little value in adding an additional ambulance
without any additional stations. This can be explained by the fact that there is a high
probability that there is at least one available ambulance at all stations, hence an additional
ambulance does not contribute significantly. With an extra ambulance and ambulance and
station (X'11), the objective value related to the time to ER measure is marginally lower than
in the base case. The extra ambulance station and ambulance are not able to completely
mitigate the consequences of closing the ER. This is due to the longer distance to the regional
hospital than to the proposed closed ER. However, the objective values related to the other
performance measures also increase with the extra ambulance and station. For X11, the
values are higher for the response time based performance measures, survival and cover,
compared with the base case. In this manner, improved response time could be seen as a

compensation for longer time to ER.
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The results in Table 19 are for the entire Sgr-Trgndelag. As the affected zones only account
for 13.7 % of the red and yellow calls in Sgr-Trgndelag, the consequences of the closing do not
appear drastic for the county as a whole. However, for the affected area, the consequences
are significant. To see the effect for the affected area, the cumulative distribution of time to
ER and the cumulative distribution of the response time for each of the tests are calculated.
The cumulative time to ER is shown in Figure 14, while the cumulative response time is seen
in Figure 15. Note that there are some minor inconsistencies due to that the model did not

reach optimality. However, the main trends are correct.

100 %
90 %
80 %
70 %
60 %
50 %
40 % =
30 %
20% | mX11

Base case
| X00
X10

Percentage of calls

10%
0% . | T
10 20 30 40 50 60 70 80 90

Time to ER [minutes]

Figure 14: Cumulative distribution of time to ER for the affected area

As seen from Figure 14, 23% of the calls in the base case are able to get to the ER in 10
minutes or less. 70% of the calls are within 60 minutes or less, and 86% are able to get to the
ER within 90 minutes. Closing the local ER significantly affects the cumulative distribution.
For X00, X10 and X11, none of the calls in the affected area are able to get to the ER within
30 minutes. For these instances, approximately 28% of the calls can get to the ER within
40 minutes. Within the 60 minutes threshold, the number of calls that can get to the ER is
approximately half for these tests compared to the base case. However, within 90 minutes
there are only 3 percentage points difference between the X11 and the base case. Without

an extra station, the difference is 12 percentage points for the 90 minutes limit.
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Figure 15: Cumulative distribution of response time for the affected area

As expected, the cumulative distribution of the response times in Figure 15 are similar for
the base case and the test without an additional station. This is natural as closing a local ER
has little connection to the response times of ambulances. By adding the additional station,
the expected number of calls that are reached within 25 minutes increases by 16 percentage
points. The number of calls that are reached within 5 minutes are increased by 9 percentage
points. This explains the increase in the cover and survival performance measure from Table

19.

For the affected area, the consequences of closing the local ER and adding an ambulance at a
new ambulance station is that the time to ER increases significantly while the response time
decreases significantly. To fully analyze the value of the proposed solution, there needs to be
a proper weighting between response time and time to ER. However, as there is a stronger
focus on treating patients on scene (Snooks et al., 2004), the solution of introducing extra

ambulances and stations as a mitigating action is interesting.
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9 APPLICATION OF THE MODEL

9.2 Designated Non-urgent Transport Vehicles

Ambulances in Norway are used for almost every type of transport to and from hospital.
Ambulances are expensive vehicles, with specially trained staff that are specialist in han-
dling emergencies. However, for Sgr-Trgndelag in the busiest period, 57% of the calls are
categorized as green calls that mainly include normal transport assignments. These may be
planned or unplanned, but they are not urgent, and most of them do not require high-tech
equipment or trained paramedics. Some patients require however that the transport vehicle

has room for beds.

To cut cost and utilize the resources effectively, a proposed solution is to transfer the green
calls from the ambulances to specialized transport vehicles. These vehicles may be adminis-
tered by the emergency medical communication central or a designated transport organiza-
tion. The main idea is that it is ineffective to use specially trained paramedics with expensive
EMS equipment for normal transport assignments. To effectively utilize resources, expensive

ambulances could be replaced by cost effective transport vehicles.

To analyze the benefit of introducing designated non-urgent transport vehicles, it is explored
how many ambulances that can be removed while still keeping the same total performance
level as before. All the green calls are removed from the dataset, as they are assumed to be
taken by the specialized transport vehicles. The analysis is carried out on the busiest period,
workdays from 08:00 to 16:00. The stations are locked to their current locations, and the

model allocates the ambulances at disposal.

The impact of removing ambulances on the objective value is presented in Figure 16. The
light blue line is the objective value of the current situation, while the dark blue line is the
objective value when all the green calls are removed. The green line is used as a reference
and is the objective value when all the green calls are present. As seen in Figure 16, five
ambulances can be removed while still keeping the same total expected performance level as

with the green calls.
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Figure 16: Results for removed ambulances and objective value

To see how the removal of ambulances affect the solutions, the number of stations used and
the average probability for having an available ambulance at a station is analyzed. Figure
17 shows the number of stations used and the average probablity for available ambulances
as a function of the number of removed ambulances. As seen from Figure 17, the average
probability for having an available ambulance at a station is generally high. This explains the
modest drop in objective value for 0 to 6 ambulances in Figure 16. The number of stations
used is also fairly stable. That shows that the ambulances are mainly removed from the
stations with several ambulances. The drop in number of stations in use from 0 to 1 removed
ambulance is due to the closing of a station that only covers 0.25% of the total demand as
primary station, and 2.3% of total demand as secondary station. Hence, closing this station
does not significantly affect the objective value, as seen from the small change in the objective

value from 0 to 1 removed ambulances in Figure 16.
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Figure 17: Results for removed ambulances, average probabilty for available ambulances

and stations in use

By removing 57% of the calls, 5 out of 24 ambulances can be be removed while still keeping
the same performance level. This seems a bit low, but can be explained by that each station
requires at least one ambulance to contribute to the performance measures. For the busi-
est period, 57% of the calls represent 22 calls each day. Hence, for designated non-urgent
transport vehicles to be an interesting option, the vehicles needs to be able to handle at least
22 calls each day and cost less than five ambulances. However, the analysis presented here
is just an indication of what is possible. To fully explore the potential of designated non-
urgent transport vehicles more research on the green calls as well as the specialized vehicles

is needed.
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10 Concluding Remarks

To help EMS providers achieve the desired level of performance, operations researchers have
developed decision support tools for decades. In the recent years EMS has tracked more data
and the computational power have increased. This has increased the opportunities for apply-
ing the results of OR as decision support. In this report a new problem for locating ambulance
stations and allocating ambulances to the stations, referred to as the Maximum Expected
Performance Location Problem for Heterogeneous Regions (MEPLP-HR), is presented. The
problem applies multiple performance measures as well as station specific probabilities for
available ambulances. Compared to earlier problems, the MEPLP-HR is more realistic for
heterogeneous regions as the service time of ambulances depends on the area a station cov-

ers.

A mixed integer linear program is formulated to solve the problem. To calculate the prob-
ability for that there are any available ambulances at a station, the model applies queuing
theory together with the service rate and arrival rate of calls to a station. In contrast to re-
cent models, the probability for available ambulances is calculated within the model. Hence,
it is not necessary with iterative solution approaches to solve the model. To solve the model
effectively, the formulation is strengthened using valid inequalities and a reformulation of a

restriction.

The model is tested on data from the heterogeneous county of Sgr-Trgndelag. Compared to
the current locations and allocation, the model is able to find a solution that has a higher
expected performance on each of the given performance measures. The model is also tested
for a range of ambulances and stations, as well as different weights for the performance
measures. A multi-period version of the model is formulated to explore the importance of
taking time varying demand and resources into account. However, the results show that only

using the busiest time periode is sufficient to find robust solutions for all time periods.

The purpose of operations research on EMS is to help EMS providers analyze problems
and make sound decision. This is done in this report by applying the model on two real

managerial cases. The first case analyzes the consequences and potential mitigating actions
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for closing down a local emergency room (ER). By closing the local ER, the travel time
to ER increases significantly for the zones close to the local ER. However, adding an extra
ambulance and ambulance station can to some degree mitigate the effect. The second case
concerns the benefit of transferring all green calls to designated non-urgent transport vehicles.
The analysis in this case shows that there is a potential to reduce the number of ambulances

by one fifth if designated non-urgent vehicles are introduced.

As future research, it would be useful to make an overview of different EMS decision support
tools and application areas. It could also be interesting to formalize what defines a high
performing EMS system. Then one could point out where OR has its greatest potential.
There is also a need for new performance measures in the models that are not solely based
on response time. To build on this, it could be interesting to find a monetary value on
the different levels of the performance. Then the decision makers could calculate if extra

investments to reduce e.g. response time are beneficial from cost-benefit point of view.

To develop the model further, it could be interesting to make the model more realistic by
incorporating the dependency between the stations or taking in different kinds of ambulances.
The available probability function can be developed more and the hypercube queuing model
can be validated further against real data. Finally, as the model does not reach optimality
for large instances, the formulation can be strengthened further or solution heuristics can be

developed.
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A Appendix - Summary of model formulation

The Model Formulation

Indices and sets

j € J  Possible locations for ambulance stations

1 €1  Zones with a demand for EMS

g € Q@ Ranking of stations

[l € L  Performance measures of the EMS provider
m € M Breakpoints of the service rate discretization and linearization

n € N Breakpoints of the service rate discretization and linearization

u € U  Breakpoints of the available probability discretization and linearization

v €V  Breakpoints of the available probability discretization and linearization
Parameters

W, Weight of performance measure [

D;;  Number of calls relevant for performance measure [ and zone ¢
H;;; Performance value of zone 7 being covered by a station in zone j,

given performance measure [

A Number of available ambulances

S Number of available stations

Ai  Rate of calls from zone ¢

R;;  Service time

B,, Aggregated service demand for breakpoint m

C, Aggregated service time for breakpoint n

S.  The service rate of breakpoint u

R, The arrival rate of breakpoint v

P,. Probability of busy station, given breakpoint u,v and k& ambulances
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Variables

y

Pij

1 if a station is located in zone j, 0 otherwise

Number of ambulances allocated to a station in zone j

Proportion of the demand in zone i covered by a station in zone j with rank ¢
1 if station j is the primary station for zone i, 0 otherwise

Arrival rate of calls to the station in zone j

Service rate of ambulances at the station in zone j

1 if there are more than k£ ambulances at station in zone j, 0 otherwise
SOS2 set for m associated with the breakpoint variable

SOS2 set for u associated with the breakpoint variable

Breakpoint variable associated with the service rate linearization

SOS2 set for v associated with the breakpoint variable

SOS2 set for u associated with the breakpoint variable

Breakpoint variable associated with the available probability linearization

The objective function

Mazy Wi > "> DaHywl]

leL iel jeJ qeQ

Deployment constraints

ZQZ'JSA

jeJ

ZZJ'SS

jeJ

ZEjSAZj ]EJ

I6)



A APPENDIX - SUMMARY OF MODEL FORMULATION

Covering constraints
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Available probability constraints
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uceU
D uwj=dy jEJuEU
veV
> S ow =1 je
uelU veV
yg})gl_ZZPM}kauv]_‘_dﬂk jEJ,iG[,k:O7...,A,q€Q
uelU veV
A
(5jk§xj jEJ
k=0

Convexity constraints, binary constraints and SOS2 sets

z; € {0,1}

z; € {0,1,2,..., A}

y = 10,1]

pij € {0,1}

6,>0

i >0

dir € {0,1}

{Brj, -, By} is SOS2
{015, .., d|;} is SOS2
{vij, -, v} is SOS2
{wij, .y wingj } is SOS2

jeJ

jeld
rel,jeJqgeq
ielLke K
jelJ

jedJ
jeEJk=0,.,A
jeJ

jeld

jedJ

jedJ

CmanO mEM,nGN,jEJ

i >0 velveV,jed

7
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B Appendix - Multi-period model formulation

The Model Formulation

Indices and sets

j € J Possible locations for ambulance stations

1 €1  Zones with a demand for EMS

q € @ Ranking of stations

[l € L  Performance measures of the EMS provider
m € M Breakpoints of the service rate discretization and linearization

n € N  Breakpoints of the service rate discretization and linearization

u € U  Breakpoints of the available probability discretization and linearization
v € V  Breakpoints of the available probability discretization and linearization

t €T Time periods
Parameters

W, Weight of performance measure [
D;;;  Number of calls relevant for performance measure [ and zone ¢ in period ¢
H;;; Performance value of zone 7 being covered by a station in zone j,

given performance measure [

A;  Number of available ambulances in period ¢

S Number of available stations

Ait  Rate of calls from zone i in period ¢

R;;  Service time

B,, Aggregated service demand for breakpoint m

C, Aggregated service time for breakpoint n

S.  The service rate of breakpoint u

R, The arrival rate of breakpoint v
P,.  Probability of busy station, given breakpoint u,v and k& ambulances
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B APPENDIX - MULTI-PERIOD MODEL FORMULATION

Variables

y )

Pijt

Kt
Ojkt
Ut
Wit
Gmnjit
Bujt
Pujt

Qyujt

1 if a station is located in zone j, 0 otherwise

Number of ambulances allocated to a station in zone j in period ¢

Proportion of the demand in zone i covered by a station in zone j with rank ¢ in period ¢
1 if station j is the primary station for zone ¢ in period ¢, 0 otherwise

Arrival rate of calls to the station in zone j in period ¢

Service rate of ambulances at the station in zone j in period ¢

1 if there are more than £ ambulances at station in zone j in period ¢, 0 otherwise
SOS2 set for m associated with the breakpoint variable

SOS2 set for u associated with the breakpoint variable

Breakpoint variable associated with the service rate linearization

SOS2 set for v associated with the breakpoint variable

SOS2 set for u associated with the breakpoint variable

Breakpoint variable associated with the available probability linearization

The objective function

MaxZWzZZZZDmHiﬂygg (114)

leL i€l jeJ qeQ teT
Deployment constraints
vy <Ar teT (115)
jed
d y<S (116)
jeJ
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B APPENDIX - MULTI-PERIOD MODEL FORMULATION

Covering constraints

YNyl =1 ielterT

JEJ q€Q
L—pyje >y i€ljelteTl

Zpijtzl iel,teT

jed

Syl =S y? ielter

JjEJ Jj€J

Arrival rate constraints

00 = Z()\itpijt + )\ityz‘(?t)) jedteT

iel

Service rate constraints

Z Bmejt - ZZ /\lyz(;zt) JE JiteT

meM el qeq
Y Cwwonji =D > MRyl jeJiteT
neN i€l qeq
ZCmnjt:ant jEJ,TLEN,tET
meM
ZCmnjt:ijt jEJ,mGM,tGT
neN
EE: jg: gwwut:: 1 j S J;t eT
meM neN
lth_ZZ Cmn]t jGJ,tET
meM neN n
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B APPENDIX - MULTI-PERIOD MODEL FORMULATION

Available probability constraints

ZRvﬁvjtzejt je JatET

veV
Z‘Sugbujt:ujt je Jat eT
uelU
Zauvjtzﬁvjt JjeEJveViteTl
uelU
Zauvjt:¢ujt jGJaUEUatGT
veV
D) owp=1 jeJteT
uelU veV
yl(]qt) S 1_Zzpuvk04uvjt+5jkt jE J7Z EI,]CZO,...,A,QE Q?tET
uelU veV

A
Z(Sjktngt jEJ,tET
k=0

Convexity constraints, binary constraints and SOS2 sets

z€{0,1} jeJ

r; €{0,1,2,.., A} jeJteT

yg?t):[o,l} iel,jeJqeQ,teT
pin €{0,1} iel,jeJteT

0 >0 jelteT

pie >0 geJteTl
i €{0,1} jeJk=0,.,AteT

{Bujts s Bvije} s SOS2 je JteT

{d1jir o O} 18 9082 jeJteT

{vijes s e} is SOS2 je JteT

{wijt, -, winye} 8 SOS2 jeJteT

Conjt =0 meMneN,jeJteT

it >0 velwveV,geJteT
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C Appendix - Demand from the zones

Total demand [calls/hour] for each zone and period
Workday, periods Weekend, periods
Postal code |00-08 08-16 16-24 00-08 08-16 16-24
2550| 0.003005 0.015986 0.00649| 0.002704 0.0065911 0.010817
2555\ 0.00012 0.00024 0.00012 0.0003 0 0.0003
6657 0.003726 0.027764 0.009495| 0.006911 0.023438 0.008714
6658| 0.001202 0.002644 0.002043| 0.001202 0.002103 0.004207
7010| 0.019712 0.024519 0.0213%94| 0.080829 0.014724 0.028546
7011 0.0125 0.056731 0.025481 0.0622 0.016827 0.022536
7012| 0.020913 0.069471 0.052885| 0.039663 0.048377 0.051683
7013| 0.00625 0.026923 0.020072| 0.013522 0.015024 0.015625
7014| 0.020553 0.031731 0.033534| 0.035457 0.026743 0.028346
7015| 0.002885 0.009255 0.006611| 0.003606 0.005709 0.005409
7016| 0.000841 0.001683 0.001683| 0.001302 0.001502 0.002704
7018| 0.019471 0.067348 0.045673| 0.0306049 0.048678 0.038762
7019| 0.001923 0.003726 0.004928| 0.005709 0.005408 0.002704
7020| 0.019111 0.054327 0.034495| 0.023137 0.045373 0.045974
7021| 0.020072 0.064784 0.047596| 0.026442 0.049279 0.047175
7022\ 0.00613 0.01899 0.013582| 0.006611 0.014123 0.021034
7023| 0.013341 0.031611 0.027644| 0.011719 0.028846 0.030349
7024| 0.010697 0.042308 0.023798| 0.012921 0.021334 0.024339
7025| 0.003486 0.00613 0.004683| 0.005409 0.006911 0.007512
7020| 0.008173 0.02488 0.017348| 0.009014 0.017127 0.016226
7027 0.014784 0.044952 0.029207| 0.023137 0.027344 0.022837
7028| 0.002644 0.004087 0.004808| 0.001502 0.002404 0.003005
7029| 0.008534 0.009856 0.012139| 0.009615 0.011418 0.010216
7030| 0.089904 1.52488 0.328606| 0.119291 0.654748 0.230168
7031| 0.014063 0.03738 0.030649| 0.016526 0.029748 0.029147
7032| 0.007091 0.014423 0.01262| 0.007813 0.015925 0.011118
7033| 0.012139 0.041106 0.030288| 0.018029 0.028846 0.028245
7036| 0.018029 0.052764 0.034014| 0.021334 0.036659 0.029748
7037 0.013702 0.051803 0.027043| 0.022837 0.028245 0.027644
7038| 0.00613 0.016707 0.013101| 0.010517 0.009916 0.011719
7039| 0.001563 0.002163 0.003966 0.0003 0.002404 0.003606
7040| 0.015986 0.039063 0.029567| 0.015925 0.0306459 0.025541
7041 0.014904 0.046755 0.033293| 0.019231 0.02494 0.03095
7042 0.017188 0.04363 0.037139| 0.038762 0.038161 0.036939
7043 0.016466 0.029327 0.023197| 0.023137 0.028546 0.022536
7044 0.005889% 0.019952 0.0118%3| 0.00631 0.012521 0.009916
7045| 0.009255 0.025087 0.021034| 0.014423 0.021034 0.021635
7046 0.03125 0.101923 0.057452| 0.035457 0.079627 0.059495
7047 0.004207 0.016226 0.016226| 0.00601 0.013822 0.016226
7048| 0.017188 0.042308 0.033053| 0.019832 0.035757 0.030649

Figure 18: Total demand of red, yellow and green calls from each zone in each period
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C APPENDIX - DEMAND FROM THE ZONES

Total demand [calls/hour] for each zone and period

Workday, periods Weekend, periods

Postal cod

00-08 03-16 16-24 00-038 '08-16 16-24

7045
7050
7051
7052
7053
7054
7056
7057
7058
7053
7070
7072
7074
7075
7078
7079
7080
7081
7082
7083
7088
7089
7091
70592
7097
7098
7093
7200
7203
7206
7212
7213
7224
7227
7228
7232
7234
7236
7240

7241

0.007091 0.021034 0.0165947| 0.00631 0.023738 0.013325
0.008293 0.026082 0.0182658| 0.01232 0.024038 0.023738
0.00613 0.01201% 0.0098536| 0.00601 0.01232 0.013522
0.010457 0.022336 0.022476| 0.010817 0.020733 0.020433
0.010216 0.027764 0.020313| 0.010517 0.027345 0.030343
0.007212 0.013305 0.01262| 0.010216 0.014423 0.01863
0.00625 0.013341 0.0118599| 0.006611 0.014724 0.013822
0.001202 0.003966 0.003726| 0.001502 0.002404 0.00631
0.015144 0.069351 0.038582| 0.022536 0.04357 0.032452
0.005883 0.009615 0.009373| 0.004308 0.007313 0.008714
0.003365 0.003329 0.005283| 0.003606 0.006611 0.009916
0.015865 0.045433 0.026683| 0.018832 0.024339 0.027344
0.004688 0.013702 0.007332| 0.00601 0.01262 0.007512
0.008413 0.046274 0.022115| 0.008413 0.021334 0.020433
0.020192 0.073841 0.0444711 0.027345 0.047776 0.05018
0.007091 0.022957 0.020192| 0.011719 0.020433 0.016526
0.005643 0.029207 0.01262| 0.007813 0.008714 0.01232
0.00625 0.013986 0.014303| 0.009916 0.012921 0.015325
0.015024 0.027163 0.027524| 0.021034 0.02434 0.034850
0.003486 0.00637 0.005409| 0.003%06 0.006611 0.004803
0.014543 0.027163 0.024399| 0.017728 0.027043 0.027344
0.003005 0.009014 0.006971| 0.008113 0.008413 0.012019
0.008413 0.024279 0.021875| 0.015325 0.019531 0.024639
0.005883 0.013%942 0.011893( 0.006611 0.01232 0.011418
0.002404 0.007212 0.004567| 0.004808 0.005709 0.005108
0.008173 0.013702 0.01226| 0.008113 0.013522 0.013522
0.0050458 0.010216 0.009493| 0.005409 0.007813 0.009315
0.015986 0.0087> 0.034235| 0.020442 0.039364 0.036358
0.000481 0.001683 0.0015923| 0.001502 0.003005> 0.002103
0.000841 0.000481 0.000481| 0.000601 0.001202 0.001202
0.002043 0.017348 0.00637 0.002704 0.008714 0.006611
0.001322 0.001363 0.001322| 0.000601 0.003600 O0.000601
0.020072 0.081731 0.03774| 0.01863 0.043072 0.041460
0.003005 0.007432 0.005043| 0.005409 0.00601 0.00631
0.001683 0.004327 0.002885| 0.004507 0.005108 0.00631
0.005048 0.027644 0.008774| 0.006911 0.013822 0.008714
0.002644 0.006611 0.003846| 0.001803 0.006911 0.003305
0.003005 0.006731 0.005883| 0.004808 0.007212 0.007512
0.004567 0.009836 0.0088%4| 0.001502 0.01201% 0.011719
0.000361 0.000962 0.000962| 0.000601 0.001502 0.000601

Figure 19: Total demand of red, yellow and green calls from each zone in each period
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C APPENDIX - DEMAND FROM THE ZONES

Total demand [calls/hour] for each zone and period
Workday, periods Weekend, periods
Postal cod00-08 08-16 16-24 00-08 08-16 16-24
7242( 0.002043 0.002284 0.003125| 0.002404 0.005409 0.00601
7243| 0.000962 0.003005 0.001322| 0.0018032 0.002404 0.002404
7246( 0.001523 0.002524 0.001923| 0.001803 0.005108 0.002103
7247( 0.001563 0.003125 0.003966( 0.001202 0.001803 0.003305
7250| 0.001202 0.003365 0.002284| 0.001502 0.004207 0.003906
7252( 0.001322 0.003726 0.003486| 0.002704 0.004207 0.004207
7255| 0.00012 0.001563 0.001202 0.0003 0.000601 0.0003
7256| 0.00012 0.000721 0.000361 0.0003 0 0.000601
7257( 0.001322 0.001803 0.002284| 0.001803 0.002103 0.001803
7260| 0.003726 0.005769 0.008413| 0.008413 0.008413 0.007813
7263( 0.002764 0.005649 0.007332( 0.003305 0.009615 0.00601
7266| 0.000361 0.001202 O0.001082| 0.000901 0.002404 O0.000601
7268| 0.00024 0.001082 0.000481 0.0003 0.001502 0
7270( 0.003365 0.00637 0.005889| 0.003606 0.008113 0.007813
7273| 0.001082 0.003245 0.002043| 0.001202 0.004207 0.002103
7288| 0.003125 0.00613 0.003245| 0.001202 0.007512 0.006911
7290( 0.012139 0.046875 0.026923| 0.013221 0.032151 0.027644
7295( 0.00012 0.000481 0.000841( 0.001202 0.001202 0.0003
7298| 0.001202 0.002524 0.001563| 0.001202 0.003005 O0.002404
7300( 0.046394 0.565505 0.160577| 0.066707 0.197416 0.107873
7310| 0.000962 0.004207 0.002234| 0.001502 0.004307 0.002704
7316| 0.002043 0.004688 0.004688| 0.003606 0.005409 0.004207
7318( 0.000841 0.001683 0.001683 0.0003 0.001202 0.002404
7320| 0.014423 0.054447 0.023317| 0.01863 0.040264 0.029748
7327( 0.002043 0.005649 0.003726( 0.001502 0.00601 0.004808
7332( 0.005649 0.018%9 0.016827| 0.01262 0.017728 0.015531
7334| 0.003246 0.008534 0.006971| 0.00601 0.014724 0.008714
7335( 0.002163 0.006611 0.003606( 0.002404 0.008413 0.005409
7336| 0.00613 0.048157 0.014784| 0.009315 0.0255341 0.017127
7340| 0.028005 0.115625 0.064303| 0.036659 0.091547 0.073317
7342( 0.000361 0.001803 0.00024 0.0003 0.003305 0.001202
7343 0 0 0.00012 0 0 0
7345( 0.00024 0.000361 0.000721| 0.000601 0.0003 0.000601
7350| 0.005288 0.017428 0.01262| 0.007512 0.011118 0.014724
7353| 0.003486 0.006971 0.008053| 0.003606 0.007312 0.008413
7354( 0.000361 0.000841 0.000962 0.0003 0.002704 0.000901
7355| 0.001442 0.002284 0.001082| 0.002102 0.002404 0.001502
7357| 0.0012803 0.002284 0.002284| 0.000601 0.003906 0.003005
7370( 0.000361 0.001202 0.000962 0.0003 0.000601 0
7372| 0.000601 0.003245 0.001803 0.0003 0.003906 0.002103

Figure 20: Total demand of red, yellow and green calls from each zone in each period
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C APPENDIX - DEMAND FROM THE ZONES

Total demand [calls/hour] for each zone and period
Workday, periods Weekend, periods
Postal cod00-08 08-16 16-24 00-08 08-16 16-24
7374| 0.019231 0.095313 0.044952( 0.030349 0.054688 0.058594
7380| 0.006851 0.014303 0.005455( 0.007512 0.014123 0.008714
7383| 0.001322 0.003365 0.002524| 0.001803 0.002102 0.003305
7387| 0.001442 0.004688 0.003125| 0.002704 0.007512 0.004808
7391| 0.009495 0.052644 0.023918| 0.007512 0.038762 0.025541
7392| 0.000481 0.002644 0.001442 0.0002 0.001803 0.0003
7393| 0.001563 0.003846 0.002644( 0.001202 0.003906 0.003305
7397| 0.000841 0.001442 0.000721 0.0002 0.001803 0.001502
7398| 0.000361 0.002043 0.001202( 0.000601 0.001502 0.001502
7540 0.0125 0.03726 0.028005( 0.014123 0.027644 0.03125
7549 0.002764 0.003606 0.002885| 0.003906 0.003606 0.002704
7550( 0.015024 0.063221 0.029928| 0.022236 0.045373 0.032752
7560( 0.008293 0.03125 0.017308| 0.011719 0.022837 0.022536
7562| 0.005288 0.0094595 0.008534| 0.004507 0.008714 0.009615
7563| 0.004808 0.008293 0.007332| 0.00601 0.007512 0.005409
7580( 0.007572 0.053245 0.023438| 0.009315 0.033353 0.021935
7584| 0.001322 0.001803 0.001563| 0.001803 0.003005 0.001502
7590( 0.001683 0.004447 0.0036006| 0.002404 0.007512 0.004207
7596( 0.00012 0.000721 0.000481| 0.000601 0.000901 0.000601

Figure 21: Total demand of red, yellow and green calls from each zone in each period
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D Appendix - Overview of possible station location

[ Station Station
zohe Postal zone Postal
number code number code

1 6657 35 7089

2 7011 40 7092

3 7014 41 7098

4 7015 42 7099

5 7018 43 72004

6 7019 A4 7224

7 7020 45 7232

2 7021 46 7234

g 7022 a7 7236
10 7023 48 7240
11 7024 45 7252
12 7025 50 7256
13 7026 51 7257
14 7028 52 7263
15 7029 53 7288
16 7030 54 72901
17 7032 55 73004
18 7033 56 7316
15 7036 57 7320
20 7037 58 7327
21 7038 55 7332
22 7041 60 7334
23 7042 61 7336
24 7043 62 7340
25 7044 63 73504
26 7045 64 7353
27 7045 65 7374
28 7047 66 7380
29 7048 67 7387
30 7049 62 7391
El 7050 65 7393
32 7051 70 7397
33 7052 71 75401
34 7056 72 75501
35 7075 73 7560
36 7080 74 7563
37 7083 75 75801
EL 7088 76 75901

Figure 22: Overview of possible station locations
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E Appendix - Python code to get traveling times from
Google Maps

import urllib

# Input: All coordinates for the zones

steder = ["62.49617,11.22355""62.303 ,11.7195" ... |

for i in range(v,x):
for j in range(y,z):

saddr = steder]i]
daddr = stederl|j|
s = "https://maps.google.com/maps?saddr=" + saddr + "daddr=" + daddr
html = urllib.urlopen(s).read()
try:
# get the traveling time
idx = html.index("<div class= "altroute")
rest = html|idx - 100 : idx + 100]
rest = rest|rest.index(" <span>") :].split(",")
km = rest|0]
tid = rest|1]

#print "Fra", saddr, "til", daddr,

print tid[tid.index("<span>") + 6 : tid.index("</span>")]
except:

# If not found

print "Fant ikke", saddr, "til", daddr
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F Appendix - Number of calls for hours and days in
2013
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Figure 23: Number of calls for the different hours and days in 2013
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G Appendix - Pseudo code for the Simulation

When checking what the next event is:

If (time of next available ambulance < time of next call) then
Event = available ambulance
Answering ambulance(staion number y, ambulance number z) = available
Else
Event = new call
Call from zone = random(zone dependent probability for a call)
If (1. Ranked station have an available ambulance = true) then
Outcome of call = call in zone x is answered by station y
Answering ambulance(station number y, ambulance number z) = taken
Time the answering ambulance is finished = time now + zone specific service time
+ time at scene + time to hospital * random(going to hospital 1/0)
Time of next call = time now + random(time to next call from the exponential
distribution)
Go to next Event

Else if (2. Ranked station have an available ambulance = true) then
Else if (3. Ranked station have an available ambulance = true) then
Else if (4. Ranked station have an available ambulance = true) then
Else if (5. Ranked station have an available ambulance = true) then
Else

Outcome of call = Missed call

Go to next Event
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H Appendix - Geographical location and allocation for

tests in Subsection 8.5.1

Geographical location and allocation for tests in 8.5.1. In the figures the intensity of the
color indicates the demand for EMS, the triangles indicates the location of stations and the

numbers refers to the number of ambulances allocated to the station.
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Figure 24: Location and allocation when only considering the cover measure
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H APPENDIX - GEOGRAPHICAL LOCATION AND ALLOCATION FOR TESTS IN
SUBSECTION 8.5.1

Figure 26: Location and allocation when considering survival and cover
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Strategic ambulance location for heterogeneous

regions

Hakon Leknes, Eirik Skorge Aartun,

Henrik Andersson, Marielle Christiansen, Tobias Andersson Granberg

June 2014

Abstract

This paper presents a new problem for the location of ambulance stations and
allocation of ambulances in heterogeneous regions, referred to as the Maximum Ex-
pected Performance Location Problem for Heterogeneous Regions (MEPLP-HR). A
mixed integer linear model is proposed to solve the problem. The model calculates
the service rate and arrival rate of calls for each individual station and then utilizes
queuing theory to find the probability of having an available ambulance at a sta-
tion. Furthermore, the paper presents how the model can be solved effectively and
the validity of a key operational simplification. The model is tested on a combined
urban and rural area in Norway with multiple performance measures. Compared
with the current solution, the best solution from the model has a higher expected

performance on each of the performance measures used.

Keywords: Ambulance station location, Ambulance allocation, Emergency response plan-

ning

1 Introduction

The general challenge for emergency medical services (EMS) is to provide the best possible

service to the public. To achieve high quality EMS, planning is of vital importance.



EMS has been of interest for the Operational Research (OR) society since the middle
of the 1960‘s. Since then there has been published numerous articles on the location of
ambulance stations, allocation of ambulances, dispatching of vehicles, re-deployment of

ambulances and evaluation methods.

OR on EMS has focused on aspects of strategic, tactical and operational problems. The
main strategic problem has been the locations of ambulance stations and ambulances.
Tactical problems are sizing the fleet of ambulances and the allocation of ambulances to
the ambulance stations. Among the operational problems that have been investigated are
which ambulance(s) should be dispatched to a call and the reallocation of ambulances to
obtain the highest possible preparedness in a region. The decisions made about strategic
problems affect the solution space for both tactical and operational decisions. Hence, to
construct robust solutions for strategic location problems, it is important to incorporate
tactical and operational aspects. These aspects include the allocation of ambulances to
stations, which ambulances that will be dispatched to specific calls and the probability of
having available ambulances at a station. The probability for available ambulances at a
station depends on the rate of calls to the station, arrival rate, the number of ambulances
allocated to the station and the time an ambulance is occupied with a call, referred to
as the service time. The number of expected calls from an area is also referred to as
the demand in the area. The calls have different urgency levels, evaluated by the EMS

provider as red, yellow or green, where red is most urgent.

The recent developments of location and allocation models have focused on what should be
optimized to obtain the desired performance. This is referred to as performance measures
in this paper. The earliest models maximized the number of people covered within a
given response time threshold. Response time is defined as the time between the EMS
communication central receives a call until an ambulance arrives at the origin of the call.
The models presented in Erkut et al. (2008) changed focus from the cover measures and
maximized the number of survivors from cardiac arrest. Knight et al. (2012) built on the
research of Erkut et al. (2008) and combined the survival measure with cover measures
to demonstrate the benefit of using heterogeneous performance measures. However, the
problem in Knight et al. (2012) considered homogeneous regions where the service time
was assumed constant. For heterogeneous regions, i.e. regions with urban and rural areas,

the assumption of homogeneous service time is incorrect.



The case area in this paper, Segr-Trgndelag County in Norway, is characterized by a
scattered population with two thirds of the population living in urban areas and one
third in rural areas. This leads to significantly different workloads and service time, as
illustrated in Figure 1. Figure 1 shows the workload in urban and rural areas in Sgr-
Tregndelag together with the service time for the different ambulances. The service time
for ambulances at a station depends on the distance to the zones the station covers and
the distance to the nearest hospital, while the arrival rate solely depends on the demand
in the zones it covers. The ratio between the arrival rate of calls and the service time
results in the workload for the respective station. As shown in Figure 1, the workload

is significantly higher in the urban areas, while the service time is higher in the rural

areas.
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Figure 1: Workload and service time for different ambulances in urban and rural areas

In this paper we present a new problem for the location of ambulance stations and allo-
cation ambulances to the stations, and we propose a mixed integer linear model to solve
the problem. The proposed model applies both survival measures and traditional cover

measures. This paper contributes to the literature in the following ways:

e Formalizing a new ambulance station location and ambulance allocation problem

for heterogeneous regions. The problem is more realistic for heterogeneous regions



than earlier problems as the service time depends on the area the station covers.

e Proposing a mixed integer linear program (MIP) model for the problem that can be

solved using commercial software and does have theoretical convergence.

e Presenting a case study that demonstrates the benefits and key features of the

model, as well as validating a key operational simplification.

The rest of the paper is outlined as follows: In Section 2, research related to ambulance
station location and ambulance allocation is reviewed. The problem is described in Section
3, and a mathematical formulation with strengthening constraints is given in Section 4.
Section 5 contains the applied data and Section 6 presents the computational study.

Finally, Section 7 concludes on the research and proposes further research.

2 Related Research

There has been published numerous articles on varieties of the location and allocation
problems for ambulances. Brotcorne et al. (2003) presented a literature review on strategic
and operational models and problems for ambulances over the last 30 years. In this section

the literature considered most relevant for the MEPLP-HR is reviewed.

The first models located ambulances and focused on maximizing covered demand within
given response times (Church and ReVelle, 1974), minimizing average response time
(Hakimi, 1965), (ReVelle and Swain, 1970), or minimizing the number of ambulances
needed to cover all demand within a given threshold (Toregas et al., 1971). Models that
minimize the average response time is also known as p-median problems. In all these

models only one ambulance can be located at a specific zone.

These covering and p-median problems considered the static situation. Consequently,
if an ambulance is dispatched, the area initially covered by this ambulance will be left
without coverage. As a response to this, later models presented by Schilling et al. (1979),
Daskin and Stern (1981) and Hogan and ReVelle (1986) maximized demand covered by

two or more ambulances. These models were able to give more robust coverage.



With the goal to make a more realistic model, Daskin (1983) presented the maximum
expected covering location problem (MEXCLP). This problem focuses on the expected
outcome instead of the deterministic outcome. The MEXCLP takes into account the
operational situation where ambulances can be busy. In this model the ambulances are
independent and all ambulances have the same predetermined probability for being busy.

In the MEXCLP it is possible to allocate more than one ambulance to each zone.

Recently, the research has changed focus to what should be the objective in location prob-
lems. The change was based on the 0/1 nature of covering problems. Outside the given
response time threshold the covering objective gives no value, and inside the threshold it
does not make any difference how fast the ambulance responds to the call. For a thresh-
old of 12 minutes, a response time of 4 minutes and 11 minutes give the same objective
value. The response time is crucial for certain patient categories and a smoother objective
is therefore needed. Erkut et al. (2008) introduced a problem that maximizes survival
from cardiac arrest with respect to an exponential survival function with response time
as the only parameter. The survival function was obtained from Maio et al. (2003) and
is shown in Figure 2. This survival function was combined with the MEXCLP, result-
ing in the maximum expected survival location problem (MEXSLP). Erkut et al. (2008)
showed that the MEXSLP outperformed the former covering models in saving lives from
cardiac arrest. The survival function gives more motivation to locate the ambulance sta-
tions closer to zones with high demand for EMS as the possibility for survival decreases

exponentially with increasing response time, as seen in Figure 2.

Knight et al. (2012) developed the model of Erkut et al. (2008) further and presented
the maximal expected survival location model for heterogeneous patients (MESLMHP).
The MESLMHP maximizes the expected number of survivors from cardiac arrest, as
well as the number of calls responded to within three different cover thresholds. Knight
et al. (2012) showed the benefits of using multiple performance measures compared with
a single performance measure. In the MESLMHP, decision makers give relative weights

to the different performance measure in compliance with their overall objective.

The formulation of the MESLMHP is nonlinear and requires the probability for busy
ambulances as input. As Hogan and ReVelle (1986) stated, predefined busy probabilities
are difficult and unrealistic to give. This problem is solved by Knight et al. (2012) with an
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Figure 2: Survival function for cardiac arrest (Maio et al., 2003), with response time as

the only parameter

iterative version of MESLMHP, referred to as MESLMHP-I, which calculates and updates
the busy probabilities in each iteration. This solution method requires a specialized
iterative model. However, calculating and using the exact busy probabilities was found
not to converge due to the cyclic nature of demand calculated as a function of busy
probabilities. Because of this, the authors decided to only run the model for a fixed

number of iterations.

To find the correct expected busy probabilities for a station, the location and allocation
can be evaluated using simulation and stochastic models. Simulation is applied by Davis
(1981) and Goldberg et al. (1990) among others, while the stochastic hypercube queuing
model (HQM) was introduced by Larson (1974). The aim of such evaluation models is
to compute the probability that an ambulance at location j responds to a call from zone
i (Ingolfsson, 2013). Both simulation models and stochastic models have their uses, but
as argued by Ingolfsson (2013), a primary advantage of stochastic models is that they
can be solved analytically. In the stochastic HQM, ambulances are modeled as servers
in a queuing system, and the system can then be described as a continuous time Markov
chain. This allows the model to be solved by applying well known techniques. Validation
studies of certain hypercube models have shown that they are accurate with less than 5%

deviation compared with the actual system (Goldberg, 2004).



The busy probabilities from the HQM have been used as a part of iterative solution
algorithms for several ambulance location problems. Saydam and Aytug (2003) incorpo-
rate the hypercube methodology into a genetic algorithm for solving the MEXCLP. The
probabilities for available ambulances at the respective stations were calculated in each
iteration and used to find new candidate solutions. A version of this solution approach
have also been used by Erkut et al. (2008), Geroliminis et al. (2011) and Iannoni et al.
(2009), among others. However, these iterative solution algorithms do not guarantee

convergence.

3 Problem Description

The problem solved in this paper is a new ambulance station location and ambulance
allocation problem. The problem is referred to as the Maximum Expected Performance
Location Problem for Heterogeneous Regions (MEPLP-HR). With a limited number of
ambulance stations, S, and ambulances, A, the objective is to give the population the best
possible EMS according to a set of chosen performance measures, L. The performance
measures for this problem are the probability of survival from cardiac arrest and a cover
measure based on response time. The problem consists of a set of zones I, with given
demand for EMS, and a set of zones where ambulance stations can be located, J. A
demand zone has a primary station and at least one secondary station, where the rankings
belong to the set (). A call from a demand zone will receive an ambulance from its primary
station if there are any available ambulances at this station. If not, it will receive an
ambulance from its secondary station. The probability for available ambulances depends
on the arrival rate of calls to a station, the service time of the ambulances and the number
of ambulances allocated to the station. The arrival rate depends on the demand in the
zones the station covers and the service time depends on the travelling distances in the
area the station covers and the distance to the nearest hospital. This problem is more
realistic for heterogeneous regions than earlier problems as the service time depends on

the area the station covers and is not constant.



4 Mathematical model

There has been a significant development in operations research models for EMS since
they first were introduced in the 1960- and 70’s. This development can among other
factors be seen in relation to the increase in computing power, as well as the need for
more advanced models. This section presents a model for the MEPLP-HR, as well as

strengthening constraints.

4.1 Model Formulation

The proposed model for the MEPLP-HR is formulated as a mixed integer linear pro-
gram. The formulation is divided into several subsections for readability. These include
deployment-, covering-, arrival rate-, service rate- and available probability constraints.
The deployment constraints consider the requirements to the number of stations and am-
bulances, while the covering constraints focus on covering the demand for EMS in the
different zones. The arrival rate constraints handle the arrival rate of calls to a station,
and the service rate constraints handle the service time of calls at each station. The
available probability constraints combine the arrival rate and service rate to calculate
the probability of having an available ambulance at a station. In addition to these five
subsections, 4.1.1 presents the variables and sets, 4.1.7 describes the objective function.
The complete model formulation is found in the appendix. In 4.2 the formulation is

strengthened.

4.1.1 Overview of Main Variables and Sets

The main decision variables of the location and allocation problem are where to locate
the stations and how many ambulances to allocate to each station. If a station is located
in zone j € J the binary station location variable z; is assigned value 1. For a station
located in zone j, the integer variable z; denotes the number of ambulances allocated to

the station.

The variables yi(;-]) denote the proportion of the demand from zone ¢ that is covered by



an ambulance allocated to a station in zone j, given that station in zone j is the gth
ranked station for zone 7. () is the set of rankings, which in this model includes primary
and secondary station(s). Hence, yfllg = (.7 states that a station in zone 5 is the primary
station of zone 4 and covers 70% of the demand in that zone. All zones have one primary
station and at least one secondary station. The binary variable p;; is assigned value 1 if
station in zone j is the primary station of zone 7. The arrival rate of calls to a station in

zone j is given by the variable 6;, while the service rate of an ambulance at the station is

given by the variable f;.

4.1.2 Deployment Constraints

The deployment constraints make sure that no more than the available number of stations

and ambulances are located and allocated.
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Constraints (1) and (2) make sure that no more than the maximum number of available
stations and ambulances are deployed. The logical restriction that an ambulance cannot

be allocated to a zone without a station is handled by constraints (3).

4.1.3 Covering Constraints

The covering constraints keep track of which zones the different stations cover, as well as

the primary and secondary stations for each zone.
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All calls from each zone have to be covered by a station. This is taken care of in constraints
(6). For each zone there is one primary station. The secondary station(s) cannot be the
same as the primary station. These properties are handled in constraints (7) to (9). In
addition, the primary station has to receive a higher proportion of calls than the secondary

station(s). This is ensured by constraints (10).

4.1.4 Arrival Rate Constraints

A station receives all calls from a zone that has the station as primary station, as well
as the proportion of calls it covers from a zone that has it as secondary station. This is

given by constraints (13). A; is the rate of calls associated with zone 7.

0, =3 Nipyy +Aly)) jed (13)

icl
4.1.5 Service Rate Constraints

The service time depends on the distance to the nearest hospital and the distance between
the station and the origin of the call. The inverse of the service time is the service rate,

defined as how many calls can be done per hour. The average service rate p; of a station
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is given by equation (14). R;; is the average time it takes for an ambulance at a station

in zone j to service calls from zone 1.
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This expression is nonlinear and has been linearized through constraints (15)-(20). The
numerator and denominator are discretized using Special Ordered Sets of type 2 (SOS2)

(Beale and Tomlin, 1970). These discrete values are combined to f1;, as shown below.
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The variables v,,; are used to discretize the numerator (15), while w,; are used to dis-
cretize the denominator (16). B, and C, are the respective values of the numerator
and denominator of the discrete points m € M and n € N. v,,; and w,; are variables
in SOS2 of M and N. At most two neighboring points in a SOS2 set can be positive.
Hence, the two positive variables v,,; and v,,11; in M give the total demand served,
B Vi + Byyy1Vms41j, for a station located in zone j. The same logic applies the set

of N where the two positive variables w,/; and w, 11, give the total time spent on calls,
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Crywprj + Cpryawiy 415, for a station located in zone j. The discrete points of the numer-
ator and denominator are combined into one set of variables, (,,,;, through constraints
(17)-(19). The variables (,,; then contain information about the value of both the total
demand and the total time spent on calls. Constraints (20) connect (y,,; to the original

variables.

4.1.6 Available Probability Constraints

The proportion of calls covered has to be less than or equal to the long time probability
that there is an ambulance available at a station. The long time probability that there is
an available ambulance at a station depends on the arrival rate of calls to the station, the
service rate of the ambulances at the station, as well as the number of ambulances at the
station. This is given by equation (24), where the function f is the long time probability

that there is an ambulance available at a station.

yd < 0, py,x;) i€l jeqeQ (24)

The expression f(6;, 11;, ;) is nonlinear and based on the Poisson process of the hyper-
cube queuing model. The arrival rate and service rate are discretized using SOS2. The
probability of having an available ambulance at a station is then found by using precal-
culated probabilities for the discrete values together with the number of ambulances on

the station. This is modeled by constraints (25)-(31).

12
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Constraints (25)-(29) are discretization constraints similar to the service rate discretiza-
tion (15)-(19). fB,; and ¢,; are variables in SOS2 with regards to V' and U, where the
variables in the set V' constitute the arrival rate and the variables in the set U constitute
the service rate. The variables a,; are used to combine the SOS2 sets into one vari-
able. The parameters R, and S, connects the discretization variables with the original

variables.

Constraints (30) ensure that y is less than or equal to the long time probability that
there is at least one ambulance available at the station. d;; are binary variables equal
to 1 if there are more than k ambulances allocated to station in zone j, and P, is
the probability that there is no ambulances available at a station given an arrival rate
associated with v, service rate associated with u, and & ambulances allocated to the
station. P, is visualized with P, and P,y in Figure 3 and 4 for k =1 —5. As P, is

strictly decreasing with &, the 1 =% /> -\, PuwkQuyj with the lowest value of k will be
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the active constraint for the station in zone j unless there are more than k£ ambulances

there. If there are more than £ ambulances, d,; will equal 1 and make the constraint

inactive.
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Figure 3: Arrival rate, with service rate fixed to 2

100 %

90% -

80% -

70% - \

60% - 1 Ambulance
50% - \ ——2 Ambulances

40% - \\ 3 Ambulances
30% \\ \ ——4 Ambulances
20:% \\ \ ——>5 Ambulances
10% N

0% T T T T ! !
0 0.5 1 1.5 2 25 3

Service rate [calls/hour]

Probability of no available ambulances

Figure 4: Service rate, with arrival rate fixed to 2

The relationship between 0, and the number of ambulances allocated to station in zone j
is described by constraints (31). As 1 — P,,,u,; is more restrictive than 1 — Py, g1 ;)
0, k+1 1s always less than or equal to d;;. Note that P, is 1 for all values of u,v. Logically,

a station without any ambulances cannot cover any zones.

14



4.1.7 Objective function

The objective function (36) maximizes the total value of the location of stations and

allocation of ambulances, given the performance measures of the EMS provider.

Mazx ZWZZZD”HW%%}) (36)

leL i€l jedJ qeq

There is a certain performance value per call, H;j;, of zone i being covered by the station
in zone j with regards to performance measure [. The parameters D;; denote the number
of calls that is relevant for performance measure [ in zone . Each performance measure
is given a certain weight, W, that represents the relative importance of the performance
measure for the EMS provider. The objective function calculates the total performance of
the location and allocation by multiplying these parameters with the respective proportion
of calls being covered by the different stations and then summing over all performance

measures, zones, stations and rankings.

4.2 Strengthening the formulation

The model formulation can be tightened by reformulating a restriction and adding valid
inequalities. In this subsection one reformulation and five sets of valid inequalities are
identified, while in Subsection 6.1.1, the effectiveness of the inequalities and the reformu-

lation is explored.

The reformulation is to change (30) to (37). As only one yg?) can be positive for a pair
i, j, this is valid. The number of rows in the reformulated constraints (37) is only half of

the number of rows in the original constraints (30).

Zyz(;l) S 1 - Zzpuvkauvj + 5jk
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The first set of valid inequalities is to not allow zones where there are no stations to cover

zones with a demand for EMS. This is formulated by constraints (38).

Zyg»])gzj icl,jeld (38)
qeQ

The second and third sets of valid inequalities are to limit the service and arrival rate of a
station. Constraints (39) force the service rate of ambulances in a zone to 0 if no station
is located there, and (40) do the same for the arrival rate of calls to the zone. ji and 6

are upper bounds on the service rate and arrival rate, respectively.

py <pzp jed (39)
Gj S H_Zj j € J (40)

The fourth set of valid inequalities are similar to (38), and restrict a zone to be the primary
station for zones with a demand if there are no stations in the zone. The valid inequality

is formulated as (41).
pz‘jgzj iEI,jEJ (41)
The last set of valid inequalities is to force the d,; to 0 if there is no station in zone j.

This is formulated in (42), where A is the maximum number of ambulances that can be

allocated to a station.

A
Y op <Az jeld (42)
k=0
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5 Data

The basis for the computational study is data from the Emergency Medical Communica-
tion Central (AMK) from the county of Sgr-Trgndelag in Norway from 2010-2013. The
dataset contains the time, date, location and severity (red, yellow, green) of each call.
The analyses were performed on the busiest shift of the week: workdays from 08:00 to
16:00. The travel times between the nodes were found using a tool developed in Python
that gather the travel times between each node pair from Google Maps. The average
service times [t;; are calculated by using the travel times between the zones, stations
and hospitals, as well as adding a constant that represents the time on the scene. For
Ser-Trendelag, 43% of all calls end at a hospital, and the average time spent on the scene
of a call is 16 minutes. Hence, R;; can be formulated as equation (43), where T}; is the
travel time from zone j to i, T}, is the travel time from zone i to the nearest hospital, and

T},; is the travel time from the hospital to zone j.
Rij =T + 16 + 0.43(Ti, + Th;) + 0.57T;; (43)

The performance measures used are heterogeneous, as they are demonstrated to be effec-
tive (Knight et al., 2012). For the time critical red calls, a survival function from Maio
et al. (2003) for cardiac arrest is used. The survival function obtained from Maio et al.
(2003) is one of many functions that can be used, however, the exponential slope of the
curve is the most important feature, not the constants (Erkut et al., 2008). For the yellow
calls, a traditional cover measure of 12 minutes for urban areas and 25 minutes for rural
areas are used. The reason for this is that for yellow calls, it is sufficient that the ambu-
lance arrives within the given thresholds. There are no performance measures for green
calls as these mainly consist of normal transport of patients. The number of calls that is
relevant for the performance measures, D;;, is the arrival rate of red calls for the survival
measure and the arrival rate of yellow calls for the cover measure. The weights for the
performance measures are based on the work of Knight et al. (2012). The summarized
parameters for the performance measures are given in Table 1, where ¢ is the response

time of the ambulances.

For the computational study, the model was tested on the entire Sgr-Trgndelag as well

as the urban area of Trondheim and Malvik. A map of the region is shown in Figure 5.
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Table 1: Performance measures, t is the response time

Performance Measure Function Weight
Survival H(t) = 1 2
11 ¢ 00TOT0.26%
1 for0<t <12
Cover urban H(t) = 1
0 fort >12
1 for0<¢t<25
Cover rural H(t)= 1
0 fort >25

Trondheim and Malvik represents a small instance with 67 demand zones and 44 potential
station locations. There are currently 3 stations and 7 ambulances in Trondheim and
Malvik. During the busiest shift, there are approximately 7.000 calls yearly, where 18%

are red, 24 % are yellow, and 58 % are green.

Figure 5: Area of interest, with the urban area of Trondheim and Malvik enclosed by

the stippled line. The dots represent the population center in each zone

Sor-Trgndelag represents a large instance and comprises the urban area of Trondheim and
Malvik and 23 rural municipalities. For the busiest shift, there are approximately 10.000
calls yearly, 17% being red, 26% being yellow and 57% being green calls. The available
resources are 16 stations and 24 ambulances. For the whole region, there are 139 demand

zones and 76 potential station locations.
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6 Computational study

The model is implemented in Mosel and solved using Xpress-Optimizer Version 7.6.0.
The software is run on a HP dl165 G6, 2 x AMD Opteron 2431 2,4 GHz, with 24 Gb
RAM. The computational study begins with a study of the technical characteristics of
the model using both the small instance of Trondheim and Malvik and the large instance
of Sgr-Trgndelag. After that the solutions of the model are compared with the current
locations and allocation in Sgr-Trgndelag, and the study ends with an analysis of a key

operational simplification.

6.1 Technical characteristics

In this subsection the strengthening constraints from Subsection 4.2 are tested. The tests
have been performed on Trondheim and Malvik for 15 and 30 minutes and S¢r-Trgndelag
for 4 and 8 hours. The results are presented in Table 2 and 3, respectively. TO is the
test with the model in its proposed form. T1, T2, T3, T4, T5 and T6 correspond to tests
with the constraints (37), (38), (39), (40), (41) and (42), respectively. X0 is the test with
all proposed strengthening constraints. X1, X2, X3, X4, X5 and X6 correspond to test
with all constraints except (37), (38), (39), (40), (41) and (42), respectively. The tables
present the tests with objective LP solution, rows and columns after presolve, the number
of nodes in the branch and bound tree, the number of solutions, the best solution value,
best bound and gap for all tests. The gap is defined as (best bound - objective value) /

objective value.

6.1.1 Strengthening constraints

From the results in Tables 2 and 3 a number of interesting characteristics can be seen.
One of the most apparent characteristics is the impact of the reformulation (38). Of
all the single constraints, this is the most effective in producing low gap for all tests on
Trondheim and Malvik, and Sgr-Trgndelag. It also reach the highest number of nodes in
3 out of 4 tests. The effect of the reformulation can be seen in connection to the number

of rows in the model. Applying the reformulation (37) instead of the original constraints
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(30) cuts away approximately 40% of the rows of the original problem. This makes the
problem easier to solve. Constraints (38) have the largest impact on the linear relax-
ation in both the test on Trondheim and Malvik, and S¢r-Trgndelag. However, the linear

relaxation has little impact on the best bound after the solver’s root cutting and heuristics.

For the test on Trondheim and Malvik in Table 2, the solver performs in general better
with more constraints as the best bound decreases with more constraints. However, the
constraints have limited effect on the best solution. In the 30 min test, the maximum
relative difference between the best solutions is less than 0.2%. This can be seen in
connection to that the solver is able to find strong solutions on this relatively small
instance without any help, and the strengthening constraints are just tightening the best

bound.

For the tests on Sgr-Trgndelag, the constraints do not significantly impact the best bound,
except for in the test with all constraints, X0. They have however a large impact on the
number of solutions found and the value of the best solution. The number of solutions
found is in general higher with one or zero strengthening constraints (T0-T6), and the
values of the best solutions are more mixed for several constraints (X0-X6). This can be
an indication of that on large instances the extra constraints makes the problem harder
to solve. This can also be seen by the number of nodes reached, which are in general
higher for one or zero strenghtening constraints. It is also noticeable that the best gap
when using the best solution and best bound from any of the tests is approximately half
of the best gap from any of the single tests for the 8 hours run. This indicates that it
might be effective to use many strengthening constraints to provide a good bound, but

few strengthening constraints to provide strong solutions.

6.1.2 Objective function

Another characteristic of the solutions is that there are many possible location and al-
location configurations that are almost equally good. As seen from the 30 minute test
on Trondheim and Malvik, the maximum relative difference between the best solutions is
0.2%. This can be explained by that there are many station locations that are close to

each other and almost equally good. Hence, swapping one station location for another will
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not change the objective value significantly. In addition, there might be situations where
it is equally good to allocate a second ambulance to several different stations, resulting in

many equally good solutions.
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6.2 Evaluation of solutions

When comparing the best solution from the model to the current locations and allocation,
the model was able to find a solution that outperformed the current solution on the
expectation for both performance measures. The performance measure values are shown
in Table 4. Current locations refers to only locking the ambulance stations to the current
locations, while Current allocation refers to locking both the stations and the number of
ambulances at each station to the current solution. The best solution for Sgr-Trgndelag
from the model is referred to as Best solution. Compared to the current allocation, the
objective value is 8.2% higher in the best solution, while with only the current locations,

the objective value is 6.9% higher in the best solution.

Table 4: Performance measure values for best solution, current locations and current

allocation

Performance measure Best solution Current locations Current allocation

Survival 0.209 0.166 0.157
Cover 1.224 1.174 1.167
Total 1.433 1.340 1.324

A comparison of the cumulative response times for the red calls in the best solution and
the current allocation is presented in Figure 6. The best solution has a much higher
proportion of calls within the interval between 4-10 minutes. This explains the higher

value on the survival measure in Table 4.
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Figure 6: Cumulative response time for best solution and current allocation

The percentage of yellow calls covered within the cover thresholds is presented for in
Table 5 for the best solution and current allocation. The bold rows represent the actual
cover measure for urban and rural areas. For urban areas, the expected number of calls
covered within 12 minutes is higher for the best solution. The expected number of calls
covered within 25 minutes for the rural areas is marginally higher for the best solution
than for the current allocation. Hence, the expected performance of the best solution is
superior to the expected performance of the current allocation for every element of both

performance measures.

Table 5: Percentage of yellow calls covered within cover threshold

Best solution Current allocation

Urban within 12 minutes 98% 92%
Rural within 12 minutes 56 % 72 %
Urban within 25 minutes 98 % 98 %
Rural within 25 minutes 91% 90%

To investigate the reason for the differences in the expected performance, the number

of ambulances and stations in the urban and rural areas were analyzed. The results are
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presented in Table 6 and provide insightful information: The model puts a higher value on
having a higher number of ambulances and ambulance stations in the urban areas. This

can partly be explained by that the demand for EMS is significantly higher there.

Table 6: Comparison of best solution and current location

Best solution Current locations Current allocation
Amb Stat Amb Stat Amb Stat
Urban 10 7 9 3 7 3
Rural 14 9 15 13 17 13

To see the importance of having a higher number of ambulances in the urban areas, the
workload and probabilities of having at least one available ambulance at a station were
calculated. The results are shown in Figures 7 and 8 for the best solution and the current
allocation, respectively. The average workload of the ambulances at the stations in the
urban areas is noticeably higher for the current allocation than for the best solution, with
an average of 2.6 hours active time versus 1.7 hours active time for the best solution.
However, the probability of having an available ambulance at a station is approximately
the same. Hence, the number of ambulances in urban areas cannot explain the difference in
the performance measures. This is also shown by the difference between the performance
measure values of the current locations and the best solution in Table 4, as the number

of ambulances in urban areas is almost the same for these solutions.
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The difference between the expected performances is better explained by the number of
ambulance stations in the urban areas. In the rural areas the population is too scattered
to obtain a high score on the survival measure, and most of the population is covered
within the threshold of the cover measure. However, in the densely populated urban
areas, extra ambulance stations contribute significantly to the survival measure, as the
ambulances are then able to reach a higher number of calls within few minutes. This
can also be seen in Table 4 as the difference between the survival measures for the best
solution and current allocation is 33.1%, while the difference between the cover measures

is 4.9%.

6.3 Impact of a key operational simplification

The problem simplifies the operational management of the ambulances to calculate the
probability of having an available ambulance at a station. It assumes that calls that are
not covered by the primary station can always be covered by the secondary station. This
has two consequences: The first consequence is that the problem does not account for that
both can be busy. If both are busy, the call will be categorized as missed. In reality the
EMS providers does not accept missed calls, but it has been argued that these "missing
calls" are taken by extra ambulances or other vehicles (Iannoni et al., 2009). However, if
the probability of both being busy is low, missed calls are not an important factor. The
second consequence is that there are only two elements in the set (), as the secondary
station(s) always will respond to a call if the primary station is busy. Hence, the problem
is not able to determine which station should be the tertiary station, quaternary station,

and so on.

For the best allocation from the case of S¢r-Trgndelag, these two consequences were
investigated in a developed Excel simulation model. In the Excel simulation model, there
are no restrictions on the number of elements in (). The simulation was run with 1 - 5
elements in the set (), i.e. allowing 1 - 5 stations to cover a given zone. The stations were
ranked for each zone based on the travel time, where the closest station is the primary
station. The objective value and average percentage of missed calls as a function of the

number of elements in the set @) is shown in Figure 9.
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Figure 9: Test on the number of ranked stations

As expected, the number of missing calls decreases with the number of elements in the set
@, as a result of that there are more ambulance stations as backup. However, the average
missing is low if 2 or more stations can cover a zone. The objective value is stable if 2,
3, 4 or 5 stations can cover a zone. This is because the tertiary, quaternary and quinary
stations are in many cases too far away to contribute to the objective value. Because of
this it is not given that the number of station that can cover a zone should be as high as
possible. For instance, an ambulance from a quaternary station is unlikely to arrive fast
enough to provide significant value to a call, and if it is dispatched it will leave its original

area more GXpOSGd.

It is difficult to exactly replicate all operational aspects in simulation models, but as
indicated by Figure 9, this operational simplification seems reasonable. However, as this
is a strategic problem, it is not vital that it takes in every operational aspect. The
important factor is that it is able to replicate the key features of how the ambulances will

operate.
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7 Conclusions

This paper presents a new problem for locating ambulance stations and allocating am-
bulances to the stations, referred to as the Maximum Expected Performance Location
Problem for Heterogeneous Regions (MEPLP-HR). A mixed integer linear program is
formulated to solve the problem, and the formulation is strengthened using valid inequal-
ities and a reformulation of a restriction. The solutions from the model are evaluated and

the impact of a key operational simplification is explored.

The model is tested on data for the county of Sgr-Trgndelag and solved using available
commercial software. For the county of Ser-Trgndelag, the model is able to find a realistic
solution that has a higher expected performance than the current solution on each of the
given performance measures. In addition, the key operational simplification is shown

reasonable.

As future research, it could be interesting to make the model more realistic by adding
different time periods, incorporating the dependency between the stations, or taking in
different kinds of ambulances. It could also be interesting to develop a more standardized
framework for locating ambulance stations and allocating ambulances. Such a framework
could include the role of the optimization model, the role of a realistic simulation model,
and what should characterize a good solution. In this respect there is a need for more
work on what determines a high performing EMS-system - what should the performance

measures be?
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Appendix

The Model Formulation

Indices

jedJ
1€l
q€eq
le L

and sets

Possible locations for ambulance stations
Zones with a demand for EMS
Ranking of stations

Performance measures of the EMS provider

m € M Breakpoints of the service rate discretization and linearization

n € N Breakpoints of the service rate discretization and linearization

u € U  Breakpoints of the available probability discretization and linearization
v € V. Breakpoints of the available probability discretization and linearization
Parameters

W, Weight of performance measure [

D;;  Number of calls relevant for performance measure [ and zone ¢
H;;;  Performance value of zone 7 being covered by a station in zone j,

given performance measure [

A Number of available ambulances

S Number of available stations

Ai  Rate of calls from zone ¢

R;;  Service time

B,, Aggregated service demand for breakpoint m

C, Aggregated service time for breakpoint n

S.  The service rate of breakpoint u

R, The arrival rate of breakpoint v
P,. Probability of busy station, given breakpoint u,v and k& ambulances
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Variables

y

Pij

1 if a station is located in zone j, 0 otherwise

Number of ambulances allocated to a station in zone j

Proportion of the demand in zone i covered by a station in zone j with rank ¢
1 if station j is the primary station for zone i, 0 otherwise

Arrival rate of calls to the station in zone j

Service rate of ambulances at the station in zone j

1 if there are more than k& ambulances at station in zone j, 0 otherwise
SOS2 set for m associated with the breakpoint variable

SOS2 set for u associated with the breakpoint variable

Breakpoint variable associated with the service rate linearization
SOS2 set for v associated with the breakpoint variable

SOS2 set for u associated with the breakpoint variable

Breakpoint variable associated with the available probability linearization

The objective function

Mazx Z Wi Z Z Z DilHijlyg‘l) (44)

leL i€l jeJ qe@

Deployment constraints

d <A (45)

j€J
d 4<S (46)
j€J

T < AZ]' j eJ (47)
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Covering constraints

NN =1 el

JeJ 9@
Pz‘jZZ/S) el jed
L—py 2y ie€ljel

Zp”:l el

jeJ

Sz Yl e

jedJ jeJ

Arrival rate constraints

gj = Z(/\zpz] + /\zyz] ) ] cJ

i€l

Service rate constraints

meM i€l qe
37 Cowng =D MRy jeJ
neN i€l qe@
ngnj:wnj jEJ,TLEN
meM
ngnj = Vmj J e JmeM
neN
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Available probability constraints

Z Rvﬁvj = Qj

veV

> Subus = 1

uelU
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uelU

Z Qyoj = ¢uj

veV

DDty =1

uelU veV

U <137 Pukttuy + 65 jETi€ Lk =0, Aq€Q

uelU veV

A
PRLTESY
k=0

jed

jed

jeJveV

j€JuelU

jed

jedJ

Convexity constraints, binary constraints and SOS2 sets

z; €{0,1}

z; € {0,1,2,..., A}

y = 10,1]

pij €{0,1}

0,>0

pi >0

dir € {0,1}
{Byjs s By} is SOS2
{é1), ..., dy; } is SOS2
{v1j, -y i} is SOS2
{wij, - Wiy is SOS2
>0

Cmnj =

Oy Z 0
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Abstract

To achieve high performing emergency medical services (EMS), planning is of
vital importance. EMS planners face several challenges when managing ambulance
stations and the fleet of ambulances. In this paper three strategic cases for EMS plan-
ners are presented together with potential solutions. The first case investigates the
importance of taking multiple time periods into account when planning. The second
case analyzes how extra ambulances and stations can mitigate the effect of closing
down a local emergency room (ER). The third case explores the benefit of introduc-
ing designated non-urgent transport vehicles instead of ambulances. The cases and
solutions are studied using a recently developed strategic ambulance station location
and ambulance allocation model for the Maximum Expected Performance Location
Problem with Heterogeneous Regions (MEPLP-HR). The article demonstrates how
this model can be used to find and evaluate solutions to real cases within the field
of strategic planning of EMS. The model is found to be a useful decision support

tool when analyzing the cases and the expected performance of potential solutions.

Keywords: Ambulance station location, Ambulance allocation, Emergency Response Plan-

ning



1 Introduction

The general challenge for emergency medical services (EMS) is to provide the best pos-
sible service to the public. Thus, a variety of planning problems arises. Within strategic
planning, the problem has been where to locate ambulances or ambulance stations. Tac-
tical problem have been dimensioning the ambulance fleet and allocating ambulances to
stations. Within operational problems, there are problem such as which ambulance to
dispatch to a call, if and where to relocate ambulances during the day, and if the patient
should be treated at the scene or brought to the emergency room (ER). To be able to
take the best possible decisions for strategic, tactical and operational problems, operation
researchers have been developing decision support tools for several decades. In recent
years, computational power has increased and EMS has tracked more data. Hence, the

opportunities for operations research on EMS has increased significantly.

This paper shows how the model for the Maximum Expected Performance Location Prob-
lem for Heterogeneous Regions (MEPLP-HR) from Leknes et al. (2014) can be applied
as decision support. This is done through three cases experienced by the county of Sgr-
Trendelag. In the first case, the importance of taking several time periods into account
when locating stations is explored, as requested by Knight et al. (2012). The traditional
approaches are to only consider the busiest period or some kind of average, but the valid-
ity of these approaches is unclear. In the second case, the consequences of closing down
a local ER and mitigating actions are analyzed. Finally, in the third case, the potential
for more effective utilization of ambulances is explored through transferring non-urgent

transport assignments to designated transport vehicles.

The paper contributes to the literature and EMS practice by showing how one single
optimization model can be used to do different kind of analyses for real problems. In

particular, the model is used for:
e Investigating the importance of time periods.

e Analyzing consequences and potential mitigating actions for closing down a local
ER. In particular, a new performance measure based on the time to ER is used to

capture a larger part of the performance domain.



e Exploring how EMS resources can be utilized more effectively. In particular, the
effect of introducing designated transport vehicles for non-urgent transport is ana-

lyzed.

Figure 1: Map of Norway in grey and the county of Sgr-Trgndelag in black

The region of study is the county of Sgr-Trgndelag in Norway. The county of Sgr-
Trgndelag is seen as the black area in Figure 1. In Sgr-Trgndelag there are approximately
300,000 inhabitants, with two thirds living in urban areas (S¢r-Trgndelag Fylkeskommune,
2012). There are approximately 30,000 calls for EMS yearly, with one third being red,
one third being yellow, and one third being green non-urgent transport calls. The red
calls are the most urgent and time critical calls. The number of calls from a zone is also
referred to as the demand in the zone. The performance of AMK Sgr-Trgndelag, the EMS
administrator, is determined by how well it achieves its performance objectives. The list
beneath presents the performance objectives as defined by one of the AMK centrals in

Norway, and the sequence is based on relative importance.
1. The patient should receive timely and correct treatment
2. Partners and the public should have confidence in the organization

3. The employees should have a good working environment and professional develop-

ment



4. The organization should appear transparent and be cost-effective

All these performance objectives are important to achieve high performing EMS. How-
ever, Operation Research (OR) has traditionally focused on response time and survival.
Response time is easy to measure and understand, and is often given as political targets.
The National guidelines for Norway are that 90% of red calls should be responded to
within 12 minutes in urban areas and 25 minutes in rural areas (Stortinget, 2000). Never-
theless, these are just guidelines, and the local EMS planners are free to decide on other

targets.

The rest of the paper is outlined as follows: Section 2 includes the related research. Section
3 contains a brief overview of the model used. In Section 4 the data and the case region
are presented, while Section 5 presents and discusses the three cases. Finally, Section 6

concludes on the results and proposes further research.

2 Related Research

For more than four decades operations researchers has developed decision support for
strategic, tactical and operational problems for EMS. Researchers have also put an effort
in determining what should be measured to obtain the desired performance. In this section

we review the literature considered most relevant within strategic decision support for

EMS.

One of the earliest models, the maximal covering location problem (MCLP), was intro-
duced by Church and ReVelle (1974). The MCLP maximizes the demand covered within
a certain response time. This model with the covering performance measure has served
as a basis for many strategic location models. Schilling et al. (1979) developed a model
that maximizes the demand covered by two different types of vehicles, while Hogan and
ReVelle (1986) created models that maximized the number of zones covered by two or

more ambulance stations.

The earliest models were pure strategic models that did not consider the operational

aspect of ambulances. One of the major challenges with locating ambulance stations is



to create a model that in some way incorporates how a given location would realistically
work. Different locations will affect the workload of the ambulances, and hence the
risk of an ambulance being busy when an incident occurs. To cope with this, Daskin
(1983) presented the maximum expected covering location problem (MEXCLP). In the
MEXCLP there is a certain probability p that an ambulance is busy. The probability
of an busy ambulance was in the earliest models set to a constant for all ambulances,
while newer models such as the ones in Erkut et al. (2008) use iterative methods and an
advanced operational approach to more realistically find the busy probabilities for the

ambulances.

To evaluate how a certain location and allocation of ambulances behaves, both simulation
and stochastic models can be used. Simulation is applied by Davis (1981) and Goldberg
et al. (1990) among others, while the stochastic hypercube queuing model (HQM) was
introduced by Larson (1974). Both simulation models and stochastic models have their
uses, but as argued by Ingolfsson (2013), a primary advantage of stochastic models is
that they can be solved analytically. HQM is used by Erkut et al. (2008) and Knight
et al. (2012) among others to find the busy probabilities for the ambulances at different

stations.

In addition to having a realistic simulation or stochastic model, it is important to know
what characterizes a good solution to be able to evaluate a certain location and allocation.
The earliest models, such as the MCLP, evaluated locations based on the covering per-
formance measure. A problem with this performance measure is however that as long as
the origin of the call is outside the cover threshold, it does not contribute to the objective
function. Hence, it does not matter how far the demand zone is away from a station as
long as it is outside the cover threshold. The covering performance measure does not
differentiate between response times within the threshold either. This is a challenge as

the outcome of some calls is very dependent on short response time.

As a response to these challenges, Erkut et al. (2008) introduced the maximum survival
location problem (MSLP). The MSLP maximizes the probability of survival for cardiac
arrest patients as performance measure. The objective is then based on the probability
of survival given a specific response time. Figure 2 illustrates the difference between the

survival and cover measure. The 1/0 cover measure is seen as the grey square. For all



demand within 12 minutes, the probability of positive outcome is 100%. For demand
outside 12 minutes, the probability for a positive outcome is 0%. The black line is the
survival function from Maio et al. (2003). The probability for positive outcome from car-
diac arrest is about 35% at the time the cardiac arrest occurs. It is assumed no interaction
from bystanders. The function decreases with response time, and after 12 minutes the
probability for a positive outcome is about 3%. Erkut et al. (2008) investigated different
survival functions, however, the functions were found to give approximately the same lo-
cations. The conclusion was that the important characteristic is the exponential slope of
the function. Knight et al. (2012) built on the work of Erkut et al. (2008), but also in-
cluded standard cover performance measures in the objective function. In this manner the
authors showed the value of using heterogeneous outcome measures, with the argument

that different calls requires different outcome measures.
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Figure 2: Comparison of survival and political performance measure

For all these models, response time is considered the main parameter to use when evalu-
ating a potential location configuration. The validity of response time as a parameter for
patient outcomes has been the background for several articles. Weiss et al. (2013) and
Pons and Markovchick (2002) found that response time did not play an important role

for patient survival after traumatic injuries. However, by using distance from ambulance



station to patient as a proxy for response time, Wilde (2013) showed that response time
significantly affects mortality of patients in need of emergency services. Hence, theoret-
ical attainable response time is important for patient outcome. Some research, such as
Nichol et al. (1996), have investigated the cost/benefit for response time. However, most
research focus on utilizing existing resources in the best possible way or the number of
ambulances that is needed to provide a minimum emergency preparedness (Brotcorne

et al., 2003).

3 Mathematical model

To analyze the cases in this paper, the model for the Maximum Expected Performance
Location Problem for Heterogeous Regions (MEPLP-HR) is used. Given a set of possible
locations for ambulance stations and a set of zones with demand for EMS, the model
locates and allocates stations and ambulances based on a set of given performance mea-
sures. Each performance measure has a certain weight, and the model maximizes the total
performance with a limited number of ambulances and stations at disposal. The model
incorporates operational aspects by calculating the probability that there is an available

ambulance at a station. The model is explained in depth in Leknes et al. (2014).

In this paper the model is extended to several time periods with varying demand. In
this way the model can allocate ambulances in accordance to the demand and available
resources for each period. When introducing several time periods, the problem becomes a
two-stage problem (Birge and Louveaux, 2011). In the first stage, the stations are located,
and in the second stage the available ambulances are allocated to the stations for each

period. In the following subsection, the model is presented and briefly explained.



3.1 Model Formulation

Indices and Sets

7 € J Possible locations for ambulance stations

i € I Zones with a demand for EMS

q € ( Primary and secondary ranked station

l € L Performance measures of the EMS provider

t €T Time periods

Parameters
W, Weight of performance measure [
D;;;  Number of calls relevant for zone ¢ and performance measure [ in period ¢
H;;  Performance value of zone i being covered by a station in zone j, given
performance measure [
Ay Number of ambulances at disposal in period ¢
S Number of stations at disposal

R;;  Service time of a station in zone j covering zone i.

Variables
Z; 1 if a station is located in zone j, 0 otherwise
xj  Number of ambulances allocated to a station in zone j in period ¢

djre 1 if there are more than k& ambulances allocated to a station
in zone j in period ¢, 0 otherwise
yz-(?g Proportion of demand in time period ¢ from zone 7 that is covered by a station
in zone j, given that the station in zone j is the gth ranked station for zone 1.
pijt 1 if station in zone j is the primary station for zone ¢ in period ¢, 0 otherwise
;s  Arrival rate of calls to the station in zone j in period ¢

[t Service rate of the station in zone j in period ¢



Maz Z W Z Z Z Z DiltHijlyi(th)

leL teT iel jed qeqQ

ZZJSS

jeJ
ijt <A
JjEJ
Tj < Ath
DD gl =1
JEJ q€Q
1
Pijt = yz(jt)

2
L —pije 2 yz(jt)

> pin=1

jeJ

Sy =D

jeJ jeJ

th = Z()\itpijt + /\’Ltyz(jzt))

el
Sier Lgeq Miedis
D el 2qe0 AitRz'j%(gt)
U < (O s w50)
z; € {0,1}
zi €{0,1,2,..., A}

Mt =

Y =0
pijt € {0,1}
6, >0

fje 2 0

te’T

jeJteT
iclteT

1el,jedteT
iel,je JiteT
1el,teT

rel,teT

jeJteT

jeJteT

iel,jedqgeQ,teT
jelJ

jeJteT
iel,jeJqge@,teT
iel,jeJteT
jedteT
jeJteT



The objective function (1) calculates the total performance of the location and allocation.
The deployment constraints are given by constraints (2) - (4). Constraints (2) and (3)
make sure that no more than the number of available stations and ambulances are located
and allocated respectively. The logical restriction that an ambulance cannot be allocated
to a zone without a station is handled by constraints (4). The covering constraints (5) -
(9) keep track of which zones the different stations cover, as well as the primary station
for each zone. All calls from each zone have to be covered by a station. This is taken
care of by constraints (5). For each zone there is one primary station and one or more
secondary station(s). The secondary station(s) cannot be the same as the primary station.
These properties are handled through constraints (6) - (8). In addition, constraints (9)
ensure that the primary station receives a higher proportion of calls than the secondary

station(s).

A station receives all the calls from a zone that has the station as its primary station, as
well as the respective proportion of calls it covers from a zone that has it as secondary
station. This constitute the arrival rate and is given by constraints (10). The average
service rate of ambulances at a station is given by constraints (11). This expression is
nonlinear and therefore linearized as described in Leknes et al. (2014). The proportion
of calls covered by a station has to be less than or equal to the long time probability
that there is an ambulance available at the station. This is given by constraints (12).
The long time probability that there is an ambulance at a station depends on the arrival
rate of calls to the station, the service rate of the ambulances at the station, as well as
the number of ambulances at the station. This expression is nonlinear and based on the
Poisson process of the hypercube queuing model (HQM) described in Section 2. The full
explanation and linearization of this expression is given in Leknes et al. (2014). Finally,

constraints (13) - (18) are the convexity constraints.
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4 Data

The basis for the case studies is AMK data from 2010-2013. The dataset contains the time,
date, location and severity (red, yellow and green) of each call. For Sgr-Trgndelag today,
there are no formalized performance measures for the different types of calls. However,
AMK’s objective is to give the best possible service to the public. For response time, this
objective can be summarized by performance category 1 and 2 from Section 1. As the
criticality of time is different for red, yellow and green calls, the performance measures
should be different for these calls. For the time critical red calls, a survival measure from
Maio et al. (2003) is used. For yellow calls, response time is important for the patients
to be satisfied and have confidence in the organization. Hence, it is sufficient that the
ambulance arrives within a given threshold. Because of this, it is reasonable to use a cover
measure for these calls. There are no performance measure for green calls as these are
mostly normal transport assignments. The weights for the different performance measures
are based on the weights in Knight et al. (2012). The summarized performance measures

are given in Table 1, where ¢ is the response time in minutes.

Table 1: Performance measures

Performance | Function W, D
Measure
Survival H(th) = 1 2 | red calls

_ R
l14+e 0.679+0.262t

1 for0 < th <12

Cover urban | H(tf) = 1 | yellow calls
0 for tf =12
1 for 0 <" <25

Cover rural | H(tf) = 1 | yellow calls
0 for tf >25

The region contains 139 zones with demand for EMS and 76 of these are potential locations
for ambulance stations. The region can be seen in Figure 3, where the dots represent the
population center in each zone and the triangles indicates where the hospitals with ER are
located today. The hospital located to the west is Orkdal hospital and the easternmost
hospital is the regional hospital of Sgr-Trgndelag. The area within the dashed line is the

urban area of Trondheim and Malvik.
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Figure 3: The county of Sgr-Trgndelag

There are currently 24 ambulances allocated to 16 stations in the region. The travel
times between the zones were found using a tool developed in Python that gather the
travel times between each node pair from Google Maps. The average service times R;;
are calculated using the travel times between the zones, stations and the nearest ER, as
well as adding a constant that represents the time on the scene. For Sgr-Trgndelag, 43%
of all calls end at an ER, and the average time spent on the scene is 16 minutes. Hence,
the formula for R;; is given by equation (19), where 7}; is the travel time from zone j to
i, T;p is the travel time from zone i to the nearest ER, and Tg; is the travel time from

the ER to zone j.
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5 Case Studies

The cases are studied using the model for the MEPLP-HR. The model is written in Mosel
and solved by Xpress-Optimizer Version 7.6.0. Each case begins with a description of the

problem and proceeds to show how the model is used to analyze the case.

5.1 Case 1: Time varying demand and resources

For EMS districts, both the demand for EMS and the available EMS resources vary
throughout the day. The demand for EMS is typically highest in the daytime of workdays
and lowest during the night of the workdays. The areas with demand may also change as
most people are at work during the day and at home at night. This presents a challenge
for EMS managers when they are locating resources. Some of the resources such as
ambulances can be moved during the day, but ambulance stations are fixed to their
locations independent of the time period. For the county of Sgr-Trgndelag, the week is
divided in 6 time periods based on the demand. The periods are 00-08, 08-16 and 16-24
for workdays and weekends. These periods have different resources at disposal, as shown
in Table 2. The demand is also significantly different, where workdays 08-16 is the busiest

period and accounts for 32.6% of the total number of calls.

Table 2: Time periods, ambulances at disposal and demand

Period Ambulances % of demand
Workday 00:00 - 08:00 17 6.9%
Workday 08:00 - 16:00 24 32.6%
Workday 16:00 - 24:00 19 15.6%
Weekend 00:00 - 08:00 17 9.9%
Weekend 08:00 - 16:00 22 19.7%
Weekend 16:00 - 24:00 19 15.3%

A common approach when locating ambulance stations has been to focus on the busiest
period of the week. The reason for this is that it is a simpler problem to solve than to

take all periods into account. However, it is not known whether it is a valid approach.
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To analyze the importance of taking all periods into account, the ambulance station
locations from the five best solutions for the busiest period have been evaluated for all
6 periods. The five best solutions rather than the single best have been evaluated to
get an impression of the robustness of using the solution from the busiest period. The
stations are locked to the locations from the busiest period and the model allocates the
available ambulances for each period to the stations. The objective value and best bound
for each period is then summed for each of the five best solutions and compared to the
best solution from the two-stage model when all 6 periods are taken into account. The
objective value, best bound and optimality gap for the five best solutions and the two
stage problem are shown in Table 3. The optimality gap is defined as (best bound -

objective value) / objective value.

Table 3: Results for Case 1

Test Obj. value Best bound Optimality gap
Solution 1 22.086 22.458 1.68 %
Solution 2 22.100 22.426 1.47 %
Solution 3 21.848 22.399 2.52 %
Solution 4 22.067 22.424 1.62 %
Solution 5 22.080 22.437 1.62 %

Two-stage problem 21.656 22.579 427 %

As seen from the results in Table 3, all solutions for the busiest period are better than
what the solver found for the two-stage problem. This is due to the complexity of the two-
stage problem and it shows the motivation for only considering one period. The optimal
solution from the two-stage problem can not be worse than the solutions from the busiest
period, as the two-stage problem always can find the same solution as the busiest period
problem. Because of this, it only makes sense to compare the objective values from
the busiest period with the best bound of the two-stage problem. By comparing the
objective value of the least good solution from the busiest period (Solution 3) to the best
bound of the two-stage problem, a gap of only 3.35% is found. This small gap for the
least good solution shows that the optimal objective value for the two-stage problem and

the objective value from solutions for the busiest period are not very different. Hence,
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the problem for the busiest period is consistent in producing strong solutions for all 6

periods.

Based on the results from the analysis, it appears sufficient to only take the busiest
period into account for Sgr-Trgndelag when locating ambulance stations. This can partly
be explained by that for this region the areas with high demand do not greatly change
throughout the day. One could expect different results if there were greater differences

between where people lived and where they worked.

5.2 Case 2: Closing down a local emergency room

There are several small local ERs in Norway today. These local ERs are controversial as
they are expensive, and there are discussions about the competence of such small facilities
compared to the regional hospitals. However, there are substantial local political forces
that want to keep these facilities, as they fear that the emergency medical services for
their local area will be weakened if the facility is closed down. For S¢r-Trgndelag, the local
ER under discussion is the one located in Orkdal. The ER in Orkdal is approximately
35 minutes from the regional hospital of Sgr-Trgndelag. 40 of the 139 zones has this
as its nearest ER, and these 40 zones counts for 13.7% of the red and yellow calls in

Sgr-Trgndelag.

A proposed mitigating action for closing local ERs is to procure additional ambulances
and/or stations for the area affected by the closing. In this manner, the extra stations
and ambulances should weigh up for the longer distance to the ER. A share of the savings
from the closed ER can finance these additional resources. However, it is important to

emphasize that the closing of local ERs is not solely based on cost cutting.

The traditional performance measures of the ambulance station location are only based
on response time. However, if the ambulances should weigh up for closing down a local
ER, it is the time from a call arrives until the patient arrives at the ER that is of greatest
interest. This makes sense when considering e.g. stroke, where the time until a CT-scan
is performed is of great importance (Saver and Levine, 2010). It is also important for
local politicians, as the time until a person arrives at the ER affects the perceived safety

and convenience for the population.
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To analyze the effect of closing the local ER, a new performance measure is introduced.
The new performance measure is based on the time from a call arrives until the patient
is at the ER. With this performance measure, the idea is that people far from the ER
will be compensated by having an ambulance closer to reduce the time to ER. A cover
measure is used because the objective is to get as many as possible to the ER within a
reasonable time, not to minimize the average time to ER. However, there are no official
guidelines to what should be defined as a reasonable time to the ER. For Sgr-Trgndelag,
some interest groups claims that 60 minutes are reasonable, while others claim that more
than 120 minutes are reasonable. Based on this, the performance measure is implemented
as being 1 if an ambulance from a specific station can get a person from a specific zone to
the ER within 90 minutes, and 0 otherwise. The weight is set to be the same as for the
response time cover measure, and the number of calls relevant for this measure is both
the red and yellow calls. The summarized performance measures used in this case are
given in Table 4. tP% is the time to ER and defined as the reponse time plus the travel

time from the zone to the closest ER.

Table 4: Performance measures for Case 2

Performance | Function W, | D
Measure
Survival H(t®) = 1 2 | red calls

— R
1+€ 0.6794-0.262t

1 for0<th <12

Cover urban | H(t?) = 1 | yellow calls
0 for tf >12
1 for0<tf <25

Cover rural | H(t") = 1 | yellow calls
0 for t# =25

‘ 1 for 0 < tFR <90
Time to ER | H(tPf) = 1 | red and

0 for t¥% =90
yellow calls

To analyze the mitigating actions, one extra ambulance and one extra station have been
made available for the zones that are affected by the closing of the local ER, i.e. the zones
with the closed local ER as its closest ER. At first, the model is run with the existing
ERs and current location and allocation to get a base case. Then, the proposed closed
ER is removed from the data and the model is run again to see how the objective value is

changed. After that, the model is run with one extra ambulance and one extra ambulance
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and station. This is done to see how the mitigating actions work. The objective values
for the different performance measures and tests are shown in Table 5. The tests are
named Base case, X00, X10 and X11, and refer to the current situation, the situation
without the ER, the situation without ER and an extra ambulance, and the situation
without the ER and an extra ambulance and station, respectively. The optimality gap is

defined as in Case 1, and the objective value is the sum of the values of the performance

measures.
Table 5: Performance values and optimality gap for the tests
Survival Cover Time to ER  Objective value Optimality gap
Base case 0.156 1.169 2.014 3.339 0.36%
X00 0.155 1.168 1.971 3.294 0.35%
X10 0.157 1.167 1.972 3.296 0.45%
X11 0.162 1.198 2.005 3.365 0.42%

The results in Table 5 show that there is little value in adding an additional ambu-
lance without any additional stations. This can be explained by the fact that there is a
high probability that there is at least one available ambulance at all stations, hence an
additional ambulance does not contribute significantly. With an extra ambulance and
ambulance and station (X11), the objective value related to the time to ER measure is
marginally lower than in the base case. The extra ambulance station and ambulance are
not able to completely mitigate the consequences of closing the ER. This is due to the
longer distance to the regional hospital than to the proposed closed ER. However, the
objective values related to the other performance measures also increase with the extra
ambulance and station. For X'11, the values are higher for the response time based per-
formance measures, survival and cover, compared with the base case. In this manner,

improved response time could be seen as a compensation for longer time to ER.

The results in Table 5 are for the entire Sgr-Trgndelag. As the affected zones only ac-
count for 13.7 % of the red and yellow calls in Segr-Trendelag, the consequences of the
closing do not appear drastic for the county as a whole. However, for the affected area,
the consequences are significant. To see the effect for the affected area, the cumulative

distribution of time to ER and the cumulative distribution of the response time for each
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of the tests are calculated. The cumulative time to ER is shown in Figure 4, while the
cumulative response time is seen in Figure 5. Note that there are some minor inconsisten-

cies due to that the model did not reach optimality. However, the main trends are correct.

100 %
90 %

80%
70 %
60 %
MW Base case
50%
40 %
m X10
30%
20% - mX11
10% l
0%

Time to ER [mlnutes]

Percentage of calls

Figure 4: Cumulative distribution of time to ER for the affected area

As seen from Figure 4, 23% of the calls in the base case are able to get to the ER in 10
minutes or less. 70% of the calls are within 60 minutes or less, and 86% are able to get
to the ER within 90 minutes. Closing the local ER significantly affects the cumulative
distribution. For X00, X10 and X11, none of the calls in the affected area are able to
get to the ER within 30 minutes. For these instances, approximately 28% of the calls can
get to the ER within 40 minutes. Within the 60 minutes threshold, the number of calls
that can get to the ER is approximately half for these tests compared to the base case.
However, within 90 minutes there are only 3 percentage points difference between the
X11 and the base case. Without an extra station, the difference is 12 percentage points

for the 90 minutes limit.
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Figure 5: Cumulative distribution of response time for the affected area

As expected, the cumulative distribution of the response times in Figure 5 are approxi-
mately similar for the base case and the test without an additional station. This is natural
as closing a local ER has little connection to the response times of ambulances. By adding
the additional station, the expected number of calls that are reached within 25 minutes
increases by 16 percentage points. The number of calls that are reached within 5 minutes
are increased by 9 percentage points. This explains the increase in the cover and survival

performance measure from Table 5.

For the affected area, the consequences of closing the local ER and adding an ambulance at
a new ambulance station is that the time to ER increases significantly while the response
time decreases significantly. To fully analyze the value of the proposed solution, there
needs to be a proper weighting between response time and time to ER. However, as there
is a stronger focus on treating patients on scene (Snooks et al., 2004), the solution of

introducing extra ambulances and stations as a mitigating action is interesting.
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5.3 Case 3: Designated non-urgent transport vehicles

Ambulances in Norway are used for almost every type of transport to and from hospital.
Ambulances are expensive vehicles, with specially trained staff that are specialist in han-
dling emergencies. However, for Ser-Tregndelag in the busiest period, 57% of the calls are
categorized as green calls that mainly include normal transport assignments. These may
be planned or unplanned, but they are not urgent, and most of them do not require high-
tech equipment or trained paramedics. Some patients require however that the transport

vehicle has room for beds.

To cut cost and utilize the resources effectively, a proposed solution is to transfer the
green calls from the ambulances to specialized transport vehicles. These vehicles may be
administered by the emergency medical communication central or a designated transport
organization. The main idea is that it is ineffective to use specially trained paramedics
with expensive EMS equipment for normal transport assignments. To effectively utilize re-

sources, expensive ambulances could be replaced by cost effective transport vehicles.

To analyze the benefit of introducing designated non-urgent transport vehicles, it is ex-
plored how many ambulances that can be removed while still keeping the same total
performance level as before. All the green calls are removed from the dataset, as they are
assumed to be taken by the specialized transport vehicles. The analysis is carried out on
the busiest period, workdays from 08:00 to 16:00. The stations are locked to their current

locations, and the model allocates the ambulances at disposal.

The impact of removing ambulances on the objective value is presented in Figure 6.
The dashed line is the objective value of the current situation, while the solid line is the
objective value when all the green calls are removed. The dotted line is used as a reference
and is the objective value when all the green calls are present. As seen in Figure 6, five
ambulances can be removed while still keeping the same total expected performance level

as with the green calls.

To see how the removal of ambulances affect the solutions, the number of stations used and
the average probability for having an available ambulance at a station is analyzed. Figure
7 shows the number of stations used and the average probablity for available ambulances

as a function of the number of removed ambulances. As seen from Figure 7, the average
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probability for having an available ambulance at a station is generally high. This explains
the modest drop in objective value for 0 to 6 ambulances in Figure 6. The number of
stations used is also fairly stable. That shows that the ambulances are mainly removed
from the stations with several ambulances. The drop in number of stations in use from 0
to 1 removed ambulance is due to the closing of a station that only covers 0.25% of the
total demand as primary station, and 2.3% of total demand as secondary station. Hence,
closing this station does not significantly affect the objective value, as seen from the small

change in the objective value from 0 to 1 removed ambulances in Figure 6.

By removing 57% of the calls, 5 out of 24 ambulances can be be removed while still
keeping the same performance level. This seems a bit low, but can be explained by that
each station requires at least one ambulance to contribute to the performance measures.
For the busiest period, 57% of the calls represent 22 calls each day. Hence, for designated
non-urgent transport vehicles to be an interesting option, the vehicles needs to be able to
handle at least 22 calls each day and cost less than five ambulances. However, the analysis
presented here is just an indication of what is possible. To fully explore the potential of
designated non-urgent transport vehicles more research on the green calls as well as the

specialized vehicles is needed.

6 Conclusions

In this article, three managerial cases of EMS are studied using a recently developed strate-
gic ambulance station location and ambulance allocation model. The article demonstrates
how the model for the Maximal Expected Performance Location Problem for Heteroge-
nous Regions (MEPLP-HR) can be used to find and evaluate solutions to real cases within
the field of strategic planning of EMS. In particular, the value of taking multiple time
periods into account when planning, the effect and mitigating actions of closing down a
local ER, as well as the benefit of introducing designated non-urgent transport vehicles

instead of ambulances, is studied.

The case studies are performed on the county of Sgr-Trgndelag in Norway. For the
first case, the key finding is that it seems sufficient to plan for the busiest time period

when locating ambulance stations. For the second case, the results show that to close
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the local ER will significantly increase the time to ER for the affected area. However,
adding an extra ambulance station and ambulances can to certain degrees mitigate the
consequences. The analysis in the third case shows that here is a potential to reduce the
number of ambulances by one fifth if designated transport vehicles undertakes the non-
urgent assignments. However, as in most large strategic cases where OR is used, more
analysis is needed for each case to make thorough and strong decisions. Despite this,
the model is proven succesfull in providing insight and analyzing real cases and potential

solutions experienced by EMS planners.

As future research, it would be interesting to formalize what defines high performing EMS.
Then one could point out where OR has its greatest potential. There is also a need for
new performance measures in the models that are not solely based on response time. To
build on this, it could be interesting to find a monetary value on the different levels of
the performance. Then the decision makers could calculate if extra investments to reduce

e.g. response time are beneficial from cost-benefit point of view.
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