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Abstract

This paper presents an empirical analysis of the real options to postpone and cancel
sequential investments with time-to-build. Utilizing generator level data that to
the best of our knowledge is unique in scope and detail, we look at investments
in gas fired combustion and combined cycle generators. We find strong evidence
of real option effects. Regulatory uncertainty and profit uncertainty increases the
probability of companies postponing and canceling investments. Firms postponing
during times of uncertainty is as expected from theory; firms canceling under these
conditions is somewhat more surprising.





Sammendrag

I denne masteroppgaven presenterer vi en empirisk analyse av realopsjoner p̊a å
utsette og avbryte sekvensielle investeringer i gasskraftverk hvor vi tar hensyn til
tiden det tar å bygge kraftverkene. Datasettet som benyttes er unikt i omfang
og detalj. B̊ade investeringer i gassturbinverk og kombikraftverk er analysert,
og vi finner støtte for at realopsjonseffekter er til stede i beslutningsprosessen.
Regulatorisk usikkerhet og usikkerhet ang̊aende fortjenesten til gasskraftverkene
øker sannsynligheten for at selskapene utsetter og avbryter investeringene. Det
at beslutningstakere utsetter investeringer n̊ar de opplever usikkerhet er i tr̊ad
med realopsjonsteori, at de ogs̊a avbryter investeringene under slike forhold er mer
overraskende.





Contents

1 Introduction 1

2 Literature Review 3
2.1 Theoretical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Empirical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 U.S. Power Market Trends . . . . . . . . . . . . . . . . . . . . . . . 5

3 Context and Institutional Background 8
3.1 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Status Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Timing Issues of Independent Variables . . . . . . . . . . . . . . . . 12
3.5 Regulatory Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 Spark Spread and Spark Spread Standard Deviation . . . . . . . . . 15
3.7 Spark Spread Approximation . . . . . . . . . . . . . . . . . . . . . 19
3.8 Macroeconomic Factors . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9 Firm Specific Factors . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.10 Summary of Expected Effects of Independent Variables . . . . . . . 26

4 Full Sample Regression 28
4.1 Decisions to Postpone: Full Sample Regression . . . . . . . . . . . . 28

4.1.1 Individual and Multivariate Regressions . . . . . . . . . . . 28
4.2 Decisions to Cancel: Full Sample Regression . . . . . . . . . . . . . 31

4.2.1 Individual and Multivariate Regressions . . . . . . . . . . . 32
4.3 Multinomial Logistic Regression . . . . . . . . . . . . . . . . . . . . 36

5 Spark Spread Sample Regression 38
5.1 Decisions to Postpone: Spark Spread Sample Regression . . . . . . 39

5.1.1 Individual and Multivariate Regressions . . . . . . . . . . . 39
5.2 Decisions to Cancel: Spark Spread Sample Regression . . . . . . . . 42

5.2.1 Individual and Multivariate Regressions . . . . . . . . . . . 42

6 Summary of Regression Results 46

7 Conclusion 48

8 Acknowledgements 50

A Data and Independent Variables 55
A.1 Status Transition Figures . . . . . . . . . . . . . . . . . . . . . . . . 55



A.2 Macro Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.3 State Level Relative Planned Capacity . . . . . . . . . . . . . . . . 59
A.4 Regulatory Uncertainty Variable . . . . . . . . . . . . . . . . . . . . 60

B Statistics 61
B.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
B.2 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
B.3 Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.4 Discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
B.5 Hosmer-Lemeshow Test . . . . . . . . . . . . . . . . . . . . . . . . . 65
B.6 Classification Table and the receiver operating characteristics curve 67
B.7 Residual Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



1 Introduction

The purpose of this paper is to test for real option effects in sequential investment
with time-to-build and explore other factors that influence investment behavior.
Specifically we investigate the decisions to postpone, proceed and cancel invest-
ment in gas fired combustion and combined cycle generators. Our sample data
includes observations for U.S. plants from 1991 to 2011. The dataset contains
37,821 generator-year observations for 3,748 individual generators and is as far as
we know unique in scope and detail. A notable feature is that the dataset allows us
to explicitly observe the decision to cancel an investment. Since the data contains
information on the complete sample, including both planned projects and existing
plants, we avoid exclusion bias.1

In the observation period, especially in the late 1990s and early 2000s, there was
a lot of regulatory uncertainty as states evaluated restructuring measures. To test
for real option effects we create a regulatory uncertainty variable. We also create
a spark spread standard deviation variable to investigate real option effects as a
consequence of profitability uncertainty.

We find strong real option effects for both uncertainty variables, with increased
uncertainty leading companies to postpone investments. For canceling the findings
are more surprising as higher uncertainty also lead to more cancellation.2 The data
is analysed using two separate regression analyses. The full sample regression
includes all the years we have available data, i.e. 1991 to 2011. The second
regression is the spark spread sample regression and contains data from the years
2003 to 2011. This regression includes the spark spread standard deviation variable
that we could not create for the full regression due to a lack of wholesale price
data for the beginning of the time interval.

Two important themes in the paper are regulatory uncertainty and the decision to
cancel investments. We also focus on how the first affects the second. The decision
to cancel is highly relevant for policy makers as it affects the reliability of supply
and industry players will use their influence to keep changes that can yield this
result from happening.

We contribute to real option literature by providing an empirical analysis of se-
quential investments, an area where there has been done little research. We also
thoroughly investigate regulatory uncertainty and canceling, and provide argu-
ments for why regulatory uncertainty may actually increase the probability of
canceling under given circumstances, contrary to classic real option theory. The

1Exclusion bias occurs due to the systematic exclusion of certain individuals from the study.
2We discuss some possible explanations for this in Section 4.2.1 and 5.2.1.
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implications this has for policy makers are also briefly discussed.

Following Brennan and Schwartz (1985) and McDonald and Siegel (1986), the pio-
neers of real option theory, Majd and Pindyck (1987) published a noteworthy con-
tribution that is highly relevant to our study. They demonstrate that uncertainty
should have a depressive effect on investment spending in a sequential investment
process with time-to-build. These results match our findings. Even though most
industry decision makers probably do not explicitly utilize real option valuation
(Triantis, 2005), there may still exist some “rules of thumb” that factor in these
effects (McDonald, 2000). Several empirical papers find evidence of real option
effects, Quigg (1993) and Moel and Tufano (2002) are some examples. There have
also been papers that look into regulatory uncertainty in the electricity generation
industry. Ishii and Yan (2011) and Fleten et al. (2012), both find evidence of reg-
ulatory uncertainty having a depressing effect on investments. A more thorough
review of the significant literature is presented in the following section.

There are several noteworthy trends in our observation period that may influence
the results or the interpretation of the variables. One important phenomenon is
the collapse of the merchant market3. Following an investment bubble in the late
1990s, there was a collapse in investments as many independent power produc-
ers went bankrupt. This is described by among others Finon (2008) and Joskow
(2005). The consequence for our data is that a large number of observations are
clustered in these years. Another trend is the missing money problem, i.e. a re-
duction in the equilibrium installed capacity in some deregulated markets. This
comes as a consequence of the risk of capacity investment being moved from cus-
tomers to generator owners in the deregulation process, while there exist market
inefficiencies that keeps the companies from charging the scarcity value of elec-
tricity in situation of periodic shortage. Cramton and Stoft (2006) describes this
phenomenon. Relevant literature on trends in the U.S. power market are presented
in greater detail in Section 2.3.

The remainder of this paper is structured as follows, in Section 2 we present
relevant literature. In Section 3 the dataset and the chosen variables are described.
Section 4 discusses the results from the full sample regression and Section 5 the
results from the spark spread sample regression. Section 6 gives a short summary
of our main results. We then present our conclusions in Section 7. Appendix A
contains graphical representations of variables and transitions between investment
stages. Appendix B contains an extended statistical discussion of the results in
the full sample regression. The source code used to build the dataset and run the
regressions are written in Stata and is available from the authors.

3The merchant market refers to stand alone producers that sell all their production in the
short term market, without long-term contracts (Finon, 2008).
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2 Literature Review

In this chapter we first review the literature that lays the theoretical foundation
for our investigation in section 2.1. We then look at empirical results from other
studies in section 2.2, before we look at literature describing some developments
in the U.S. power market that may be relevant to our study, in section 2.3

2.1 Theoretical

The theoretical foundation for our real option investigation should be seen in the
context of earlier research on optimal investment decisions. Roberts and Weitzman
(1981) created a model that focuses on the importance of information gathering
and learning-by-doing in the investment process. The model reduces uncertainty
regarding the completed project for each consecutive stage of the investment pro-
cess. This way it can be profitable to continue with a project even though the NPV
in the early stages is negative. Their research is mainly related to R&D projects.
Bernanke (1983) and Cukierman (1980) consider irreversible investments with no
time-to-build and find that the uncertainty regarding future returns creates an
incentive to wait for more information before investing. This result is the opposite
of that of Roberts and Weitzman (1981).

Financial options theory was developed in the 1970s in order to accurately eval-
uate the value and optimal exercise boundaries of financial options (Black and
Scholes, 1973; Merton, 1973). Economists like Brennan and Schwartz (1985) and
McDonald and Siegel (1986) pioneered real option theory as they realized option
theory could be applied when evaluating real life investments. McDonald and
Siegel (1986) used a stochastic process to model future profits and showed, by
using option analogy, that the value of delaying an investment increases as uncer-
tainty regarding future profit increases. McDonald and Siegel (1986) get the same
results as Bernanke (1983) and Cukierman (1980) but their reasoning is different.
Bernanke (1983) and Cukierman (1980) stress the value of accumulating informa-
tion before proceeding while McDonald and Siegel (1986) refer to the increasing
call option value as uncertainty of the underlying asset increases. In the wake of
the paper by McDonald and Siegel (1986) follows a number of real option studies
and several ways for valuing real option projects, many of which are summarized
in textbooks such as Dixit and Pindyck (1994) and Trigeorgis (1996).

One paper of great relevance to our research is a study by Majd and Pindyck (1987)
using real options for sequential investment decisions with time-to-build. They

3



find, using contingent claims analysis4, that the irreversible investment decisions
can be very sensitive to the level of uncertainty. Investments under uncertainty,
evaluated with the NPV method, may therefore result in overinvestments. Their
results are in line with McDonald and Siegel (1986) and show that uncertainty
is likely to have a depressive effect on investment spending. Majd and Pindyck
(1987) also show that time-to-build is likely to increase this depressive effect. Milne
and Whalley (2000) correct an error in Majd and Pindyck (1987) and find that
longer time-to-build significantly reduces the effect uncertainty has on the optimal
investment threshold and that NPV calculations could be an adequate method
of evaluating projects with long time-to-build. Similar results are found by Bar-
Ilan and Strange (1996, 1998) where they account for the opportunity cost of
postponing investments by considering the forgone benefits of delaying investments
when future news are good. This means that in addition to the call option, the
firm possesses a valuable put option which increases in value as time-to-build
gets larger. Bar-Ilan and Strange (1996) also argue that increased uncertainty in
projects with long time-to-build could in some cases hasten the decision to invest.
Bar-Ilan and Strange (1998) show that the entry level trigger price is lower than
the second stage trigger price for a two-stage investment with suspension options
and lags. These results offer parallels to learning-by-doing models such as that
of Roberts and Weitzman (1981). Sødal (2006) corrects an error in Bar-Ilan and
Strange (1996) and show that investment lags are likely to decrease the depressive
effect of uncertainty and lower the entry level trigger price, but less so than argued
in Bar-Ilan and Strange (1996)’s model.

2.2 Empirical

Several studies have examined whether real option theory gives a good approxi-
mation of real life investment behavior. Quigg (1993) finds empirical support for
a model where market prices reflect a premium for the option to wait to invest
in land development. In their empirical study, Moel and Tufano (2002) find that
mine closures are influenced by the volatility and price of gold and that the real
option model is a good descriptor of how flexibility is handled by mining compa-
nies. Bulan (2005) shows empirically that both increased industry and firm-specific
uncertainty have a depressing effect on investments in the U.S. manufacturing sec-
tor. Dunne and Mu (2010) empirically model the investment process of U.S. oil
refineries and show that increased uncertainty decreases the likelihood of refiner-

4Contingent claims analysis is a common method for valuing investment opportunities. The
method assumes existence of spanning assets, i.e. traded assets that will exactly replicate the
returns of the investment project (Dixit and Pindyck, 1994)

4



ies modifying their capacity.5 These findings lend support to the irreversibility of
investment decisions, accounted for in real option theory. Kellogg (2010) studies
the Texas onshore oil drilling industry and finds that drilling activity responds to
changes in oil price volatility with a magnitude that is consistent with real op-
tion theory. Slade (2013) finds evidence for the effect described by Bar-Ilan and
Strange (1996, 1998) regarding how investment lags affect investment spending.
She studies optimal investment timing under uncertainty with time-to-build in the
copper mining industry from 1835 to 1986. Copper mines fit well into Bar-Ilan and
Strange (1996)’s model as there are substantial investment lags and considerable
copper price uncertainty. She finds that greater uncertainty encourages invest-
ment and lowers the price threshold when there is longer time to build. This is the
opposite of the effect described in Majd and Pindyck (1987)’s theoretical model.

Authors that have investigated real option effects of regulatory uncertainty in
electricity generation include, among others, Ishii and Yan (2011) and Fleten et al.
(2012) . Ishii and Yan (2011) explore empirically the investment behavior of firms
operating in the U.S. power sector under regulatory uncertainty from 1996 to
2000. They find a strong link between greater regulatory uncertainty and lesser
investment spending, suggesting an option value that leads firms to postponing
investments in power plants. Fleten et al. (2012) examine empirically the option
to abandon, startup and shutdown existing power plants in the U.S. between
2001 and 2009. They find that regulatory uncertainty decreases the probability
of shutting down operating plants and decreases the probability of starting up
shutdown plants. These findings lend strong support to real option theory as
higher uncertainty should decrease the probability of early exercise. These results
are in line with our postponing results. We use a similar analytical approach as
Fleten et al. (2012) in this paper.

2.3 U.S. Power Market Trends

As previously mentioned, our observation period include an interval with much
restructuring activity. To put our results in context, and provide an explanation
for several noteworthy phenomenons that may influence these, it is necessary to
have an understanding of the dynamics of the U.S. Power market in the relevant
years. Many of these events are connected with restructuring. Restructuring of the
electricity generation market in the U.S. has been happening at the state level since

5Dunne and Mu (2010)’s main uncertainty measure is the daily forward refining margin
spread, also referred to as the crack spread.
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the mid-1990s and several states have been deregulated.6 State level restructuring
activities slowed down in the early 2000s and there has been little activity after
this (EIA, 2014b).

One significant trend is described by Finon (2008), a wave of investments in com-
bined cycle gas turbines in the late 1990s following deregulations. Independent
power producers (IPPs)7 relying on highly leveraged project financing agreements
invested in merchant plants8, without long-term contracts. Many of these projects
went bankrupt in the early 2000s, as electricity prices fell and gas prices increased,
causing spark spreads to decrease (Finon, 2008). This strongly affects our results
since a large number of canceling and postponing observations are clustered in
these years. Following the collapse of the merchant power market and reduced
liquidity in the electricity forward market, the cost of capital for power compa-
nies increased as credit rating fell and risk preferences of financial players changed
(Joskow, 2005). This made it difficult to obtain financing for merchant generators
(Fraser, 2003). These observations are in line with Joskow (2005)’s note that the
late 1990s boom turned into a bust with plentiful generating capacity available
and many planned generators being canceled or postponed.

Another trend is described by Schubert et al. (2006), the introduction of compe-
tition moved the risk of capacity investment from the end users to the utilities.
Market inefficiencies, most importantly price caps that ensure that the utilities
cannot charge the scarcity value of energy in situations of periodic shortage, cre-
ates a “missing money problem” that is also described by Cramton and Stoft
(2006); Joskow (2006); Rodilla and Batlle (2012), among others. This in turn cre-
ates a resource adequacy problem since the investment level will decrease until the
number of days with capacity shortages is sufficiently large for the capped scarcity
price to cover capital investments. This could mean that there will be a shift in
the equilibrium reserve margin level.

Rodilla and Batlle (2012) argues that the restructuring process has actually in-
creased the need for regulatory intervention to guarantee supply, Borenstein and
Bushnell (2000) use the term “reregulation” to describe the same phenomenon.
The missing money problem, lack of long term markets, and other market imper-
fections following the restructuring process have created a lasting state of market

6In this case the term “deregulation” refers to the implementation of retail and/ or wholesale
competition, opening the market for new entry and moving the risk of investment in new gen-
erating capacity from the end user to the power producers. As we will see later in this section
there will still be regulatory intervention in a “deregulated” state.

7An IPP is an owner of electricity generation facilities that is not a public utility.
8Merchant plant as described by Finon (2008): “A stand-alone producer that sells all the

production on the short-term markets and without a long-term contract and develops its new
capacities under project financing by non-recourse debt”.
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immaturity with continuous regulatory intervention (Rodilla and Batlle, 2012).
As we try to measure regulatory uncertainty, this could possibly make this more
challenging.
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3 Context and Institutional Background

This section describes the data and variables used in the analysis. Primary data
sources are the Energy Information Administration (EIA), U.S. Federal Reserve
Bank (FED), wholesale electricity market system operators, North American Elec-
tric Reliability Corporation (NERC) and the Environmental Protection Agency
(EPA).

Form 860, published each year by EIA, is our main source of raw data. The
form collects data on the statuses of existing and proposed electric generators and
associated equipment in the United States. We use this form to obtain the yearly
status of all planned gas fueled combined cycle turbines and combustion turbines
in the United States from 1990 until 2012.9 The final dataset contains 37,821
generator-year observations for 3,748 individual generators, including all years each
individual generator has had its status reported to the EIA. Of these generator-
year observations, 9,886 observations are relevant for our regression analysis, as we
are only looking at the generator-years when status changes occur or investment
is delayed.

The data is analysed using two separate regression analyses. The full sample re-
gression includes all the years we have data from EIA to calculate status changes
and delayed investments, i.e. 1991 to 2011. This is the primary regression we
will focus on in this thesis and its results are presented in Section 4. The spark
spread standard deviation variable explained in Section 3.6 is excluded from this
regression due to lack of wholesale price data. The second regression is the spark
spread sample regression presented in Section 5 containing data from the years
2003 to 2011. This regression includes the spark spread standard deviation vari-
able, see Section 3.6, but omits the PCAP variable explained in Section 3.8. The
definition of the spark spread variable differ in the two regressions, as is discussed
in Section 3.6 and 3.7.

3.1 Generators

Our analysis assesses proposed combined cycle turbines fueled by natural gas
(CCGTs) and proposed gas fueled combustion turbines (GTs). The respective
prime mover10 codes for these generators in Form 860 are described in Table 1.

9Except from generators planned in the states of Hawaii and Alaska.
10A prime mover is a machine or mechanism that converts natural energy into work. In our

case, this machine is the turbine. We use the words generator and turbine interchangeably in
this paper.
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Table 1: Explanation of different prime mover codes for combined cycle turbines in Form
860

Code Description Explanation

CC Combined cycle total unit Used only in planning stage, when specific
generator details cannot be provided

CA CC steam turbine part
CT CC combustion turbine part
CS Combined cycle single shaft Combustion turbine and steam turbine share

a single generator
GT Combustion (gas) turbine

The heat rate data is gathered from EPA’s continuous emission monitoring system
(CEMS) data. CEMS only contains data for the whole combined cycle turbine, not
for the individual steam or combustion part, which makes it necessary to merge
the two parts. We have merged the capacity of the steam turbine part and the
combustion turbine part of the same generator found in Form 860 and named
them CCs (Combine Cycle Turbines) in our final dataset. This is done in order to
correctly merge the EIA data together with the data used to calculate heat rates
for each generator.11

The principle of a combined cycle gas plant is to use the exhaust from burning
natural gas in one or more combustion turbines to power one or more steam tur-
bines. The use of the otherwise wasted heat in the turbine exhaust gas results in
higher efficiency, lower flexibility and higher capital costs compared to simple cycle
combustion turbines. The combined cycle plants are usually used as intermediate
or peak load while combustion turbines are mainly used as peak load. Demand
spikes are handled by intermediate and peak load plants and the intermediate
load combined cycle plants usually are dispatched at a lower electricity price than
simple cycle combustion turbines due to their higher efficiency.

3.2 Status Changes

Each year almost every power company in the United States reports the status of
proposed generators to the EIA via Form 860. For predefined stages of a sequential
investment process, each generator is accounted for using a status code, see Table 2.
This code is the key variable of our research, as it reveals investment decisions made
each year.

11It is possible to merge the two datasets because of identical plant codes in EIA form 860
and the CEMS data.
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Table 2: Explanation of relevant status codes in Form 860 as of 2012. Each status
code represents a stage in a sequential investment except from IP, which represent a
cancellation of an investment

Stage Status Code Description

1 P Planned, no regulatory approval received
2 L Planned, regulatory approvals pending
3 T Planned, regulatory approvals received
4 U Planned, under construction <50 %
5 V Planned, under construction >50 %
6 TS Planned, construction complete but not in operation
7 OP Existing, operating
- IP Planned, canceled before completion

The definitions of the various status codes are not constant from 1990 until 2012.
Therefore we have made the necessary changes to the status definitions in order to
make them constant over time. The statuses are defined as in Table 3 in our final
data. The number of transitions made between the different investment stages are
outlined in Figure 5 and Figure 6 in the Appendix A.1.

Table 3: Simplified status codes used in our regression analysis

Stage Status Code Description

1 P Planned, no regulatory approval received
2 T Planned, regulatory approvals received
3 U Planned, under construction
4 TS Planned, construction complete but not in operation
5 OP Existing, operating
- IP Planned, canceled before completion

At all times, a company planning to build a new generator has three choices; it
can proceed, postpone or cancel the sequential investment process. We have EIA
Form 860 data from 1990 to 2012. The decision the company makes in year t will
be reported in EIA Form 860 in year t + 1. This is why we look at generator
decisions from 199112 to 2011 when we analyse our full sample data, as the newest
data available is EIA Form 860 from 2012 and the decisions registered in that form
were made in 2011.

We define the investment process as postponed if a generator is stuck with the same
status code for more than one year. The exception is time spent in status code

12The reason why we look at the decisions from 1991 and not 1990, is because of the timing
issues of the independent variables mentioned in Section 3.4. We do not have the necessary data
from 1989 in order to calculate the independent variables we need to analyse the 1990 decisions.
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three (U) because of time-to-build. The estimated average lead time is three years
for a combined cycle generator and two years for a gas combustion generator (EIA,
2009).13 Therefore we do not consider a generator postponed in the building phase
until the time spent in status U exceeds three years for combined cycle turbines
and two years for combustion turbines. Conversely, an investment is considered
to be proceeding if the status moves forward to a more advanced stage in the
following year or if a generator does not stay more than three years for combined
cycle turbines and two years for combustion turbines in building stage as explained
above. Canceling is moving from any of the planning stages in year t to cancelled
in year t+ 1. Figure 1 illustrates the occurrences of the three investment decisions
for each year.

Figure 1: Occurrences of the three different investment decisions by year from 1991 to
2011. The abnormally high activity in the years 1998-2002 are explained in Section 3.3.

3.3 Trends

As noted in Section 1 there was a wave of IPP investments in the late 1990s that
was followed by a collapse. This is visible in Figure 1. There is much activity,
especially in the form of proceedings, but also postponings in the years 1998 to
2002. In 2001 and 2002 there is also a large number of cancelings as the bubble
collapsed. This abnormal activity level following a period of deregulation and
expectations for further deregulation is a challenge for our analysis. 62.9 % of

13These average lead times does not change over the time period from 1997 to 2012 according
to the EIA, we assume the lead times to be equal to these numbers also before 1997.
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our proceeding observations are from the 1998 to 2002 period, with 50.2 % of the
postponing and 56.6 % of the canceling observations from the same period. For
canceling 52.9 % of the observations are from 2001 and 2002. To control for this
we have created a variable called PCAP that is described in section 3.8.

3.4 Timing Issues of Independent Variables

When considering how the independent variables affect the investment decision of
a generator owner we need to look at the data available at the time the decision was
made. We make the conservative assumption that the external data affecting the
decision in year t, revealed in year t+1, is not yet available for year t. We therefore
look at how the external data of year t − 1 affect the decisions in year t. Not all
the variables are defined in this way. The variables that account for the size of
the generators and the number of generators owned by each firm are not backward
looking as we assume this information is available by the decision makers in the
year each decision is made. The same goes for the regulatory uncertainty variable.
The different independent variables are defined in the following subsections.

3.5 Regulatory Uncertainty

The effect of regulatory uncertainty on electricity generation investment have been
examined by several authors, among others Ishii and Yan (2011); Fleten et al.
(2012); Fabrizio (2013). Still there exists no standard measure of regulatory un-
certainty. Most authors use binary indicator variables based on qualitative infor-
mation. Fabrizio (2013) investigates investment in renewable electricity generation
assets in states that have enacted Renewable Portfolio Standard (RPS) policies.
As a proxy for regulatory uncertainty she uses the state’s history of regulatory sta-
bility in electricity industry restructuring. Specifically, she defines states that have
enacted and repealed deregulation legislation as states with regulatory uncertainty.
Fleten et al. (2012) uses descriptive data from EIA and the fact that the process
in which competition is implemented has a distinct sequence to develop a retail
competition index, to identify the regulatory status of the individual states, as in
Table 4. For the purpose of proxying uncertainty they use a binary variable that
is equal to one for values of the index consistent with regulatory uncertainty and
zero otherwise. Ishii and Yan (2011) use the timing for passing of restructuring
legislation to create three binary regulatory uncertainty variables that are equal
to one respectively one, two and three years before the passing of legislation. The
intuition behind this is that power companies follow the restructuring process and
should be fairly sure if there is an imminent regulatory shift. Two or three years
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away from the decision however, they should experience more uncertainty as the
outcome most likely will not be certain. They also do a structural analysis where
they create a state level transition probability variable. This variable takes into
consideration the retail price in the state at the start of the observation period.

Table 4: Explanation of index values in the regulatory uncertainty index

Index value Description

1 No activity
2 Investigation underway
3 Competition recommended
4 Law passed requiring retail competition
5 Competition implemented.

The aforementioned papers use very different assumptions and methodology in
their attempts at capturing the effects of regulatory uncertainty. Ishii and Yan
(2011) focus on the timing of regulatory changes as they assume that restructuring
was considered inevitable. Fabrizio (2013) on the other hand focus on the stability
of the regulatory changes and past changes that have been repealed. Fleten et al.
(2012) uses the typical regulatory process with an investigation preceding any
legislation to pinpoint the years where options are being evaluated and the outcome
of the process hence will seem uncertain. We have chosen a similar approach to
Fleten et al. (2012), as we find the EIA descriptive data to gives a good overview
of the regulatory process in each state. The timeline vary considerably from state
to state, and we therefore believe that it is advantageous to try to create a variable
that fits the specifics of each state, as an alternative to making assumptions about
the duration of the process. Still, there are some factors that may not be captured
by using this source alone. Because of this we also include filters to account for
differences in low price states and the general uncertainty of the late 1990s. The
methodology is described below.

For our regulatory uncertainty variable we use the retail competition index defined
by Fleten et al. (2012) and Delmas and Tokat (2005) to create a binary indicator
variable we call REGUNCERT. Referring to the retail competition index, in a
state with an index number of two there is uncertainty regarding the introduction
of competition. In a state where the index is three, there is uncertainty regarding
the final form of the competition. Therefore the REGUNCERT variable is equal to
one for retail competition index values of two and three and equal to zero otherwise.
It is possible for states to move backwards on the regulatory uncertainty index.14

Even though we use the index defined by Fleten et al. (2012), all of the variable

14Examples of this include California in 2000/2001 and Arizona in 2003/2004
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entries may not be the same as we have evaluated the data from EIA (2014b)
ourselves.

In addition to this we also assume that many industry participants believed that
electricity restructuring was inevitable before the California energy crisis (Ishii
and Yan, 2011). Specifically we make the REGUNCERT variable equal to one
in regulated states in the years from 1996, when the restructuring in California
really started to move forward, to 2000 when the electricity prices in California
skyrocketed and there were rolling blackouts in the San Francisco area EIA (2000).
The California energy crisis in 2000 and the collapse of Enron in 2001 challenged
the deregulation trend and restructuring activity was to a large degree halted after
this (Duane, 2002; Fabrizio, 2013).

Differences in power prices between states have been a motivation for advocates
for expanded restructuring (EIA, 2000; Ishii and Yan, 2011). It seems reasonable
that states with a relatively high price level will have more incentive to implement
regulatory changes. The unknown timing and form of these changes can create an
environment of regulatory uncertainty. We use data on yearly average electricity
prices from EIA to rank the states from high to low each year. States that con-
sistently end up among the 25 % with the lowest prices, and have little regulatory
activity as described by EIA, are defined as having no regulatory uncertainty with
a REGUNCERT value of zero. When deciding whether a low price state qualifies
as a state with little regulatory activity, we use data from EIA (2014b), as we did
when building the regulatory uncertainty index. This determination process could
be seen as problematic as it will be a subjective qualitative exercise. To investigate
whether our evaluating what can be considered little regulatory activity creates
unusual results, we create a version of the variable without the low price filter.
For the results in sections 4 and 5, the effects have the same signs and significance
levels, the marginal effects only slightly change. The possibly controversial evalu-
ation is therefore not an issue in this paper. That said, interpretation will always
be a factor as we have chosen to use descriptive data to build the variable, and
the values could always be challenged.

By using the EIA descriptive data in combination with the assumption that there
existed a general regulatory uncertainty in regulated states in the U.S. between
1996 and 2000, except from in low price states with little regulatory activity, we try
to create a variable that capture as many aspects of the complex dynamics of the
electricity restructuring as practically possible. As there is no standard measure,
we believe that this hybrid version might capture regulatory uncertainty in an
advantageous way. The values our regulatory uncertainty variable takes in the
different U.S. states from 1990 to 2011 are outlined in Figure 13 in Appendix A.4.

Regulatory change may yield both positive and negative effects for power pro-
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ducers, dependent on among other things, their relative cost positions and the
prevalence of the missing money problem in the state, see Section 1. Deregulation
moves the risk of adding new capacity from the consumer to the power producers,
hence changing the incentives to invest (Finon, 2008; Wangensteen, 2011). Accord-
ing to real option theory, increased uncertainty of future profits should increase the
value of delaying the investment in order to gather more information. We expect
regulatory uncertainty to have this effect on the decision to postpone an invest-
ment. The effect of regulatory uncertainty on cancellation should be ambiguous as
it is determined by each individual company’s outlook to regulatory change. Some
firms will benefit from the deregulation and others will have to cancel because of
the expected increase in competition.

3.6 Spark Spread and Spark Spread Standard Deviation

The spark spread standard deviation variable is not included in the full sample
regression, but is presented as an integral part of the spark spread sample regression
in Section 5. The spark spread presented here is only used in the spark spread
sample regression, see Section 3.7 for the spark spread variable used in the full
sample regression.

Electricity prices in the U.S. are strongly dependent on natural gas prices. This
is because natural gas plants usually are being dispatched last to meet electricity
demand, historically due to high gas prices and the flexibility of gas-fired plants.15

Hence marginal pricing of electricity when gas is on margin is largely decided by
the marginal gas price.16 The high correlation between electricity and gas prices
during certain periods makes the two prices unsuitable on a stand-alone basis when
valuing generators.

The spark spread is a common metric for estimating the profitability of gas-fired
generators, and it gives a better picture of market conditions than electricity or gas
prices alone. Additionally, using the spark spread simplifies the analysis of invest-
ment decisions from a two-dimensional to a one-dimensional problem (Näsäkkäla
and Fleten, 2005). The spark spread is defined as the difference between the price
received for electricity production and the cost of burning the natural gas needed
for the generation of that electricity (Näsäkkäla and Fleten, 2005). We expect a
higher spark spread to have a negative effect on investors decision to postpone and
cancel a planned generator as this variable indicates higher profitability for the
proposed power plant. The daily spark spread is given by:

15At very high prices the marginal fuel is oil, which is even more expensive than gas
16Other factors that determine electricity prices are the level of customer load, the seasonal

variation of load, supplier risks and other non-energy costs
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SPRDik,n = P elec
k,n −HRi × P gas

n (1)

SPRDik,n [ $
MWh ] is the spark spread for generator i, in region k, on day n

P eleck,n [ $
MWh ] is the day-ahead electric price in region k on day n

HRi [MMBtu
MWh ] is the generator i heat rate (measure of efficiency)

P gask,n [ $
MMBtu ] is the price of gas on day n

The yearly average spark spread, the variable used in the spark spread sample
regression, is given by:

SPRDik,t−1 =
1

Nk,t−1

365∑
n=1

SPRDik,n

∣∣∣∣
t−1

(2)

SPRDik,t−1 [ $
MWh ] is the average spark spread for generator i in region k

in year t− 1

SPRDik,n [ $
MWh ] is the spark spread for generator i, in region k, on day n

Nk,t−1 is the number of days with available daily gas and electricity
price data for region k in year t− 1

We define the cost of production as the product of the generators heat rate and
the gas price; we ignore other costs and assume spark spread to be the variable
component of marginal profit.17 The heat rate is defined as the number of British
Thermal units (BTUs) required to produce one Watt hour (Wh). It can be thought
of as an inverse efficiency measure as a lower heat rate leads to higher efficiency.18

Daily spot prices for NYMEX Henry Hub natural gas are taken from the EIA
website, day-ahead electricity prices are taken from the respective sources referred
to in Table 5. Daily wholesale electricity prices going all the way back to 1990
do not exist for any of the U.S. states included in this research. Therefore we
use what prices are available and create the spark spread variable which we use
to calculate the spark spread standard deviation variable, in order to look at the
effect profitability uncertainty has on investments. We have enough price data to
run the spark spread sample regression on these variables from 2003 to 2011.

17Marginal cost effects from emission-, distribution-, maintenance- and other operational costs
are excluded, and the spark spread is therefore not an exact measure of profitability, but rather
an indicator of market conditions.

18MMBtu and MWh is related by a scale factor, 3.41275 MMBtu are equivalent to one MWh.

Thus the energy conversion efficiency can be calculated as η = Pout

Pin
=

3.41275MMBtu
MWh

HRMMBtu
MWh
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Table 5: Price data used in order to calculate spark spread. Due to timing issues, see
Section 3.4, we need data from 2002 to 2010 in order to account for the investment
decisions happening from 2003 to 2011. Most prices are gathered from EIA (2014a).

Region Years included Source

NYISO19 2002-2010 NYISO wepage
ISO-NE19 2002-2010 ISO-NE webpage

PJM 2002-2010 PJM webpage
MISO 2006-2010 MISO webpage
CAISO 2002-2010 EIA webpage
ERCOT 2002-2010 EIA webpage
SERC20 2002-2010 EIA webpage

SOUTHWEST20 2002-2010 EIA webpage
NORTHWEST20 2002-2010 EIA webpage

The calculated spark spread is not an observed value, it is constructed as a repre-
sentation of what the spark spread would have been had the proposed generator
been operating. We ignore the marginal increase in electricity supply and gas
demand due to adding one more combined cycle generator to the supply mix, as
we assume it is negligible compared to the total load when calculating the spark
spread for each individual generator. We define our regression variable used in
the spark spread sample regression as the standard deviation of last year’s spark
spread:

SPRDSDik,t−1 =

√√√√ 1

N

Nk,t−1∑
n=1

[SPRDik,n − SPRDik]2
∣∣∣∣
t−1

(3)

SPRDSDik,t−1 is the standard deviation of the spark spread for generator i, in
region k, in year t− 1

SPRDik,n is the spark spread for generator i, in region k, on day n in year
t− 1

SPRDik,t−1 is the average spark spread for generator i in region k in year t−1
Nk,t−1 is the number of days with available daily gas and electricity

price data for region k in year t− 1

For financial call options, higher volatility of the underlying asset increases the
option value and raises the optimal early exercise boundary price, thus creating

19For ISO-NE and NYISO we use real time spot prices not day-ahead prices.
20SOUTHWEST prices are calculated using Palo Verde hub prices, NORTHWEST prices are

calculated using Mid-Colombia hub prices and SERC prices are calculated using Entergy hub
prices. States are linked to the specific regions using maps from FERC (2014).
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incentives to delay investments (McDonald, 2006). The effect of uncertainty be-
comes ambiguous when considering real options on power plants with the ability
to ramp up and down the level of electricity production, as is the case for both
peak load plants and intermediate load plants (Näsäkkäla and Fleten, 2005). We
explain the two effects as follows:

1. Higher spark spread volatility increases the value of flexible plants with the
ability to ramp up and down production, hence encouraging these plants
to proceed with their investments in order to capitalize on the production
opportunities created by high uncertainty. We refer to this effect as the
flexibility effect.

2. As for financial call options, higher spark spread volatility should delay early
exercise of the investment, hence creating an incentive to postpone the in-
vestment and wait for more information. We refer to this effect as the call
option effect.

Peak load plants should be affected more by the flexibility effect compared to in-
termediate load plants due to their higher production flexibility. Base load plants
are unaffected by this effect due to their inability of ramping up and down produc-
tion. Intermediate load plants and even more so, base load plants, should be more
affected by the call option effect compared to peak load plants because longer time-
to-build is believed to increase the depressive effect uncertainty has on investment
spending (Majd and Pindyck, 1987).21 Investments in the larger intermediate and
base load plants are considered more irreversible than the peak load plant invest-
ments; this should also magnify the call option effect for intermediate load plants
compared to peak load plants. The ambiguous effects created by the spark spread
standard deviation on investments in flexible power plants should therefore cause
intermediate load plants to postpone their decisions more often than peak load
plants under profitability uncertainty. We also expect intermediate load plants to
be more likely to cancel investments relative to peak load plants during times of
high spark spread standard deviation due to the flexibility effect. It is hard to tell
which of the two effects will act the strongest on the generators in our dataset as
it consists of both intermediate and peak load plants. In Section 5 we test the
effect of spark spread standard deviation on intermediate and peak load plants
individually.

21This argument might not hold as shown by Milne and Whalley (2000) and Bar-Ilan and
Strange (1996, 1998), see Section 1 for a theoretical discussion regarding this issue.
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3.7 Spark Spread Approximation

This variable is created in order to have a representation of generator profitability
in the full sample regression. Spark spread is already defined in Equation (1) using
daily wholesale electricity data. The daily wholesale price data is not available for
all the years from 1990 to 2010.

We approximate an equivalent spark spread profitability variable based on state
level annual retail electricity prices gathered from EIA, Henry Hub natural gas
prices from Reuters and the generators specific heat rates from CEMS and EIA
Form 860. The development of annual retail electricity prices for each U.S. state
and the annual Henry Hub prices are illustrated in Figure 9 and Figure 8 re-
spectively in Appendix A.2. We call this regression variable RHH and it is given
by:

RHHis,t−1 =
P elec
s,t−1

100
¢
$

× 1000
MWh

kWh
−HRi × P gas

t−1 (4)

RHHis,t−1 [ $
kWh ] is the spark spread for generator i, in state s, in year t− 1

P elecs,t−1 [
¢

kWh ]22 is annual retail electricity price in state s, in year t− 1

HRi [MMBtu
MWh ] is the generator i heat rate (inverse measure of efficiency)

P gast−1 [ $
MMBtu ] is the annual Henry Hub natural gas price in year t− 1

We expect this variable to effect investment decisions in the same way the vari-
able constructed with Equation (1) does; a higher spark spread variable indicates
greater profitability hence has a negative effect on investors decision to postpone
or cancel a planned generator.

3.8 Macroeconomic Factors

In this section we present the variables that are related to the economic environ-
ment.

Relative Planned Capacity

The collapse of the merchant market, as described in Section 1 and 3.3, is visible in
our dataset. To control for the trend we create a variable by calculating the ratio

22Retail prices from EIA are quoted in ¢ per kWh.
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of planned capacity to installed capacity on the state level using installed capacity
data from EIA and planned capacity data from EIA Form 860. This variable is
only used in the full sample regression as the collapse of the merchant market is
outside the time frame of the spark spread sample regression. This variable is
named PCAP and is given by:

PCAPs,t−1 =
PLANCAPs,t−1

ICAPs,t−1

(5)

PCAPs,t−1 is the relative planned capacity in state s, in year t− 1
PLANCAPs,t−1 is the planned new additional capacity in state s, in year t− 1
ICAPs,t−1 is the installed capacity in state s, in year t− 1

High PCAP values indicates high levels of investment activity and could potentially
predict bubbles, such as the investment bubble prior to the merchant market
collapse, see Section 3.3. We expect it to have a positive effect on canceling,
due to the fact that canceling takes place in large numbers following the burst
of the bubble. It could be argued that the variable should have an ambiguous
effect as a bubble may last for several years, while a collapse could be quick. In
this scenario there would be many years with a high PCAP, positive investment
climate and little canceling, before the collapse and matching rush of canceling.
We also see this in our data and the variable is not ideal. Still, a collapse will
typically follow the peak, so the highest levels of planned capacity, should precede
the highest levels of canceling. We believe that the variable could control for the
collapse of the merchant market in a satisfactory way, and hence it should work for
this particular trend, which is the intension of the variable. Also, even though it
might be argued that the sign of the effect is not completely clear cut, the variable
captures the activity level in a direct way. This is equally important when faced
with phenomenon such as the collapse of the merchant market.

When comparing postponing to proceeding we expect the relative level of planned
capacity to have a negative effect. Even though there will be more postponing with
a higher activity level, we believe that there will be a relatively higher increase
in proceedings in a positive investment climate as investors rush to invest. When
there is a market collapse, postponing may not be a natural reaction as the collapse
can provide new information that undermines the assumptions made in the initial
investment analysis and makes canceling the preferred approach. Also, in cases
where the owner goes bankrupt, canceling may be the only alternative. Figure 2
illustrate of how this variable varies on a national level.
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Figure 2: PCAP: The figure gives the actual total planned capacity for the U.S. divided
by the total installed capacity in year t. In the regressions we use state level PCAP, the
graphic representaion of this can be found in Figure 12 in Appendix A.3. The obvious
jump in the years 1998 to 2002 coincide with the IPP investment bubble and collapse of
the merchant market as described in Section 1 and 3.3

The level of planned capacity will naturally depend upon the amount of proposed
generators getting canceled and the number of planned generators that turn in
to operating generators, affecting the level of installed capacity. This raises the
question whether the relative planned capacity variable is endogenous.23 This
should not be a problem in our case as the planned capacity variable is backward
looking as explained in Section 3.4. The causality loop is not a closed loop because
we look at the lagged value of relative planned capacity. The relative planned
capacity in year t − 1 will impact cancellations and proceedings in year t. The
cancellations and proceedings in year t will in turn impact the level of planned
capacity in year t but not in year t− 1.

Interest Rates

We use the risk free, ten-year U.S. Treasury note interest rate to investigate the
relationship between interest levels and investment decisions. Interest rates are
gathered from FED and its development is illustrated in Figure 7 in Appendix A.2.
We define the T10 regression variable in year t as the observed T10 interest rate

23Endogeneity occurs when there is correlation between an independent variable and the error
term in a model. Endogeneity can be defined as a causality loop between the independent and
dependent variable in a regression model i.e., X causes Y but Y also causes X.
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in year t− 1.

T10t−1 (6)

T10t−1 is the year t− 1 average ten-year U.S. treasury note interest
rate (rated AAA)

We expect higher interest rates to have a positive effect on investors’ willingness
to cancel or postpone investments. Higher rates will increase opportunity cost
of investing and cost of capital hence discouraging early exercise and reducing
investment (Dixit and Pindyck, 1994).

Referring to Figure 7 in Appendix A.2 it is obvious that the interest rate has
a negative trend in the observation period, and it visually appears to be non-
stationary.24 It could be argued that it has a similar effect as a negative time
variable. We assume that the interest rate is a stationary variable, with our sample
not being large enough for this to be obvious. We also assume that the interest
rate gives a good approximation for the cost of capital. With these assumptions, a
reduction in the interest level should yield relevant effects and the stationary issue
should not be a concern.

Reserve Margin

Demand for electricity fluctuates throughout the day. Since there currently are
no economically viable alternatives for storing large quantities of electricity, there
needs to be enough generating capacity to cover situations of high demand (Wan-
gensteen, 2011). To ensure this supply sufficiency there is a structure of base load,
intermediate load and peak load plants that produce at different levels of demand,
see Figure 3. Higher reserve margins will have a negative effect on the electricity
price (Fleten et al., 2012) and might because of this impact investment decisions.
We expect a higher reserve margin to lead to a more postponing and canceling of
investments as higher reserve margins means increased electricity supply which in
turn creates decreasing electricity prices.

The equilibrium reserve margin in each area will be influenced by the load structure
and regulations such as price caps (Finon, 2008).

24Stationarity means that the variable’s probability distribution is constant over time. Conse-
quently, parameters like variance and mean are constant over time. One runs the risk of obtaining
spurious regression results by including non-stationary independent variables.
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Figure 3: Load pyramid, created for illustration purposes. Double arrows indicate rela-
tive share of load distribution for each load category: Base, Intermediate and Peak

Reserve margin is defined to be the difference between the available installed ca-
pacity and the forecasted peak demand.

RMk,t =
(Ck,t −Dk,t)

Dk,t

(7)

RMk,t is the year t reserve margin for region k
Ck,t is the year t capacity in region k
Dk,t is the year t peak demand in region k

Capacity and demand data are taken from from North American Electric Reliabil-
ity Corporation’s electricity supply and demand database, the data is structured
into regions. The definition of the boundaries of these NERC regions have changed
twice between 1990 and 2012 as illustrated by Figure 11 in the Appendix A.2.
These changes are accounted for in our reserve margin calculations. The supply
and demand database is based on official EIA filings, and the projections in the
database are aggregated from the plans of capacity additions and retirements as

23



well as projections for demand of the individual power plants. The projections
thus come from the power plants themselves.

The newest data a decision maker in year t will have access to is the data pub-
lished in year t− 1. Therefore we use data from the supply and demand database
published in year t−1 when analysing decisions made in year t. The NERC data is
structured in such a way that the supply and demand data published in year t− 1
contains actual data for year t−2 as well as predictions of supply and demand data
for years t− 1 through t+ 8. The best estimate of year t reserve margin a decision
maker then can obtain in year t is the year t reserve margin that was predicted by
the NERC data published in year t− 1. Figure 10 in Appendix A.2 show how the
reserve margin variable for the different NERC regions have developed from 1990
to 2010. We define the variable as:

RM
pred(+1y)
k,t−1 (8)

RM
pred(+1y)
k,t−1 is the reserve margin prediction made in the year t− 1 electricity

supply and demand database for year t reserve margin in region k

The supply and demand database is publicly available and we assume decision
makers to some degree use these estimates when evaluating investment opportu-
nities in the different regions. Projections are not always the equivalent of actual
outcomes, which is also the case for the forward looking reserve margin estimates
provided by the North American Electric Reliability Corporation. We calculate
the absolute value of the difference between the predicted reserve margin and the
actual reserve margin revealed by NERC two years later. The average estimation
error for all relevant regions and years is 4.5 percent points. We think this error is
relatively high as the average reserve margin over the same sample is 14.8 % with
a standard deviation of 5.8 %. Still, these estimates are what is available and even
though they do not precisely predict the future, they provide an indication of the
reserve margin expected by the market.

3.9 Firm Specific Factors

Firm Size and Generator Size

Large firms will on average be more diversified and have larger opportunity to
subsidize less profitable plants (Moel and Tufano, 2002). These reasons arise from
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having a greater likelihood of presence in different geographical regions and of being
vertically or horizontally integrated. Large firms will also experience economies of
scale, have access to more expertise and have the option of moving resources from
one plant to another, giving these companies more flexibility in their decisions.
As a measure of firm size, we use the variable TG, the total number of existing
operating generators owned by the firm.25 As described in Section 1 the collapse
of the merchant power market in the early 2000s led to a wave of canceling and
postponing, and since this was primarily an IPP bubble, it should support the
expectation that large companies proceed more.

Power producers face the trade-off between investing in large plants with low costs
per unit, or adding capacity in smaller amounts more frequently at a higher cost per
unit. Uncertainty over future demand should influence how companies evaluates
the trade-offs between scale and flexibility (Dixit and Pindyck, 1994). Different
sized generators may also be subject to different market conditions and economies,
given that they may have different places in the load hierarchy. We investigate how
the capacity size of a planned generator influences investment decisions. For this
we use the variable SIZE, which measures the summer capacity of each generator
in Megawatt (MW).

25An alternative measure could have been the total installed capacity
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3.10 Summary of Expected Effects of Independent Vari-
ables

As noted by Dixit and Pindyck (1994), it is important to be careful when eval-
uating the effects of individual variables as these are unlikely to be independent
of each other. An example of this might be the risk free interest rate. A higher
risk free rate should when evaluated in isolation depress investment. However,
a positive change in the interest rates may coincide with economic growth that
may simultaneously change the expected demand and hence the reserve margin,
making the individual effects difficult to interpret. Table 6 presents a summary
of the expected stand-alone marginal effect for each independent variable on the
various investment decisions.
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Table 6: The table presents a summary of the expected marginal effect of each variable on the different decisions
as well as a reason for why we expect this effect. The expected sign of the marginal effect is given in parentheses
for each variable and decision. A plus sign predicts a positive marginal effect and a minus sign predicts a negative
marginal effect.

Sign of expected marginal effect &
explanation of prediction

Variable Postpone(1) vs. Proceed(0) Cancel(1) vs. Proceed(0)

REGUNCERT (+) According to real option theory (+/-)We expect regulatory uncertainty

increased uncertainty of future profits producers to have an ambiguous effect on

should increase the value of delaying the decision to cancel vs. the decision

the investment in order to gather to proceed. The effect will be determined

more information. by each company’s outlook to regulatory

change. E.g. cost benefits or the

missing money problem will

determine this.

SPRDSD (+/-) Higher profitability uncertainty raises (-) Higher price uncertainty is beneficial

the early exercise boundary value. However, for power plants with the option to ramp up

the variable has ambiguous effects on peak- and down their electricity production,

and intermediate load plants discouraging cancellation.

(See Section 3.6).

T10 (+) Higher interest rates will increase the (+) Higher interest rate increases the cost

opportunity cost of investing hence of capital, reducing investment.

discourage early exercise.

PCAP (-) A high activity level should motivate (+) Investors should be prone to cancel their

more proceeding, and canceling if there investments if too many generators are being

is a bubble. Higher PCAP should hence planned in a region. A high PCAP

give less postponing. should because of this give more canceling.

RM (+) Higher reserve margin implies lower (+) An increase in available generating

profitability, decreasing the value of capacity increases supply, hence

the underlying investment, thus decreasing decreasing electricity prices

the opportunity cost of delaying the and encouraging cancellation.

project and discouraging early exercise.

RHH/SPRD (-) A higher spark spread indicates higher profitability for the proposed

generator thus discouraging postponing and cancellation of planned capacity

TG (-) Larger firms have the benefits of economies of scale and are more diversified. These

effects should increase the probability of proceeding.

SIZE (+/-) How size effects investment decisions should depend on uncertainty of future demand,

this level of uncertainty will decide whether investors prefer scale or flexibility. As we

make no assumptions for future uncertainty, we believe size will have an ambiguous effect.
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4 Full Sample Regression

In this section we use the full sample regression to analyse how the variables pre-
sented in Section 3 affect the decision to postpone, proceed or cancel a sequential
investment in gas fired combined cycle and combustion turbines. We study the
decisions individually in individual logistic regressions and study all the variables
together by performing a multivariate logistic regression. We end the section with
a short look at a multinomial regression with respect to both the cancel and post-
poning variables.

4.1 Decisions to Postpone: Full Sample Regression

Here we investigate the factors that affect a firm’s decision to postpone a planned
investment. We have a total of 8,403 relevant generator-year observations, of which
4,399 generators were postponed and 4,004 generators proceeded with the invest-
ment. Multicollinearity is not an issue in the full sample postponing regression as
the correlations between the independent variables are low. A Hosmer-Lemeshow
test for the postponing regression confirms that the model fits the data and the
receiver operating curve tells us that the model is more likely to correctly predict
investment behavior than a random model. All these statistic test results are dis-
cussed in detail in Appendix B. The individual and multivariate regressions are
presented in Table 7.

4.1.1 Individual and Multivariate Regressions

We use the multivariate logistic regression in Equation (9) to analyse decisions to
postpone. See Appendix B.1 for an explanation of the logistic regression and how
the regression results can be interpreted.

DV postponing
i,t = F (β0 + (β1 ×REGUNCERTs,t) + (β2 × T10t−1)

+(β3 × PCAPs,t−1) + (β4 ×RMpred(+1y)
k,t−1 ) + (β5 ×RHHis,t−1)

+(β6 × TGi,t) + (β7 × SIZEi))
(9)

We use average marginal effects to evaluate the direction and significance of how
each independent variable affect the decision to invest. A significantly positive
marginal effect means that the an increase in the value of the independent vari-
able will increase the probability of postponing, a negative marginal effect means
a higher value of the variable wil lead to proceeding. The marginal effect of the
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DV postponing
i,t is the binary dependent variable which is one if a firm postponed

generator i in year t, and zero if the investment proceeded
REGUNCERTs,t is an indicator variable which is one if there was regulatory uncer-

tainty in state s for year t, and zero otherwise
T10t−1 is the ten-year U.S. Treasury note interest rate in year t− 1
PCAPs,t−1 is the relative planned capacity in state s, in year t− 1

RM
pred(+1y)
k,t−1 is the year t− 1 prediction of reserve margin in region k in year t

RHHis,t−1 is the spark spread for generator i in state s, in year t− 1
TGi,t is the total number of existing generators owned by the owner of

generator i, in year t
SIZEi is the summer capacity of generator i
F (·) is the logistic cumulative density function

binary variable REGUNCERT can precisely be interpreted as the change in prob-
ability of a generator being canceled or postponed when the independent variable
changes from 0 to 1. The marginal effect of continuous variables is explained in
more detail in Appendix B.1. In order to identify and rank the most important
variables in our regressions we use the Wald test to check the significance of each
variable in the individual and multivariate regression. McFadden Pseudo-R2 and
the log pseudolikelihood for each regression is included in the result tables for the
interested reader.26

From Table 7 we see that the regulatory uncertainty variable is significant at the
1 % level with a positive marginal effect of 0.089 and 0.058 for the individual and
multivariate regressions respectively. In other words, firms are 8.9 % more likely
to postpone planned generators under regulatory uncertainty for the individual
regression and 5.8 % more likely according to the multivariate regression. We
put the most trust in the results from the multivariate regression as it considers
other explanatory variables in combination with regulatory uncertainty. By solely
analysing the individual regressions we risk misinterpreting to what degree the
individual variable is responsible for the investment behavior as we ignore other
factors that could have an even stronger effect. A positive marginal effect for
regulatory uncertainty is in line with Fleten et al. (2012)’s finding that reactivation
of previously shut down plants are more unlikely under regulatory uncertainty, Ishii
and Yan (2011)’s findings that increased regulatory uncertainty leads to postponing
of investments in generation capacity and Billingsley and Ullrich (2012)’s results
that regulatory uncertainty has a depressive effect on investment. It also fits well
with the real option theory from among others Majd and Pindyck (1987).

26McFadden Pseudo-R2 is referred to as McFadden P-R2 and log pseudolikelihood is referred
to as Log P-L in the result tables
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Table 7: The table presents the average marginal effects (dProb(Postponing)/dx) for each
independent variable both individually and in the multivariate analysis. The last column
represents the results of the multivariate regression. The average marginal effects for
REGUNCERTs,t is measured for the discrete change from zero to one. ***, ** and *
describes 1%, 5% and 10% significance level respectively.

Postponing

REGUNCERT 0.089*** 0.058 ***
T10 0.085*** 0.092 ***
PCAP -0.225*** -0.278 ***
RM 0.436*** 0.366 ***
RHH 0.004 -0.008 ***
TG -0.005*** -0.006 ***
SIZE 0.001*** 0.001 ***

Statistics

McFadden P-R2 0.42 % 2.60 % 0.91 % 0.25 % 0.03 % 0.93 % 1.30 % 7.61 %
Log P-L -5 791 -5 665 -5 762 -5 801 -5 813 -5 761 -5 740 -5 373

All the macro variables are significant at the 1 % level for both the individual and
multivariate regressions. The relative planned capacity has a negative effect as
anticipated. A rush of new investment plans should indicate a positive investment
climate, thus it seems natural that there should be relatively larger growth in the
decision to proceed compared to postpone. The positive effect of the interest rate
variable indicates that higher interest rates discourage early exercise of the option
to invest. It appears reasonable that a high cost of capital would slow down the
investment pace. Referring to the discussion about stationarity in Section 3.8,
these effects could also possibly be time effects, and simply indicate that there
were fewer investments in the early years. Reserve margin also has a positive
effect; generator owners in states with high values of predicted reserve margins
are more likely to postpone investments. Since a high reserve margin implies low
profitability, this is as expected.

Companies that own many generators postpone less and the effect is significant at
the 1 % level. Large companies may be more robust to make long term decisions
and be less dependent on short term variations. Another factor is that the large
companies in our sample are more likely to be utilities and state power companies
that may not have to take the same profitability considerations as the other com-
panies in our sample due to a guaranteed fair rate of return. These companies will
to a large extent base their investment decisions on the future capacity needs in
their areas of service. These considerations would most likely not be as volatile as
some of the variations that could affect profitability calculations, such as electricity
and gas prices.
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The variable for generator size is significant at the 1 % level, with large generators
being postponed more than smaller generators. Even though we had an ambiguous
expectation to this variable as we make no assumptions to the level of future
uncertainty, there might be a straight forward explanation for the observed effects.
As a larger generator on average will have longer lead time and be less flexible,
uncertainty will have a greater influence on the value. With a short lead time
technology there will be less of a difference between the conditions at the point of
making an investment decision and the point of the generator being operational,
as compared with a long lead time technology. The value of the finished project
is because of this more uncertain. We also have to consider that some of our
observations of large generators being postponed may not actually be genuine
postponings. As we use standard lead times from EIA (2009), it may be the case
that some of the larger generators actually have longer lead times.

The spark spread approximation is not significant in the individual regression, but
has the expected negative effect and is significant at 1 % in the multivariate regres-
sion. Looking at the multinomial regression of Section 4.3 we see that the variable
is significant at the 1 % level for both the individual and multivariate regressions,
but with a positive marginal effect. We do not have a good explanation for the
seemingly spurious results of this variable. It might be that it does not capture
the effects we intended in a satisfactory way. Creating a more robust measure of
generator or firm level profitability or predicted future profitability would most
likely be a significant improvement for our model. An initial improvement of this
variable is introduced in the spark spread regression model in Section 5 where we
use daily wholesale electricity prices instead of annual retail electricity prices.

4.2 Decisions to Cancel: Full Sample Regression

In this section we study how the different variables affect a firm’s decision to cancel
a planned investment. We have a total of 5,487 relevant generator-year observa-
tions, of which 1,483 generators were canceled and 4,004 generators proceeded
with the investment. Multicollinearity is not an issue in the full sample cancel
regression as the correlation between the independent variables is low. Goodness
of fit for the cancel model is assessed using a Hosmer-Lemeshow test. We do not
get a good fit for the cancel model. The test primarily measures the predictive
power of the model. High predictive power is not the primary goal of this study;
the focus is rather testing the effects of the various chosen variables on investment
behavior. With our large dataset, only seven explanatory variables, no interaction
variables and lumpy occurrence of events it is natural that the Hosmer-Lemeshow
test yield such results. The receiver operating curve for the cancel regression tells
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us that the model is more likely to correctly predict investment behavior than a
random model. All these statistic test results and other statistics are discussed
in detail in Appendix B. The individual and multivariate logistic regressions are
presented in Table 8.

4.2.1 Individual and Multivariate Regressions

We use the following logistic regression in our analysis of decisions to cancel:

DV cancel
i,t = F (β0 + (β1 ×REGUNCERTs,t) + (β2 × T10t−1)

+(β3 × PCAPs,t−1) + (β4 ×RMpred(+1y)
k,t−1 ) + (β5 ×RHHis,t−1)

+(β6 × TGi,t) + (β7 × SIZEi))
(10)

DV cancel
i,t is the binary dependent variable which is one if the firm canceled

a proposed generator i in year t, and zero if they proceeded. All
other variables are defined as in Section 4.1.

As in the postponing regression, the regulatory uncertainty variable is significant
at the 1 % level with a positive marginal effect for both for the individual and mul-
tivariate regressions, as shown in Table 8. However, when referring to the available
literature the results may be more surprising as many authors find that increased
uncertainty increases the value of the option to invest, hence this should not in-
duce agents to cancel investment, see Section 1. Tesiberg (1993) describes how
asymmetric uncertainty in regulated industries may make canceling the optimal
decision under regulatory uncertainty. Most of the theoretic literature, e.g. Majd
and Pindyck (1987) and Brennan and Schwartz (1985), uses unregulated models
that assumes symmetrical uncertainty. However in a regulated or partially regu-
lated industry like the electric generation industry, regulatory profit restrictions
may create asymmetric uncertainty and hence asymmetric risks. These restrictions
exist in different forms, and will create an asymmetry unless there are similar loss
restrictions.

Tesiberg (1993) reports how utilities reduced investment as they perceived a change
in the regulatory environment with regards to expenditure allowance. Even though
we have no indication that this is the case in our observation period, we believe
that there may exist a similar uncertainty asymmetry in the case of deregulation.
Due to price caps, rate freezes and other limitations, a company that is already
making a fair rate of return on investments with little downside, might find itself in
a situation with a full downside, but not a full upside. This possible phenomenon
is related to the missing money problem described in Section 1.
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As previously mentioned, Ishii and Yan (2011) assumes that restructuring was
considered inevitable before year 2000. If companies had this expectation, then
the uncertainty would be related to timing and the form of the deregulation. From
past experiences with deregulations, there would most likely be a subset of alter-
native outcomes. If a firm considers all of these alternatives disadvantageous, and
considers this to be the full set of outcomes, there will effectively be no uncertainty.
The company will believe that it is inevitable that the process ends with a negative
result, and hence canceling could seem like the optimal choice. This could happen
in parallel to other investors experiencing uncertainty regarding the outcome due
to different objectives, or because the assumption of inevitable restructuring is not
shared.

Postponing generator investment is the equivalent of keeping an option to build
a generator later. As there can be costs associated with postponing, this option
may not be free. It is necessary that the option value is greater than the option
price for postponing to be optimal in the face of uncertainty. There will naturally
also be costs associated with canceling. Potential site cleanup would most likely
be the main cost, but there can also be partial reversibility, meaning that the
company could for instance sell some of the installed machinery and collect a
salvage value. For canceling to be optimal when there is uncertainty, the net cost
of canceling would have to be less than the expected cost of postponing, given that
the cost of postponing is larger than the option value and the cost of canceling is
negative. Because of this it may sometimes be optimal to cancel an investment
when uncertainty increases.

Table 8: The table presents the average marginal effects (dProb(Canceling)/dx) for each
independent variable both individually and in the multivariate analysis. The last col-
umn represents the results of the multivariate model. The average marginal effects for
REGUNCERTs,t is measured for the discrete change from zero to one. ***, ** and *
describes 1%, 5% and 10% significance level respectively.

Cancel

REGUNCERT 0.088*** 0.056 ***
T10 0.062*** 0.069 ***
PCAP 0.158*** 0.063 ***
RM -0.191* 0.293 ***
RHH -0.039*** -0.046 ***
TG -0.007*** -0.007 ***
SIZE 0.001*** 0.001 ***

Statistics

McFadden P-R2 0.57 % 1.73 % 1.07 % 0.07 % 3.75 % 1.38 % 0.45 % 9.27 %
Log P-L -3 183 -3 146 -3 167 -3 199 -3 082 -3 157 -3 188 -2 905
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We believe that the common theoretical view of uncertainty might sometimes not
capture all necessary real world aspects in practice. As we mention in the previous
paragraph there can sometimes exist asymmetric uncertainty. We also believe that
regulatory uncertainty can have different effects for different companies. An IPP
would clearly view regulatory uncertainty in a regulated state as something posi-
tive, there will be a possibility of going from not being allowed market access to
being able to enter the market and compete. A utility might view this in a different
fashion, even when disregarding the aforementioned asymmetry. Larsen and Bunn
(1999) mentions the unprecedented strategic uncertainty previously regulated com-
panies face as a consequence of deregulation. Companies that have previously been
sheltered from competition may have to compete with firms that have long experi-
ence with competitive markets. Differences in cost position and financial strength
may also contribute to different outlooks on regulatory uncertainty.

When moving from a regulated stable situation, to a state of regulatory uncer-
tainty, the perceived chance of competition being implemented goes from close to
zero to a significant level. If the company in question regards its own ability to
compete as inferior, this means that the probability of a negative outcome has
increased and because of this, investment might not appear as beneficial as orig-
inally intended. This may make the company inclined to cancel the investment
as it possibly will want to make itself more flexible or invest in other parts of the
organization. The thinking of the organization may have to change as a result
of the possible future strategic uncertainty and the organization would possibly
prefer a proactive stance rather than waiting. Also, companies that are actively
tracking the deregulation process may perceive uncertainty to a lesser degree than
we assume. By being involved in the process they could be confident about the
outcome before the formal decision has been made, and because of this it is pos-
sible that some of our observed cancelings under regulatory uncertainty actually
happened as the generator owner concluded about the uncertainty outcome.

The marginal effect of relative planned capacity is positive and significant at 1 % for
both the individual and multivariate regression. A high level of planned capacity
in a state increases the probability of canceling investments, this seems reasonable
as very high levels of planned capacity could indicate an excessive investment level
and thus lower future profitability. As in the case of the postponing regression, the
interest rate variable has a positive effect that is significant at the 1 % level for both
regressions. Higher interest rates makes investments less profitable and it seems
natural that this could cause more canceling of no longer profitable investments.

In the case of reserve margin, the variable has a negative effect significant at the 10
% level for the individual regression and a positive effect significant at the 1 % level
when the other variables are included. Looking at the multinomial regression in

34



section 4.3 the variable still does not yield consistent results. The increased adop-
tion of demand response mechanisms27 and the expectations for future demand
response mechanism in the later years, may help explain our spurious reserve mar-
gin results. NYISO, PJM, MISO, ISO-NE and several other regional transmission
organizations have demand response programs (Cappers et al., 2010). Increased
demand response resources will reduce prices in periods of scarcity28 and utilities’
expectations for this development can therefore influence their behavior for a given
level of reserve margin. As advances in real time price signaling is made possible
by technological development, Walawalkar et al. (2010) describes an expectation
for increased demand response participation in the future. This may influence
current investment decisions without being captured by our model, and a given
reserve margin may be viewed inconsistently by generator owners at different times
in our observation period. The missing money problem from section 1, could also
yield a similar effect. For varying severities of the missing money problem, there
will exist different equilibrium reserve margins that will give a sufficient number
of days with high prices to recover capital costs. This could also lead to the event
that a certain level of reserve margin has dissimilar effects at different times.

The spark spread approximation variable is significant at the 1 % level and as ex-
pected higher values decreases the probability of canceling. The variable indicates
profitability and it appears intuitive that reduced profitability should lead to more
canceling of investments.

Canceling occurs less for companies that own many generators. This is as antic-
ipated, and several explanations can be offered. The diversification and financial
flexibility that large companies are more likely to experience is one such explana-
tion (Moel and Tufano, 2002). The fact that the early 2000s collapse of the mer-
chant market was primarily an IPP driven bubble is another. And, as mentioned
in section 4.1.1, larger companies in our sample are more likely to be companies
that have some form of loss restriction.

Larger generators are canceled more than small generators and the variable is sig-
nificant at the 1 % level for both regressions. We expected an ambiguous effect, the

27Demand response defined by Cappers et al. (2010) “Changes in electric usage by end-
use customers from their normal consumption patterns in response to changes in the price of
electricity over time, or to incentive payments designed to induce lower electricity use at times
of high wholesale market prices or when system reliability is jeopardized.”

28Electricity traditionally has almost perfectly inelastic short term price elasticity of demand,
primarily because of customers not being able to observe instantaneous prices. Demand response
mechanisms make demand more elastic, and because of reduction in demand in periods of scarcity,
prices in these periods will be reduced. Demand resource resources are treated like capacity in
many markets and because of this you could also view the aforementioned reduction of demand
as an increase in supply.
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positive effect can possibly be explained by the general shift in industry preference
towards smaller, less capital intensive technologies described by Tesiberg (1994).

4.3 Multinomial Logistic Regression

DV multi
i,t = F (β0 + (β1 ×REGUNCERTs,t) + (β2 × T10t−1)

+(β3 × PCAPs,t−1) + (β4 ×RMpred(+1y)
k,t−1 ) + (β5 ×RHHis,t−1)

+(β6 × TGi,t) + (β7 × SIZEi))
(11)

DV multi
i,t is an indicator variable equal to zero if the company invested(base), one

if the company waited and two if the company canceled a generator i in
year t. All other variables are defined in section 4.1

The multinomial regression allows simultaneous modeling of all three choices, pro-
ceeding, postponing and canceling. The results for the most part matches the
results obtained in the regressions of section 4.1.1 and 4.2.1. The main difference
stems from the variables that displayed unexpected behavior. For canceling, re-
serve margin is not significant in the full regression. The change of sign between
the individual and multivariate regression is the same as in the previous regression.
For postponing, the spark spread approximation is significant at 1 % with high
values of the variable indicating an increased probability for postponing. This is
the opposite of what we expected and different from the negative effect in the mul-
tivariate regression of section 4.1.1 and the insignificant result from the individual
regression in the same section. Also regulatory uncertainty is significant at the 5
% level for postponing in the multinomial regression compared with 1 % in section
4.1.1. Generator size is not significant in the individual regression for canceling.
We expected an ambiguous effect from this variable, so it is not surprising. As
the results from this model are to a large extent in line with the significant results
from section 4.1.1 and 4.2.1, it strengthens our belief in the validity of the observed
effects.

36



Table 9: The table presents the average marginal effect of each independent variable on
the probability of postponing and canceling as opposed to the probability of proceeding.
The last column presents the results from the full multinomial regression. ***, ** and *
describes 1%, 5% and 10% significance level respectively.

Postponing

REGUNCERT 0.012*** 0.032 **
T10 0.069*** 0.069 ***
PCAP -0.291*** -0.324 ***
RM 0.491*** 0.237 ***
RHH 0.018*** 0.009 ***
TG -0.003*** -0.004 ***
SIZE 0,001*** 0.001 ***

Cancel

REGUNCERT 0.031*** 0.027 ***
T10 0.012*** 0.020 ***
PCAP 0.160*** 0.122 ***
RM -0.244*** 0.082
RHH -0.028*** -0.030 ***
TG -0.002*** -0.003 ***
SIZE 0,001 0.000 ***

Statistics

McFadden Pseudo-R2 0.31 % 1.63 % 1.43 % 0.24 % 1.67 % 0.73 % 0.76 % 7.24 %
Log pseudolikelihood -9 963 -9 832 -9 851 -9 970 -9 827 -9 922 -9 918 -9 271
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5 Spark Spread Sample Regression

In this section we use a similar model to the one used in Sections 4.1, 4.2 and 4.3
for the years 2003 to 2011. We do this for two reasons, the first is to validate the
results from these sections on a subsample. The second is to test our profitability
uncertainty variable, the spark spread standard deviation, for the individual gen-
erators. We were not able to calculate this in the full sample regressions, because
of lacking daily wholesale electricity price data from years before 2001. Figure 4 il-
lustrates the occurrences of the three investment decisions used in the spark spread
regression analysis for each year.

Figure 4: Occurrences of the three different investment decisions used in the spark
spread regression analysis by year from 2003 to 2011.

The years 2003 to 2011 are chosen so that the collapse of the merchant market
is not included in the sample. Because of this we do not include the variable for
relative planned capacity, as it was designed to control for this trend. We do not
have daily wholesale electricity price data for all U.S. states during the time frame
from 2003 to 2010, some states are therefore omitted in the spark spread sample
regression.29 The U.S. states included belong to regions where sufficient price data

29The states omitted are: Florida, Kansas, Nebraska, Oklahoma, New Mexico and Arkansas
(All associated with the Southwest Power Pool). States associated with the Midcontinent Inde-
pendent System Operator (MISO) are included from 2006 to 2010 due to lack of price data.

38



exists in order to construct the spark spread standard deviation variable. These
regions are listed in Table 5 in Section 3.6. The only other change from the full
sample regression is the use of daily wholesale electricity price data to calculate
the spark spread variable that replaces the spark spread approximation variable
(RHH). The use of wholesale prices should make the variable more precise as these
are the prices generator companies obtain in the market. For completeness, we
still comment on the results obtained by keeping the spark spread approximation
variable.

5.1 Decisions to Postpone: Spark Spread Sample Regres-
sion

Here we investigate the factors that affect a firm’s decision to postpone a planned
investment. For the spark spread sample regression we have a total of 1,648 rel-
evant generator-year observations, of which 775 generators were postponed and
873 generators proceeded with the investment. The individual and multivariate
regressions are presented in Table 10.

5.1.1 Individual and Multivariate Regressions

The multivariate logistic regression used in order to analyse the spark spread sam-
ple is explained in Equation (12). The results from the regressions are presented in
Table 10. We get a positive effect for the regulatory uncertainty variable, signifi-
cant at 1 % level in both the individual and multivariate regression. We see a large
increase in the marginal effect of the REGUNCERT variable from 5.8 % in the full
sample regression to 23.9 % in the spark spread sample regression. This means
that the probability of postponing investments is 23.9 % higher when generators
are situated in states that change from no regulatory uncertainty to regulatory un-
certainty. The high increase in probability could be a result of the few regulatory
uncertainty observations in the spark spread sample as only four states experience
regulatory uncertainty from 2003 to 2012. The low number of observations makes
the results less trustworthy, as random effects are more likely to appear. Taking
this into account, the direction and significance of the marginal effect is the same
as in the full sample regression, which is in line with real option theory as explained
in Section 4.1. The spark spread standard deviation variable also has a positive
marginal effect and is significant at 5 % for the individual regression and 1 % for
the multivariate regression. This means that uncertainty regarding the operating
profitability increase the probability of postponing.

39



DV postponing
i,t = F (β0 + (β1 ×REGUNCERTs,t) + (β2 × SPRDSDik,t−1)+

(β3 ×RMpred(+1y)
k,t−1 ) + (β4 × T10t−1) + (β5 × SPRDik,t−1)

+(β6 × TGi,t) + (β7 × SIZEi))
(12)

DV postponing
i,t is the binary dependent variable which is one if a firm postponed

generator i in year t, and zero if the investment proceeded
REGUNCERTs,t is an indicator variable which is one if there was regulatory uncer-

tainty in state s for year t, and zero otherwise
SPRDSDik,t−1 is the spark spread standard deviation for generator i in region k,

in year t− 1

RM
pred(+1y)
k,t−1 is the year t− 1 prediction of reserve margin in region k in year t

T10t−1 is the ten-year U.S. Treasury note interest rate in year t− 1

SPRDik,t−1 is the spark spread for generator i in region k, in year t− 1
TGi,t is the total number of existing generators owned by the owner of

generator i, in year t
SIZEi is the summer capacity of generator i
F (·) is the logistic cumulative density function

This effect is what is predicted by real option theory as higher uncertainty raises
the early exercise boundary of the call option to invest. We expected a more am-
biguous effect because of the nature of the generators we are studying. Most inter-
mediate and peak load plants are only dispatched when electricity prices reaches
levels that make them profitable to operate. Owners of such power plants have
the ability to ramp up and down electricity production whenever production is
profitable. A higher profitability uncertainty could thus create a substantial up-
side with low potential downside for the investor as the investor can shut down
production once prices gets too low. The call option effect and the ability to ramp
up and down production affect investor behavior in different directions, which is
what led us to believe we would see an inconclusive effect of this variable on the
decision to postpone in the first place. These two effects of spark spread standard
deviation are discussed in more detail in Section 3.6. Our results lend support to
the call option effect being the stronger of the two in the full sample regression. It
would be natural to expect a different degree of significance and direction of the
marginal effect of the spark spread standard deviation variable for intermediate
versus peak load plants, as was discussed in Section 3.6. We have done a rough
estimate of this difference by defining peak load plants as combustion turbines
with summer capacity below 200 MW and combined cycle turbines with summer
capacity below 100 MW, the remaining plants are defined as intermediate load
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plants. According to EIA (2009), a conventional combustion turbine has an aver-
age capacity of 160 MW while a conventional combined cycle combustion turbine
has an average capacity of 250 MW. Most combustion turbines operate at peak
load while the more efficient combined cycle plants mostly operate at intermediate
load. We therefore believe that the thresholds we have chosen give a fair estimate
of which plants function as peak and intermediate load in our data. When we
run the spark spread sample regression on the generators defined as peak load
plants we get negative sign of the marginal effect and no significance for the spark
spread standard deviation variable in the multivariate regression. When we run the
spark spread sample regression on the intermediate load plants we get a positive
marginal effect at the 1 % significance level in the multivariate regression. This
means that intermediate load plants are more likely to postpone an investment
during profitability uncertainty while peak load plants have a more ambiguous
response to higher profitability uncertainty. These results are in line with the real
option theory presented in Section 3.6 as we get a stronger call option effect for
the intermediate load plants relative to the peak load plants. Peak load plants are
more affected by the flexibility effect, i.e. they are less likely to postpone invest-
ments during times of high profitability uncertainty as there could be considerable
profit opportunities for peak load plants in such price environments.

Table 10: The table presents the average marginal effects (dProb(Postponing)/dx) for
each independent variable both individually and in the multivariate analysis. The last
column represents the results of the multivariate regression. The average marginal effects
for REGUNCERTs,t is measured for the discrete change from zero to one. ***, ** and
* describes 1%, 5% and 10% significance level respectively.

Postponing

REGUNCERT 0.274*** 0.239 ***
SPRDSD 0.005** 0.007 ***
RM 0.189 0.227
T10 0.491*** 0.044
SPRD -0.000 -0.018 ***
TG -0.005*** -0.045 ***
SIZE 0.001*** 0.004 ***

Statistics

McFadden P-R2 0.70 % 0.36 % 0.05 % 1.30 % 0.44 % 2.80 % 3.30 % 8.69 %
Log P-L -1 131 -1 135 -1 139 -1 124 -1 126 -1 108 -1 101 -1 040

Spark spread has a negative marginal effect that is insignificant for the individual
regression and significant at 1 % for the multivariate regression. These results are
equivalent to the results we got for the spark spread approximation variable in the
full sample regression in Section 4. High spark spread indicates high profitability
and it appears natural that improved profitability should lead to earlier exercise of
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the option to invest as the cost of deferring operation increases. Using the spark
spread approximation variable in the multivariate spark spread sample regression
we get a negative effect significant at 5 %. The reduced significance could indicate
that using wholesale prices more strongly captures the intended profitability ef-
fects. Still, it is worth mentioning that we get the expected effects using the spark
spread approximation variable in both the full and spark spread sample regres-
sions. This indicates that using retail prices when calculating spark spread could
be a satisfactory approximation for generator profitability, at least in this sample.

The interest rate and reserve margin variables do not give the same results as in
Section 4.1. Interest rate is significant at 1 % in the individual regression, but is
not significant in the full regression. By including only the years after 2003 our
sample contains relatively few years, and includes several years of very low interest
rates following the financial crisis of 2007-2008, see Figure 7. This gives a limited
observation range for the variable. Also, it is worth noting that we can obtain
similar results in the canceling regression in Section 5.2.1, with highly significant
effects in the individual regression and no significance in the full regression. This
might indicate that the variable has significant positive effects as expected, and
that these are captured by the other variables in the model for this sample. Reserve
margin is not significant in the individual nor in the multivariate regression. The
effects mentioned in Section 4.2.1, including demand response mechanisms and
the missing money problem, are effects that would be an issue for all the years
in the spark spread sample. Interpreting the variable may be difficult because of
this. Generator size and the number of generators owned variables yield the same
results as in the full sample regression.

5.2 Decisions to Cancel: Spark Spread Sample Regression

In this section we study how the different variables affect a firm’s decision to cancel
a planned investment. We have a total of 1,103 relevant generator-year observa-
tions, of which 230 generators were canceled and 873 generators proceeded with
the investment. The individual and multivariate logistic regressions are presented
in Table 11.

5.2.1 Individual and Multivariate Regressions

We use the following logistic regression in our analysis of the decision to cancel in
the spark spread sample:
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DV canceling
i,t = F (β0 + (β1 ×REGUNCERTs,t) + (β2 × SPRDSDik,t−1)+

(β3 ×RMpred(+1y)
k,t−1 ) + (β4 × T10t−1) + (β5 × SPRDik,t−1)

+(β6 × TGi,t) + (β7 × SIZEi))
(13)

DV canceling
i,t is the binary dependent variable which is one if the firm canceled

a proposed generator i in year t, and zero if they proceeded. All
other variables are defined as in Section 5.1.1.

We find a significant positive influence for regulatory uncertainty, matching the
results from the full sample regression. This is the opposite effect of what we
expected, reasons and explanations for this effect are discussed in Section 4.2. For
spark spread standard deviation we get positive effects, significant at the 5 % level
for the individual regression and 1 % for the multivariate regression. This is not
the results we expected as higher profitability uncertainty should be beneficial for
power plants with the ability to ramp up and down production.

This should lead investors to go ahead and proceed with investments rather than
cancel as higher uncertainty increases the probability of the spark spread reaching
the levels needed in order for the power plants to be profitable. One possible
explanation could be that the variable is not forward looking. When evaluating an
investment it is future spark spread standard deviation that will determine how
profitability is viewed. The current level may not reveal how investors forecast
future values. A generator investment is long term with a life expectancy of >
25 years. If spark spread standard deviation is considered short term variation, it
might not affect long term decision making. High short term variability may also
point to future lower uncertainty levels if investors consider spark spread standard
deviation to be mean reverting.

Variation may not give sufficient information, without accounting for the level.
Even though a higher spark spread standard deviation should increase the prob-
ability of higher prices, it does not necessarily tell a potential investor what he
needs to know without looking at the current profitability level at the same time.
A generator that ramps up and down production depending on the spark spread,
will have a certain boundary where production becomes profitable. The profitabil-
ity of the generator will be determined by the number of hours the generator
operates multiplied by the average spark spread obtained. Hence variations in the
spark spread below the threshold will not affect profitability. Variations in spark
spread above the threshold will give the same profitability as an identical average
spark spread with less variance. We do not have a satisfactory explanation for the
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spark spread standard deviation results, there may be an identification problem
related to the mentioned factors, which causes the variable not to measure all the
desired profitability uncertainty effects. For a given planned generator, it could
seem reasonable that other factors may have to be included to capture the outlook
to future utilization and profitability.

Table 11: The table presents the average marginal effects (dProb(Canceling)/dx) for
each independent variable both individually and in the multivariate analysis. The last
column represents the results of the multivariate model. The average marginal effects for
REGUNCERTs,t is measured for the discrete change from zero to one. ***, ** and *
describes 1%, 5% and 10% significance level respectively.

Cancel

REGUNCERT 0.299*** 0.256 ***
SPRDSD 0.004** 0.005 ***
RM -0.349* -0.141
T10 0.079*** 0.052 **
SPRD -0.002** -0.003***
TG -0.004*** -0.004***
SIZE 0.001*** 0.001 ***

Statistics

McFadden Po-R2 1.06 % 0.45 % 0.40 % 1.08 % 1.93 % 0.92 % 3.63 % 9.71%
Log P-L -558 -562 -562 -558 -550 -559 -544 -510

We use the definition of peak and intermediate load plants that was presented and
used in Section 5.1.1 in order to investigate the effect of spark spread standard
deviation on the decision to cancel for peak load plants versus intermediate load
plants. In the multivariate regression, peak load plants get a positive marginal
effect at the 10 % significance level while intermediate load plants get a positive
marginal effect at the 1 % significance level. This means that both intermediate
and peak load plants are more likely to cancel during high levels of profitability
uncertainty. Still, the significance levels suggest that the effects are larger for the
intermediate load plants. We expected the direction of the marginal effect to be
negative for both the intermediate and the peak load plants as higher profitability
uncertainty should make it more profitable for plants with the ability to ramp
up and down electricity production to operate. The result that intermediate load
plants are more likely to cancel during high profitability uncertainty than peak load
plants is in line with the theory explained in Section 3.6 as higher profitability
uncertainty should be more of an advantage for peak load plants compared to
intermediate load plants.

The spark spread variable is significant at the 5 % level in the individual regression
and 1 % in the multivariate regression, with a negative marginal effect, as expected.
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Exchanging it with the spark spread approximation variable from section 4, yields
the same results.

Reserve margin is insignificant in the full regression and has a negative effect sig-
nificant at the 5 % level in the individual regression. The variable had spurious
results in the previous regressions as well, so this is not surprising. Some possible
explanations are described in Section 4.2. Interest rate has a positive marginal
effect and is significant at 1 % in the individual regression, and 5 % in the multi-
variate regression. These are the same effects we saw in the full sample regression.
Higher interest rates increase the chance of canceling in both the individual and
the multivariate regression.

The generator size and number of generators owned variables are significant at
the 1 % level for both the individual and the multivariate regressions. Like in
Section 4.2, the marginal effects is negative for number of generators owned and
positive for the size of the generators.
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6 Summary of Regression Results

In this section we summarize the regression results, Table 12 gives an overview.
Two data samples are used for analysing the proposed generator data, the full
sample where we use all data available going back to 1990 and the spark spread
sample where we use a subsample from 2003 to 2011 and analyse the effect of prof-
itability uncertainty, excluding the collapse of the merchant market. The variables
used to analyse the two data samples differ slightly due to the lack of available
wholesale price data prior to 2001 and because we choose to exclude the planned
capacity variable from the spark spread sample regression.30 We run logistic re-
gressions investigating the factors that affect investors’ willingness to postpone,
proceed and cancel proposed investments on both data samples.

Table 12: Summary of the regression results from the various multivariate regressions on
both data samples. The sign of the marginal effects are given in parenthesis. ***, ** and
* describes 1 %, 5 % and 10 % significance level respectively. A plus sign indicates that
higher value of the variable will result in a higher probability of postponing or cancelling
the investment. A minus sing indicates that a higher value of the variable will result in
a higher probability of proceeding with an investment. The significance level tells us to
what degree this result can be trusted.

Variable Full Sample Spark Spread Sample

POSTPONING CANCEL POSTPONING CANCEL
REGUNCERT (+) *** (+) *** (+) *** (+) ***
SPRDSD (+) *** (+) ***
T10 (+) *** (+) *** (+) (+) **
PCAP (−) *** (+) ***
RM (+) *** (+) *** (+) (−)
RHH (−) *** (−) ***
SPRD (−) *** (−) ***
TG (−) *** (−) *** (−) *** (−) ***
SIZE (+) *** (+) *** (+) *** (+) ***

We find that regulatory uncertainty increases the likelihood of proposed plants
being postponed for all regressions. This result is in line with real option theory
as increased uncertainty should delay investments as investors gather more infor-
mation. A higher uncertainty regarding the profitability of each generator will also
increase the probability of postponing. This is also consistent with option theory
where increased uncertainty raises the early exercise boundary for the call option
to invest. However, profitability uncertainty can affect the decision to postpone in
two ways and should be different for peak load and intermediate load plants, as

30This is done as the planned capacity variable is created in order to control for the investment
bubble prior to the merchant market collapse, which is only only present in the full sample
regression.
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explained in Section 3.6. We find that the plants we define as intermediate load
plants are more likely to postpone investments during times of high profitability
uncertainty than the plants we define as peak load. This is natural as peak load
plants have a higher incentive to proceed when profitability uncertainty is high.

The largest firms and the more profitable generators are more likely to proceed
with investments. Also, larger generators are more likely to be postponed and
cancelled than smaller generators. A high interest rate increases the probability of
canceling and postponing investments and generators situated in regions with high
reserve margins are more likely to postpone according to the full sample regression.

Some of our results are counterintuitive. Investors are more likely to cancel planned
generators during times of high regulatory uncertainty. According to real option
theory more uncertainty increases the value of the option to invest, hence the
option should not be canceled. We expected a more ambiguous effect of regulatory
uncertainty on the decision to cancel as, among other things, outlook to regulatory
change differs because companies view their own ability to compete differently. A
more in depth discussion of the reasons why regulatory uncertainty could give
these effects are found in Section 4.2.1.

Owners are also more likely to cancel planned generators during times of high
profitability uncertainty. A higher spark spread standard deviation should also
increase the option value as both peak and intermediate load plants have the
ability to ramp up and down production. Higher uncertainty should thus increase
the option value to invest in such plants. We do not have satisfactory explanations
for these results, there may be identification problems related to the spark spread
standard deviation variable, as discussed in Section 5.2.1.
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7 Conclusion

This paper provides an empirical study of the real options to postpone, cancel and
proceed with sequential investment with time-to-build. We study variables that
affect the investment behavior in the U.S. electricity generation industry for gas
fired combined cycle and combustion generators. The dataset uses generator level
data for proposed power plants in 48 U.S. states in the years 1991 to 2011. The
main regression results are summarized in Table 12 in Section 6.

We find strong evidence of real option effects. Regulatory uncertainty increases
the probability of planned generators being postponed. Profitability uncertainty,
proxied by spark spread volatility, yields the same results with higher variability
leading to more postponing. This is consistent with real option theory which states
that uncertainty should have a depressive effect on the sequential investment (Majd
and Pindyck, 1987). We also find that larger and more irreversible intermediate
load generator investments are more likely to be postponed than smaller peak load
plants. This also lend support to the results of Majd and Pindyck (1987) in that
time-to-build should further increase the depressive effect of uncertainty.

Somewhat more surprising is our result that that generators are more likely to
cancel during times with high profitability uncertainty and regulatory uncertainty,
as higher uncertainty should increase the real option value. This contradicts most
real option theory. For the regulatory uncertainty results, it could be explained
by the cost of postponing, industry specific uncertainty asymmetry or strategic
considerations, as we discuss in Section 4.2.1. We do not have a good explanation
for the spark spread standard deviation results, but we believe that the variable
may suffer from some identification issues.

What could these results mean for policy makers? Our results show that regulatory
uncertainty have the potential to inhibit capacity growth as it increases the like-
lihood of canceling and delaying power plant investments rather than completing
the generator projects. Regulators should have this in mind while considering reg-
ulatory change. An investigation process for evaluating changed legislation, could
lead to reduced investments. This may not be beneficial for the local electricity
market as supply reliability could be threatened. Keeping regulatory processes
brief is one of the measures that could be advisable. There have been large state
level variations in the time span of the deregulation processes.

Further work should be done to improve the model. A natural starting point is
to attempt modifying variables in order to capture forward looking effects. The
profitability variables spark spread and spark spread approximation should be re-
placed by a variable that can capture the expected future profitability of generator
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companies. One alternative could be looking at future/forward contracts to get
future prices.

We have not included any interaction variables or other higher order variables in
our model. Interactions could improve the explanatory power of the model. As
we have a large volume of data, another option to increase the explanatory power
would be to add more variables. Including financial data would be a positive
contribution. Finding a better way to control for the trend of the collapse of the
merchant market could also potentially improve the model.

Further work should also include an attempt at quantifying the costs of postponing
and canceling in different stages of the investment process. With these numbers it
could be easier to build an understanding of the decisions to cancel and postpone
and how they relate to each other, especially in the face of regulatory uncertainty.
The analysis of the result that regulatory uncertainty increases the probability
of canceling would be greatly improved by this knowledge. It could also shed
some light on the relationship between uncertainty and canceling. Most empirical
papers use aggregate investments when measuring real option effects. From this
it is possible to say whether investments increase or decrease. It can however be
difficult to determine whether the reduction comes from postponing or canceling.
We believe that these ambiguities related to canceling and uncertainty could be
addressed in a satisfactory way by quantifying the aforementioned costs.
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A Data and Independent Variables

A.1 Status Transition Figures

Figure 5: The figure shows the number of observed transitions between the different investment stages in the
full sample regression. The arrows indicate the direction of transitions. The number close to an arrow indicates
the occurrence of this transition in the dataset. Investment stages are incorporated into circles and final stages
are incorporated into squares. Definitions of status codes: P = Planned, no regulatory approval, T =Planned,
Regulatory approval received, U = Under construction, TS = Construction complete, not in operation, OP =
Operating, IP = Canceled.

Figure 6: The figure shows the number of transitions from each investment stage to the three statuses:
proceed, postpone and cancel. By summing up the numbers we get a total of 4004, 4399 and 1483 observations
of proceeding, postponing and canceling respectively. Investment stages are incorporated into circles and type of
transition is incorporated into rectangles. Definitions of status codes: P = Planned, no regulatory approval, T
=Planned, Regulatory approval received, U = Under construction, TS = Construction complete.
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A.2 Macro Data

Figure 7: The figure shows annual ten-year U.S. Treasury Interest Rate for the years relevant to our study.
Price data gathered from FED.

Figure 8: Henry hub annual spot prices. Price data gathered from Reuters
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Figure 9: The figure show the annual retail electricity prices for all U.S. states included in our study. The
bold black line show the average retail price for all of U.S.

Figure 10: The figure shows the reserve margin predicted in the year t − 1 NERC Electricity Supply and
Demand database for year t for the different NERC-regions. This figure also show the total predicted U.S. reserve
margin as grey bars.
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Figure 11: This Figure shows the development of NERC regions from 1990 to 2014. As NERC-region
boundaries change so does the reserve margin variable in our regressions. All maps are taken from the NERC
website.

58



A.3 State Level Relative Planned Capacity

Figure 12: The figure show the planned capacity as a % of total installed capacity by state in year t. This is
an illustration of the PCAP variable used in our regressions.
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A.4 Regulatory Uncertainty Variable

Figure 13: This table show the regulatory uncertainty variable for each U.S. state from 1990 to 2011 included
in the regressions. The state abbreviations follow the American National Standards Institute (ANSI) standards.
The regulatory uncertainty variable can take on the value of one and zero. REGUNCERT = 1 means the state
experience regulatory uncertainty in that year, these cells are marked with a green color. REGUNCERT = 0
means that the state does not experience regulatory uncertainty in that year.
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B Statistics

In this appendix we define the logistic regression, summarize the variables used and
look at various ways of evaluating and testing the full sample regression results.

B.1 Logistic Regression

The logistic regression function is a non-linear function where the dependent vari-
able can either be one or zero. The probability of the dependent variable being
one depends on the independent variables. The logistic regression function as
described in Long and Freese (2006) is given by

Pr(DV = 1|x) = F (xβ) =
eβ0+x1β1+ ...+x8β8

1 + eβ0+x1β1+ ...+x8β8

Where DV is the dependent variable (postponing = 1 or canceling = 1, and
proceeding = 0), β0 is the intercept, βi are the regression coefficients and xi are
the independent regression variables. We use seven such independent variables in
our main regression in this paper. All the logistic regression results presented in
the tables of Section 4 and 5 are given as marginal effects, which are given by the
slope of the probability curve:

∂Pr(DV = 1|x)

∂xi

For binary independent variables, such as our REGUNCERT variable, marginal
effects measure discrete change. That is, how the predicted probability of DV = 1
change as the binary independent variable changes from 0 to 1. The marginal effect
of continuous variables are likewise interpreted as how the predicted probability of
DV = 1 change as the continuous variable increases by one unit.31 The significance
of the marginal effect given in the result tables is calculated using a Wald tests.
The Wald test assesses whether H0 : βi = 0, where H0 is more likely to be rejected
as the Wald statistic gets larger. The size of the Wald statistic increases as the
distance between the hypothized values and the estimated coefficients gets larger
but also when the curvature of the log likelihood function increases (Long and
Freese, 2006).

31In reality, the marginal effect for a continuous variable measure the instantaneous rate
of change, which may not be the exact effect on Pr(DV = 1) of a one unit increase in the
independent variable.
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B.2 Summary Statistics

In Table 13 we present the summary statistics of our entire final dataset, this
includes all existing generator-year observations from EIA Form 860 for all the
generators that exist in our dataset. More relevant though is Table 14 which
includes exclusively the generator-year observations used in our regression analysis.

Table 13: Summary statistics for independent regression variables for existing generator-
year observations from EIA Form 860 for all the generators that exist in our dataset

Variable Observations Mean Stdev Min Max

REGUNCERT 37,821 0.14 0.35 0 1
T10 37,821 4.73 1.07 3.22 8.55
PCAP 37,821 0.18 0.20 0 1.85
RM 37,821 0.14 0.07 -0.05 0.30
RHH 37,821 20.5 31.7 -105.7 149.1
TG 37,821 7.83 14.26 0 97.00
SIZE 37,821 146 113 1 1379

Table 14: Summary statistics for independent regression variables exclusively for the
relevant generator-year observations used in our regression analysis

Variable Observations Mean Stdev Min Max

REGUNCERT 9,886 0.25 0.43 0 1
T10 9,886 5.57 1.10 3.22 8.55
PCAP 9,886 0.27 0.27 0 1.85
RM 9,886 0.12 0.07 -0.05 0.30
RHH 9,886 33.9 23.6 -75.6 149.1
TG 9,886 3.93 10.53 0 97.00
SIZE 9,886 170 122 1 1379

We see from Table 14 that some of the independent variables vary significantly
between the different observations. This is especially evident for the firm specific
variables such as total number of generators owned by the firm (TG) and the
summer capacity of each generator (SIZE), as well as spark spread approximation
(RHH). None of these observations are especially surprising as capacity naturally
will vary when all gas-fired generators planned in the U.S. are included in the
sample. It might seem strange that the minimum value of the TG variable is zero;
this is simply because a great number of planned generators are planned by firms
who do not yet own a generator. And the generator will not be registered as owned
by the firm in the TG variable before it starts operating. RHH naturally varies
as efficiency of different generators varies and retail electricity prices vary greatly
across the states.
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B.3 Multicollinearity

Table 15 shows the Pearson correlation coefficients for the independent variables
presented in a correlation matrix.

Table 15: Correlations matrix for independent variables

REGUNCERT T10 PCAP RM RHH TG SIZE
REGUNCERT 1.00

T10 0.13 1.00
PCAP -0.13 0.04 1.00

RM -0.28 -0.03 -0.23 1.00
RHH -0.06 0.02 -0.19 0.18 1.00
TG -0.03 -0.12 -0.00 -0.06 -0.02 1.00

SIZE 0.03 -0.17 0.12 -0.01 0.11 0.16 1.00

This correlation matrix is calculated using the same generator-year observations
that were used to calculate the summary statistics in Table 14, and therefore ex-
clusively represent the observations used in the regression analysis. There are no
problematic correlations between any of the independent variables. According to
Eikemo and Clausen (2007) a correlation of at least ±0.8 is needed in order to
cause multicollinearity in the regression results. To be sure we run a simple vari-
ance inflation factor test (VIF), using the VIF command in STATA after running
an OLS regression on our independent variables. An OLS regression is used be-
cause the VIF command cannot be executed after running a logistic regression.
Running an OLS regression followed by a VIF command will not change the results
because the dependent variable is not included in the multicollinearity (Eikemo
and Clausen, 2007). Table 16 show the results from the VIF for both the CANCEL
and the POSTPONING regression.

Table 16: Variance inflation factor test

Variable POSTPONING CANCEL

V IF 1/V IF V IF 1/V IF

REGUNCERT 1.19 0.84 1.17 0.86
T10 1.13 0.88 1.15 0.87

PACP 1.10 0.91 1.12 0.89
RM 1.09 0.91 1.10 0.91

RHH 1.06 0.94 1.10 0.91
TG 1.06 0.94 1.08 0.93

SIZE 1.04 0.95 1.06 0.94

As we can see no VIF values are higher than 1.19, a cut off value of 10 has been
suggested by Kutner et al. (2004). The results are far below this cut off value and
hence we discard multicollinearity as an issue in our dataset.

63



B.4 Discrimination

Discrimination is a potential problem for logistic regressions; it can happen if we
have a bad relationship between the dependent and the independent variables.
This phenomenon only occurs for categorical independent variables. We have one
such variable, REGUNCERT, which takes on the value of one or zero. We can
investigate whether we have discrimination issues in our dataset by making a cross
tabulation of the dependent variables and the categorical variable, as we have done
in Table 17.

Table 17: Cross tabulation of dependent variables and REGUNCERT

POSTPONING CANCEL

POSTPONING = 1 POSTPONING = 0 CANCEL = 1 CANCEL = 0
REGUNCERT = 1 1,183 818 419 818
REGUNCERT = 0 3,216 3,186 1,064 3,186

The source of discrimination troubles stems from the fact that logit is calculated
as the natural logarithm of the odds ratio. For instance had there been zero obser-
vations of REGUNCERT = 1 when CANCEL = 1 then the odds ratio would be
zero for the case when generators get cancelled under regulatory uncertainty. This
would make the logistic coefficient equal to ln(0) = −∞ because REGUNCERT=
1 is a reference category. The interpretation of the REGUNCERT variable would
then be meaningless (Eikemo and Clausen, 2007). We see that this is not an issue
in our study as we have a sufficient number of observations in all categories in
order to calculate and compare meaningful odds ratios and the natural logarithms
of these.
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B.5 Hosmer-Lemeshow Test

The Hosmer-Lemeshow (H-L) test is a goodness of fit test for logistic regression
models. The test assesses whether the regression model fits the observed events. It
is different from Pearson’s χ2-test commonly used on linear regressions, in that it
identifies subgroups of the model population and form categories for the continuous
variables. Observations are sorted into groups of increasing order of estimated
probability of having an event occur. The observations are then divided into equal
sized groups. The H-L statistics are acquired from STATA using the command
estat gof, group(10), where group(10) is used in order to specify the number of
groups we want constructed. Ten groups are standard when using the H-L test.
The results of this test for the main regressions are presented in Table 18.

Table 18: Results of Hosmer-Lemeshow test on both logistic regressions

POSTPONING CANCEL
No. of Observations 8,403 5,487

No. of Groups 10 10
Degrees of freedom 8 8

Hosmer-Lemeshow χ2-Statistic 15.28 70.56
Prob > χ2 0.0539 0.0000

A logistic model is said to fit if the data if the p-value of the H-L statistic is
higher than 0.05. This is when we fail to reject the null hypothesis that there is no
difference between the observed and model-predicted values. As we see in Table 18
this is not the case for the CANCEL regression. Here the statistic is high and the
p-value is 0.000. For POSTPONING on the other hand we can accept the null
hypothesis and say the model fits the data.

Any goodness of fit test is primarily concerned with the predictive power of the
model, which is not the primary goal of our study. As we indicate in the result
section of this paper and in Appendix B.1, our main focus is studying the marginal
effects of the logistic regression coefficients in order to evaluate how the various
independent variables affect investment behavior. The model will not explain
everything. With our large dataset, only seven independent variables, a binary
dependent variable, lumpy occurrence of events and no interaction variables it is
natural that the fit is not very good. Especially the lumpy nature of canceling, with
53 % of observations in 2001 and 2002, could significantly impact the model fit.
Addressing some of these factors may be relevant in future research. To create a
better fitted model, including interaction variables and a variable that more closely
captures the profitability outlook for generator investment would be a start.

A large goodness of fit statistic indicates there is some lack of fit, but provides no
insight about its nature. A disadvantage of the H-L test is that it can only tell us if
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a model is significant or not, but nothing about the extent of the fit. Similarly this
test is strongly influenced by the sample size. In large samples, such as the ones
we are using here, just very small differences could lead to significance. As the
sample size gets larger, the H-L statistic can identify smaller and smaller differences
between observed and model-predicted values to be significant. Therefore, with
samples of our size it is hard to find models that are parsimonious (i.e. that use
the minimum amount of independent variables to explain the dependent variable)
and fit the data (Agresti, 1996).
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B.6 Classification Table and the receiver operating char-
acteristics curve

Classification table is a test of the logistic regression model’s ability to predict the
observed values. This table show how observed values coincide with the predicted
probabilities of our model. The probability of the dependent variable being equal
to one is calculated by using the values of the independent variables for each
observation used in the regression. A cut-off value of 0.5 is used, this means
that if e.g. Prob(POSTPONING = 1) > 0.5 for a specific observation then the
predicted value for POSTPONING for that observation is set to 1. Table 19 shows
the classification tables for the POSTPONING regression and Table 20 show the
classification table for the CANCEL regression.

Table 19: Classification table for the POSTPONING regression

Predicted True POSTPONING Total predicted obs

POSTPONING = 1 POSTPONING = 0
POSTPONING = 1 3,055 1,734 4,789
POSTPONING = 0 1,344 2,270 3,614

Total true obs 4,399 4,004 8,403
Sensitivity 69.45%
Specificity 56.69 %

Correctly classified 63.37 %

Table 20: Classification table for the CANCEL regression

Predicted True CANCEL Total predicted obs

CANCEL = 1 CANCEL = 0
CANCEL = 1 186 129 315
CANCEL = 0 1,297 3,875 5,172
Total true obs 1,483 4,004 5,847

Sensitivity 12.54 %
Specificity 96.78 %

Correctly classified 74.01 %

The overall rate of correct classification is estimated to be 63 % for the POST-
PONING regression model. Sensitivity is the fraction of observed-positive outcome
cases that are correctly classified; specificity is the fraction of observed negative-
outcome cases that are correctly classified. The sensitivity of the POSTPONING
model tells us that 69 % of observed postponings were correctly classified by the
model. The specificity of the POSTPONING model tells us that 57 % of observed
proceedings were correctly classified by the model.

Likewise the overall rate of correct classification is estimated to be 74 % for the
CANCEL regression model. The sensitivity of the CANCEL model tells us that 13
% of observed cancellations were correctly classified by the model. The specificity
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of the CANCEL model tells us that 97 % of observed proceedings were correctly
classified by the model. The low sensitivity of the CANCEL regression can be
explained by the low number of CANCEL observations versus proceeding obser-
vations, hence the probability of canceling will naturally be low and the cut-off
boundary harder to achieve, unlike the POSTPONING case where we have almost
an equal amount of observations. Another reason for why the model fails to cor-
rectly classify a large number of cancellations could be due to the variability and
lumpiness of the cancellation observations where 53 % of all cancellations occur
between 2001 and 2002. This could significantly impact the value of the regression
coefficients and hence be responsible for the model’s lack of predictive power on
cancellation. In return the model has a very good predictive power for proceedings.

We also graph the sensitivity versus (1−specificity) as the cut-off value is varied
in Figure 14. This is called the receiver operating characteristics curve (ROC
curve). On such a curve a model with no predictive power would be a 45◦line,
the greater the predictive power of the model the more bowed the curve and the
greater the area under the curve. A model with no prediction has an area under
the curve of 0.5 and a perfect model has an area of 1.

Figure 14: ROC plots

(a) ROC plot for the POSTPONING regres-
sion

(b) ROC plot for the CANCEL regression

Our area under the curve is 0.68 for the POSTPONING model and 0.72 for the
CANCEL model. These values tell us that our models yield a fair predictability
and are more likely to correctly predict investment behavior than a random model.
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B.7 Residual Plots

(c) Pearson residual plot for POSTPON-
ING regression

(d) Deviance residual plot for POSTPON-
ING regression

(e) Pearson residual plot for CANCEL re-
gression

(f) Deviance residual plot for CANCEL re-
gression

Figure 15: Pearson and Deviance residual plots for POSTPONING and CANCEL re-
gressions

The Pearson residual measures the relative deviations between the observed and fit-
ted values. The deviance residual measures the disagreement between the maxima
of the observed and the fitted log likelihood functions. Interpreting residual plots
for logistic regressions is not the equivalent of interpreting residual plots for linear
regressions. A linear regression assumes homoscedasticity (equal error variance for
all values of the criterion) while the logistic regression assume heteroscedasticity
(differing error variance for each value of the predicted score) (Cohen et al., 2002).

The residual plots for logistic regressions could help us identify outliers, these out-
liers could then again help us understand if we have misspecified some variables in
our model. From Figure 15 we can see that the residuals from the POSTPONING
regression are fairly evenly distributed, while the CANCEL residuals have a wider
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distribution on the positive side of the y-axis. These outlying observations could
hold the key to why we are experiencing a worse fit for the CANCEL model than
that for the POSTPONING model. The CANCEL residuals with a high positive
value could also be a natural result of how the residuals are calculated. The pre-
diction of CANCEL = 1 will naturally be low for the entire sample as we have
a much higher representation of proceedings than cancellations in the CANCEL
regression. As was also seen in Appendix B.6. This fact could cause the occasional
observations with CANCEL = 1 to have a low predictability of cancellation which
would lead to a very high Pearson residual value.32 This is also why we don’t see
similar residual jumps below the x-axis.

32This is evident by looking at the way Pearson residuals are calculated rP = observed−expected√
expected
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