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Sammendrag

Akuttmedisinske tjenester har vært av interesse for operasjonsanalyse siden midten av 1960-

tallet. Siden den gang har det blitt publisert en rekke artikler som omhandler lokalisering

av ambulansestasjoner, allokering av ambulanser til stasjoner, reallokering av ambulanser,

samt evalueringsmetoder. Denne avhandlingen presenterer et nytt problem for lokalisering

av ambulansestasjoner og allokering av ambulanser i heterogene områder. Det nye problemet

er kalt "the Maximum Expected Performance Location Problem for Heterogeneous Regions

(MEPLP-HR)". Problemet plasserer ut ambulanser på bakgrunn av flere prestasjonsmål og

regner ut sannsynligheten for at det vil være en ambulanse ledig ved en gitt stasjon. MEPLP-

HR er mer realistisk for heterogene områder enn tidligere problemer ettersom MEPLP-HR

regner ut behandlingsraten til ambulanser på bakgrunn av området de dekker.

En blandet heltall og lineær modell er utviklet for å løse problemet. Sannsynligheten for

ledige ambulanser er funnet ved å benytte køteori sammen med behandlingsraten og ankom-

straten av innringninger for hver ambulansestasjon. I motsetning til tidligere modeller blir

sannsynligheten for ledige ambulanser beregnet inne i modellen. På grunn av dette er det

ikke nødvendig å bruke iterative metoder for å løse modellen. Modellen er gjort strammere

ved hjelp av gyldige ulikheter og en omformulering av en restriksjon. Med omformuleringen

og de gyldige ulikhetene blir både løsningene og de optimistiske grensene forbedret.

Modellen er testet på Sør-Trøndelag. For dette fylket er modellen i stand til å finne en

realistisk løsning som har en høyere forventet prestasjonsoppnåelse enn dagens løsning for

hver av de gitte prestasjonsmålene. Modellen er også testet med forskjellig vekting av de ulike

prestasjonsmålene, og det viser seg at vektingen har mye å si for hvordan ambulansestasjonene

og ambulansene blir plassert ut.

Modellen har blitt brukt til å analysere tre konkrete utfordringer og løsninger knyttet til

akuttmedisinske tjenester. Den første utfordringen er hvorvidt man skal ta flere tidsperioder

i betraktning ved lokalisering av ambulansestasjoner. Resultatene fra analysen indikerer at

det er tilstrekkelig å planlegge for den travleste perioden. Den andre utfordringen omhan-

dler tiltak som kan kompensere for å legge ned et lokalt akuttmottak. Ved å legge ned det
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lokale akuttmottaket vil transporttiden til nærmeste akuttmottak øke betraktelig for sonene

i nærheten av det nedlagte akuttmottaket, men ved å gi det berørte området en ekstra am-

bulanse og ambulansestasjon kan effekten til en viss grad reduseres. Den tredje utfordringen

går ut på at ambulanser ofte er opptatt med vanlige transportoppdrag. En løsning på denne

utfordringen er å overføre alle vanlige transportoppdrag til dedikerte transportkjøretøy. Anal-

ysen av denne løsningen viser at det er potensiale for å redusere antallet ambulanser med en

femtedel dersom dedikerte transportkjøretøy innføres.

Denne avhandlingen består av en rapport og to artikler. Rapporten er den viktigste delen

av oppgaven og inneholder alle våre resultater og analyser. Artiklene er vedlagt i slutten av

denne avhandlingen. Den første artikkelen er "Strategic ambulance location for heterogenous

regions". Artikklen presenterer problemet, den foreslåtte modellen og tekniske egenskaper.

Den andre artikkelen, "Strategic Emergency Medical Service Planning - Three Case Studies",

presenterer hvordan modellen kan brukes som et beslutningsstøtteverktøy. Artiklene er basert

på rapporten og derfor vil artiklene og rapporten være delvis overlappende.
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Summary

Emergency medical services (EMS) have been of interest for operations research since the

middle of the 1960‘s. Since then there have been published numerous articles on the loca-

tion of ambulances stations, allocation of ambulances, dispatching of vehicles, re-deployment

of ambulances and evaluation methods. This thesis presents a new problem for the loca-

tion of ambulance stations and allocation of ambulances in heterogeneous regions, referred

to as the Maximum Expected Performance Location Problem for Heterogeneous Regions

(MEPLP-HR). The problem applies multiple performance measures as well as station spe-

cific probabilities for the availability of ambulances at a station. Compared with earlier

problems, the MEPLP-HR is more realistic for heterogeneous regions as the service rate of

ambulances in the problem depends on the area a station covers.

A mixed integer linear model is proposed to solve the problem. The probability for available

ambulances is found by utilizing queuing theory together with the service rate and arrival

rate of calls for each station. In contrast to recent models, the probability for available

ambulances is calculated within the model. Hence, it is not necessary to use iterative solution

approaches. The formulation is strengthened using valid inequalities and a reformulation of

a restriction. With the strengthening constraints, both the solutions and the best bounds

are improved.

The computational studies are performed on the heterogeneous region of Sør-Trøndelag in

Norway. For this region, the model is able to find a realistic solution that has a higher

expected performance than the current solution on each of the given performance measures.

The model is also tested with different weights for the performance measures, with the

conclusion that the weights significantly affect the locations and allocation of stations and

ambulances.

By using the model as a decision support tool, three real managerial cases are analyzed

together with potential solutions. The first case concerns the importance of taking multiple

time periods into account when planning. The results from the computational study indicate

that it is sufficient to plan for the busiest period. The second case analyzes the consequences
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and potential mitigating actions for closing down a local emergency room (ER). By closing

the local ER, the travel time to ER will increase significantly for the zones close to the local

ER. However, adding an extra ambulance and ambulance station can to some degree mitigate

this effect. The third case concerns the benefit of transferring all non-urgent transport calls

to designated non-urgent transport vehicles. The analysis in this case shows that there is a

potential to reduce the number of ambulances by one fifth if designated non-urgent vehicles

are introduced.

This thesis consists of a report and two articles. The report is the main part of the thesis and

contains all of our results and analyses. The articles are found as separate works after the

report. The first one, "Strategic ambulance location for heterogeneous regions", presents the

problem, the proposed model and technical characteristics. The second article, "Strategic

Emergency Medical Service Planning - Three Case Studies", presents how the model can be

applied as a decision support tool. The articles are based on the report, hence the report

and articles are to some degrees overlapping.
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1 Introduction

Emergency medical services (EMS) refers to the provision of out-of-hospital acute medical care

and the transport of patients to hospitals for definitive care. In 1792, Dominique Jean Larrey,

a surgeon in Napoleon Bonaparte’s Imperial Guard, was the first to develop ambulances, in

the modern sense of specially equipped vehicles for carrying sick or injured people, usually

to hospital. In the 220 years since, EMS has evolved and expanded to become a significant

component of modern health-care systems. (Ingolfsson, 2013)

The general objective for EMS is to provide the best possible service to the public. However,

what is defined as the best possible service depends on which perspective is used. From a

medical perspective the best possible service can be to save as many as possible. From an

economical perspective it can be to maximize social welfare, or utilize the resources in the

most effective and efficient way. From a political perspective the best possible service can

be to give the public a fair and trusting service. Hence, there are several different views on

what is characterized as high performance for EMS. Performance is in this context defined

as to which degree an organization is achieving its objectives.

To quantify the level of performance, performance measures are used. A performance mea-

sure can be defined as a quantifiable indicator used to assess how well an organization is

achieving its desired objectives (WebFinance, 2014). As the different perspectives have dif-

ferent objectives, the performance measures are also different. For EMS, examples of different

performance measures used are the number of survivors from cardiac arrest, percentage of

population covered within a response time, annual turnover rate, average defibrillation rate

and patient satisfaction rate.

To achieve the desired performance, decision support tools are used. Decision support tools

help the decision maker to analyze problems and make robust and well founded decisions.

For EMS, operations researchers have developed decision support tools for several decades.

Operations Research (OR) has in general focused on strategic, tactical and, in the later

years, operational problems. The main strategic problem has been the location of ambulance

stations and ambulances. Tactical problems include sizing the fleet of ambulances and which
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1 INTRODUCTION

areas the different stations should cover. Among the operational problems that have been

investigated are which ambulance should be dispatched to a call and the reallocation of

ambulances. In the recent years EMS has tracked more data and the computational power

have increased. This has increased the opportunities for applying the results of OR as decision

support, and the number of publications of OR on EMS has grown rapidly the last decade

(Ingolfsson, 2013).

The focus in this report is the strategic and tactical problem of locating ambulance stations

and allocating ambulances to the stations. In essence, the problem can be described as

deploying a limited number of ambulances and ambulance stations so that the performance of

the emergency medical services is maximized. The decisions made about strategic problems

affect the solution space for both tactical and operational decisions. Hence, to construct

robust solutions for strategic location problems, it is important to incorporate tactical and

operational aspects. These aspects are for instance which areas the different stations should

cover and the probability that there is an available ambulance at a specific station.

In an OR context, the problem consist of a set of zones with demand for EMS as well as a set

of potential locations for ambulance stations. The demand for EMS is the expected number

of calls for EMS. There is a certain performance value of that an ambulance from a specific

station responds to a call from a specific zone. This value depends on which performance

measure is used. Each zone with demand for EMS has a ranked list of stations. If there is an

available ambulance at the primary (first ranked) station, an ambulance from that station

will respond to the call. If not, an ambulance from the secondary (second ranked) station

will respond if there are any ambulances available there, and so on. The probability of having

an available ambulance at a station is referred to as the available probability and depends on

the number of ambulances on the station, the number of calls the station receives, as well as

the time spent on each call. The number of calls the station receives per hour is referred to

as arrival rate, while the average time spent on a call is referred to as service time.

In the recent developments of location and allocation problems, the focus has been on the

performance measures. The earliest models maximized the number of people covered within

a given response time threshold, while the models presented in Erkut et al. (2008) maxi-
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1 INTRODUCTION

mized the expected number of survivors from cardiac arrest. Knight et al. (2012) built on

the research of Erkut et al. (2008) and combined the survival measure with cover measures

and demonstrated the benefit of using heterogeneous outcome measures. However, these

problems considered homogeneous regions where the service time was assumed constant. For

heterogeneous regions, i.e. regions with urban and rural areas, the assumption of homoge-

neous service time is incorrect. In addition, the most advanced models are non-linear and

require iterative solution approaches that do not guarantee convergence.

This report presents a new problem for the location of ambulance stations and allocation

of ambulances for heterogeneous regions. In particular, the problem takes into account that

the service time depends on the area a station covers as well as the distance to the hospital.

The problem is referred to as the maximum expected performance location problem for

heterogeneous regions (MEPLP-HR). Furthermore, a mixed integer linear model is proposed

to solve the problem. The model is tested on the heterogeneous county of Sør-Trøndelag.

The focus of this report is on explaining the problem and model, exploring the the key

characteristics of the model, and showing how the model can be applied as a decision support

tool. The characteristics include the model’s ability to estimate the available probabilities,

the impact of the key parameters and how the model can be reformulated and strengthened.

Summarized, this report contributes to the literature in the following way:

• Formalizing a new ambulance station location and ambulance allocation problem. The

problem is more realistic for heterogeneous regions than earlier problems as the service

time depends on the area the station covers.

• Proposing a mixed integer linear program (MIP) model for the problem that can be

solved using commercial software and does have theoretical convergence.

• Exploring the key characteristics of the model by performing a case study on the het-

erogeneous county of Sør-Trøndelag

• Showing how the proposed model can be used as a decision support tool for real man-

agerial cases.

3



1 INTRODUCTION

Figure 1: Map of Norway in grey and the county of Sør-Trøndelag in blue

The region used for the computational study in this report is the county of Sør-Trøndelag.

The county of Sør-Trøndelag is seen as the blue area in Figure 1. There are approximately

300,000 inhabitants in Sør-Trøndelag, with two thirds living in urban areas (Sør-Trøndelag

Fylkeskommune, 2012). The EMS administrator in Sør-Trøndelag is Akuttmedisinsk Kom-

munikasjonssentral (AMK). AMK receives approximately 30,000 calls for EMS yearly, with

one third being categorized as red, one third being yellow, and one third being green non-

urgent transport calls. The red calls are the most time critical calls. When the AMK receives

a call, the general response process is as follows:

1. Call is screened, classified and allocated to one or more available ambulance(s)

2. Ambulance departs for incident scene

3. Ambulance arrives at scene and intervention by paramedics starts

4. Ambulance returns to hospital, station or is dispatched to new incident

However, this is just an overview of the key operational EMS process. In addition, there are

several other key processes for EMS, such as planning and training. All these processes are
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1 INTRODUCTION

important for AMK to be performing well. As the scope of work for AMK contains several

different processes, the performance of AMK is divided into several performance objectives.

The list beneath presents the objectives as defined by one of the AMK centrals in Norway,

and the sequence is based on relative importance.

1. The patient should receive timely and correct treatment

2. Partners and the public should have confidence in the organization

3. The employees should have a good working environment and professional development

4. The organization should appear transparent and be cost-effective

To provide the best possible service to the public, all of these performance objectives are

important. Nonetheless, for OR and this report the performance objective of primary interest

is number 1.

In the next chapter the development of strategic ambulance location problems and models is

presented. Chapter 3 describes the problem for the MEPLP-HR, while Chapter 4 proposes a

mathematical model for the problem. In Chapter 5 the Hypercube Queuing Model (HQM)

is explained. Chapter 6 presents the input data for the model, while Chapter 7 explains the

implementation of the model and the HQM. Chapter 8 presents the computational studies

performed in this report. Chapter 9 presents how the model can be applied to analyze

and find solutions to two managerial cases. Finally, Chapter 10 is concluding remarks and

proposes ideas for further work.

There have also been prepared two articles in this thesis. They are found as separate works

after the report. The first one, "Strategic ambulance location for heterogeneous regions",

presents the problem, the proposed model and technical characteristics. The second article,

"Strategic Emergency Medical Service Planning - Three Case Studies", present how the

model can be applied as a decision support tool. The articles are based on this report, hence

the report and articles are to some degrees overlapping.
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2 Literature Review

This chapter contains a brief overview over relevant literature for this report. EMS has been

of interest for OR since the middle of the 1960‘s. Since then there have been published nu-

merous articles on the location of ambulances stations, allocation of ambulances, dispatching

of vehicles, re-deployment of ambulances and evaluation methods. A review on strategic, tac-

tical and operational problems and models is presented in Brotcorne et al. (2003). For this

report the strategic and tactical problems of location and allocation are considered relevant

and are reviewed. There is also a section on how a given location and allocation is evaluated.

The aim of this chapter is to introduce the reader to important models and how they have

developed over time.

This chapter starts with a presentation of non-probabilistic models that elaborate on the

maximum covering location problem (MCLP), the P -median problem and the maximum

survival location problem (MSLP). After that probabilistic models are reviewed with focus

on the maximal expected survival location model for heterogeneous patients (MESLMHP).

The chapter ends with a review of evaluation methods, in particular the Hypercube Queuing

Model.

2.1 Non-probabilistic Models

In the beginning the research focused on non-probabilistic models. These models consider

the non-probabilistic situation, thus the probability for busy ambulances is not considered.

The problem is to locate either ambulance stations or ambulances to geographical locations,

referred to as zones. However, the models are the same for both ambulance stations and

ambulances.

2.1.1 Covering Models

Covering models focus on covering parts of or whole populations within a given time limit.

Toregas et al. (1971) introduced a location set covering model (LSCM). The LSCM minimizes
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the number of ambulances or ambulance stations needed to cover all zones within a given

time limit, and it is formulated as a traditional set covering problem. Later, the maximal

covering location problem (MCLP) was introduced by Church and ReVelle (1974). The

MCLP searches to maximize covered demand within certain response time, T . The number

of ambulance stations is given as input, and the model searches to locate them in the best

way to maximize demand covered. The MCLP formulation is given by (1) to (5).

Max
∑
i∈I

Diyi (1)

s.t.
∑
j∈J

Bijxj ≥ yi i ∈ I (2)

∑
j∈J

xj = A (3)

xj ∈ {0, 1} j ∈ J (4)

yi ∈ {0, 1} i ∈ I (5)

Di denote the demand for EMS in zone i and yi are binary variables equal to 1 if an ambulance

cover zone i. Bij are parameters equal to 1 if zone j can cover zone i within a given time

limit. xj are binary variables and equal to 1 if an ambulance station is located in zone j. The

sets I and J denote the zones with demand and the zones where ambulances can be located,

respectively. Constraints (2) are the traditional covering constraints, while constraints (3)

ensure that only the available number of ambulances, A, are located. Constraints (4) and (5)

are binary constraints for xj and yi respectively. Both the LSCM and MCLP assume that a

zone is covered as long as one ambulance is located within the given time limit.

Non-probabilistic models were later developed to consider different types of vehicles. The

tandem equipment location model (TEAM) was introduced by Schilling et al. (1979). The

TEAM searches to maximize demand covered by two different types of vehicles. Daskin and

Stern (1981) and Hogan and ReVelle (1986) proposed two varieties of MCLP that incorporate

that several vehicles can cover one zone and maximize number of zones covered by two

vehicles. Hogan and ReVelle (1986) also introduced two backup coverage problems called

7
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BACOP1 and BACOP2. The models maximize the number of zones covered by more than

two ambulances, given that every demand zone must be covered at least once. This is

an improvement from earlier models due to more robust preparedness. Gendreau et al.

(1997) developed the double standard model (DSM). DSM maximizes zones covered by two

ambulances within a time standard r1. All zones have to be covered within a time standard

of r2, where r1 < r2. The DSM also makes sure that at least a given part of the demand is

covered within r1.

2.1.2 P-median Models

While the covering models focus on the proportion of the population within a given time

limit, the P -median problem focuses on minimizing the total travel time or average travel

time. The P -median problem was first described by Hakimi (1965) and later formulated by

ReVelle and Swain (1970). The P -median problem formulation is given by (6) to (11).

Min
∑
i∈I

Di

∑
j∈J

Tijyij (6)

s.t.
∑
i∈I

yij ≤ Fxj j ∈ J (7)

∑
j∈J

yij ≥ 1 i ∈ I (8)

∑
j∈J

xj = A (9)

xj ∈ {0, 1} j ∈ J (10)

yij ∈ {0, 1} i ∈ I j ∈ J (11)

Di denote the demand of EMS in zone i. Tij is the travel time from zone j to zone i, while

yij are binary variables and equal to one if an ambulance in zone j covers zone i. The sets

I and J denote the zones with demand and the zones where ambulances can be located,

respectively. The objective function (6) minimizes the total travel time. Constraints (7)

ensure that only zones with ambulances can cover other zones. F is a Big-M parameter that

8
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for this problem would be equal to the number of zones with demand for EMS. All zones have

to be covered at least once. This is ensured through constraints (8). Constraint (9) makes

sure that the number of ambulances located is equal to the given number of ambulances

available. The number of ambulances available is denoted A. Constraints (10) and (11) are

binary constraints for xj and yij respectively.

2.1.3 Survival Models

In recent years, some researchers have changed focus from covering and P -median models

towards survival models. Erkut et al. (2008) introduced a model that maximizes overall

probability of survival from cardiac arrest with respect to an exponential survival function.

The maximum survival location problem (MSLP) formulation is given by (12) to (17).

Max
∑
i∈I

Di

∑
j∈J

S(Tij + Td)yij (12)

s.t.
∑
i∈I

yij ≤ Fxj j ∈ J (13)

∑
j∈J

yij = 1 i ∈ I (14)

∑
j∈J

xj = A (15)

xj ∈ {0, 1} j ∈ J (16)

yij ∈ {0, 1} i ∈ I j ∈ J (17)

Di denote the demand for EMS in zone i. S(Tij + Td) is the survival function with respect

to response time, Tij, from zone j to zone i, and the pretravel delay for an ambulance, Td.

yij are binary variables and equal to 1 if an ambulance in zone j covers zone i. The sets

I and J denotes the zones with demand and the zones where ambulances can be located,

respectively. The objective function maximizes the overall survival probability. Constraints

(13) ensure that only zones with an ambulance can cover other zones. F is a Big-M parameter

that for this problem would be equal to the number of zones with demand. Constraints (14)

9
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ensure that all zones have to be covered once. Constraint (15) ensures that the number of

ambulances located is equal to the number of ambulances available. The number of available

ambulances is denoted A. Constraints (16) and (17) are binary constraints for xj and yij

respectively.

Note that the P -median model and the MSLP share the same structure. The main difference

is MSLP’s objective function. S(Tij + Td) denotes the survival function according to cardiac

arrest and does only depend on response time. In Erkut et al. (2008) different survival func-

tions are compared. The different functions included one or several variables, such as time

from collapse to CRP, time from collapse to defibrillation, time from collapse to advanced

cardiac life support at hospital, and whether the collapse was witnessed by a paramedic.

However, the main driving variable was found to be the response time. Because of this, it is

possible to compare the different survival functions with respect to response time. A com-

parison from Erkut et al. (2008) is shown in Figure 2. The different survival functions start

between 30 and 60% survival probability and decrease exponentially with time. However, the

shape is similar for all and the resulting survival probability for response time of 10 minutes

is below 10% for all tested survival functions. In the computational studies, Erkut et al.

(2008) found the same optimal locations regardless of the survival function used.

Figure 2: Comparison of four different survival functions. Source: Erkut et al. (2008)
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2.2 Comparison of the Non-Probabilistic Models

The MCLP, P -median and MSLP can be modeled with the same general objective function,

(18), with respect to the constraints (13)-(17), but with different values for the parameter

Hij. The different Hij for the respective models are presented in Table 1.

Max
∑
i∈I

Di

∑
j∈J

Hijyij (18)

Table 1: Values for the parameter Hij

Model Hij

MCLP

 1 for 0 ≤ Tij ≤ T

0 for Tij > T

p-median −Tij
MSLP S(Tij + td)

To illustrate the difference between the covering model and survival model, an example from

Erkut et al. (2008) is used: Assume that demand locations A and B in Figure 2 are 18

min apart, and a station is located at X, halfway between them. A covering model with a

covering radius of 9 min would count all demand at A and B as covered, so X is the optimal

location, regardless of the magnitude of the demands. Suppose the demand at A is 10, the

demand at B is 1, and the survival probability as a function of response time t is e−t. Hence,

if the emergency facility is located at X, then P{survival at A} = P{survival at B} = e−9 =

0.000123, and the expected number of survivors in the system is 11 × 0.000123 = 0.001358.

If a station is located at A instead, then the expected number of survivors increases to 10,

which is over 7000 times better. Even though the survival function used in the example

is fictional, the example demonstrates the difference between the covering model and the

survival model.

Both the covering and the survival measure are based on response time as the parameter

for patient outcome. However, the validity of response time as a parameter for patient

11
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Figure 3: Example demonstrating the difference between MCLP and MSLP. Source: Erkut

et al. (2008)

outcomes has been the background for several articles. Weiss et al. (2013) and Pons and

Markovchick (2002) found that response time did not play an important role for patient

survival after traumatic injuries. However, by using distance from ambulance station to

patient as a proxy for response time, Wilde (2013) shows that response time significantly

affects mortality of patients in need of emergency services. Hence, theoretical attainable

response time is important for patient outcome.

The non-probabilistic models are easy to understand, easy to implement and usually solved

in short time. The LSCM could be useful on the strategic level, as LSCM gives the minimum

number of ambulances to provide full coverage. The MCLP can be tested with different values

of A, and give insight about costs compared to coverage. The MCLP has been successfully

used in planning of EMS, such as in Austin, Texas (Eaton et al., 1985). The average response

time was reduced, despite increasing demand. The plan also saved the city $3.4 million in

construction and $1.2 million in annual operating costs in 1984. However, the solutions from

the non-probabilistic models such as LSCM, MCLP and MSLP are only valid when there

always is an available ambulance at the respective locations. Hence, the non-probabilistic

models provide an optimistic bound to the real problem. On the basis of this, a new set

of probabilistic models were developed. The probabilistic models are reviewed in the next

section.

2.3 Probabilistic Models

A decade after the first location models were introduced, probabilistic models were developed.

These models incorporate the possibility for ambulances being busy and focus on the expected

12
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outcome instead of the deterministic outcome.

2.3.1 Covering Models

One of the first probabilistic models for ambulance location, the maximum expected covering

location problem (MEXCLP), is presented in Daskin (1983). The MEXCLP is a further

development of the MCLP. In this model, the ambulances are independent and have the

same probability for being busy. The probability for being busy, P , is referred to as the

busy probability. When an ambulance is busy it will not be able to respond to calls. In

the MEXCLP several vehicles can be located in the same zone. The MEXCLP maximizes

demand covered by expected available vehicles. The model formulation of the MEXCLP is

given by (19) to (23).

Max
∑
i∈I

A∑
k=1

Di(1− P )P k−1yik (19)

s.t.
A∑
k=1

yik ≤
∑
j∈J

Bijxj i ∈ I (20)

∑
j∈J

xj ≤ A (21)

xj ∈ integer j ∈ J (22)

yik ∈ {0, 1}i ∈ I, k = 1, ..., A (23)

Di denotes the demand in zone i. The sets I and J denote the zones with demand and

the zones where ambulances can be located, respectively. P denotes the probability for an

ambulance being busy. If zone i is covered by k ambulances, the expected covered demand

is Di(1 − P k), where P k is the probability that all k ambulances are busy. The marginal

contribution of the kth ambulances to the expected availability is given by Di(1 − P )P k−1.

yik is binary variable and equal to 1 if zone i is covered by at least k ambulances. Bij

are parameters equal to 1 if zone j can cover zone i within a given time limit. xj is an

integer variable for the number of ambulances located in zone j. The probability P is

13
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assumed constant. Constraints (20) ensure that only the ambulances within a given time

limit can cover zone i. Constraint (21) make sure that no more than the available number

of ambulances, A, can be located. Constraints (22) are integer constraints for xj, while (23)

are binary constraints for yik.

2.3.2 Survival Models

The idea of MEXCLP is combined with the idea of MSLP in Erkut et al. (2008), and the result

is a model for the maximum expected survival location problem (MEXSLP). Knight et al.

(2012) develop this model further and present the maximal expected survival location model

for heterogeneous patients (MESLMHP). The MESLMHP maximizes the overall expected

survival probability for several patient categories. Knight et al. (2012) present the benefits

of using multiple patient classes compared with a single outcome measure. The MESLMHP

formulation is given by (24) to (26).

Max
∑
l∈L

Wl

∑
i∈I

∑
j∈J

DilSl(Ti,ρij)(1− P
xρij
ρij )

j−1∏
r=1

P xir
ρir

(24)

s.t.
∑
j∈J

xj = A (25)

xj ∈ integer j ∈ J (26)

L denotes the set of performance measures, such as covering and survival. I denotes the set

of demand zones and J denotes the set of possible locations of ambulance stations. In the

objective function Wl denotes the weight for performance measure l according to the EMS

providers preferences. Dil is the demand of type L in zone i, while Sl(Ti,ρij) is the survival

function for performance measure l, with respect to travel time from the j preferred station

to zone i. ρij is the jth preferred ambulance location of zone i. Hence, ρ21=4 corresponds to

ambulance location 4 is the first preferred ambulance location of zone 2. xj is the number of

ambulances allocated in zone j, and P
xρij
ρij denotes the probability for all ambulances being

busy in the ρthij preferred ambulance station for demand node i. Constraint (25) ensures that
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the available number of ambulances, A, is located. Constraints (26) are integer constraints

for xj.

Examples of weights and survival functions are shown in Table 2. In the example, a survival

function according to cardiac arrest (Maio et al., 2003) is given the weight 8. Other emergen-

cies corresponding to a time limit T = 12, are given weight 1. The ratio between the weights

has to be set according to the preferences of the EMS provider. The value of S1(Tij) starts

lower than S2(Tij), hence if the probability of survival from cardiac arrest is important, W1

should take a relatively high value compared to W2.

Table 2: Example of performance measures, survival function and weights

Performance measure Survival function Weights

Cardiac arrest S1(Tij) = 1

1+e−0,679+0.262Tij
W1 = 8

Cover of population S2(Tij) =

 1 for 0 ≤ Tij ≤ 12

0 for Tij > 12
W2 = 1

The MESLMHP formulation is nonlinear and requires the probability for busy ambulances

as input. The probability for busy ambulances depends on demand connected to a station,

the service rate of the ambulances and the number of ambulances at the station. As Hogan

and ReVelle (1986) stated, predefined busy probabilities are difficult and unrealistic to give.

This problem is solved by Knight with an iterative version of MESLMHP, referred to as

MESLMHP-I, which calculates the updated busy probabilities in each iteration. The busy

probabilities were calculated using a hypercube queuing model approach with constant service

rates. The hypercube queuing model is elaborated on in subsection 2.5.1 and Chapter 5.

However, to calculate and use the exact busy probabilities was found to not converge due to

the cyclic nature of demand calculated as a function of busy probabilities. Because of this,

the authors decided to only run the model for a fixed number of iterations.
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2.4 Comparison of the Probabilistic Models

The advantage of the probabilistic models is that they include the probability for busy ve-

hicles, thus yielding more robust solutions than non-probabilistic models. They can also be

used to find solutions that provide equal workloads for the different ambulances stations.

The probabilistic models have also introduced the possibility to handle different kinds of

performance measures, which gives the EMS provider more flexibility. However, the models

either have to take an a priori busy probability or iteratively construct the probabilities with

queuing models. To use predetermined busy probabilities is not preferred because it is hard

to determine the right probabilities for busy vehicles. Some of the probabilistic models are

also nonlinear which makes them more difficult to solve.

2.5 Evaluation Models

After the optimization models propose a certain location and allocation, the location and

allocation can be evaluated by the use of stochastic models and simulation models. Simula-

tion is applied by Davis (1981) and Goldberg et al. (1990) among others, while the stochastic

hypercube queuing model (HQM) was introduced by Larson (1974). The aim of such eval-

uation models is to compute the probability that an ambulance in location j responds to a

call from zone i (Ingolfsson (2013)). On the basis of that information the average response

time, probability of survival or other performance measures are computed. Both simulation

models and stochastic models have their uses, but as argued by Ingolfsson (2013), a primary

advantage of stochastic models is that they can be solved analytically. Because of that, the

HQM is the primary interest of this report.

2.5.1 Hypercube Queuing Model

In the HQM, ambulances are modeled as servers in a queuing system, and the system is

then be described as a continuous time Markov chain. This allows the model to be solved by

applying well known techniques. The general HQM can be adapted to fit various considera-

tions, such as preferred ambulances, as shown by Chiyoshi et al. (2011). Validation studies
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of certain hypercube models have shown that they are accurate with less than 5% deviation

compared with the actual system (Goldberg, 2004).

In addition to evaluate the performance of the solution of optimization models, the HQM

has been used as a part of the solution algorithm. Saydam and Aytuğ (2003) incorporate the

hypercube methodology into a genetic algorithm for solving a MEXCLP. The probabilities

for available ambulances at the respective stations were calculated in each iteration and

used to find new candidate solutions. The use of a hypercube incorporated genetic algorithm

yielded high-quality results, and the approach has also been used in Geroliminis et al. (2011).

Iannoni et al. (2009) and Knight et al. (2012) among others. The HQM is explained in depth

in Chapter 5.

There has been a significant development in operations research models for EMS, both non-

probabilistic, probabilistic, and evaluation models, since they first were introduced in the

1960- and 1970’s. This development can among other factors be seen in relation to the

increase in computing power, as well as the need for more advanced models. There are

however still a number of elements that could be improved, as the newest models are nonlinear

and require iterative processes. In the next chapter, a new problem, referred to as the

maximum expected performance location problem for heterogeneous regions (MEPLP-HR),

is presented. After that, a model is proposed for the MEPLP-HR that addresses the challenges

of the probabilistic models by calculating the probabilities for available ambulances within

the model.
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3 Problem Description

The problem solved in this paper is a new ambulance station location and ambulance alloca-

tion problem. The problem is referred to as the Maximum Expected Performance Location

Problem for Heterogeneous Regions (MEPLP-HR). With a limited number of ambulance sta-

tions, S, and ambulances, A, the objective is to give the population the best possible EMS

according to a set of chosen performance measures, L. The problem consists of a set of zones

I, with given demand for EMS, and a set of zones where ambulance stations can be located,

J . A demand zone has a primary station and at least one secondary station, where the

ranking of stations belong to the set Q. A call from a demand zone will receive an ambulance

from its primary station if there are any available ambulances at this station. If not, it will

receive an ambulance from its secondary station. The probability for available ambulances

depends on the arrival rate of calls to a station, the service time of the ambulances and the

number of ambulances allocated to the station. The arrival rate depends on the demand in

the zones the station covers, and the service time depends on the travelling distances in the

area the station covers and the distance to the nearest emergency room. This problem is

more realistic for heterogeneous regions than earlier problems as the service time is variable

and not constant.

Compared to the real problem faced by the EMS managers, this problem description contains

a several simplifications. To simplify the operational management of the fleet, it is assumed

that an ambulance is busy as long as it is not located at a station. If the primary station is

busy, an ambulance from the secondary station will always be able to respond to a call. This is

a simplification as there is a probability that the second station has no available ambulances.

However, it is assumed that the few calls that are not responded to by the primary and

secondary stations are covered by a support vehicle with response time equal to an ambulance

at the secondary station. This is an extension of the assumption of Iannoni et al (2008)

that lost calls are covered by another system. This results in that all assignments originate

from a station. It is also assumed that one ambulance responds to one incident. The fleet of

ambulances is assumed homogenous and different ambulance types are not considered.
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4 Model Description

The model for the MEPLP-HR builds on the models discussed in the literature review. There

are however several important differences between the proposed model and the existing mod-

els. The three most apparent differences are that the proposed model is a mixed integer

linear program, handles the probability for available ambulances within the model, and com-

putes the service rate of calls based on the zones a station covers. This chapter starts by

formulating the model. In Section 4.2 the model is strengthened using a reformulation and

valid inequalities. After that, it is showed how the model can be adjusted to solve earlier

problems from the literature. Finally, the model is extended to take multiple time periods

into account. The complete model formulation is found in Appendix A.

4.1 Model Formulation

The proposed model for the MEPLP-HR is formulated as a mixed integer linear program.

The formulation is divided into several subsections for readability. These include deployment-

, covering-, arrival rate-, service rate- and available probability constraints. The deployment

constraints consider the requirements to the number of stations and ambulances, while the

covering constraints focus on covering the demand for EMS in different zones. The arrival

rate constraints handle the arrival rate of calls to a station, and the service rate constraints

handle the service time of calls at each station. The available probability constraints combine

the arrival and service rates to calculate the probability of having an available ambulance at

a station. In addition to these five subsections, 4.1.1 presents the main variables and sets,

and 4.1.7 describes the objective function.

4.1.1 Overview of Main Variables and Sets

The main decision variables of the location and allocation problem are where to locate the

stations and how many ambulances to allocate to each station. If a station is located in zone

j ∈ J the binary station location variable zj is assigned value 1. For a station located in zone

j, the integer variable xj denotes the number of ambulances allocated to the station.
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The variables y(q)ij denote the proportion of the demand from zone i that is covered by an

ambulance allocated to a station in zone j, given that station in zone j is the qth ranked

station for zone i. Q is the set of rankings, which in this model includes primary and

secondary station(s). Hence, y(1)4,5 = 0.7 states that a station in zone 5 is the primary station

of zone 4 and covers 70% of the demand in that zone. All zones have one primary station and

at least one secondary station. The binary variable ρij is assigned value 1 if station in zone

j is the primary station of zone i. The arrival rate of calls to a station in zone j is given by

the variable θj, while the service rate of an ambulance at the station is given by the variable

µj.

4.1.2 Deployment Constraints

The deployment constraints make sure that no more than the available number of stations

and ambulances are located and allocated.

∑
j∈J

xj ≤ A (27)

∑
j∈J

zj ≤ S (28)

xj ≤ Azj j ∈ J (29)

xj ∈ Z≥0 j ∈ J (30)

zj ∈ {0, 1} j ∈ J (31)

Constraints (27) and (28) make sure that no more than the maximum number of available

stations and ambulances are deployed. The logical restriction that an ambulance cannot be

allocated to a zone without a station is handled by constraints (29).

4.1.3 Covering Constraints

The covering constraints keep track of which zones the different stations cover, as well as the

primary and secondary stations for each zone.
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∑
j∈J

∑
q∈Q

y
(q)
ij = 1 i ∈ I (32)

ρij ≥ y
(1)
ij i ∈ I, j ∈ J (33)

1− ρij ≥ y
(2)
ij i ∈ I, j ∈ J (34)∑

j∈J

ρij = 1 i ∈ I (35)

∑
j∈J

y
(1)
ij ≥

∑
j∈J

y
(2)
ij i ∈ I (36)

y
(q)
ij ≥ 0 i ∈ I, j ∈ J, q ∈ Q (37)

ρij ∈ {0, 1} i ∈ I, j ∈ J (38)

All calls from each zone have to be covered by a station. This is taken care of in constraints

(32). For each zone there is one primary station. The secondary station(s) cannot be the

same as the primary station. These properties are handled in constraints (33) to (35). In

addition, the primary station has to receive a higher proportion of calls than the secondary

station(s). This is ensured by constraints (36).

4.1.4 Arrival Rate Constraints

A station receives all calls from a zone that has the station as primary station, as well as the

proportion of calls it covers from a zone that has it as secondary station. This is given by

constraints (39). λi is the rate of calls associated with zone i.

θj =
∑
i∈I

(λiρij + λiy
(2)
ij ) j ∈ J (39)

4.1.5 Service Rate Constraints

The service time depends on the distance to the nearest hospital and the distance between

the station and the origin of the call. The inverse of the service time is the service rate,
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defined as how many calls can be done per hour. The average service rate µj of a station is

given by equation (40). Rij is the average time it takes for an ambulance at a station in zone

j to service calls from zone i.

µj =

∑
i∈I

∑
q∈Q λiy

(q)
ij∑

i∈I
∑

q∈Q λiRijy
(q)
ij

j ∈ J (40)

This expression is nonlinear and has been linearized through constraints (41)-(46). The

numerator and denominator are discretized using Special Ordered Sets of type 2 (SOS2)

(Beale and Tomlin, 1970). These discrete values are combined to µj, as shown below.

∑
m∈M

Bmνmj =
∑
i∈I

∑
q∈Q

λiy
(q)
ij j ∈ J (41)

∑
n∈N

Cnωnj =
∑
i∈I

∑
q∈Q

λiRijy
(q)
ij j ∈ J (42)

∑
m∈M

ζmnj = ωnj j ∈ J, n ∈ N (43)

∑
n∈N

ζmnj = νmj j ∈ J,m ∈M (44)

∑
m∈M

∑
n∈N

ζmnj = 1 j ∈ J (45)

µj =
∑
m∈M

∑
n∈N

Bm

Cn
ζmnj j ∈ J (46)

{ν1j, ..., ν|M |j} is SOS2 j ∈ J (47)

{ω1j, ..., ω|N |j} is SOS2 j ∈ J (48)

ζmnj ≥ 0 j ∈ J,m ∈M,n ∈ N (49)

The variables νmj are used to discretize the numerator (41), while ωnj are used to discretize

the denominator (42). Bm and Cn are the respective values of the numerator and denominator

of the discrete points m ∈M and n ∈ N . νmj and ωnj are variables in SOS2 ofM and N . At

most two neighboring points in a SOS2 set can be positive. Hence, the two positive variables
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νm′j and νm′+1j in M give the total demand served, Bm′νm′j + Bm′+1νm′+1j, for a station

located in zone j. The same logic applies the set of N where the two positive variables ωn′j
and ωn′+1j give the total time spent on calls, Cn′ωn′j + Cn′+1ωn′+1j, for a station located in

zone j. The discrete points of the numerator and denominator are combined into one set of

variables, ζmnj, through constraints (43)-(45). The variables ζmnj then contain information

about the value of both the total demand and the total time spent on calls. Constraints (46)

connect ζmnj to the original variables.

4.1.6 Available Probability Constraints

The proportion of calls covered has to be less than or equal to the long time probability

that there is an ambulance available at a station. The long time probability that there is

an available ambulance at a station depends on the arrival rate of calls to the station, the

service rate of the ambulances at the station, as well as the number of ambulances at the

station. This is given by equation (50), where the function f is the long time probability

that there is an ambulance available at a station.

y
(q)
ij ≤ f(θj, µj, xj) i ∈ I, j ∈ J, q ∈ Q (50)

The expression f(θj, µj, xj) is nonlinear and based on the Poisson process of the hypercube

queuing model. The arrival rate and service rate are discretized using SOS2. The probability

of having an available ambulance at a station is then found by using precalculated proba-

bilities for the discrete values together with the number of ambulances on the station. The

precalculated probabilities are described in Section 5.3 and Section 7.2, and the probability

for available ambulances is modeled by constraints (51)-(57).
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∑
v∈V

Rvβvj = θj j ∈ J (51)

∑
u∈U

Suφuj = µj j ∈ J (52)

∑
u∈U

αuvj = βvj j ∈ J, v ∈ V (53)

∑
v∈V

αuvj = φuj j ∈ J, u ∈ U (54)

∑
u∈U

∑
v∈V

αuvj = 1 j ∈ J (55)

y
(q)
ij ≤ 1−

∑
u∈U

∑
v∈V

Puvkαuvj + δjk

i ∈ I, j ∈ J, k = 0, ..., A, q ∈ Q (56)
A∑
k=0

δjk ≤ xj j ∈ J (57)

{β1j, ..., β|V |j} is SOS2 j ∈ J (58)

{φ1j, ..., φ|U |j} is SOS2 j ∈ J (59)

αuvj ≥ 0 j ∈ J, u ∈ U, v ∈ V (60)

δjk ∈ {0, 1} j ∈ J, k = 0, ..., A (61)

Constraints (51)-(55) are discretization constraints similar to the service rate discretization.

βvj and φuj are variables in SOS2 with regards to V and U , where the variables in the set

V constitute the arrival rate and the variables in the set U constitute the service rate. The

variables αuvj are used to combine the SOS2 sets into one variable. The parameters Rv and

Su connects the discretization variables to the original variables.

Constraints (56) ensure that y(q)ij is less than or equal to the long time probability that there

is at least one ambulance available at the station. δjk are binary variables equal to 1 if

there are more than k ambulances allocated to station in zone j, and Puvk is the probability

that there is no ambulances available at a station given an arrival rate associated with v,

service rate associated with u, and k ambulances allocated to the station. Puvk is visualized
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with P2vk and Pv2k in Figure 4 and 5 for k = 1 − 5. As Puvk is strictly decreasing with k,

the 1−
∑

u∈U
∑

v∈V Puvkαuvj with the lowest value of k will be the active constraint for the

station in zone j unless there are more than k ambulances there. If there are more than k

ambulances, δjk will equal 1 and make the constraint inactive.

Figure 4: Arrival rate, with service rate fixed to 2

Figure 5: Service rate, with arrival rate fixed to 2
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The relationship between δjk and the number of ambulances allocated to station in zone j

is described by constraints (57). As 1 − Puvkαuvj is more restrictive than 1 − Puv,k+1αuvj,

δj,k+1 is always less than or equal to δjk. Note that Puv0 is 1 for all values of u, v. Logically,

a station without any ambulances cannot cover any zones.

4.1.7 Objective Function

The objective function (62) maximizes the total value of the location of stations and allocation

of ambulances, given the performance measures of the EMS provider.

Max
∑
l∈L

Wl

∑
i∈I

∑
j∈J

∑
q∈Q

DilHijly
(q)
ij (62)

There is a certain performance value per call, Hijl, of zone i being covered by the station in

zone j with regards to performance measure l. The parameters Dil denote the number of

calls that is relevant for performance measure l in zone i. Each performance measure is given

a certain weight, Wl, that represents the relative importance of the performance measure for

the EMS provider. The objective function calculates the total performance of the location

and allocation by multiplying these parameters with the respective proportion of calls being

covered by the different stations and then summing over all performance measures, zones,

stations and rankings.

4.2 Strengthening the Formulation

The model formulation can be tightened by reformulating a restriction and adding valid

inequalities. In this subsection one reformulation and five sets of valid inequalities are iden-

tified, while in Subsection 8.1.1, the effectiveness of the inequalities and the reformulation is

explored.

The reformulation is to change (56) to (63). As only one y(q)ij can be positive for a pair i, j,

this is valid. The number of rows in the reformulated constraints (63) is only half of the
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number of rows in the original constraints (56).∑
q∈Q

y
(q)
ij ≤ 1−

∑
u∈U

∑
v∈V

Puvkαuvj + δjk

i ∈ I, j ∈ J, k = 0, ..., A (63)

The first set of valid inequalities is to not allow zones where there are no stations to cover

zones with a demand for EMS. This is formulated by constraints (64).∑
q∈Q

y
(q)
ij ≤ zj i ∈ I, j ∈ J (64)

The second and third sets of valid inequalities are to limit the service and arrival rate of a

station. Constraints (65) force the service rate of ambulances in a zone to 0 if no station

is located there, and (66) do the same for the arrival rate of calls to the zone. µ̄ and θ̄ are

upper bounds on the service rate and arrival rate, respectively.

µj ≤ µ̄zj j ∈ J (65)

θj ≤ θ̄zj j ∈ J (66)

The fourth set of valid inequalities are similar to (64), and restrict a zone to be the primary

station for zones with a demand if there are no stations in the zone. The valid inequality is

formulated as (67).

ρij ≤ zj i ∈ I, j ∈ J (67)

The last set of valid inequalities is to force the δjk to 0 if there is no station in zone j. This

is formulated in (68), where A is the maximum number of ambulances that can be allocated

to a station.

A∑
k=0

δjk ≤ Azj j ∈ J (68)
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4.3 Comparison to Similar Models

Even though the problem considered in this thesis differs from earlier problems with regards

to service rate, the proposed model can be altered to fit those problems. Hence, the problems

considered in the literature review can be solved by the model for the MEPLP-HR. To make

the model for MEPLP-HR fit the most advanced of the earlier problems, the only adjustment

needed is to set the service rate to a given constant instead of a variable. Hence, constraint

(41) to (46) would be removed together with the relevant variables, and a parameter for

the service rate would be introduced. However, the MEPLP-HR only allows primary and

secondary stations, while the iterative model from Knight et al. (2012) can use any number

of preferred stations for a zone. This is a shortcoming in the model for MEPLP-HR com-

pared to the iterative models, but as concluded in Section 8.3, using only 2 stations seems

reasonable.

4.4 Multi-period Model

The model presented in Section 4.1 only considers one time period. However, the expected

number of calls and the available resources change throughout the day. The number of

ambulances change, but the number of ambulance stations is constant. Because the demand

and resources change throughout the day and week, it is interesting to develop the model

to take multiple time periods into account. If the model takes multiple time periods into

account, it can be referred to as a two-stage model. The first stage is to locate the stations

and the second stage is to allocate ambulances to the stations.

To extend the model to take multiple time periods into account, a new set, T , is introduced.

t ∈ T are the different time periods. The allocation, cover of zones, arrival rates, service rates

and available probabilities are separate for each time period. Hence, all parameters, variables

and constraints related to these parts needs to be changed. All variables except zj get an

extra index, t, and all constraints except (28) apply for all t ∈ T as well. The parameters

A, Dil, and λi are changed to At, Dilt, and λit. In addition, the objective function is also

summed over all t ∈ T . The complete formulation for the multi-period model is found in

Appendix B.
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5 Hypercube Queuing Model Description

As described in Section 2.5, a hypercube queuing model (HQM) can be used to evaluate

the solution from strategic location problems. In this report HQM is used as input for the

available probability function of the proposed model and as basis for evaluating the solutions.

This chapter starts by describing the HQM with a simple example to give the reader an

introduction to HQM. After that, the HQM that is appropriate for evaluating the results

from the MEPLP-HR is presented. The chapter ends with a section on how the HQM is used

to find the parameters for the available probability function of the model.

5.1 Introduction to HQM

The idea behind the HQM is to model the operation of ambulances as a continuous time

Markov chain. A continuous time Markov chain describes the transition between different

states of a system. For an ambulance system, these states would correspond to if specific

ambulances are busy or not. The transition rates between the states for an ambulance system

would be the rate at which ambulances finish assignments, and the rate of which ambulances

are given new assignments. These rates are known as service rate and arrival rate. The

service rate is the inverse of the service time. In a continuous time Markov chain, the arrival

rate is a Poisson distribution and the service time is exponentially distributed.

The aim of modelling the operation of ambulances as a continuous time Markov chain is to

find the average proportion of time the system is in each state. The proportion the system is

in each state can further be used to analyze the performance of a given set of locations and

allocation. At steady state, the rate at which the systems transitions into a state has to equal

the rate at which it transitions out of the same state. This is used to calculate the steady state

proportions. The steady state proportions are also referred to as steady state probabilities,

as the proportion of time spent in a state in the long run is equal to the probability to end up

in that state after a long time. To illustrate the calculation of the steady state probabilities,

an example with two independent ambulances is constructed.
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5 HYPERCUBE QUEUING MODEL DESCRIPTION

5.1.1 Example with Two Independent Ambulances

The ambulances cover different areas, and they are not allowed to help each other out. If

an ambulance is available and gets an assignment, it will serve that assignment. However,

if the ambulance is busy and gets an assignment, it will not serve that assignment, and the

assignment is considered lost. That means that the assignment needs to be served another

system than the one considered here. Let λ1 and λ2 be the arrival rate of calls to ambulance

1 and 2. That is, the average number of calls the ambulances are asked to respond to each

day. µ1 and µ2 are the service rate of ambulance 1 and 2. That is, the average number

of assignments an ambulance is able to complete each day, given that it always has an

assignment. Also, let {01} denote that ambulance 1 is busy and 2 is available, {11} denote

that both ambulance 1 and 2 are busy, etc. Note that the last digit corresponds to the first

ambulance. The transitions between the states are visualized in Figure 4.

Figure 6: Transition rate graph for two ambulances

On the basis of the transition rate graph, the steady state equations can be constructed. The

rate into a state has to equal the rate out of a state. For {01}, the steady state equation is

given by equation (69).
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5 HYPERCUBE QUEUING MODEL DESCRIPTION

(λ2 + µ1)P{01} = (λ1)P{00}+ (µ2)P{11} (69)

The rate of which the system transitions out of {01} is equal to the probability of the system

being in that state multiplied by the rate of which ambulance 2 gets an assignment plus

the rate of which ambulance 1 finishes assignments. Likewise, the rate of which the system

transitions in to {01} is equal to the probability of the system being in {00} times the rate of

which ambulance 1 gets an assignment, plus the probability of the system being in {11} times

the rate of which ambulance 2 finishes assignments. The steady state equation for {00}, {10}

and {11} can be established using the same method. By solving the system of equations with

the extra restriction the steady state probabilities sum to one, the steady state probabilities

are found. The system of equations can be written in matrix form, as shown in Table 3. The

matrix is referred to as the transition rate matrix.

Table 3: Transition rate matrix for two ambulances

State {00} {01} {10} {11}

{00} -λ1−λ2 µ1 µ2

{01} λ1 -λ2−µ1 µ2

{10} λ2 -λ1−µ2 µ1

{11} λ2 λ1 -µ1−µ2

The rows represent the steady state equations and sum to zero, while the columns represents

the rate at which the system transfer from the state of that column to the other states. To

find the steady state probabilities by using the transition rate matrix, equation (70) and (72)

are solved. Pi is the steady state probability of being in state i, and Aij is the transition rate

matrix.
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5 HYPERCUBE QUEUING MODEL DESCRIPTION

∑
i∈I

∑
j∈J

AijPi = 0 (70)

∑
i∈I

Pi = 1 (71)

In the long run, the average probability for ambulance 1 being available is given by P{00} +
P{10}, and similarly the probability for ambulance 1 being busy is P{01} + P{11}.

5.2 HQM for the MEPLP-HR

For the HQM that is appropriate for the MEPLP-HR, there are several differences from the

simple toy model in Section 5.1. Firstly, the arrival rate of calls is connected to stations

and not ambulances. This is important as there might be more than one ambulance at each

station. Then there is equal probability for any of the available ambulances to respond to a

call. Secondly, each zone with a demand for ambulance has one primary station as well as

a secondary station. Hence, if the primary station is busy, the secondary station may serve

the zone. However, if both the primary and secondary station is busy, the assignment is

lost.

5.2.1 Constructing the Transition Rate Matrix

To further explain the HQM for the proposed model, an example with two stations (1,2),

three ambulances and three demand zones (A,B,C) is used. The allocation of ambulances

and service rates are presented in Table 4, while the demand and the primary and secondary

stations for the areas are presented in Table 5. The service rate of ambulance i is denoted

µi, and the aggregated service rate for all the ambulances is µ. The arrival rate of calls from

zone i is denoted λi, and the aggregated arrival rate for the whole system is λ.

For the representation of the system, the two first ambulances are allocated to station 1, and

the last ambulance is allocated to station 2. Hence, {011} represents the state where both

ambulances of station 1 is busy, and the ambulance at station two is available. The two last
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5 HYPERCUBE QUEUING MODEL DESCRIPTION

Table 4: Allocation of ambulances for the example

Station # Ambulances Service rate

1 2 µ1,µ2

2 1 µ3

Table 5: Demand data for the example

Area Demand Primary (station #) Secondary (station #)

A λA 1 2

B λB 2 1

C λC 2 Only primary station

digits represent station 1. For the steady state situation, the rate which the system transfers

into a state has to equal the rate which the system transfers from the state. This has been

used to calculate the transition rate matrix, as given by Table 6. Note that the arrival rate of

calls to the ambulances in station 1 is divided equally if both ambulances are available.

The steady state equations can be found in the transition rate matrix. For {101}, the steady

state equation is given by (72), and is found in row 6 of Table 6.

(λA + λB + µ1 + µ3)P{101} = (λB + λC)P{001}+ (
λA
2

+
λB
2

)P{100}+ µ2P{111} (72)

As before, the left side of the equation is the rate at which the system transfers out of the

state, while the right side is the transfer rate into the state. The corresponding equations for

the other states can be found in the same matrix. To find the steady state probability for

the different states, equation (70) and (71) are solved.
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5.2.2 Analysis of the Steady State Probabilities

When the probabilities are calculated from the HQM, it is possible to evaluate the location

of stations and allocation of ambulances. The main parameters of interest are then the prob-

ability for the different ambulances to respond to an incident in a given zone, as well as

the probability for a lost call. The probability for an ambulance at the primary station to

respond is equal to the probability for that an ambulance at the primary station is available.

Similarly, the probability for an ambulance at the secondary station to respond is equal to

the probability for that all ambulance at the primary station are busy, but an ambulance at

the secondary station is available. The probability for a lost call equals the probability for

that the ambulances at both the primary and secondary station are busy. For zone A from

the example in Section 5.2.1, the probability for a call being responded to by an ambulance

at the primary station, an ambulance at the secondary station, or being lost, is given by

equations (73) to (75).

PA
primary =P{000}+ P{001}+ P{010}+ P{100}+ P{101}+ P{110} (73)

PA
secondary =P{011} (74)

PA
lost =P{111} (75)

The validity of the busy probabilities depends on the input data, as well as the validity of the

assumption that the arrival rates are a Poisson process and the service rates are exponentially

distributed. In addition, the probability of lost calls is problematic for ambulance dispatch,

as there in reality are no lost calls. However, this can be seen as an "extraordinary event" if

the probability is low enough.

5.3 HQM Probability Function

For the model for the MEPLP-HR, the probability that there are no available ambulances at

a station is of main interest. The model for the MEPLP-HR applies a linearized probability

function, where the busy probability of a station depends on the number of ambulances at the

station, the arrival rate of calls to the station, as well as the service rate of the ambulances
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at the station. The available probability can then be calculated by the use of HQM for each

level of ambulances, arrival rate and service rate. A station is modeled as a system where

there is equal probability for any of the ambulances to respond to a call.

An example of the transition rate matrix for a station with three ambulances, an arrival

rate of calls, λ, and service rate per ambulance, µ, is given by Table 12. The steady state

probabilities can be found by applying equation (70) and (71). The number of interest is

then the steady state probability for all ambulances being busy. For the system described by

the transition rate matrix in Table 7, this corresponds to P{111}.

Table 7: Transition rate matrix for the HQM probability function

State {000} {001} {010} {100} {011} {101} {110} {111}

{000} -λ µ µ µ 0 0 0 0

{001} λ
3

-λ−µ 0 0 µ µ 0 0

{010} λ
3

0 -λ−µ 0 µ 0 µ 0

{100} λ
3

0 0 -λ−µ 0 µ µ 0

{011} 0 λ
2

λ
2

0 -λ−2µ 0 0 µ

{101} 0 λ
2

0 λ
2

0 -λ−2µ 0 µ

{110} 0 0 λ
2

λ
2

0 0 -λ−2µ µ

{111} 0 0 0 0 λ λ λ -3µ

In the proposed model from Section 4, Puvk is equal to P{1...1} for a station with k ambu-

lances and arrival rate and service rate associated with u and v. P{1...1} is the probability

for all ambulances being busy at that station. The argument in the model is that a station

cannot cover a higher proportion of calls in the long run than the steady state probability for

that at least one ambulance is available. The main problem with this modelling approach is

that it only considers one station at a time, and therefore not the probability that both the

primary and secondary station are busy at the same time. However, as argued in Section 3,

this is acceptable if this probability is sufficiently low. Then the validity of the HQM as an

input for the proposed model only depends on the validity of the assumption that the system

can be modeled as a continuous time Markov chain.
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The basis for the computational study is AMK data from 2010 to 2013 for the county of

Sør-Trøndelag. However, some parts of Sør-Trøndelag are geographically separated from the

rest and do not share ambulances. Because of this, these are not included. The region

considered is shown in Figure 7. In the computational study, most tests are performed on

the whole region, but some tests are performed on the urban area of Trondheim and Malvik.

The dataset contains the time, date, location and severity (red, yellow and green) of each

call. For most tests, it is the busiest period of the week, workdays from 08:00 to 16:00 that

is relevant.

Figure 7: Sør-Trøndelag with Trondheim and Malvik within the dashed area. The triangles

represent the emergency rooms, and the dots represent the center of zones with demand.

6.1 Zones with Demand for EMS

The postal code zones of Sør-Trøndelag are used as the zones in the model. The zones are

modeled as points located at the population center of the zones. Hence, all calls from a zone
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are simplified to originate from a single point. The population and the coordinates for the

postal codes are obtained from erikbolstad.no (Bolstad, 2012). For Sør-Trøndelag there are

139 zones with demand for EMS, while in Trondheim and Malvik there are 67 zones. The

expected demand for EMS for each zone is the historical number of calls per hour from the

zone. The expected demand for the zones is found in Appendix C.

6.2 Potential Locations for Stations

Basically, all zones are potential locations for stations. However, for various reasons there are

some zones that never will be used as station locations. These are removed, resulting in 76

potential station locations in Sør-Trøndelag and 44 potential station locations in Trondheim

and Malvik. The rules for removing potential locations are listed below.

• For the zones close to the borders of Sør-Trøndelag: If there are less than 1000 inhab-

itants in the zone and the zone does not lead to zones closer to the border with more

than 1000 inhabitants in total, the zone is removed as a potential location. This is due

to problems with recruiting in such areas.

• For the zones close to existing stations: If the center of the zone is less than 5 minutes

away from where there currently is a station, the zone is removed as a potential location.

This is due to the fact that it is not realistic to move stations such small distances. For

such small distances, it is more important with local geography such as available land,

buildings and infrastructure.

The complete list of potentital locations for stations, as well as excluded zones is found in

Appendix D.

6.3 Number of Stations and Ambulances

In Sør-Trøndelag today, there are 16 stations. The number of ambulances varies throughout

the day and week, but for the busiest period there are 24 ambulances available. Hence, the

basis for the tests is 16 stations and 24 ambulances.
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6.4 Response Time

Response time is the time from a call is placed in the dispatching call center until the

ambulance arrives at the incident. The time from a call is placed in the dispatching call

center until the ambulance is dispatched, also known as the pretravel delay, is assumed to

be 0. The travel times between the zones were found using a tool developed in Python that

gather the travel times between all zones from Google Maps. The code is found in Appendix

E. Some adjustments have been done manually, such as allowing the ambulances to travel over

Ceciliebrua, also known as "the hospital bridge". The travel times correspond to the average

travel time between the coordinates for normal traffic. As pretravel delay is considered to be

0 and varying traffic is not considered, no adjustments have been done regarding the higher

speeds of ambulances. The response time for an ambulance station to an incident within the

same zone is simplified to be 2 minutes for all zones.

6.5 Average Service Time

The average service time Rij is calculated by using the travel times between the zones,

stations and hospitals, as well as adding a constant that represent the time on the scene. For

Sør-Trøndelag, 43% of all calls end at a hospital, and the average time spent on the scene of

a call is 16 minutes. Hence, Rij can be formulated as equation (76), where Tji is the travel

time from zone j to i, Tic is the travel time from zone i to the nearest emergency room (ER),

and Tcj is the travel time from the ER to zone j.

Rij = Tji + 16 + 0.43(Tic + Tcj) + 0.57Tij (76)

6.6 Performance Measures

The performance measures used are heterogeneous, as they are demonstrated to be effective

(Knight et al., 2012). For the time critical red calls, a survival function from Maio et al.

(2003) for cardiac arrest is used. The survival function obtained from Maio et al. (2003)
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is one of many functions that can be used, however, the exponential slope of the curve is

the most important feature, not the constants (Erkut et al., 2008). For the yellow calls,

traditional cover measures of 12 minutes for urban areas and 25 minutes for rural areas

are used. The reason for this is that for yellow calls, it is sufficient that the ambulance

arrives within the given thresholds. There are no performance measures for green calls as

these mainly consist of normal transport of patients. The number of calls that is relevant

for the performance measures, Dil, is the arrival rate of red calls per hour for the survival

measure and the arrival rate of yellow calls per hour for the cover measure. The weights for

the different performance measures varies for different tests, however, the basis is that the

weight for the survival measure, Ws, is 2 and the weight for the cover measure, Wc, is 1. The

ratio between the weights is based on the work of Knight et al. (2012). The summarized

parameters for the performance measures are given in Table 8, where tR is the response time

of the ambulances.

Table 8: Performance measures

Performance

Measure

Function Wl Dil

Survival H(tR) = 1
1 + e−0.679+0.262tR

2 red calls

Cover urban H(tR) =

 1 for 0 ≤ tR ≤ 12

0 for tR >12
1 yellow calls

Cover rural H(tR) =

 1 for 0 ≤ tR ≤ 25

0 for tR >25
1 yellow calls

6.7 Time Periods

For the multi-period model, the week has to be divided in to distinct time periods. For

Sør-Trøndelag, the cumulative number of calls for the different hours and days of the week

in 2013 are shown in Appendix F. The key characteristics is that the demand for EMS is low

from 00:00 to 08:00, medium from 16:00 to 24:00, and high from 08:00 to 16:00. In addition,

Saturday and Sunday have slightly different demand patterns than the other days. Hence,
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it makes sense to split each day into three periods, and also split between workdays and

weekends. The number of ambulances at disposal does also fit well with this splitting. The

percentage demand and number of ambulances at disposal for each period is shown in Table

9.

Table 9: Periods and available resources

Period Ambulances % of demand

Workday 00:00 - 08:00 17 6.9%

Workday 08:00 - 16:00 24 32.6%

Workday 16:00 - 24:00 19 15.6%

Weekend 00:00 - 08:00 17 9.9%

Weekend 08:00 - 16:00 22 19.7%

Weekend 16:00 - 24:00 19 15.3%

As there are five workdays each week and only two days in the weekend, the Dilt have to be

adjusted for this. This is because it is based on arrival rate per hour. Hence, the Dilt for

workdays are multiplied with 5, while the Dilt for weekends are multiplied with 2.
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7 Implementation

The computational studies are performed by using optimization software and Excel. In ad-

dition, Matlab and Python have been used to obtain parameters. The following sections

describe how the mathematical model and the hypercube queuing model have been imple-

mented.

7.1 Model Implementation

The model is implemented and tested for a variety of different instances using available

commercial software. The model is written in Mosel and solved by Xpress-Optimizer Version

7.6.0. The model is run on HP dl165 G6, 2 x AMD Opteron 2431 2,4 GHz, with 24 Gb RAM.

The results from Xpress are exported to Excel, where the solutions are studied further. If

not specified otherwise, the stopping criteria in the computational study is 8 hours.

In both the service rate constraints and the available probability constraints, variables are

discretized and linearized. The variables in the linearization and discretization sets are re-

ferred to as breakpoints. To achieve an accurate and smooth linearization, the number of

breakpoints should be high. However, this increases solution time, as there are more vari-

ables. Because of this, the number of breakpoints should not be more than necessary to

achieve a sufficiently smooth linearization. On the basis of this, an appropriate number of

breakpoints in the service rate discretization sets is found to be 11, while an appropriate

number of breakpoints for the available probability constraints is found to be 7. Hence, |M |
and |N | are 11, and |U | and |V | are 7.

7.2 HQM Implementation

The calculation of the discrete values Puvk is done in Matlab. The matrix is set up as shown

in Chapter 5 and solved for each combination of u, v and k. The number of interest is then

the probability that all ambulances are busy, P{1...1}.

To evaluate the solutions from the model and find the correct number of missed calls, a full
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7 IMPLEMENTATION

HQM is set up for Sør-Trøndelag. The information about the ranking of stations for each

zone, as well as arrival rate and service rate are used to complete the transition rate matrix

in a similar way as in Section 5.2. However, for the 24 ambulances in Sør-Trøndelag, the

matrix contains 224 columns and 224 + 1 rows. This results in a matrix that is not solvable

within reasonable time for Matlab.

Because of the problems with solving the HQM analytically in Matlab, a simulation model

was developed in Excel to evaluate the solutions and find the correct number of missed calls.

The simulation model is based on the same assumptions as the HQM and implemented as

a discrete event simulation. The key events in the simulation build on the essential steps of

the EMS response process:

1. A zone calls for an ambulance

2. An available ambulance responds to the call

3. Ambulance departs for incident scene

4. Ambulance arrives at scene and intervention by paramedics starts. In some cases, the

patient is taken to hospital.

5. Ambulance returns to station

The location and allocation, as well as the ranked stations (primary, secondary, ...) for each

station is given as input data. A rand() function determines where and when the next call will

happen, and the time between calls from a zone is exponentially distributed. An ambulance

from the primary station will respond if there are any ambulances available there. If not, an

ambulance from the secondary station will respond, and so on. If there are no ambulances

available at any of the stations that cover the zone, the call is categorized as missed. The

ambulance that responds to the call is busy until it arrives at the station again. The time an

ambulance is occupied with a call is given by Rij from equation (76). The simulation is run

for approximately 38,000 calls. The pseudo code for how the simulation model determines

the next event (new call, new available ambulance, missed call) can be seen in Appendix

G.
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8 Computational Studies

The computational study begins with technical tests of the model for MEPLP-HR. The

objective of these tests is to explore how the model can be solved effectively and general

characteristics of the model. After the technical tests, the importance of using multiple time

periods is explored using the multi-period model from Section 4.4. In Section 8.3 the best

solution from the model is evaluated in an Excel simulation model to investigate the impact

of one of the key operational simplifications. In Section 8.4, the solution from the model is

compared to the current locations and allocation in Sør-Trøndelag. The chapter ends with

analyses of the impact of key parameters.

8.1 Technical Characteristics

In this section the strengthening constraints from Section 4.2 are tested. The tests have

been performed on Trondheim and Malvik for 15 and 30 minutes, and Sør-Trøndelag for 4

and 8 hours. The results are presented in Table 10 and 11, respectively. T0 is the test with

the model in its’ proposed form. T1, T2, T3, T4, T5 and T6 correspond to tests with the

constraints (63), (64), (65), (66), (67) and (68), respectively. X0 is the test with all proposed

strengthening constraints. X1, X2, X3, X4, X5 and X6 correspond to test with all constraints

except (63), (64), (65), (66), (67) and (68), respectively. The tables present the tests with

the objective LP solution, rows and columns after presolve, the number nodes in the branch

and bound tree, the number of solutions, the best solution value, best bound and gap for all

tests. The gap is defined as (best bound - objective value) / objective value.

8.1.1 Impact of Strengthening Constraints

From the results in Tables 10 and 11 a number of interesting characteristics can be seen.

One of the most apparent characteristics is the impact of the reformulation (63). Of all the

single constraints, this is the most effective in producing a low gap for all tests on Trondheim

and Malvik, and Sør-Trøndelag. It also reaches the highest number of nodes in 3 out of

4 tests. The effect of the reformulation can be seen in connection to the number of rows
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8 COMPUTATIONAL STUDIES

in the model. Applying the reformulation (63) instead of the original constraints (56) cuts

away approximately 40% of the rows of the original problem, making the problem easier to

solve. Constraints (64) have the largest impact on the linear relaxation in both the test on

Trondheim and Malvik, and Sør-Trøndelag. However, the linear relaxation has little impact

on the best bound after the solver’s root cutting and heuristics.

For the test on Trondheim and Malvik in Table 10, the solver performs in general better with

more constraints as the best bound decreases with more constraints. However, the constraints

have limited effect on the best solution. In the 30 min test, the maximum relative difference

between the best solutions is less than 0.2%. This can be seen in connection to that the

solver is able to find strong solutions on this relatively small instance without any help, and

the strengthening constraints are just tightening the best bound.

For the tests on Sør-Trøndelag on the other hand, the constraints do not significantly impact

the best bound, except for in the test with all constraints, X0. They have however a large

impact on the number of solutions found and the value of the best solution. The number

of solutions found is in general higher with one or zero strengthening constraints, and the

values of the best solutions are more mixed for several constraints. This can be an indication

of that on large instances the extra constraints makes the problem harder to solve. This

can also be seen by the number of nodes reached, which are in general higher for one or

zero strengthening constraints. It is also noticeable that the best gap when using the best

solution and best bound from any of the tests is approximately half of the best gap from any

of the single tests for the 8 hours run. This indicates that it might be effective to use many

constraints to provide a good bound, but few constraints to provide strong solutions.

8.1.2 Objective Function

Another characteristic of the solutions is that there are many possible locations and allocation

configurations that are almost equally good. As seen from the 30 minute test on Trondheim

and Malvik, the maximum relative difference between the best solutions is 0.2%. This can

be explained by that there are many station locations that are close to each other and

almost equally good. Hence, swapping one station location for another will not change the
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8 COMPUTATIONAL STUDIES

objective value significantly. In addition, there might be situations where it is equally good

to allocate a second ambulance to several different stations, resulting in many equally good

solutions.
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8.2 Multiple Time Periods

A common approach when locating ambulance stations has been to focus on the busiest

period of the week, as done in 8.1. This is done despite that both the demand for EMS and

the available EMS resources varies throughout the day. The demand for EMS and number of

ambulances in Sør-Trøndelag for different time periods are shown in Table 12. The demand

for EMS is typically highest from 08:00 to 16:00 during normal workdays and lowest during

the night of the workdays. The areas with demand may also change as most people are at

work during the day and at home in the night. Because of this, it is interesting to consider

multiple time periods. The problem with considering multiple time periods is however that

the problem becomes much harder to solve. This is also the reason why most models only

consider the busiest period. Nonetheless, it is not known if it is a valid approach.

Table 12: Available resources and demand for different periods

Period Ambulances % of demand

Workday 00:00 - 08:00 11 6.9%

Workday 08:00 - 16:00 17 32.6%

Workday 16:00 - 24:00 13 15.6%

Weekend 00:00 - 08:00 11 9.9%

Weekend 08:00 - 16:00 15 19.7%

Weekend 16:00 - 24:00 13 15.3%

To analyze the value of considering multiple time periods, the ambulance station locations

from the five best solutions for the busiest period have been evaluated for all 6 periods. The

stations are then locked to the locations from the busiest period, and the model allocates the

given number of ambulances that are available for each period to the stations. The objective

value for each period is then summed. The total objective value for each of the five best

solutions is compared to the best solution from the model when all 6 periods are taken into

account at once. When all 6 periods are taken into account at once, the problem can be

referred to as a two-stage problem. The first stage is to locate stations that are permanent

for all periods and the second stage is to allocate ambulances in each period. To solve the
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two-stage problem, the model was run for 48 hours with the reformulation (63). In addition,

to reduce the size of the problem, variables that included pair of i, j with very high travel

time were not created. The objective value, best bound and gap for the five best solutions

from the busiest period and the two-stage problem are shown in Table (13).

Table 13: Objective value, best bound and gap for multiple time periods

Test Obj. value Best bound Gap

Solution 1 22.086 22.458 1.68 %

Solution 2 22.100 22.426 1.47 %

Solution 3 21.848 22.399 2.52 %

Solution 4 22.067 22.424 1.62 %

Solution 5 22.080 22.437 1.62 %

Two-stage problem 21.656 22.579 4.27 %

As seen from the results in Table 13, all solutions for the busiest period are better than what

the solver found for the two-stage problem. This is due to the complexity of the two-stage

problem and it shows the motivation for only considering one period. The optimal solution

from the two-stage problem can not be worse than the solutions from the busiest period,

as the two-stage problem always can find the same solution as the busiest period problem.

Because of this, it only makes sense to compare the objective values from the busiest period

with the best bound of the two-stage problem. By comparing the objective value of the

least good solution from the busiest period (Solution 3) to the best bound of the two-stage

problem, a gap of only 3.35% is found. This small gap for the least good solution shows that

the optimal objective value for the two-stage problem and the objective value from solutions

for the busiest period are not very different. Hence, the problem for the busiest period is

consistent in producing strong solutions for all 6 periods.

Based on the results from this analysis, it appears sufficient to only take the busiest period into

account for Sør-Trøndelag when locating ambulance stations. This can partly be explained

by that for this region the areas with high demand do not greatly change throughout the

day. One could expect different results if there were greater differences between where people
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lived and where they worked.

8.3 Impact of a Key Operational Simplification

The MEPLP-HR simplifies the operational management of the ambulances to calculate the

probability of having an available ambulance at a station. It assumes that calls that are not

covered by the primary station can always be covered by the secondary station. This has two

consequences: The first consequence is that the problem does not account for that both can

be busy. If both are busy, the call will be categorized asmissed. In reality the EMS providers

does not accept missed calls, but it has been argued that these "missing calls" are taken by

extra ambulances or other vehicles (Iannoni et al., 2009). However, if the probability of both

being busy is low, missed calls are not an important factor. The second consequence is that

there are only two elements in the set Q, as the secondary station(s) always will respond to a

call if the primary station is busy. Hence, the problem is not able to determine which station

should be the tertiary station, quaternary station, and so on.

For the best allocation from the case of Sør-Trøndelag, these two consequences were inves-

tigated in a developed Excel simulation model. In the Excel simulation model, there are no

restrictions on the number of elements in Q. The simulation was run with 1 - 5 elements in

the set Q, i.e. allowing 1 - 5 stations to cover a given zone. The stations were ranked for each

zone based on the travel time, where the closest station is the primary station. The objective

value and average percentage of missed calls as a function of the number of elements in the

set Q is shown in Figure 8.

As expected, the number of missing calls decreases with the number of elements in the set

Q, as a result of that there are more ambulance stations as backup. However, the average

missing is low if 2 or more stations can cover a zone. The objective value is stable if 2, 3, 4

or 5 stations can cover a zone. This is because the tertiary, quaternary and quinary stations

are in many cases too far away to contribute to the objective value. Because of this it is

not given that the number of station that can cover a zone should be as high as possible.

For instance, an ambulance from a quaternary station is unlikely to arrive fast enough to

provide significant value to a call, and if it is dispatched it will leave its original area more
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Figure 8: Test on the number of ranked stations

exposed.

It is difficult to exactly replicate all operational aspects in simulation models, but as indicated

by Figure 8, this operational simplification seems reasonable. However, as this is a strategic

problem, it is not vital that it takes in every operational aspect. The important factor is

that it is able to replicate the key features of how the ambulances will operate.

8.4 Evaluation of Solutions

When comparing the best solution from the model to the current locations and allocation, the

model was able to find a solution that outperformed the current solution on the expectation

for both performance measures. The performance measure values are shown in Table 14.

Current locations refers to only locking the ambulance stations to the current locations,

while Current allocation refers to locking both the stations and the number of ambulances at

each station to the current solution. The best solution for Sør-Trøndelag from the model is

referred to as Best solution. Compared to the current allocation, the objective value is 8.2%

higher in the best solution, while with only the current locations, the objective value is 6.9%

higher in the best solution.
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A comparison of the cumulative response times for the red calls in the best solution and the

current allocation is presented in Figure 9. The best solution has a much higher proportion of

calls within the interval between 4-10 minutes. This explains the higher value on the survival

measure in Table 14.

Table 14: Performance measure values for best solution, current locations and current

allocation

Performance measure Best solution Current locations Current allocation

Survival 0.209 0.166 0.157

Cover 1.224 1.174 1.167

Total 1.433 1.340 1.324

Figure 9: Cumulative response time for best solution and current allocation

The percentage of yellow calls covered within the cover thresholds is presented for in Table

15 for the best solution and current allocation. The bold rows represent the actual cover

measure for urban and rural areas. For urban areas, the expected number of calls covered

within 12 minutes is higher for the best solution. The expected number of calls covered within

25 minutes for the rural areas is marginally higher for the best solution than for the current
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allocation. Hence, the expected performance of the best solution is superior to the expected

performance of the current allocation for every element of both performance measures.

Table 15: Percentage of yellow calls covered within cover threshold

Best solution Current allocation

Urban within 12 minutes 98% 92%

Rural within 12 minutes 56 % 72 %

Urban within 25 minutes 98 % 98 %

Rural within 25 minutes 91% 90%

To investigate the reason for the differences in the expected performance, the number of

ambulances and stations in the urban and rural areas were analyzed. The results are presented

in Table 16 and provide insightful information: The model puts a higher value on having a

higher number of ambulances and ambulance stations in the urban areas. This can partly be

explained by that the demand for EMS is significantly higher there.

Table 16: Comparison of best solution and current location

Best solution Current locations Current allocation

Amb Stat Amb Stat Amb Stat

Urban 10 7 9 3 7 3

Rural 14 9 15 13 17 13

To see the importance of having a higher number of ambulances in the urban areas, the

workload and probabilities of having at least one available ambulance at a station were

calculated. The results are shown in Figures 10 and 11 for the best solution and the current

allocation, respectively. The average workload of the ambulances at the stations in the urban

areas is noticeably higher for the current allocation than for the best solution, with an average

of 2.6 hours active time versus 1.7 hours active time for the best solution. However, the

probability of having an available ambulance at a station is approximately the same. Hence,

the number of ambulances in urban areas cannot explain the difference in the performance
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measures. This is also shown by the difference between the performance measure values of

the current locations and the best solution in Table 14, as the number of ambulances in urban

areas is almost the same for these solutions.

Figure 10: Workload and probability for available ambulances for the best solution

The difference between the expected performances is better explained by the number of

ambulance stations in the urban areas. In the rural areas the population is too scattered to

obtain a high score on the survival measure, and most of the population is covered within

the threshold of the cover measure. However, in the densely populated urban areas, extra

ambulance stations contribute significantly to the survival measure, as the ambulances are

then able to reach a higher number of calls within few minutes. This can also be seen in Table

14 as the difference between the survival measure values for the best solution and current

allocation is 33.1%, while the difference between the cover measure values is 4.9%.
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Figure 11: Workload and probability for available ambulances for the current allocation

8.5 Impact of Key Parameters

To understand what determines the objective value and the locations and allocation of sta-

tions and ambulances, the impact of key parameters are analyzed. This is done through

changing the weights of the performance measures, as well as changing the number of am-

bulances and stations at disposal. The analyses are presented in the two following subsec-

tions.

8.5.1 Impact of the Performance Measures

To see how the performance measures affect the solutions, the model is tested with only the

cover measure (Wsuvival = 0,Wcover = 1), only the survival measure (Wsuvival = 1,Wcover = 0),

and the base case (Wsuvival = 2,Wcover = 1). The tests were performed with reformulation

(63), and with 16 stations and 24 ambulances. The locations and allocation for all the test

are shown in maps in Appendix H. Note that the combined urban areas are small compared
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to the rural areas in Sør-Trøndelag, as shown in Figure 7. However, the urban area contains

70% of the demand.

An overview of the location and allocation of stations and ambulances to urban and rural

areas for the tests is presented in Table 17. The unweighted values for cover and survival

are shown in the columns to the right. These values multiplied with the associated weights

constitute the objective value.

Table 17: Location and allocation for the performance measures tests

Test Urban Rural Unweighted value

Stations Ambulances Stations Ambulances Cover Survival

Cover measure 6 11 10 13 1.2365 0.0496

Survival measure 12 16 4 8 1.0771 0.1183

Base case 8 11 8 13 1.2242 0.1046

As all tests have different sets of locations and allocations, it is clear that the different weights

affect the solutions. The cover measure scatters the stations in order to cover as large demand

as possible. This is seen from Table 17 as it has more stations in the rural areas than the

other tests. However, it allocates more ambulances per station in the urban areas than in

the rural areas, as it is more critical if the ambulances are busy in areas with high density of

demand for EMS.

The survival measure maximizes the number of survivors according to the exponential survival

function. For this performance measure, the performance value of responding to a call within

3 minutes is twice as high as the performance value of responding within 6 minutes. Hence,

it is essential to have stations located very close to zones with high demand. Because of this,

12 out of 16 stations were located in the urban areas for this test.

The base case uses a combination of the cover and the survival measure, and search to both

cover large areas and achieve short response time to the zones with high demand. Compared

with the cover measure the base case put the same number of ambulances in urban and rural
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areas, but allocates 2 more stations to the urban area. This is because the model searches to

be closer to the high demand zone due to the survival measure.

When comparing the cover value from the survival test (1.0771) with the cover value from

the cover test (1.2365), it is 12.9% lower. However, when comparing the survival value from

the cover test (0.0496) with the survival value from the survival test (0.1183), it is 58.1%

lower. This shows that when only considering the cover measure the solution fails to give

quick response to zones with high demand, while when only considering the survival measure

the solution achieves decent coverage. This can be explained by that 70% of the demand

come from the urban areas. The base case achieves a cover value (1.2242) that is 0.99% lower

than the cover value (1.2365) in the cover test, and 11.6% lower survival value (0.1046) than

the survival test (0.1183). Hence, using both performance measure achieve decent values for

both cover and survival.

8.5.2 Sensitivity to the Number of Ambulances and Stations

To test the MEPLP-HR’s sensitivity to the restrictions on the resources of the EMS provider,

the model is tested for a range of ambulances and stations. The model is tested for 16 to 30

ambulances with 16 station, and for 10 to 24 stations with 24 ambulances. To find strong

objective values and best bounds, all tests are performed three times; with the reformulation

(63), with all strengthening constraints except (67) and with (63) and (64) combined. The

highest objective value and lowest best bound are recorded. The results from the respective

tests are presented in Figure 12 and 13. The figures show the the value of the cover and

survival measure, optimality gap and the average available probability. Together, the cover

and survival value constitue the objective value. The optimality gap in these figures is defined

as Best bound - Objective value.

As seen from Figure 12 the objective value increases from 16 to 23 ambulances, while from

23 to 30 ambulances the effect is decreasing. This can be explained by that the average

available probability is increasing for 16 to 23 ambulances, while it is stable for 23 to 30

ambulances. The best bound is not significantly affected by the number of ambulances. This

can be explained by that the solver calculates the best bound based on that there always is
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Figure 12: Results from varying the number of ambulances with 16 stations

an available ambulance at a station. As there are 16 stations for all tests, the best bound

stays the same.

It is the survival value that contributes the most to the increase in objective value. This

can be explained by that it is more critical for this measure to have an available ambulance

at a station located close to zones with high demand. The small increase in cover value is

also explained by that available probability increases. The primary stations are then able to

reach more calls that are not covered by two stations within the cover threshold.

In Figure 13 the effect from varying the number of stations is presented. As seen from the

figure, the objective value increases with the number of stations, while the gap is relatively

stable for all number of stations. As there are 24 ambulances for all tests, the average

available probability is generally high. The fluctuations in the average available probability

can be explained by how the ambulances are allocated to the stations.

As the for the test with increasing ambulances, the cover value is fairly stable. This is due
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Figure 13: Results from varying the number of stations with 24 ambulances

to that the zones with high demand is covered within the cover threshold even with a low

number of stations. The increase in the objective value is a result of the increase in the

survival value. The survival value increases as more stations are located in areas with high

density of demand. Hence, a larger part of the demand are covered within few minutes.
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9 Application of the model

In this section two case studies are performed using the model. The first concerns the

consequences and mitigating actions of closing down a local trauma center, while the second

focuses on the benefits of introducing non-urgent transport vehicles for green calls.

9.1 Closing a Local Emergency Room

There are several small local ERs in Norway today. These local ERs are controversial as

they are expensive, and there are discussions about the competence of such small facilities

compared to the regional hospitals. However, there are substantial local political forces that

want to keep these facilities, as they fear that the emergency medical services for their local

area will be weakened if the facility is closed down. For Sør-Trøndelag, the local ER under

discussion is the one located in Orkdal. The ER in Orkdal is approximately 35 minutes from

the regional hospital of Sør-Trøndelag. 40 of the 139 zones has this as its nearest ER, and

these 40 zones counts for 13.7% of the red and yellow calls in Sør-Trøndelag.

A proposed mitigating action for closing local ERs is to procure additional ambulances and/or

stations for the area affected by the closing. In this manner, the extra stations and ambulances

should weigh up for the longer distance to the ER. A share of the savings from the closed

ER can finance these additional resources. However, it is important to emphasize that the

closing of local ERs is not solely based on cost cutting.

The traditional performance measures of the ambulance station location are only based on

response time. However, if the ambulances should weigh up for closing down a local ER, it

is the time from a call arrives until the patient arrives at the ER that is of greatest interest.

This makes sense when considering e.g. stroke, where the time until a CT-scan is performed

is of great importance (Saver and Levine, 2010). It is also important for local politicians, as

the time until a person arrives at the ER affects the perceived safety and convenience for the

population.
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To analyze the effect of closing the local ER, a new performance measure is introduced. The

new performance measure is based on the time from a call arrives until the patient is at

the ER. With this performance measure, the idea is that people far from the ER will be

compensated by having an ambulance closer to reduce the time to ER. A cover measure

is used because the objective is to get as many as possible to the ER within a reasonable

time, not to minimize the average time to ER. However, there are no official guidelines to

what should be defined as a reasonable time to the ER. For Sør-Trøndelag, some interest

groups claims that 60 minutes are reasonable, while others claim that more than 120 minutes

are reasonable. Based on this, the performance measure is implemented as being 1 if an

ambulance from a specific station can get a person from a specific zone to the ER within 90

minutes, and 0 otherwise. The weight is set to be the same as for the response time cover

measure, and the number of calls relevant for this measure is both the red and yellow calls.

The summarized performance measures used in this case are given in Table 18. tR is the

reponse time, and tER is the time to ER and defined as the reponse time plus the travel time

from the zone to the closest ER.

Table 18: Performance measures for local ER case

Performance

Measure

Function Wl Dilt

Survival H(tR) = 1
1 + e−0.679+0.262tR

2 red calls

Cover urban H(tR) =

 1 for 0 ≤ tR ≤ 12

0 for tR >12
1 yellow calls

Cover rural H(tR) =

 1 for 0 ≤ tR ≤ 25

0 for tR >25
1 yellow calls

Time to ER H(tER) =

 1 for 0 ≤ tER ≤ 90

0 for tER >90
1 red and

yellow calls

To analyze the mitigating actions, one extra ambulance and one extra station have been

made available for the zones that are affected by the closing of the local ER, i.e. the zones

with the closed local ER as its closest ER. At first, the model is run with the existing ERs
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and current location and allocation to get a base case. Then, the proposed closed ER is

removed from the data and the model is run again to see how the objective value is changed.

After that, the model is run with one extra ambulance and one extra ambulance and station.

This is done to see how the mitigating actions work. The objective values for the different

performance measures and tests are shown in Table 19. The tests are named Base case,

X00, X10 and X11, and refer to the current situation, the situation without the ER, the

situation without ER and an extra ambulance, and the situation without the ER and an

extra ambulance and station, respectively. The optimality gap is defined as (best bound -

objective value) / objective value, and the objective value is the sum of the values of the

performance measures.

Table 19: Performance values and optimality gap for the tests

Survival Cover Time to ER Objective value Optimality gap

Base case 0.156 1.169 2.014 3.339 0.36%

X00 0.155 1.168 1.971 3.294 0.35%

X10 0.157 1.167 1.972 3.296 0.45%

X11 0.162 1.198 2.005 3.365 0.42%

The results in Table 19 show that there is little value in adding an additional ambulance

without any additional stations. This can be explained by the fact that there is a high

probability that there is at least one available ambulance at all stations, hence an additional

ambulance does not contribute significantly. With an extra ambulance and ambulance and

station (X11), the objective value related to the time to ER measure is marginally lower than

in the base case. The extra ambulance station and ambulance are not able to completely

mitigate the consequences of closing the ER. This is due to the longer distance to the regional

hospital than to the proposed closed ER. However, the objective values related to the other

performance measures also increase with the extra ambulance and station. For X11, the

values are higher for the response time based performance measures, survival and cover,

compared with the base case. In this manner, improved response time could be seen as a

compensation for longer time to ER.
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The results in Table 19 are for the entire Sør-Trøndelag. As the affected zones only account

for 13.7 % of the red and yellow calls in Sør-Trøndelag, the consequences of the closing do not

appear drastic for the county as a whole. However, for the affected area, the consequences

are significant. To see the effect for the affected area, the cumulative distribution of time to

ER and the cumulative distribution of the response time for each of the tests are calculated.

The cumulative time to ER is shown in Figure 14, while the cumulative response time is seen

in Figure 15. Note that there are some minor inconsistencies due to that the model did not

reach optimality. However, the main trends are correct.

Figure 14: Cumulative distribution of time to ER for the affected area

As seen from Figure 14, 23% of the calls in the base case are able to get to the ER in 10

minutes or less. 70% of the calls are within 60 minutes or less, and 86% are able to get to the

ER within 90 minutes. Closing the local ER significantly affects the cumulative distribution.

For X00, X10 and X11, none of the calls in the affected area are able to get to the ER within

30 minutes. For these instances, approximately 28% of the calls can get to the ER within

40 minutes. Within the 60 minutes threshold, the number of calls that can get to the ER is

approximately half for these tests compared to the base case. However, within 90 minutes

there are only 3 percentage points difference between the X11 and the base case. Without

an extra station, the difference is 12 percentage points for the 90 minutes limit.
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Figure 15: Cumulative distribution of response time for the affected area

As expected, the cumulative distribution of the response times in Figure 15 are similar for

the base case and the test without an additional station. This is natural as closing a local ER

has little connection to the response times of ambulances. By adding the additional station,

the expected number of calls that are reached within 25 minutes increases by 16 percentage

points. The number of calls that are reached within 5 minutes are increased by 9 percentage

points. This explains the increase in the cover and survival performance measure from Table

19.

For the affected area, the consequences of closing the local ER and adding an ambulance at a

new ambulance station is that the time to ER increases significantly while the response time

decreases significantly. To fully analyze the value of the proposed solution, there needs to be

a proper weighting between response time and time to ER. However, as there is a stronger

focus on treating patients on scene (Snooks et al., 2004), the solution of introducing extra

ambulances and stations as a mitigating action is interesting.
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9.2 Designated Non-urgent Transport Vehicles

Ambulances in Norway are used for almost every type of transport to and from hospital.

Ambulances are expensive vehicles, with specially trained staff that are specialist in han-

dling emergencies. However, for Sør-Trøndelag in the busiest period, 57% of the calls are

categorized as green calls that mainly include normal transport assignments. These may be

planned or unplanned, but they are not urgent, and most of them do not require high-tech

equipment or trained paramedics. Some patients require however that the transport vehicle

has room for beds.

To cut cost and utilize the resources effectively, a proposed solution is to transfer the green

calls from the ambulances to specialized transport vehicles. These vehicles may be adminis-

tered by the emergency medical communication central or a designated transport organiza-

tion. The main idea is that it is ineffective to use specially trained paramedics with expensive

EMS equipment for normal transport assignments. To effectively utilize resources, expensive

ambulances could be replaced by cost effective transport vehicles.

To analyze the benefit of introducing designated non-urgent transport vehicles, it is explored

how many ambulances that can be removed while still keeping the same total performance

level as before. All the green calls are removed from the dataset, as they are assumed to be

taken by the specialized transport vehicles. The analysis is carried out on the busiest period,

workdays from 08:00 to 16:00. The stations are locked to their current locations, and the

model allocates the ambulances at disposal.

The impact of removing ambulances on the objective value is presented in Figure 16. The

light blue line is the objective value of the current situation, while the dark blue line is the

objective value when all the green calls are removed. The green line is used as a reference

and is the objective value when all the green calls are present. As seen in Figure 16, five

ambulances can be removed while still keeping the same total expected performance level as

with the green calls.
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Figure 16: Results for removed ambulances and objective value

To see how the removal of ambulances affect the solutions, the number of stations used and

the average probability for having an available ambulance at a station is analyzed. Figure

17 shows the number of stations used and the average probablity for available ambulances

as a function of the number of removed ambulances. As seen from Figure 17, the average

probability for having an available ambulance at a station is generally high. This explains the

modest drop in objective value for 0 to 6 ambulances in Figure 16. The number of stations

used is also fairly stable. That shows that the ambulances are mainly removed from the

stations with several ambulances. The drop in number of stations in use from 0 to 1 removed

ambulance is due to the closing of a station that only covers 0.25% of the total demand as

primary station, and 2.3% of total demand as secondary station. Hence, closing this station

does not significantly affect the objective value, as seen from the small change in the objective

value from 0 to 1 removed ambulances in Figure 16.
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Figure 17: Results for removed ambulances, average probabilty for available ambulances

and stations in use

By removing 57% of the calls, 5 out of 24 ambulances can be be removed while still keeping

the same performance level. This seems a bit low, but can be explained by that each station

requires at least one ambulance to contribute to the performance measures. For the busi-

est period, 57% of the calls represent 22 calls each day. Hence, for designated non-urgent

transport vehicles to be an interesting option, the vehicles needs to be able to handle at least

22 calls each day and cost less than five ambulances. However, the analysis presented here

is just an indication of what is possible. To fully explore the potential of designated non-

urgent transport vehicles more research on the green calls as well as the specialized vehicles

is needed.
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To help EMS providers achieve the desired level of performance, operations researchers have

developed decision support tools for decades. In the recent years EMS has tracked more data

and the computational power have increased. This has increased the opportunities for apply-

ing the results of OR as decision support. In this report a new problem for locating ambulance

stations and allocating ambulances to the stations, referred to as the Maximum Expected

Performance Location Problem for Heterogeneous Regions (MEPLP-HR), is presented. The

problem applies multiple performance measures as well as station specific probabilities for

available ambulances. Compared to earlier problems, the MEPLP-HR is more realistic for

heterogeneous regions as the service time of ambulances depends on the area a station cov-

ers.

A mixed integer linear program is formulated to solve the problem. To calculate the prob-

ability for that there are any available ambulances at a station, the model applies queuing

theory together with the service rate and arrival rate of calls to a station. In contrast to re-

cent models, the probability for available ambulances is calculated within the model. Hence,

it is not necessary with iterative solution approaches to solve the model. To solve the model

effectively, the formulation is strengthened using valid inequalities and a reformulation of a

restriction.

The model is tested on data from the heterogeneous county of Sør-Trøndelag. Compared to

the current locations and allocation, the model is able to find a solution that has a higher

expected performance on each of the given performance measures. The model is also tested

for a range of ambulances and stations, as well as different weights for the performance

measures. A multi-period version of the model is formulated to explore the importance of

taking time varying demand and resources into account. However, the results show that only

using the busiest time periode is sufficient to find robust solutions for all time periods.

The purpose of operations research on EMS is to help EMS providers analyze problems

and make sound decision. This is done in this report by applying the model on two real

managerial cases. The first case analyzes the consequences and potential mitigating actions
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for closing down a local emergency room (ER). By closing the local ER, the travel time

to ER increases significantly for the zones close to the local ER. However, adding an extra

ambulance and ambulance station can to some degree mitigate the effect. The second case

concerns the benefit of transferring all green calls to designated non-urgent transport vehicles.

The analysis in this case shows that there is a potential to reduce the number of ambulances

by one fifth if designated non-urgent vehicles are introduced.

As future research, it would be useful to make an overview of different EMS decision support

tools and application areas. It could also be interesting to formalize what defines a high

performing EMS system. Then one could point out where OR has its greatest potential.

There is also a need for new performance measures in the models that are not solely based

on response time. To build on this, it could be interesting to find a monetary value on

the different levels of the performance. Then the decision makers could calculate if extra

investments to reduce e.g. response time are beneficial from cost-benefit point of view.

To develop the model further, it could be interesting to make the model more realistic by

incorporating the dependency between the stations or taking in different kinds of ambulances.

The available probability function can be developed more and the hypercube queuing model

can be validated further against real data. Finally, as the model does not reach optimality

for large instances, the formulation can be strengthened further or solution heuristics can be

developed.
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A Appendix - Summary of model formulation

The Model Formulation

Indices and sets

j ∈ J Possible locations for ambulance stations

i ∈ I Zones with a demand for EMS

q ∈ Q Ranking of stations

l ∈ L Performance measures of the EMS provider

m ∈M Breakpoints of the service rate discretization and linearization

n ∈ N Breakpoints of the service rate discretization and linearization

u ∈ U Breakpoints of the available probability discretization and linearization

v ∈ V Breakpoints of the available probability discretization and linearization

Parameters

Wl Weight of performance measure l

Dil Number of calls relevant for performance measure l and zone i

Hijl Performance value of zone i being covered by a station in zone j,

given performance measure l

A Number of available ambulances

S Number of available stations

λi Rate of calls from zone i

Rij Service time

Bm Aggregated service demand for breakpoint m

Cn Aggregated service time for breakpoint n

Su The service rate of breakpoint u

Rv The arrival rate of breakpoint v

Puvk Probability of busy station, given breakpoint u, v and k ambulances
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A APPENDIX - SUMMARY OF MODEL FORMULATION

Variables

zj 1 if a station is located in zone j, 0 otherwise

xj Number of ambulances allocated to a station in zone j

y
(q)
ij Proportion of the demand in zone i covered by a station in zone j with rank q

ρij 1 if station j is the primary station for zone i, 0 otherwise

θj Arrival rate of calls to the station in zone j

µj Service rate of ambulances at the station in zone j

δjk 1 if there are more than k ambulances at station in zone j, 0 otherwise

νmj SOS2 set for m associated with the breakpoint variable

ωnj SOS2 set for u associated with the breakpoint variable

ζmnj Breakpoint variable associated with the service rate linearization

βvj SOS2 set for v associated with the breakpoint variable

φuj SOS2 set for u associated with the breakpoint variable

αuvj Breakpoint variable associated with the available probability linearization

The objective function

Max
∑
l∈L

Wl

∑
i∈I

∑
j∈J

∑
q∈Q

DilHijly
(q)
ij (77)

Deployment constraints

∑
j∈J

xj ≤ A (78)

∑
j∈J

zj ≤ S (79)

xj ≤ Azj j ∈ J (80)
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A APPENDIX - SUMMARY OF MODEL FORMULATION

Covering constraints

∑
j∈J

∑
q∈Q

y
(q)
ij = 1 i ∈ I (81)

ρij ≥ y
(1)
ij i ∈ I, j ∈ J (82)

1− ρij ≥ y
(2)
ij i ∈ I, j ∈ J (83)∑

j∈J

ρij = 1 i ∈ I (84)

∑
j∈J

y
(1)
ij ≥

∑
j∈J

y
(2)
ij i ∈ I (85)

Arrival rate constraints

θj =
∑
i∈I

(λiρij + λiy
(2)
ij ) j ∈ J (86)

Service rate constraints

∑
m∈M

Bmνmj =
∑
i∈I

∑
q∈Q

λiy
(q)
ij j ∈ J (87)

∑
n∈N

Cnωnj =
∑
i∈I

∑
q∈Q

λiRijy
(q)
ij j ∈ J (88)

∑
m∈M

ζmnj = ωnj j ∈ J, n ∈ N (89)

∑
n∈N

ζmnj = νmj j ∈ J,m ∈M (90)

∑
m∈M

∑
n∈N

ζmnj = 1 j ∈ J (91)

µj =
∑
m∈M

∑
n∈N

Bm

Cn
ζmnj j ∈ J (92)

(93)

76



A APPENDIX - SUMMARY OF MODEL FORMULATION

Available probability constraints

∑
v∈V

Rvβvj = θj j ∈ J (94)

∑
u∈U

Suφuj = µj j ∈ J (95)

∑
u∈U

αuvj = βvj j ∈ J, v ∈ V (96)

∑
v∈V

αuvj = φuj j ∈ J, u ∈ U (97)

∑
u∈U

∑
v∈V

αuvj = 1 j ∈ J (98)

y
(q)
ij ≤ 1−

∑
u∈U

∑
v∈V

Puvkαuvj + δjk j ∈ J, i ∈ I, k = 0, ..., A, q ∈ Q (99)

A∑
k=0

δjk ≤ xj j ∈ J (100)

Convexity constraints, binary constraints and SOS2 sets

zj ∈ {0, 1} j ∈ J (101)

xj ∈ {0, 1, 2, ..., A} j ∈ J (102)

y
(q)
ij = [0, 1] i ∈ I, j ∈ J, q ∈ Q (103)

ρij ∈ {0, 1} i ∈ I, k ∈ K (104)

θj ≥ 0 j ∈ J (105)

µj ≥ 0 j ∈ J (106)

δjk ∈ {0, 1} j ∈ J, k = 0, ..., A (107)

{β1j, ..., β|V |j} is SOS2 j ∈ J (108)

{φ1j, ..., φ|U |j} is SOS2 j ∈ J (109)

{ν1j, ..., ν|M |j} is SOS2 j ∈ J (110)

{ω1j, ..., ω|N |j} is SOS2 j ∈ J (111)

ζmnj ≥ 0 m ∈M,n ∈ N, j ∈ J (112)

αuvj ≥ 0 u ∈ U, v ∈ V, j ∈ J (113)
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B Appendix - Multi-period model formulation

The Model Formulation

Indices and sets

j ∈ J Possible locations for ambulance stations

i ∈ I Zones with a demand for EMS

q ∈ Q Ranking of stations

l ∈ L Performance measures of the EMS provider

m ∈M Breakpoints of the service rate discretization and linearization

n ∈ N Breakpoints of the service rate discretization and linearization

u ∈ U Breakpoints of the available probability discretization and linearization

v ∈ V Breakpoints of the available probability discretization and linearization

t ∈ T Time periods

Parameters

Wl Weight of performance measure l

Dilt Number of calls relevant for performance measure l and zone i in period t

Hijl Performance value of zone i being covered by a station in zone j,

given performance measure l

At Number of available ambulances in period t

S Number of available stations

λit Rate of calls from zone i in period t

Rij Service time

Bm Aggregated service demand for breakpoint m

Cn Aggregated service time for breakpoint n

Su The service rate of breakpoint u

Rv The arrival rate of breakpoint v

Puvk Probability of busy station, given breakpoint u, v and k ambulances
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B APPENDIX - MULTI-PERIOD MODEL FORMULATION

Variables

zj 1 if a station is located in zone j, 0 otherwise

xjt Number of ambulances allocated to a station in zone j in period t

y
(q)
ijt Proportion of the demand in zone i covered by a station in zone j with rank q in period t

ρijt 1 if station j is the primary station for zone i in period t, 0 otherwise

θjt Arrival rate of calls to the station in zone j in period t

µjt Service rate of ambulances at the station in zone j in period t

δjkt 1 if there are more than k ambulances at station in zone j in period t, 0 otherwise

νmjt SOS2 set for m associated with the breakpoint variable

ωnjt SOS2 set for u associated with the breakpoint variable

ζmnjt Breakpoint variable associated with the service rate linearization

βvjt SOS2 set for v associated with the breakpoint variable

φujt SOS2 set for u associated with the breakpoint variable

αuvjt Breakpoint variable associated with the available probability linearization

The objective function

Max
∑
l∈L

Wl

∑
i∈I

∑
j∈J

∑
q∈Q

∑
t∈T

DiltHijly
(q)
ijt (114)

Deployment constraints

∑
j∈J

xjt ≤ AT t ∈ T (115)

∑
j∈J

zj ≤ S (116)

xjt ≤ Atzj j ∈ J, t ∈ T (117)

79



B APPENDIX - MULTI-PERIOD MODEL FORMULATION

Covering constraints

∑
j∈J

∑
q∈Q

y
(q)
ijt = 1 i ∈ I, t ∈ T (118)

ρijt ≥ y
(1)
ijt i ∈ I, j ∈ J, t ∈ T (119)

1− ρijt ≥ y
(2)
ijt i ∈ I, j ∈ J, t ∈ T (120)∑

j∈J

ρijt = 1 i ∈ I, t ∈ T (121)

∑
j∈J

y
(1)
ijt ≥

∑
j∈J

y
(2)
ijt i ∈ I, t ∈ T (122)

Arrival rate constraints

θjt =
∑
i∈I

(λitρijt + λity
(2)
ijt ) j ∈ J, t ∈ T (123)

Service rate constraints

∑
m∈M

Bmνmjt =
∑
i∈I

∑
q∈Q

λiy
(q)
ijt j ∈ J, t ∈ T (124)

∑
n∈N

Cnωnjt =
∑
i∈I

∑
q∈Q

λiRijy
(q)
ijt j ∈ J, t ∈ T (125)

∑
m∈M

ζmnjt = ωnjt j ∈ J, n ∈ N, t ∈ T (126)

∑
n∈N

ζmnjt = νmjt j ∈ J,m ∈M, t ∈ T (127)

∑
m∈M

∑
n∈N

ζmnjt = 1 j ∈ J, t ∈ T (128)

µjt =
∑
m∈M

∑
n∈N

Bm

Cn
ζmnjt j ∈ J, t ∈ T (129)
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B APPENDIX - MULTI-PERIOD MODEL FORMULATION

Available probability constraints

∑
v∈V

Rvβvjt = θjt j ∈ J, t ∈ T (130)

∑
u∈U

Suφujt = µjt j ∈ J, t ∈ T (131)

∑
u∈U

αuvjt = βvjt j ∈ J, v ∈ V, t ∈ T (132)

∑
v∈V

αuvjt = φujt j ∈ J, u ∈ U, t ∈ T (133)

∑
u∈U

∑
v∈V

αuvjt = 1 j ∈ J, t ∈ T (134)

y
(q)
ijt ≤ 1−

∑
u∈U

∑
v∈V

Puvkαuvjt + δjkt j ∈ J, i ∈ I, k = 0, ..., A, q ∈ Q, t ∈ T (135)

A∑
k=0

δjkt ≤ xjt j ∈ J, t ∈ T (136)

Convexity constraints, binary constraints and SOS2 sets

zj ∈ {0, 1} j ∈ J (137)

xjt ∈ {0, 1, 2, ..., A} j ∈ J, t ∈ T (138)

y
(q)
ijt = [0, 1] i ∈ I, j ∈ J, q ∈ Q, t ∈ T (139)

ρijt ∈ {0, 1} i ∈ I, j ∈ J, t ∈ T (140)

θjt ≥ 0 j ∈ J, t ∈ T (141)

µjt ≥ 0 j ∈ J, t ∈ T (142)

δjkt ∈ {0, 1} j ∈ J, k = 0, ..., A, t ∈ T (143)

{β1jt, ..., β|V |jt} is SOS2 j ∈ J, t ∈ T (144)

{φ1jt, ..., φ|U |jt} is SOS2 j ∈ J, t ∈ T (145)

{ν1jt, ..., ν|M |jt} is SOS2 j ∈ J, t ∈ T (146)

{ω1jt, ..., ω|N |jt} is SOS2 j ∈ J, t ∈ T (147)

ζmnjt ≥ 0 m ∈M,n ∈ N, j ∈ J, t ∈ T (148)

αuvjt ≥ 0 u ∈ U, v ∈ V, j ∈ J, t ∈ T (149)
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C Appendix - Demand from the zones

Figure 18: Total demand of red, yellow and green calls from each zone in each period
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C APPENDIX - DEMAND FROM THE ZONES

Figure 19: Total demand of red, yellow and green calls from each zone in each period
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C APPENDIX - DEMAND FROM THE ZONES

Figure 20: Total demand of red, yellow and green calls from each zone in each period
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C APPENDIX - DEMAND FROM THE ZONES

Figure 21: Total demand of red, yellow and green calls from each zone in each period

85



D Appendix - Overview of possible station location

Figure 22: Overview of possible station locations
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E Appendix - Python code to get traveling times from

Google Maps

import urllib

# Input: All coordinates for the zones

steder = ["62.49617,11.22355","62.303 ,11.7195",... ]

for i in range(v,x):

for j in range(y,z):

saddr = steder[i]

daddr = steder[j]

s = "https://maps.google.com/maps?saddr=" + saddr + "daddr=" + daddr

html = urllib.urlopen(s).read()

try:

# get the traveling time

idx = html.index("<div class= "altroute")

rest = html[idx - 100 : idx + 100]

rest = rest[rest.index("<span>") :].split(",")

km = rest[0]

tid = rest[1]

#print "Fra", saddr, "til", daddr,

print tid[tid.index("<span>") + 6 : tid.index("</span>")]

except:

# If not found

print "Fant ikke", saddr, "til", daddr
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F Appendix - Number of calls for hours and days in

2013

Figure 23: Number of calls for the different hours and days in 2013
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G Appendix - Pseudo code for the Simulation

When checking what the next event is:

If (time of next available ambulance < time of next call) then

Event = available ambulance

Answering ambulance(staion number y, ambulance number z) = available

Else

Event = new call

Call from zone = random(zone dependent probability for a call)

If (1. Ranked station have an available ambulance = true) then

Outcome of call = call in zone x is answered by station y

Answering ambulance(station number y, ambulance number z) = taken

Time the answering ambulance is finished = time now + zone specific service time

+ time at scene + time to hospital * random(going to hospital 1/0)

Time of next call = time now + random(time to next call from the exponential

distribution)

Go to next Event

Else if (2. Ranked station have an available ambulance = true) then

. . .

Else if (3. Ranked station have an available ambulance = true) then

. . .

Else if (4. Ranked station have an available ambulance = true) then

. . .

Else if (5. Ranked station have an available ambulance = true) then

. . .

Else

Outcome of call = Missed call

Go to next Event
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H Appendix - Geographical location and allocation for

tests in Subsection 8.5.1

Geographical location and allocation for tests in 8.5.1. In the figures the intensity of the

color indicates the demand for EMS, the triangles indicates the location of stations and the

numbers refers to the number of ambulances allocated to the station.

Figure 24: Location and allocation when only considering the cover measure
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H APPENDIX - GEOGRAPHICAL LOCATION AND ALLOCATION FOR TESTS IN
SUBSECTION 8.5.1

Figure 25: Location and allocation when only considering the survival measure

Figure 26: Location and allocation when considering survival and cover
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Abstract

This paper presents a new problem for the location of ambulance stations and

allocation of ambulances in heterogeneous regions, referred to as the Maximum Ex-

pected Performance Location Problem for Heterogeneous Regions (MEPLP-HR). A

mixed integer linear model is proposed to solve the problem. The model calculates

the service rate and arrival rate of calls for each individual station and then utilizes

queuing theory to find the probability of having an available ambulance at a sta-

tion. Furthermore, the paper presents how the model can be solved effectively and

the validity of a key operational simplification. The model is tested on a combined

urban and rural area in Norway with multiple performance measures. Compared

with the current solution, the best solution from the model has a higher expected

performance on each of the performance measures used.

Keywords: Ambulance station location, Ambulance allocation, Emergency response plan-

ning

1 Introduction

The general challenge for emergency medical services (EMS) is to provide the best possible

service to the public. To achieve high quality EMS, planning is of vital importance.
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EMS has been of interest for the Operational Research (OR) society since the middle

of the 1960‘s. Since then there has been published numerous articles on the location of

ambulance stations, allocation of ambulances, dispatching of vehicles, re-deployment of

ambulances and evaluation methods.

OR on EMS has focused on aspects of strategic, tactical and operational problems. The

main strategic problem has been the locations of ambulance stations and ambulances.

Tactical problems are sizing the fleet of ambulances and the allocation of ambulances to

the ambulance stations. Among the operational problems that have been investigated are

which ambulance(s) should be dispatched to a call and the reallocation of ambulances to

obtain the highest possible preparedness in a region. The decisions made about strategic

problems affect the solution space for both tactical and operational decisions. Hence, to

construct robust solutions for strategic location problems, it is important to incorporate

tactical and operational aspects. These aspects include the allocation of ambulances to

stations, which ambulances that will be dispatched to specific calls and the probability of

having available ambulances at a station. The probability for available ambulances at a

station depends on the rate of calls to the station, arrival rate, the number of ambulances

allocated to the station and the time an ambulance is occupied with a call, referred to

as the service time. The number of expected calls from an area is also referred to as

the demand in the area. The calls have different urgency levels, evaluated by the EMS

provider as red, yellow or green, where red is most urgent.

The recent developments of location and allocation models have focused on what should be

optimized to obtain the desired performance. This is referred to as performance measures

in this paper. The earliest models maximized the number of people covered within a

given response time threshold. Response time is defined as the time between the EMS

communication central receives a call until an ambulance arrives at the origin of the call.

The models presented in Erkut et al. (2008) changed focus from the cover measures and

maximized the number of survivors from cardiac arrest. Knight et al. (2012) built on the

research of Erkut et al. (2008) and combined the survival measure with cover measures

to demonstrate the benefit of using heterogeneous performance measures. However, the

problem in Knight et al. (2012) considered homogeneous regions where the service time

was assumed constant. For heterogeneous regions, i.e. regions with urban and rural areas,

the assumption of homogeneous service time is incorrect.
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The case area in this paper, Sør-Trøndelag County in Norway, is characterized by a

scattered population with two thirds of the population living in urban areas and one

third in rural areas. This leads to significantly different workloads and service time, as

illustrated in Figure 1. Figure 1 shows the workload in urban and rural areas in Sør-

Trøndelag together with the service time for the different ambulances. The service time

for ambulances at a station depends on the distance to the zones the station covers and

the distance to the nearest hospital, while the arrival rate solely depends on the demand

in the zones it covers. The ratio between the arrival rate of calls and the service time

results in the workload for the respective station. As shown in Figure 1, the workload

is significantly higher in the urban areas, while the service time is higher in the rural

areas.

Figure 1: Workload and service time for different ambulances in urban and rural areas

In this paper we present a new problem for the location of ambulance stations and allo-

cation ambulances to the stations, and we propose a mixed integer linear model to solve

the problem. The proposed model applies both survival measures and traditional cover

measures. This paper contributes to the literature in the following ways:

• Formalizing a new ambulance station location and ambulance allocation problem

for heterogeneous regions. The problem is more realistic for heterogeneous regions
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than earlier problems as the service time depends on the area the station covers.

• Proposing a mixed integer linear program (MIP) model for the problem that can be

solved using commercial software and does have theoretical convergence.

• Presenting a case study that demonstrates the benefits and key features of the

model, as well as validating a key operational simplification.

The rest of the paper is outlined as follows: In Section 2, research related to ambulance

station location and ambulance allocation is reviewed. The problem is described in Section

3, and a mathematical formulation with strengthening constraints is given in Section 4.

Section 5 contains the applied data and Section 6 presents the computational study.

Finally, Section 7 concludes on the research and proposes further research.

2 Related Research

There has been published numerous articles on varieties of the location and allocation

problems for ambulances. Brotcorne et al. (2003) presented a literature review on strategic

and operational models and problems for ambulances over the last 30 years. In this section

the literature considered most relevant for the MEPLP-HR is reviewed.

The first models located ambulances and focused on maximizing covered demand within

given response times (Church and ReVelle, 1974), minimizing average response time

(Hakimi, 1965), (ReVelle and Swain, 1970), or minimizing the number of ambulances

needed to cover all demand within a given threshold (Toregas et al., 1971). Models that

minimize the average response time is also known as p-median problems. In all these

models only one ambulance can be located at a specific zone.

These covering and p-median problems considered the static situation. Consequently,

if an ambulance is dispatched, the area initially covered by this ambulance will be left

without coverage. As a response to this, later models presented by Schilling et al. (1979),

Daskin and Stern (1981) and Hogan and ReVelle (1986) maximized demand covered by

two or more ambulances. These models were able to give more robust coverage.

4



With the goal to make a more realistic model, Daskin (1983) presented the maximum

expected covering location problem (MEXCLP). This problem focuses on the expected

outcome instead of the deterministic outcome. The MEXCLP takes into account the

operational situation where ambulances can be busy. In this model the ambulances are

independent and all ambulances have the same predetermined probability for being busy.

In the MEXCLP it is possible to allocate more than one ambulance to each zone.

Recently, the research has changed focus to what should be the objective in location prob-

lems. The change was based on the 0/1 nature of covering problems. Outside the given

response time threshold the covering objective gives no value, and inside the threshold it

does not make any difference how fast the ambulance responds to the call. For a thresh-

old of 12 minutes, a response time of 4 minutes and 11 minutes give the same objective

value. The response time is crucial for certain patient categories and a smoother objective

is therefore needed. Erkut et al. (2008) introduced a problem that maximizes survival

from cardiac arrest with respect to an exponential survival function with response time

as the only parameter. The survival function was obtained from Maio et al. (2003) and

is shown in Figure 2. This survival function was combined with the MEXCLP, result-

ing in the maximum expected survival location problem (MEXSLP). Erkut et al. (2008)

showed that the MEXSLP outperformed the former covering models in saving lives from

cardiac arrest. The survival function gives more motivation to locate the ambulance sta-

tions closer to zones with high demand for EMS as the possibility for survival decreases

exponentially with increasing response time, as seen in Figure 2.

Knight et al. (2012) developed the model of Erkut et al. (2008) further and presented

the maximal expected survival location model for heterogeneous patients (MESLMHP).

The MESLMHP maximizes the expected number of survivors from cardiac arrest, as

well as the number of calls responded to within three different cover thresholds. Knight

et al. (2012) showed the benefits of using multiple performance measures compared with

a single performance measure. In the MESLMHP, decision makers give relative weights

to the different performance measure in compliance with their overall objective.

The formulation of the MESLMHP is nonlinear and requires the probability for busy

ambulances as input. As Hogan and ReVelle (1986) stated, predefined busy probabilities

are difficult and unrealistic to give. This problem is solved by Knight et al. (2012) with an
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Figure 2: Survival function for cardiac arrest (Maio et al., 2003), with response time as

the only parameter

iterative version of MESLMHP, referred to as MESLMHP-I, which calculates and updates

the busy probabilities in each iteration. This solution method requires a specialized

iterative model. However, calculating and using the exact busy probabilities was found

not to converge due to the cyclic nature of demand calculated as a function of busy

probabilities. Because of this, the authors decided to only run the model for a fixed

number of iterations.

To find the correct expected busy probabilities for a station, the location and allocation

can be evaluated using simulation and stochastic models. Simulation is applied by Davis

(1981) and Goldberg et al. (1990) among others, while the stochastic hypercube queuing

model (HQM) was introduced by Larson (1974). The aim of such evaluation models is

to compute the probability that an ambulance at location j responds to a call from zone

i (Ingolfsson, 2013). Both simulation models and stochastic models have their uses, but

as argued by Ingolfsson (2013), a primary advantage of stochastic models is that they

can be solved analytically. In the stochastic HQM, ambulances are modeled as servers

in a queuing system, and the system can then be described as a continuous time Markov

chain. This allows the model to be solved by applying well known techniques. Validation

studies of certain hypercube models have shown that they are accurate with less than 5%

deviation compared with the actual system (Goldberg, 2004).
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The busy probabilities from the HQM have been used as a part of iterative solution

algorithms for several ambulance location problems. Saydam and Aytuğ (2003) incorpo-

rate the hypercube methodology into a genetic algorithm for solving the MEXCLP. The

probabilities for available ambulances at the respective stations were calculated in each

iteration and used to find new candidate solutions. A version of this solution approach

have also been used by Erkut et al. (2008), Geroliminis et al. (2011) and Iannoni et al.

(2009), among others. However, these iterative solution algorithms do not guarantee

convergence.

3 Problem Description

The problem solved in this paper is a new ambulance station location and ambulance

allocation problem. The problem is referred to as the Maximum Expected Performance

Location Problem for Heterogeneous Regions (MEPLP-HR). With a limited number of

ambulance stations, S, and ambulances, A, the objective is to give the population the best

possible EMS according to a set of chosen performance measures, L. The performance

measures for this problem are the probability of survival from cardiac arrest and a cover

measure based on response time. The problem consists of a set of zones I, with given

demand for EMS, and a set of zones where ambulance stations can be located, J . A

demand zone has a primary station and at least one secondary station, where the rankings

belong to the set Q. A call from a demand zone will receive an ambulance from its primary

station if there are any available ambulances at this station. If not, it will receive an

ambulance from its secondary station. The probability for available ambulances depends

on the arrival rate of calls to a station, the service time of the ambulances and the number

of ambulances allocated to the station. The arrival rate depends on the demand in the

zones the station covers and the service time depends on the travelling distances in the

area the station covers and the distance to the nearest hospital. This problem is more

realistic for heterogeneous regions than earlier problems as the service time depends on

the area the station covers and is not constant.
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4 Mathematical model

There has been a significant development in operations research models for EMS since

they first were introduced in the 1960- and 70’s. This development can among other

factors be seen in relation to the increase in computing power, as well as the need for

more advanced models. This section presents a model for the MEPLP-HR, as well as

strengthening constraints.

4.1 Model Formulation

The proposed model for the MEPLP-HR is formulated as a mixed integer linear pro-

gram. The formulation is divided into several subsections for readability. These include

deployment-, covering-, arrival rate-, service rate- and available probability constraints.

The deployment constraints consider the requirements to the number of stations and am-

bulances, while the covering constraints focus on covering the demand for EMS in the

different zones. The arrival rate constraints handle the arrival rate of calls to a station,

and the service rate constraints handle the service time of calls at each station. The

available probability constraints combine the arrival rate and service rate to calculate

the probability of having an available ambulance at a station. In addition to these five

subsections, 4.1.1 presents the variables and sets, 4.1.7 describes the objective function.

The complete model formulation is found in the appendix. In 4.2 the formulation is

strengthened.

4.1.1 Overview of Main Variables and Sets

The main decision variables of the location and allocation problem are where to locate

the stations and how many ambulances to allocate to each station. If a station is located

in zone j ∈ J the binary station location variable zj is assigned value 1. For a station

located in zone j, the integer variable xj denotes the number of ambulances allocated to

the station.

The variables y(q)ij denote the proportion of the demand from zone i that is covered by

8



an ambulance allocated to a station in zone j, given that station in zone j is the qth

ranked station for zone i. Q is the set of rankings, which in this model includes primary

and secondary station(s). Hence, y(1)4,5 = 0.7 states that a station in zone 5 is the primary

station of zone 4 and covers 70% of the demand in that zone. All zones have one primary

station and at least one secondary station. The binary variable ρij is assigned value 1 if

station in zone j is the primary station of zone i. The arrival rate of calls to a station in

zone j is given by the variable θj, while the service rate of an ambulance at the station is

given by the variable µj.

4.1.2 Deployment Constraints

The deployment constraints make sure that no more than the available number of stations

and ambulances are located and allocated.

∑
j∈J

xj ≤ A (1)

∑
j∈J

zj ≤ S (2)

xj ≤ Azj j ∈ J (3)

xj ∈ Z≥0 j ∈ J (4)

zj ∈ {0, 1} j ∈ J (5)

Constraints (1) and (2) make sure that no more than the maximum number of available

stations and ambulances are deployed. The logical restriction that an ambulance cannot

be allocated to a zone without a station is handled by constraints (3).

4.1.3 Covering Constraints

The covering constraints keep track of which zones the different stations cover, as well as

the primary and secondary stations for each zone.

9



∑
j∈J

∑
q∈Q

y
(q)
ij = 1 i ∈ I (6)

ρij ≥ y
(1)
ij i ∈ I, j ∈ J (7)

1− ρij ≥ y
(2)
ij i ∈ I, j ∈ J (8)∑

j∈J

ρij = 1 i ∈ I (9)

∑
j∈J

y
(1)
ij ≥

∑
j∈J

y
(2)
ij i ∈ I (10)

y
(q)
ij ≥ 0 i ∈ I, j ∈ J, q ∈ Q (11)

ρij ∈ {0, 1} i ∈ I, j ∈ J (12)

All calls from each zone have to be covered by a station. This is taken care of in constraints

(6). For each zone there is one primary station. The secondary station(s) cannot be the

same as the primary station. These properties are handled in constraints (7) to (9). In

addition, the primary station has to receive a higher proportion of calls than the secondary

station(s). This is ensured by constraints (10).

4.1.4 Arrival Rate Constraints

A station receives all calls from a zone that has the station as primary station, as well

as the proportion of calls it covers from a zone that has it as secondary station. This is

given by constraints (13). λi is the rate of calls associated with zone i.

θj =
∑
i∈I

(λiρij + λiy
(2)
ij ) j ∈ J (13)

4.1.5 Service Rate Constraints

The service time depends on the distance to the nearest hospital and the distance between

the station and the origin of the call. The inverse of the service time is the service rate,

defined as how many calls can be done per hour. The average service rate µj of a station

10



is given by equation (14). Rij is the average time it takes for an ambulance at a station

in zone j to service calls from zone i.

µj =

∑
i∈I

∑
q∈Q λiy

(q)
ij∑

i∈I
∑

q∈Q λiRijy
(q)
ij

j ∈ J (14)

This expression is nonlinear and has been linearized through constraints (15)-(20). The

numerator and denominator are discretized using Special Ordered Sets of type 2 (SOS2)

(Beale and Tomlin, 1970). These discrete values are combined to µj, as shown below.

∑
m∈M

Bmνmj =
∑
i∈I

∑
q∈Q

λiy
(q)
ij j ∈ J (15)

∑
n∈N

Cnωnj =
∑
i∈I

∑
q∈Q

λiRijy
(q)
ij j ∈ J (16)

∑
m∈M

ζmnj = ωnj j ∈ J, n ∈ N (17)

∑
n∈N

ζmnj = νmj j ∈ J,m ∈M (18)

∑
m∈M

∑
n∈N

ζmnj = 1 j ∈ J (19)

µj =
∑
m∈M

∑
n∈N

Bm

Cn

ζmnj j ∈ J (20)

{ν1j, ..., ν|M |j} is SOS2 j ∈ J (21)

{ω1j, ..., ω|N |j} is SOS2 j ∈ J (22)

ζmnj ≥ 0 j ∈ J,m ∈M,n ∈ N (23)

The variables νmj are used to discretize the numerator (15), while ωnj are used to dis-

cretize the denominator (16). Bm and Cn are the respective values of the numerator

and denominator of the discrete points m ∈ M and n ∈ N . νmj and ωnj are variables

in SOS2 of M and N . At most two neighboring points in a SOS2 set can be positive.

Hence, the two positive variables νm′j and νm′+1j in M give the total demand served,

Bm′νm′j + Bm′+1νm′+1j, for a station located in zone j. The same logic applies the set

of N where the two positive variables ωn′j and ωn′+1j give the total time spent on calls,

11



Cn′ωn′j + Cn′+1ωn′+1j, for a station located in zone j. The discrete points of the numer-

ator and denominator are combined into one set of variables, ζmnj, through constraints

(17)-(19). The variables ζmnj then contain information about the value of both the total

demand and the total time spent on calls. Constraints (20) connect ζmnj to the original

variables.

4.1.6 Available Probability Constraints

The proportion of calls covered has to be less than or equal to the long time probability

that there is an ambulance available at a station. The long time probability that there is

an available ambulance at a station depends on the arrival rate of calls to the station, the

service rate of the ambulances at the station, as well as the number of ambulances at the

station. This is given by equation (24), where the function f is the long time probability

that there is an ambulance available at a station.

y
(q)
ij ≤ f(θj, µj, xj) i ∈ I, j ∈ J, q ∈ Q (24)

The expression f(θj, µj, xj) is nonlinear and based on the Poisson process of the hyper-

cube queuing model. The arrival rate and service rate are discretized using SOS2. The

probability of having an available ambulance at a station is then found by using precal-

culated probabilities for the discrete values together with the number of ambulances on

the station. This is modeled by constraints (25)-(31).

12



∑
v∈V

Rvβvj = θj j ∈ J (25)

∑
u∈U

Suφuj = µj j ∈ J (26)

∑
u∈U

αuvj = βvj j ∈ J, v ∈ V (27)

∑
v∈V

αuvj = φuj j ∈ J, u ∈ U (28)

∑
u∈U

∑
v∈V

αuvj = 1 j ∈ J (29)

y
(q)
ij ≤ 1−

∑
u∈U

∑
v∈V

Puvkαuvj + δjk

i ∈ I, j ∈ J, k = 0, ..., A, q ∈ Q (30)
A∑

k=0

δjk ≤ xj j ∈ J (31)

{β1j, ..., β|V |j} is SOS2 j ∈ J (32)

{φ1j, ..., φ|U |j} is SOS2 j ∈ J (33)

αuvj ≥ 0 j ∈ J, u ∈ U, v ∈ V (34)

δjk ∈ {0, 1} j ∈ J, k = 0, ..., A (35)

Constraints (25)-(29) are discretization constraints similar to the service rate discretiza-

tion (15)-(19). βvj and φuj are variables in SOS2 with regards to V and U , where the

variables in the set V constitute the arrival rate and the variables in the set U constitute

the service rate. The variables αuvj are used to combine the SOS2 sets into one vari-

able. The parameters Rv and Su connects the discretization variables with the original

variables.

Constraints (30) ensure that y(q)ij is less than or equal to the long time probability that

there is at least one ambulance available at the station. δjk are binary variables equal

to 1 if there are more than k ambulances allocated to station in zone j, and Puvk is

the probability that there is no ambulances available at a station given an arrival rate

associated with v, service rate associated with u, and k ambulances allocated to the

station. Puvk is visualized with P2vk and Pv2k in Figure 3 and 4 for k = 1− 5. As Puvk is

strictly decreasing with k, the 1−
∑

u∈U
∑

v∈V Puvkαuvj with the lowest value of k will be

13



the active constraint for the station in zone j unless there are more than k ambulances

there. If there are more than k ambulances, δjk will equal 1 and make the constraint

inactive.

Figure 3: Arrival rate, with service rate fixed to 2

Figure 4: Service rate, with arrival rate fixed to 2

The relationship between δjk and the number of ambulances allocated to station in zone j

is described by constraints (31). As 1− Puvkαuvj is more restrictive than 1− Puv,k+1αuvj,

δj,k+1 is always less than or equal to δjk. Note that Puv0 is 1 for all values of u, v. Logically,

a station without any ambulances cannot cover any zones.
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4.1.7 Objective function

The objective function (36) maximizes the total value of the location of stations and

allocation of ambulances, given the performance measures of the EMS provider.

Max
∑
l∈L

Wl

∑
i∈I

∑
j∈J

∑
q∈Q

DilHijly
(q)
ij (36)

There is a certain performance value per call, Hijl, of zone i being covered by the station

in zone j with regards to performance measure l. The parameters Dil denote the number

of calls that is relevant for performance measure l in zone i. Each performance measure

is given a certain weight, Wl, that represents the relative importance of the performance

measure for the EMS provider. The objective function calculates the total performance of

the location and allocation by multiplying these parameters with the respective proportion

of calls being covered by the different stations and then summing over all performance

measures, zones, stations and rankings.

4.2 Strengthening the formulation

The model formulation can be tightened by reformulating a restriction and adding valid

inequalities. In this subsection one reformulation and five sets of valid inequalities are

identified, while in Subsection 6.1.1, the effectiveness of the inequalities and the reformu-

lation is explored.

The reformulation is to change (30) to (37). As only one y(q)ij can be positive for a pair

i, j, this is valid. The number of rows in the reformulated constraints (37) is only half of

the number of rows in the original constraints (30).

∑
q∈Q

y
(q)
ij ≤ 1−

∑
u∈U

∑
v∈V

Puvkαuvj + δjk

i ∈ I, j ∈ J, k = 0, ..., A (37)
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The first set of valid inequalities is to not allow zones where there are no stations to cover

zones with a demand for EMS. This is formulated by constraints (38).

∑
q∈Q

y
(q)
ij ≤ zj i ∈ I, j ∈ J (38)

The second and third sets of valid inequalities are to limit the service and arrival rate of a

station. Constraints (39) force the service rate of ambulances in a zone to 0 if no station

is located there, and (40) do the same for the arrival rate of calls to the zone. µ̄ and θ̄

are upper bounds on the service rate and arrival rate, respectively.

µj ≤ µ̄zj j ∈ J (39)

θj ≤ θ̄zj j ∈ J (40)

The fourth set of valid inequalities are similar to (38), and restrict a zone to be the primary

station for zones with a demand if there are no stations in the zone. The valid inequality

is formulated as (41).

ρij ≤ zj i ∈ I, j ∈ J (41)

The last set of valid inequalities is to force the δjk to 0 if there is no station in zone j.

This is formulated in (42), where A is the maximum number of ambulances that can be

allocated to a station.

A∑
k=0

δjk ≤ Azj j ∈ J (42)
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5 Data

The basis for the computational study is data from the Emergency Medical Communica-

tion Central (AMK) from the county of Sør-Trøndelag in Norway from 2010-2013. The

dataset contains the time, date, location and severity (red, yellow, green) of each call.

The analyses were performed on the busiest shift of the week: workdays from 08:00 to

16:00. The travel times between the nodes were found using a tool developed in Python

that gather the travel times between each node pair from Google Maps. The average

service times Rij are calculated by using the travel times between the zones, stations

and hospitals, as well as adding a constant that represents the time on the scene. For

Sør-Trøndelag, 43% of all calls end at a hospital, and the average time spent on the scene

of a call is 16 minutes. Hence, Rij can be formulated as equation (43), where Tji is the

travel time from zone j to i, Tih is the travel time from zone i to the nearest hospital, and

Thj is the travel time from the hospital to zone j.

Rij = Tji + 16 + 0.43(Tih + Thj) + 0.57Tij (43)

The performance measures used are heterogeneous, as they are demonstrated to be effec-

tive (Knight et al., 2012). For the time critical red calls, a survival function from Maio

et al. (2003) for cardiac arrest is used. The survival function obtained from Maio et al.

(2003) is one of many functions that can be used, however, the exponential slope of the

curve is the most important feature, not the constants (Erkut et al., 2008). For the yellow

calls, a traditional cover measure of 12 minutes for urban areas and 25 minutes for rural

areas are used. The reason for this is that for yellow calls, it is sufficient that the ambu-

lance arrives within the given thresholds. There are no performance measures for green

calls as these mainly consist of normal transport of patients. The number of calls that is

relevant for the performance measures, Dil, is the arrival rate of red calls for the survival

measure and the arrival rate of yellow calls for the cover measure. The weights for the

performance measures are based on the work of Knight et al. (2012). The summarized

parameters for the performance measures are given in Table 1, where t is the response

time of the ambulances.

For the computational study, the model was tested on the entire Sør-Trøndelag as well

as the urban area of Trondheim and Malvik. A map of the region is shown in Figure 5.
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Table 1: Performance measures, t is the response time

Performance Measure Function Weight

Survival H(t) = 1
1 + e−0.679+0.262t 2

Cover urban H(t) =

 1 for 0 ≤ t ≤ 12

0 for t >12
1

Cover rural H(t) =

 1 for 0 ≤ t ≤ 25

0 for t >25
1

Trondheim and Malvik represents a small instance with 67 demand zones and 44 potential

station locations. There are currently 3 stations and 7 ambulances in Trondheim and

Malvik. During the busiest shift, there are approximately 7.000 calls yearly, where 18%

are red, 24 % are yellow, and 58 % are green.

Figure 5: Area of interest, with the urban area of Trondheim and Malvik enclosed by

the stippled line. The dots represent the population center in each zone

Sør-Trøndelag represents a large instance and comprises the urban area of Trondheim and

Malvik and 23 rural municipalities. For the busiest shift, there are approximately 10.000

calls yearly, 17% being red, 26% being yellow and 57% being green calls. The available

resources are 16 stations and 24 ambulances. For the whole region, there are 139 demand

zones and 76 potential station locations.
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6 Computational study

The model is implemented in Mosel and solved using Xpress-Optimizer Version 7.6.0.

The software is run on a HP dl165 G6, 2 x AMD Opteron 2431 2,4 GHz, with 24 Gb

RAM. The computational study begins with a study of the technical characteristics of

the model using both the small instance of Trondheim and Malvik and the large instance

of Sør-Trøndelag. After that the solutions of the model are compared with the current

locations and allocation in Sør-Trøndelag, and the study ends with an analysis of a key

operational simplification.

6.1 Technical characteristics

In this subsection the strengthening constraints from Subsection 4.2 are tested. The tests

have been performed on Trondheim and Malvik for 15 and 30 minutes and Sør-Trøndelag

for 4 and 8 hours. The results are presented in Table 2 and 3, respectively. T0 is the

test with the model in its proposed form. T1, T2, T3, T4, T5 and T6 correspond to tests

with the constraints (37), (38), (39), (40), (41) and (42), respectively. X0 is the test with

all proposed strengthening constraints. X1, X2, X3, X4, X5 and X6 correspond to test

with all constraints except (37), (38), (39), (40), (41) and (42), respectively. The tables

present the tests with objective LP solution, rows and columns after presolve, the number

of nodes in the branch and bound tree, the number of solutions, the best solution value,

best bound and gap for all tests. The gap is defined as (best bound - objective value) /

objective value.

6.1.1 Strengthening constraints

From the results in Tables 2 and 3 a number of interesting characteristics can be seen.

One of the most apparent characteristics is the impact of the reformulation (38). Of

all the single constraints, this is the most effective in producing low gap for all tests on

Trondheim and Malvik, and Sør-Trøndelag. It also reach the highest number of nodes in

3 out of 4 tests. The effect of the reformulation can be seen in connection to the number

of rows in the model. Applying the reformulation (37) instead of the original constraints
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(30) cuts away approximately 40% of the rows of the original problem. This makes the

problem easier to solve. Constraints (38) have the largest impact on the linear relax-

ation in both the test on Trondheim and Malvik, and Sør-Trøndelag. However, the linear

relaxation has little impact on the best bound after the solver’s root cutting and heuristics.

For the test on Trondheim and Malvik in Table 2, the solver performs in general better

with more constraints as the best bound decreases with more constraints. However, the

constraints have limited effect on the best solution. In the 30 min test, the maximum

relative difference between the best solutions is less than 0.2%. This can be seen in

connection to that the solver is able to find strong solutions on this relatively small

instance without any help, and the strengthening constraints are just tightening the best

bound.

For the tests on Sør-Trøndelag, the constraints do not significantly impact the best bound,

except for in the test with all constraints, X0. They have however a large impact on the

number of solutions found and the value of the best solution. The number of solutions

found is in general higher with one or zero strengthening constraints (T0-T6), and the

values of the best solutions are more mixed for several constraints (X0-X6). This can be

an indication of that on large instances the extra constraints makes the problem harder

to solve. This can also be seen by the number of nodes reached, which are in general

higher for one or zero strenghtening constraints. It is also noticeable that the best gap

when using the best solution and best bound from any of the tests is approximately half

of the best gap from any of the single tests for the 8 hours run. This indicates that it

might be effective to use many strengthening constraints to provide a good bound, but

few strengthening constraints to provide strong solutions.

6.1.2 Objective function

Another characteristic of the solutions is that there are many possible location and al-

location configurations that are almost equally good. As seen from the 30 minute test

on Trondheim and Malvik, the maximum relative difference between the best solutions is

0.2%. This can be explained by that there are many station locations that are close to

each other and almost equally good. Hence, swapping one station location for another will
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not change the objective value significantly. In addition, there might be situations where

it is equally good to allocate a second ambulance to several different stations, resulting in

many equally good solutions.
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6.2 Evaluation of solutions

When comparing the best solution from the model to the current locations and allocation,

the model was able to find a solution that outperformed the current solution on the

expectation for both performance measures. The performance measure values are shown

in Table 4. Current locations refers to only locking the ambulance stations to the current

locations, while Current allocation refers to locking both the stations and the number of

ambulances at each station to the current solution. The best solution for Sør-Trøndelag

from the model is referred to as Best solution. Compared to the current allocation, the

objective value is 8.2% higher in the best solution, while with only the current locations,

the objective value is 6.9% higher in the best solution.

Table 4: Performance measure values for best solution, current locations and current

allocation

Performance measure Best solution Current locations Current allocation

Survival 0.209 0.166 0.157

Cover 1.224 1.174 1.167

Total 1.433 1.340 1.324

A comparison of the cumulative response times for the red calls in the best solution and

the current allocation is presented in Figure 6. The best solution has a much higher

proportion of calls within the interval between 4-10 minutes. This explains the higher

value on the survival measure in Table 4.
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Figure 6: Cumulative response time for best solution and current allocation

The percentage of yellow calls covered within the cover thresholds is presented for in

Table 5 for the best solution and current allocation. The bold rows represent the actual

cover measure for urban and rural areas. For urban areas, the expected number of calls

covered within 12 minutes is higher for the best solution. The expected number of calls

covered within 25 minutes for the rural areas is marginally higher for the best solution

than for the current allocation. Hence, the expected performance of the best solution is

superior to the expected performance of the current allocation for every element of both

performance measures.

Table 5: Percentage of yellow calls covered within cover threshold

Best solution Current allocation

Urban within 12 minutes 98% 92%

Rural within 12 minutes 56 % 72 %

Urban within 25 minutes 98 % 98 %

Rural within 25 minutes 91% 90%

To investigate the reason for the differences in the expected performance, the number

of ambulances and stations in the urban and rural areas were analyzed. The results are
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presented in Table 6 and provide insightful information: The model puts a higher value on

having a higher number of ambulances and ambulance stations in the urban areas. This

can partly be explained by that the demand for EMS is significantly higher there.

Table 6: Comparison of best solution and current location

Best solution Current locations Current allocation

Amb Stat Amb Stat Amb Stat

Urban 10 7 9 3 7 3

Rural 14 9 15 13 17 13

To see the importance of having a higher number of ambulances in the urban areas, the

workload and probabilities of having at least one available ambulance at a station were

calculated. The results are shown in Figures 7 and 8 for the best solution and the current

allocation, respectively. The average workload of the ambulances at the stations in the

urban areas is noticeably higher for the current allocation than for the best solution, with

an average of 2.6 hours active time versus 1.7 hours active time for the best solution.

However, the probability of having an available ambulance at a station is approximately

the same. Hence, the number of ambulances in urban areas cannot explain the difference in

the performance measures. This is also shown by the difference between the performance

measure values of the current locations and the best solution in Table 4, as the number

of ambulances in urban areas is almost the same for these solutions.
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Figure 7: Workload and probability for available ambulances for the best location and

allocation of ambulances

Figure 8: Workload and probability for available ambulances for the current location

and allocation of ambulances
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The difference between the expected performances is better explained by the number of

ambulance stations in the urban areas. In the rural areas the population is too scattered

to obtain a high score on the survival measure, and most of the population is covered

within the threshold of the cover measure. However, in the densely populated urban

areas, extra ambulance stations contribute significantly to the survival measure, as the

ambulances are then able to reach a higher number of calls within few minutes. This

can also be seen in Table 4 as the difference between the survival measures for the best

solution and current allocation is 33.1%, while the difference between the cover measures

is 4.9%.

6.3 Impact of a key operational simplification

The problem simplifies the operational management of the ambulances to calculate the

probability of having an available ambulance at a station. It assumes that calls that are

not covered by the primary station can always be covered by the secondary station. This

has two consequences: The first consequence is that the problem does not account for that

both can be busy. If both are busy, the call will be categorized as missed. In reality the

EMS providers does not accept missed calls, but it has been argued that these "missing

calls" are taken by extra ambulances or other vehicles (Iannoni et al., 2009). However, if

the probability of both being busy is low, missed calls are not an important factor. The

second consequence is that there are only two elements in the set Q, as the secondary

station(s) always will respond to a call if the primary station is busy. Hence, the problem

is not able to determine which station should be the tertiary station, quaternary station,

and so on.

For the best allocation from the case of Sør-Trøndelag, these two consequences were

investigated in a developed Excel simulation model. In the Excel simulation model, there

are no restrictions on the number of elements in Q. The simulation was run with 1 - 5

elements in the set Q, i.e. allowing 1 - 5 stations to cover a given zone. The stations were

ranked for each zone based on the travel time, where the closest station is the primary

station. The objective value and average percentage of missed calls as a function of the

number of elements in the set Q is shown in Figure 9.
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Figure 9: Test on the number of ranked stations

As expected, the number of missing calls decreases with the number of elements in the set

Q, as a result of that there are more ambulance stations as backup. However, the average

missing is low if 2 or more stations can cover a zone. The objective value is stable if 2,

3, 4 or 5 stations can cover a zone. This is because the tertiary, quaternary and quinary

stations are in many cases too far away to contribute to the objective value. Because of

this it is not given that the number of station that can cover a zone should be as high as

possible. For instance, an ambulance from a quaternary station is unlikely to arrive fast

enough to provide significant value to a call, and if it is dispatched it will leave its original

area more exposed.

It is difficult to exactly replicate all operational aspects in simulation models, but as

indicated by Figure 9, this operational simplification seems reasonable. However, as this

is a strategic problem, it is not vital that it takes in every operational aspect. The

important factor is that it is able to replicate the key features of how the ambulances will

operate.
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7 Conclusions

This paper presents a new problem for locating ambulance stations and allocating am-

bulances to the stations, referred to as the Maximum Expected Performance Location

Problem for Heterogeneous Regions (MEPLP-HR). A mixed integer linear program is

formulated to solve the problem, and the formulation is strengthened using valid inequal-

ities and a reformulation of a restriction. The solutions from the model are evaluated and

the impact of a key operational simplification is explored.

The model is tested on data for the county of Sør-Trøndelag and solved using available

commercial software. For the county of Sør-Trøndelag, the model is able to find a realistic

solution that has a higher expected performance than the current solution on each of the

given performance measures. In addition, the key operational simplification is shown

reasonable.

As future research, it could be interesting to make the model more realistic by adding

different time periods, incorporating the dependency between the stations, or taking in

different kinds of ambulances. It could also be interesting to develop a more standardized

framework for locating ambulance stations and allocating ambulances. Such a framework

could include the role of the optimization model, the role of a realistic simulation model,

and what should characterize a good solution. In this respect there is a need for more

work on what determines a high performing EMS-system - what should the performance

measures be?
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Appendix

The Model Formulation

Indices and sets

j ∈ J Possible locations for ambulance stations

i ∈ I Zones with a demand for EMS

q ∈ Q Ranking of stations

l ∈ L Performance measures of the EMS provider

m ∈M Breakpoints of the service rate discretization and linearization

n ∈ N Breakpoints of the service rate discretization and linearization

u ∈ U Breakpoints of the available probability discretization and linearization

v ∈ V Breakpoints of the available probability discretization and linearization

Parameters

Wl Weight of performance measure l

Dil Number of calls relevant for performance measure l and zone i

Hijl Performance value of zone i being covered by a station in zone j,

given performance measure l

A Number of available ambulances

S Number of available stations

λi Rate of calls from zone i

Rij Service time

Bm Aggregated service demand for breakpoint m

Cn Aggregated service time for breakpoint n

Su The service rate of breakpoint u

Rv The arrival rate of breakpoint v

Puvk Probability of busy station, given breakpoint u, v and k ambulances
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Variables

zj 1 if a station is located in zone j, 0 otherwise

xj Number of ambulances allocated to a station in zone j

y
(q)
ij Proportion of the demand in zone i covered by a station in zone j with rank q

ρij 1 if station j is the primary station for zone i, 0 otherwise

θj Arrival rate of calls to the station in zone j

µj Service rate of ambulances at the station in zone j

δjk 1 if there are more than k ambulances at station in zone j, 0 otherwise

νmj SOS2 set for m associated with the breakpoint variable

ωnj SOS2 set for u associated with the breakpoint variable

ζmnj Breakpoint variable associated with the service rate linearization

βvj SOS2 set for v associated with the breakpoint variable

φuj SOS2 set for u associated with the breakpoint variable

αuvj Breakpoint variable associated with the available probability linearization

The objective function

Max
∑
l∈L

Wl

∑
i∈I

∑
j∈J

∑
q∈Q

DilHijly
(q)
ij (44)

Deployment constraints

∑
j∈J

xj ≤ A (45)

∑
j∈J

zj ≤ S (46)

xj ≤ Azj j ∈ J (47)
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Covering constraints

∑
j∈J

∑
q∈Q

y
(q)
ij = 1 i ∈ I (48)

ρij ≥ y
(1)
ij i ∈ I, j ∈ J (49)

1− ρij ≥ y
(2)
ij i ∈ I, j ∈ J (50)∑

j∈J

ρij = 1 i ∈ I (51)

∑
j∈J

y
(1)
ij ≥

∑
j∈J

y
(2)
ij i ∈ I (52)

Arrival rate constraints

θj =
∑
i∈I

(λiρij + λiy
(2)
ij ) j ∈ J (53)

Service rate constraints

∑
m∈M

Bmνmj =
∑
i∈I

∑
q∈Q

λiy
(q)
ij j ∈ J (54)

∑
n∈N

Cnωnj =
∑
i∈I

∑
q∈Q

λiRijy
(q)
ij j ∈ J (55)

∑
m∈M

ζmnj = ωnj j ∈ J, n ∈ N (56)

∑
n∈N

ζmnj = νmj j ∈ J,m ∈M (57)

∑
m∈M

∑
n∈N

ζmnj = 1 j ∈ J (58)

µj =
∑
m∈M

∑
n∈N

Bm

Cn

ζmnj j ∈ J (59)

(60)
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Available probability constraints

∑
v∈V

Rvβvj = θj j ∈ J (61)

∑
u∈U

Suφuj = µj j ∈ J (62)

∑
u∈U

αuvj = βvj j ∈ J, v ∈ V (63)

∑
v∈V

αuvj = φuj j ∈ J, u ∈ U (64)

∑
u∈U

∑
v∈V

αuvj = 1 j ∈ J (65)

y
(q)
ij ≤ 1−

∑
u∈U

∑
v∈V

Puvkαuvj + δjk j ∈ J, i ∈ I, k = 0, ..., A, q ∈ Q (66)

A∑
k=0

δjk ≤ xj j ∈ J (67)

Convexity constraints, binary constraints and SOS2 sets

zj ∈ {0, 1} j ∈ J (68)

xj ∈ {0, 1, 2, ..., A} j ∈ J (69)

y
(q)
ij = [0, 1] i ∈ I, j ∈ J, q ∈ Q (70)

ρij ∈ {0, 1} i ∈ I, j ∈ J (71)

θj ≥ 0 j ∈ J (72)

µj ≥ 0 j ∈ J (73)

δjk ∈ {0, 1} j ∈ J, k = 0, ..., A (74)

{β1j, ..., β|V |j} is SOS2 j ∈ J (75)

{φ1j, ..., φ|U |j} is SOS2 j ∈ J (76)

{ν1j, ..., ν|M |j} is SOS2 j ∈ J (77)

{ω1j, ..., ω|N |j} is SOS2 j ∈ J (78)

ζmnj ≥ 0 m ∈M,n ∈ N, j ∈ J (79)

αuvj ≥ 0 u ∈ U, v ∈ V, j ∈ J (80)
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Abstract

To achieve high performing emergency medical services (EMS), planning is of

vital importance. EMS planners face several challenges when managing ambulance

stations and the fleet of ambulances. In this paper three strategic cases for EMS plan-

ners are presented together with potential solutions. The first case investigates the

importance of taking multiple time periods into account when planning. The second

case analyzes how extra ambulances and stations can mitigate the effect of closing

down a local emergency room (ER). The third case explores the benefit of introduc-

ing designated non-urgent transport vehicles instead of ambulances. The cases and

solutions are studied using a recently developed strategic ambulance station location

and ambulance allocation model for the Maximum Expected Performance Location

Problem with Heterogeneous Regions (MEPLP-HR). The article demonstrates how

this model can be used to find and evaluate solutions to real cases within the field

of strategic planning of EMS. The model is found to be a useful decision support

tool when analyzing the cases and the expected performance of potential solutions.

Keywords: Ambulance station location, Ambulance allocation, Emergency Response Plan-

ning
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1 Introduction

The general challenge for emergency medical services (EMS) is to provide the best pos-

sible service to the public. Thus, a variety of planning problems arises. Within strategic

planning, the problem has been where to locate ambulances or ambulance stations. Tac-

tical problem have been dimensioning the ambulance fleet and allocating ambulances to

stations. Within operational problems, there are problem such as which ambulance to

dispatch to a call, if and where to relocate ambulances during the day, and if the patient

should be treated at the scene or brought to the emergency room (ER). To be able to

take the best possible decisions for strategic, tactical and operational problems, operation

researchers have been developing decision support tools for several decades. In recent

years, computational power has increased and EMS has tracked more data. Hence, the

opportunities for operations research on EMS has increased significantly.

This paper shows how the model for the Maximum Expected Performance Location Prob-

lem for Heterogeneous Regions (MEPLP-HR) from Leknes et al. (2014) can be applied

as decision support. This is done through three cases experienced by the county of Sør-

Trøndelag. In the first case, the importance of taking several time periods into account

when locating stations is explored, as requested by Knight et al. (2012). The traditional

approaches are to only consider the busiest period or some kind of average, but the valid-

ity of these approaches is unclear. In the second case, the consequences of closing down

a local ER and mitigating actions are analyzed. Finally, in the third case, the potential

for more effective utilization of ambulances is explored through transferring non-urgent

transport assignments to designated transport vehicles.

The paper contributes to the literature and EMS practice by showing how one single

optimization model can be used to do different kind of analyses for real problems. In

particular, the model is used for:

• Investigating the importance of time periods.

• Analyzing consequences and potential mitigating actions for closing down a local

ER. In particular, a new performance measure based on the time to ER is used to

capture a larger part of the performance domain.
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• Exploring how EMS resources can be utilized more effectively. In particular, the

effect of introducing designated transport vehicles for non-urgent transport is ana-

lyzed.

Figure 1: Map of Norway in grey and the county of Sør-Trøndelag in black

The region of study is the county of Sør-Trøndelag in Norway. The county of Sør-

Trøndelag is seen as the black area in Figure 1. In Sør-Trøndelag there are approximately

300,000 inhabitants, with two thirds living in urban areas (Sør-Trøndelag Fylkeskommune,

2012). There are approximately 30,000 calls for EMS yearly, with one third being red,

one third being yellow, and one third being green non-urgent transport calls. The red

calls are the most urgent and time critical calls. The number of calls from a zone is also

referred to as the demand in the zone. The performance of AMK Sør-Trøndelag, the EMS

administrator, is determined by how well it achieves its performance objectives. The list

beneath presents the performance objectives as defined by one of the AMK centrals in

Norway, and the sequence is based on relative importance.

1. The patient should receive timely and correct treatment

2. Partners and the public should have confidence in the organization

3. The employees should have a good working environment and professional develop-

ment
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4. The organization should appear transparent and be cost-effective

All these performance objectives are important to achieve high performing EMS. How-

ever, Operation Research (OR) has traditionally focused on response time and survival.

Response time is easy to measure and understand, and is often given as political targets.

The National guidelines for Norway are that 90% of red calls should be responded to

within 12 minutes in urban areas and 25 minutes in rural areas (Stortinget, 2000). Never-

theless, these are just guidelines, and the local EMS planners are free to decide on other

targets.

The rest of the paper is outlined as follows: Section 2 includes the related research. Section

3 contains a brief overview of the model used. In Section 4 the data and the case region

are presented, while Section 5 presents and discusses the three cases. Finally, Section 6

concludes on the results and proposes further research.

2 Related Research

For more than four decades operations researchers has developed decision support for

strategic, tactical and operational problems for EMS. Researchers have also put an effort

in determining what should be measured to obtain the desired performance. In this section

we review the literature considered most relevant within strategic decision support for

EMS.

One of the earliest models, the maximal covering location problem (MCLP), was intro-

duced by Church and ReVelle (1974). The MCLP maximizes the demand covered within

a certain response time. This model with the covering performance measure has served

as a basis for many strategic location models. Schilling et al. (1979) developed a model

that maximizes the demand covered by two different types of vehicles, while Hogan and

ReVelle (1986) created models that maximized the number of zones covered by two or

more ambulance stations.

The earliest models were pure strategic models that did not consider the operational

aspect of ambulances. One of the major challenges with locating ambulance stations is
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to create a model that in some way incorporates how a given location would realistically

work. Different locations will affect the workload of the ambulances, and hence the

risk of an ambulance being busy when an incident occurs. To cope with this, Daskin

(1983) presented the maximum expected covering location problem (MEXCLP). In the

MEXCLP there is a certain probability p that an ambulance is busy. The probability

of an busy ambulance was in the earliest models set to a constant for all ambulances,

while newer models such as the ones in Erkut et al. (2008) use iterative methods and an

advanced operational approach to more realistically find the busy probabilities for the

ambulances.

To evaluate how a certain location and allocation of ambulances behaves, both simulation

and stochastic models can be used. Simulation is applied by Davis (1981) and Goldberg

et al. (1990) among others, while the stochastic hypercube queuing model (HQM) was

introduced by Larson (1974). Both simulation models and stochastic models have their

uses, but as argued by Ingolfsson (2013), a primary advantage of stochastic models is

that they can be solved analytically. HQM is used by Erkut et al. (2008) and Knight

et al. (2012) among others to find the busy probabilities for the ambulances at different

stations.

In addition to having a realistic simulation or stochastic model, it is important to know

what characterizes a good solution to be able to evaluate a certain location and allocation.

The earliest models, such as the MCLP, evaluated locations based on the covering per-

formance measure. A problem with this performance measure is however that as long as

the origin of the call is outside the cover threshold, it does not contribute to the objective

function. Hence, it does not matter how far the demand zone is away from a station as

long as it is outside the cover threshold. The covering performance measure does not

differentiate between response times within the threshold either. This is a challenge as

the outcome of some calls is very dependent on short response time.

As a response to these challenges, Erkut et al. (2008) introduced the maximum survival

location problem (MSLP). The MSLP maximizes the probability of survival for cardiac

arrest patients as performance measure. The objective is then based on the probability

of survival given a specific response time. Figure 2 illustrates the difference between the

survival and cover measure. The 1/0 cover measure is seen as the grey square. For all
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demand within 12 minutes, the probability of positive outcome is 100%. For demand

outside 12 minutes, the probability for a positive outcome is 0%. The black line is the

survival function from Maio et al. (2003). The probability for positive outcome from car-

diac arrest is about 35% at the time the cardiac arrest occurs. It is assumed no interaction

from bystanders. The function decreases with response time, and after 12 minutes the

probability for a positive outcome is about 3%. Erkut et al. (2008) investigated different

survival functions, however, the functions were found to give approximately the same lo-

cations. The conclusion was that the important characteristic is the exponential slope of

the function. Knight et al. (2012) built on the work of Erkut et al. (2008), but also in-

cluded standard cover performance measures in the objective function. In this manner the

authors showed the value of using heterogeneous outcome measures, with the argument

that different calls requires different outcome measures.

Figure 2: Comparison of survival and political performance measure

For all these models, response time is considered the main parameter to use when evalu-

ating a potential location configuration. The validity of response time as a parameter for

patient outcomes has been the background for several articles. Weiss et al. (2013) and

Pons and Markovchick (2002) found that response time did not play an important role

for patient survival after traumatic injuries. However, by using distance from ambulance
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station to patient as a proxy for response time, Wilde (2013) showed that response time

significantly affects mortality of patients in need of emergency services. Hence, theoret-

ical attainable response time is important for patient outcome. Some research, such as

Nichol et al. (1996), have investigated the cost/benefit for response time. However, most

research focus on utilizing existing resources in the best possible way or the number of

ambulances that is needed to provide a minimum emergency preparedness (Brotcorne

et al., 2003).

3 Mathematical model

To analyze the cases in this paper, the model for the Maximum Expected Performance

Location Problem for Heterogeous Regions (MEPLP-HR) is used. Given a set of possible

locations for ambulance stations and a set of zones with demand for EMS, the model

locates and allocates stations and ambulances based on a set of given performance mea-

sures. Each performance measure has a certain weight, and the model maximizes the total

performance with a limited number of ambulances and stations at disposal. The model

incorporates operational aspects by calculating the probability that there is an available

ambulance at a station. The model is explained in depth in Leknes et al. (2014).

In this paper the model is extended to several time periods with varying demand. In

this way the model can allocate ambulances in accordance to the demand and available

resources for each period. When introducing several time periods, the problem becomes a

two-stage problem (Birge and Louveaux, 2011). In the first stage, the stations are located,

and in the second stage the available ambulances are allocated to the stations for each

period. In the following subsection, the model is presented and briefly explained.
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3.1 Model Formulation

Indices and Sets

j ∈ J Possible locations for ambulance stations

i ∈ I Zones with a demand for EMS

q ∈ Q Primary and secondary ranked station

l ∈ L Performance measures of the EMS provider

t ∈ T Time periods

Parameters

Wl Weight of performance measure l

Dilt Number of calls relevant for zone i and performance measure l in period t

Hijl Performance value of zone i being covered by a station in zone j, given

performance measure l

At Number of ambulances at disposal in period t

S Number of stations at disposal

Rij Service time of a station in zone j covering zone i.

Variables

zj 1 if a station is located in zone j, 0 otherwise

xjt Number of ambulances allocated to a station in zone j in period t

δjkt 1 if there are more than k ambulances allocated to a station

in zone j in period t, 0 otherwise

y
(q)
ijt Proportion of demand in time period t from zone i that is covered by a station

in zone j, given that the station in zone j is the qth ranked station for zone i.

ρijt 1 if station in zone j is the primary station for zone i in period t, 0 otherwise

θjt Arrival rate of calls to the station in zone j in period t

µjt Service rate of the station in zone j in period t
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Max
∑
l∈L

Wl

∑
t∈T

∑
i∈I

∑
j∈J

∑
q∈Q

DiltHijly
(q)
ijt (1)

∑
j∈J

zj ≤ S (2)

∑
j∈J

xjt ≤ At t ∈ T (3)

xjt ≤ Atzj j ∈ J, t ∈ T (4)∑
j∈J

∑
q∈Q

y
(q)
ijt = 1 i ∈ I, t ∈ T (5)

ρijt ≥ y
(1)
ijt i ∈ I, j ∈ J, t ∈ T (6)

1− ρijt ≥ y
(2)
ijt i ∈ I, j ∈ J, t ∈ T (7)∑

j∈J

ρijt = 1 i ∈ I, t ∈ T (8)

∑
j∈J

y
(1)
ijt ≥

∑
j∈J

y
(2)
ijt i ∈ I, t ∈ T (9)

θjt =
∑
i∈I

(λitρijt + λity
(2)
ijt ) j ∈ J, t ∈ T (10)

µjt =

∑
i∈I

∑
q∈Q λity

(q)
ijt∑

i∈I
∑

q∈Q λitRijy
(q)
ijt

j ∈ J, t ∈ T (11)

y
(q)
ijt ≤ f(θjt, µjt, xjt) i ∈ I, j ∈ J, q ∈ Q, t ∈ T (12)

zj ∈ {0, 1} j ∈ J (13)

xjt ∈ {0, 1, 2, ..., At} j ∈ J, t ∈ T (14)

y
(q)
ijt ≥ 0 i ∈ I, j ∈ J, q ∈ Q, t ∈ T (15)

ρijt ∈ {0, 1} i ∈ I, j ∈ J, t ∈ T (16)

θjt ≥ 0 j ∈ J, t ∈ T (17)

µjt ≥ 0 j ∈ J, t ∈ T (18)
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The objective function (1) calculates the total performance of the location and allocation.

The deployment constraints are given by constraints (2) - (4). Constraints (2) and (3)

make sure that no more than the number of available stations and ambulances are located

and allocated respectively. The logical restriction that an ambulance cannot be allocated

to a zone without a station is handled by constraints (4). The covering constraints (5) -

(9) keep track of which zones the different stations cover, as well as the primary station

for each zone. All calls from each zone have to be covered by a station. This is taken

care of by constraints (5). For each zone there is one primary station and one or more

secondary station(s). The secondary station(s) cannot be the same as the primary station.

These properties are handled through constraints (6) - (8). In addition, constraints (9)

ensure that the primary station receives a higher proportion of calls than the secondary

station(s).

A station receives all the calls from a zone that has the station as its primary station, as

well as the respective proportion of calls it covers from a zone that has it as secondary

station. This constitute the arrival rate and is given by constraints (10). The average

service rate of ambulances at a station is given by constraints (11). This expression is

nonlinear and therefore linearized as described in Leknes et al. (2014). The proportion

of calls covered by a station has to be less than or equal to the long time probability

that there is an ambulance available at the station. This is given by constraints (12).

The long time probability that there is an ambulance at a station depends on the arrival

rate of calls to the station, the service rate of the ambulances at the station, as well as

the number of ambulances at the station. This expression is nonlinear and based on the

Poisson process of the hypercube queuing model (HQM) described in Section 2. The full

explanation and linearization of this expression is given in Leknes et al. (2014). Finally,

constraints (13) - (18) are the convexity constraints.
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4 Data

The basis for the case studies is AMK data from 2010-2013. The dataset contains the time,

date, location and severity (red, yellow and green) of each call. For Sør-Trøndelag today,

there are no formalized performance measures for the different types of calls. However,

AMK’s objective is to give the best possible service to the public. For response time, this

objective can be summarized by performance category 1 and 2 from Section 1. As the

criticality of time is different for red, yellow and green calls, the performance measures

should be different for these calls. For the time critical red calls, a survival measure from

Maio et al. (2003) is used. For yellow calls, response time is important for the patients

to be satisfied and have confidence in the organization. Hence, it is sufficient that the

ambulance arrives within a given threshold. Because of this, it is reasonable to use a cover

measure for these calls. There are no performance measure for green calls as these are

mostly normal transport assignments. The weights for the different performance measures

are based on the weights in Knight et al. (2012). The summarized performance measures

are given in Table 1, where tR is the response time in minutes.

Table 1: Performance measures

Performance

Measure

Function Wl Dilt

Survival H(tR) = 1
1 + e−0.679+0.262tR

2 red calls

Cover urban H(tR) =

 1 for 0 ≤ tR ≤ 12

0 for tR >12
1 yellow calls

Cover rural H(tR) =

 1 for 0 ≤ tR ≤ 25

0 for tR >25
1 yellow calls

The region contains 139 zones with demand for EMS and 76 of these are potential locations

for ambulance stations. The region can be seen in Figure 3, where the dots represent the

population center in each zone and the triangles indicates where the hospitals with ER are

located today. The hospital located to the west is Orkdal hospital and the easternmost

hospital is the regional hospital of Sør-Trøndelag. The area within the dashed line is the

urban area of Trondheim and Malvik.
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Figure 3: The county of Sør-Trøndelag

There are currently 24 ambulances allocated to 16 stations in the region. The travel

times between the zones were found using a tool developed in Python that gather the

travel times between each node pair from Google Maps. The average service times Rij

are calculated using the travel times between the zones, stations and the nearest ER, as

well as adding a constant that represents the time on the scene. For Sør-Trøndelag, 43%

of all calls end at an ER, and the average time spent on the scene is 16 minutes. Hence,

the formula for Rij is given by equation (19), where Tji is the travel time from zone j to

i, TiE is the travel time from zone i to the nearest ER, and TEj is the travel time from

the ER to zone j.

Rij = Tji + 16 + 0.43(TiE + TEj) + 0.57Tij (19)
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5 Case Studies

The cases are studied using the model for the MEPLP-HR. The model is written in Mosel

and solved by Xpress-Optimizer Version 7.6.0. Each case begins with a description of the

problem and proceeds to show how the model is used to analyze the case.

5.1 Case 1: Time varying demand and resources

For EMS districts, both the demand for EMS and the available EMS resources vary

throughout the day. The demand for EMS is typically highest in the daytime of workdays

and lowest during the night of the workdays. The areas with demand may also change as

most people are at work during the day and at home at night. This presents a challenge

for EMS managers when they are locating resources. Some of the resources such as

ambulances can be moved during the day, but ambulance stations are fixed to their

locations independent of the time period. For the county of Sør-Trøndelag, the week is

divided in 6 time periods based on the demand. The periods are 00-08, 08-16 and 16-24

for workdays and weekends. These periods have different resources at disposal, as shown

in Table 2. The demand is also significantly different, where workdays 08-16 is the busiest

period and accounts for 32.6% of the total number of calls.

Table 2: Time periods, ambulances at disposal and demand

Period Ambulances % of demand

Workday 00:00 - 08:00 17 6.9%

Workday 08:00 - 16:00 24 32.6%

Workday 16:00 - 24:00 19 15.6%

Weekend 00:00 - 08:00 17 9.9%

Weekend 08:00 - 16:00 22 19.7%

Weekend 16:00 - 24:00 19 15.3%

A common approach when locating ambulance stations has been to focus on the busiest

period of the week. The reason for this is that it is a simpler problem to solve than to

take all periods into account. However, it is not known whether it is a valid approach.
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To analyze the importance of taking all periods into account, the ambulance station

locations from the five best solutions for the busiest period have been evaluated for all

6 periods. The five best solutions rather than the single best have been evaluated to

get an impression of the robustness of using the solution from the busiest period. The

stations are locked to the locations from the busiest period and the model allocates the

available ambulances for each period to the stations. The objective value and best bound

for each period is then summed for each of the five best solutions and compared to the

best solution from the two-stage model when all 6 periods are taken into account. The

objective value, best bound and optimality gap for the five best solutions and the two

stage problem are shown in Table 3. The optimality gap is defined as (best bound -

objective value) / objective value.

Table 3: Results for Case 1

Test Obj. value Best bound Optimality gap

Solution 1 22.086 22.458 1.68 %

Solution 2 22.100 22.426 1.47 %

Solution 3 21.848 22.399 2.52 %

Solution 4 22.067 22.424 1.62 %

Solution 5 22.080 22.437 1.62 %

Two-stage problem 21.656 22.579 4.27 %

As seen from the results in Table 3, all solutions for the busiest period are better than

what the solver found for the two-stage problem. This is due to the complexity of the two-

stage problem and it shows the motivation for only considering one period. The optimal

solution from the two-stage problem can not be worse than the solutions from the busiest

period, as the two-stage problem always can find the same solution as the busiest period

problem. Because of this, it only makes sense to compare the objective values from

the busiest period with the best bound of the two-stage problem. By comparing the

objective value of the least good solution from the busiest period (Solution 3) to the best

bound of the two-stage problem, a gap of only 3.35% is found. This small gap for the

least good solution shows that the optimal objective value for the two-stage problem and

the objective value from solutions for the busiest period are not very different. Hence,
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the problem for the busiest period is consistent in producing strong solutions for all 6

periods.

Based on the results from the analysis, it appears sufficient to only take the busiest

period into account for Sør-Trøndelag when locating ambulance stations. This can partly

be explained by that for this region the areas with high demand do not greatly change

throughout the day. One could expect different results if there were greater differences

between where people lived and where they worked.

5.2 Case 2: Closing down a local emergency room

There are several small local ERs in Norway today. These local ERs are controversial as

they are expensive, and there are discussions about the competence of such small facilities

compared to the regional hospitals. However, there are substantial local political forces

that want to keep these facilities, as they fear that the emergency medical services for

their local area will be weakened if the facility is closed down. For Sør-Trøndelag, the local

ER under discussion is the one located in Orkdal. The ER in Orkdal is approximately

35 minutes from the regional hospital of Sør-Trøndelag. 40 of the 139 zones has this

as its nearest ER, and these 40 zones counts for 13.7% of the red and yellow calls in

Sør-Trøndelag.

A proposed mitigating action for closing local ERs is to procure additional ambulances

and/or stations for the area affected by the closing. In this manner, the extra stations

and ambulances should weigh up for the longer distance to the ER. A share of the savings

from the closed ER can finance these additional resources. However, it is important to

emphasize that the closing of local ERs is not solely based on cost cutting.

The traditional performance measures of the ambulance station location are only based

on response time. However, if the ambulances should weigh up for closing down a local

ER, it is the time from a call arrives until the patient arrives at the ER that is of greatest

interest. This makes sense when considering e.g. stroke, where the time until a CT-scan

is performed is of great importance (Saver and Levine, 2010). It is also important for

local politicians, as the time until a person arrives at the ER affects the perceived safety

and convenience for the population.
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To analyze the effect of closing the local ER, a new performance measure is introduced.

The new performance measure is based on the time from a call arrives until the patient

is at the ER. With this performance measure, the idea is that people far from the ER

will be compensated by having an ambulance closer to reduce the time to ER. A cover

measure is used because the objective is to get as many as possible to the ER within a

reasonable time, not to minimize the average time to ER. However, there are no official

guidelines to what should be defined as a reasonable time to the ER. For Sør-Trøndelag,

some interest groups claims that 60 minutes are reasonable, while others claim that more

than 120 minutes are reasonable. Based on this, the performance measure is implemented

as being 1 if an ambulance from a specific station can get a person from a specific zone to

the ER within 90 minutes, and 0 otherwise. The weight is set to be the same as for the

response time cover measure, and the number of calls relevant for this measure is both

the red and yellow calls. The summarized performance measures used in this case are

given in Table 4. tER is the time to ER and defined as the reponse time plus the travel

time from the zone to the closest ER.

Table 4: Performance measures for Case 2

Performance

Measure

Function Wl Dilt

Survival H(tR) = 1
1 + e−0.679+0.262tR

2 red calls

Cover urban H(tR) =

 1 for 0 ≤ tR ≤ 12

0 for tR >12
1 yellow calls

Cover rural H(tR) =

 1 for 0 ≤ tR ≤ 25

0 for tR >25
1 yellow calls

Time to ER H(tER) =

 1 for 0 ≤ tER ≤ 90

0 for tER >90
1 red and

yellow calls

To analyze the mitigating actions, one extra ambulance and one extra station have been

made available for the zones that are affected by the closing of the local ER, i.e. the zones

with the closed local ER as its closest ER. At first, the model is run with the existing

ERs and current location and allocation to get a base case. Then, the proposed closed

ER is removed from the data and the model is run again to see how the objective value is

changed. After that, the model is run with one extra ambulance and one extra ambulance
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and station. This is done to see how the mitigating actions work. The objective values

for the different performance measures and tests are shown in Table 5. The tests are

named Base case, X00, X10 and X11, and refer to the current situation, the situation

without the ER, the situation without ER and an extra ambulance, and the situation

without the ER and an extra ambulance and station, respectively. The optimality gap is

defined as in Case 1, and the objective value is the sum of the values of the performance

measures.

Table 5: Performance values and optimality gap for the tests

Survival Cover Time to ER Objective value Optimality gap

Base case 0.156 1.169 2.014 3.339 0.36%

X00 0.155 1.168 1.971 3.294 0.35%

X10 0.157 1.167 1.972 3.296 0.45%

X11 0.162 1.198 2.005 3.365 0.42%

The results in Table 5 show that there is little value in adding an additional ambu-

lance without any additional stations. This can be explained by the fact that there is a

high probability that there is at least one available ambulance at all stations, hence an

additional ambulance does not contribute significantly. With an extra ambulance and

ambulance and station (X11), the objective value related to the time to ER measure is

marginally lower than in the base case. The extra ambulance station and ambulance are

not able to completely mitigate the consequences of closing the ER. This is due to the

longer distance to the regional hospital than to the proposed closed ER. However, the

objective values related to the other performance measures also increase with the extra

ambulance and station. For X11, the values are higher for the response time based per-

formance measures, survival and cover, compared with the base case. In this manner,

improved response time could be seen as a compensation for longer time to ER.

The results in Table 5 are for the entire Sør-Trøndelag. As the affected zones only ac-

count for 13.7 % of the red and yellow calls in Sør-Trøndelag, the consequences of the

closing do not appear drastic for the county as a whole. However, for the affected area,

the consequences are significant. To see the effect for the affected area, the cumulative

distribution of time to ER and the cumulative distribution of the response time for each

17



of the tests are calculated. The cumulative time to ER is shown in Figure 4, while the

cumulative response time is seen in Figure 5. Note that there are some minor inconsisten-

cies due to that the model did not reach optimality. However, the main trends are correct.

Figure 4: Cumulative distribution of time to ER for the affected area

As seen from Figure 4, 23% of the calls in the base case are able to get to the ER in 10

minutes or less. 70% of the calls are within 60 minutes or less, and 86% are able to get

to the ER within 90 minutes. Closing the local ER significantly affects the cumulative

distribution. For X00, X10 and X11, none of the calls in the affected area are able to

get to the ER within 30 minutes. For these instances, approximately 28% of the calls can

get to the ER within 40 minutes. Within the 60 minutes threshold, the number of calls

that can get to the ER is approximately half for these tests compared to the base case.

However, within 90 minutes there are only 3 percentage points difference between the

X11 and the base case. Without an extra station, the difference is 12 percentage points

for the 90 minutes limit.
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Figure 5: Cumulative distribution of response time for the affected area

As expected, the cumulative distribution of the response times in Figure 5 are approxi-

mately similar for the base case and the test without an additional station. This is natural

as closing a local ER has little connection to the response times of ambulances. By adding

the additional station, the expected number of calls that are reached within 25 minutes

increases by 16 percentage points. The number of calls that are reached within 5 minutes

are increased by 9 percentage points. This explains the increase in the cover and survival

performance measure from Table 5.

For the affected area, the consequences of closing the local ER and adding an ambulance at

a new ambulance station is that the time to ER increases significantly while the response

time decreases significantly. To fully analyze the value of the proposed solution, there

needs to be a proper weighting between response time and time to ER. However, as there

is a stronger focus on treating patients on scene (Snooks et al., 2004), the solution of

introducing extra ambulances and stations as a mitigating action is interesting.
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5.3 Case 3: Designated non-urgent transport vehicles

Ambulances in Norway are used for almost every type of transport to and from hospital.

Ambulances are expensive vehicles, with specially trained staff that are specialist in han-

dling emergencies. However, for Sør-Trøndelag in the busiest period, 57% of the calls are

categorized as green calls that mainly include normal transport assignments. These may

be planned or unplanned, but they are not urgent, and most of them do not require high-

tech equipment or trained paramedics. Some patients require however that the transport

vehicle has room for beds.

To cut cost and utilize the resources effectively, a proposed solution is to transfer the

green calls from the ambulances to specialized transport vehicles. These vehicles may be

administered by the emergency medical communication central or a designated transport

organization. The main idea is that it is ineffective to use specially trained paramedics

with expensive EMS equipment for normal transport assignments. To effectively utilize re-

sources, expensive ambulances could be replaced by cost effective transport vehicles.

To analyze the benefit of introducing designated non-urgent transport vehicles, it is ex-

plored how many ambulances that can be removed while still keeping the same total

performance level as before. All the green calls are removed from the dataset, as they are

assumed to be taken by the specialized transport vehicles. The analysis is carried out on

the busiest period, workdays from 08:00 to 16:00. The stations are locked to their current

locations, and the model allocates the ambulances at disposal.

The impact of removing ambulances on the objective value is presented in Figure 6.

The dashed line is the objective value of the current situation, while the solid line is the

objective value when all the green calls are removed. The dotted line is used as a reference

and is the objective value when all the green calls are present. As seen in Figure 6, five

ambulances can be removed while still keeping the same total expected performance level

as with the green calls.

To see how the removal of ambulances affect the solutions, the number of stations used and

the average probability for having an available ambulance at a station is analyzed. Figure

7 shows the number of stations used and the average probablity for available ambulances

as a function of the number of removed ambulances. As seen from Figure 7, the average
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Figure 6: Results for removed ambulances and objective value

Figure 7: Results for removed ambulances, average probabilty for available ambulances

and stations in use
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probability for having an available ambulance at a station is generally high. This explains

the modest drop in objective value for 0 to 6 ambulances in Figure 6. The number of

stations used is also fairly stable. That shows that the ambulances are mainly removed

from the stations with several ambulances. The drop in number of stations in use from 0

to 1 removed ambulance is due to the closing of a station that only covers 0.25% of the

total demand as primary station, and 2.3% of total demand as secondary station. Hence,

closing this station does not significantly affect the objective value, as seen from the small

change in the objective value from 0 to 1 removed ambulances in Figure 6.

By removing 57% of the calls, 5 out of 24 ambulances can be be removed while still

keeping the same performance level. This seems a bit low, but can be explained by that

each station requires at least one ambulance to contribute to the performance measures.

For the busiest period, 57% of the calls represent 22 calls each day. Hence, for designated

non-urgent transport vehicles to be an interesting option, the vehicles needs to be able to

handle at least 22 calls each day and cost less than five ambulances. However, the analysis

presented here is just an indication of what is possible. To fully explore the potential of

designated non-urgent transport vehicles more research on the green calls as well as the

specialized vehicles is needed.

6 Conclusions

In this article, three managerial cases of EMS are studied using a recently developed strate-

gic ambulance station location and ambulance allocation model. The article demonstrates

how the model for the Maximal Expected Performance Location Problem for Heteroge-

nous Regions (MEPLP-HR) can be used to find and evaluate solutions to real cases within

the field of strategic planning of EMS. In particular, the value of taking multiple time

periods into account when planning, the effect and mitigating actions of closing down a

local ER, as well as the benefit of introducing designated non-urgent transport vehicles

instead of ambulances, is studied.

The case studies are performed on the county of Sør-Trøndelag in Norway. For the

first case, the key finding is that it seems sufficient to plan for the busiest time period

when locating ambulance stations. For the second case, the results show that to close
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the local ER will significantly increase the time to ER for the affected area. However,

adding an extra ambulance station and ambulances can to certain degrees mitigate the

consequences. The analysis in the third case shows that here is a potential to reduce the

number of ambulances by one fifth if designated transport vehicles undertakes the non-

urgent assignments. However, as in most large strategic cases where OR is used, more

analysis is needed for each case to make thorough and strong decisions. Despite this,

the model is proven succesfull in providing insight and analyzing real cases and potential

solutions experienced by EMS planners.

As future research, it would be interesting to formalize what defines high performing EMS.

Then one could point out where OR has its greatest potential. There is also a need for

new performance measures in the models that are not solely based on response time. To

build on this, it could be interesting to find a monetary value on the different levels of

the performance. Then the decision makers could calculate if extra investments to reduce

e.g. response time are beneficial from cost-benefit point of view.
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