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Sammendrag

Bitcoin er en lovende kryptovaluta som har mottatt mye oppmerksomhet i senere
tid, men den høye volatiliteten i Bitcoin-prisen har s̊a langt vært en barriere for
allmenn utbredelse. Gitt måten Bitcoin-transaksjoner fungerer, vil brukere av Bit-
coin eksponeres mot svingende valutakurser, selv p̊a korte intradaglige tidshorison-
ter. Denne avhandlingen gjør en analyse av denne risikoen i Bitcoin, og foretar en
sammenligning mot mer tradisjonelle aktiva som gull og valutakursen mellom euro
og Amerikanske dollar. Den senere litteraturen p̊a ultra-høy-frekvent dataanalyse
danner grunnlaget for en intradaglig Value at Risk-modell (IVaR). Denne IVaRen
er basert p̊a en Monte Carlo simulering, der en log-ACD-ARMA-EGARCH modell
er blitt brukt til å beskrive de underliggende data. Resultatene viser tydelig at
sammenlignet med gull og euro, er Bitcoin-brukere utsatt for en vesentlig større
risiko p̊a intradaglige horisonter. Dette kan potensielt sette en stopper for videre
utbredelse av Bitcoin som transaksjonsmedium. Etter forfatternes mening er de-
rimot ikke denne risikoen stor nok til å oppveie de potensielle fordelene Bitcoin
tilbyr.
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Abstract

The promising cryptocurrency Bitcoin has attracted a lot of attention
recently, but the high volatility of the Bitcoin price has so far been a barrier
to widespread adoption. Given the way Bitcoin transactions work, users
will be exposed to exchange rate risk even for short intraday horizons. This
paper analyzes this risk, and compares it to more traditional assets, namely
Gold and the Euro/USD exchange rate. To do this we make use of the
recent literature on market risk measures for ultra-high-frequency data to
construct an intraday Value at Risk measurement. This IVaR is based on a
Monte Carlo simulation, where a log-ACD-ARMA-EGARCH model is used
to describe the price movements. The results clearly indicate that for the
intradaily horizon, Bitcoin is far more risky than Gold and Euro, which may
challenge the applicability of Bitcoin as a medium of transaction. However
in our opinion this risk is not large enough to outweigh the potential benefits
that Bitcoin offers.
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1 Introduction

Bitcoin has been described by many as a promising concept, which might however
facilitate criminal activity (Fagan, 2013) and is far to volatile. We will not get into
the illegal and criminal discussion here, but in this paper we study the inherent risk
that Bitcoin investors, consumers and merchants face due to the high volatility.

While most people who are interested in Bitcoin see a bright future and thus con-
sider it a long-term investment, it has also attracted a lot of speculators, especially
in the wake of huge price spikes as those seen in April, November and December of
2014. Labeled as the new gold rush, speculators have flocked into this uncharted
territory causing great profits for some, agony for others. Figure 1 reveals that
even on shorter-than-daily horizons – there is evidence of high intradaily volatility
in the Bitcoin exchange rate. In 2013 the difference between the highest and lowest
traded price in one day was greater than 10% 33 times and greater than 5% 73
times.

Some Bitcoin prophets call it the money of the future (Petroff, 2013) and urge
everyone they know to get in, while others warn strongly against it. The usual
critics is that Bitcoin has no underlying value, it is too risky and even that it is a
Ponzi scheme (Trugman, 2014). While the former can be discussed (Weisenthal,
2013) and the latter is not true (D’Angelo, 2013), given the volatility of the Bitcoin
price, there is a considerable risk in Bitcoin that cannot be denied (Washington
State Department of Financial Institutions, 2014).

If Bitcoin is to be a serious alternative to bank transfers and credit cards, con-
sumers will have to start to use it regularly. However, given the high volatility and
the risk this poses to users and merchants, this might be hard to achieve. It is the
Catch-22 of Bitcoin – the volatility hinder mass adoption, but until the user group
is large enough, the volatility will remain high. The solutions here seems to lie in
the solutions developed for the Bitcoin ecosystem – make them so advantageous
that the users do not care about the added risk.

Given the way Bitcoin transactions work, discussed in Section 2 and further out-
lined in Appendix A.1, merchants and consumers using bitcoins will be exposed
to intradaily exchange rate risk. Since transactions can take up to an hour or
more to confirm, assessing the risk that owners and users of bitcoins are exposed
to during this period is an interesting and important topic. To our knowledge
such an analysis does not exist at the time of writing. We will therefore explore
this subject by making an intraday Value at Risk model. Given that Bitcoin can
be thought of as both a currency and a store of value, we will do the same anal-
ysis for two assets with these characteristics, namely Gold and the Euro/USD
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exchange rate, and compare the results. By doing this we will be able to quantify
the potential additional risk level Bitcoin users are exposed to compared to tradi-
tional assets. In addition this risk assessment will also be useful for investors with
shorter-than-daily time horizons.

The rest of this paper is organized as follows. In order to better understand the
background for the exchange rate risk in Bitcoin, Section 2 provides the reader
with a basic understanding of Bitcoin. In Section 3 we provide a review of the
literature covering the methodology and models applied in this study. Section
4 presents the data used and its characteristics. Section 5 describes the model,
while Section 6 presents the estimated parameters of the model. The simulation
and backtesting procedures are presented in Section 7, whereas Section 8 presents
and discusses the results. Finally Section 9 concludes.
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Figure 1: Bitcoin Price in 2013, where the lower columns marks days where the price
difference between highest and lowest trade were greater than 1%, the middle columns
mark days with greater than 5% difference and the high columns days with greater than
10% difference.

2 Bitcoin

In this section we present a basic introduction to Bitcoin. Some of the more
technical aspects of the Bitcoin protocol are further outlined in Appendix A.1.

Bitcoin is a peer-to-peer payment system, first proposed in 2008 by Nakamoto1.

1Satoshi Nakamoto might be one person or a group of people, the identity at the time of
writing remains unknown.
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The main difference between Bitcoin and other currencies is that the Bitcoin net-
work does not require a trusted central authority for managing transactions and
controlling the supply of money. Instead this is done collectively by the Bitcoin
network. All Bitcoin transactions are kept in the block chain, a shared public
ledger making everyone connected to the network able to see all transactions ever
conducted. This is done by public key cryptography – anyone holding the public
key can verify the validity of a bitcoin2, but only the holder of the private key
can use the bitcoin in a transaction. This chain-of-blocks structure also makes
payments irreversible – if a transaction is considered verified, it is impossible to
undo it3. In light of this Bitcoin can be thought of as the first widely accepted de-
centralized cryptocurrency, although the notion of integrating cryptography with
electronic money was first attempted already in the late 1980s (Chaum et al.,
1990).

The Bitcoin protocol also solves a more general problem known as the Byzantine
Generals Problem (Lamport et al., 1982). In other words, Bitcoin poses a way to
establish trust between otherwise unrelated parties over an untrusted network like
the Internet4. Not only does this innovation enable Bitcoin to work as a currency
and payment system, in general it also enables Internet users to safely and securely
send digital property between each other. That way, everyone knows that the
transaction has taken place and that no one can refute its legitimacy. Bitcoin as
digital money is just one of many possible ways of utilizing this invention. Others
can be digital signatures, digital contracts, digital keys and a lot more (Andreessen,
2014).

2.1 History of Bitcoin

Bitcoin was launched in January 2009 when version 0.1 of the Bitcoin client was
released publicly. During its first year of existence, it was traded solely in private.
The first known purchase using bitcoins, a pizza bought for 10 000 bitcoins (Mack,
2013), happened in May 2010. When the first Bitcoin exchange emerged a month
later, the market could for the first time arrive at a consensus for the value of a
bitcoin, the price being $0.08/BTC5. The development of the Bitcoin price since
then is plotted in Figure 2. Not long after the first exchange had opened, others

2Technically ”a bitcoin” does not exist, only the history of transactions between addresses.
However, for simplicity we refer to it as ”a bitcoin”.

3This is what secures Bitcoin from the ”double-spending” problem, the possibility of fraudsters
spending their money several places at once.

4This has later been proved by Miller and LaViola (2014).
5BTC is the common symbol for bitcoin as a currency unit. Note also that Bitcoin with

uppercase B refers to the protocol, while bitcoins with lowercase b refers to the currency.
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emerged all over the world, allowing users to trade bitcoins for everything from
Brazilian reals to Polish zloty. During the next two years adoption grew steadily,
but among the general population it was still considered as an obscurity – most
of the transaction volume was due to online gambling sites and dubious activities
on the dark web (Meiklejohn et al., 2013).
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Figure 2: Historical Bitcoin price in USD on logarithmic scale, source coindesk.com.

In 2013 Bitcoin moved from the underground of the Internet to the radar of Wall
Street investors and governments all over the world6. The bank crisis in Cyprus in
the spring of this year (Farrell, 2013) is said to be the main catalyst for the price
peaking above $200/BTC, an all time high at the time. The market then collapsed,
but still left the price well past previous levels. A summer of relative stability
followed before Bitcoin yet again made the headlines. In October and November
the price increased rapidly, fueled by extensive media coverage. On November
29th 2013 Bitcoin hit a record of $1242/BTC, higher than the price of one ounce of
gold at the time. Meanwhile more and more merchants started accepting bitcoins
as payment and Bitpay, a Bitcoin based automated payment processing system,
announced that they had processed over $100 millions in transactions that year
among more than 15500 merchants in 200 countries (Bitpay.com, 2013).

As a reaction to government regulations in China (Bradbury, 2013) and fear of
interventions from governments in other countries, the price began to fall in De-
cember 2013 and early 2014. Later, a series of events led to a further price decrease

6Forbes probably summarized it better by calling it “Year Of The Bitcoin” (Forbes, 2013).
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culminating when one of the biggest and oldest exchanges, namely Japan based
Mt.Gox, declared bankruptcy in February 2014 (Southurst, 2014). In the follow-
ing months the price has seemed to stabilize around $500/BTC and where Bitcoin
goes from here remains unknown.

2.2 Trading process

There are two ways to obtain bitcoins: One can mine them, as explained in Ap-
pendix A.1, or one can buy them. There are numerous ways to buy bitcoins, the
simplest being meeting someone who already owns bitcoins, giving them cash or
transferring them money, and then they will transfer bitcoins to you. Sites like
localbitcoins.com specialize in this kind of trading, by matching buyers and sellers
in the same area. This kind of trading gives the highest degree of anonymity7.
The most common way to obtain bitcoins though is through an exchange.

Bitcoin exchanges works very much like exchanges for other assets. You sign up8,
transfer money9 and buy bitcoins from a seller. The choice of exchange depends
heavily on your country of residence, as the sign up and money transferring process
can be different depending on where you are located10. So even though Bitcoin
presents an alternative to traditional fiat currencies, it is still closely tied to the
existing financial infrastructure. In this article we investigate the price at two of
the most popular exchanges, Bitstamp and Btc-e.

After you have acquired some bitcoins at your exchange account, you want to
transfer them to your Bitcoin wallet. A Bitcoin wallet has the same purpose as
other wallets, a place where your valuables are safely stored. Each wallet has one
or more associated addresses. These work similarly to bank account numbers, you
send bitcoins from the address of the exchange account to your wallet address.
With bitcoins in your wallet, spending them comes down to sending from your
wallet to merchants, or other people.

Merchants have several ways of accepting Bitcoin payments in their store or on
their website. The simplest way is just to make users transfer bitcoins to the
company’s wallet, like a cash transfer. The price can either be quoted directly in

7The participants in such a deal do not need to leave any other digital footprint than the
Bitcoin transaction.

8This process can be lengthy for some exchanges as it requires you to identify yourself and
give a proof of residence.

9Bank transfer is the most common, although a lot of other exist, see The Bitcoin Wiki
(2014b).

10Coinbase, a Bitcoin service provider based in the US, only allows bank transfers from US
bank accounts.
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bitcoins, or it can be priced in any currency and at the time of purchase converted
to bitcoins using the current exchange rate. There is also the opportunity of using
a Bitcoin payment service provider, such as BitPay. By doing this merchants can
get paid in fiat currency, while still accepting bitcoins. This is done by letting
the provider handle the Bitcoin part of the purchase, i.e. they find the current
conversion rate, accept payment in bitcoins and then transfer fiat.11.

Given the volatile history of the Bitcoin price and the non-zero block confirmation
time previously discussed, there is a considerable risk involved in doing payments
with bitcoins, since the exchange rate between Bitcoin and fiat could have changed
quite a bit in that short time span. For the different payment models different
parties are exposed to this risk. If the merchant prices his goods in bitcoins and
is paid in bitcoins, this risk can be ignored12. If the merchant accepts payment
in bitcoins, but the price is set by the current exchange rate, the merchant can
choose – he can assume the risk by guaranteeing the exchange rate at the time of
purchase13, or let the buyer take it by setting it to the exchange rate at time the
network verifies the transaction14 By using a Bitcoin payment service provider,
this risk is usually assumed by them. It is out of the scope of this paper to discuss
who should bear this risk in general, our goal is to quantify it.

2.3 Advantages of Bitcoin

For many of the pioneers of Bitcoin the most important feature is how the trust
model in Bitcoin is built, or rather the lack of it. Given that the Bitcoin pro-
tocol poses a way to establish trust between otherwise unrelated parties over an
untrusted network like the Internet, users do not need to trust anyone when mak-
ing a transaction. The need for providing sensitive information like credit card
details in order for the transaction to proceed is removed, and giving the recipient
any other personal information is voluntary. While one usually need to provide
merchants with such information, having the opportunity to choose not to can be
a big benefit, e.g. for anonymous donations. The advantage of not leaving credit
card details seems obvious given the amount of stolen credit card cases in recent
years (Riley et al., 2014). The possibility of doing business with someone who one
neither trust nor know, can be enticing for many individuals.

This goes both ways, the privacy in Bitcoin is entirely up to the user. Bitcoin is

11Usually one have the option of getting paid 100% in fiat, 100% in bitcoins or a mix.
12However, if the merchant has any costs in fiat he is exposed to exchange rate risk anyway.
13Known as zero-confirmation – the merchant does not wait for the block chain to confirm the

transaction.
14Details about how the Bitcoin network verifies transactions can be found in Appendix A.1
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pseudo-anonymous – all transactions are publicly available, but the owners of the
sender and receiver addresses are kept secret. However, it is worth noting that in
practice it can be possible to identify owners of certain addresses, especially if the
owners do not take care to avoid cases such as multiple usage of the same Bitcoin
address. Meiklejohn et al. (2013) explore this subject in greater detail.

In traditional fiat systems people are dependent on a reliable government to man-
age the supply of money. However, as history shows, governments only seem to be
trustable as long as it is to their benefit (Jones, 2014). The average life expectancy
for a fiat currency is 27 years (Mack, 2011), and even the oldest and most successful
fiat currency in existence, the British pound Sterling, has lost 99.5% of its initial
value15. In the Bitcoin system, money supply is an entirely predictable process.
Bitcoins are mined at a predefined decreasing speed until the maximum number
of mined bitcoins has been reached, which is 21 millions. This removes the possi-
bility for hyperinflation and makes Bitcoin rather deflationary16. Whether this is
good or bad in the long run is widely discussed, see for instance The Bitcoin Wiki
(2014a) for a discussion.

The trust issue is also relevant when it comes to being completely in control of your
own money. If you have an account on PayPal for instance, and they decide that
you broke their policy, they stand free to restrict your access to the account and
thus limit your access to your own funds. This is what happened in 2010 when the
secrets-and classified information-revealing organization WikiLeaks was shut out
from the service (Moyer, 2010). One might also think that this only happens when
you trust third parties, not the government. However, as previously mentioned,
one of the catalysts of the rising Bitcoin interest in 2013 happened when the
Cypriotic economy was in trouble, and the Central Bank, with the help of the EU
and IMF, imposed a one-time bank deposit levy for domestic accounts (Bensasson
and Georgiou, 2013). Situations like these can be avoided with Bitcoin. As long
as the user is the only one with access to the private keys17, no one can touch his
bitcoins.

The Bitcoin system also has major advantages when it comes to speed. Because of
the trust model used by the banks, bank transfer and international wire transfer
can take a considerable amount of time to clear, usually only within the opening
hours of the bank. With this centralized structure, there is a great need to make
sure that the transaction indeed is trusted and valid before a confirmation can
be made. The Bitcoin network takes care of this within minutes, and after a few

15The British pound was originally defined as 12 ounces of silver.
16The value of bitcoins will rise over time compared to inflationary assets such as fiat.
17However, if he trust a third party such as an online wallet provider or an exchange, the same

situations can occur.
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hours at the most18 users can be completely sure that their transactions have gone
through.

Another advantage of the decentralized structure of the Bitcoin network is the
lack of bounds for when and where one can send money. Without the need for a
centralized authority doing the authorization, sending money to a neighbor and to
the other part of the world is the same short procedure, which can be done at any
given time, not just within the opening hours of the banks. For some this can be
very beneficial – payments from anywhere in the world can be accepted 24 hours
a day, thus greatly lowering the boundaries between merchants and customers
around the world.

The price one has to pay for this is not discouraging, for the most part it is free or
close to – the transaction fee is still voluntary19. One might argue that credit card
transactions seem to be both instantaneous and free. However, this is a service the
merchants need to pay for, which in the end leads to higher prices for customers.
The size of this fee can vary quite a bit, but around 3% does not seem to be
unusual. For low margin retailers the credit card fees can account for as much as
half of the profit (Harrison, 2014).

What is also worth to note is that because of the non-reversible transaction struc-
ture of Bitcoin, no chargebacks are allowed20. In 2013, online merchants paid $3.10
for each dollar of fraud losses incurred according to LexisNexis Group (2013). This
amount includes fees and interest to financial institutions and costs related to re-
placing lost or stolen merchandise, in addition to the amount of chargebacks for
which their company is held liable. A chargeback is a form of customer protec-
tion provided by the issuing banks, which allows cardholders to file a complaint
regarding fraudulent transactions on their statement. The study done by Lexis-
Nexis Group (2013) interestingly finds that 20% of fraudulent transactions are due
to “friendly fraud”, where a consumer makes an online purchase with their credit
card, then issues a chargeback after receiving the purchase, claiming the purchase
was never delivered or accounted for. Frauds due to identity theft resulting from
lost credit card information made up another 17% of frauds in 2013, which hap-
pened to over 5% of all American consumers, causing losses of over $21 billions. So
it is easy to understand why no chargebacks is an appealing feature for merchants,
and that the anonymity of transactions which protects against identity fraud is
beneficial to both parties21.

18Usually a lot less.
19However, by including a small transaction fee one might reduce the confirmation time.
20Unless the recipient agrees.
21We are not implying that frauds are not happening in the Bitcoin economy, but we emphasize

the fact that responsibility for avoiding fraud is in the hands of the person sending the bitcoins,
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Lastly we remark an area that really seems to have a lot to gain from the advantages
of the Bitcoin system, namely the remittance22 industry. The World Bank (2014)
estimates that the total value of remittances to developing countries in 2013 is at
$404 billions. The average total cost of sending remittances was around 8.4% in
the first quarter of 2014, but for some parts of the world it was much higher, e.g.
the average total cost for sending remittances to Sub-Saharan Africa was as high
as 12%. The potential Bitcoin has to impact these mechanisms is enormous, given
the before-mentioned properties of the Bitcoin system.

3 Background

3.1 Risk

So far we have stated that we want to investigate the riskiness Bitcoin investors
and users are faced with compared with that of other comparable assets. First of
all we have to define what we actually mean by risk. On the general level Hansson
(2014) states that “... the word “risk” refers, often rather vaguely, to situations in
which it is possible but not certain that some undesirable event will occur”. More
financially related is Jorion (2007)’s definition, who defines risk as ”the volatility
of unexpected outcomes”. This last definition is common when regarding financial
assets, risk does not necessarily mean that something bad is more likely to happen,
it just refers to a case where the potential outcome is less certain. Because of this
some risk is necessary if performance over risk-free is to be achieved (Lamb, 2011).

A common way of assessing the risk of an asset, would therefore be to look at the
volatility of the asset. Volatility is a measure for the dispersion of the returns for
a given asset, i.e. it gives us an indication to how much uncertainty there is in
the returns. With a lower volatility, the range the returns are expected to be in
is much lower than with a higher volatility. We see from our previous definitions
that this gives rise to a conflict – while Jorion’s definition fits well with volatility
as risk measurement, Hansson specifically mentions ”undesirable events”, i.e. in
our case negative returns. Given that we are interested in the potential negative
outcomes of using Bitcoin, we use Hansson’s definition.

because only the person who owns the bitcoins has access to them.
22A transfer of money by a foreign worker to an individual in his or her home country.
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3.2 Value at Risk

A natural risk measurement for us to use is therefore Value at Risk (VaR). Value
at Risk is defined as the worst loss over a target horizon that will not be exceeded
with a given level of confidence (Jorion, 2007). This fits well with our definition
of risk. Other advantages that using VaR gives us is that we get an intuitive
interpretation of the risk level – which is also accessible for non-financial people,
as well as giving us a quantifiable risk level which can be used in a comparison to
other assets.

There are three basic approaches to calculate Value at Risk, but within each
approach there is still room for a lot of variation (Damodaran, 2014). We will not
go into detail here, but shortly mention the three:

Parametric VaR
The first one can be called Parametric VaR, where the estimate is computed
analytically by making assumptions about the risk factor return distribu-
tions, e.g. a normal linear VaR.

Historical Simulation VaR
The historical simulation model makes no assumptions about the distribu-
tions, but rather use a vast amount of historical data to estimate VaR. The
main assumption here is that all possible future movements have already
happened, and thus that historical distribution will be the same as the dis-
tribution of future returns.

Monte Carlo VaR
The core of the Monte Carlo VaR approach is to run Monte Carlo simula-
tions for the proposed models and assumptions enough times, so that we are
fairly sure that the simulated distribution gives a proper estimate of the real
distribution. On the basic level this can be quite similar to the normal linear
VaR, but the flexibility of the Monte Carlo approach is far greater than the
parametric.

For our purposes the Monte Carlo method seemed like the obvious choice. The
flexibility it offers compared to the others is invaluable, given that we explicitly
want to model the time between trades, as described in Section 5.

However, when using VaR there are several things we need to keep in mind. While
the interpretation of VaR is quite intuitive, it may also lead to a false level of
security. For instance if the VaR at the 99th percentile is interpreted as the
maximum we can possibly lose, we may feel much more secure than we really
are, given that 1% of the time this level actually should be exceeded. This also
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leads to the second point – even though VaR gives us a loss that we, with the
given confidence level, are certain will not be exceeded in the chosen time horizon,
it gives us no information about what happens if we actually exceed this level23.
VaR thus gives no information about the maximum possible loss we stand to suffer.
Because of these (often overlooked) limitations, it is important for risk managers
to treat VaR as just another tool in the toolbox, and not the only way to measure
the risk level they are exposed to (Linsmeier and Pearson, 2000). However, for our
purposes it functions well as an intuitive and quantifiable level of risk.

3.3 Ultra-High-Frequency data

There has been a growing interest in studying ultra-high-frequency data as such
data have become increasingly accessible to researchers. The quest of studying
ever higher frequencies has been a quest for better information. In this sense we
think of the frequency of a time series as the informativeness of the process that
creates it. The more often it is observed, the more information can be extracted
from it and better decisions can be taken with respect to it. In this paper we follow
the distinction between high-frequency data (HF data) and ultra-high-frequency
data (UHF data) as stated by Zivot (2005). HF data refer to observations on
variables recorded on daily or intradaily time scales where the observations are
often, but not necessarily irregularly spaced over time. Whereas UHF data are
tick-by-tick or quote-by-quote time stamped observations and are thus irregularly
spaced in time by definition.

The nature of UHF data makes it challenging to model and analyze both econo-
metrically and statistically. Since the observations are irregularly spaced in time,
the number of observations over a fixed time interval will be random. One can of
course aggregate this data up to regular time intervals, however this will incur a
loss of information. Further trading activity will vary substantially between dif-
ferent assets. Secondly one must also take care to perform proper cleaning and
correction of data, since UHF data often will contain errors, for instance improper
records or data gaps. Also UHF data will typically have intraday and/or inter-
week patterns in activity. Furthermore issues such as bid-ask bounce may distort
some statistical models. Lastly the number of observations can be stupendous, it
is not uncommon to have more than 10 000 observations per trading day.

23In order to assess this one can look at Conditional Value at Risk, which measures the expected
loss given that the VaR level has been exceeded.
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3.4 Intraday Value at Risk

Much effort has been put into creating sophisticated Value at Risk models for daily
or longer time horizons, encouraged by the legal obligations banks and insurance
companies are put into by the Basel and Solvens regulations. For shorter time
periods however the field is much more unexplored. However, given the relatively
recent access to intradaily data, it has finally started to grow.

Intraday VaR (IVaR) models was first proposed by Giot (2005), where he uses
intradaily returns to estimate a VaR model. Two distinct ways to model the
intradaily returns are already here made clear. UHF data is naturally irregularly
spaced, while most normal VaR techniques use regularly spaced intervals. One
therefore has the choice to either convert the UHF data to regular intervals in
order to use the standard framework, or to make a VaR model based on the
irregular spaced returns. Giot does both, by making conditional parametric VaR
models with a normal GARCH, Student GARCH and RiskMetrics approach for
the regular spaced interval, and by utilizing a log-ACD model for the irregular
spaced data. While these are not directly comparable, Giot concludes that the
Student GARCH model performs best.

Giot and Grammig (2006) uses the same conversion from UHF data to regular
returns, but follow quite a distinct approach, in that they introduce the notion
of an Actual VaR that models the potential price impact incurred by liquidating
a portfolio. The further approach is to use a reconstructed real time order book
from the automated auction marked Xetra taken at 10- and 30-minutes frequencies,
to compute returns that depend on volume. These are then used to compute a
VaR for each level, and by comparing these they are able to quantify the relative
liquidity risk premium within a day.

A third way of computing the returns for an intraday Value at Risk is seen in
Dionne et al. (2009). The approach is a development of the log-ACD VaR model
proposed by Giot (2005), but while Giot uses the log-ACD model to estimate the
volatility of price durations, Dionne et al. specifically models the whole trading
sequence. More specific, they model the time between trades using a log-ACD
model, and then use an ARMA-EGARCH model for the returns between trades
that takes into account the duration between trades. By using this combined model
in a Monte Carlo simulation, they are able to simulate the trading process, and
are then free to divide into regular spaced intervals in order to assess the VaR in
the regular framework. This differs from Giot’s approach, where the log-ACD VaR
model is based on irregular spaced intervals, and then converted by an approxima-
tion in order to be compared to the other models. The backtesting of these reveal
that they perform quite differently. While Giot’s log-ACD disappoints, Dionne
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et al.’s model performs quite well at most intervals and confidence levels24. Other
differences in the models lie in the specification of duration as trade durations and
not price durations, as well as utilizing Monte Carlo simulation in order to get a
model that is easier to convert to regular intervals. According to Dionne et al.
the advantage of this model is thus that the risk measure has a higher information
content due to the modeling of each trade, and not just the ones that lead to a
price difference. What is also worth mentioning is that by following this approach,
after one has estimated the model, a VaR can be computed for any time horizon,
without re-estimation of the model parameters.

Colletaz et al. (2007)’s work is similar, however they apply the VaR methodology
in price events times, rather than calendar time. The result is an irregularly spaced
intraday Value at Risk, that both forecast the timing for the next price event and
the corresponding level of risk summarized by the VaR forecast. The proposed
model is applied on two NYSE traded stocks with relatively good results. Tse and
Liu (2013) calculate an IVaR on ten NYSE traded stocks, and find that results can
be improved by modeling price movements and durations jointly. Overall we see
that the number of papers investigating the field of intraday Value at Risk is not
very large, however the reported results seem to be satisfactory for most models.

3.5 The Autoregressive Conditional Duration model

The features of UHF data described earlier combined with the increasing avail-
ability of such data has encouraged a number of contributions dealing with the
challenges of accurately model UHF data in the domain of econometrics. En-
gle and Russell (1997) proposed the Autoregressive Conditional Duration (ACD)
model with the objective of modelling the time between events, like trades or
quote updates that happen irregurarly and randomly throughout market hours. It
is essentially an ARMA process with nongaussian innovations. The ACD model
assumes that the durations follow a process similar to the Generalized Autore-
gressive Conditional Heteroskedasticity (GARCH) model developed by Bollerslev
(1986). Duration in this context is simply the time between trades. As for GARCH
models, ACD models are typically called for when the data exhibits a high depen-
dency from one data point to another. This feature is most commonly referred
to as clustering and is often observable in ultra-high-frequency data. This means
that short durations tend to be followed by short durations, and similarly long
durations are often followed by long durations. Just as GARCH models aim to
remove dependence in squared returns, ACD models aim to remove dependence

24Their model is applied on three stocks traded on the Toronto Stock Exchange.
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in the durations. Here we will provide the general setup for ACD models, and
provide a short review of the most commonly used.

Statistically we view ultra-high-frequency data as a point process, which we de-
note N. In the general sense a point process is a random collection of points (ob-
servations) falling in some space. In UHF finance the space in which we record
observations is simply a portion of the real line, because the data is temporal (”of
time”). Such a point process can be described completely by the random intervals
between the points as they are ordered in a natural way. The arrival times of the
point process, represent events like a trade or a quote update. Events then have
different characteristics associated with them, like price and volume, and we refer
to them as marks.

A temporal point process N may alternatively be described by a counting pro-
cess N(t), where for any time t between 0 and T , N(t) is the number of points
occurring before time t. We then consider a sequence of arrival times of events
{t0, t1, ..., tn, ...} where 0 = t0 < t1 < ... < tn < ...tN(T ), where tN(T ) is the last
observed point in the sequence. In the most general setting, simultaneous arrival
times are allowed, but as described in 4.3 we have excluded such events. In the
literature this is standard procedure, see for instance Dufour and Engle (2000-05).
{z0, z1, ..., zn, ...} denotes the sequence of marks associated with the arrival times.

Further let xi = ti−ti−1 be the ith duration between the events happening at times
ti−1 and ti. Then the sequence of durations have non-negative elements all greater
than zero. Durations and marks can then be considered as a joint sequence:

{(xi, zi), i = 1, .., T}

The ith event in the joint sequence then has a density conditional on all previous
durations, up to and including xi−1. It is referred to as the information set available
at time ti−1 denoted Ft−1. The joint density is then:

(xi, zi)|Ft−1 ∼ f(xi, zi|x̆i−1, z̆i−1; Θf ) (3.1)

Where Θf denotes the set of parameters and x̆i−1 and z̆i−1 the sequence of X and
Z up to observation (i− 1). This joint density can be expressed as the product of
the marginal density of durations and the conditional density of the marks given
the durations, formally:

f(xi, zi|x̆i−1, z̆i−1; Θf ) = g(xi|x̆i−1, z̆i−1; Θx)q(zi|xi, x̆i−1, z̆i−1; Θz) (3.2)
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Where g is the marginal density of the duration xi and q the conditional density
of the mark zi

The ACD model imposes a generalized autoregressive structure to the conditional
duration. The conditional expected duration is given by:

ψi = E(xi|Fi−1) = ψi(x̆i−1, z̆i−1) (3.3)

So the expected conditional duration, ψi is measurable with respect to Fi−1. Fur-
ther, it is assumed that all the temporal dependence in the sequence of durations
are captured by the expected conditional duration, so we have:

xi
ψi

= εi (3.4)

The epsilons are independent and identically distributed random variables with
E(εi) = 1. The sequence of εi is often referred to as standardized durations and
Eq. (3.4) the mean equation. This assumption implies that the marginal density
of duration xi is g(xi|x̆i−1, z̆i−1; Θx) = (xi|ψi; Θx), i.e. the conditional expected
duration captures all temporal dependence of the duration process.

The density function for ε with parameters Θε, p(ε,Θε) must satisfy g(xi|F−; Θ) =
ψ−1
i p(xi/ψi; Θε). Maximum likelihood estimates of Θ = (Θx,Θε) can be obtained

by performing numerical optimization after specifying a distribution of ε and using
the log-likelihood function given by:

L(Θ) =

N(T )∑
i=1

(log(p(
xi
ψi

; Θε)− log(ψi)) (3.5)

The ACD model proposed by Engle and Russell (1998) is a linear parametrization
of Eq. (3.3) where the conditional expected duration depends on m past durations
and q past expected durations. It is commonly referred to as the ACD(m,q) model
and is given by:

ψi = ω +
m∑
j=1

αjxi−j +
q∑
j=1

βjψi−j (3.6)

There have been numerous extensions to the original ACD(m,q) model. Worth
mentioning here is the log–ACD model of Bauwens and Giot (2000), which un-
like the standard ACD(m,q) does not need non-negativity constraints to ensure
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positivity of conditional durations. Fernandes and Grammig (2006) introduces
augmented ACD (AACD) models that allow for asymmetric responses to small
and large shocks. To allow for different regimes of heavier or slower trading pe-
riod, regime switching ACD models allows for greater flexibility, see for instance
the TACD model by Zhang et al. (2001).

To further expand the range of possible methods to model durations, several
choices exist for the distribution of the standardized durations, εi. In the simplest
case, the exponential distribution is considered, and models using this distribution
are often referred to as EACD models. However this implies that the conditional
hazard rate is flat (independent of time) which is easily rejected in most studies,
see for instance Feng et al. (2004) or Lin and Tamvakis (2004). The hazard rate
is the rate of likeliness to observe an event of interest in the next time unit given
that the event is not observed up until that point. However this issue was already
addressed by Engle and Russell (1998) and they therefore used the Weibull dis-
tribution (WACD) for increased flexibility. To allow for even greater flexibility
Grammig and Maurer (2000) argued for the use of the Burr distribution (Burr-
ACD), while Lunde (1999) proposed the use of the generalized gamma distribution
(GACD). They both allow for a U-shaped hazard rate, to capture that the hazard
rate tends to increase for short durations and decrease for long durations. Even
though the research on ACD models has been extensive since its inception, the
quest to find best practices for the specification of the model and the distribution
of ε has not yet reached its conclusion. In our case where the expected conditional
durations enter the conditional variance equation as an explanatory variable, the
form of ACD model and distribution of ε is of great importance.

3.5.1 Durations and volatility modeling

Durations do not necessarily need to be defined as the time between every trans-
action, however more information may be gained by looking only at arrival times
of certain events. For instance it can be a certain change in the price, or the time
necessary for a given amount of volume to be traded or the time it takes to observe
a given return. It then follows that we only are interested in retaining the arrival
times that are thought to carry some special important information, a procedure
that is most commonly referred to as “thinning the point process” (Hautsch, 2012).

We turn to the concept of price durations first, which was introduced by Engle and
Russell (1997). It is defined as the duration between events for which the price has
changed. A point process for price arrival times is obtained by selecting only those
points for which the price has changed. However one is not particularly interested
in small price changes, more so the times necessary for the price to change by a
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given amount C. Price durations in itself is a simple and easy-to-interpret risk
measure, the longer the time it takes to change the price, the less volatility exists.
Giot (2005) makes use of price durations to construct an intraday Value at Risk
model.

The importance of price durations comes from its direct relationship with volatility.
As demonstrated in Engle and Russell (1998), by applying the ACD model to price
durations, a model for the inverse of volatility is obtained by using the conditional
expected price durations via the conditional hazard function. Formally it is given
by:

σ2(t|Fi−1) =

(
C

P (t)

)2

h(xi|Fi−1) (3.7)

Where σ2(t|Fi−1) is referred to as the conditional instantaneous volatility of the
price, P (t) is the price at transaction time ti and h(xi|Fi−1) is the conditional
hazard function of price durations. If an EACD model is used, h(xi|Fi−1) becomes
1/ψi, and volatility can be modeled by using:

σ2(t|Fi−1) =

(
C

P (t)

)2
1

ψi
(3.8)

This link between price durations and volatility makes it possible to test various
market microstructure hypotheses in a straightforward way by including additional
explanatory variables into Eq. (3.6), so that:

ψi = ω +
m∑
j=1

αjxi−j +
q∑
j=1

βjψi−j + yT zi−1 (3.9)

Where as before expected conditional durations depend on past m durations, past
q expected durations, but now also a vector of non-negative exogenous variables zi.
Relevant variables commonly used in the literature include the trading intensity
and the average volume per trade, see for instance Bauwens and Giot (2000),
Bauwens and Veredas (2004) or Bubak and Zikes (2006).

Trading intensity is defined as the number of transactions during a price duration,
divided by the value of this duration. A high number of trades over a short
duration leads to high trading intensity, and consequently a low number of trades
over a long duration leads to low trading intensity. The hypothesis is that an
increase in trading intensity should make the market maker revise his/her quotes
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more often, leading to shorter price durations. Easley and O’Hara (1992) discusses
this relationship in greater detail. The average volume per trade defined as the
average of the volume of trades made during a price durations, is thought to be
an indication of informed trading. Again turning to Easley and O’Hara (1992),
the idea is that a higher volume indicates informed trading25 and leads to higher
volatility.

For comparison purposes, price durations is not directly applicable since a good
choice of C depends on which asset one look at26. Therefore one may specify the
durations on the returns directly as the time it takes to observe a log return of
at least R. The log returns are then calculated continuously for each consecutive
transaction from an initial price. We refer to this concept as return durations.

4 Data

4.1 General

The chosen data period runs from January 1st 2014 – February 28th 2014. The
sample is divided into an estimation and a validation period, where we use January
for estimation and February for validation. The number of observations varies
quite a bit between the assets, Bitstamp has the lowest number of observations
with 873 560 in the sample period, while Gold has the highest with over 10 million
observations.

We have obtained our data from two different sources. Bitcoincharts.com has
been used for Bitcoin data, while Sierra Chart has been used for Euro and Gold.
Sierra Chart is a software program for technical analysis of financial markets that
allows access for a limited number of tick data time series. From Sierra Chart we
downloaded data from Forex Capital Markets, which is an online broker based in
the United States. It provides services to their clients through an online trading
platform and their offices all over the world, from New York to Sydney. It uses
direct market access that allows clients to trade at the best price at any given
time, taking prices from a number of major banks and institutions.

From Bitcoincharts we downloaded tick by tick data for two exchanges27, Bitstamp

25In Easley and O’Hara (1992) the idea is that informed trades trade only when there are
information events, whether good or bad, that influence the price

26For instance for Bitcoin it can be sensible to set C at a couple of dollars, but that does not
make much sense in the Euro/USD exchange rate

27We have included two exchanges in our analysis, because the price, volume and trade dy-
namics can be quite different across the various Bitcoin exchanges. Using two of them, we can
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and Btc-e. Even though Bitcoincharts provides data from a long list of Bitcoin
exchanges, we chose these two for the following reasons: After the previously
mentioned downfall and collapse of Mt.Gox, Bitstamp has emerged as the market
leader in terms of trading volume. Based in United Kingdom, it allows customers
from all over the world to trade bitcoins in exchange for US dollars, and is regarded
as a secure and trusted exchange in the Bitcoin community. After coming online
in August 2011, Btc-e provides Bitcoin trading in US dollars, Euro and Russian
Rubles. Measured in number of trades per day, it is one of the largest Bitcoin
exchanges in the world.

4.2 Trading hours

The normal approach to only regard the time between opening and closing as
trading hours, and remove all observations that fall outside this interval. Bitstamp
and Btc-e have customers from all over the world, and are open 24 hours 7 days
a week. As Figure 3 shows, the trading intensity seems to be fairly high and
stable throughout the day. It is therefore obvious that we must include 24 hours
of trading each day, including weekends.

For Gold and Euro, 24 hours of data for each day excluding weekends is also
available, however the trading activity varies considerably throughout the day.
We therefore tried to find an estimated trading day for each asset, consisting of
the most active part of the day. We divide the day into 48 half-hour intervals, and
choose the first interval of the trading day as the first interval where the number of
transactions is larger than the average number of transactions. The last interval in
the trading day will then be the last interval where this is the case. This resulted
in a 9 hour trading day for Euro and a 18 hour trading day for Gold.

4.3 Zero durations

A drawback of most ACD models existing in the literature is that they do not
permit durations equal to zero. This is due to the fact that the distributions used
for durations are not defined at zero, with the exception of the exponential distri-
bution, which is rarely regarded as the best choice. The smallest time increment in
the collected data is one second, and it therefore follows that transactions within
one second have the same timestamp. For dealing with zero durations we followed
the most common approach in the literature as used by Engle and Russell (1998)
and Dionne et al. (2009). An average price weighted by volume is computed, and

be more confident about our results.
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(a) Bitstamp

(b) Btc-e

Figure 3: Columns shows the average number of observations for a given half hour inter-
val. The horizontal line marks the average number of observations across all intervals.

all other observations within that time stamp are removed. The argument for this
approach is that we can consider these observations as split transactions, originat-
ing from large orders broken into smaller ones. The percentage of zero durations
as reported in Table 1 may seem dramatically high for some of the datasets, but
are not uncommon findings in the literature, for instance Engle and Russell (1998)
reports around two third of the observations in their IBM dataset.

Remember from Section 3.3 that UHF data often contains errors. Our collected
data was no exception, and we carefully removed suspicious observations. For
instance we found observations with negative volume or volume equal to zero, and
these were simply removed from the datasets. Similarly, consecutive observations
with extreme price changes, typically when an observation has an artificially low
price compared to the previous one and then reverting back to the ”normal” price
on the next observations, were also removed.
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Table 1: Percentage of zero durations.

Percentage of zero durations
Bitstamp 54.87%
Btc-e 66.51%
Euro 83.15%
Gold 86.01%

In our datasets we also take notice of abnormal events like the flash crash on Btc-e
on February 10th 2014, where a single user dumped thousands of bitcoins and sent
the price plunging from over $600 to $102 in a matter of minutes. While the rest of
the Bitcoin ecosystem seemed largely unaffected, it caused massive turmoil on Btc-
e over the next couple of hours before reverting back to match a price consistent
with the rest of the market. It is obvious that including this short period in our
analysis would distort the seasonal adjustment procedure, not to mention it would
be next to impossible to incorporate in any model, and was therefore removed.
Further we follow the common practice of eliminating all interday (overnight)
durations in Gold and Euro because they would distort the results.

4.4 Data characteristics

After filtering the raw data each asset ends up with the descriptive stats for the
durations in the estimation sample as reported in Table 2.

Table 2: Descriptive stats, durations.

Mean Median Std.dev D Skew Kurtosis Max Min R1 Q(15) Obs

Bitstamp 13.50 6.0 23.78 1.76 6.14 80.55 898 1 0.26 53 070 196 546
Btc-e 6.55 3.0 10.85 1.66 4.98 46.04 312 1 0.25 97 729 404 003
Euro 1.80 1.0 1.91 1.06 5.69 72.66 97 1 0.15 34 970 439 849
Gold 2.22 1.0 3.04 1.37 8.17 271.93 317 1 0.19 83 348 617 372

We see that the different assets exhibit different features. Btc-e for instance has a
total of 404 003 observations which corresponds to about 13 032 trades per day on
average whereas Euro has a total of 439 850 which equals 19 124 trades per day on
average. Since Bitcoin exchanges are open on weekends, Bitstamp and Btc-e have
a total of 31 trading days in our estimation sample, while Euro and Gold have 23
trading days. This and the fact that we consider different trading hours for each
asset as described earlier, make the descriptive stats hard to compare directly. R1

is the autocorrelation coefficient of order 1. The Ljung-Box test statistic Q(15)
for 15 lags test the null hypothesis that the first 15 autocorrelations are zero. The
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associated 95% critical value for this test is 24.99, which is much lower than the
test statistics in Table 2, indicating presence of autocorrelation.

Even though we notice quite different descriptive statistics across our assets, they
all have in common that durations are overdispersed – the standard deviation is
greater than the mean. The dispersion ratio (D) is reported in the table. The
majority of papers working with ACD models also reports this phenomena, see
for instance Veredas et al. (2001), Bauwens (2006) and Dionne et al. (2009). This
suggests that the exponential distribution is not appropriate for the distribution
of trade durations. Further we note that all assets exhibit strong autocorrelation
in durations.

Table 3: Descriptive stats, returns.

Mean Median Std.dev Skew Kurtosis Max Min R1 Q(15) Q2(15)

Bitstamp 4.49E-07 0.0 0.0016 -0.01 22.41 0.036 -0.042 -0.27 15 726 42 738
Btc-e 1-18E-07 0.0 0.0014 -0.09 13.98 0.022 -0.033 -0.36 53 348 129 703
Euro -3.33E-08 0.0 1.87E-05 4.31 500.6 0.002 -0.001 0.34 52 580 29 314
Gold 1.80E-08 0.0 4.41E-05 -39.56 10262 0.003 -0.012 0.37 94 043 64 305

Table 3 report the descriptive stats for estimation sample returns. We use trans-
action prices to calculate log returns, since bid-ask quotes were not available. We
note the high autocorrelation the returns seem to exhibit, as pictured by the auto-
correlation coefficients and the Q(15) test statistic. The test statistic Q2(15) also
strongly suggests that the volatility in the different return series are time varying.
We also notice the difference in skewness and kurtosis across the assets, with Gold
and Euro having the strongest evidence of a leptokurtic distribution. Btc-e on
the other hand has quite much less kurtosis, however it still has excess kurtosis
compared to the normal distribution. Regarding the skewness we can see some
differences – while for Bitstamp and Btc-e it is close to zero, Gold has a highly
negative skewness and Euro has a positive one. Also noting (and it comes as no
surprise) is that both Bitstamp and Btc-e have a much higher standard deviation
than Euro and Gold, with Bitstamp being the highest and Euro the lowest.

Previous works in the literature have reported a large proportion of zero returns.
Again turning to Engle and Russell (1998), who reports that about two-thirds of
observations were without price change. Gorski et al. (2002) and Dionne et al.
(2009) report similar proportion of zero returns. For our data we find the highest
proportion of zero returns in Bitstamp and Btc-e with 18% and 17% respectively.
While other studies have removed zero returns from the sample, see for instance
Darolles et al. (2000), we keep them in ours as the proportion is relatively low and
zero returns also yield information according to the efficient market hypothesis28.

28Price changes are due to new information arriving on the market, and in the absent of new
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4.5 Seasonal data adjustment

It has been widely reported in the literature that high-frequency transaction data
exhibits strong seasonality within a trading day. Typically one would observe
higher trading activity at the beginning and at the end of the trading day29. Nat-
urally, there will be less activity around lunchtime. Ignoring such intraday patterns
could potentially distort any estimation results. The most common procedure is
the one originally employed by Engle and Russell (1998). The procedure consists
in decomposing the data into a deterministic part based on the time of day, and a
stochastic part modeling the dynamics in the data. For the durations this give:

xi = x̃is(ti−1) (4.1)

Where x̃i denotes what is referred to as ”diurnally adjusted” durations in Engle
and Russell (1998). s(ti) denotes the seasonal factor at time ti. Eq. (3.3) for the
conditional durations now become:

ψi = E(x̃i|Fi−1)s(ti−1) (4.2)

Optimally one would estimate the parameters both in Eq. (4.1) and (4.2) jointly by
the maximum likelihood estimator in Engle and Russell (1998), however typically it
is more common to apply a two-step procedure due to the difficulty of convergence.
So first the raw durations are adjusted, then the ACD model(s) are estimated on
”diurnally adjusted” durations, x̃i.

Similarly returns are decomposed in the same manner, and we refer to them as
”diurnally adjusted” returns.

ri = r̃is(ti−1) (4.3)

Anatolyev and Shakin (2007) and Dionne et al. (2009) take the adjustment step
even further by accounting for day-of-week patterns. In Anatolyev and Shakin
(2007) it is argued that ignoring interday variations in the data will make it more
difficult to estimate any viable model. We follow this procedure, that is we take
into account both interday and intraday seasonality. Further explained by Engle

information or the new information is insufficient to move the price, traders will continue to
trade at the current price.

29The reasoning behind this is that many traders will participate in the opening to take
advantage from overnight news, and similarly want to close their position before the end of the
day in order to avoid being exposed to news published outside their trading hours.
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and Russell (1998) and Giot (2005), if seasonality and intraday variations are
features in the dataset, estimating an ACD model on the original data would
distort the results. First we remove interday seasonality by using a multiplicative
form of adjustment as both durations and squared returns are always positive:

xi,inter =
xi
xs

(4.4)

ri,inter =
ri√
r2s

(4.5)

Where xs is the average duration for weekday s and r2s corresponds to the average
of squared returns for weekday s given that observation i belongs to weekday s.

Table 9 reports the average duration and squared return across all weekdays. For
Bitcoin, durations tend to be longer on weekends and in the middle of the week. A
possible explanation lies in how Bitcoin exchanges work. First of all, since Bitcoin
trading is still closely tied to the existing financial infrastructure, as discussed in
Section 2.2, no new fiat currency will enter the exchanges on weekends. Since the
bank transfer process can be lengthy, money transferred in the beginning of the
week will not enter before the end of the week, and similarly money transferred
before the weekend will not enter the exchange before the start of next week. The
average total volume across weekdays, reported in Table 10, corresponds well to
the interday duration pattern. Squared returns is also higher on the days with
lower durations and higher volume. Euro and Gold tend to have shorter durations
and higher squared returns closer to the end of the week, although the differences
are a lot smaller than for Bitcoin.

In the literature several approaches are used for the specification of the seasonal fac-
tor s(t). Engle and Russell (1998) propose using piecewise linear or cubic splines.
Zhang et al. (2001) estimate regressions based on kernels, while Ghysels et al.
(2004) uses linear regressions. Other specifications include the autoregressive sys-
tem with diurnal dummy variables of Dufour and Engle (2000) and the local linear
regressions of Anatolyev and Shakin (2007). Here we use an approach proposed
by Bauwens and Giot (2000). The interday durations, xi,inter, are divided by the
expected interday duration depending on the time of day. The expected interday
duration is found by averaging the interday durations over thirty-minute intervals,
and fitting a function using cubic splines so that the expected interday duration
can be found given any time of day. The same procedure is done for returns.
Further we estimate a cubic spline function for each day of the week, assuming
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that intraday patterns can vary across different days. The computation of ”diur-
nally adjusted” durations and ”diurnally adjusted” returns is therefore done the
following way:

xi,intra =
xi,inter

E(xi,inter|Ft−1)
(4.6)

ri,intra =
ri,inter√

E(r2i,inter|Ft−1)
(4.7)

This is a practical approach, because it allows us to reintroduce seasonality in
the simulated returns to get a viable economical interpretation of the results.
However one need to careful not to capture seasonal effects that are there due to a
few extreme observations rather than a consistent pattern. Therefore we tried to
smooth the spline functions as much as possible. The log-ACD-ARMA-EGARCH
model is applied on the deseasonalized data, but the IVaR is later computed on
the simulated data after reintroducing seasonality.

Descriptive statistics for the diurnally adjusted estimation samples are reported
in Table 4 and Table 5. Since we do not normalize the spline function the scale of
the adjusted data is quite different from the raw data. Even though the scale is
different, the time series properties are not much affected, for instance the strong
autocorrelation in both returns and durations is still present. However it is note-
worthy that the extreme excess kurtosis present in raw Euro and Gold returns are
now present at a much lesser degree. We also note that the Ljung-Box(15) test
for the squared returns is above the critical value for all assets, which indicates
presence of heteroscedasticity in the returns. Figure 9 illustrate this quite clearly.
The same also holds true for durations as illustrated by Figure 10, and we note
that Bitstamp and Btc-e generally have higher autocorrelation coefficients than
Euro and Gold.

Table 4: Descriptive stats, diurnally adjusted durations.

Mean Median Std.dev D Skew Kurtosis Max Min R1 Q(15)

Bitstamp 1.03 0.47 1.69 1,64 5.16 53.88 48.97 0.02 0.24 104 787
Btc-e 0.88 0.36 1.43 1.63 4.92 45.33 40.46 0.07 0.25 230 362
Euro 0.90 0.59 0.89 0.99 5.32 61.21 38.31 0.32 0.13 48 184
Gold 0.96 0.64 1.13 1.18 5.87 71.28 41.99 0.25 0.15 94 766

It is clear from Table 5 that given the excess kurtosis, the distribution of the
returns does not resemble the normal distribution perfectly. However, by assuming
conditionally normal returns we still obtain satisfactory results when backtesting
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Table 5: Descriptive stats, diurnally adjusted returns.

Mean Median Std.dev Skew Kurtosis Max Min R1 Q(15) Q2(15)

Bitstamp 0.0003 0.0 0.86 -0.06 19.08 17.39 -18.67 -0.27 15 728 41 743
Btc-e 0.0001 0.0 0.86 -0.08 13.20 11.34 -20.85 -0.36 53 407 124 461
Euro -0.0026 0.0 1.03 -0.01 12.01 19.83 -18.31 0.33 48 321 93 069
Gold 0.0005 0.0 1.02 0.15 23.50 32.55 -22.48 0.34 72 732 61 537

the model, especially for Bitstamp and Btc-e, indicating similarities in the lower
tail of the distribution30. Also, by assuming conditional normality, it is well known
that some degree of unconditional excess kurtosis is generated (Bollerslev et al.,
1992).

5 Model

5.1 Intraday Value at Risk

Several studies have indicated that in order to model the price process of an asset
correctly, one might need more information than what are generated by the price
innovations alone, see Diamond and Verrecchia (1987), Admati and Pfleiderer
(1988) and Easley and O’Hara (1992) among others. One of the theories is that
the time between trades influences volatility, however the result of this influence
is not agreed upon. While Easley and O’Hara associates high trading activity and
thus low duration with low volatility, the study done by Admati and Pfleiderer
finds the opposite. What they do agree upon though is that duration affects
volatility. By including this in the volatility specification one can therefore gain
insights otherwise not found.

Therefore there seems to be an advantage in specifically including the trade du-
ration in the volatility specification. By making this joint model of durations and
returns one are better than before able to distinguish between the effect duration
and return have on the risk measure. Dionne et al. (2009) also finds that by ignor-
ing the effect of trade durations the estimated risk level may be underestimated.
In order to capture this relationship, our approach will therefore follow that of
Dionne et al. closely.

Consider the trading process defined by the price paid in trade i at time t, pt, and
the time between trade ti and ti−1, defined as the duration xi. The corresponding

30We have also tested with assuming a conditionally Student t specification, however we did
not get any better results. Similar results can be seen Dionne et al. (2009)’s analysis.
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return ri is now defined as the continuously compounded return: ri = log( pi
pi−1

).

A path is defined as the trading process from i = 1, ...I, where I is the last trade
in the period. This path now consists of irregular spaced returns, so called tick-
by-tick data.

A regular interval trading process is defined as always having the same duration
between observations, which means that for a regular path ti − ti−1 = T . In order
to convert a path with irregular spaced observations into one with regular inter-
vals, we use the following procedure. Starting with the first regular interval, the
irregular spaced observations that belong to this interval are the n first observa-
tions, such that the sum of the those durations do not exceed the length of the
regular interval, and if you add the next duration, the sum will exceed the interval
length. The same will be true for the rest of the intervals: The first duration that
belongs to each interval is the first duration that was not included in the previous
intervals, and the last duration will be the last duration in the path that can be
included without pushing the cumulative duration for that interval past the inter-
val length. If we denote the first observation in the regular interval k as τ(k), and
denote the number of observations in this interval before the cumulative duration
is bigger than the interval length as n(k), the rest of the observations can be put
into regular intervals by setting

n(k)∑
i=τ(k)

≤ T and

n(k)+1∑
i=τ(k)

> T (5.1)

Since each duration has a corresponding return, and we are dealing with log re-
turns, the return yk for for each regular interval will be

yk =

n(k)∑
i=τ(k)

ri (5.2)

Now consider an IVaR model modeled as a time series, where each interval k has
one VaR-level. For a given confidence level 1− α, the IVaR is formally defined as

Pr(yk < − IVaRk(α)|Gk) = α (5.3)

where Gk denotes the information set that includes the transaction history (dura-
tions and returns) up to time tk−1. The IVaR level will now be the corresponding
α-quantile of the conditional distribution of yk:
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− IVaRk = Qk(α|Gk) (5.4)

To obtain the conditional distribution of yk, we chose a Monte Carlo simulation
approach. In short this consists of making models for both the duration and
returns, and simulate possible paths that the price can take. By doing this a
sufficiently number of times, we can get the IVaR level for each regular interval by
following the previously discussed procedure.

5.2 The log-ACD-ARMA-EGARCH model

Remember from Section 3.5 that durations and their associated marks have a joint
density as stated by Eq. (3.1). In our framework the marks of interest are the log
returns from one time of arrival to the next. We therefore let the joint density in
Eq. (3.1) be replaced by:

(xi, ri)|Ft−1 ∼ f(xi, ri|x̆i−1, r̆i−1; Θf ) (5.5)

Following the expression of Eq. (3.2) the log-likelihood function for a sample of
observations xi, ri with i = 1, ...T is then:

L (Θx,Θr) =
T∑
i=1

[log g(xi|x̆i−1, r̆i−1; Θx) + log q(ri|xi, x̆i−1, r̆i−1; Θr)] (5.6)

Several possibilities for g and q can be chosen. In the next subsections we follow
the approach of Dionne et al. (2009) and make use of the log-ACD model for the
durations x and a general ARMA-EGARCH setup to model the returns r.

5.3 Log-ACD

From its most general form, several variations of the ACD model can be formu-
lated, by different specifications for the conditional durations and the density p(ε).
As originally proposed by Bauwens and Giot (2000) we use the log-ACD model
to ensure non-negative durations without the necessity of imposing non-negativity
constraints. This makes the log-ACD(m,q) model, where the autoregressive equa-
tion is specified on the logarithm of the conditional duration ψi, a quite flexible
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approach. Further we make use of the generalized gamma distribution for the den-
sity of standardized durations, p(ε). This allows for a humpshaped hazard rate.
We refer to this model as the log-GACD(m,q) model.

In our log-GACD(m,q) model, the expected conditional duration is given by the
equation:

ψi = exp

(
ω +

m∑
j=1

αj

(
xi−j
ψi−j

)
+

q∑
j=1

βjlog(ψi−j)

)
(5.7)

Following the literature in Section 3.5, we also make the assumption that all the
temporal dependence in the durations are captured by the expected conditional
durations, as given by:

xi
ψi

= εi (5.8)

The generalized gamma distribution for the standardized durations ε is given by:

p(ε|h, k) = h

Γ(k)s

( ε
s

)kh−1

exp

(
−
( ε
s

)h)
(5.9)

Where Γ denotes the gamma function31, h and k denote scale parameters and

s =
Γ(k)

Γ(k + 1
h
)

(5.10)

We note that if k = 1, the gamma distribution in Eq. (5.9) reduces to the distri-
bution used in the Weibull ACD model, and further if h = 1 it reduces to the one
used in the Exponential ACD model. The value of the parameters also affects the
hazard rate, λ(t), as derived in Glaser (1980):

31Such that Γ(k) =
∫∞
0

sk−1exp(−s)ds.
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hk − 1 < 0 :

h ≤ 1 ⇒ λ(t) decreasing

h > 1 ⇒ λ(t) ∪-shaped

hk − 1 > 0 :

h ≥ 1 ⇒ λ(t) increasing

h < 1 ⇒ λ(t) inverted ∪-shaped
hk − 1 = 0 :

h = 1 ⇒ k = 1 ⇒ λ(t) constant, exponential density

h < 1 ⇒ λ(t) decreasing

h > 1 ⇒ λ(t) increasing

Further we let:

ξi = ψis = ψi
Γ(k)

Γ(k + 1
h
)

(5.11)

Finally the conditional log-likelihood of the log-GACD(1,1) model on a set of
observed durations x = (x1, ...xn) is given by:

L (Θx|x) =
N∑
i=2

(
log(h) + (hk − 1)log

(
xi
ξi

)
− log(Γ(k)ξi)−

(
xi
ξi

)h)
(5.12)

5.4 ARMA - EGARCH

Given that we use transaction prices, the literature strongly suggest that because of
market microstructure effects such as nonsynchronous trading and bid-ask bounce,
induced serial correlation may be present in the return series even if it is indepen-
dent and serial uncorrelated, see Fisher (1966), Roll (1984) and Lo and MacKinlay
(1990). We also remember from Section 4 that we do indeed see this serial corre-
lation for all investigated assets. In order to capture these effects, we follow the
approach of Ghysels and Jasiak (1998), Grammig and Wellner (2002) and Dionne
et al. (2009), and use an ARMA(p,q) model specification for the return series.
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The ARMA(p,q) model combines an autoregressive representation with a moving
average process for the errors:

ri = c+ ei +

p∑
j=1

φjri−j +
q∑
j=1

θjei−j (5.13)

The error term ei from Eq. (5.13) satisfies

ei = ziσ

where z = {zi, i ∈ Z} denotes a strong white noise process. The process z is thus
composed of i.i.d. random variables, with zero mean and finite variance. Since zi is
a standard normal variable, the expectation of zi is given by E(|zi|) =

√
2/π. The

conditional variance for transaction i is denoted σi, i.e σi = Vi−1(ri|x1, x̆i−1, r̆i−1).

To model the time-varying volatility in the returns found in Section 4.5, we use
a modified Exponential GARCH(P,Q) model. The EGARCH formulates the con-
ditional variance equation in terms of the log of the variance, and thus always
imposes a positive conditional variance. This removes the need to put constraints
on the coefficients in the model estimation, and will always output positive condi-
tional variance during the later simulation, which gives a big advantage regarding
computational simplicity. Our EGARCH model is given by:

log(σ2
i ) = γlog(xi) + κ+

P∑
j=1

β̃j
{
log(σ2

i−j)− γlog(xi−j)
}

+

Q∑
j=1

[α̃j {|zi−j|−E(|zi−j|)}+ ξ̃jzi−j] (5.14)

In order to capture the effect the irregular time between trades has on the volatility,
we do as Dionne et al. (2009) and add a duration term to our EGARCH equation.
The parameter γ specifies the duration weighting for the volatility of an asset. We
note that when γ = 0, which is when the irregular spacing of returns have no effect
on volatility, Eq. (5.14) denotes a standard EGARCH model, as first proposed by
Nelson (1991). Note that the conditional variance is, as the returns and durations,
specified per transaction, i.e. not as a function of time.

With this specification for the normal EGARCH-model, and given the observed
duration series x = (x1, ..., xn) and return series r = (r1, ..., rn), the log-likelihood
function is given by:
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L (Θr|x, r) = −1

2

N∑
i=1

(
log(σ2

i ) +

(
ei
σi

)2
)

(5.15)

6 Estimation of model parameters

After having specified the log-ACD-ARMA-EGARCH model in Section 5, we used
Matlab 8 with the optimization toolbox to estimate the model parameters for each
asset. For simplicity and runtime of the estimation, we estimated the model pa-
rameters separately for the log-ACD model, the ARMA model and the EGARCH
model.

In order to estimate the parameters of the log-ACD model, we maximized the log-
likelihood function in Eq. (5.12). We then estimated the parameters of the ARMA
model, by using an iterative Least Sum of Squares approach. The e-vector from
this estimation was then used in the estimation of the parameters of the EGARCH
model, which was done by again maximizing the log-likelihood, this time of Eq.
(5.15). This procedure was done for all assets.

There was one drawback with this approach though, and that was that the un-
constrained Matlab solver fminsearch, which we used, tends to get stuck in local
optima, i.e. it might converge to solutions that are not the global optimum. To try
to account for this problem, we utilized a simple multi-start approach, where we
ran the optimization algorithm numerous times for different random start values.
To calculate the standard errors we applied a numerical approximation approach
inspired by Perlin (2012), and given the presence of heteroscedasticity presented
in Section 4, we are using Huber-White standard errors. The results of this esti-
mation is presented in Table 6. The Ljung-Box(15) test done on the standardized
residuals is presented at the bottom at Table 6. Non-significant parameters are
not shown.

When determining the order of the model for each asset, we tried to find a com-
promise between the principles of Occam’s Razor32 and model performance. To
measure model performance we follow Hautsch (2002), Dionne et al. (2009) and
Wongsaart et al. (2009) among others, and use the result of the Ljung-Box(15) test
statistic on the standardized residuals from the estimation as performance mea-
surement. We tried models of both higher and lower order than the ones presented
in Table 6, and kept the one with the lowest order which performed acceptably.

32As few model parameters as possible.
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It is interesting to note that incorporating two lags seems to be the best com-
promise for adequate performance in most models, the only exception being an
ARMA(3,3) for the mean equation of Gold and an EGARCH(1,1) for the condi-
tional variance of Bitstamp. Also worth mentioning is that the parameter c from
Eq. (5.13) is non-significant for all assets except Euro. When a parameter was
deemed insignificant, we ran the model estimation again without the parameter in
question.

If we take a look at the log-ACD parameters, we see that β1 + β2 is close to 1 for
all assets, indicating a high persistence in durations. All parameters are significant
for all assets. The Ljung-Box test statistic for 15 lags is still quite far above the
critical value at 24.99, which indicates that there is still autocorrelation present
in the data. However, it is an improvement in the order of 100 from the result in
Table 4. For instance, the asset with the least improvement is Euro, where the
test statistic is reduced from 49 184 to 342.

From the value of the gamma parameters, h and k, we can derive the hazard rate,
λ(t) as described in Section 5.3. For all assets hk − 1 < 0 and h < 1, which
corresponds to decreasing λ(t). In other words, it holds true for all assets that
the longer the last trade dates back, the lower the probability for observing the
next trade. In Gerhard and Hautsch (2000) a decreasing hazard rate is explained
by market participants tending to trade in “a technical trading scheme”. Not
only the amount of information, but also the speed of information arrival seem to
be relevant. This suggest that the market is dominated by traders that tend to
learn from past sequences of information in the market, and not only adjust their
positions based on exogenous criteria33.

Figure 11 plots the kernel density estimates34 of the probability density function
for the diurnally adjusted durations. We take notice of the similarity in the distri-
bution for Bitstamp and Btc-e, and it is therefore natural that the estimated scale
parameters in the generalized gamma distribution, h and k, are estimated to be
alike for the two Bitcoin exchanges. Figure 11 also illustrates the overdispersion,
positive skewness and excess kurtosis found in all assets.

The same tendencies as for the log-ACD estimation can be seen in the Ljung-
Box(15) test statistic for the residuals from the ARMA and EGARCH estimation.
A reduction in the order of 100 is seen for all assets, but the only model to actu-
ally pass the adequacy test is the ARMA(2,2) for Euro. Engle (2000) finds similar
results and as Dionne et al. (2009) states: “Passing standard tests of model ade-

33In Easley and O’Hara (1992) no-trade intervals is associated with lack of information, and
this result suggest that this hypothesis hold true.

34The gaussian kernel is used.
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quacy seems to remain an issue when using irregular high-frequency data due to
the extremely high number of observations”. Keeping this argument in mind35,
together with the fact that the model actually decreases the autocorrelation in the
data dramatically and that we mainly want to use it for illustrative risk purposes,
we count the test results as satisfactory.

Looking at the parameters for the ARMA models, we note that the sum of the
moving average coefficients,

∑
φi, is positive for all assets. The sum of autoregres-

sive coefficients,
∑
θi, is negative. According to Lee (2008) this can be explained

by the fact that informed traders tend to split large orders into smaller ones, in
order to camouflage their moves (not share their information) and avoid making
the price move too much. This will typically make the prices move in the same
direction, and thus induce serial correlation in the returns.

As for the EGARCH parameters, we note that the sum of beta coefficients,
∑
β̃1,

is close to 1 for all assets, indicating high persistence in the conditional variance.
We can also see that the duration term γ in the volatility equation is statistically
significant for all assets. Even though the size of γ can be quite small – Btc-e
for instance has a γ coefficient of 0.0345, this still indicates that our model gets a
higher information content by including durations in the volatility specification. It
is also worth mentioning that for Euro the α-parameters were insignificant, which
means there is evidence for a leverage effect36 in all assets except Euro.

35We actually have more than 3 times as many observations as Dionne et al. and Engle.
36The impact on volatility is different for positive and negative returns of the same absolute

value.
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Table 6: This table contains the estimated parameters for all assets. Estimates with
t-stats lower than the critical value are omitted. Qacd(15), Qarma(15) and Qegarch are the
test stats from the Ljung-Box test with 15 lags for the residuals of the ACD, ARMA and
EGARCH parameter estimation respectively.

Parameters Bitstamp Btc-e Euro Gold
Estimate t-stats Estimate t-stats Estimate t-stats Estimate t-stats

ω -0.0053 -4.8090 -0.0248 -44.5865 -0.0313 -35.0408
α1 0.1103 42.0552 0.1112 7.2033 0.0889 61.0692 0.0722 64.0140
α2 -0.1053 -52.2752 -0.1047 -16.3708 -0.0665 -47.5844 -0.0431 -31.9526
β1 1.8515 108.0023 1.8476 15.9128 1.5626 187.8759 1.4776 110.8217
β2 -0.8528 -50.6045 -0.8494 -7.5028 -0.5768 -70.6624 -0.4957 -38.5685
h 0.2940 84.1581 0.3299 135.3063 0.6453 506.7600 0.5853 178.0794
k 9.0647 45.4737 9.2992 69.7297 6.0825 451.4829 6.0478 98.8628

c -0.0020 -2.4125
φ1 0.8240 17.3520 0.3545 16.7106 0.2306 4.8327 0.8069 43.6643
φ2 -0.1103 -4.9778 -0.0015 -1.9143 0.0201 3.4986 0.1707 16.1475
φ3 -0.0257 -6.4858
θ1 -1.1768 -24.9906 -0.8630 -39.8790 0.1239 2.5963 -0.4259 -23.4230
θ2 0.2930 8.0914 0.0814 5.7669 -0.0616 -5.3248 -0.4514 -63.5156
θ3 -0.0623 -8.7809

κ -0.0335 -83.6962 -0.0001 -6.294 0.0020 55.4802 -0.0021 -59.2836
α̃1 0.0081 11.6400 0.00320 3.6541 -0.0162 -24.2356
α̃2 -0.0039 -4.5187 0.0183 26.1227

ξ̃1 0.3787 494.5530 0.3858 355.4009 0.3860 212.1686 0.3962 413.1224

ξ̃2 -0.3670 -356.4270 -0.3475 -196.9791 -0.3373 -380.3510

β̃1 0.9091 6630.1650 1.7547 1808.9800 1.3778 321.9991 1.3877 602.7121

β̃2 -0.7578 -794.1990 -0.3819 -90.2397 -0.4019 -181.1820
γ -0.1052 -99.5225 0.0345 38.1001 0.0970 4.4208 0.0775 78.3477

Qacd(15) 334 342 96 104
Qarma(15) 47 25 12 28
Qegarch(15) 25 287 220 99

7 Simulation

In this section we describe the strategy used for simulating returns based on our
log-ACD-ARMA-EGARCH model specified in Section 5.

First we use our log-ACD model to simulate the time between trades for each
asset. This will then be input to the ARMA-EGARCH model, which simulates
the return series for the corresponding asset.

The detailed approach for the whole estimation and simulation process is as follows:

1. We separate the sample period into two parts – one estimation period and
one validation period.
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2. By using the estimation sample, we estimate the parameters for the log-
ACD-ARMA-EGARCH model described in Section 5.

3. Now we are ready to simulate. First we generate random numbers from the
standard normal distribution and the generalized gamma distribution37, for
the returns and durations respectively. These will serve as the innovations
in the simulated paths.

4. By using the last observations in the estimation period as starting values, we
use our log-ACD model to simulate the duration series. This is done in an
iterative manner until the number of transactions in the validation period
has been reached.

5. We have now simulated the transaction timeline. By employing the speci-
fication for our ARMA-EGARCH model we are able to simulate the corre-
sponding returns to all the transactions. The combination of the duration
and return time series will be known as one path.

6. We now repeat step 3-5 5000 times in order to obtain 5000 possible paths
for each asset.

7. These paths now contain irregular spaced trades. In order to transform them
into regular intervals we use the strategy described in Section 5.1. We do
this for several different interval lengths.

8. With 5000 possible values for each regular interval, we are able to use the
specification of the IVaR model in Section 5.1 to obtain Value at Risk time
series for different α-quantiles.

9. In order to test that our model specification correctly models the data, we
employ the backtest methodology described in Section 7.1.

10. To get comparable and understandable results, we reintroduce seasonality
to the simulated returns. We then repeat step 8 in order to get seasonalized
Value at Risk time series for different α-quantiles.

7.1 Backtesting

In order to assess the validity of our model, we follow the backtesting methodology
outlined by Alexander (2008), and then apply the coverage tests proposed by

37In order to draw the innovations from the generalized gamma distribution, we used the
WAFO toolbox for Matlab. However, this was a rather slow approach, and if we were to do the
same procedure again, we would have invested some time in finding a procedure that requires
less computational power.
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Kupiec (1995) and Christoffersen (1998). We do both tests for several different
interval lengths and confidence levels.

In order for a VaR model to be considered accurate and precise, the number of
exceedances38 should be close to the value estimated by the α-quantile we are
trying to model. The exceedances should also be randomly distributed over the
sample - if not there will be clustering (periods when exceedances happen more
often than average), and our model is bound to overestimate in some periods and
underestimate in other periods.

Our backtesting methodology is as follows: We first convert the irregular return
series of the validation period into a regular interval time series by the method
described in Section 5.1. We then employ a rolling window strategy, where we use
all the data available at the end of each window to estimate the VaR for the next
window. Each window will here correspond to a regular interval in the validation
return series. This VaR estimate is then compared to the actual validation period
return for this interval in the manner outlined in the next subsections. The window
is then rolled forward, using the information gained in this window to estimate
the VaR for the next. The procedure is repeated until a VaR estimate for all the
regular intervals in the validation period is calculated. Now one can test how good
the specification of the VaR model actually is.

7.1.1 The unconditional test of Kupiec

The Kupiec test checks whether the number of exceedances are equal to the pre-
defined VaR level. To do this, a likelihood ratio test is applied to reveal whether
the model provides the correct unconditional coverage.

Let Ht be an indicator sequence where Ht takes the value 1 if the observed return,
Yt, is below the predicted VaR quantile, Qt at time t:

Ht =

{
1 if Yt < Qt

0 if Yt ≥ Qt

(7.1)

The null hypothesis is that the unconditional coverage is correct. The test statistic
will then be

38An exceedance is here an observations from the validation sample that are less the estimated
VaR.
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−2ln(LRuc) =− 2[n0log(1− πexp) + n1log(πexp)

− n0log(1− πobs)− n1log(πobs)] ∼ χ2
1 (7.2)

Here n1 and n0 are the number violations and non-violations respectively, πexp is
the expected proportion of exceedances and πobs =

n1

n0+n1
is the observed proportion

of exceedances.

However, in this test it is only the total number of exceedances that counts. How
the exceedances are distributed over the sample is not tested. The Kupiec test
will thus not provide information about whether there is clustering among these
exceedances.

7.1.2 The conditional coverage test of Christoffersen

In order improve the Kupiec test, Christoffersen developed a joint test, both to
provide correct coverage, but also to detect whether the exceedances are randomly
distributed or happen in clusters. The Christoffersen test statistic is defined as
follows:

−2log(LRcc) =− 2[n0log(1− πexp) + n1log(πexp)− n00log(1− π01)

− n01log(1− π01)− n10log(1− π11)− n11log(π11)] ∼ χ2
2 (7.3)

nij is here defined as the number of times an observation with value i is followed
by an observation with value j. Further π01 =

n01

n00+n01
and π11 =

n11

n11+n10
.

We note that the Christoffersen test only measures the number of times an ex-
ceedance is followed by another exceedance, and that all other relationships be-
tween these are thus not captured by the test.

7.2 Backtesting results

The results of the backtest are presented in Table 7. Bold entries denote a failure
of the test at the 1% level. First of all we note that the backtests are done
on deseasonalized data. The model is estimated at the deseasonalized level, so
this seemed like the natural choice. This means that the intervals here do not



7.2 Backtesting results 43

denote calendar time units, so they are not directly comparable39. However, an
approximation can be done quite easily by comparing the number of intervals
and interval length to the length of the validation period. Given that we want to
perform a comparison of calendar time intervals in the next section, we have chosen
the intervals such that the shortest corresponding calendar time is approximately 2
minutes, and the longest interval corresponds to around 2 hours. In order to better
perceive how we capture the whole tail distribution, we have chosen 4 different α-
quantiles to perform the tests on: 0.5%, 1%, 5% and 10%.

There seems to be a pattern here: The models perform better on longer intervals
and on smaller quantiles, especially for the conditional test. The fact that they
perform better on longer horizons is quite natural – with more observations in each
interval the distribution will be more stable, less determined by chance and thus
easier to predict. Dionne et al. (2009) has similar findings. In order to explain
the second point, remember from Section 4.5 that the distribution did not seem
to fully resemble the conditionally normal distribution. This is probably what is
reflected in the test statistics also – the tails of the distribution can be assumed
conditionally normal with satisfactory results, but as we get closer to the middle of
the distribution, this assumption grows weaker, depending on the asset. Bitstamp
for instance performs well even for the 10% quantile. We include this finding for
completeness of the analysis, and in order to indicate that one might be careful to
use the model with these assumptions on quantiles bigger than 5%.

Overall we find that the models perform well for most quantiles and interval lengths
except the ones mentioned above. We therefore conclude that the models are
able to capture the characteristics of the data in a satisfactory way, although not
perfect.

39While 100 as interval length in the table corresponds to approximately 23 minutes for Bit-
stamp, an interval length of 100 corresponds to just over 3 minutes for Euro.
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Table 7: Backtesting test statistics for the unconditional and conditional coverage tests.
Bold entries denote a failure of the test at 1% level. Critical values of the Kupiec and
Christoffersen test at the 1% level are 6.635 and 9.210 respectively.

Kupiec’s test Christoffersen’s test
Interval length 0.50 % 1 % 5 % 10 % 0.50 % 1 % 5 % 10 % # Intervals Approx. calendar time

Bitstamp
10 7.599 1.941 1.218 10.762 9.096 4.886 20.701 23.392 17249 2 min 20 sec
25 19.009 26.872 0.780 0.013 20.189 28.626 28.942 23.921 6899 5 min 48 sec
50 14.140 22.956 6.135 0.123 27.037 32.932 8.193 2.575 3449 11 min 37 sec
100 1.190 2.394 2.234 0.866 1.373 3.101 4.079 4.350 1724 23 min 15 sec
200 2.541 5.114 3.761 0.000 2.710 5.758 4.476 0.248 862 46 min 30 sec
300 0.402 1.606 0.016 0.104 0.472 1.926 0.399 0.325 574 69 min 50 sec
400 0.301 0.444 1.065 1.755 0.357 0.500 2.549 3.757 431 93 min 1 sec
500 0.353 0.708 0.648 2.415 0.364 0.744 1.927 2.579 344 116 min 32 sec

Btc-e
15 13.952 12.406 0.564 0.773 15.367 14.203 27.418 1.208 21196 1 min 52 sec
35 0.446 0.008 0.155 0.854 0.827 6.038 30.508 29.460 9084 4 min 22 sec
100 0.563 1.577 0.056 2.386 0.678 3.290 2.513 4.199 3179 12 min 29 sec
150 1.390 3.701 0.352 5.925 1.443 7.063 11.735 9.439 2119 18 min 43 sec
250 2.210 1.212 3.770 14.750 2.229 1.355 5.817 28.527 1271 31 min 12 sec
400 3.186 1.259 4.762 8.389 3.191 6.652 4.838 9.611 794 49 min 57 sec
500 0.500 2.208 5.202 6.535 0.519 2.246 7.340 6.944 635 62 min 28 sec
1000 0.246 0.495 4.912 10.262 0.259 0.533 6.728 18.220 317 125 min 7 sec

Euro
75 10.993 2.323 26.389 99.132 18.696 27.156 57.056 135.052 4812 2 min 30 sec
150 10.715 4.415 17.750 66.599 15.669 7.065 35.211 76.466 2406 4 min 59 sec
300 6.121 1.847 2.297 23.620 8.464 7.213 4.104 29.829 1203 9 min 58 sec
400 2.212 1.570 4.408 20.796 2.373 3.425 6.806 22.187 902 13 min 18 sec
1000 0.676 0.104 2.339 11.921 0.743 0.171 3.097 12.034 360 33 min 20 sec
1500 0.034 1.046 0.354 5.274 0.051 1.062 1.087 5.435 240 50 min 0 sec
2000 1.013 0.687 1.152 4.537 1.081 9.305 8.462 10.837 180 66 min 40 sec
4000 0.513 0.013 4.053 5.700 0.559 0.059 4.099 5.980 90 133 min 20 sec

Gold
50 9.171 4.717 30.367 92.171 22.812 25.929 48.827 109.958 10691 1 min 58 sec
150 0.921 0.523 4.567 19.404 1.207 1.455 12.194 22.037 3563 5 min 53 sec
300 0.001 0.190 3.647 15.719 0.103 0.499 4.126 17.240 1781 11 min 45 sec
500 0.022 0.045 4.492 18.746 0.079 0.253 4.695 19.269 1069 19 min 35 sec
750 2.583 0.706 5.301 10.186 2.588 0.791 5.452 10.593 712 29 min 24 sec
1000 0.183 2.760 6.324 9.805 0.205 2.783 7.252 9.934 534 39 min 12 sec
1500 3.559 7.136 8.812 7.598 3.559 7.136 9.135 7.778 356 58 min 48 sec
3000 1.774 3.558 5.410 11.257 1.774 3.558 5.549 11.750 178 117 min 36 sec
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8 Empirical results and implications

8.1 Results

The backtesting results show that the estimated models perform adequately well,
but to get an economical interpretation of the results we need to reintroduce
seasonality in the simulated durations and returns. Remember from Section 4.5
that the initial deseasonalization depend both on the day of the week, and on the
time of day. Reintroducing the seasonality is then just a matter of incorporating
the seasonal factors by reversing the procedure. The time to the next transaction
is predicted by the log–ACD model on a deseasonalized scale, so by reintroducing
seasonality duration by duration we are able to keep track of the time of the next
transaction in calendar time.

We have calculated the IVaR for several intraday time horizons, ranging from 2
minutes to 2 hours as can be seen in Table 8 and Figure 4. We considered these
intervals as in our view they represent the shortest interval that would be any
purpose to model, and the approximate worst case scenario for confirming a Bitcoin
transaction. To compute these estimates, we follow the procedure described in
Section 5.1 for the different interval lengths. The mean and standard deviation
of the resulting IVaR time series are reported in Table 8, while Figure 4 presents
how the mean changes given different IVaR levels in a more illustrative way.

First of all we remark that the estimated level for the Bitcoin exchanges, Bitstamp
and Btc-e, is much larger than the level for Euro and Gold. This is not surprising,
given the relatively high difference in the standard deviation of the returns seen in
Table 3. The standard deviation for the IVaR estimates is also quite much higher
for the Bitcoin exchanges, however we note that Gold has a standard deviation
closer to that of Bitstamp and Btc-e than Euro. It is also interesting to note
that there seem to be some differences between Bitstamp and Btc-e – Bitstamp
has a slightly higher estimated mean for all IVaR levels and interval lengths. It
can maybe be explained by the fact that Bitstamp was a bit more variable in the
estimation sample, and is not necessary a feature that will be present in other
periods.

When looking closer at the numbers, we see more clearly how much more risky
Bitcoin really is compared to traditional assets. For instance, we are on average
99% sure that the Bitcoin exchange rate at Bitstamp will not lose more than
1.03% of its value compared to USD in the next 2 minutes. If it is the Euro/USD
exchange rate we are worried about however, we can be 99% sure that it will not
go down more than 0.37% in the next 2 hours. 2 hours as the interval length for
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Table 8: Comparison of IVaR estimates. Interval lengths are given in seconds.

Mean Standard Deviation
Interval length 0.5 % 1 % 5 % 10 % 0.5 % 1 % 5 % 10 %

Bitstamp
120 1.24 % 1.03 % 0.60 % 0.42 % 0.06 % 0.04 % 0.02 % 0.01 %
300 1.61 % 1.36 % 0.80 % 0.57 % 0.08 % 0.05 % 0.02 % 0.02 %
600 2.06 % 1.74 % 1.04 % 0.75 % 0.09 % 0.06 % 0.03 % 0.03 %
900 2.42 % 2.06 % 1.24 % 0.90 % 0.11 % 0.08 % 0.04 % 0.03 %
1800 3.24 % 2.77 % 1.70 % 1.25 % 0.14 % 0.10 % 0.05 % 0.04 %
2700 3.89 % 3.32 % 2.06 % 1.52 % 0.17 % 0.11 % 0.06 % 0.05 %
3600 4.43 % 3.79 % 2.37 % 1.75 % 0.18 % 0.13 % 0.07 % 0.05 %
7200 6.09 % 5.26 % 3.31 % 2.46 % 0.23 % 0.17 % 0.09 % 0.07 %

Btc-e
120 0.96 % 0.82 % 0.49 % 0.36 % 0.05 % 0.03 % 0.02 % 0.02 %
300 1.32 % 1.12 % 0.68 % 0.49 % 0.06 % 0.05 % 0.03 % 0.02 %
600 1.74 % 1.49 % 0.91 % 0.66 % 0.08 % 0.06 % 0.04 % 0.03 %
900 2.08 % 1.78 % 1.09 % 0.79 % 0.10 % 0.07 % 0.04 % 0.03 %
1800 2.84 % 2.44 % 1.51 % 1.10 % 0.12 % 0.10 % 0.06 % 0.05 %
2700 3.42 % 2.94 % 1.83 % 1.35 % 0.15 % 0.12 % 0.07 % 0.06 %
3600 3.91 % 3.38 % 2.11 % 1.55 % 0.17 % 0.14 % 0.08 % 0.07 %
7200 5.44 % 4.71 % 2.96 % 2.18 % 0.22 % 0.18 % 0.12 % 0.09 %

Euro
120 0.06 % 0.05 % 0.03 % 0.02 % 0.01 % 0.01 % 0.00 % 0.00 %
300 0.09 % 0.08 % 0.05 % 0.04 % 0.01 % 0.01 % 0.00 % 0.00 %
600 0.12 % 0.11 % 0.07 % 0.05 % 0.02 % 0.01 % 0.01 % 0.00 %
900 0.15 % 0.13 % 0.09 % 0.06 % 0.02 % 0.02 % 0.01 % 0.01 %
1800 0.21 % 0.19 % 0.12 % 0.09 % 0.03 % 0.02 % 0.01 % 0.01 %
2700 0.26 % 0.23 % 0.15 % 0.12 % 0.03 % 0.03 % 0.01 % 0.01 %
3600 0.30 % 0.26 % 0.18 % 0.14 % 0.04 % 0.03 % 0.02 % 0.01 %
7200 0.42 % 0.37 % 0.25 % 0.20 % 0.05 % 0.04 % 0.02 % 0.02 %

Gold
120 0.10 % 0.08 % 0.05 % 0.04 % 0.02 % 0.02 % 0.01 % 0.01 %
300 0.15 % 0.13 % 0.08 % 0.06 % 0.03 % 0.03 % 0.02 % 0.01 %
600 0.20 % 0.18 % 0.11 % 0.08 % 0.04 % 0.04 % 0.02 % 0.02 %
900 0.25 % 0.21 % 0.14 % 0.10 % 0.05 % 0.04 % 0.03 % 0.02 %
1800 0.34 % 0.30 % 0.19 % 0.14 % 0.07 % 0.06 % 0.04 % 0.03 %
2700 0.42 % 0.37 % 0.24 % 0.18 % 0.09 % 0.08 % 0.05 % 0.04 %
3600 0.48 % 0.42 % 0.27 % 0.20 % 0.10 % 0.09 % 0.06 % 0.04 %
7200 0.68 % 0.60 % 0.39 % 0.29 % 0.14 % 0.12 % 0.08 % 0.06 %
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Figure 4: Graphical presentation of how the IVaR level changes with different interval
lengths.

Bitstamp gives us a IVaR estimate of 5.26%, almost 15 times bigger than the Euro
estimate! It is clear from this that even if you only intend to hold bitcoins for a
short time, there will be a considerable risk in doing so. The IVaR estimates for
Gold generally lies around 50% over the Euro estimates, reflecting quite well that
the price of Gold varies quite much more than the Euro/USD exchange rate.

Figure 4 illustrates the relationship between interval length and confidence level
more clearly. It is no surprise that when the interval length gets longer, the
potential loss for a given confidence level is bigger. We also remark how the
relationship between the Bitcoin exchanges and the other assets seems to change
as the confidence level and interval lengths change. The highest difference in the
IVaR estimate is present for short intervals and high confidence levels (low α-
quantiles), whereas a reduction in confidence level or an increase in interval length
will lead to less differences in the IVaR estimates.

Figure 5 shows how the IVaR evolves within the first common40 trading day with
interval length equal to 30 minutes and at the 1% quantile. While Euro and Gold
show a clear pattern, Bitstamp and Btc-e behave less systematically41. Note also
the difference in absolute value of the IVaR. While the highest IVaR is almost

40The first day of the validation sample is a Saturday, the first day with trading for all assets
is Monday, February 3rd.

41Similar patterns can be found for the other day of the week, they are however not shown.
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the double of the lowest for Euro and more than double for Gold, the difference
between the highest and lowest IVaR for Bitstamp and Btc-e is relatively much
smaller. The lack of clear intraday seasonality in the IVaR in Bitcoin can be largely
explained by the fact that the traders have no opening and closing hours to relate
to, and by the global nature of the trading42.
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Figure 5: Intraday patterns in the IVaR estimates, here for a the first Monday in the
validation sample.

8.2 Relationship between durations and volatility

Since we have already seen that durations affect volatility, we thought it would be
interesting to investigate this relationship a bit further. Following the literature

42We still note that durations and squared returns exhibit interday seasonality as explained
earlier.
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outlined in Section 3.5.1, we have studied whether price and return durations can
give some additional insight on the intraday risk in Bitcoin.

Table 11 reports the mean return duration of different return thresholds, R. The
attractiveness of this measure is that it is straightforward to use it in a comparison.
We see that for the Bitcoin exchanges it takes around 10 minutes on average to
move the price by 1% and somewhat over an hour to move the price by 2%.
However, it takes significantly longer to move the price by 5%, indicating that
the price tend to move and revert back frequently on short intraday horizons. As
the trade durations in Table 2 and 4, the return durations are overdispersed43,
revealing a great deal of variability.

Euro and Gold has a lot longer mean return durations, and for Euro the price
does not even change 2% from the initial price in the sample. Both have very few
observations when R is 0.5% or higher. In short, return durations that happen
intradaily in Bitcoin need several trading days to happen in Euro and Gold.

As explained in Section 3.5.1, price durations is an interesting concept to look at
because of its relationship with volatility. Table 12 reports the average time it takes
to move the price by C dollars for Bitstamp and Btc-e. Again we notice shorter
durations on Btc-e than on Bitstamp except when C = 20 dollars. Depending on
the exchange, it takes between half an hour and 40 minutes to move the price by
10 dollars, meaning that by the time it takes to confirm a transaction, the price
might have changed quite significantly.

The hypotheses discussed in Section 3.5.1 are tested by turning back to our log-
ACD model44, this time modeling price durations with a threshold of C = 3
dollars45. The estimated parameters are summarized in Table 13.

The coefficient for the lagged intensity of trading, y1, is found to be negative for
Bitstamp and Btc-e. This indicates that after a period of high trading intensity, the
expected price durations become shorter, and thus the volatility becomes higher.
The clustering in the arrival times of transactions seems to influence the price
process in a statistically significant way. This is in accordance with the hypothesis
put forward by Easley and O’Hara (1992). For average volume, the coefficients
are again found to be negative, which is in accordance with the hypothesis that
higher transaction volume shortens expected price durations and raises volatility.

Using Eq. (3.8) we are now able to model volatility utilizing the extra information

43The standard deviation is very high compared to the mean.
44We use the log-EACD model, since there are unfortunately no simple expression for the

conditional hazard function if the generalized gamma distribution is used.
45This greatly reduces the number of observations in the sample, for Bitstamp it reduces from

872 992 down to 35 812 observations.
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in the included variables. Figure 12 plots this volatility for January and February
2014 for Bitstamp. We notice significantly higher volatility in February than Jan-
uary. The time of increased volatility corresponds well to the dates of the Mt.Gox
insolvency debacle that shocked the market in late February. The weakness of this
measure is that one cannot interpret the value in a straightforward way, however
it is still an appealing model because one can predict future volatility by using
information in past price durations. This may very well work as input in a Monte
Carlo simulation, replacing the EGARCH specification in our model in Section 5.
However we end this discussion here, by leaving the investigation between price
durations and volatility in Bitcoin for future research.

8.3 Discussion

If we try to analyze the results obtained in Section 8.1 and 8.2, the obvious result
is that for intradaily time horizons it is more risky to own bitcoins than Euro and
Gold: For a given interval the potential price impact is much bigger at the Bitcoin
exchanges, and the average time needed for a given change to happen is much
shorter. In order to put in into a more practical perspective, we will now shortly
discuss how this risk can impact the decision of which transaction medium to use.

While Gold is an excellent store of value and has been for quite some time, it is
not easily used as a medium of transaction – the amount of merchants accepting
Gold has dwindled the last few thousand years. When comparing it to Bitcoin
it therefore might be natural to compare it as a long term investment. Given
that we are focused rather on the short term fluctuations of the prices, we do
not further elaborate on the fact that on the intradaily level, Bitcoin is far more
risky than Gold. Fiat currencies on the other hand (as depicted by the Euro/USD
exchange rate) are the most common medium of exchange in the world today, and
will therefore be well suited for such an analysis.

If we look at uncertainty of value (exchange rate risk) as a cost of using a specific
transaction medium, we get a clearer picture as to why more and more merchants
are accepting Bitcoin as payment. When looking at the estimates for Bitstamp
in Table 8, we see that for the next 2 hours46 we are 90% sure that the Bitcoin
price will not have lost more than 2.46% of its value. Given that transaction fee is
voluntary, the total cost of a Bitcoin transaction primarily consists of the exchange
rate risk47.

46And on average confirmation will take considerable less time.
47Here we assume that one already owns the bitcoins, as there usually are fees related to the

purchase of bitcoins.



8.3 Discussion 51

For fiat currencies the picture is quite opposite. The estimated IVaR for Euro at
the 10% quantile with an interval length of 2 hours is only 0.20%, less than a tenth
of Bitstamp’s level. It is when it comes to transaction costs that fees for using
traditional systems really start adding up48 – credit cards for instance typically
have a transaction fee between 2-3% (Shy and Wang, 2011), while remittances like
discussed in Section 2.3 have above 8% fees on average.

The cost of added risk is not directly comparable to transaction cost since it is not
something one explicitly has to pay, but one can rather try to figure out which
alternative is the most desirable. Using Bitcoin, one is exposed to a changing
exchange rate, which means that some of the time you will have to pay more or
receive less bitcoins than what you thought at time of purchase, at the confidence
levels seen in Table 8 and Figure 4. What is interesting though is that we are
actually fairly sure that the exchange rate will drop less than the fiat transaction
cost, which you have to pay every transaction. Something that is important to
keep in mind though is that there will of course be situations where the value of
a bitcoin will drop more than the levels in Figure 8. For transactions sensitive to
exchange rate risk, it therefore seems smart to somehow hedge against this risk49

or just use an alternative transaction medium.

However, the Bitcoin exchange rate also has the possibility of not changing during
the given interval length, or even rise in value. Given that investing in Bitcoin
would actually have been one of 2013’s best investments with a whopping return
of over 4000%, it is no wonder that the number of people using or considering
Bitcoin as an alternative to traditional payment systems is quickly rising. While
the long term investment horizon is not the topic of this paper, we remark that if
you think the price of bitcoins is going to rise in the future, the average transaction
discrepancy50 should be in your favor.

As long as merchants charge the same prices for goods independent of the payment
method, sticking with traditional system of fiat currencies and credit cards seems to
be a safer alternative. Especially as long as holding bitcoins even for only a couple
of hours will expose you to considerable risk. However, if these factors change,
moving away from the obvious safety issues of leaving credit card information
online (see Section 2.3) will probably be tempting for more than just the Bitcoin
enthusiasts.

48Unless one uses cash, which is impossible for e-commerce.
49Like going short in bitcoins
50Difference between exchange rate at time of transfer and at time of confirmation.
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9 Conclusion

In this paper we have modeled the intraday risk in Bitcoin by using a log-ACD-
ARMA-EGARCH model. Based on this model we have then run Monte Carlo
simulations, in order to get an intraday Value at Risk estimate for the exchange
rate risk. We have then done the same analysis for the Euro/USD exchange rate
as well as the price of Gold, in order to be able to do a comparison between these.

The IVaR estimates clearly show that Bitcoin is by far the riskiest asset of the
three investigated when regarding exchange rate risk. Both Bitstamp and Btc-
e consistently have IVaR levels around 10 times or more above those of Euro
and Gold. The results of the price and return durations analysis give the same
conclusion – it takes considerably less time to move the Bitcoin price than the
price of Gold or the Euro/USD exchange rate.

However, as discussed in the previous section, the potential downside Bitcoin users
face is not discouraging. We are actually quite confident that the Bitcoin exchange
rate will drop less than the incurred costs of using traditional methods of payment
and money transferring. Users of the Bitcoin system should anyhow be cognizant
of who will be assuming the exchange rate risk when doing transactions, especially
when performing transactions that are sensitive to this risk. And while it might
create barriers for mainstream adoption, in our opinion the benefits that Bitcoin
promises should be enough to provide a viable alternative to the existing financial
system.

9.1 Key model characteristics and future work

In order to sum up, we shortly note some of the key characteristics of the model,
and also some areas that we think could be really interesting to explore if we were
to expand the analysis further.

Given that there is a relationship between durations and volatility, by explicitly
including the duration in the volatility specification we are better able to model
the return series. Also by making the modeling and simulating the whole trade
sequence, the IVaR estimate will have a higher information content than a model
which only uses observations at regular intervals. We also point out the flexibility
of the model: Once the model parameters have been estimated, IVaR estimates
can be estimated for any time horizon. From Figure 12 and Table 7 we clearly see
that even though the volatility in January and February were quite different, the
model still performs well during backtesting.
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The fact that the returns are assumed conditionally normal seems to give satisfac-
tory results during the backtesting, especially for the Bitcoin exchanges. However,
it would have been interesting to do the analysis again with something else than
the normal or Student t distribution, perhaps a multivariate distribution or an
extreme value distribution. What is also worth noting is that by converting the
irregular time series back to a regular spaced interval time series some informa-
tion will necessarily be lost. Making a Value at Risk estimate or some other risk
measurement that directly uses the irregular time series could therefore be an
interesting topic. Lastly we think that further elaborating on the instantaneous
volatility model in Section 3.5.1 would be really interesting. One could for instance
use this model or a modified version as the volatility specification when modeling
the returns, and thus use more of the information generated by the durations.
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A Appendix

A.1 More details on the workings of Bitcoin

A.1.1 The block chain and the mining process

A Bitcoin address is an identifier of 27-34 alphanumeric characters, that represents
a possible destination for a Bitcoin transaction51. The block chain is a big list of
all the transactions ever made, and thus by closer inspection one can find which
of these addresses that hold what balances. This ledger is publicly available, and
every computer connected directly52 to the Bitcoin network has a full copy of
it. Transactions are pooled into blocks that are ordered sequentially. Hence the
term, block chain, a chain of blocks. The network can then use the block chain
to distinguish between those transactions that are legitimate, and those trying to
use bitcoins already spent elsewhere.

In order to add a new block to the block chain, users compete to solve a hard
cryptographic problem53. The solution is known as a proof-of-work, and has to be
included in the block to ensure its validity. Once per block, a special transaction
is allowed: The transaction that creates new bitcoins54. These new bitcoins are
awarded to the user who find it. At the time of writing the reward is 25 bitcoins,
but this will halve every 210 000 blocks. In order to try to keep the rate at which
new blocks are found relatively constant at 10 minutes, the difficulty level of the
problem is increased when the computational power of the network increases55.
This makes the creation of new bitcoins predictable in both time and amount.
The process of trying to solve these cryptographic problems is popularly know as
mining, and the users who compete are thus known as miners.

The process that creates new blocks requires a lot of computational resources.
Today one can buy customized hardware for this process, and at the time of
writing the Bitcoin network has more than 800 times the hash power of the World’s
500 most powerful supercomputers combined (Fleishmann, 2014). The reward for
creating new blocks actually serves two purposes: In addition to increase the total
number of bitcoins in existence, it also subsidizes the maintenance of the block

51Further details about Bitcoin addresses is presented in A.1.3
52Running the full Bitcoin client.
53This is constructed in such a way that it is really difficult to find the solution, but once a

solution is know, verifying that it is valid is trivial.
54Remember from before that ”a bitcoin” does not actually exist. The creation of a new bitcoin

is thus just a special transaction.
55Otherwise the expected time until a solution is proposed would decrease.
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chain. However since the “production rate” declines over time, and there is a
limit on how many bitcoins there will ever be, miners need an additional incentive
to maintain the block chain. A transaction can therefore contain a voluntarily
transaction fee, which will be awarded to the miner who included the transaction
in the block chain. However, which transactions to include in the next block is
entirely up to each miner.

A.1.2 Bitcoin transactions

After a transaction is broadcast to the Bitcoin network, it may be included in
the next block that is published to the network. We say “may” because the next
block can already be full, or the creator of the next block might not include it. In
practice however, most transactions will be included even without a transaction
fee, as it will be beneficial for the miner to do so. In order to understand why,
we note that if transactions did not confirm, the Bitcoin network would not have
any value, and thus there would be no value in mining. Figure 6 illustrates this
point. It takes about an average of 10 minutes to confirm a transaction, which is
the same as the time between each block is added to the block chain.
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Figure 6: Average transaction time in minutes, per day (Jan 2013 - March 2014), source
blockchain.info.
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However in practice one confirmation is rarely considered “enough”. To be pro-
tected against double spending and invalid blocks, more confirmations are usually
needed56. Whenever a block is created after the transaction was first broadcast,
the number of confirmations is increased by one. Merchants, exchanges, individ-
uals and others that accept bitcoins as payment can set their own threshold on
how many confirmations are needed before a transaction is considered valid. The
standard adopted by most seems to be 6 confirmations (∼1 hour), and the offi-
cial Bitcoin client also shows transactions as ”unconfirmed” until 6 blocks confirm
the transaction. As illustrated by Figure 7, a transaction made at time t = 0 is
unconfirmed until 6 new blocks point back to the block with the transaction.
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Figure 7: Illustration of transaction in block chain.

A.1.3 Bitcoin addresses

Addresses can be generated at no cost by any user of Bitcoin. Most Bitcoin ad-
dresses are 34 characters, consisting of random digits and uppercase and lowercase
letters, beginning with the number 1 or 3. The number ”0”, the uppercase letter
”O”, uppercase letter ”I” and lowercase letter ”l” are never used to prevent visual
ambiquity. Several of the characters of a Bitcoin address are used as a checksum

56We refer the curious reader to Appendix A.1.4 for an explanation on these issues.
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so that typographical errors can be automatically found and rejected. This is also
to ensure that a 33-character, or shorter, address is in fact valid and is not simply
an address with a missing character.

Bitcoin uses public key encryption techniques for security. Simply put, it uses a
key pair that is mathematically related so that a user who knows one of these
keys can perform an action that the ”knower” of the other key can verify, but not
recreate. This allows the holder of the private key to prove to the public that
he/she has it. The public key identifies a Bitcoin address, while the private key
allows access to the bitcoins found at that address.

In a Bitcoin wallet, each address is represented by three numbers, the address itself
and the key pair. The public key is derived from the private key, and given the
computational power of computers today, deriving the private key from the public
key is essentially impossible. The address is linked to the key pair by being a
hash57 of the public portion of the key. From the public key it requires three steps
to derive the address, first by applying two hash functions, and finally adding the
checksum58. Simply put, the private key is used for sending bitcoins, the address
is used to receive bitcoins and the public key to make the network able to verify
the transaction.

Private keys are typically stored in the wallet file, for instance locally on a com-
puter, however paper wallets59 are also possible. The private key has one function:
It is needed to create valid transactions that spend bitcoins on the address. If the
private key to an address is lost, any associated bitcoins are effectively lost forever.
While this makes for amusing headlines in the news, see Hern (2013), it is now
estimated that around 15% of all mined bitcoins have been lost forever this way60

(Swanson, 2014).

A.1.4 More on the block chain

Each block contains:

• A timestamp

57A hash is the output of a hash function that maps data of arbitrary length to data of a fixed
length. It is used in cryptography because it is trivial to generate hash value from input data
and easy to verify that the data matches the hash, but near impossible to ”fake” a hash value.

58To ensure that mistyping one character does not send your bitcoins into a black hole.
59A mechanism for storing bitcoins offline as a physical document.
60The broader economic consequence of lost bitcoins is however marginal, one could argue

that the entire world–wide economy could operate on a single bitcoin, due to the divisibility of
bitcoin.
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• The hash of the previous block as a reference

• At least one transaction

• The Merkle Root

• The block’s own hash

• Difficulty statement

Every block contains a hash of the previous block, which creates the chain of
blocks from the genesis block to the current one. This ensures that each block
is guaranteed to come chronologically, because the previous block’s hash would
otherwise not be known. Each block is also computationally impractical to modify
once it has been in the chain for a while because every block after it would also have
to be regenerated. These properties are what make double-spending of bitcoins
very difficult.

Honest clients only build onto a block if it is the latest block in the longest valid
chain. Note that length in this sense is calculated as total combined difficulty of
that chain and not the number of blocks. A chain is valid if all of the blocks and
transactions within it are valid, and only of it starts with the genesis block. The
genesis block is the first block of the block chain.

As many miners compete to find the next block, there will be situations where
more than one valid block is discovered in a short time span. This is resolved
as one of the new chains progresses to a greater length, at which any client that
receives the newest block knows to discard the shorter chain. These discarded
blocks are referred to as orphaned blocks. This process also ensures that the
blockchain is considered impossible to forge, as long as most clients are honest.
When a transaction is submitted to the network, it is passed on peer to peer by
all clients.

Orphaned blocks are not used for anything and the chain of orphaned blocks are
referred to as an invalid chain. To resolve this, when a client switch to another,
longer chain, all valid transactions of the blocks inside the invalid chain are re-
added to the pool of queued transactions and will be included in another block.
The reward for the blocks on the shorter chain however is lost.

The Merkle Root is what makes it possible to verify Bitcoin transactions without
running a full network node61. Every transaction has a hash associated with it.
In a block, all of the transaction hashes in the block are themselves hashed62, and
the result is the Merkle root. This is included in the block header, and with this

61Running the Bitcoin client.
62Sometimes several times – the exact process is quite complex.
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scheme it is possible to securely verify that a transaction has been accepted by
the network by only downloading the tiny block headers63. One can not check the
transaction oneself, but confirm that a node in the network has accepted it, and
see that blocks added after it further confirm the transaction is accepted by the
network.
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- Block hash (Block ID) 
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- Version 
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Figure 8: Illustration of the block chain, block structure and transaction.

63Downloading the entire block chain, which at the time of writing has a size of approximately
18 GB, is thus unnecessary.
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Figure 9: Sample autocorrelation function for diurnally adjusted squared returns in es-
timation sample.
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Figure 10: Sample autocorrelation function for diurnally adjusted durations in estimation
sample.
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Figure 11: Probability density functions for diurnally adjusted durations.
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Figure 12: Instantanous volatility of the price at Bitstamp in Jan-Feb 2014.

Table 9: Weekday average for durations and squared returns.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Duration
Bitstamp 11.77 10.96 16.09 14.49 11.22 18.50 17.98
Btc-e 6.38 6.04 7.75 7.52 5.87 8.54 7.77
Euro 2.21 2.06 2.02 1.86 1.91
Gold 2.64 2.57 2.52 2.48 2.49
Square Return
Bitstamp 4.31E-06 7.53E-06 3.83E-06 2.65E-06 5.84E-06 3.03E-06 2.78E-06
Btc-e 2.55E-06 3.77E-06 2.53E-06 2.18E-06 3.31E-06 2.31E-06 2.41E-06
Euro 2.60E-10 2.67E-10 2.76E-10 3.72E-10 4.10E-10
Gold 1.97E-09 1.17E-09 1.39E-09 1.35E-09 1.55E-09
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Table 10: Average total trading volume across weekdays.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Average total volume
Bitstamp 225949 249756 146072 169985 255312 101948 120791
Btc-e 141099 172930 117036 123450 177096 88865 110069

Table 11: Return durations.

R 0.10 % 0.50 % 1 % 2 % 5 %
Bitstamp
Mean 0 min 24 sec 3 min 12 sec 14 min 34 sec 82 min 56 sec ∼12 hrs
St.Dev 1 min 27 sec 15 min 1 sec 64 min 17 sec 269 min 28 sec ∼27.5 hrs
Obs 208620 26525 5830 1024 118
Number of trades 4.18 33 150 851 7392

Btc-e
Mean 0 min 11 sec 1 min 50 sec 10 min 11 sec 67 min 3 sec ∼12.75 hrs
St.Dev 1 min 02 sec 11 min 5 sec 51 min 247 min 56 sec ∼35 hrs
Obs 473143 46563 8348 1267 108
Number of trades 4.78 49 270 1782 20453

Euro
Mean 187 min 12 sec ∼72 hrs ∼283 hrs — —
St.Dev ∼9 hrs ∼61 hrs ∼230 hrs — —
Obs 441 19 4 — —
Number of trades 12354 283019 1197352 — —

Gold
Mean 24 min 15 sec ∼10 hrs ∼38 hrs ∼145 hrs ∼957 hrs
St.Dev 162 min 28 sec ∼16 hrs ∼48 hrs ∼31 hrs —
Obs 3421 132 35 9 1
Number of trades 2625 67953 244209 940052 6874321

Table 12: Average price durations.

C 1 USD 2 USD 3 USD 5 USD 10 USD 20 USD
Bitstamp 0 min 30 sec 1 min 12 sec 2 min 22 sec 7 min 9 sec 41 min 20 sec 232 min 13 sec
Btc-e 0 min 14 sec 0 min 34 sec 1 min 19 sec 5 min 0 sec 29 min 41 sec 242 min 54 sec
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Table 13: Parameter estimates for log-EACD(m,q) model for price du-
rations with threshold C=3 USD. The model is specified as: ψi =

exp

(
ω +

m∑
j=1

αj

(
xi−j

ψi−j

)
+

q∑
j=1

βj log(ψi−j) + y1ζi−1 + y2υi−1

)
, where ζi−1 is the trading

intensity in the previous price duration, and υi−1 is the average volume per trade.

Bitstamp Btc-e
Parameters Estimate t-stats Estimate t-stats
ω -0.0474 -9.72 -0.0136 -5.07
α1 0.0858 21.84 0.1928 23.52
α2 -0.1637 19.21
β1 0.9468 186.56 1.3547 29.89
β2 -0.3663 -8.33
y1 -0.0312 -12.46 -0.0054 -7.88
y2 -0.0103 -9.62 -0.0120 -5.31
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